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ABSTRACT

Growing demand and concern over climate change are key drivers for renewable
sources of electricity and grid modernization. Grid modernization, or the so called smart
grid, not only enables renewable sources but also opens the door to new applications with
far-reaching impacts such as preventing or restoring outages (self-healing capabilities),
and enabling consumers to have greater control over their electricity consumption and to
actively participate in the electricity market.

According to the Electric Power Research Institute (EPRI), one of the biggest chal-
lenges facing smart grid deployment is related to the cyber security of the systems.

The current cyber-security landscape is characterized by rapidly evolving threats
and vulnerabilities that pose challenges for the reliability, security, and resilience of the
electricity sector. Power system state estimators (PSSE) are critical tools for grid reliability,
under a system observable scenario, they allow power flow optimization and detection of
incorrect data.

In this work cyber-attacks are modeled as malicious data injections on system mea-
surements, parameters and topology. The contributions of this work are twofold. First, a
model for cyber-attack as a false data injection detection and identification is presented.
The presented model considers the minimization of the composed measurement error
while applying the Lagrangian relaxation. The presented contribution, enables false data
injection attacks detection even if this belongs to the subspace spanned by the columns
of the Jacobian matrix and in network areas with low measurement redundancy. Second,
state-of-the-art solutions consider correction of parameters or topology when measure-
ments are free of error. However, how may one correct measurements if parameters or
topology might be simultaneously in error? To solve this problem, a relaxed model is
presented and solved iteratively in a continuous manner. Once identified and detected,
cyber-attacks in parameters, topology and measurements are corrected.

The proposed solution is based on a Taylor series relaxed, composed normalized error
(CNE) hybrid approach with Lagrange multipliers. Validation is made on the IEEE-14
and IEEE-57 bus systems. Comparative results highlight the proposed methodology’s
contribution to the current state-of-the-art research on this subject. Providing mitigation,
response and system recovery capabilities to the state estimator with reduced computational
burden, the proposed model and methodology have strong potential to be integrated into
SCADA state estimators for real-world applications.

Keywords: Power Systems, Cyber-security, Smart Grids, State Estimator.



RESUMO

APLICAÇÕES AVANÇADAS EM ESTIMADORES DE ESTADO DE REDES
ELÉTRICAS INTELIGENTES: IDENTIFICAÇÃO, DETECÇÃO E CORREÇÃO
DE SIMULTÂNEOS ATAQUES CIBERNÉTICOS EM MEDIDAS, PARÂMETROS
E TOPOLOGIA.

O aumento da demanda e a preocupação com as mudanças climáticas são importantes
motivadores para as fontes de energia renováveis e a modernização da rede elétrica. A
modernização da rede elétrica inteligentes (REI) ou smart grid, não somente possibilita as
fontes de energia renováveis mas também abre portas à novas aplicações de grande impacto
como a prevenção e restauração automática de falhas e a possibilidade dos consumidores
terem grande controle sobre o consumo de eletricidade e atuação participativa no mercado
de energia.

De acordo com o Instituto Norte Americano de Pesquisas do Setor Elétrico, um dos
principais desafios a ser enfrentado no desenvolvimento das REIs é relacionado a segurança
cibernética dos sistemas.

O cenário da segurança cibernética atual é caracterizado pela rápida evolução dos riscos
e vulnerabilidades que impõe desafios para a confiabilidade, segurança e resiliência do setor
elétrico. Neste contexto, estimadores de estado do sistema de potência são ferramentas
críticas para a confiabilidade da rede, sob um cenário de observabilidade do sistema eles
possibilitam o fluxo de potência do sistema e a análise de dados incorretos.

Neste trabalho, ataques cibernéticos são modelados como injeção de dados incorretos
em medidas, parâmetros e topologia do sistema. A metodologia proposta possibilita
detecção de ataques mesmo se eles pertencerem ao subespaço ortogonal formado pelas
colunas da matriz Jacobiana e em áreas do sistema com reduzida redundância de medidas.
A solução proposta pelo estado da arte considera correções em parâmetros ou topologia
quando medidas estão livres de erros.

Porém, como pode-se corrigir medidas se parâmetros ou a topologia estão simultanea-
mente com erros? Para resolver este problema um modelo relaxado é proposto e resolvido
iterativamente. Assim que detectado e identificado, ataques cibernéticos em parâmetros,
topologia e/ou medidas são corrigidos.

As contribuições específicas do trabalho são: cálculo do desvio padrão para pseudo-
medidas (iguais à zero) e medidas de baixa magnitude baseado em medidas correlatas e
propriedades da covariância; modelo baseado em relaxação lagrangiana e erro composto
de medida para identificação e detecção de ataques cibernéticos; estratégia hibrida de
relaxamento iterativo (EHRI) para correção de ataque cibernético em parâmetros da rede
de modo contínuo e com reduzido esforço computacional e metodologia baseada em ciclo
holístico de resiliência para estimadores de estado sob ataques cibernéticos simultâneos
em parâmetros, topologia e medidas.



A validação é feita através dos sistemas de teste do IEEE de 14 e 57 barras, testes com-
parativos elucidam as contribuições da metodologia proposta ao estado da arte nesta área
de pesquisa. Trazendo as capacidades de mitigação, resposta e recuperação ao estimador
de estado com esforço computacional reduzido, o modelo e metodologia propostos tem
grande potencial de ser integrado em SCADAs para aplicação em casos reais.

Palavras-chave: Sistemas de Potencia, Segurança Cibernética, Redes Inteligentes,
Estimador de estado.



CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1 Cyber-security and State Estimators . . . . . . . . . . . . . . . . . . . . 20
2.2 State estimation and bad data process in balanced power systems . . . . 24
2.2.1 Measurement Gross Error Detection, Identification and Correction . . . . 27
2.2.2 Parameter Error Detection, Identification and Correction . . . . . . . . . 29
2.3 State Estimation and bad data process in non balanced power systems . 30
2.4 Simultaneous bad data process . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 CURRENT MODEL AND METHODOLOGY . . . . . . . . . . . . . . . 35
3.1 Normal equations SE and the Innovation approach . . . . . . . . . . . . 35
3.2 Cyber-attack model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 PROPOSED MODEL AND METHODOLOGY . . . . . . . . . . . . . . 38
4.1 Standard deviation for pseudo and low/zero magnitude measurements . 39
4.2 Lagrange relaxation and composed measurement error based model . . 39
4.3 Hybrid iterative relaxed approach . . . . . . . . . . . . . . . . . . . . . 41
4.4 Holistic resilience cycle based methodology . . . . . . . . . . . . . . . . 42
4.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 CASE STUDY AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . 45
5.1 IEEE 14-bus Test System . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.1 Multiple measurement cyber-attack scenario . . . . . . . . . . . . . . . . 45
5.1.2 Multiple measurement and parameter cyber-attack scenario . . . . . . . . 47
5.1.3 Multiple measurement, parameter and topological cyber-attack scenario . 51
5.2 IEEE 57-bus Test System . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 Multiple measurement cyber-attack scenario . . . . . . . . . . . . . . . . 55



5.2.2 Multiple measurement and parameter cyber-attack scenario . . . . . . . . 56
5.2.3 Multiple Measurement, parameter and topological cyber-attack scenario . 58
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

APPENDIX A JACOBIAN MATRIX ELEMENTS - LM . . . . . . . . . . . 72

APPENDIX B MEASUREMENT VALUES IEEE14-BUS AND 57-BUS . . 74



LIST OF FIGURES

Figure 1: Logical Reference Model - Category 1 (USA, 2014a) . . . . . . . . . 21
Figure 2: Holistic resiliency cycle (MEHRDAD et al., 2018) . . . . . . . . . . 21
Figure 3: A state estimator under a cyber-attack adapted from (SANDBERG;

TEIXEIRA; JOHANSSON, 2010) . . . . . . . . . . . . . . . . . . . 23
Figure 4: Network analysis functions (MONTICELLI, 1999) . . . . . . . . . . 26
Figure 5: The CAISO duck chart (DENHOLM et al., 2015) . . . . . . . . . . . 31
Figure 6: Cyber-attack analysis (BRETAS et al., 2017) . . . . . . . . . . . . . 32
Figure 7: Meshed three bus system . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 8: Meshed three bus system - 1− 2 modified branch parameters . . . . 33
Figure 9: ∆z(x) projected on <(H) and <(Hp) (BRETAS; CARVALHO; AL-

BERTINI, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 10: Cyber-attack by author’s view . . . . . . . . . . . . . . . . . . . . . 42
Figure 11: Proposed methodology flowchart - Part 1 . . . . . . . . . . . . . . . 43
Figure 12: Proposed methodology flowchart - Part 2 . . . . . . . . . . . . . . . 44
Figure 13: IEEE 14-bus Test System . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 14: IEEE 57-bus Test System . . . . . . . . . . . . . . . . . . . . . . . . 54



