
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

LUCAS MARTINELLI TABAJARA

Synthesis of Boolean functions through
Binary Decision Diagrams

Monograph presented in partial fulfillment
of the requirements for the degree of
Bachelor of Computer Science

Prof. Luís da Cunha Lamb
Advisor

Prof. Moshe Y. Vardi
Coadvisor

Porto Alegre, June 18th, 2015

CIP – CATALOGING-IN-PUBLICATION

Lucas Martinelli Tabajara,

Synthesis of Boolean functions through Binary Decision Dia-
grams /

Lucas Martinelli Tabajara. – Porto Alegre: Graduação em
Ciência da Computação da UFRGS, 2015.

66 f.: il.

Monograph – Universidade Federal do Rio Grande do Sul.
Curso de Bacharelado em Ciência da Computação, Porto Alegre,
BR–RS, 2015. Advisor: Luís da Cunha Lamb; Coadvisor: Moshe
Y. Vardi.

1. Boolean functions. 2. Synthesis. 3. Binary Decision Dia-
grams. 4. Quantified Boolean Formulas. I. da Cunha Lamb, Luís.
II. Y. Vardi, Moshe. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do CIC: Prof. Carlos Arthur Lang Lisbôa
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

I would like to thank professors Luís Lamb and Moshe Vardi, my advisors on both
sides of the globe, for their guidance and support during my academic journey.

I also extend my sincere thanks to Dror Fried, for his active participation in this work,
our many discussions and his invaluable comments and suggestions.

I would also like to thank my girlfriend Laura, for cheering me on and being there for
me, celebrating my accomplishments and helping me relax in times of stress.

Lastly, I would like to thank my family for helping and supporting me through all my
endeavors and giving me the certainty that I have people I can count on no matter what.

CONTENTS

CONTENTS . 5

LIST OF FIGURES . 7

LIST OF TABLES . 9

LIST OF ALGORITHMS . 11

ABSTRACT . 11

RESUMO . 13

1 INTRODUCTION . 17

1.1 Related work . 18

1.2 Structure of this work . 19

2 CONCEPTUAL BASIS . 21

2.1 Shannon expansion . 21

2.2 Quantified Boolean Formulas . 22

2.2.1 Quantifier elimination . 22

2.2.2 Witnesses . 22

2.3 Binary Decision Diagrams . 23

2.3.1 Ordering of a BDD . 26

2.3.2 BDD operations . 27

2.3.3 Canonicity of BDDs . 30

2.3.4 Paths in a BDD . 30

2.3.5 BDD applications . 32

3 PROBLEM DEFINITION . 33

4 METHODOLOGY . 35

4.1 About BDD traversal . 35

4.2 Input-first BDDs . 36

4.3 Quantifier elimination . 36

4.3.1 Self-substitution . 36

4.3.2 Quantifier elimination in BDDs . 37

4.4 Realizability . 38

4.4.1 Realizability in BDDs of general ordering 38

4.4.2 Realizability in input-first BDDs . 39

4.5 Synthesis . 40

4.5.1 Synthesis via quantifier elimination . 41

4.5.2 Input-first synthesis . 42

5 EXPERIMENTAL EVALUATION AND RESULTS 47

5.1 Test cases . 47

5.2 Orderings . 48

5.3 Experimental setup . 49

5.4 BDD construction . 50

5.4.1 Random orderings . 50

5.4.2 Input-first . 52

5.4.3 Fully-interleaved . 52

5.5 Synthesis . 55

5.5.1 Synthesis via quantifier elimination . 55

5.5.2 Input-first synthesis . 55

5.5.3 Implementation size . 59

5.6 Final remarks . 59

6 CONCLUSIONS AND FUTURE WORK 63

REFERENCES . 65

LIST OF FIGURES

2.1 Examples of binary decision trees representing Boolean functions. . . 24

2.2 Result of applying reduction operations to eliminate redundancies in
the binary decision tree from Fig. 2.1c. 25

2.3 Reduction properties of BDDs. 25

2.4 BDDs for the expression (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6) for two
different variable orderings, with missing positive edges understood
to lead to the terminal 1 and missing negative edges to the terminal 0. 28

2.5 Examples of paths on a BDD. 31

4.1 Example of not-realizable and realizable input-first BDDs. 40

4.2 BDD showing the x1-trimmed nodes and the fringe of x1. 43

4.3 Example of the structural synthesis algorithm. 44

5.1 Size and construction time of the initial BDD according to the instance. 51

5.2 Comparison of the construction time of the input-first BDDs with the
average of the random orderings. 53

5.3 Size of the initial BDD using the input-first ordering. 54

5.4 Size of the initial BDDs using the fully-interleaved ordering. 54

5.5 Running time of each synthesis algorithm for different instances. . . . 56

5.6 Running time of the synthesis for each instance, using the fully-
interleaved ordering. 57

5.7 Running time comparison of the different synthesis methods for input-
first BDDs. 58

5.8 Comparison of synthesis running time between input-first and the
random orderings. 60

5.9 Comparison of the size of the synthesized BDD between input-first
and the random orderings. 61

5.10 Size of the synthesized BDDs using the fully-interleaved ordering. . . 62

LIST OF TABLES

4.1 Equivalent formulas using each method of quantifier elimination. . . 37

5.1 Instances used in the experiments with their definitions. 48

5.2 Ordering of the variables for each instance. 49

LIST OF ALGORITHMS

1 BDD node construction. 26

2 Template for binary operations on BDDs. 30

3 Functional composition on BDDs. 30

4 Supporting operations for BDD recursive traversal. 36

5 Algorithm for checking realizability from a BDD. 39

6 BDD traversal algorithm for checking realizability from an input-first BDD. 40

7 Algorithm for synthesis based on quantifier elimination. 42

8 Algorithm for synthesis using input-first BDDs. 45

ABSTRACT

Boolean functions are an integral component of computer science, from combinational
circuits to satisfiability problems. However, although several problems can be encoded as
Boolean formulas, often the most intuitive representation is not constructive but declara-
tive, meaning that instead of a Boolean function describing how to obtain the outputs from
the inputs we have a relation between Boolean inputs and outputs that must be satisfied.
Although this provides a specification of the problem, in order to actually implement a
circuit or program to solve it we first need a constructive function that adheres to this spec-
ification. This function can be much more complex than the specification, requiring ex-
pending time and effort in development and testing to obtain a correct impĺementation. If
we have methods to synthesize constructive implementations of Boolean functions from a
declarative specification, we can automate this process and obtain correct-by-construction
implementations with little human effort. In this work we propose methods to do this
based on the manipulation of Binary Decision Diagrams (BDDs), a data structure for rep-
resenting Boolean functions. Starting from a BDD representing the specification, we first
describe how to verify that this specification defines a total function. If it is the case, we
convert it into a sequence of BDDs, each representing a function that computes one of
the outputs. This sequence can also be interpreted as a multi-rooted BDD, and can later
be converted into a practical implementation as a circuit or program. We also tested our
methods by synthesizing operations over integers in binary with varying number of bits,
to observe how they scale and to obtain insights on the behavior of BDDs when used for
synthesis.

Keywords: Boolean functions, Synthesis, Binary Decision Diagrams, Quantified Boolean
Formulas.

RESUMO

Síntese de funções Booleanas através de Diagramas de Decisão Binários

Funções Booleanas são uma parte integral da ciência da computação, de circuitos
combinacionais a problemas de satisfatibilidade. No entanto, apesar de diversos proble-
mas poderem ser codificados como fórmulas Booleanas, frequentemente a representação
mais intuitiva não é construtiva mas declarativa, significando que, ao invés de uma função
Booleana descrevendo como obter as saídas a partir das entradas, nós temos uma relação
entre entradas e saídas Booleanas que deve ser satisfeita. Apesar de tal formato fornecer
uma especificação do problema, para de fato implementar um circuito ou programa para
resolvê-lo precisamos primeiro de uma função construtiva que adere a essa especificação.
Essa função pode ser muito mais complexa que a especificação, necessitando dispender
de tempo e esforço no desenvolvimento e teste para obter uma implementação correta. Se
possuirmos métodos para sintetizar implementações construtivas de funções Booleanas
a partir de uma especificação declarativa, poderemos automatizar esse processo e obter
implementações garantidamente corretas com mínimo esforço humano. Neste trabalho
propomos métodos para realizar essa síntese baseados na manipulação de Diagramas de
Decisão Binários (BDDs), uma estrutura de dados para a representação de funções Boo-
leanas. A partir de um BDD representando a especificação, primeiro descrevemos como
verificar que tal especificação define uma função total. Se é o caso, a convertemos em
uma sequência de BDDs, cada um representando uma função que computa uma das saí-
das. Essa sequência pode também ser interpretada como um BDD de múltiplas raízes, e
pode depois ser convertida em uma implementação prática na forma de um circuito ou
programa. Também testamos nossos métodos sintetizando operações sobre inteiros em
binário variando o número de bits, para observar sua escalabilidade e obter uma intuição
sobre o comportamento de BDDs quando usados para síntese.

Palavras-chave: Funções Booleanas, Síntese, Diagramas de Decisão Binários, Fórmulas
Booleanas Quantificadas.

17

1 INTRODUCTION

Boolean functions stand at the core of computer science as one of its most important
building blocks. From digital circuits to satisfiability problems, functions of Boolean
variables appear in all levels of computing. In fact, even problems over different data types
can be represented as Boolean formulas, from basic arithmetic operations implemented as
logical circuits to different NP-complete problems encoded in SAT. However, there can be
a large gap between specifying a problem as a Boolean formula and obtaining a function
that solves the problem.

Often the most intuitive way of defining a Boolean function is not constructive, de-
scribing how the outputs can be computed from the inputs, but rather declarative, as a
relation between input and output values that must be satisfied. Nevertheless, in order to
implement a function in a practical format, such as in a circuit or program, a declarative
definition is not enough, and a constructive description of how to compute the output from
the input is necessary. The way to do this is not always clear, and often requires consid-
ering implementation details that are abstracted in the declarative definition. As such,
this process can be much more time-consuming than simply specifying the behavior of
the function as a relation. Furthermore, implementation mistakes can lead to a result that
does not conform to the specification, requiring further effort to be applied in testing and
debugging.

In order to address this problem, in this work we propose methods to automatically
synthesize from a specification, given as a propositional formula relating inputs and out-
puts, a correct-by-construction implementation of the desired Boolean function. More
formally, given a specification in the form of a characteristic function f : Bn × Bm → B,
where f(~y, ~x) = 1 iff ~x is a correct output for the input ~y, we synthesize an implementa-
tion g : Bn → Bm with the guarantee that f(~y, g(~y)) = 1.

Our synthesis procedure is based on the manipulation of Binary Decision Diagrams
(BDDs) (BRYANT, 1986), data structures designed for representing Boolean functions.
BDDs provide easy-to-manipulate canonical representations of Boolean expressions in
which Boolean operations can be implemented efficiently, and as such have found appli-
cations in a variety of problems, including model checking (BURCH et al., 1992) and
satisfiability solving (PAN; VARDI, 2005). However, the size of the BDD for a certain
formula is often difficult to predict, as BDDs can often blow up in size due to various
factors (HU; DILL, 1993). Therefore, one of our objectives is to observe how BDD sizes
behave in the synthesis process.

We begin the synthesis by converting the specification f into a BDD. We then apply

18

transformations to it in order to obtain a representation of a correct implementation g as a
multi-rooted BDD, where each root represents a different output. To do this, we first verify
that the specification does describe a total function, that is, that every possible input has an
associated output. If so, the synthesis itself is performed to obtain the implementation, for
which we present two different approaches. The first is based on quantifier elimination,
abstracting the representation of f as a BDD, while the second was designed specifically
to be used with this data structure, but requires some restrictions to be applied to the BDD
representation of f .

1.1 Related work

There have been a number of works pursuing the synthesis of Boolean functions from
a declarative specification. These have employed different approaches and data structures,
and sought applications in both hardware and software design.

