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[1] The paper compares forecasts of mean monthly water levels up to six months ahead at
Ladário, on the Upper Paraguay River, Brazil, estimated from two long-range dependence
models. In one of them, the marked seasonal cycle was removed and a fractionally
differenced model was fitted to the transformed series. In the other, a seasonal fractionally
differenced model was fitted to water levels without transformation. Forecasts from both
models for periods up to six months ahead were compared with forecasts given by simpler
‘‘short-range dependence’’ Box-Jenkins models, one fitted to the transformed series, the
other a seasonal autoregressive moving average (ARMA) model. Estimates of parameters in
the four models (two ‘‘long-range dependence’’, two ‘‘short-range dependence’’) were
updated at six-monthly intervals over a 20 year period, and forecasts were compared using
root mean square errors (rmse) between water-level forecasts and observed levels. As
judged by rmse, performances of the two long-range dependence models, and of the ARMA
(1,1) short-range dependence model, were very similar ; all three out-performed the
seasonal short-range dependence ARMA model. There was evidence that all models
performed better during recession periods, than on the hydrograph rising limb.
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1. Introduction
[2] This paper concerns the long-term behavior of the

Paraguay River, a major tributary (area more than 1:0�
106 km2, length more than 2600 km) of the immense la
Plata drainage system (total area over 4:1� 106 km2) of
South America (see Figure 1). The la Plata has two other
major tributaries: the Paraná River, even larger than the
Paraguay, with area over 2:5� 106 km2, and the rather
smaller Uruguay River; both the Paraná and the Uruguay
are major sources of hydropower, which at present supplies
more than 70% of Brazil’s total energy requirement. At
least since the time of Darwin [1839], the Paraná River in
particular has long been known to exhibit extended periods
of flooding, alternating with extended periods of drought,
about which Darwin wrote ‘‘These droughts to a certain
degree seem to be almost periodical ; I was told the dates of
several others, and the intervals were about fifteen years.’’
However, inspection of Darwin’s field notebooks gives no
information about how he reached this conclusion. If an
extended period of drought were to occur at the present
time, the loss of hydropower would severely affect the
steadily growing Brazilian economy, while for planning the

efficient use of water used to generate energy, forecasts of
flow with a lengthy lead time are very desirable. There is a
particular concern because during a period of about 12
years starting in the 1960s, flow declined very markedly in
the Paraguay River, leading to significant changes in land
use. Land became occupied which was apparently no lon-
ger subject to the seasonal flooding, hitherto a marked char-
acteristic of the hydrologic regime. As shown later in this
paper, at the end of this period the original pattern of sea-
sonal flooding returned, causing economic loss.

[3] As mentioned, the Paraná River—the largest of the
three major la Plata tributaries—has been extensively
developed for hydropower generation, so that river flows
along its length has been greatly modified, and natural
flows are difficult to calculate since flow is passed from
one impoundment to the next. But it is in the Paraná River
basin that extended periods of low flow would have their
most severe economic consequences. By contrast, the Para-
guay River (see Figure 1), flowing mainly from north to
south through the more remote interior of the South Ameri-
can landmass, is free from impoundments, and there is a
long record of water level (Figure 2) dating from the begin-
ning of 1900 at the Ladário site, on that river. Figure 1 also
shows the extent of the Upper and Lower Paraguay basins
into which the Paraguay River basin as a whole is subdi-
vided; the division is defined by the section where the Apa
River joins the Paraguay, at the Brazil-Paraguay border.
The Ladário gauging station is sited in the Upper Paraguay.
It is the long record at Ladário that is used in this paper to
explore the utility of long-range dependence stochastic
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Figure 1. Geographical location of the Upper and Lower Paraguay basins, and of the Ladário gauging
station.

Figure 2. Mean monthly water levels of the Paraguay River at Ladário in the period from January
1900 to March 2010.
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models for forecasting purposes in the Paraguay River.
Because of the complicated nature of the channel cross sec-
tion at Ladário, no rating curve exists for the site, so that
the analysis which follows is based on the water-level re-
cord; this has been read daily since the start of the last cen-
tury and is remarkably complete for a site of such
remoteness. As a first step toward exploring the utility of
stochastic long-range dependence models for forecasting
flow characteristics in the Paraguay River and possibly
elsewhere in the la Plata basin, the long sequence of daily
Ladário water levels was used to derive a sequence of
mean monthly water levels, and it is this sequence that is
used in the rest of the paper. Henceforth we shall refer to
this series as the Ladário time series.

[4] Beran [1994] sets out the advantages of defining a
‘‘physical’’ mechanism for data sequences that exhibit per-
sistence, and one such model, due to Granger [1980], gives
a plausible physical justification for long-range dependence
in terms of the aggregation of many short-range depend-
ence processes. Granger’s model concerns properties of the

sum Xt ¼
X1
j¼0

YtðjÞ, in which the time series fXtgt2N is the

sum of an infinite number of individual time series that
are both stationary and short-range dependent. Granger
showed that if the short-range dependence processes are in-
dependent lag-one autoregressive of the form YtðjÞ ¼
�jYt�1ðjÞ þ "tðjÞ, with �1 < �j < 1, f"tðjÞgt2N a sequence
of independent random variables with variances
Varð"tðjÞÞ ¼ �2

t , for all j; t 2 N, then the aggregated pro-
cess fXtgt2N has long-range dependence. This result is
attractive because the drainage basin of the Upper Paraguay
River basin consists of a large number of distinct subbasins,
each with a large number of hydrologic elements (vegeta-
tion canopies; slope elements; . . .) for which the assump-
tion of linear-reservoir-like behavior [change of storage
proportional to input minus output, dS=dt ¼ pðtÞ � qðtÞ,
with output proportional to storage, S ¼ k � qðtÞ] may not
be unreasonable. From such physical considerations, there-
fore, it can be argued that the sequence of Paraguay River
water levels at Ladário should be a realization of a long-
range dependence process. In the broader context of all riv-
ers, Mudelssee [2007] showed by simulation that a river
network aggregates short-range dependence precipitation
and converts it into long-range dependent runoff, while
Hirpa et al. [2010] state that ‘‘watershed area is an impor-
tant factor in the long-memory studies of streamflow such
as streamflow production’’; and the Upper Paraguay is
large in terms of area.