LIST OF TABLES

Table 1: Literature Review Summary . . . . . . . . . . . . . . . . . . . . . . 34
Table 2: 14-bus - multiple measurement cyber-attack - 1st loop - CMEN . . . 46
Table 3: 14-bus - multiple measurement cyber-attack -2nd loop - CMEN . . . 47
Table 4: 14-bus - multiple measurement cyber-attack -3rd loop - CMEN . . . 47
Table 5: States (phase in degrees and voltage in kV) variation and answer

improvement for measurement cyber-attack . . . . . . . . . . . . . . 47
Table 6: 14-bus - multiple measurements and parameters cyber-attacks -1st

loop - CMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 7: 14-bus - multiple measurements and parameters cyber-attacks -1st

loop - λCELM
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 8: 14-bus - multiple measurement and parameter cyber-attack - 2nd HIRA
loop - λCELM

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 9: States (phase in degrees and voltage in kV) variation and answer

improvement for measurement and parameter cyber-attack - 1st loop 49
Table 10: 14-bus - multiple measurement and parameter cyber-attack - 4th HIRA

loop - λCELM
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 11: 14-bus - multiple measurement and parameter cyber-attack -5th loop -
CMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 12: 14-bus - multiple measurements and parameters cyber-attacks case
two -1st loop - λCELM

N . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 13: 14-bus - multiple measurement and parameter cyber-attack case two

-1st loop - CMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 14: 14-bus - multiple measurements and parameters cyber-attacks -1st

loop - λCELM
N - GRL 2.8 . . . . . . . . . . . . . . . . . . . . . . . 51

Table 15: 14-bus - multiple measurement, topology and parameter cyber-attack
-1st loop - CMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 16: 14-bus - multiple measurement, topology and parameter cyber-attack
-1st loop - λNCELM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 17: 14-bus - multiple measurement, topology and parameter cyber-attack
-4th loop - λNCELM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 18: 14-bus - multiple measurement, topology and parameter cyber-attack
-5th loop - CMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 19: 14-bus - States (phase in degrees and voltage in kV) variation of
measurement, topology and parameter cyber-attack . . . . . . . . . . 53

Table 20: 57-bus - Measurements with low II . . . . . . . . . . . . . . . . . . 55
Table 21: 57-bus - multiple measurement cyber-attack -1st loop - CMEN . . . 55
Table 22: 57-bus - multiple measurement cyber-attack -2nd loop -CMEN . . . 56



Table 23: 57-bus - multiple measurement and parameter cyber-attack -1st loop -
λNCELM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 24: 57-bus - multiple measurement and parameter cyber-attack -1st loop -
CMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 25: 57-bus - multiple measurement and parameter cyber-attack -4th loop -
λNCELM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 26: 57-bus - multiple measurement and parameter cyber-attack -5th loop -
CMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 27: 57-bus - multiple measuremens and parametes cyber-attack -6th loop -
CMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 28: 57-bus - States (phase in degrees and voltage in kV) variation for
multiple measurement and parameter cyber-attack . . . . . . . . . . 59

Table 29: 57-bus - States of bus 12 variation on measurement, topology and
parameter cyber-attack . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 30: 57-bus - multiple measurement, topology and parameter cyber-attack
-2nd loop - CMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 31: 57-bus - multiple measurement, topology and parameter cyber-attack
-3rd loop - CMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 32: Case studies summary . . . . . . . . . . . . . . . . . . . . . . . . . 61



LIST OF ABBREVIATIONS

AB Autonomous behavior

AC Alternating current

ASV Augmented state vector

AMS Advanced metering system

CELM Composing errors and Lagrange multipliers

CM Countermeasures

CA Cyber-attacks

CS Cyber-security

DSE Dynamic state estimator

DSSE Distribution system state estimation

DER Distributed energy resources

EPRI Electric Power Research Institute

EMS Energy management systems

FASE Forecast-aided state estimation

FPCA False parameter attack identification

GRL Global redundancy level

HRC Holistic resilience cycle

HIRA Hybrid iterative relaxed approach

IC Innovation concept

II Innovation index

LASEP Laboratório de Sistemas de Potência

LM Lagrange multiplier

MASE Multiarea state estimation

MGE Measurement Gross Error

MLE Maximum likelihood estimation

NE Normal equation



NI Numerical instabilities

NR Normalized Residuals

NI Numerical instability

NIST National Institute of Standards and Technology

PCPT Parameter correction process tolerance

PE Parameter Error

PPGEE Programa de Pós-Graduação em Engenharia Elétrica

PSSE Power system state estimators

SCADA Supervisory Control and Data Acquisition

SE State estimation

TL Transmission line

WLS Weighted least square



LIST OF SYMBOLS

z measurement vector

x true state vector

h(x) nonlinear vector function relating measurements to states

N number of unknown state variables to be estimated

e measurement error vector

J(x) performance index

zi ith measurement

hi(x) nonlinear function relating the system state vector x to the ith measurement

σi ith measurement’s variance

R covariance matrix of the measurements

H(xk) Jacobian matrix of ∂Jx/∂x

x̂k state estimate to be obtained

K hat matrix

S residual sensitivity matrix

∆z(xk) the measurement residuals equals to z − h(xk)

∆x̂ state estimate to be obtained ∆x̂k

H Jacobian matrix H(xk)

∆z the measurement residuals equals to ∆z(xk)

W inverse of the covariance matrix of the measurements R

IIi innovation index

ed detectable component of the measurement error vector

eu undetectable component of the measurement error vector

CME composed measurement error

CMEN normalized form of CME

CNE composed normalized error

h(x, p′) nonlinear function relating the measurements to the system states and network
parameter



p′ assumed parameters

pr recorded parameters

λ lagrange multiplier for parameter error constraints.

Hx Jacobian matrix of
∂h(x, p′)

∂x

Hp Jacobian matrix of
∂h(x, p′)

∂pe

λi
N normalized λ element

λCELM lagrange multiplier for the parameter error equality constraint

P∗ real power injection at bus *

gmn branch series conductance

θmn voltage angles at terminal buses of branch m-n

bmn branch series susceptance

amn transformer final turns ratio

Q∗ reactive power injection at bus *

bshmn branch shunt susceptance

bsh∗ shunt susceptance (reactor) at bus *

Pmn real power flow of branch m-n

Qmn reactive power flow of branch m-n



17

1 INTRODUCTION

Growing demand and concern over climate change are key drivers for renewable
sources of electricity and grid modernization (BAKKEN et al., 2011). Grid modernization
not only enables renewable sources but also opens the door to new applications with
far-reaching impacts such as preventing or restoring outages (self-healing capabilities)
and enabling consumers to have greater control over their electricity consumption and to
actively participate in the electricity market (GIORDANO et al., 2013).

The basic components of the so called smart grid are information and communication
technology with power system engineering. Several governmental entities have been
concerned about the future standards and necessary technologies to implement the next
generation of energy grid (GIORDANO et al., 2013; USA, 2014b; BRAZIL, 2012). In the
last edition of the Smart Grid Framework and Roadmap for Interoperability Standards, the
National Institute of Standards and Technology (NIST) defined nine priority areas: demand
response and consumer energy efficiency; wide-area situational awareness; distributed
energy resources (DER); energy storage; electric transportation; network communications;
advanced metering infrastructure; distribution grid management and cyber-security.

According to the Electric Power Research Institute (EPRI), one of the biggest chal-
lenges facing smart grid deployment is related to the cyber security of the systems (YAN
et al., 2012).

The current cyber-security landscape is characterized by rapidly evolving threats and
vulnerabilities that poses challenges for the reliability, security, and resilience of the
electricity sector (USA, 2017).

Cyber-attacks (CA) against measurements and the parameter database storage at
SCADA (Supervisory Control and Data Acquisition) are recognized as possible and
a high potential threat (FOVINO et al., 2011; TEN; LIU; MANIMARAN, 2008; HUG;
GIAMPAPA, 2012). SCADA systems, in general, are exposed to a wide range of cyber
threats (SUN; HAHN; LIU, 2018). The Repository of Industrial Security Incidents had
161 events listed in 2010 with about 10 new incidents being added each quarter, in 2013
this number reached 240 events (CHERDANTSEVA et al., 2016).

After the 2015 cyber-attack event which caused a six-hour blackout for hundreds of
thousands of customers in Ukraine, several countries investigated the occurrence, trying to
answer the question: could this happen in our power system?

Indeed, countries such as the U.S. are aware that critical infrastructure depends on
electricity (USA, 2017) and that the growth and sustains of a workforce that is skilled in
cyber-security and related fields is essential (USA, 2018). There have been no reported
successful cases of cyber-terrorism in U.S. causing power outages (SULLIVAN; KAMEN-
SKY, 2017), but data suggest that electricity system outages attributable to weather-related
events can cost the U.S. economy an estimated $20 to $55 billion annually (USA, 2017).
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One of Ukraine’s hackers’ successful strategy was their long-term exploration in order
to learn the environment and execute a highly synchronized multi-level attack . Such
attacks, very target and long-term, are called advanced persisted threats and normally are
designed to satisfy international espionage or sabotage (SYMANTEC, 2011).