The work of (KUNCAK et al., 2010) has as its focus the synthesis of small pro-
gram fragments. It proposes a new programming language construct called choose, which
would allow a programmer to specify the values of variables not directly through assign-
ment, but by providing constraints on their value. This construct would then be com-
piled into code that chose appropriate values to the variables according to the constraints.
The work concerns itself primarily with the synthesis of arithmetic expressions, but it
briefly describes a method employing BDDs that can be used to apply the same concept
to Boolean expressions. Our second method is reminiscent of the one mentioned in this
work, following a similar intuition, but our approach was designed in order to take further
advantage of the convenient properties of BDDs.

Still in the domain of software, (MARI et al., 2011) is more directly related to Boolean
synthesis, aiming to synthesize implementations of controllers in the C programming
language. This work also chooses BDDs as the underlying data structure, and for the
synthesis it follows a procedure presented in (TRONCI, 1998), which is similar to our
own method based on quantifier elimination. However, compared to our work it is more
technical and focused on a C implementation, instead of our goal of synthesizing general
Boolean functions.

Moving into hardware, (KUKULA; SHIPLE, 2000) proposes a direct mapping from
a BDD representing a relation between inputs and outputs to a circuit implementing the
behavior specified by the relation. Differently from the other approaches mentioned here
and from our own, it converts the specification BDD directly to a circuit implementation,
instead of first computing a BDD representation of the implementation. This circuit is
also designed to be able to select over multiple possible output values through control
signals. Because of this, the resulting circuit is very complex and large, and the solution
is specific to a hardware implementation.

Finally, (JIANG, 2009) has a very similar goal to ours, being concerned with extract-
ing functions from Boolean relations. It employs the method of quantifier elimination
based on function composition presented in (JIANG; LIN; HUNG, 2009), effectively
a process for finding witnesses to existentially-quantified Boolean formulas. This ap-
proach also has similarities to our own quantifier elimination method, but using a differ-
ent method to obtain witnesses based on the concept of Craig interpolation. They also
choose to use a different data structure as an alternative to BDDs, called And-Inverter

19

Graphs. The work of (HOFFEREK et al., 2013) generalizes this approach in order to
synthesize several witnesses simultaneously. However, their approach is particularly fo-
cused on implementing Boolean control signals, rather than general functions, and the
specifications used by them follow a different, specialized format reflecting this. They
also dispense with data structures such as BDDs or AIGs to instead use interpolation on
proofs obtained by specialized solvers.

In general, these works test their methods by applying them to the synthesis of specific
benchmarks of the area. In contrast, the experimental portion of our work will instead
focus on testing scalability, observing how the methods proposed here behave when the
size of the specification grows. This way, we intend to obtain important general intuitions
about the use of BDDs in the synthesis of Boolean functions.

1.2 Structure of this work

We start by providing basic terminology and theoretical concepts necessary for un-
derstanding the rest of this work, including an overview of BDDs, their properties and
basic operations. This is presented in Chapter 2. Next, we formally describe the problem
and introduce definitions specific to it in Chapter 3. The synthesis process itself and the
different methods proposed for it are described in Chapter 4. Experiments and the results
obtained from them are described in Chapter 5. Finally, conclusions and future work are
discussed in Chapter 6.

20

21

2 CONCEPTUAL BASIS

In this chapter we introduce some important concepts in understanding our methodol-
ogy, including an overview of Binary Decision Diagrams, which we use as our underlying
data structure.

In what follows we denote by B = {0, 1} the set of Boolean values. The symbols ¬,
∧, ∨ and ⊕ denote Boolean negation (NOT), conjunction (AND), disjunction (OR) and
exclusive disjunction (XOR), respectively.

2.1 Shannon expansion

Let f(x1, . . . , xn) be a Boolean function of multiple variables. The positive and
negative cofactors of f in respect to variable xi, denoted respectively by fxi

and
f¬xi

, are defined as fxi
(x1, . . . , xi−1, xi, . . . , xn) = f(x1, . . . , xi−1, 1, . . . , xn) and

f¬xi
(x1, . . . , xi−1, xi, . . . , xn) = f(x1, . . . , xi−1, 0, . . . , xn). It is easy to verify that, for

every variable xi, the identity f = (xi ∧ fxi
)∨ (¬xi ∧ f¬xi

) holds. This decomposition of
a Boolean function into positive and negative factors is called Shannon expansion.

In a way, Shannon expansion is representative of the concept of satisfiability of Boolean
expressions. To obtain an assignment to a Boolean expression, each variable is selected
to receive either a positive or negative assignment and then it is appropriately substituted
by its assigned value in the expression. A formula is satisfiable if for each variable either
a positive or negative assignment leads to it evaluating to 1.

As an example, take the function f(x1, x2, x3) = (x1 ∧¬x2)∨ x3. By expanding it in
respect to the variable x1 we obtain:

(x1 ∧ ¬x2) ∨ x3 = (x1 ∧ ((1 ∧ ¬x2) ∨ x3)) ∨ (¬x1 ∧ ((0 ∧ ¬x2) ∨ x3))
= (x1 ∧ (¬x2 ∨ x3)) ∨ (¬x1 ∧ (0 ∨ x3))
= (x1 ∧ (¬x2 ∨ x3)) ∨ (¬x1 ∧ x3)

Note that the resulting formula is not only equivalent but is also in a format in which
we can clearly see, given an assignment to x1, what assignment to x2 and x3 must be
picked to satisfy the formula.

22

2.2 Quantified Boolean Formulas

A Quantified Boolean Formula, or QBF, is a generalization of propositional logic
where Boolean variables can be universally or existentially quantified. Although this al-
lows for quantifiers inside Boolean expressions, it can be shown that every QBF formula
can be represented in the form Q1x1Q2x2 . . . Qnxnϕ, where Q1, Q2, . . . , Qn are quanti-
fiers and ϕ is a formula in propositional logic. This form, where quantifiers are grouped in
the outside of the formula, is called Prenex normal form. From now on, it will be assumed
that any QBF formula is in Prenex normal form.

Generally, the term QBF denotes a formula with no free variables, i.e. where every
variable is either universally or existentially quantified. Formulas that allow free variables
are called open QBF (KLIEBER et al., 2013). In contrast, QBF with no free variables can
be called closed QBF when it is necessary to differentiate them from the open version.
While closed QBFs are always either true or false, open QBFs depend on an assignment to
their free variables to be evaluated. Therefore they can be classified according to criteria
like satisfiability and validity, the same way as propositional formulas.

2.2.1 Quantifier elimination

Resolution of QBF formulas is performed through quantifier elimination. Each step
of quantifier elimination removes one variable from the formula, such that once this is
repeated for all quantifiers only free variables remain. If the formula is closed (has no
free variables), it is reduced to either 0 or 1, indicating the truth value of the QBF.

Because Boolean variables can only assume two values, 0 or 1, quantifier elimina-
tion for QBF is easier than for generic first-order logic formulas. ∀x(f(x)) is equivalent
to f(0) ∧ f(1), and ∃x(f(x)) is equivalent to f(0) ∨ f(1). Therefore, given a QBF
Q1x1Q2x2 . . . Qnxn(f(x1, x2, . . . , xn)) we can start with the innermost quantifier Qn and
eliminate it by performing Q1x1 . . . Qn−1xn−1(f(x1, . . . , xn−1, 0) � f(x1, . . . , xn−1, 1)),
where � is ∧ if Qn is ∀ and ∨ if Qn is ∃. Then we can repeat the process for the rest of the
quantifiers. Although this process is simple, it is still computationally demanding, since
each eliminated quantifier doubles the size of the formula.

Notice the similarity between quantifier elimination, particularly for existential quan-
tifiers, and Shannon expansion. The two branches produced are precisely the positive and
negative cofactors of the formula. This happens because satisfiability of a propositional
formula f(x1, . . . , xn) is equivalent to the truth value of its existentially quantified version
∃x1 . . . ∃xnf(x1, . . . , xn).

2.2.2 Witnesses

The following definition can be used for any first-order formula, but in this work we
are concerned specifically with the case for QBF. Let ϕ be a formula of the form ∃x(f(x)).
A witness for ϕ is a value v such that f(v) is true. In other words, a witness is an example
of a value that proves the satisfiability of an existential formula. This definition can be
generalized by saying that for a formula ϕ of the form ∃x1, . . . , xn(f(x1, . . . , xn)), vi
is a witness for xi in ϕ if ∃x1, . . . , xi−1, xi+1, . . . , xn(f(x1, . . . , xi−1, vi, xi+1, . . . , xn)) is
true. If a witness is dependent on outside variables, then we will say it is defined by a
witness function.

23

2.3 Binary Decision Diagrams

A Binary Decision Diagram, or BDD, is a data structure for representing a Boolean
function that follows from the idea of Shannon expansion (BRYANT, 1986). A BDD
takes the form of a directed acyclic graph where each internal node represents a variable,
and following a path from the root to the leaves represents evaluating the function for a
specific assignment.

The BDDs employed in this work are more precisely Reduced Ordered Binary De-
cision Diagrams (ROBDDs), which is the variety most commonly used in the literature.
However, for simplicity we will refer to ROBDDs simply as BDDs throughout this work.
The properties of reduction and ordering will be discussed later in this section.

To understand BDDs, it is useful to start from a related data structure called a binary
decision tree, also used to encode a Boolean function, and apply some modifications to
convert it into a BDD. The binary decision tree T representing a given Boolean function
f : Bn → B is defined inductively as follows:

1. If n = 0, f must be a Boolean constant b ∈ B. Then T is a single leaf node labeled
by the constant b, called a terminal node.

2. Otherwise, if n > 0, T is a tree rooted in a node labeled by the first variable x1
with two outgoing edges labeled respectively by 0 and 1. Let Tb be the sub-tree to
which the b-labeled edge leads. Tb is a binary decision tree representing the function
fb : Bn−1 → B defined as fb(x2, . . . , xn) = f(b, x2, . . . , xn). T0 will be referred to
as the negative sub-tree, and T1 as the positive sub-tree of T .

Fig. 2.1 shows some examples of binary decision trees. We will use the convention
that 1-labeled edges will be solid and 0-labeled edges will be dashed.

It is clear that given a decision tree T for a function f : Bn → B and an assignment
~b ∈ Bn for the variables in f , ~b describes a path in T to a terminal node, by starting at
the root and deciding for each node which edge to follow based on the assignment to that
variable according to~b. The terminal node reached by this path is the resulting value of f
for the assignment.

There is a clear relation as well between a binary decision tree for a Boolean function
f and the Shannon expansion of f . In the binary decision tree T representing f with the
root labeled by the variable x1, the positive sub-tree is the binary decision tree for fx1 ,
and the negative sub-tree is the binary decision tree for f¬x1 .

Although binary decision trees can be used to represent Boolean functions and provide
an easy way to evaluate them, they are usually not helpful in practice because their size
is exponential on the number of variables. However, by observing their structure one
will notice there is a lot of redundancy in their representation of a Boolean function. For
example, in Fig. 2.1c the sub-trees rooted on the leftmost and rightmost x3 nodes are
identical. This opens up the possibility of storing this sub-tree only once and having the
negative edge of the leftmost x2 node and the positive edge of the rightmost x2 node both
lead to the same node. Fig. 2.2a shows the result of this operation. Because there are two
edges pointing to the same node, the structure is no longer a tree, but a directed acyclic
graph, or DAG.

24

x1

1 0

(a) f1(x1) = ¬x1

x1

x2

0 1

x2

1 1

(b) f2(x1, x2) = x1 ∨ x2

x1

x2

x3

1 0

x3

0 0

x2

x3

1 1

x3

1 0

(c) f3(x1, x2, x3) = (x1 ∧ ¬x2) ∨ ((x1 ↔ x2) ∧ ¬x3)

Figure 2.1: Examples of binary decision trees representing Boolean functions.

Looking at the DAG, one can find further redundancy upon noticing that the other
two x3 nodes have both outgoing edges leading to the same constant (0 in one case, 1
in the other). This means the result of the function in these paths is independent of the
variable x3. Therefore, the structure can be further reduced by removing the two x3 nodes
and having the edges that lead to them redirected to point directly to the leaves. Fig. 2.2b
shows the final DAG after this second modification. Notice that the nodes representing the
constants 0 and 1 also appear only once, for the same reason the x3 nodes were merged.