[5] Two approaches to modeling long-term persistence
in the Ladário time series are used in this paper. One is to
use a seasonal fractionally differenced model (SARFIMA:
see below) fitted directly to the time series of mean
monthly water levels ; its advantage is that it is relatively
parsimonious in terms of model parameters, but its disad-
vantage is that it requires monthly variances to be homoge-
neous, and in general this requirement will not always be
hydrologically appropriate. The second alternative, perhaps
the one most commonly used in the literature [Grimaldi,
2004; Montanari et al., 1997, 2000] is to ‘‘deseasonalize’’
the time series by subtracting the appropriate monthly
means and dividing by monthly standard deviations; the

deseasonalized series is then regarded as a realization of a
simpler fractionally differenced autoregressive fractionally
integrated moving average (ARFIMA) model. Seasonality
must be reintroduced when such a model is used for fore-
casting by multiplying by monthly standard deviations and
adding monthly means. The ARFIMA model is relatively
prodigal in terms of parameters, since 24 (12 monthly
means; 12 standard deviations) are required for deseasonal-
ization, in addition to those of the ARFIMA model itself. If
confidence intervals were to be required for forecasts, these
intervals would need to take account not only of uncertain-
ties in the ARFIMA model parameters, but also the uncer-
tainties in estimates of the seasonality parameters. In this
paper, both seasonal autoregressive fractionally integrated
moving average (SARFIMA) and ARFIMA models are
explored and compared, and they are also compared with
models (SARMA and ARMA) for which there is no frac-
tional differencing.

[6] The paper is organized as follows. Section 2 describes
the hydrologic regime of the Upper Paraguay River and the
Ladário time series. Statistical properties of this time series
are discussed in the preliminary analysis presented in
section 3. Section 4 presents the main results on model iden-
tification, parameter estimation, and forecasting for SAR-
FIMA models. Section 5 presents the results on model
identification and parameter estimation for the Ladário time
series. This section also compares results from the best-fit-
ting seasonal model SARFIMA for long-term persistence
with those from the best-fitting ARFIMA model, and results
from both models are compared with those from SARMA
and ARMA models which do not model long-term persist-
ence; these latter comparisons show whether inclusion of
fractional difference parameters in the models is justified.
Section 6 compares the forecasting performance of short-
range and long-range dependence models for the first semes-
ter of each year (January–July), the period when the annual
hydrograph at Ladário has its rising limb, and for the second
semester (July–December), which corresponds roughly to
the recession period. Section 7 concludes the paper.

2. Hydrologic Regime of the Upper Paraguay
River and the Ladário Time Series

[7] The Upper Paraguay has three distinct regions
defined by topography and hydrology: the Planalto
(260,000 km2), the Pantanal (140,000 km2), and the Chaco
(200,000 km2), as shown by Figure 1. The Planalto lies
above the 200 m contour and lies mainly in the eastern and
northern parts of the basin. Its climate is relatively wet and
it generates about 80% of runoff leaving the Upper Para-
guay. The Chaco region, to the west, has low annual rain-
fall (typically less than 1000 mm per year), and an
endorheic and ill-defined river drainage network. Its contri-
bution to total Paraguay discharge is small [Brasil, 1997].

[8] Rivers flowing from the Planalto enter the Pantanal
where gradients are very low, and large areas are seasonally
flooded. Water spreading over the floodplain remains
enclosed in shallow lakes [Bordas, 1996; Assine and Soares,
2004; Assine, 2005]. The flood pulse is seasonally marked,
with an average annual flooded area of 50,000 km2 [Hamil-
ton et al., 1996; Bravo et al., 2005], which effectively deter-
mines the entire ecosystem [Junk et al., 2006; Hamilton,
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2002]. Since annual rainfall is less than potential evaporation
and drainage is very slow because of shallow gradients
[Tucci et al., 1999; Bordas, 1996], the Pantanal functions as
a large natural hydrologic control on the Paraguay River and
its tributaries [Tucci et al., 2005; Bravo et al., 2005; Paz
et al., 2011; Bravo et al., 2012]. Although seasonal distribu-
tion of rainfall is very similar over the whole Paraguay River
basin, with higher rainfall during summer and very low rain-
fall during winter, peak river flows occur at different times
at different points along the Paraguay River. Because of the
low slopes and reservoir-like behavior of the Pantanal, flood
peaks take several months to progress downstream.

[9] The data set of Ladário gauging station is available
on request from the Brazilian National Water Agency
ANA. The original data set contains daily measurements of
the water level in the Paraguay River at Ladário for the pe-
riod from January 1900 to March 2010. Since changes in
daily water levels are very gradual, monthly mean levels
are used throughout this paper. Figure 2 shows the time se-
ries of mean monthly water levels fXtgn

t¼1, with n ¼ 1323
observations, where t ¼ 1 and t ¼ n correspond to January
1900 and March 2010, respectively. The reason for the
decline in water level over the extended period from 1960
to about 1975 has never been fully explained, but is repli-
cated in other time series of river flows from other parts of
the la Plata drainage system. Figure 3, giving a box plot of
mean monthly water level over the period of record, illus-
trates the general smoothness of the annual hydrograph,
with a rising limb extending roughly from January to June,
and a recession from July to December. We show that the
forecasting models discussed later in the paper tend to per-
form differently in these two periods.

[10] In what follows, the data set fXtg1323
t¼1 is divided in

two subsamples. The subsample fXtg1092
t¼1 , corresponding to

the period from January 1900 to December 1990, is used
for preliminary analysis and for model identification,

estimation, and verification, while the subsample fXtg1323
t¼1093

is used to investigate model forecasting performance.

3. Preliminary Analysis of the Ladário Time
Series

[11] Here we perform a preliminary analysis of the
Ladário time series. The aim of this analysis is to investi-
gate whether the stationarity property holds; to check if the
time series has Gaussian distribution (this is not required
by most time series models but is required when testing
hypotheses); to analyze the existence of a deterministic
and/or stochastic seasonal components ; and to analyze the
decay in the sample autocorrelation function. This informa-
tion is needed to identify a class of models for the data.