The threat environment is rapidly changing therefore the electric utilities face big
challenges in securing their networks (information and operation). Efforts to understand,
develop and evolve the emergency response capability to address ever-changing and
evolving cyber threats are critical to the electrical power grid resilience (USA, 2017).

1.1 Objectives and Contributions

Data intrusion is the most common group of direct cyber attacks threatening the security
of power systems. Data intrusion cyber attacks can happen as a false data injection (FDI) in
measurements and remote terminal units (RTUs) such as: load bus injection and line power
flow measurements; phasor measurement units and electrical vehicle charging stations.
Further, they can happen in the SCADA database system and have impacts in energy
management tools such as: optimal power flow; state estimators and security-constrained
economic dispatch (MEHRDAD et al., 2018).

In order to address data intrusion cyber-attacks this work proposes enhancements to the
state estimation tool in order to identify and detect simultaneous measurement, parameter
and/or topology FDI cyber-attack.

(USA, 2014a) cites that one of the most important security solutions is to utilize and
augment existing power system technologies, state estimators for example, to address new
risks associated with the smart grid, which is done in the present work.

To address the complexity of the integrated cyber-physical power system the security
of the power systems should be done in a holistic manner (MEHRDAD et al., 2018). The
holistic resilience cycle (HRC), proposed by MEHRDAD et al. (2018), is composed by
four stages: i) prevention and planning; ii) detection; iii) mitigation and response; iv)
system recovery

Based in the HRC, this work presents a methodology to correct simultaneous mea-
surement, parameter and/or topology FDI cyber-attack . This means to add the mitigation,
response and system recovery capabilities to the state estimator, focusing in the develop-
ment of countermeasures.

Also, in order to deal with resolution numerical instabilities due to pseudo and low/zero
magnitude measurements, a standard deviation based on correlated measurements and
covariance properties is proposed. Thus the specific contributions of this work are:

i) standard deviation for pseudo and low/zero magnitude measurements based on corre-
lated measurements and covariance properties;

ii) Lagrange relaxation and composed measurement error based model for cyber attack
detection and identification;

iii) hybrid iterative relaxed approach (HIRA) for parameter cyber-attacks detection and
correction in a continuously manner and with reduced computational burden;

iv) holistic resilience cycle based methodology for state estimation under simultaneous
parameter, topology and measurement cyber-attacks.
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1.2 Thesis Organization

In order to present the measurement, topology and parameter cyber-attack detection,
identification and correction methodology the following chapters are part of this document:
Chapter 2 includes the literature review.

What is being used from existing methodologies and models and to what extent is
described in chapter 3.

Chapter 4 details the main equations and the new formulation using composing error,
Lagrange multiplier and Relaxed Taylor Series to identify, detect and correct measurement,
topology and parameter cyber-attacks.

Chapter 5 explores the methodology capability of cyber-attack detection, identification
and correction using two test cases, IEEE-14 and IEEE-57 bus systems and different
cyber-attack scenarios and discusses the results and outlines comparisons with the state-of-
the-art.

Finally, chapter 6 wraps-up the ideas and results with suggested extensions and refine-
ments of the proposed methodology.
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2 LITERATURE REVIEW

Although SE has been studied for several decades the new challenges and requirements
that the smart grid imposes have recently brought new exploratory research in this area.
Sections 2.1, 2.2, 2.3, 2.4 present the research, methodologies and findings in regards to
SE and cyber security (CS). Section 2.5 presents a table that summarizes all subjects and
researches related and presented in this review.

2.1 Cyber-security and State Estimators

In order to assist organizations as they craft a smart grid strategy, NIST developed the
document entitled Guidelines for Smart Grid Cyber-security (USA, 2014a). This three-
volume report presents an analytical framework to be used by companies to develop their
own cyber-security strategies based on their particular changes towards smart grid-related
characteristics. Organizations in the diverse community of energy management services
and products need to recognize that the electric grid is changing from a relatively closed
system to a complex, highly interconnected environment.

The document has two basic approaches: bottom-up, focusing on identifying vulnera-
bility classes and top-down, focused on defining components/domains of the smart grid
system and the logical interfaces between these components/domains. A logical reference
model was defined as part of the top-down approach and presents smart grid domains,
actors and interfaces.

Each logical interface can be allocated to a logical interface category as a means to
simplify the identification of the appropriate security requirements. Logical Interface Cate-
gory 1 can be defined as the interface between control systems and equipment with high
availability and with computational and/or bandwidth constraints such as between trans-
mission SCADA in support of state estimation and substation equipment for monitoring
and controlling data using a high frequency mode.

Figure 1 presents the Category 1 logical reference model, where an actor is a device,
computer system, software program, or the individual or organization that participates
in the smart grid. The arrows on Figure 1 and their nomenclature (U) represent logical
interfaces.

From the actors and interfaces in this category we expect low confidentiality, high
integrity and high availability. A loss of integrity, which is unauthorized modification or
destruction of information; or a loss of availability, which is the disruption of access to or
use of information or an information system, can be critical in this category.

High integrity and availability are expectations of the transmission SCADA and its
related interfaces. It is also expected that existing capabilities and software functions that
exist on it and in other EMS are tailored or expanded to meet the security requirements.
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Figure 1: Logical Reference Model - Category 1 (USA, 2014a)

Figure 2: Holistic resiliency cycle (MEHRDAD et al., 2018)

PSSE is a software with functions that can be expanded towards this goal (USA, 2014a).
MEHRDAD et al. (2018) provides a systematic view to the security of the power

systems and a framework to categorize the current bibliography in the field. The authors
classify the bibliography by the phase (e.g. Detection) of the cyber-attack and by the
format (e.g. against direct attacks) as figure 2 depicts, in a so called holistic resiliency
cycle.

In regards to physical security MEHRDAD et al. (2018) states that the majority of
studies is related to stages prevention and planing, detection and response and mitigation.
As for cyber security, the majority of researches is related to planing, detection and
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response.
Data intrusion is the most common group of direct cyber attacks threatening the security

of power systems.
Data intrusion cyber attacks can happen in the SCADA database system and have

impacts in energy management tools such as:

i) optimal power flow (MOUSAVIAN; VALENZUELA; WANG, 2013; VALENZUELA;
WANG; BISSINGER, 2013);

ii) state estimators (BOBBA et al., 2010; DÁN; SANDBERG, 2010; KIM; POOR, 2011;
HUG; GIAMPAPA, 2012; ZHAO et al., 2016; MOHAMMADPOURFARD; SAMI;
SEIFI, 2017; BRETAS et al., 2017; HU et al., 2018);

iii) security-constrained economic dispatch (YUAN; LI; REN, 2011; XIANG et al., 2017).

Also, they can happen in measurements and remote terminal units (RTUs) such as:

i) load bus injection and line power flow measurements (YUAN; LI; REN, 2011; XIANG
et al., 2017);

ii) phasor measurement units (MOUSAVIAN; VALENZUELA; WANG, 2015);

iii) electrical vehicle charging stations (MOUSAVIAN; EROL-KANTARCI; ORTMEYER,
2015).

Further, denial of service cyber attacks can happen using artificial loads (WANG et al.,
2017).

Considering data intrusion cyber-attacks in state estimators it is possible to identify
that most works consider stealthy attacks only in measurements and proceed with residual
based solutions (HUG; GIAMPAPA, 2012; ZHAO et al., 2016; DÁN; SANDBERG, 2010;
BOBBA et al., 2010). Residual based solutions methodology hardly will detect an attack
vector a fitting the measurement model, which for the weighted linear case is equivalent to
have it belonging to the subspace spanned by the columns of the Jacobian matrix of the
electrical network (KIM; POOR, 2011; TEIXEIRA et al., 2010).

With regards to cyber-security and state estimators within SCADA systems the research
can be classified into three categories (HUG; GIAMPAPA, 2012):

i) Research on vulnerability analysis of state estimation (LIU; NING; REITER, 2011;
DÁN; SANDBERG, 2010; TEIXEIRA et al., 2010; SANDBERG; TEIXEIRA; JO-
HANSSON, 2010): inherent weaknesses of state estimators bad data detection investi-
gation in order to identify malicious alterations to SCADA data i.e.: which SCADA
measurements need to be altered and by how much in order to render the attack
undetectable by bad data detection?

ii) Research on consequence or impact analysis (MOHAJERIN ESFAHANI et al., 2010;
ESFAHANI et al., 2010): state estimation cyber-attack consequences on functions
that rely on state estimation results such as power flow calculations, congestion
analysis and management, and automatic generation control i.e.: what the resulting
consequences on those functions would be if a false data attack were to remain
undetected and how an attacker could take advantage of such a vulnerability?
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Figure 3: A state estimator under a cyber-attack adapted from (SANDBERG; TEIXEIRA;
JOHANSSON, 2010)

iii) Research on the development of countermeasures: The key question of this research
area is how to detect malicious attacks and protect the power system, focusing on
improving bad data detection schemes or improving the security of the communication
system (KOSUT et al., 2010; KIM; POOR, 2011; BOBBA et al., 2010).