The resulting DAG obtained by applying these operations is the BDD for the func-
tion represented by the original binary decision tree. The significant reduction in size is
clear, going from 7 internal nodes to only 4. If the nodes for the Boolean constants are
considered, the reduction is even more evident, decreasing from 15 nodes in total to only
6.

This example illustrates the two properties that differentiate a BDD from a binary
decision tree, guaranteeing that the BDD is reduced:

Non-redundancy No nodes can have both outgoing edges pointing to the same child.
Any edges that would point to such a node point to the child instead.

Uniqueness There must not be more than one copy of a node with the same label, positive
child and negative child. All edges leading to a node with label xi, positive child
B1 and negative child B0 must point to the same node.

The reduction operations performed to obtain these properties are illustrated in Fig. 2.3.

With this we arrive at the following definition for BDDs:

25

x1

x2 x2

x3

0 0

x3

1 0

x3

1 1

(a)

x1

x2 x2

x3

0 1

(b)

Figure 2.2: Result of applying reduction operations to eliminate redundancies in the bi-
nary decision tree from Fig. 2.1c.

. . .

xi

xj

.

. . .

xi

xj

.

. . .

xj

.

(a) non-redundancy
.

xi xi

.

.

xi xi

.

.

xi

.

(b) uniqueness

Figure 2.3: Reduction properties of BDDs.

26

Definition 1. A Binary Decision Diagram, or BDD, is the directed acyclic graph ob-
tained by applying reductions to a binary decision tree such that the properties of non-
redundancy and uniqueness are fulfilled.

Therefore, one can construct a BDD by going through the process of building a binary
decision tree but making sure these properties are maintained during the construction.
The uniqueness property is usually obtained by keeping all BDD nodes in a table, so the
existence of a node can be easily checked and a reference to the already-existing one
can be used instead of creating a new one. Non-redundancy can be ensured by checking
before creating a node if both its children are the same, and returning the child instead of
creating the node if that is the case.

Algorithm 10 presents a procedure that returns a BDD given a label and positive and
negative children, while maintaining the reduction properties. The notation (xi, B0, B1)
will be used to denote a BDD node with label xi, negative child B0 and positive child B1.

Data: A label xi and two BDDs B0 and B1

Result: A BDD whose root is labeled by xi and has B0 and B1 as its negative and
positive child, respectively

1 Procedure MkBDD(xi, B0, B1)
2 if B0 and B1 are the same BDD B then
3 return B
4 else if a node B = (xi, B0, B1) already exists then
5 return B
6 else
7 B ← (xi, B0, B1)
8 insert B in table
9 return B

10 end
Algorithm 1: BDD node construction.

2.3.1 Ordering of a BDD

One very important factor to consider when working with BDDs is the ordering of
their variables. In order to build a BDD from a Boolean expression, one must first specify
a strict total order of the variables appearing in it. This will determine which variables
will come before others in the BDD. A node labeled by xi can have a child labeled by xj
only if xi < xj according to the variable ordering. This means that the lowest variable in
the ordering can only appear as root of the BDD, and the highest variable can only have
terminal nodes as children. Note however that intermediary variables can also be the root,
have terminals as children, both, or neither, since it is possible for variables to not appear
in the BDD at all if the result of the expression is independent of them.

The variable ordering of a BDD has a major influence on its size, to the point that the
BDD for a specific function might have linear size with one ordering and exponential size
with another. Therefore, one of the most popular topics of research in BDDs is in finding
heuristics to determine variable orderings that produce efficient BDDs. This can vary a
lot depending on the formula, and is influenced by the dependencies between variables.
For example, placing variables that appear together in the same sub-expression close to
each other in the ordering tends to produce smaller BDDs. The reasoning is that variables

27

that appear together tend to influence the assignment of one another, thus reducing the
number of different possible paths. On the other hand, other variables that appear outside
of the sub-expression will not be influenced by their individual assignments, but by the
result of the sub-expression, thus reducing the number of branches.

Fig. 2.4 exemplifies the advantage of this intuition. Both BDDs depicted encode the
expression (x1 ∧ x2)∨ (x3 ∧ x4)∨ (x5 ∧ x6), the first using the ordering x1 < x3 < x5 <
x2 < x4 < x6 and the second the ordering x1 < x2 < x3 < x4 < x5 < x6. In the first or-
dering, the variables x1, x3 and x5, which are from different sub-expressions, were placed
together. Because of that, up to the x5 nodes, the BDD is as large as possible, with 23 = 8
total edges leaving x5 nodes, all leading to different nodes. This happens because, since
these variables influence the value of different sub-expressions, every single assignment
of 〈x1, x3, x5〉 leads to a different set of satisfying assignments to the rest of the variables,
producing a fully branched BDD. On the other hand, the second ordering places together
variables from the same sub-expression, for example x1 and x2. Because their influence
in the formula is contained by their own sub-expression, there is as little branching as
possible. No matter the assignments to the individual variables, their influence to the total
formula is only on the evaluation of (x1 ∧ x2), which can only assume values 0 or 1. The
same is the case for the other variable pairings.

Of course, this heuristic becomes less effective when the same variable appears in sev-
eral different sub-expressions together with different groups of other variables. Since this
is the case for most of the formulas of practical interest, this heuristic alone may not al-
ways provide significant results. Several different heuristics have been developed (RICE;
KULHARI, 2008), but not all functions will have good orderings as easy to find as this
example, and some might not have orderings that lead to a linear BDD at all.

Given the difficulty in finding good heuristics for ordering BDDs, many applications
resort instead to techniques for dynamic variable ordering citeprudell, which tries to pro-
gressively improve the ordering of the variables in the BDD during program execution by
attempting small modifications and checking if they lead to an improvement on the size
of the BDD.

In algorithms presented from now on, the strict partial order≺will be used to compare
BDDs using the same ordering. This relation is defined as follows for two BDDs B1 and
B2:

• If B1 is not a terminal but B2 is, B1 ≺ B2.

• If both B1 and B2 are rooted, and x and y are respectively the variables of the roots
of B1 and B2, B1 ≺ B2 if x < y according to the variable ordering, and B2 ≺ B1

if y < x according to the variable ordering.

2.3.2 BDD operations

Another way to construct a BDD is by combining basic BDDs using analogs of
Boolean operations. For example, to build a BDD for the expression x1 ∧ ¬(x2 ∨ x3)
one would start with BDDs for x2 and x3, apply a ∨ operation to them, negate the result
and combine it with a BDD for x1 using a ∧ operation. These operations are also useful
when BDDs have to be constructed iteratively.

28

x1

x3

x5

x2 x5

x2

x2

x2

x4x4

x3

x5x5

x6

0 1

(a) x1 < x3 < x5 < x2 < x4 < x6

x1

x2

x3

x4

x5

x6

0 1

(b) x1 < x2 < x3 < x4 <
x5 < x6

Figure 2.4: BDDs for the expression (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6) for two different
variable orderings, with missing positive edges understood to lead to the terminal 1 and
missing negative edges to the terminal 0.

29

The following are the basic BDD building blocks and operations which are used in
BDD construction and manipulation.

Constants Boolean constants are represented by terminal nodes labeled with 0 or 1.

Variables A BDD representing a single variable is comprised of a node labeled with that
variable with the positive child pointing to the constant 1 and the negative child
pointing to the constant 0.

Negation A BDD is negated by switching the 0 node by the 1 node and vice-versa. To
avoid having to go down the whole BDD from the root to the terminals, some
implementations employ a flag to indicate whether a BDD is negated or not.

Binary operations Binary operations such as ∧, ∨ or ⊕ are obtained by recursively
traversing the two BDD operands while maintaining the variable ordering. The
general template for such operations is described in Algorithm 8. This general al-
gorithm can still be optimized for specific operations. For example, the algorithm
for applying the ∧ operator to two BDDs can return immediately if one of the
BDDs is the terminal 0, since the result will be 0 independently of the other BDD.
The same can be done for ∨ if one of the BDDs is the terminal 1.

Functional composition Given two BDDs F and G representing functions
f(x1, . . . , xn) and g(x1, . . . , xn), the composition of F and G on variable
xi, denoted by F |xi=G, is a BDD encoding the function h(x1, . . . , xn) =
f(x1, . . . , xi−1, g(x1, . . . , xn), xi+1, . . . , xn). In the case when G is a terminal
node, F |xi=G encodes one of the cofactors of f in respect to xi, the positive
one if G is the terminal node 1 and the negative one if G is the terminal node
0. Algorithm 12 presents a method for performing BDD composition as shown
in (SOMENZI, 1999). Note that this does not necessarily remove xi from the
BDD, since G might be dependent on xi.

30

Data: An arbitrary Boolean binary operation denoted by � and two BDDs X and Y
to be combined according to it

Result: The BDD X �̌Y , where �̌ is the BDD equivalent of the operator �
1 if X and Y are both constants then
2 return Value(X) � Value(Y)
3 else if X ≺ Y then
4 return MkBDD(Root(X), X0�̌Y , X1�̌Y)
5 else if X � Y then
6 return MkBDD(Root(Y), X �̌Y0, X �̌Y1)
7 else // X and Y have the same root
8 return MkBDD(Root(X), X0�̌Y0, X1�̌Y1)

Algorithm 2: Template for binary operations on BDDs.

Data: A BDD F , a label xi and a BDD G
Result: The BDD F |xi=G

1 Procedure Compose(F , xi, G)
2 if F is a constant or Root(F) > xi then
3 return F
4 else if Root(F) = xi then
5 return (¬G∧̌F0)∨̌(G∧̌F1)
6 else if Root(F) = Root(G) then
7 return MkBDD(Root(F), Compose(F0, xi, G0), Compose(F1, xi,

G1))
8 else if Root(F) < Root(G) then
9 return MkBDD(Root(F), Compose(F0, xi, G), Compose(F1, xi,

G))
10 else
11 return MkBDD(Root(F), Compose(F , xi, G0), Compose(F , xi,

G1))
12 end

Algorithm 3: Functional composition on BDDs.

2.3.3 Canonicity of BDDs

One of the most significant properties of BDDs is that, given a certain variable order-
ing, they are a canonical representation of a Boolean function. This means that there is a
single BDD that represents each function. Thus, if two Boolean functions are equivalent
(that is, they produce the same result for every assignment), their BDDs will be identical.
This property, combined with the fact that every BDD node is stored only once, means
that for two Boolean functions f and g, given their respective BDD representations F and
G, their equivalence can be determined in constant time simply by testing whether F and
G refer to the same BDD.

2.3.4 Paths in a BDD

A path in a BDD is a sequence of alternating nodes and edges π =
〈v1, e1, v2, e2, . . . , ek, vk+1〉 such that for all i ≤ k the edge ei connects the node vi with a
child node vi+1. The length of the path is the number of edges in it. We say that a path π

31

x1

x2 x2

x3

x4 x4

x5

0 1

(a)

x1

x2 x2

x3

x4 x4

x5

0 1

(b)

x1

x2 x2

x3

x4 x4

x5

0 1

(c)

Figure 2.5: Examples of paths on a BDD.

is complete if v1 is the root of the BDD and vk is a terminal node.

Every path in a BDD defines a partial assignment to the variables in the BDD. For a
given path π of length k, for all i ≤ k, if vi is labeled by variable xj and ei is labeled by
a Boolean b, then xj is assigned b in the assignment defined by the path. Note that this
partial assignment might skip variables that have been suppressed by the reduction rules.

Similarly, take a partial assignment ν = 〈xi 7→ bi, xi+1 7→ bi+1, . . . , xi+k 7→ bi+k〉
where xi, xi+1, . . . , xi+k are consecutive variables in the ordering of the BDD. Then ν,
together with a starting node v labeled by a variable x′, xi ≤ x′ ≤ xi+k, defines a path,
obtained by starting at v and for every node labeled by xj taking the edge labeled by bj .
If the starting node is not specified, it is assumed to be the root.