[12] Stationarity is required since long-range dependence
models (more generally, linear models) are based on the
assumption that the observed time series is a realization of
a weak-stationarity process with uncorrelated innovations.
Although some models are based on the hypothesis of
Gaussianity, most definitions only assume that the innova-
tion process is a white noise, that is, a sequence of noncorre-
lated random variables with constant mean and variance but
not necessarily independent or Gaussian [Hosking, 1981;
Brockwell and Davis, 1991; Bisognin and Lopes, 2007].

[13] Since nonstationarity can be caused by a determinis-
tic seasonal component or by a monotonic trend, these
hypotheses are investigated. Hydrologic time series com-
monly present an annual cycle, so it is expected the sea-
sonal period to be equal to 12. Usually this can be
confirmed by simple inspection of the time series graph or
by observing the length of the cycle in the sample autocor-
relation function. Once we have identified the period of
seasonality, the seasonal Mann–Kendall test can be applied
to investigate the existence of a monotonic trend [Hipel
and McLeod, 1994]. Furthermore, as a first attempt to

Figure 3. Box plot of mean monthly water level over the period 1900–2010. Numbers against outliers
indicate the months in which they occurred, reckoned from January 1900 as month 1.
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remove the influence of the annual cycle, a common
approach is to transform the data by subtracting monthly
means and scaling by monthly standard deviations [Gri-
maldi, 2004; Montanari et al., 1997, 2000]. If the periodic-
ity is caused by a deterministic component, the transformed
data should not show seasonality in mean and variance
[Grimaldi, 2004].

[14] Figure 4(a) shows the sample autocorrelation function
(ACF) �̂ðhÞ of the Ladário time series for h ¼ 0; . . . ; 200.
The cyclical behavior in the ACF is evident and indicates a
periodic behavior with seasonal period equal to 12. By per-
forming the seasonal Mann–Kendall test, assuming that the
seasons are correlated, we obtain the score statistic
S ¼ 1321, with variance VarðSÞ ¼ 10; 201; 759. Therefore,
the p value of the test statistic S=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p
¼ 0:4133 is 0.68

and the null hypothesis of no trend is not rejected. To verify
if the periodicity in the data is due to a deterministic compo-
nent, we consider the transformed time series fYtg1092

t¼1 as
described before, that is

Y�sþi ¼
X�sþi � mi

�i
for i ¼ 1; . . . ; 12 and � ¼ 0; . . . ; 90;

where s ¼ 12 is the period of seasonality, mi and �i are,
respectively the overall sample mean and standard devia-
tion for month i, defined as

mi ¼
1

N

XN�1

�¼0

X�sþi and �i ¼
1

N � 1

XN�1

�¼0

ðX�sþi � miÞ2;

where N ¼ 91 is the total number of years in the period
from January 1900 to December 1990. These values are
presented in Figure 5.

[15] Figures 6(a) and 6(b) show the kernel density func-
tion and the ‘‘best fitted’’ Gaussian density function,
respectively, for the original Ladário time series and for the
deseasonalized time series. Clearly these time series do not
have Gaussian distribution. A Box-Cox transformation
could be applied so as to obtain a Gaussian time series.
However, as reported by Grimaldi [2004], the final model
obtained after applying such a transformation may not be
useful since the inverse Box-Cox transformation may yield
very large distortions. The use of the Box-Cox transforma-
tion is also discussed by Montanari et al. [1997, 2000]. In
both papers the authors conclude that the time series con-
sidered are well modeled even without transforming the

Figure 4. Sample autocorrelation function for lags
h ¼ 0; . . . ; 200: (a) of the original time series fXtg1092

t¼1 cor-
responding to the mean monthly water level in the Para-
guay River at Ladário in the period from January 1900 to
December 1990; (b) of the deseasonalized time series.
Dashed lines correspond to the 95% confidence bands.

Figure 5. Mean (mi) and standard deviation (�i) by
month for the water-level time series for the period from
January 1900 to December 1990. Dashed lines correspond
to the overall mean/standard deviation.
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data. Since the fitted model will be used for forecasting, the
Box-Cox transformation was not used here.

[16] The next step is to decide whether a class of short-
range or long-range dependence model should be consid-
ered by looking at the decay in the sample autocorrelation
function. While for short-range dependence models this
function decays rapidly or is zero for h > h0 (as in MA
models), for some h0 > 0, for long-range dependence mod-
els it decays very slowly. From Figures 4(a) and 4(b) we con-
clude that for both the original and deseasonalized Ladário
time series, the decay of the sample autocorrelation functions
is very slow, which indicates long-range dependence.

[17] Another procedure to detect long-range dependence
is the detrended fluctuation analysis (DFA) proposed by
Peng et al. [1992]. Crato et al. [2010] give a full descrip-
tion and technical details of the DFA method, while Crato
et al. [2011] report an application to DNA sequences and
Livina et al. [2003] apply the DFA to measure the correla-
tion properties of river flow fluctuations. To apply the DFA
method to the original and deseasonalized Ladário time se-
ries we considered two different values of g(n) [for details,
see Crato et al., 2010], where n ¼ 1092 is the sample size.
By considering gðnÞ ¼ bn=10c, which is the usual choice in
the literature, the scaling exponent � was estimated as
�̂ ¼ 0:81 (original time series) and 1.13 (deseasonalized

time series). By considering gðnÞ ¼ n0:8, � was estimated
as �̂ ¼ 0:92 (original time series) and 1.09 (deseasonalized
time series). These results indicate that both time series
have long-range dependence.

4. Fractionally Differenced Models
[18] An annual cycle is a common characteristic of most

hydrologic time series and the literature shows that long-
range dependence in mean can sometimes be expected
[Hosking, 1984; Montanari et al., 1997, 2000; Bisognin
and Lopes, 2007]. For a stationary stochastic process
fXtgt2Z, the periodicity is usually detected through the
oscillating autocorrelations and the long-range dependence
is reflected by the hyperbolic decay of the autocorrelation
function or by the unboundedness of the spectral density
function at the zero frequency. If fXtgt2Z also presents sea-
sonal long-range dependence, then the spectral density
function is unbounded at the frequencies 2k�=s, k ¼
0; 1; 2; . . . , where s is the seasonality period.