The literature also shows that the current model for a stealthy deception attacker is to
compromise the telemetered measurements available to the PSSE such that:

1) The PSSE algorithm still converges;

2) For the targeted set of measurements, the estimated values at convergence are close to
the compromised ones introduced by the attacker;

3) The attack remains fully undetected by the bad data detection scheme. As a consequence
of the attackers’ stealthy action, the incorrect state estimates generated by the PSSE can
have different effects on other power management functions. A state estimator under a
cyber-attack is depicted on Figure 3

In (KOSUT et al., 2010) the problem of constructing malicious data attack of smart
grid state estimation is considered together with countermeasures that detect the presence
of such attacks. For the adversary, using a graph theoretic approach, an efficient algorithm
with polynomial-time complexity is obtained to find the minimum size unobservable
malicious data attacks. When the unobservable attack does not exist due to restrictions
of meter access, attacks are constructed to minimize the residue energy of attack while
guaranteeing a certain level of increase of mean square error. For the control center, a
computationally efficient algorithm is derived to detect and localize attacks using the
generalized likelihood ratio test regularized by an L1 norm penalty on the strength of
attack.
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In (KIM; POOR, 2011) data injection attacks to manipulate system state estimators on
power grids are considered. A unified formulation for the problem of constructing attacking
vectors is developed for linearized measurement models. Based on this formulation, a new
low-complexity attacking strategy is shown to significantly outperform naive l1 relaxation.
It is demonstrated that it is possible to defend against malicious data injection if a small
subset of measurements can be made immune to the attacks. However, selecting such
subsets is a high-complexity combinatorial problem given the typically large size of
electrical grids. To address the complexity issue, a fast greedy algorithm to select a subset
of measurements to be protected is proposed. Another greedy algorithm that facilitates
the placement of secure phasor measurement units to defend against data injection attacks
is also developed. Simulations on the IEEE test systems demonstrate the benefits of the
proposed algorithms.

Finally in (BOBBA et al., 2010) the detection of false data injection attacks of (LIU;
NING; REITER, 2011) is explored by protecting a strategically selected set of sensor
measurements and by having a way to independently verify or measure the values of a
strategically selected set of state variables. Specifically, it is shown that it is necessary and
sufficient to protect a set of basic measurements to detect such attacks.

Analyzing the contributions to cyber-physical security on the development of counter-
measures (KOSUT et al., 2010; KIM; POOR, 2011; BOBBA et al., 2010) it is possible
to identify that most works consider stealth attacks only on measurements and proceed
with residual based solutions. Residual based solutions methodology hardly will detect
an attack vector a fitting the measurement model, which for the weighted linear case is
equivalent to have it belong to the subspace spanned by the columns of the Jacobian matrix
of the electrical network (TEIXEIRA et al., 2010).

BRETAS et al. (2017) cover this issue presenting a methodology where the error is
composed and analyzed and not the residual. BRETAS; BRETAS; PIERETI (2011); BRE-
TAS et al. (2013) show that the error component of the linear state estimation formulation
has an unique decomposition: one component that is orthogonal to the Jacobian range
space and the other that belongs to that space. The former is the residual, the later the
masked error component. To estimate this masked error component, the Innovation concept
for static formulations is used.

2.2 State estimation and bad data process in balanced power systems

Initially transmission and bad data power networks had only supervisory control
systems that monitored the status of circuit breakers and controlled the generators output.
Eventually real-time system-wide data acquisition capabilities were added that led to
the establishment of the first SCADA systems. However, the information provided by a
SCADA system may not always be reliable due to errors in data and data acquisition and
the collected set of measurements may not allow direct extraction of the corresponding
alternating current (AC) operating state of the system. In order to cover these issues Fred
Schweppe and J. Wildes in 1970 proposed the idea of state estimation in power systems
(SCHWEPPE; WILDES, 1970).

The static-state estimator results from a combination of two big fields, load flow
and statistical estimation theory (SCHWEPPE; WILDES, 1970). It is based on the
nonlinear measurement model as described by equation (1) (SCHWEPPE; WILDES,
1970) where z ∈ Rm is the measurement vector, x ∈ RN is the true state vector (N
< m), h(x) : RN → Rm is a nonlinear vector function relating measurements to states,
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N = 2n− 1 is the number of unknown state variables to be estimated with n equals to the
systems’ buses and e ∈ Rm is the measurement error vector.

z = h(x) + e (1)

The measurement errors are commonly assumed to have a Gaussian (normal) distri-
bution (SCHWEPPE; WILDES, 1970) and the parameters for such a distribution are its
mean (or expected value).

Regarding the statistical properties of the measurement errors the following assump-
tions are made (SCHWEPPE; WILDES, 1970):

1. The expected value E(ei) of the error ei is zero for all i = 1, ...,m;

2. Measurement errors are independent, therefore the corresponding variance matrix
Cov(e) is called R = diag(σ1

2, σ2
2, ..., σm

2), where σ is the standard measurement
deviation.

The static-state estimation exact model proposed by SCHWEPPE; WILDES (1970) using
the matrix Cov(e) = R is described by equation (2). The state estimate vector x̂ is defined
to be the value of x which minimizes equation (2).

J(x) = [z− h(x)]′R−1[z− h(x)] (2)

To find the x̂ the first order optimal condition is applied and as h(x) is a nonlinear
equation, the Newton Raphson method is used, resulting in the iterative procedure as
described by equation (3) (MONTICELLI, 1999) and known as the WLS SE via the use
of the normal equation (NE). H(xk) is the Jacobian matrix of ∂h(x)/∂x, x̂k is the state
estimate to be obtained and ∆z(xk) is the measurement residual equal to z− h(xk) and k
is the iteration number.

(Ht(xk)R−1H(xk))∆x̂k = Ht(xk)R−1∆z(xk)

xk+1 = xk + ∆x̂k
(3)

The foregoing is the most common implementation of an AC SE although alternative
formulations have been proposed mainly to deal with resolution numerical instabilities
(NI) (HOLTEN et al., 1988).

The state estimation problem using equality constraints was introduced in 1977 (AS-
CHMONEIT; PETERSON; ADRIAN, 1977), where equation c(x) = 0 represents a set of
nonlinear constraints such as zero power injections in buses.

This approach is used (LIU; WU; LUN, 1992) to improve the numerical robustness
of estimation as no weights are assigned to the equality constraints. When zero power
injections are used as pseudo-measurements, large weight factors are applied. For large
weight factors the coefficient matrix (Ht(xk)R−1H(xk)) tends to be singular causing
ill-conditioning problems (HOLTEN et al., 1988; MONTICELLI, 1999).

The constrained WLS state estimation problem can then be formulated as equation (4).

minimize
x

J(x) = [z− h(x)]tR−1[z− h(x)]

subject to c(x) = 0
(4)
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Extending this approach to regular measurements another formulation adding the
residual equation as constraint was proposed (GJELSVIK; AAM; HOLTEN, 1985). In this
formulation the Karush-Kunh-Tucker first order necessary conditions are expressed by an
augmented coefficient matrix called Hachtel’s matrix or tableau (WU; LIU; LUN, 1988).

In a general sense the SE serves as a large-scale filter between the remote measurements
and the EMS in order to achieve an interconnected external network model as depicted
in Figure 4. SE bad data processing entails error detection and identification functions
that can filter non-Gaussian errors in the set of measurements, detect topology errors and
improve values of suspicious network parameter, such as transformer taps.

Figure 4: Network analysis functions (MONTICELLI, 1999)

It is also possible to find in the state estimation bibliography review a series of re-
searches related to sensitivity analysis (MINGUEZ; CONEJO, 2007; CARO; CONEJO;
MINGUEZ, 2009; CARO et al., 2010).

MINGUEZ; CONEJO (2007) provides expressions to compute sensitivities regarding
measurement schemes, transmission line modeling, and other parameters variation against
the quality of the state estimation solution.

In (CARO et al., 2010) the authors show that dependencies among measurements
exist and they vary with the operating conditions of the substation. CARO; CONEJO;
MINGUEZ (2009) proposes the use of measurement dependencies among substation mea-
surements in the state estimation, contrary to the vastly used assumption that measurement
errors are independent.