We say that a path π is satisfiable if it does not end in the terminal node 0. This is
equivalent to saying there exists a path π′ such that the last node of π is the starting node
of π′ and the last node of π′ is the terminal node 1. We say that a path π is satisfying if it
ends in the terminal node 1. Note that if π is satisfiable and complete then it is necessarily
satisfying.

Fig. 2.5 shows examples of paths in BDDs. They respectively define the partial as-
signments 〈x1 7→ 1, x2 7→ 0, x4 7→ 1〉, 〈x1 7→ 0, x2 7→ 1, x3 7→ 0, x4 7→ 0〉, and
〈x3 7→ 1, x4 7→ 0, x5 7→ 1〉. The path represented in (a) begins in the root and ends in
the terminal node 1, making it a complete path. The path in (b), on the other hand, ends
in a variable node, and therefore is not complete. The path in (c), although ending in a
terminal node, is not complete because it does not begin in the root.

32

2.3.5 BDD applications

Since their introduction, BDDs have become a widely used tool for solving a variety
of problems, with their main contribution in the field of formal verification. In model
checking, BDDs can be used as a symbolical representation of the state space of a sys-
tem (BURCH et al., 1992). Due to being a canonical representation of Boolean functions,
they can be used to test circuit equivalence (BRAND, 1993). They can also be used for
solving many problems related to satisfiability, such as enumerating, counting or ran-
domly generating solutions (KNUTH, 2009). These examples merely graze the surface
of the applications of BDDs. Many BDD variants have also been proposed that spe-
cialize in different types of problems. For example, Zero-suppressed Decision Diagrams
(ZDDs) (MINATO, 1993) use different reduction rules which make them efficient repre-
sentations of families of sets, allowing them to be used for example in representing sets
of clauses in CNF (CHATALIC; SIMON, 2000).

33

3 PROBLEM DEFINITION

The main problem we wish to solve is the following:

Given a relation between two vectors of Boolean variables represented by the charac-
teristic function f : Bn × Bm → B, obtain a function g : Bn → Bm such that for any
~y ∈ Bn, f(~y, g(~y)) = 1.

In the context of this problem, f is called the specification, while g is called the imple-
mentation. The specification is interpreted as describing a desired relationship between
inputs and outputs of a function, and the implementation describes how to obtain an out-
put from an input such that this relationship is maintained. Therefore, in the expression
f(~y, ~x), ~y = 〈y1, . . . , yn〉 are called the input variables, and ~x = 〈x1, . . . , xm〉 the output
variables.

Note that the relation between f and g is not necessarily one-to-one. In fact, for a
given function f there are three possibilities:

1. For each ~y ∈ Bn there is a single ~x ∈ B such that f(~y, ~x) = 1. In this case, there is
only one function g that preserves f(~y, g(~y)) = 1.

2. There is at least one ~y ∈ Bn for which there are ~x, ~x′ ∈ Bm, ~x 6= ~x′, such that
f(~y, ~x) = 1 and f(~y, ~x′) = 1. In this case, there can be two functions g and g′ such
that g(~y) = ~x and g′(~y) = ~x′ and both are a correct implementation of f .

3. There is at least one ~y ∈ Bn for which there is no ~x ∈ Bm such that f(~y, ~x) = 1.
In this case, f specifies only a partial function. Since the definition of the problem
requires g to be a total function, an implementation cannot be synthesized.

For the first case there is no problem. Any correct synthesis procedure will generate
the same implementation. For the second case, depending on choices made during the
synthesis process one option will be produced from a set of equally correct implementa-
tions.

The biggest problem is the case when f does not describe a total function. In this case,
the synthesis cannot be performed and an error will have to be signaled. The following
definition serves to identify such a case:

Definition 2. A Boolean function f(~y, ~x) is said to be realizable if ∃~x(f(~y, ~x)) is valid,
which is equivalent to saying that ∀~y∃~x(f(~y, ~x)) is true.

34

Since realizability is a requirement to perform synthesis, it will be necessary to be
able to identify when this property is violated. Therefore, we will be concerned not only
with the synthesis itself, but also with verifying realizability.

35

4 METHODOLOGY

As stated in Chapter 3, our goal is to synthesize a total function g(~y) that implements
a given specification f(~y, ~x), if it exists. We will use BDDs to represent this function. Re-
call that, while the return value of g(~y) is a vector of Booleans, a BDD encodes a function
that outputs a single Boolean variable. Therefore, one BDD is not enough to encode g. In-
stead, our synthesis methods will return a sequence of BDDs ~W = 〈W1, . . . ,Wm〉, where
each BDDWi represents a function gi(~y) that returns a satisfying value for output variable
xi. Because gi(~y) can be seen as a witness function for xi in the formula ∃~x(f(~y, ~x)), we
call Wi a witness BDD for xi. In certain cases we will use an intermediary representation
for a witness for xi where it is not dependent only on the input variables, but also on
the assignment of other output variables. We call those partial witness functions, and the
sequence of BDDs ~W ′ = 〈W ′

1, . . . ,W
′
m〉 representing them partial witness BDDs. When

the meaning is made clear by the context we will use the term witness to refer to both
witness functions and witness BDDs.

We will start by presenting a method for traversing a BDD as a graph. BDDs are
usually manipulated as representations of Boolean functions, using analogs to typical
Boolean operations. However, internally they are still represented as DAGs, and as such
can be traversed recursively. In some of the algorithms we use we will need to perform
this traversal, so we describe a general method that can be used later in different situa-
tions. Next, we will introduce a specific BDD ordering that is particularly relevant to this
work, as some of the algorithms presented in this chapter require the BDD to follow this
ordering. Then, we will present a novel method of quantifier elimination that will be em-
ployed in our algorithms. Finally, we will describe our methods for testing realizability
of a specification and for performing the synthesis of the implementation from it.

4.1 About BDD traversal

During this chapter we will propose different algorithms for testing realizability and
performing synthesis. Some of them will work by traversing the BDD as a DAG rather
than abstracting its structure and treating it like a Boolean function. This can be done by
a recursive traversal similar to one that would be performed in a binary tree. However,
since in a DAG different paths can lead to the same node, performing this traversal naively
would lead to the result for the same node being computed several times. To avoid this,
we use a dynamic programming solution, implementing a cache that stores the results for
nodes that have already been visited, in the form of a hash table.

36

Since this caching operation is purely a practical concern, and it would obscure the
logic of the algorithms that use it, we will assume that every procedure Traversal that
needs to traverse a BDD is accompanied by supporting operations Traversal_Init and
Traversal_Rec that follow the model presented in Algorithm 4. Traversal_Init should be
called to initiate the traversal, clearing the hash table and then calling the first recursion
step. Traversal_Rec should be called instead of the main procedure on every recursive
call. It verifies if the current BDD node has been visited already, returning the cached
result if so, and otherwise continuing the traversal and caching the result after it is finished.

Data: A BDD B and extra arguments to be passed to the Traversal function
Result: The output of the Traversal function

1 Procedure Traversal_Init(B, . . .)
2 clear table
3 return Traversal_Rec(B, . . .)
4 Procedure Traversal_Rec(B, . . .)
5 if table contains an entry for B then
6 return result stored in the entry for B
7 else
8 v ← Traversal(B, . . .)
9 store entry in table associating B to v

10 return v
11 end

Algorithm 4: Supporting operations for BDD recursive traversal.

4.2 Input-first BDDs

As mentioned in Chapter 2, the structure of a BDD can be influenced greatly by the
ordering used for the variables in it. There is a specific ordering which is particularly
relevant in the development of our methods, as presented in the following definition:

Definition 3. A BDD B for a specification is said to use an input-first order if for every
input variable y and every output variable x, y < x in the ordering used for B.

Informally, an input-first BDD has all input variables appearing higher in the BDD
than the output variables. This is an intuitive ordering that supports synthesis approaches.
We expect the output variables to depend on the input variables, therefore it makes sense
to decide on their values after knowing the assignment for the input. However, this is not
necessarily an efficient ordering, and in fact can lead to intractably large BDDs depending
on the case.

4.3 Quantifier elimination

4.3.1 Self-substitution

Recall from Chapter 2.2.1 that quantifier elimination in QBFs is usually performed
by expanding a formula into positive and negative cofactors and combining them using
conjunction or disjunction depending on whether the quantifier is universal or existential.

37

∀x′(f(~x, x′)) ∃x′(f(~x, x′))

Shannon expansion f(~x, 0) ∧ f(~x, 1) f(~x, 0) ∨ f(~x, 1)

Self-substitution f(~x, f(~x, 0)) f(~x, f(~x, 1))

Table 4.1: Equivalent formulas using each method of quantifier elimination.

We will call this technique the Shannon expansion method for quantifier elimination, due
to its similarity to the theorem of the same name.

Our first contribution in this work is an alternative technique for quantifier elimination
in QBFs, which we call the self-substitution method. This technique is based on the
following lemma:

Lemma 1. Let ϕ = Qx′(f(~x, x′)) be an open QBF formula, whereQ is either a universal
or existential quantifier. Let q be 0 if Q is universal and 1 if Q is existential. Then,
Qx′(f(~x, x′)) is logically equivalent to f(~x, f(~x, q)).

Proof. If Q is a universal quantifier, then we will prove that for any assignment ~σ,
∀x′(f(~σ, x′)) = 1 iff f(~σ, f(~σ, 0)) = 1:

(⇒) If ∀x′(f(~σ, x′)) = 1, this means that both f(~σ, 0) = 1 and f(~σ, 1) = 1. There-
fore, f(~σ, f(~σ, 0)) = f(~σ, 1) = 1.

(⇐) If f(~σ, f(~σ, 0)) = 1, then it cannot be the case that f(~σ, 0) = 0 otherwise
f(~σ, f(~σ, 0)) = f(~σ, 0) = 0. Therefore, f(~σ, 0) = 1, and so f(~σ, 1) = f(~σ, f(~σ, 0)) = 1.
Since both f(~σ, 0) = 1 and f(~σ, 1) = 1, then ∀x′(f(~σ, x′)) = 1.

If Q is an existential quantifier, then we will prove that for any assignment ~σ,
∃x′(f(~σ, x′)) = 0 iff f(~σ, f(~σ, 1)) = 0:

(⇒) If ∃x′(f(~σ, x′)) = 0, this means that both f(~σ, 0) = 0 and f(~σ, 1) = 0. Therefore
f(~σ, f(~σ, 1)) = f(~σ, 0) = 0.

(⇐) If f(~σ, f(~σ, 1)) = 0, then it cannot be the case that f(~σ, 1) = 1, otherwise
f(~σ, f(~σ, 1)) = f(~σ, 1) = 1. Therefore, f(~σ, 1) = 0, and so f(~σ, 0) = f(~σ, f(~σ, 1)) = 0.
Since both f(~σ, 1) = 0 and f(~σ, 0) = 0, then ∃x′(f(~σ, x′)) = 0.

Following this lemma, quantifier elimination can be performed by replacing quantified
formulas by their quantifier-free equivalents. Table 4.1 compares the formulas produced
by quantifier elimination using Shannon expansion and self-substitution.

Note that Lemma 1 has an additional theoretical significance. Unlike Shannon ex-
pansion, self-substitution does not only provide an alternative method of quantifier elim-
ination, but also directly defines a witness for an existentially quantified formula. The
following corollary, derived directly from Lemma 1, expresses this result:

Corollary 1. Given a formula ϕ = ∃x′(f(~x, x′)), f(~x, 1) is a witness to ϕ.

4.3.2 Quantifier elimination in BDDs

Normally, one would expect that for k quantifiers it would be necessary to apply
quantifier elimination k times. However, the case with only one type of quantifier can
be decided in constant time given the input in the format of a BDD:

38

Lemma 2. Let ϕ = Q~x(f(~x)) be a QBF with only one type of quantifier Q, which is
either universal or existential. Let B be the BDD representation of the Boolean function
f . Then,

1. If Q is universal, ϕ evaluates to 1 iff B is the terminal node 1.

2. If Q is existential, ϕ evaluates to 0 iff B is the terminal node 0.

Proof. Let b∀ = 1 and b∃ = 0. First note that, according the semantics of the quantifiers,
Q~x(f(~x)) evaluates to bQ iff for any assignment ~σ for ~x, f(~σ) evaluates to bQ. This
applies both to the case when Q is universal, in which case bQ is 1, and to the case when
Q is existential, in which case bQ is 0.