[19] A common measure of the long-range dependence
intensity is the Hurst’s coefficient H, which varies between
0 and 1 [Hurst, 1951]. Several heuristic procedures are
available to detect long-range dependence [Beran, 1994].
However, since they only provide estimates for the parame-
ter H, they cannot fully describe the statistical properties of
the time series, nor can they be used for forecasting. Para-
metric models are therefore often considered as an alterna-
tive. For example, Granger and Joyeux [1980] and Hosking
[1981] introduced the autoregressive fractionally integrated
moving average model, denoted by ARFIMAðp; d; qÞ or
FARIMAðp; d; qÞ models. These models display long-range
dependence when the differencing parameter d is in the
interval ð0; 0:5Þ, enabling it to reproduce the Hurst phe-
nomenon. Moreover, the parameters d and H are related
through the equality d ¼ H � 1=2. To account for cyclical
behavior, Porter-Hudak [1990] introduces the seasonal
autoregressive fractionally integrated moving average
(SARFIMA) process and Hassler [1994] presents a com-
plete generalization of fractional differencing processes
with the presence of periodicity considering rigid and flexi-
ble models.

[20] The SARFIMA model (also known in the literature
as ARFISMA or FARISMA), is a special case of the gener-
alized FARIMA model considered by Giraitis and Leipus
[1995]. Using the same notation as Montanari et al. [2000],
Bisognin and Lopes [2007, 2009] and Bisognin [2007], a
SARFIMAðp; d; qÞ � ðP;D;QÞs process is defined as the
solution of

�ðBÞ�ðBsÞð1� BÞdð1� BsÞDðXt � �Þ ¼ 	ðBÞ�ðBsÞ"t: (1)

When P ¼ Q ¼ 0 and D ¼ 0, the model in expression (1)
reduces to the ARFIMAðp; d; qÞ model; when d ¼ 0 ¼ D,
to the so-called SARMAðp; qÞ � ðP;QÞs (seasonal ARMA)
model; when P ¼ Q ¼ 0 and d ¼ D ¼ 0, to the ARMA
ðp; qÞ model.

[21] In expression (1), � 2 R is the process mean,
f"tgt2Z is a white noise process with mean zero and var-
iance �2

" , s 2 N� is the period of the seasonality, and d and
D are, respectively, the nonseasonal and seasonal differenc-
ing order parameters (allowed to be fractional). While the

Figure 6. Kernel density funtion and ‘‘best fitted’’ Gaus-
sian density function: (a) for the original Ladário time se-
ries ; (b) for the deseasonalized time series.
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parameter d is related to long-range dependence, as in the
ARFIMAðp; d; qÞ processes, D is the parameter associated
with the seasonal long-range dependence. In particular, if
d ¼ 0 and p ¼ q ¼ P ¼ Q ¼ 0, then Xt and Xtþh have zero
correlation whenever h is not a multiple of the seasonal pe-
riod s. If d and D are both nonzero then the process has
both long-range dependence and seasonal long-range de-
pendence. Moreover, B is the backward shift operator

defined by BskðXtÞ ¼ Xt�sk for all k 2 N, ð1� BÞd and
ð1� BsÞD are, respectively, the nonseasonal and the sea-
sonal difference operators. If D 2 N, ð1� BsÞD is simply
the seasonal difference operator iterated D times and, for
any noninteger D > �1, the operator is defined by

ð1� BsÞD ¼
X1
k¼0

Gðk � DÞ
Gð� DÞGðk þ 1ÞB

sk :¼
X1
k¼0


D;kBsk ;

with 
D;0 ¼ 1. The operator ð1� BÞd is obtained from the
above equality when D ¼ d and s ¼ 1. Furthermore, the pol-
ynomials �ð�Þ, 	ð�Þ �ð�Þ, and �ð�Þ, respectively, of degree
p; q; P, and Q, describe the nonseasonal and seasonal short-
range dependence, as in SARMAðp; qÞ � ðP;QÞs processes.
While �ð�Þ and �ð�Þ are, respectively, the nonseasonal and
seasonal autoregressive polynomials, 	ð�Þ and �ð�Þ are,
respectively, the nonseasonal and seasonal moving average
polynomials, defined by

�ðzÞ ¼
Xp

k¼0

ð��kÞ zk ; 	ðzÞ ¼
Xq

k¼0

	k zk ; �ðzÞ ¼
XP

k¼0

ð��kÞ zk ;

and �ðzÞ ¼
XQ

k¼0

�k zk ;

with �0 ¼ �1 ¼ �0 and 	0 ¼ 1 ¼ �0.
[22] The properties of long-range dependence (and sea-

sonal long-range dependence) models and its applications are
well documented in the literature [Ray, 1993; Hassler, 1994;
Peiris and Singh, 1996; Reisen and Lopes, 1999; Montanari
et al., 1997, 2000; Elek and Márkus, 2004; Arteche and
Robinson, 2000; Palma, 2007; Bisognin and Lopes, 2007;
Bisognin, 2007]. In particular, Bisognin and Lopes [2009]
deal with the complete SARFIMAðp; d; qÞ � ðP;D;QÞs
processes giving proofs of theoretical properties such as the
spectral density function expression and its behavior near the
seasonal frequencies, the stationarity, the intermediate de-
pendence characteristics, the autocovariance function, and its
asymptotic expression. The authors also investigate the ergo-
dicity and present necessary and sufficient conditions for the
causality and the invertibility properties of the complete
SARFIMA processes.

[23] In practice, the identification of the autoregressive
and moving average orders (seasonal and nonseasonal) for
SARFIMA (or ARFIMA) models is not straightforward,
usually requiring trial and error procedures [Montanari
et al., 1997]. A common approach is to obtain a preliminary
value for the parameters d and D then use those values to
differentiate the time series (by applying a linear filter) and
thus to consider the traditional identification methods for
SARMA (or ARMA) models. This procedure is commonly
used not only to identify the order of the autoregressive

and moving average polynomials (seasonal and nonseaso-
nal) but also to provide initial values in the parameter esti-
mation step.