Finally, there is also an important field within SE in regards to observability (MON-
TICELLI; WU, 1985; LONDON; ALBERTO; BRETAS, 2007) and multi-area approach
(GÓMEZ-EXPÓSITO et al., 2011).
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In the multi-area approach, SE is solved locally within each measurement area, and
data is exchanged between areas. Two devices architectures are used on this approach:
hierarchical scheme, where a master processor distributes the work among slaves de-
vices performing local area SE, and decentralized architecture, where there is no central
computer; each local processor communicates only with those processors in charge of
neighboring areas (GÓMEZ-EXPÓSITO et al., 2011).

Identification of observable islands are matrix based analysis that bring information
on critical measurements and sets (MONTICELLI; WU, 1985; LONDON; ALBERTO;
BRETAS, 2007).

2.2.1 Measurement Gross Error Detection, Identification and Correction

Historically bad data detection and identification were done after the WLS estimation
by processing the measurement residuals based on the statistical properties of it, a process
called the largest normalized residual test (WU; LIU; LUN, 1988; CARO; CONEJO;
MINGUEZ, 2011). Detection refers to the determination of whether or not a set contains
any bad data and identification finds out which specific item contains bad data. The test is
composed of the following steps (ABUR; EXPOSITO, 2004):

1. Solve the WLS estimation and obtain the elements of the measurement residual
vector: r̂i = zi − hi(x̂), i = 1, ...,m

2. Compute the normalized residuals (NR): rNi = |ri|/
√

Ωii, i = 1, ...,m

3. Find k; such that rNk is the largest among all rNi , i = 1, ...,m

4. If rNk > threshold (for instance 3.0) , then the kth measurement will be suspected as
bad data. Else, stop, no bad data will be suspected.

5. Eliminate the kth measurement from the measurement set and go to step 1. Actual
removal of the bad measurement may be avoided by subtracting the estimated error
from the bad measurement.

Ωii is the diagonal element of the residual covariance matrix Ω. The sensitivity of the
measurement residuals to the measurement errors, or residual sensitivity matrix S need to
be defined in order to derive Ωii. From equation (3) it is possible to write equation (5) where
∆x̂k is equal to ∆x̂, H(xk) to H and ∆z(xk) equal to ∆z. The term (H t(xk)R−1H(xk))
is called gain matrix (G).

∆x̂ = (H tR−1H)−1H tR−1∆z

= (G)−1H tR−1∆z
(5)

From the linearization of the objective function at the solution point it is possible to
find the hat matrix K definition.

∆ẑ = H∆x̂ = K∆z

K = H(G)−1H tR−1 (6)

Considering that (I −K)H = 0
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r = ∆z −∆ẑ

= (I −K)∆z

= (I −K)(H∆z + e)

= (I −K)e

= Se

(7)

Using the linear relation r = Se, the mean, the covariance and the probability distribu-
tion of the measurement residuals can be obtained as follows:

1. E(r) = E(Se) = SE(e) and as the expected value E(e) of the error e is zero
E(r) = 0

2. Cov(r) = Ω = E[rrt] = SE[eet]St = SRSt = SR

The largest normalized residual approach is not robust in the presence of multiple
interacting/conforming gross errors (ABUR; EXPOSITO, 2004; LIU; NING; REITER,
2011). To cover this issue instead of the classical normalized measurement residual, the
corresponding normalized composed measurement error CMEN was proposed in the
gross error detection and identification test. This approach acknowledges the existence
of a masked effect of the measurement error not reflected in the state estimation residual
that is recovered using the innovation index (II) (BRETAS; PIERRETI, 2010; BRETAS;
BRETAS, 2018).

The innovation approach (BRETAS et al., 2017) has clear improvements compared
to solutions which minimize the residual, however real-world assumptions with regards
to the presence of pseudo and low/zero magnitude measurements e.g., a no-generation
and no-demand bus (with zero active and reactive power injections) are not considered or
investigated. For these types of measurements BRETAS et al. (2017) have an arbitrary low
standard deviation that result in high weights that can lead to ill-conditioning of the gain
matrix (MONTICELLI, 1999; ABUR; EXPOSITO, 2004).

A two step approach for the power system state estimation was proposed using the
II (BRETAS; BRETAS, 2015) where the first step is the gross error detection test when
all the measurements are assumed as possible of having errors. With that assumption, a
rule for the measurement’s weights as being the inverse of a constant percentage of the
measurement’s magnitudes was proposed. Then, using the error as the objective function
of the state estimation process to be minimized, the gross error analysis is performed.

In case a gross error is detected, the Composed Measurement Error (CME), in its
normalized form CMEN , is used to identify the measurement(s) with error(s). The
measurement(s) with error(s) is corrected using the Composed Normalized Error CNE.
In the second step, the state estimation is again performed, but using as the weight for
each measurement the inverse of the measurement’s standard deviation as proposed in the
classical estimators. (BRETAS; BRETAS, 2015).

Another proposed strategy is to make use of a correlation coefficient (CARO; CONEJO;
MINGUEZ, 2009) to remove from the correlated measurements the dispersed multiple
gross error (CARO et al., 2011).

These new techniques (CARO et al., 2011; BRETAS; BRETAS, 2015) avoid the
removal of the inconsistent data, as it was done in previous works (WU; LIU; LUN, 1988).



29

2.2.2 Parameter Error Detection, Identification and Correction

State estimation methods, as all EMS applications, make use of the network model
in the mathematical formulation of their problem. Inconsistencies detected during the
estimation process will be blamed on analogue measurement errors, while errors in the
network model may be due to topology and/or parameter errors (ZHU; ABUR, 2006).

The most common source of network parameter (branch impedance or tap changer
position) errors are inaccurate manufacturing data, miscalibration, tap changer being locally
modified without knowledge of the control center, etc (ZARCO; GOMEZ EXPOSITO,
2000; LIU; WU; LUN, 1992).

Another not so trivial, but possible, source is a cyber-attack against the parameter
database storage in SCADA systems. Potential cyber threats to SCADA systems, ranging
from computer system to power system aspects, are recognized as possible (TEN; LIU;
MANIMARAN, 2008).

Network parameter errors may produce (ZARCO; GOMEZ EXPOSITO, 2000):

1. a significant degradation of the results provided by the SE and, therefore, of the
conclusions arrived at by other applications, like security assessment;

2. acceptable measurements being detected as bad data owing to its lack of consistency
with network parameters;

3. a loss of confidence in the SE by the operator.

Traditionally, in the bibliography, two classifications of parameter error identification
methods are found: one based on residual sensitivity analysis (LIU; WU; LUN, 1992) and
one based on augmenting the state vector (ZARCO; GOMEZ EXPOSITO, 2000).

An alternative to these methods is the use of the Lagrange multipliers (LM). This
approach is used to identify parameter errors where there is no need to apriori specify a
suspect parameter set (ZHU; ABUR, 2006; ZHANG; ABUR, 2013; LIN; ABUR, 2016).
This is an advantage, especially with regards to process time, although the method relies
on the NR test and there are cases where this test is incapable of identifying multiple
interacting errors .

A method that does not rely on the normalized residual test was proposed (BRETAS;
CARVALHO; ALBERTINI, 2015) using the CMEN . The approach verifies if there
are measurements with CMEN larger than the threshold value (equals to three standard
deviations of the corresponding measurement), if those measurements are associated with
the same branch i− j of a transmission line and have similar values for their CMEN . If
so, a parameter is suspected of having an error, otherwise, it is a case of simple or even
multiple gross errors.

The parameter cyber-attack identification proposed by (BRETAS et al., 2017) relies on
power flow measurement in both directions and assumes that a parameter cyber-attack in
the line i − j will spread out the error in all of the equations in which this parameter is
present, so the respective active or reactive power flow i− j and j − i will present errors
with high magnitude values as well as the injections on the sending and receiving end buses.
Attacks would not be identified though if the stealthy deception attacker compromises
individual parameters or parameters in lines without flow measurements in both directions,
a common condition in systems with a low global measurement redundancy level (GRL).

Two approaches of parameter correction are found in the bibliography. In the first,
corrections to be made in the line parameter are given by the corresponding composed nor-
malized error CNEi multiplied by the correction factor based on the II. The methodology
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was tested with good results, however no individual values are able to be corrected or other
network parameters, such as taps values.

The second proposed solution to correct parameters uses the augmented state vector
(ASV) strategy (DEBS, 1974; MONTICELLI, 1999; ZHU; ABUR, 2006).

It is based on the augmented state vector that is formed by the usual state variables
and the parameters to be estimated. Although this solution enables the correction of any
network parameter, the inherent assumption is a necessary measurement redundancy level
due to the increment of the state vector size, thus the detection test decreases its efficiency,
since the measurement model degrees of freedom also decreases.

2.2.2.1 Topology Error Detection and Identification

Network topology (e.g. breaker positions), within parameters category, is another
resource used by the state estimator that can contain gross errors. Early approaches of
using state estimation results for topology error detection were based in the residual test
analysis (LUGTU et al., 1980; CLEMENTS; KRUMPHOLZ; DAVIS, 1981; WU; LIU,
1989).