Since a complete assignment defines a path to a terminal node, all assignments evalu-
ating to the same value bQ means that all paths in B lead to the terminal node labeled by
bQ. But according to the non-redundancy property of BDDs, this means that B is reduced
to the terminal node labeled by bQ.

In practice, Lemma 2 means that, when a function f(~x) is represented by a BDD B,
it is not necessary to use quantifier elimination to evaluate ∀~x(f(~x)) or ∃~x(f(~x)). Rather,
this can be done simply by testing if B is different from the appropriate terminal node.

4.4 Realizability

As explained in Chapter 3, to be able to synthesize an implementation g(~y) for a
specification f(~y, ~x), f must be realizable, meaning for each assignment to ~y there must
be a satisfying assignment to ~x. This section will present two methods for testing if a
specification is realizable. The first can be applied to BDDs using any ordering, and the
second is exclusive to input-first BDDs.

4.4.1 Realizability in BDDs of general ordering

As defined in Chapter 3, ϕ = f(~y, ~x) is realizable if ∀~y∃~x(f(~y, ~x)) evaluates to 1.
Therefore, testing realizability can be approached simply as quantifier elimination of a
QBF. For that, one can use either Shannon expansion or self-substitution.

Since ϕ has two types of quantifiers, Lemma 2 cannot be used directly to test re-
alizability. However, if the existential quantifiers are eliminated first, we obtain a QBF
ϕ′ = ∀~y(f ′(~y)) that is equivalent to the original formula ϕ. At this point, Lemma 2 can be
applied to test realizability by checking if the BDD representation of f ′(~y) is the terminal
node 1. This procedure is described in Algorithm 5, which can be implemented using

39

either of the methods of quantifier elimination.

Data: A BDD B representing a Boolean function f(~y, ~x), where ~x = 〈x1, . . . , xm〉
Result: A Boolean value indicating if f is realizable

1 B0 ← B
2 for i← 1 to m do
3 Bi ← EliminateExistentialQuantifier(i, Bi−1)
4 end
5 return IsOne(Bm)

Algorithm 5: Algorithm for checking realizability from a BDD.

4.4.2 Realizability in input-first BDDs

If we have an input-first BDD representation of f , it is possible to check realizability
by analysing the structure of the BDD, as stated by the following lemma:

Lemma 3. Given an input-first BDD B representing a function f(~y, ~x), f is realizable iff
no node for an input variable has a child pointing to the terminal node 0 in B.

Proof. Suppose f is not realizable. This is equivalent to saying that there exists an assign-
ment ~ν for ~y such that for any assignment ~σ to ~x, f(~ν, ~σ) = 0. Since B uses an input-first
ordering, all input variables come before all output variables. Therefore, ~ν defines a path
from the root of B through the input variables, reaching a node v. f(~ν, ~σ) = 0 for every ~σ
iff every complete path from v leads to the terminal node 0. But from the non-redundancy
of BDDs, this happens iff v is the terminal node 0. Therefore, f is not realizable iff there
is a path from the root of B going only through input variables that ends in the terminal
node 0.

Fig. 4.1 illustrates Lemma 3. In (a) the left y2 input variable has its negative child
pointing to the terminal node 0. This means that for the input 〈y1 7→ 0, y2 7→ 0〉 there is
no possible output that satisfies the formula represented by this BDD, and therefore it is
not realizable. Compare with the realizable BDD in (b), which has 〈x1 7→ 1, x2 7→ 0〉 as
a satisfying output in this case.

Therefore, in an input-first BDD realizability can be verified by navigating the BDD
until reaching a node labeled by an output variable. If in some path the terminal node 0
is reached before finding an output variable, the formula is not realizable. Algorithm 6
describes this process, using operations in the model of Algorithm 4 for traversing the
BDD. The algorithm starts at the root of the BDD and follows all paths through the input
variables until either a) reaching an output variable or the terminal node 1, in which
case the path is satisfiable, or b) reaching the terminal node 0, in which case the path is

40

y1

y2 y2

x1

x2 x2

0 1

(a) not realizable

y1

y2 y2

x1 x1

x2 x2

0 1

(b) realizable

Figure 4.1: Example of not-realizable and realizable input-first BDDs.

unsatisfiable and so the BDD is unrealizable.

Data: An input-first BDD B representing a Boolean function f(~y, ~x)
Result: A Boolean value indicating if f is realizable

1 Procedure IsRealizable(B)
2 if B is a terminal node then
3 return Value(B)
4 else if B is an input variable node (yj, B0, B1) then
5 return IsRealizable_Rec(B0) ∧ IsRealizable_Rec(B1)
6 else
7 return 1
Algorithm 6: BDD traversal algorithm for checking realizability from an input-first
BDD.

4.5 Synthesis

Having established methods to verify realizability of a specification f , we can address
our main objective, which is to synthesize an implementation g from f . In this section
we present two methods for doing so, starting from a BDD representation of f . The first
is an extension of the quantifier elimination-based approach for testing realizability, and
abstracts the representation of the formula as a BDD. On the other hand, the second is
designed with the BDD representation in mind, being based on traversing the structure of
the BDD, and requires the BDD to use an input-first ordering.

As described in the beginning of the chapter, our methods return g in the form of a
sequence of witness BDDs ~W = 〈W1, . . . ,Wm〉. Although each Wi represents a dif-
ferent function, individual nodes can be shared between different BDDs. Therefore, the
sequence can be visualized as a single multi-rooted BDD. This visualization will be use-
ful when the BDD is mapped to a hardware or software implementation, because it avoids
duplicated computations.

41

4.5.1 Synthesis via quantifier elimination

Our first method for synthesis is an extension of Algorithm 5 for checking realizability.
Recall that in Algorithm 5 existentially quantified variables were progressively eliminated
from the formula using either Shannon expansion or self-substitution, and if by the end
the formula had been reduced to the terminal node 1 then it was realizable. We extend
this algorithm to synthesize at each step a partial witness for the variable being eliminated,
and afterwards turn them into full witnesses by removing the extra variables through BDD
composition. The method is described in more details next.

Recall from Corollary 1 that for an open QBF of the form ∃x(f(~y, x)), f(~y, 1) is a wit-
ness for x. Note that in Algorithm 5 the BDD Bi represents a function fi(~y, xi, . . . , xm)
that is equivalent to the open QBF ∃x1, . . . , xi−1(f(~y, x1, . . . , xi−1, xi, . . . , xm)). For
i = m, we have Bm representing fm(~y, xm). We can therefore apply Corollary 1 to
obtain gm(~y) = fm(~y, 1) as a witness for xm. If we apply the same reasoning for xm−1,
we obtain from function fm−1(~y, xm−1, xm) the witness g′m−1(~y, xm) = fm−1(~y, 1, xm).
Note that in this case g′m−1 is a partial witness, being dependent not only on the input
variables but also on xm. However, since we have the witness gm(~y) for xm, we can
compose it in gm−1, obtaining the witness gm−1(~y) = fm−1(~y, 1, gm(~y)). Repeating this
process for the remaining output variables, replacing in the partial witnesses the vari-
ables whose witnesses we have already computed, we obtain the sequence of witnesses
〈g1(~y), . . . , gm(~y)〉, where gi(~y) = fi(~y, 1, gi+1(~y), . . . , gm(~y)).

Algorithm 7 extends Algorithm 5 to return this sequence of wit-
nesses. Note that the BDD W ′

i = Bi−1|xi=1 represents the function
g′i(~y, xi+1, . . . , xm) = fi(~y, 1, xi+1, . . . , xm). Furthermore, note that the re-
sult of eliminating xi from fi(~y, xi, xi+1, . . . , xm) in Algorithm 5 is either
fi(~y, 0, xi+1, . . . , xm) ∨ fi(~y, 1, xi+1, . . . , xm), if using Shannon expansion, or
fi(~y, fi(~y, 1, xi+1, . . . , xm), xi+1, . . . , xm), if using self-substitution. In both cases
fi(~y, 1, xi+1, . . . , xm) is a sub-expression, so the BDD Bi−1|xi=1 representing it was
already being computed in Algorithm 5. Therefore, all we are doing is storing the
intermediate result as a partial witness.

The notation W ′
i |xi+1=Wi+1,...,xm=Wm in line 10 represents the iterative composition of

all the witnesses from Wi+1 to Wm. That is, first we compose W ′
i and Wi+1 on variable

xi+1, then compose the result with Wi+1 on xi+2, and so on until Wm on xm. Since xj
itself does not appear in witness Wj , this removes the extra variables from the partial

42

witness W ′
i , obtaining the witness Wi.

Data: A BDD B representing a Boolean function f(~y, ~x), where ~x = 〈x1, . . . , xm〉
Result: A sequence of BDDs representing witnesses for ~x, if f is realizable

1 B0 ← B
2 for i← 1 to m do
3 W ′

i ← Bi−1|xi=1

4 Bi ← EliminateExistentialQuantifier(i, W ′
i , Bi−1)

5 end
6 if Bm is not the terminal node 1 then
7 Signal error: formula not realizable
8 end
9 for i← m to 1 do

10 Wi ← W ′
i |xi+1=Wi+1,...,xm=Wm

11 end
12 return 〈W1, . . . ,Wm〉

Algorithm 7: Algorithm for synthesis based on quantifier elimination.

4.5.2 Input-first synthesis

Our second method for synthesis is designed to be applied over the input-first BDD
representation of the specification. In the quantifier elimination method, BDDs were
merely the chosen representation for Boolean formulas, and the algorithm was based
on properties of QBFs. This method, on the other hand, is designed specifically to be
used with a BDD representation, as it traverses recursively the structure of the BDD to
construct witnesses to the output variables.

Recall that in an input-first BDD all input variables appear before the output variables.
Also note the following lemma, following from the non-redundancy property of BDDs:

Lemma 4. If all paths in a BDD B lead to the terminal node 0, B is the terminal node 0.
Equivalently, if a BDD B is different from the terminal node 0, then it has a path leading
to the terminal node 1.

Consider next the following definitions:

Definition 4. Let z be an arbitrary variable from a BDD B. A node v in B is said to be
z-trimmed if v is a terminal node or it is labeled by a variable z′ such that z ≤ z′ in the
ordering used by B. A node is in the fringe of z if it is z-trimmed and has at least one
parent that is not z-trimmed.

Fig. 4.2 illustrates these definitions. Nodes that are x1-trimmed are shaded, and nodes
in the fringe of x1 are highlighted.

We now describe the synthesis method. This method is performed in m steps, where
m is the number of output variables. We start with the input-first BDD B1 encoding a
specification f1(~y, ~x). Assume, without loss of generality, that the ordering of the output
variables in B1 is x1 < x2 < . . . < xm−1 < xm. On the i-th step we:

1. synthesize a witness BDD Wi for output variable xi from Bi;

43

y1

y2 y2

x1

x2 x2

0 1

Figure 4.2: BDD showing the x1-trimmed nodes and the fringe of x1.

2. compose Bi with Wi on xi to obtain Bi+1.

We will describe later how to specifically obtain Wi from Bi. For now, we can just
assume it encodes a witness function gi(~y) for xi. Note that Bi is the result of composing
the original BDD B1 with the witnesses of all output variables until xi. Therefore, Bi

encodes a function fi(~y, xi, . . . , xm) = f1(~y, g1(~y), g2(~y), . . . , gi−1(~y), xi, . . . , xm). Note
that since all output variables xj < xi have been removed, if there are any xi nodes xi is
the top-most output variable in Bi. This will be important for the process of synthesizing
Wi.

Now, we can state and prove the following lemma:

Lemma 5. If for all i, 1 ≤ i ≤ m + 1, Bi is realizable, then 〈g1(~y), . . . , gm(~y)〉 are
witnesses for B1.