[24] Model parameters can be estimated by maximum
likelihood [Tyralis and Koutsoyiannis, 2011]. However,
computing the exact likelihood function requires knowing
the underlying distribution of the data. Therefore, in prac-
tice, an approximation of the Gaussian maximum likeli-
hood function in the spectral domain is used instead
[Beran, 1994]. This approximation was first proposed by
Whittle [1953] for short-range dependence models. It is
well known that the Whittle’s estimator yields maximum
likelihood estimates only for Gaussian data. In the non-
Gaussian case, the method gives least square estimates. In
both cases, Gaussian and non-Gaussian, the estimates are
asymptotically consistent [see Montanari et al., 2000 and
references therein]. Furthermore, simulation studies pre-
sented by Reisen et al. [2001] and Sena Jr. et al. [2006]
confirm that the Whittle’s estimator performs well for
ARFIMA time series with non-Gaussian innovations and
sample size n ¼ 300. In particular, Reisen et al. [2001] con-
siders misspecification against heavy-tailed, skewed, and
bimodal distributions.

[25] By considering Whittle’s method, given a time se-
ries fXtgn

t¼1, the parameter estimation is carried out by min-
imizing the function Qð�Þ defined as

QðnÞ ¼
Xm

j¼1

Inð�jÞ
f�ð�j; nÞ; (2)

where m ¼ bðn� 1Þ=2c, �j ¼ 2�j=n for j 2 f1; . . . ;mg are
the Fourier frequencies, Inð�Þ is the periodogram function,
and f�ð�; nÞ is defined by f ð�; gÞ ¼ f�ð�; nÞ � �2

"=ð2�Þ,
where g ¼ ð�"; �0Þ0 is the vector of unknown parameters of
the model and f ð�; gÞ is the spectral density function of a
stationary SARFIMAðp; d; qÞ � ðP;D;QÞs process, which
is given by [Bisognin and Lopes, 2009]

f ð�; gÞ ¼ �2
"

2�

j	ðe�i�Þj2

j�ðe�i�Þj2
j�ðe�is�Þj2

jðe�is�Þj2
� j1� e�i�j�2d

� j1� e�is�j�2D;

for all � 2 ½0; ��. The estimator of �2
" is then given by

�̂2
" ¼ 4�=n� Qðn̂Þ, where n̂ maximizes (2). Notice that this

method does not give an estimate �̂ for the parameter �. In
this work we set �̂ ¼ X , where X is the sample mean of
fXtgn

t¼1.
[26] Once the parameters of the model are estimated, the

residuals f"̂tgn
t¼1 are calculated based on the infinite order

autoregressive representation of a SARFIMA process,

which is given by "t ¼
X1
k¼0

�kXt�k , where the coefficients

�k for all k 2 N are defined by

X1
k¼0

�kzk ¼ �ðzÞ�ðz
sÞ

	ðzÞ�ðzsÞ ð1� zÞdð1� zsÞD: (3)
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Moreover, by letting X̂t :¼ Xt � "̂t for all t 2 f1; . . . ; ng
we obtain the fitted values (also termed the in-sample fore-
cast). Hence, classical goodness-of-fit tests can be per-
formed to verify the validity of the model and/or to provide
a final decision rule if more than one model is shown to fit
the data well.

[27] The forecasting equations for SARFIMA (ARFIMA)
models are simple. Without loss of generality, assume
� ¼ 0. Then, with respect to the mean square error, the best
linear predictor of Xnþh, based on Fn :¼ �ðfXsg; s � nÞ, is
given by X̂nþh ¼ E ðXnþhjFnÞ, which can be written as
[Bisognin, 2007]

X̂nþh ¼ �
X1
k¼1

�kX̂nþh�k ; (4)

where X̂nþh�k ¼ Xnþh�k , whenever h� k � 0, and f�kgk2N
is defined in (3).

[28] The forecasting performance of a model is com-
monly evaluated by calculating the mean absolute error
(mae), the root mean square error (rmse) or the mean abso-
lute percentage error of forecast (mape) values, respec-
tively defined as

mae ¼ 1

np

Xnp

h¼1

jenþhj; rmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np

Xnp

h¼1

jenþhj2
vuut ;

and mape ¼ 1

np

Xnp

h¼1

jenþhj
jXtþhj

;

(5)

where enþh ¼ Xnþh � X̂nþh is the forecasting error, n is the
forecasting origin, and np is the total number of predicted
values. The mape is a good measure since it considers not
only the magnitude of the error (as do the mae and the
rmse) but also the proportion between the error and the true
values so it is easier to decide whether the error is small or
not. A drawback is that this measure is highly affected
when observations are close to zero.

5. Model Identification and Estimation on the
Ladário Time Series

[29] As shown above, preliminary analysis of the Ladário
time series suggests the use of long-range dependence mod-
els, and we consider here the ARFIMAðp; d; qÞ model for
the deseasonalized time series fYtg1092

t¼1 and, for comparison,

a SARFIMAðp; d; qÞ � ðP;D;QÞs model for the original
time series fXtg1092

t¼1 . To assess whether forecasts of Ladário
mean monthly water level were improved by including the
persistence parameters d and D, simple ARMA and seasonal
ARMA (SARMA) models were also fitted.

[30] All models were identified using the mean monthly
water levels for the years 1900–1990 inclusive, 1092 values
in all. SARFIMA and SARMA models were fitted to these
values, but ARFIMA and ARMA models were fitted to the
deseasonalized series, as explained earlier. Monthly obser-
vations for the years 1991–2010 (20 years) were used to
compare with forecasts obtained from the fitted models.
The reverse transformation was considered when calculat-
ing the mae, mape, and rmse between observed and pre-
dicted values.

[31] Six ARFIMAðp; d; qÞ models were fitted for all
combinations of p; q 2 f0; 1; 2g. The model with
p ¼ q ¼ 0 was excluded given the high value of the Port-
manteau test statistic Qð100Þ ¼ 913 (the critical value for
the test is 124.34). The Bayes Information Criterion (BIC)
was then used to select the best model. The model
ARFIMAð1; d; 1Þ gave the smallest BIC (�2588.26) and
the smallest mape (0.21) values when the latter was calcu-
lated from the remaining 20 years of monthly data, after fit-
ting the model. The value of d for this model was
d ¼ 0:35 6 0:096, corresponding to a Hurst coefficient of
H ¼ 0:85. Estimates of the AR and MA parameters were
0:691 6 0:081 and 0:228 6 0:042, respectively, both
exceeding twice their standard errors.