As an extension of the normalized residuals method, CLEMENTS; COSTA (1998)
proposed the use of Lagrange multipliers, computed as by-products in the sparse tableau
formulation (GJELSVIK; AAM; HOLTEN, 1985) for least-squares state estimation. Built
in this approach LOURENCO; COSTA; CLEMENTS (2004) devised a more efficient
topology error identification method using hypothesis test based on Bayesian statistics.

2.3 State Estimation and bad data process in non balanced power
systems

A natural extension of the methodology described in section 2.2 is to consider non
balanced distribution power systems. Moving the state estimator to distribution forces the
use of pseudo-measurements to achieve the necessary measurement redundancy (BRETAS
et al., 2017; LEFEBVRE; PREVOST; LENOIR, 2014; FANTIN, 2016).

State estimation programs are formulated as overdetermined systems of non-linear
equations and solved as weighted least-squares (WLS) problems, therefore, for their good
operation a higher number of measurements (i.e. 3 times) than the states to estimate is
needed. As telemetry exists in abundance on transmission systems, state estimators have
worked well for balanced power systems for many years.

In networks where telemetry does not exist in abundance the use of pseudo-measurements
is necessary. Pseudo-measurements are those that are based on load prediction and genera-
tion schedulings or that are related to values that are equal to zero (e.g. power injection
measurement in a bus that does not have generation or load).

The quality of pseudo measurements on non balanced distribution power systems is
recognized as variable, but their use is necessary to make the distribution system observable
(LEFEBVRE; PREVOST; LENOIR, 2014).The problem of pseudo-measurements is that
they are based on a load profile considered relatively constant over a period. Load profiles
are not expected to be constant on power systems with high variable generation (VG)
penetration and under a transactive energy scenario (DENHOLM et al., 2015; CHEN; LIU,
2017).

Figure 5 presents the net load chart published in 2013 by California Independent
System Operator (CAISO). In the chart, each line represents the net load, equal to the
normal load minus wind and PV generation. The net load variation and its slope in this
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Figure 5: The CAISO duck chart (DENHOLM et al., 2015)

chart illustrate the general challenges of accommodating solar energy and the potential for
over-generation and solar curtailment (DENHOLM et al., 2015). This variation is also a
general challenge for state estimators that use predictive data as pseudo-measurements.

Transactive energy involves an automated communication and control system connect-
ing energy providers and users, exchanging information about price and availability of
power. The Pacific Northwest Smart Grid Demonstration project carried out a simulation
on transactive energy which concluded that if nearly one third of the region’s loads were
responsive to the transactive system, the peak load could be cut by about eight percent
(CHEN; LIU, 2017).

The use of different weights to differentiate between the quality of real-time and pseudo-
measurements is a proposed approach (DZAFIC et al., 2017) to solve the aforementioned
problem of variance of pseudo-measurements. Unfortunately this solution can lead to state
estimation numerical instabilities.

2.4 Simultaneous bad data process

The Lagrange multiplier approach proposed by CLEMENTS; COSTA (1998); ZHU;
ABUR (2006); GOMEZ-EXPOSITO et al. (2011) relies on the assumption that measure-
ments are without error (BRETAS; BRETAS, 2017; LIN; ABUR, 2017). Only in the
absence of gross measurement errors the Lagrange multipliers are zero mean random
variables whose variances can be efficiently computed directly from the sparse tableau
coefficient matrix factors (CLEMENTS; COSTA, 1998).

In LOURENCO; COELHO; PAL (2015) the authors acknowledge that detection and
identification of bad data in state estimation when they comprise of both topology and
measurement errors is a real challenge.

To overcame this challenge the authors use geometric tests based on the geometric in-
terpretation of the Lagrange multiplier vector to detect and identify simultaneous topology
and measurement bad data.
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The proposed method is capable of processing modeling error without making previous
assumption about the network topology or the analog measurements. In the proposed
formulation circuit breakers are modeled as zero impedance branches and structural and
operational constraints are used LOURENCO; COELHO; PAL (2015).

The methodologies proposed in (ZHU; ABUR, 2006; GOMEZ-EXPOSITO et al.,
2011) observe network parameter other than topology but are limited in parameter cyber-
attack detection and correction, while they consider that in such analysis, measurements or
parameters are free of errors

As simultaneous cyber-attacks against parameters, measurements and topology at the
SCADA database storage are recognized as possible, the identification and correction
of multiple simultaneous measurement and parameter cyber-attacks is a contribution of
(BRETAS et al., 2017). This is done using an heuristic based on the analysis of the CMEN

and II and correction is done based on the use of the CNE as depicted in Figure 6.

Figure 6: Cyber-attack analysis (BRETAS et al., 2017)

The heuristic proposed by (BRETAS et al., 2017) relies on power flow measurement in
both directions and bus injections, therefore it will fail in the absence of some measurement.
Moreover the correction based on composed normalized error CNEi is done exclusively
on branch resistance r and branch reactance x, as if the attack would always happen on
both parameters.

Parameter cyber-attack identification is an intricate task especially in meshed systems
due to parallel flows. In case of parameter cyber-attacks, the value alteration would
significantly impact power flows which would make the LM approach ineffective. This
situation is exemplified on a simple three bus system as depicted by Figures 7 and 8.
Figure 8 has the same network configuration as Figure 7, apart from a 10% increase (or
cyber-attack) on 1− 2 branch parameters, which lead to a change of 12% on branch 2− 3
power flow, 4% on branch 1− 2 and 5% on branch 1− 3.

2.5 Summary

Table 1 provides an overview of the bibliography researched.
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Figure 7: Meshed three bus system

Figure 8: Meshed three bus system - 1− 2 modified branch parameters
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3 CURRENT MODEL AND METHODOLOGY

State estimation has been discussed for more than 20 years, specially in regards to
general problem formulation. Based in the bibliography review, the author believes that the
most suitable state estimation formulation is the composed measurement error approach
as it minimizes the error and not the residual. The current model and methodology is
implemented and tested in Matlab Software R2015a (MATLAB, 2015).

3.1 Normal equations SE and the Innovation approach

A state estimator is based on the nonlinear measurement model as described in equation
(1) (SCHWEPPE; WILDES, 1970). What is being used from this formulation and to what
extent is described in this chapter With the conventional WLS approach, the goal is to find
the N-vector that minimizes J(x) resulting on the formulation described on equation (2).

In BRETAS; CARVALHO; ALBERTINI (2015) the authors considered that all meters
have standard deviations calculated by σi = pr|zlfi |/3 where pr is the meter’s precision
(considered 3%) and zlfi is the value of the i − th measurement obtained from an exact
load flow solution.

This approach is used since the measurements are not equal in magnitude, so their
standard deviations should be proportional to their respective magnitudes.

In case of pseudomeasurements, or even measurements of low magnitudes, e.g., a no-
generation and no demand bus (with zero active and reactive power injections), BRETAS;
CARVALHO; ALBERTINI (2015) identify the null and near zero measurements, and then
associates a low, but non-zero, standard deviation for those measurements. This latest
procedure can lead to numerical problems therefore a new approach for this specific task is
proposed in 4.1.

Based on equation (6) it is possible to interpret the SE solution as a projection of the
measurements vector mismatch ∆z onto the subspace spanned by the columns of the
Jacobian matrix <(H). The residual vector, that is orthogonal to <(H), is defined by:

r = ∆z −∆ẑ = ∆z −K∆z = (I −K)∆z (8)

.
The geometrical interpretation of operator K acting on vector ∆z is depicted in Figure

9.
In BRETAS; BRETAS; PIERETI (2011); BRETAS et al. (2013); BRETAS; BRETAS

(2018) demonstrated the existence of an undetectable component of the error eu ∈ <(H),
which together with the detectable one ed ∈ <(H)⊥ form the measurement composing
error e = ed + eu and ||e||2 = ||ed||2 + ||eu||2. They proved that the undetectable part of
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Figure 9: ∆z(x) projected on <(H) and <(Hp) (BRETAS; CARVALHO; ALBERTINI,
2015)

the error does not contribute to the residual vector, and thus, that small residual does not
necessarily mean small error and vice-versa. The detectable component of the measurement
error is the residual r.

A natural consequence of the previous is that the minimization, in x, of J(x) in equation
(2), will be reasonable, for state estimation purposes, only for the cases where the vector
eu, is equal or close to zero. In the engineering world however, the measurements and
parameters may have large errors or even be modified by intruders and, as a consequence,
before performing the SE those measurements and parameters need to be evaluated.

In order to address this issue BRETAS; BRETAS (2015) proposed a new objective
function (9) which minimizes the measurement composing errors instead of the residual.

min
x

∑
(zi − hi(x))2

(
1 +

1

II2
i

)
Wii (9)

IIi is presented in (9) as the measurement innovation index, and is used to estimate
the measurement errors based on the geometrical interpretation of state estimation, and
Wii = R−1

ii = 1/σi
2 is the weight value. A measurement innovation index is defined as

the new information related to other measurements; that suggests that it is the part of a
measurement which is independent of those measurements and it is calculated by equation
(10).