Proof. Assume that all Bi are realizable. Then, gi(~y) can be synthesized for all i. Recall
thatBi encodes a function fi(~y, xi, . . . , xm) = f1(~y, g1(~y), g2(~y), . . . , gi−1(~y), xi, . . . , xm).
Therefore, Bm+1, the BDD produced when the last witness Wm is composed, encodes a
function fm+1(~y) = f1(~y, g1(~y), . . . , gm(~y)). Since Bm+1 is realizable, ∀~y(fm+1(~y)) is
true. This means that fm+1(~ν) = 1 for any assignment ~ν. Replacing fm+1 by its defini-
tion, we have that f1(~ν, g1(~ν), . . . , gm(~ν) = 1 for any ~ν, and so 〈g1(~y), . . . , gm(~y)〉 are
witnesses to B1.

Lemma 5 means that, as long as B1 is realizable and we construct Wi from Bi such
thatBi+1 = Bi|xi=Wi

is realizable, 〈W1, . . . ,Wm〉will be correct witness BDDs. Keeping
this in mind, we next describe how to obtain Wi from Bi.

Recall that xi is the top-most output variable in Bi. This means that all nodes above
the fringe of xi are input nodes. To synthesize Wi, we will replace every node v in the
fringe of xi with a terminal node representing an assignment to xi, as follows:

1. If v is the terminal node 0, Bi is not realizable, and so the process terminates with
an error.

44

y1

y2 y2

x1 x1

x2 x2

0 1

(a) B1

y1

y2

0 1

(b) W1

y1

y2

x2 x2

0 1

(c) B2

y1

y2

0 1

(d) W2

Figure 4.3: Example of the structural synthesis algorithm.

2. If v is a variable node labeled by xi and its positive child is the terminal node 0,
replace it by the terminal node 0.

3. Otherwise, replace v by the terminal node 1.

We call this operation trimming of xi. Note that this removes all xi-trimmed variable
nodes. Since xi is the top-most output variable, the resulting BDD Wi contains only
input variables, and so it encodes a function gi(~y). Fig. 4.3 shows a complete example of
the algorithm applied to a BDD with two output variables. In the BDD B1, highlighted
nodes are to be replaced by terminal nodes: gray nodes by the terminal node 1 and white
nodes by the terminal node 0. After these nodes are replaced and the BDD reductions are
applied, we obtain the BDDW1. ComposingB1 andW1 on variable x1 produces the BDD
B2. Note that this is equivalent to replacing each x1 node in B1 by its positive child if it
was previously replaced by the terminal node 1, or its negative child if it was previously
replaced by the terminal node 0. Finally, W2 is obtained from B2 by again replacing the
highlighted nodes by the appropriate terminal nodes.

We will now prove that this method produces correct witnesses. Note that what we

45

are doing is assigning xi to 1 except when this would lead to the terminal node 0. Let
v′ be the child of v that this assignment leads to. Since it is different from the terminal
node 0, by Lemma 4 a path from v′ to the terminal node 1 always exists. This means that
for any assignment to ~y, given the assignment produced by the witness gi(~y), there ex-
ists an assignment to xi+1, . . . , xm that satisfies fi(~y, gi(~y), xi+1, . . . , xm). This means
that ∀~y∃xi+1 . . . xm(fi(~y, gi(~y), xi+1, . . . , xm)) is true. Since fi+1(~y, xi+1, . . . , xm) =
fi(~y, gi(~y), xi+1, . . . , xm), we can rewrite this as ∀~y∃xi+1 . . . xm(fi+1(~y, xi+1, . . . , xm)),
which means fi+1 is realizable. This allows us to make the following claim:

Lemma 6. If Wi is synthesized from Bi by trimming xi, and Bi is realizable, then Bi+1 is
realizable as well.

Note that, since if Bi is realizable Bi+1 will be as well, the case in which v is the
terminal node 0 can only happen in the first step, if B1 is not realizable. This means that
this method will detect if the specification is not realizable in the very beginning, before
any witness is synthesized. This is in practice the same method to check realizability from
Algorithm 6.

From Lemmas 5 and 6, we obtain the following corollary:

Corollary 2. If B1 is realizable, 〈g1(~y), . . . , gm(~y)〉 are witnesses for B1.

This proves that, given a realizable implementation, this method will synthesize a
correct implementation. The method is presented in full in Algorithm 8, using supporting
operations in the models presented in Algorithm 4 to perform BDD traversal.

Data: An input-first BDD B representing a Boolean function f(~y, ~x)
Result: A sequence of BDDs representing the witnesses for ~x

1 Function Synthesis(B)
2 B1 ← B
3 for i← 1 to m do
4 Wi ← Trim_Init(xi, Bi)
5 Bi+1 ← Bi|xi=Wi

6 end
7 return 〈W1, . . . ,Wm〉
8 Function Trim(xi, B)
9 if B is an input variable node (yj, B0, B1) then

10 return MkBDD(yj , Trim_Rec(xi, B0), Trim_Rec(xi, B1))
11 else if B is the terminal node 0 then
12 Signal error: formula not realizable
13 else if B is an xi variable node and its positive child is the terminal node 0 then
14 return BDDZero()
15 else
16 return BDDOne()

Algorithm 8: Algorithm for synthesis using input-first BDDs.

Default 1 Note that, while in this algorithm we replace a node v in the fringe of xi for
the terminal node 1 whenever this would not lead to an unsatisfying assignment, there are
cases when it would be equally acceptable to replace it by the terminal node 0. This is the
case when v is already the terminal node 1, or when it is a variable node xj with j 6= i.

46

Since in this case the variable xi was skipped, its assignment is irrelevant. This is also the
case when v is a xi node but neither of its children is the terminal node 0. In this case there
would be a satisfying assignment to the other variables regardless of the assignment to xi,
but this assignment would be different in each case. The choice of using the terminal
node 1 instead of 0 was mostly arbitrary, but there is an advantage to always defaulting
to the same terminal node in that if there is a greater number of paths leading to the same
terminal node, the chance of reductions by non-redundancy increases, producing smaller
BDDs. Finding more efficient heuristics for choosing which terminal node to replace a
node with is a matter of future work.

47

5 EXPERIMENTAL EVALUATION AND RESULTS

When designing our experiments, we had several goals in mind. One of the most
important questions was how our methods for synthesis would scale with the size of the
input and output, since it is often hard to predict how much the sizes of BDDs will increase
with the number of variables. Another question was how much effect the ordering of the
BDD would have on its size and, consequently, on the performance of the algorithms.
Finally, we wished to see how our different methods compared with each other.

The results presented here will serve to paint a general picture of the synthesis process
using BDDs, providing a guidance for the future direction of this work. Because it is
difficult to perform a theoretical analysis of algorithms based on BDD manipulation, the
practical results obtained through these experiments are critical in deciding future paths
of research.

5.1 Test cases

Since we wished to know how the performance of our methods varied with the number
of variables, we had to employ test cases that could be implemented with an arbitrary
size. The natural choices for functions of this type were operations over integers in binary.
Besides being possible to implement with integers in any size, these operations are widely
used and are often the subject of synthesis research.

In order to see the synthesis process at work, we also needed to select functions that
had an intuitive declarative definition, that is, a definition that does not directly describe
how the function would be computed. This definition can then be used as the specifica-
tion f to serve as the basis for the synthesis of the actual implementation of the function.
Considering these requirements, we selected five problem instances to use for our exper-
iments, as shown in Table 5.1. In it, x, y and y′ are n-bit integers, represented each in the
BDD by groups of n Boolean variables. x consists of output variables, while y and y′ are
composed of input variables split into two different integers.

The relational operators over integers ≤, ≥, = were encoded as Boolean expressions
over the variables representing them. Assuming an integer z is represented by the vector
of variables 〈zn, zn−1, . . . , z2, z1〉, where zn represents the most significant and z1 the least
significant bit, the relational operators are encoded as follows:

• z = z′: ϕ =
∧n

i=1(zi ↔ z′i)

• z ≤ z′: ϕn, where ϕi = (¬zi ∧ z′i) ∨ ((zi ↔ z′i) ∧ ϕi−1) and ϕ0 = 1

48

Desired implementation Specification

Subtraction x = y′ − y x+ y = y′

Min x = min(y, y′) (x ≤ y) ∧ (x ≤ y′) ∧ ((x = y) ∨ (x = y′))

Max x = max(y, y′) (x ≥ y) ∧ (x ≥ y′) ∧ ((x = y) ∨ (x = y′))

Average (floor) x = by + y′

2
c (x+ x = y + y′) ∨ (x+ x+ 1 = y + y′)

Average (ceiling) x = dy + y′

2
e (x+ x = y + y′) ∨ (x+ x = y + y′ + 1)

Table 5.1: Instances used in the experiments with their definitions.

• z ≥ z′: ϕn, where ϕi = (zi ∧ ¬z′i) ∨ ((zi ↔ z′i) ∧ ϕi−1) and ϕ0 = 1

The + operator is more complex, and since it is an operation that returns an integer
rather than a Boolean it cannot be implemented as a single Boolean formula. Rather, it
produces n formulas ϕn, . . . , ϕ1 representing a new integer, which can be later combined
into a single formula through one of the relational operators above. The encoding for
addition should be easily recognizable by those familiar with addition in binary:

ϕi = zi ⊕ z′i ⊕ ci−1
ci = (zi ∧ z′i) ∨ (zi ∧ ci−1) ∨ (z′i ∧ ci−1)

In this encoding, ci represents the carry-out from the addition in the i-th position. c0,
the carry-in for the first position, is normally 0, but can be set to 1 to add an extra term of
1 to the sum, which is useful in the formulas for average.

Note that in order for the formula for subtraction to be realizable for n-bit integers,
+ is interpreted as addition modulo n, or alternatively addition with the possibility of
overflow. On the other hand, in the formulas for average we need the result of the addition
with an extra bit added if necessary. This extra bit can be obtained by simply taking
cn. Therefore the comparisons in these formulas are actually performed over (n + 1)-bit
integers.

5.2 Orderings

In order to analyze the impact of the ordering on the size of the BDDs and the per-
formance of the algorithms, we executed the experiments using different orderings and
compared their results.

The first ordering employed was the input-first ordering already described in Chap-
ter 4, which specifies that all input variables must come before the output variables.

To compare to the input-first ordering, we defined an alternative ordering which we
call fully-interleaved. In this ordering, output variables are interspersed with input vari-
ables, such that variables in the same position are close together in the ordering. This
seems like a good ordering to use for operations over integers in binary, because the value
of a bit in a given position of the output often depends more strongly on the values in the
same position in the input. This keeps dependencies localized inside the BDDs.

49

Input-first Fully-interleaved

Subtraction/Average (y1 < . . . < yn < y′1 < . . . < y′n < x1 < . . . < xn) (y1 < y′1 < x1 < . . . < yn < y′n < xn)

Min/Max (yn < . . . < y1 < y′n < . . . < y′1 < xn < . . . < x1) (yn < y′n < xn < . . . < y1 < y′1 < x1)

Table 5.2: Ordering of the variables for each instance.

When choosing one of these two orderings we define how input and output variables
are positioned in relation to each other. However, there is still a choice to be made in how
input and output variables are positioned internally among themselves. For example, the
ordering can follow an increasing or decreasing order of indices. Examining the individ-
ual test cases, we see that the best choice depends on the instance. First, note that placing
variables that have wider influence on the formula closer to the top tends to produce
smaller BDDs, since assigning these variables early will simplify several sub-expressions
at the same time. Note that for subtraction and average, the variables with lower index
have wider influence, because in the addition operation the value of the most significant
bits depends on the carry of the least significant bits. For max and min, on the other hand,
the variables with higher index have wider influence, because the greater of two integers
in binary is decided by the most significant position on which they differ. Therefore, we
chose to use a decreasing order for max and min, and and increasing order for the rest of
the instances. The resulting orderings are shown on Table 5.2.