[32] The SARFIMA models were fitted for all combina-
tions of p; q;P;Q 2 f0; 1; 2g. We also consider the models
with d ¼ 0 or D ¼ 0 (fixed). The Portmanteau test rejected
the null hypothesis that the residuals were statistically inde-
pendent for all SARFIMA models. Similar results were
found by Montanari et al. [1997] and Grimaldi [2004].
Thus the test could not be used as a model selection crite-
ria. The model with very high BIC values (>8100) were
discarded together with others for which estimates of the
long-range dependence parameters d and D were greater
than 0.5, giving models that were not stationary; 26 candi-
date models remained. Models with more than six parame-
ters were then eliminated (seven candidates remained) and
the cumulative periodogram test on the residuals of these
seven SARFIMA models was used as a final selection pro-
cedure. Finally, four candidate models remained. The
goodness-of-fit statistics for these four models are given in
Table 1. As shown in Table 1, values of BIC and mape (in-
sample and out-of-sample) did not vary much among the

Table 1. Bayesian Information Criteria (BIC), Portmanteau Test Statistic Q(100), Shapiro-Wilk Test Statistic, mae, mape, and rmse for
Four Competitive SARFIMA Models Fitted to the Ladário Time Seriesa

Model S1 S2 S3 S4

BIC 8031.657 8015.065 7987.431 7977.565
Q(100) 337.190 290.750 192.100 165.400
Shapiro-Wilk 0.903 0.903 0.905 0.905
maeb 26.072 (71.670) 25.884 (73.927) 25.755 (67.415) 25.792 (64.442)
mapeb 0.352 (0.281) 0.403 (0.265) 0.402 (0.249) 0.400 (0.243)
rmseb 39.027 (86.670) 38.856 (91.473) 38.245 (81.807) 38.073 (77.256)

aAll models have less than six parameters and noncorrelated residuals according to the cumulative periodogram test. By definition, S1 ¼
SARFIMAð1; d; 1Þ � ð0;D; 0Þ12, S2¼ SARFIMAð2; d; 0Þ � ð0;D; 0Þ12, S3¼ SARFIMAð2; d; 0Þ � ð1;D; 0Þ12, and S4¼ SARFIMAð2; d; 0Þ � ð0;D; 1Þ12.

bThe values in parentheses correspond to the respective statistics calculated based on the 231 predicted and observed values (not used for model identi-
fication or fitting).
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tested models. By comparing mae and rmse the model
selected was SARFIMAð2; 0; 0Þ � ð0;D; 1Þ12 for which the
value of D̂ was 0:43960:035. The parameters �1, �2, and
�1 were estimated as 1:300 6 0:028, �0:391 6 0:0:028, and
�0:334 6 0:048, respectively. The cumulative periodogram
test on the residuals of this model is presented in Figure 7.

[33] For both ARFIMA and SARFIMA models, a Shapiro-
Wilks test was used to test whether model residuals could be
considered normally distributed, but the hypothesis of normal-
ity was rejected for both models. A summary of the estimation
results for the four models ARFIMAð1; d; 1Þ, ARMAð1; 1Þ,
SARFIMAð2;0;0Þ�ð0;D;1Þ12, and SARMAð2;0Þ�ð0;1Þ12
is presented in Table 2. Table 3 shows goodness-of-fit sta-
tistics for these four models, for the remaining 231 values
in the Ladário time series which were not used for model
identification and estimation.

[34] Table 3 suggests that the performance of the
SARMA model is appreciably worse than that of any other
three, although in all models both mae and rmse values are
large, as would be expected for estimates at such large lead
times. Setting aside the poor performance of the SARMA
model, Table 3 suggests that there is not much difference
among the performance of the remaining three models
ARFIMAð1; d; 1Þ, ARMAð1; 1Þ, and SARFIMAð2; 0; 0Þ�
ð0;D; 1Þ12, although, by all three performance measures, the
latter model performed less well than the ARFIMAð1; d; 1Þ
fitted to the normalized residuals of the time series. The rel-
atively good performance of the simple ARMA(1, 1) model,
even when it has been shown that estimates of the long-range
dependence parameters d and D are significantly greater than
zero, is not surprising in view of the very marked seasonal
fluctuation in mean monthly water level shown by the box
plot in Figure 3; when seasonality is reintroduced into esti-
mates Ŷnþh, where n ¼ 1092 and h 2 f1; . . . ; 231g with
nþ h ¼ �sþ i for some � 2 f0; . . . ; 19g and i 2
f1; . . . ; 12g, by the inverse transformation X̂tþh ¼ miþ
�iŶtþh, the major part of the signal in mean monthly water
level is thereby incorporated. And since the serial correlation
among the normalized residuals is high, an ARMA(1, 1)
model fitted to them would be expected to show persistence
characteristics similar to those of fractionally differenced
models [O’Connell, 1973]. On the other hand, the relatively
poor performance of the SARMA model, shown in Table 3

Figure 7. Cumulative periodogram test on the residuals
of the SARFIMAð2; 0; 0Þ � ð0;D; 1Þ12 model applied to
the Ladário time series. Dashed lines correspond to the
95% confidence bands.

Table 2. Estimated Parameters (in Parentheses, the SE of the Estimate) and Goodness-of-Fit Test Statistics for the ARFIMA(1, d, 1),
ARMA(1, 1), SARFIMA(2, 0, 0) � (0, D, 1)12 and SARMA(2, 0) � (0, 1)12 Modelsa

Estimate

Model

ARFIMA ARMA SARFIMA SARMA

d̂ 0.350 (0.096) – – –

D̂ – – 0.439 (0.035) –

�̂1 0.692 (0.080) 0.915 (0.013) 1.300 (0.028) 1.516 (0.023)

�̂2 – – �0.391 (0.028) �0.658 (0.023)

	̂1 0.228 (0.042) 0.350 (0.030) – –

�̂1 – – �0.334 (0.048) 0.185 (0.030)
�̂" 0.091 0.092 1411.275 1762.808
�̂ 0.000 0.000 264.729 264.729
mae (cm) 22.61 22.76 27.79 27.98
mape 0.34 0.34 0.40 0.47
rmse (cm) 33.24 33.26 38.07 42.10
Q(100) 87.93 95.84 165.40 848.43
Shapiro-Wilk 0.90b 0.90b 0.90b 0.90b

aThe mae, mape, and mse values correspond to the in-sample forecast (set h ¼ 0 in the definition). For the ARFIMA and ARMA the mae, mape, and
mse values were calculated after performing the inverse transformation X̂�sþi ¼ mi þ �iŶ�sþi for all � ¼ 1; . . . ; 90 and i ¼ 1; . . . ; 12, with s ¼ 12. The
critical value for the Portmanteau test is 124.34 (confidence level � ¼ 0:95).

bCorresponding p value is equal to 0.