IIi =

√
1−Kii√
Kii

(10)

Equation (10) supports the computation of the composed measurement error (CME)
as described in (11). CMEi represents the values which results from the addition of the
detectable and non-detectable error vector components (BRETAS et al., 2013), where r is
the residual vector equal to z − h(x̂). From (11) it is also possible to derive D which is
defined as (12).

CMEi
2 =

(
1 +

1

IIi
2

)
ri

2 (11)

Di =
(

1 +
1

IIi
2

)1/2

(12)

CMEi
N is defined in equation (13).

CMEi
N = Di

ri
σi

(13)
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Using (12) and (13) it is possible to rewrite equation (9) as follows:

minimize
x

J(x) = CMENt
CMEN (14)

. This equation is solved applying the first order optimal condition, the Newton Raphson
method is used, resulting in an iterative procedure that calculates x until the difference of
xk+1 − xk is less than the tolerance of 1e− 6.

Instead of the measurement elimination (ZHU; ABUR, 2006), a countermeasure is
proposed, with the measurement error correction using the composed normalized error
CNEi, as equation (15) and (16), where riN is the normalized residual, zic the corrected
measurement and zie the measurement in error.

CNEi = Diri
N (15)

zic = zie − CNEiσi (16)

3.2 Cyber-attack model

Data intrusion is the most common group of direct cyber attacks threatening the
security of power systems. Cyber-attacks can be modeled as malicious data inserted
to measurements and/or parameters and topology. Malicious data attacks will cause a
non-Gaussian behavior of the error, equivalent to bad data, that can occur individually or
combined mainly due to the following reasons:

1) A cyber-attack in measurement(s);

2) A cyber-attack in a transmission line (TL) parameter (series, shunt or tap);

3) A cyber-attack in system topology (inclusion or exclusion of TLs).

Only one type of topological cyber-attack model is used, that is setting the operation
status to offline and have the power flow measurements values defined as zero.
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4 PROPOSED MODEL AND METHODOLOGY

The rationale behind the improved methodology is the intelligent use of relaxations
together with error analyses in a state estimator to attain high performance cyber-attack
detection, identification and correction considering a reduced measurement’s redundancy
scenario and an evolving cyber-attack learning behavior.

There are two main relaxations in the problem to solve. First the use of a parameter
error constraint together with an error minimization objective function. This combination
provides important and accurate information with regards to a parameter cyber-attack
through the analyses of the Lagrange multiplier, that is a relaxation of the parameter error
condition. The second is needed in order to calculate the correct parameter in case of
a cyber-attack. The augmented vector approach is inefficient under a low redundancy
measurement level.

The proposed model and methodology is implemented and tested in Matlab Software
R2015a (MATLAB, 2015).

In section 4.1 the deduction of a standard deviation for pseudo and low/zero magnitudes
measurements is presented based on correlated variables and covariance properties. This
approach solves numerical problems without having to use power injection constrains in
the optimization model. The use of power injection constrains imposes the calculation of
partial derivatives on each Newton Raphson loop. This is not necessary with the proposed
approach.

Cyber-attack identification, detection and correction contemplating the evolving cyber-
attack learning behavior is possible due to two aspects of the proposed methodology. One
related to the use of mathematical tools that brings more accuracy in regards to multiple
cyber-attacks as presented in section 4.2 and the other related to the process continuous
flow as presented in section 4.4. A cyber-attack learning behavior would target vulnerable
areas with reduced GRL, for example, that the current state-of-the-art methodologies are
not covering.

In section 4.2 a Lagrange relaxation and composed normalized error (CNE) based
model for cyber-attacks as a malicious data attack detection and identification method is
detailed. Lagrange relaxation together with composed normalized error has never been
used to detect and identify cyber-attacks. Due to the continuous process flow the LM
assumption that no measurement gross errors exist is not necessary.

Section 4.3 presents the hybrid iterative relaxed strategy for parameter cyber-attack
correction. This process calculates parameters with states being considered correct; then
calculates states with parameters being considered correct; in a continuous manner using
convergence tolerance as a way to explore the range of possible answers. The continuous
flow is a way to achive a HRC within the state estimator as depicted in Figure 4.2.



39

4.1 Standard deviation for pseudo and low/zero magnitude measure-
ments

For a set of pseudomeasurements, or even measurements of low magnitudes, e.g., a
no-generation and no demand bus (with zero active and reactive power injections) it is
proposed a weight value calculation based on correlated variables and covariance properties
based in the formulation below.

For two variables, the covariance is related to the variance by equation (17) (KYLE,
2017).

var(x+ y) = var(x) + var(y) + 2.cov(x, y) (17)

Then using cor(x, y) = cov(x, y)/(std(x).std(y)) it possible to rewrite (18) as

var(x+ y) = var(x) + var(y) + 2.cor(x, y).std(x).std(y). (18)

By using the definition std(x) = sqrt(var(x)) or the equivalent var(x) = std(x)2

and (18), (19) is defined.

std(x+ y) =
√
std(x)2 + std(y)2 + 2.cor(x, y).std(x).std(y) (19)

Considering power injection at bus i, Pi, as the sum of all power flow measurements
arriving to bus i, PiΩ, with Ω being all adjacent buses to i. All PiΩ can be considered as
close to independent variables so the correlation between them can be considered as null
(COTILLA-SANCHEZ et al., 2012). If so, and considering equation (19), it is possible to
infer that the standard deviation of power injection at bus i is equal to the square root of
the power flow measurement’s standard deviation arriving to bus i sum as described by
equation (20) with Ω being all adjacent buses.

std(Pi) =

√√√√ Ω∑
j=1

std(Pij)2 (20)

4.2 Lagrange relaxation and composed measurement error based model

The calculation of a Lagrange multiplier related to each network parameter is feasible
if an equality constraint for parameters is considered. Initially, one can consider that all
parameters have no errors, that is the parameter errors are all zeros, and this assumption will
be confirmed or not based on the LM analysis. Let us further assume that the measurements
are without errors. Under such conditions, the parameters are equal to the true value, pr.
Let us call p′ = p− pr

The WLS-SE problem with parameter constraints is then formulated as (21) where
W = R−1 = Cov(e)−1 = diag(σ1

2, σ2
2, ..., σm

2)−1 and h(x, p) is the nonlinear function
relating the measurements to the system states and network parameters.

minimize
x,p′

J(x) =
1

2
CMEt W CME

subject to p = pr

(21)

ZHU; ABUR (2006) has proven that the problem in (2) is entirely equivalent to the
problem in (21), considering the residual instead of the composed measurement error. The
question is how to generalize the paper proof (ZHU; ABUR, 2006) to any condition. For
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that purpose, considering the Implicit Function Theorem, if a property is valid for this
initial condition, and there is no bifurcation going from it to another one, then that property
is valid for any other condition. Thus, at the solution of (21), this property should also be
valid if no bifurcation exists. Using Lagrange relaxation it is possible to write equation
(21) as (22) where λCELM are the LMs for the equality constraint in (22). Another more
detailed form of (22) is described in (24) using (23). It is important to highlight that this
formulation is different than the proposed in previously researches, as the error, not the
residual, is used to derive LM, therefore the LM is renamed LMI (Lagrange Multiplier
Innovation based)

minimize
x,p′

L =
1

2
CMEt W CME − λCELMp

′ (22)

CME = D(z − h(x, p′)) (23)

minimize
x,p′

L =
1

2
(D(z − h(x, p′)))

t
W D(z − h(x, p′))− λCELMp

′ (24)

The first order optimal condition is applied resulting in the following equations:

∂L

∂x
= −(D Hx)t W CME = 0 (25)

∂L

∂p′
= −(DH ′p)

t W CME − λCELM = 0 (26)

∂L

∂λCELM

= −p′ = 0 (27)

WhereHx is the Jacobian matrix of ∂h(x, p′)/∂x andHp the Jacobian matrix of ∂h(x, p′)/∂p′.
The corresponding Jacobian matrix elements are described in appendix A.

Using equation (26), λCELM is expressed in terms of CME as described by (28) where
S is the parameter sensitivity matrix defined by (29).

λCELM = S CME (28)

S = −(DH ′p)
t W (29)

If the measurement errors are zero mean random variables with covariance matrix
Cov(e) = R then λCELM is a zero mean random vector with covariance matrix V . As a
consequence, under these conditions, λNCELMi is a zero mean random variable with unity
variance and it is possible to compare it with a statistically reasonable threshold and to
evaluate its significance and parameters errors.