Apart from these specific orderings we also generated 100 randomly-ordered BDDs
for each value of n we employed, so that in each experiment we could compare the aver-
age results for the random orderings with the input-first and fully-interleaved results.

5.3 Experimental setup

The synthesis algorithms were implemented in C++11 using the CUDD library for
working with BDDs (SOMENZI, 2012). The experiments were executed remotely in the
DAVinCI cluster at Rice University, which allowed them to be run in parallel. The cluster
consists of 192 Westmere nodes of 12 processor cores each, running at 2.83 GHz with 4
GB of RAM per core, and 6 Sandy Bridge nodes of 16 processor cores each, running at
2.2GHz with 8 GB of RAM per core.

For each of the five test cases we constructed BDDs encoding their specification,
varying the number of bits n of the arguments. Next, we ran the methods for synthesis
presented in Chapter 4 over these BDDs and collected data on their performance and
output. This was done using the input-first, fully-interleaved and random orderings. The
method for input-first synthesis was naturally applied only to the BDDs following this
ordering, while the method based on quantifier elimination was applied to all orderings.
In order to observe how self-substitution compares to Shannon expansion, the synthesis
through quantifier elimination was performed twice over each BDD, once using each
technique.

As could be expected, the min and max instances produce very similar results, as
do average (floor) and average (ceiling). Therefore in the results presented below we
will show only the results for subtraction, max and average (floor), and min and average
(ceiling) can be assumed to be similar.

50

5.4 BDD construction

In order to run our synthesis methods, we first need to have the specification repre-
sented in the format of a BDD. Therefore, our first concern is with the construction of this
initial BDD. There are two factors we must be aware of, the size of the BDD and the time
taken to construct it. Recall that BDD size is often hard to predict, and can easily lead
to a combinatorial explosion. Therefore, if the BDD representation of the specification is
too large, we might run out of memory before even starting the synthesis. At the same
time, we also must consider the time required to construct the initial BDD, because even if
the synthesis process is efficient this will be of little benefit if preparing the specification
BDD is too time-consuming.

We measured the number of nodes and construction time of the initial BDD for each
instance and ordering, seeing how these scale as n increased. We provide detailed analy-
ses below.

5.4.1 Random orderings

Fig. 5.1 shows, for the subtraction, max and average (floor) instances, the median
results of the 100 random BDDs for each n from 8 to 20. We chose the median instead of
the mean because the distribution of the results of the randomly-ordered BDDs was seen
to have a long tail, with a small number of cases having far larger sizes and construction
times than the majority. This results in the value for the mean being significantly larger
than most of the individual values, but has little influence in the median, therefore we
considered the latter to be more representative.

Both size and construction time show an exponential behavior as n increases, pro-
ducing for higher n BDDs with millions of nodes and taking up to 40 minutes to be
constructed. This demonstrates how quickly BDDs can grow out of control, and that it is
not easy to pick a good ordering for a BDD at random.

The case for max calls for special consideration. Note that the construction time takes
longer to increase than for the other instances, even though the BDD produced is on
average larger. For larger n max would probably exhibit a more pronounced growth like
the other instances, but experiments verifying this could not be performed because the
size of the BDD became too large. This slower growth can be explained by examining
the encoding of the specifications as Boolean functions. Note that the sub-expressions
(x = y), (x = y′), (x ≥ y) and (x ≥ y′) that form the specifications for max only
compare two n-bit integers at a time. The encoding of the relational operators as Boolean
formulas is iterative, so that comparing i bits takes i steps. Therefore, each of these sub-
expressions will be constructed in n steps, with step i producing a BDD with 2i variables.
Only in the end there will be a single step that combines the BDDs for each sub-expression
into a final BDD with 3n variables. On the other hand, for the other instances each sub-
expression uses all three n-bit integers. This means that the i-th step of a sub-expression
produces a BDD with 3i variables. Therefore the intermediary operations have to deal
with much larger BDDs, causing them to take longer.

51

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8 10 12 14 16 18 20

n
o
d
e
s

n

subtraction
max

average (floor)

(a)

 0

 500

 1000

 1500

 2000

 2500

 8 10 12 14 16 18 20

T
 (

s)

n

subtraction
max

average (floor)

(b)

Figure 5.1: Size and construction time of the initial BDD according to the instance.

52

5.4.2 Input-first

Next, we compare the average results using random orderings with the results for the
construction of the input-first BDDs. Fig. 5.2 shows for the three instances the construc-
tion time of the input-first BDD in comparison to the median construction time of the
random instances.

In all three cases it can be seen that the time needed to construct the BDD increases
much faster when using the input-first ordering. In fact, because of this we were unable to
run the experiments for this ordering up to n = 20 due to time and memory constraints.
This confirms that, although this is an intuitive ordering to use, making reasoning about
synthesis easier, it can be very inefficient in practice.

Notice that differently from the random orderings, the construction time of the input-
first BDD for max surpasses the other instances as n grows. This happens because, al-
though the same reasoning of the BDDs for the sub-expressions only having 2n variables
applies, the bottleneck when using this ordering lies on the BDDs of 3n variables. Con-
sider the BDD for the expression ((x = y) ∨ (x = y′)). This BDD has 3n variables,
and tests if the output variables have the same values as either group of input variables.
However, due to the input-first ordering, all input variables are on the top of the BDD,
with the output variables on the bottom, and so in order to perform this comparison the
BDD must memorize the value of the input before checking the output. To do this, the
BDD needs one path through the input variables for each possible assignment of y and y′,
totaling 22n = 4n different paths. This means that the section of the BDD for the input
variables will be as large as possible. Afterwards, with the conjunction of the (x ≥ y)
and (x ≥ y′) sub-expressions, this BDD becomes smaller, but having to construct this
massive BDD affects greatly the total construction time.

Fig. 5.3 shows the size of the initial input-first BDD for each instance. The graph also
shows for comparison the median size of the BDD for max using the random orderings.
As expected, the input-first BDDs show a faster growth as n increases, although not as
pronounced as the growth in construction time.

5.4.3 Fully-interleaved

We expected the fully-interleaved ordering to be the one to perform best for the test
cases used in these experiments. Not only that was the case but both the size of the fully-
interleaved BDDs and the time taken to construct them were several orders of magnitude
smaller than for the other orderings. In fact, instead of the exponential growth shown by
the other orderings, the fully-interleaved BDDs showed linear growth, which allowed us
to construct BDDs for much larger n when using this ordering.

Fig. 5.4 shows the size of the fully-interleaved BDDs for each instance from n = 8
to n = 128, with a very clear linear growth. Even for n = 128 the size of the BDD was
under 2000 nodes for all three instances. Compare this to the random orderings, where
the BDDs surpassed one million nodes as early as n = 18.

As a consequence of the smaller BDDs, construction time was also much faster. For
all instances for n up to 128, all constructions took under 0.05s.

53

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 8 10 12 14 16 18 20

T
 (

s)

n

median
input-first

(a) Subtraction

 0

 200

 400

 600

 800

 1000

 1200

 8 10 12 14 16 18 20

T
 (

s)

n

median
input-first

(b) Max

 0

 5000

 10000

 15000

 20000

 25000

 8 10 12 14 16 18 20

T
 (

s)

n

median
input-first

(c) Average (floor)

Figure 5.2: Comparison of the construction time of the input-first BDDs with the average
of the random orderings.

54

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8 10 12 14 16 18 20

n
o
d
e
s

n

input-first - subtraction
input-first - max

input-first - average (floor)
median - max

Figure 5.3: Size of the initial BDD using the input-first ordering.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

n
o
d
e
s

n

subtraction
max

average (floor)

Figure 5.4: Size of the initial BDDs using the fully-interleaved ordering.

55

5.5 Synthesis

After having analysed the construction of the specification BDD, we move on to the
synthesis process itself. In order to compare the different methods for synthesis, we mea-
sure both the running time of the method and the size of the multi-rooted BDD produced
by it. For all orderings we ran the method based on quantifier elimination using both
Shannon expansion and self-substitution, in order to compare the two. For the input-
first ordering we also ran the method exclusive to this ordering, and compared its results
with the quantifier elimination method. We also compared results between the different
orderings.

5.5.1 Synthesis via quantifier elimination

Fig. 5.5 shows for each instance the running time of the quantifier elimination method
using Shannon expansion and self-substitution. Each graph shows the results for the
input-first BDD, as well as the median for the randomly-ordered BDDs.

Unsurprisingly, just like in the construction of the initial BDDs, the running time of
the synthesis algorithms increased much faster for the input-first BDDs. What is no-
table however is that when comparing for the same ordering the quantifier elimination
method using Shannon expansion and using self-substitution we do not see a large differ-
ence. Self-substitution performed better for subtraction and average (floor), and Shannon
expansion for max. This suggests that self-substitution is a competitive technique for
quantifier elimination, but for the purposes of synthesis the difference between them is
mostly insignificant when compared to the difference between orderings. This suggests
that any significant difference in performance between the two techniques is dominated
by the total running time of the synthesis.

Fig. 5.6 shows the synthesis running time for each instance using the fully-interleaved
ordering. Just as before, the results were far below those of the other orderings even for
much larger n, and show a polynomial growth instead of exponential.

5.5.2 Input-first synthesis

Now we compare the running time between the general method based on quantifier
elimination and the method exclusive to input-first BDDs. Fig. 5.7 shows the results for
each instance. Since quantifier elimination performs similarly for self-substitution and
Shannon expansion, we plotted only the results for self-substitution, which were in most
cases faster. In all three cases, the method exclusive for input-first BDDs performed bet-
ter than quantifier elimination. One reason for this might be that it synthesizes witnesses
directly, while when using quantifier elimination the method first produces partial wit-
nesses, from which the extra variables must later be eliminated through composition.

Although this seems to be a positive result for the input-first method, Fig. 5.8 shows
that this is not an absolute victory. In it we can see that the specific method for input-first
BDDs is outperformed by the general method using a random ordering. This suggests
that using a more efficient synthesis method will not necessarily compensate for an inef-
ficient ordering. This is an important result that shows that when synthesizing Boolean
functions with BDDs it might be more important to find a good ordering than optimizing
the synthesis itself. Nevertheless, for functions for which the input-first ordering works

56

 0

 100

 200

 300

 400

 500

 600

 8 10 12 14 16 18 20

T
 (

s)

n

Shannon expansion - input-first
self-substitution - input-first

Shannon expansion - median
self-substitution - median

(a) Subtraction

 0

 20

 40

 60

 80

 100

 120

 8 10 12 14 16 18 20

T
 (

s)

n

Shannon expansion - input-first
self-substitution - input-first

Shannon expansion - median
self-substitution - median

(b) Max

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 8 10 12 14 16 18 20

T
 (

s)

n

Shannon expansion - input-first
self-substitution - input-first

Shannon expansion - median
self-substitution - median

(c) Average (floor)

Figure 5.5: Running time of each synthesis algorithm for different instances.

57

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140

T
 (

s)

n

Shannon expansion
self-substitution

(a) Subtraction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100 120 140

T
 (

s)

n

Shannon expansion
self-substitution

(b) Max

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140

T
 (

s)

n

Shannon expansion
self-substitution

(c) Average (floor)

Figure 5.6: Running time of the synthesis for each instance, using the fully-interleaved
ordering.

58

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 8 9 10 11 12 13 14 15

T
 (

s)

n

quantifier elimination synthesis
input-first synthesis

(a) Subtraction

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 8 9 10 11 12 13 14

T
 (

s)

n

quantifier elimination synthesis
input-first synthesis

(b) Max

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8 10 12 14 16 18

T
 (

s)

n

quantifier elimination synthesis
input-first synthesis

(c) Average (floor)

Figure 5.7: Running time comparison of the different synthesis methods for input-first
BDDs.

59

better, these results might justify the choice of using the method specific to this ordering
rather than the general method using quantifier elimination.

Also note that, regardless of the ordering, for larger BDDs the running time for syn-
thesis is significantly smaller than the construction time of the initial BDD. This suggests
that the construction step is actually the bottleneck in the synthesis process. This places
further importance in using efficient orderings to obtain smaller BDDs in place of trying
to develop more efficient synthesis methods.