Table 3. Performance Measures for Four Models Used to Esti-
mate 231 Observations Not Used for Model Identification or
Fitting

Model

Criteria

mae (cm) mape (%) rmse (cm)

ARFIMAð1; d; 1Þ 59.40 21.13 73.04
ARMAð1; 1Þ 70.90 22.60 87.13
SARFIMAð2; 0; 0Þ � ð0;D; 1Þ12 66.44 24.34 77.26
SARMAð2; 0Þ � ð0; 1Þ12 109.40 38.20 135.44
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and confirmed below, may be associated with inhomogeneity
in the 12 monthly variances; the box plot of Figure 3 shows
that dispersion may be greater in months when water levels
are also high.

[35] Table 3 gives results obtained when models fitted to
the first 1092 values (the period 1900–1990) in the Ladário
time series, and are then used to estimate remaining values
in the sequence (the period 1991–2010). Of greater interest
from a practical point of view is how easily model parame-
ters and forecasts can be updated on a regular basis, and
this topic is covered in section 6.

6. Results of Updating Estimates of Model
Parameters and Forecasts

[36] From a user’s perspective, important questions are
‘‘how easy is it to update estimates of parameters in a frac-
tionally differenced model, and to update the forecasts
obtained from it?’’ and ‘‘how do forecasts of hydrologic
variables, obtained by recursively updating forecasts from
fractionally differenced models, compare with forecasts
given by ordinary ARMA models, seasonal or otherwise,
that are in widespread use?’’. These questions must be
addressed if such models are to find use as a practical fore-
casting procedure for hydrologic use, but to the authors’
knowledge, they have not been addressed in the literature.

[37] As a partial response to the first question, the
authors’ experience is that minimization of the expression
Qð�Þ in equation (2) is very rapid, taking no more than a
few seconds on an ordinary laptop computer (although
there maybe problems of convergence if p; q;P;Q are not
small integers). It is certainly very much faster, in our expe-
rience, than use of the approximate maximum likelihood
method in the time domain, given by Beran [1994, section
5.6], for which problems of convergence were encountered
even when P ¼ Q ¼ 0, p ¼ q ¼ 1. Thus provided the
model does not have many parameters, calculating updates
of parameters should not be difficult. Similarly, the updat-
ing of forecasts using equation (4) is straightforward.

[38] To address the second question, forecasts from four
models with the same autoregressive and moving average
orders (seasonal and nonseasonal) as those in section 5
were compared, by calculating root mean square errors
(rmse) between the forecasts obtained from them, and the
observed mean monthly water levels, in successive six-
monthly periods as described below. Models 1 and 2 were
fitted to the deseasonalized time series and models 3 and 4
were fitted to the original time series, where

Model 1: ARFIMAð1; d; 1Þ ;
Model 2: ARMAð1; 1Þ ;
Model 3: SARFIMAð2; 0; 0Þ � ð0;D; 1Þ12 ;
Model 4: SARMAð2; 0Þ � ð0; 1Þ12.
[39] Thus model 1 has nonzero fractional-differencing

parameter d, model 3 has d ¼ 0 and nonzero seasonal frac-
tional-differencing parameter D, while in models models 2
and 4 both d and D parameters are set equal to zero, so that
models 2 and 4 are simply ordinary ARMA and SARMA
models without long-range dependence. Model 4 does not
satisfy the hypothesis of noncorrelated residuals and is
used only for comparison.

[40] To compare forecasts given by the four models,
with updating, the following procedure was used:

[41] 1. Each model was fitted using the time series up to
December 1990 (n ¼ 1092), and forecasts X̂nþ1; . . . ; X̂nþ6,
with forecasting origin n ¼ 1092, of mean monthly water
level, were calculated for the period January–June 1991
(i.e., the following six-months period).

[42] 2. The rmse between model forecasts and observed
mean water levels were calculated for each model over this
period, according to expression (5).

[43] 3. Using the time series up to the end of June 1991
(n ¼ 1098), the parameters of each model were recalculated,
thus recalibrating the model, and forecasts X̂nþ1; . . . ; X̂nþ6,
with forecasting origin n ¼ 1098, were made for the period
July–December 2001.

[44] 4. As in step 2 above.
[45] 5. The calculation was repeated for the six-monthly

intervals extending up to December 2009, and for the
three-months interval January–March 2010, the end of the
available time series, as in steps 1–4 above.

[46] Note that the first semester of each year (period of
January–June), corresponds approximately to the period
when the annual hydrograph at Ladário has its rising limb,
while the second semester (period of July–December) cor-
responds roughly to the recession period.

[47] Figure 8 shows the rmse obtained for each semester
and for each model. During the first semester (January–
June) when water levels are rising at Ladário, there is not a
great deal of difference between rmse values of models 1,
2, and 3 [the second being a simple ARMAð1; 1Þ]. An
exception was the year 1993, when model 3 (SARFIMA)
clearly showed a better performance than the other two
models in this group. But the feature emerging most
strongly from the left-hand side of Figure 8 is the much
greater range of fluctuations in rmse values associated with
model 4, the seasonal SARMA model; in general its per-
formance as measured by rmse was much worse than that
of the other three models, although in three years (2001,
2005, and 2009) it performed better than any of the others.
The suggested explanation, given above, of the possibility
of nonhomogeneity in monthly variances cannot be the
whole story, since rmse values of the SARFIMA model,
which is also seasonal, do not show the same degree of
fluctuation (although inclusion of the long-range depend-
ence parameter D in this fractionally differenced model
may have ‘‘damped out’’ fluctuations in forecasts).

[48] A similar picture emerges from the right-hand side
of Figure 8, showing rmse values calculated from forecasts,
issued in June, for the second semester (July–December)
when Ladário water levels are in recession. Except for the
two initial years, 1991–1992, the SARMA model shows a
much poorer performance, in general, than models 1, 2, and
3, which do not greatly differ in terms of their rmse values.
Comparison of the left- and right-hand plots in Figure 8
show that rmse values during recession periods July–
December tend to be lower than those found for the rising
limb of the water-level hydrograph; we enlarge upon this
in the following paragraphs.