5.5.3 Implementation size

Running time is not the only important parameter in analysing the synthesis methods.
It is also important to consider the size of the multi-rooted BDD produced, since this is
a determinant of the size of the circuit or program that will implement the synthesized
function. In fact, in certain cases having smaller synthesized functions is more important
than having shorter synthesis time. For example, if the synthesized BDD is converted to a
circuit, the synthesis process will run only once and on software, while the circuit will be
implemented with physical components and be used possibly millions of times, making
its size and efficiency a priority. However, one must keep in mind that although a BDD
can be directly mapped to a circuit or program of equivalent size, techniques for Boolean
simplification may be able to convert them to a much smaller implementation. Therefore,
the size of the synthesized BDD should not be considered a final indication of the size of
the implementation.

As it turns out, the BDDs synthesized by either method are the same size. This is
logical because for the instances used in the experiments there is a single satisfying output
for each possible input, therefore the synthesized functions must be equivalent between
the methods. Since BDDs are a canonical representation of Boolean functions, equivalent
BDDs are identical. On the other hand, the results between the methods may differ when
synthesizing different functions with multiple possible outputs for the same input.

However, we can still compare between different orderings. Fig. 5.9 compares for
each instance the size of the synthesized BDD using the input-first ordering with the
median size when using the random orderings. Note that the difference in size of the
synthesized BDDs is proportionally larger than the difference between the initial BDDs,
giving further justification to use efficient orderings. Fig. 5.10 adds to this point by show-
ing that the size of the synthesized BDDs using the fully-interleaved ordering is several
times smaller even for much larger n.

5.6 Final remarks

The experiments described in this chapter allowed us to obtain a general notion of the
feasibility of the methods presented here for synthesis of Boolean functions, and granted
us some insights on how to better make use of BDDs as an underlying data structure for
synthesis.

One of the most clear conclusions we can take from these results is that the ordering
used for the BDDs has a massive impact on scalability. Both for construction of the
initial BDD and the synthesis process itself, the ordering used can make the difference
on whether the process will take milliseconds or hours. This can be easily seen when

60

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 8 10 12 14 16 18 20

T
 (

s)

n

QE - median
QE - input-first

input-first synthesis

(a) Subtraction

 0

 20

 40

 60

 80

 100

 120

 8 10 12 14 16 18 20

T
 (

s)

n

QE - median
QE - input-first

input-first synthesis

(b) Max

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8 10 12 14 16 18 20

T
 (

s)

n

QE - median
QE - input-first

input-first synthesis

(c) Average (floor)

Figure 5.8: Comparison of synthesis running time between input-first and the random
orderings.

61

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 8 10 12 14 16 18 20

n
o
d
e
s

n

median
input-first

(a) Subtraction

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 8 10 12 14 16 18 20

n
o
d
e
s

n

median
input-first

(b) Max

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 8 10 12 14 16 18 20

n
o
d
e
s

n

median
input-first

(c) Average (floor)

Figure 5.9: Comparison of the size of the synthesized BDD between input-first and the
random orderings.

62

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 20 40 60 80 100 120 140

n
o
d
e
s

n

subtraction
max

average (floor)

Figure 5.10: Size of the synthesized BDDs using the fully-interleaved ordering.

comparing the results between the input-first and fully-interleaved BDDs. While using
the fully-interleaved ordering we were able to synthesize functions for n as large as 128
in under one second, it is safe to say that trying to synthesize such large functions using the
input-first ordering, which had trouble reaching n = 20, would be impracticable. In fact,
the difference between different synthesis methods turned out to be negligible compared
to the difference between orderings. This suggests that, in using BDDs to synthesize
Boolean functions, it might pay off to concentrate our efforts in identifying and taking
advantage of efficient orderings before trying to develop faster methods.

It is also relevant that, as BDDs get bigger, their construction time seems to dominate
the running time for synthesis. In light of this information, it might be worth researching
ways to improve initial BDD construction performance. One possibility might be to study
lazy construction schemes that would not construct the whole BDD at once, but rather
hold off on constructing certain branches until, and only if, they are necessary.

63

6 CONCLUSIONS AND FUTURE WORK

In this work we introduced methods for synthesizing Boolean functions and testing
the realizability of specifications using BDDs. We also proposed the self-substitution
quantifier elimination technique as an alternative to Shannon expansion. Finally, we an-
alyzed experimentally the synthesis process we developed using operations over integers
in binary as test cases.

Our results grant an overview of the possibility of using BDDs for the synthesis of
Boolean functions. In particular, they paint a clear picture of the effect of the BDD order-
ing used in the performance of the process, to the point that the actual synthesis method
being employed has relatively little impact in comparison. Although the input-first order-
ing showed itself to lead to a large blowup in the size of the BDDs, for the case of integer
arithmetic we have found that the fully-interleaved ordering produces very efficient re-
sults.

There are several different directions for future work. For starters, we limited the ex-
periments presented here to operations over integers in binary. Although this is a very
relevant class of functions, and some generalized conclusions can be derived from their
results, these operations also share properties that cannot be generalized to other func-
tions, for example the efficiency of the fully-interleaved ordering in representing them. It
would be good to perform further experiments on a more varied set of instances to see
how different classes of functions behave.

Another promising avenue is trying techniques to lessen the impact of the BDD size in
the synthesis process. The early quantification method applied in (PAN; VARDI, 2005) to
satisfiability solving, with good results, may be able to be adapted for our purposes. There
may also be BDD variants that can bring benefits in this area. For example, often we are
not concerned with every possible path in the BDD, but only on finding a single path that
leads to the terminal node 1. Therefore large parts of the BDD may be ignored in the
synthesis process, making it a waste to construct them in the first place. A BDD variant
that delays the construction of branches until they are needed can avoid this problem.
Another BDD variant that might be worth researching are Free Binary Decision Diagrams
(FBDDs) (GERGOV; MEINEL, 1994), which relax the variable ordering requirements in
BDDs by allowing separate branches to use different orderings. This might allow for
more efficient representation of specifications in cases where an efficient global ordering
is difficult to find.

There is also a lot of potential research to be done on the self-substitution technique
for quantifier elimination, both in the context of synthesis and independently of it. Its

64

properties are currently the subject of ongoing work.

Finally, one must recall that synthesizing the BDD is not the definite final step in the
synthesis process. Rather, the function still has to be mapped to a physical implementation
as a circuit or program. How to optimize this mapping in order to obtain an efficient
implementation is a question that warrants study.

65

REFERENCES

BRAND, D. Verification of large synthesized designs. In: IEEE/ACM INTER-
NATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, 1993, SANTA
CLARA, CALIFORNIA, USA, NOVEMBER 7-11, 1993, 1993. Proceedings. . . IEEE
Computer Society / ACM, 1993. p.534–537.

BRYANT, R. E. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Comput., Washington, DC, USA, v.35, n.8, p.677–691, Aug. 1986.

BURCH, J. R. et al. Symbolic Model Checking: 10ˆ20 states and beyond. Inf. Comput.,
[S.l.], v.98, n.2, p.142–170, 1992.

CHATALIC, P.; SIMON, L. Multi-resolution on compressed sets of clauses. In: IEEE IN-
TERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE
(ICTAI 2000), 13-15 NOVEMBER 2000, VANCOUVER, BC, CANADA, 12. Anais. . .
IEEE Computer Society, 2000. p.2–10.

GERGOV, J.; MEINEL, C. Boolean Manipulation with Free BDDs: an application in
combinational logic verification. In: IFIP CONGRESS (1). Anais. . . [S.l.: s.n.], 1994.
p.309–314.

HOFFEREK, G. et al. Synthesizing multiple boolean functions using interpolation on a
single proof. In: FORMAL METHODS IN COMPUTER-AIDED DESIGN, FMCAD
2013, PORTLAND, OR, USA, OCTOBER 20-23, 2013. Anais. . . IEEE, 2013. p.77–
84.

HU, A. J.; DILL, D. L. Reducing BDD Size by Exploiting Functional Dependencies. In:
DAC. Anais. . . [S.l.: s.n.], 1993. p.266–271.

JIANG, J. R. Quantifier Elimination via Functional Composition. In: COMPUTER
AIDED VERIFICATION, 21ST INTERNATIONAL CONFERENCE, CAV 2009,
GRENOBLE, FRANCE, JUNE 26 - JULY 2, 2009. PROCEEDINGS. Anais. . .
Springer, 2009. p.383–397. (Lecture Notes in Computer Science, v.5643).

JIANG, J. R.; LIN, H.; HUNG, W. Interpolating functions from large Boolean rela-
tions. In: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN
(ICCAD’09), NOVEMBER 2-5, 2009, SAN JOSE, CA, USA, 2009. Anais. . . IEEE,
2009. p.779–784.

66

KLIEBER, W. et al. Solving QBF with Free Variables. In: PRINCIPLES AND PRAC-
TICE OF CONSTRAINT PROGRAMMING - 19TH INTERNATIONAL CONFER-
ENCE, CP 2013, UPPSALA, SWEDEN, SEPTEMBER 16-20, 2013. PROCEED-
INGS. Anais. . . Springer, 2013. p.415–431. (Lecture Notes in Computer Science,
v.8124).

KNUTH, D. E. The Art of Computer Programming, Volume 4, Fascicle 1: bitwise
tricks & techniques; binary decision diagrams. 12th.ed. [S.l.]: Addison-Wesley Profes-
sional, 2009.

KUKULA, J. H.; SHIPLE, T. R. Building Circuits from Relations. In: COMPUTER
AIDED VERIFICATION, 12TH INTERNATIONAL CONFERENCE, CAV 2000,
CHICAGO, IL, USA, JULY 15-19, 2000, PROCEEDINGS. Anais. . . Springer, 2000.
p.113–123. (Lecture Notes in Computer Science, v.1855).

KUNCAK, V. et al. Complete functional synthesis. In: ACM SIGPLAN CONFER-
ENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION,
PLDI 2010, TORONTO, ONTARIO, CANADA, JUNE 5-10, 2010, 2010. Proceed-
ings. . . ACM, 2010. p.316–329.

MARI, F. et al. From Boolean Functional Equations to Control Software. CoRR, [S.l.],
v.abs/1106.0468, 2011.

MINATO, S. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems.
In: DAC. Anais. . . [S.l.: s.n.], 1993. p.272–277.

PAN, G.; VARDI, M. Y. Symbolic Techniques in Satisfiability Solving. J. Autom. Rea-
soning, [S.l.], v.35, n.1-3, p.25–50, 2005.

RICE, M.; KULHARI, S. A survey of static variable ordering heuristics for efficient
bdd/mdd construction. [S.l.]: University of California, Riverside, 2008.

SOMENZI, F. Binary Decision Diagrams. Calculational system design, [S.l.], v.173,
p.303, 1999.

SOMENZI, F. CUDD: CU Decision Diagram package release 2.5. 0. [S.l.]: University of
Colorado at Boulder, 2012.

TRONCI, E. Automatic Synthesis of Controllers from Formal Specifications. In: ICFEM.
Anais. . . [S.l.: s.n.], 1998. p.134–143.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Resumo
	Introduction
	Related work
	Structure of this work

	Conceptual Basis
	Shannon expansion
	Quantified Boolean Formulas
	Quantifier elimination
	Witnesses

	Binary Decision Diagrams
	Ordering of a BDD
	BDD operations
	Canonicity of BDDs
	Paths in a BDD
	BDD applications

	Problem Definition
	Methodology
	About BDD traversal
	Input-first BDDs
	Quantifier elimination
	Self-substitution
	Quantifier elimination in BDDs

	Realizability
	Realizability in BDDs of general ordering
	Realizability in input-first BDDs

	Synthesis
	Synthesis via quantifier elimination
	Input-first synthesis

	Experimental Evaluation and Results
	Test cases
	Orderings
	Experimental setup
	BDD construction
	Random orderings
	Input-first
	Fully-interleaved

	Synthesis
	Synthesis via quantifier elimination
	Input-first synthesis
	Implementation size

	Final remarks

	Conclusions and Future Work
	References