[49] In a final analysis, rmse were calculated by compar-
ing observed mean monthly water levels with those pre-
dicted by each of the four models. Thus, the 20 forecasts of
mean water level in January, February, . . . , June (all of
which were issued in the preceding December) were com-
pared with the observed mean water levels in those months,
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so that the rmse for each month was calculated as the mean
of 20 squared differences. A similar procedure was used to
calculate rmse for July, August, . . . , December, by compar-
ing the 19 forecasts (issued in the preceding June) with
observed water levels in those months.

[50] Figure 9 shows a plot of the rmse calculated from
the above procedure, and a number of points stand out
clearly from it. First, as suggested Figure 8, the rmse in the
second semester July–December, are commonly smaller
than those in the first, January–June, the difference being
especially marked for model 4 (SARMA). This confirms
the point made above, that forecasts appear to be more
accurate during the recession, when water levels are falling.
Second, for forecasting just one month ahead (January or
July, in the two semesters) all four models perform about
equally well : but again, the rmse values for July (12.08,
13.58, 11.78, and 15.41 for ARFIMA, ARMA, SARFIMA
and SARMA models, respectively) are about half those for
January (24.51, 24.45, 23.99, 25.51), for all four models.
Third, there is very small difference among models 1, 2,
and 3 in either semester, although model 3 is marginally

better than the other three models in the three months
February–April of the first semester January–June.

7. Final Remarks and Conclusions
[51] The paper has reported results from an analysis of the

110-year time series of mean monthly water levels recorded
at Ladário on the Upper Paraguay River, Brazil. A priori
considerations suggested that long-range dependence models
might be appropriate for forecasting purposes, and two
approaches were explored. In the first, the marked seasonal
cycle was removed by simple transformation (subtraction of
monthly mean, division by monthly standard deviation),
with a fractionally differenced model ARFIMAðp; d; qÞ
fitted to the resulting deseasonalized time series. In the sec-
ond, a seasonal fractionally differenced model with structure
SARFIMAðp; d; qÞ � ðP;D;QÞ12 was fitted directly to the
mean monthly water levels. Having explored all models
with p; q; P; Q less than or equal to two, goodness-of-fit cri-
teria suggested the values p ¼ q ¼ 1 for the ARFIMA
model, and p ¼ 2, d ¼ 0, q ¼ 0, P ¼ 0, Q ¼ 1 for

Figure 8. Root mean square error values between the observed and the predicted values, for each year
and semester. For each year, the forecasts for the period January–June were issued in December (previ-
ous year) and the forecasts for the period July–December were issued in June (current year).
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the SARFIMA model. The long-range dependence parame-
ters for the two models were estimated as d ¼ 0:35 6 0:096
for the ARFIMA model, and D ¼ 0:439 6 0:035 for the
SARFIMA, so that both models showed significant evi-
dence of long-range dependence. When forecasting Ladário
water levels up to six months ahead, forecasts given by
these two fractionally differenced models were also com-
pared with forecasts given by simpler, ‘‘short-range de-
pendence’’ ARMAðp; qÞ and SARMAðp; qÞ � ðP;QÞ12
models. Performance of the two fractionally-differenced
models were compared with the performance of their coun-
terparts in which d and D were set to zero, and which there-
fore did not model persistence in the series. Beginning
in December 1990, each of the four models was used to
forecast water levels in the following six-month period
January–June; in June 1991, estimates of the parameters in
all four models were updated, and forecasts were then
‘‘issued’’ for the period July–December 1991. Thereafter,
the procedure of updating estimates of model parameters
and the use of the updated models to obtain forecasts up to
six months ahead was repeated up to the end of the record
some 20 years later. The original values of p; q; P and Q
were retained (so that the models were not ‘‘reidentified’’
for each six-month forecasting period). Agreement of fore-
casts with observation was measured by calculating root
mean square errors (rmse); in general, rmse values given
by the SARMA model were considerably larger than those
given by the other three models [ARFIMAð1; d; 1),
ARMAð1; 1Þ and SARFIMAð2; 0; 0Þ � ð0;D; 1Þ12], but in
general there was little to choose between these three in
terms of model performance. The first semester of fore-
casts, January–June, corresponded to the period of rising
water levels at Ladário; the second, July–December, to the
period of recession. The performance of all models was
better during the recession period than during the period of
rising water levels, corresponding to the common observa-
tion that forecasting on a hydrographs rising limb is more
difficult than on the ‘‘smoother’’ recession.

[52] A limitation of the work is that none of the models
includes any causative or explanatory variable. Precipita-
tion would be the obvious explanatory variable to use, but
there are no rainfall records (or indeed records of any other
type) of a length sufficient to allow fractionally differenced
models with explanatory variables to be fitted. A long re-
cord of mean monthly discharge (as distinct from the mean
monthly water levels at Ladário) is available from 1901 to
the present, for the River Paraná at Corrientes, downstream
from Ladário and sited after the Paraguay River has joined
the Paraná. There is some correlation between the Cor-
rientes flows and the Ladário water levels, so that the latter
may show some promise as a predictor of the former. In
this case, an ARFIMA model fitted to the deseasonalized
time series could be considered as a first choice. However,
although the homogeneity of the variances may not be an
appropriate assumption, the SARFIMA model is more parsi-
monious in terms of parameters since it avoids the estimation
of 12 monthly means and 12 standard deviations, which are
required for deseasonalization. A complication arises because
the flows at Corrientes are reconstructed natural flows,
adjusted to take account of upstream impoundments and res-
ervoir losses. Alternatively, given the encouraging perform-
ance at Ladário of the simple ARMAð1; 1Þ model (which, as
is well-known, exhibits long-range dependence-type behavior
when its autoregressive parameters lie close to the unit
circle) this model could be considered and the relatively
short records available for explanatory variables could then
be used for forecasting several months in advance by
means of a transfer-function model, not only for the Paraná
River at Corrientes, but more widely throughout the la
Plata basin.
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Figure 9. Root mean square error values between the observed and the predicted values for each
month. The forecasts for January–June were issued in December (previous year) and the forecasts for
July–December were issued in June (current year).
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