λNCELMi =
λCELMi√

Vii
(30)

It is possible to define V as V = cov(λCELM) = S(cov(CME))St, the covariance of
CME is equal to Cov(e) = R, so V = cov(λCELM) = S R St. Parameter cyber-attack
detection and identification is made when λNCELMi value is above the defined threshold of
three, considering a confidence level of 97%.
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4.3 Hybrid iterative relaxed approach

How to correct a measurement error if the parameter may be simultaneously in error,
and the other way around? State-of-the-art solutions make strong assumptions as the
corrections of the parameters are made when measurements have no error, or the opposite.
In real-world engineering applications such assumptions are far from reality, since attacks
are evolving and may occur on both simultaneously.

To solve this problem a hybrid iterative relaxed strategy is presented. Consider a
simultaneous measurement and parameter cyber-attack. Ponder still that the parameter
attack is identified first, considering the error pattern approach proposed previously.

After a parameter cyber-attack detection and identification it is necessary to correct it.
Assuming the attacked parameter name pc, p(n) the new parameter to be estimate, n being
the iteration number.

As an example p(1) equals to the current value storage in pc when the hybrid iterative
relaxed approach code is run for the first time. Using the system states already calculated
through the solution of (14), the equation (32) is solved in a continuous manner with a new
parameter p(n) being calculated by the addition of ∆p to p(n− 1) until ∆p is smaller than
the parameter correction process tolerance (PCPT).

The first PCPT assumed value is quite big (e.g. 103) and after the first convergence the
state estimation runs estimating new states, which means an iteration of L5 loop.

In the process, the PCPT value is reduced by one fifth in every iteration of L5 loop. (32)
is continuously solved followed by a conventional state estimation until the PCPT reaches
a pre defined small value. This process is carried out iteratively as describes algorithm (1).

As the approach is iterative and relaxed even with a simultaneous measurement cyber-
attack the algorithm converges and continue to L4 loop, which means, a better estimated
parameter value is found, enabling the detection and identification of further cyber-attacks
or the correct state estimation.

After convergence the parameters are considered as without errors, following to loop
L4, new states are estimated, x(k + 1). If it is the case, measurements cyber-attacks will
be corrected with the estimated CNE (BRETAS et al., 2017), obtaining z(n + 1) and
following to loop L2.

This problem relaxes the model by considering the parameters without error, and does
not generate any observability problems or decrease the degrees of freedom of the original
measurement model. These new states and corrected measurements are used again to
estimate the new set of parameters, p(n + 2), through the solution of (31). An iterative
process is built based on such decomposition.

As such, it is considered initially that all measurements are free from errors. Then one
can estimate the system states, x(n), considering parameters p(n), through the iterative
solution of z(n) = h(x(n)).As the measurements and parameters might be simultaneously
in error, thus the iterative process is proposed. One considers that z(n) is equal to

z(n) = h(x(n), p(n)) +
∂h(x(n), p(n))

∂p
∆p (31)

In such a model the degrees of freedom are not decreased reducing observability problems,
since in the relaxed model it is considered that the measurements are correct.

To solve equation (32), where Hpc is the Jacobian matrix of ∂h(x, pc)/∂pc, Wpc, the
inverse of the covariance matrix of the parameter estimate needs to be calculated using
equation (33) as proposed by (MONTICELLI, 1999).
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∆p = (H ′pcWpcHpc +Wpc)
−1

(H ′pcWpc∆z +Wpc(p(n)− p(n− 1))) (32)

Wpc = H ′pcWHpc +Wpc −H ′pcWHx(H ′xWHx)−1H ′xWHpc (33)

Algorithm 1 HIRA algorithm
1: while iter < 500 and PCPT > 1e− 6 do
2: looppar:
3: Calculate ∆p using 32
4: p(n− 1)← p(n)
5: p(n) = p(n) + ∆p
6: toldp = abs(∆p)
7: Calculate Wpc using 33
8: if toldp < tolvaluedp then
9: goto loopstates

10: if tolvaluedp > 1e− 6 then

11: tolvaluedp =
tolvaluedp

5
12: PCPT = tolvaluedp
13: goto looppar
14: loopstates:
15: States calculated through the solution of (14) while tol = xk+1 − xk > 1e− 6
16: iter = iter + 1
17: goto looppar

4.4 Holistic resilience cycle based methodology

Figure 10 illustrates the cyber-attacks by author’s view. Proposed improved method-
ology process are represented in gray and are dealing with cyber-attacks as illustrated in
Figures 11 and 12 in a continuous flow going through the HRC stages.

Measurements

CB/relay 
operation

Observability 
Analysis

Network 
Configuration

Attacker

+ State
Estimator

Cyber-attack
Detection

Cyber-attack 
Identification

Cyber-attack 
Correction

Network 
Parameters

Contingency
Analysis

Optimal
Power Flow

Operator

Control Center

Power 
Grid

HYRA

Alarm!

Alarm!

CMEN,
CNE, λCELM

N 

Figure 10: Cyber-attack by author’s view

Figure 11 illustrates the methodology cyber-attack detection process and Figure 12
presents processes with regards to measurement, parameter and topological cyber-attacks
identification and correction.
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In Figure 11 a cyber attack detection is made by analysis of the CMEN and λCELM

after a state estimation error minimizing process. Identification of cyber attack in parame-
ters is made first considering λCELM

N > 3. Parameter Cyber-attack correction is made
considering the hybrid iterative relaxed strategy. A measurement cyber-attack is identified
and corrected if: i) CMEN

i value is > 3 and ii) all λCELM
N are < 3 or a topology cyber-

attack is identified as true and corrected if: i) CMEN
i value is > 3 in adjacent nodes and

ii) all λCELM
N are < 3. In the presented solution, states are estimated after measurement,

parameter or topology cyber-attack correction.

1 /45
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Recovery

Start
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Figure 11: Proposed methodology flowchart - Part 1

Most important processes are described in the following.

1) Variables calculation: Lagrange multiplier vector λCELM
N as equations (30) and

CMEi
N as equation (13), and other ancillary values are calculated;

2) Cyber-attack identification and detection: Cyber-attacks on measurements will cause
a Hypothesis Testing Error Detection characterized with a high local CMEN . The
attacked measurement will present a CMEN above a chosen threshold value (usually
equal to three standard deviations of the corresponding measurement (BRETAS et al.,
2013)). Lagrange multiplier vector λCELM

N is sorted and the largest with value above
threshold (3.0) is used to detect and identify a cyber-attack modeled as parameter’s
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Figure 12: Proposed methodology flowchart - Part 2

errors (threshold selection is a consequence of the χ2 Hypothesis Testing application to
the normalized Lagrange multiplier. The chosen reliability index is 97%);

3) Cyber-attack correction: Following the process of detection and identification the
countermeasure approach proposed of correcting the attacked measurement/topology
or parameter using CNE and the Hybrid iterative relaxed approach 4.3 is carried out.

In the presented flowchart, on all software loops L1, L2, L3, L4 and L5 the states are
recalculated. Moreover based on a number of software iterations during the HIRA process
a two step procedure is applied:

1) Test if this could be a false parameter attack identification (FPCA) - go to position 5
of the flowchart, which means testing only measurements cyber-attacks by verifying
CMEi

N and correcting it.

2) Cyber-attack detected but incorrect identified, alarm set.

4.5 Overview

The proposed methodology contributions as described in chapter 4 can be divided into
two streams, one related to mathematical models and other to process flow.

In both streams the core idea is to use efficient strategies to deal with evolving cyber-
attack learning behavior. Targeting vulnerable areas with reduced GRL or simultaneous
attacks are possible learning behavior.

A cyber-attack on remote terminal units, communication channels and SCADA Master
database or A1, A2 and A3 as represented on Figure 3 is a possible situation and the
presented methodology has to deal with such attacks. Chapter 5 presents case studies and
results to prove this ability.
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5 CASE STUDY AND RESULTS

The presented methodology was tested using the IEEE 14-bus and 57-bus systems
where cyber-attacks composed of malicious injected data to measurements and/or parame-
ters/topology were investigated.

Two different measurement sets or GRLs were analyzed. One considering voltage
measurements on the slack bus, active and reactive power injections and flows on all buses,
with a GRL of 3 for both 14-bus and 57-bus. Another, considering a smaller and more
realistic GRL of 2.8, where power flow meters are not found in all system lines branches
(RAPOSO; RODRIGUES; SILVA, 2017).

As described in 3.2 there are different types of cyber-attacks.

5.1 IEEE 14-bus Test System

The IEEE 14 Bus Test Case represents a portion of the American Electric Power
System (in the Midwestern US) as of February, 1962. It has balanced loads and transposed
lines and is often used in papers related to state estimation (ZHU; ABUR, 2006; BRETAS;
CARVALHO; ALBERTINI, 2015; BRETAS; BRETAS, 2015; BRETAS et al., 2017; LIU;
NING; REITER, 2011; DÁN; SANDBERG, 2010; KOSUT et al., 2010; BOBBA et al.,
2010). Figure 13 illustrates the IEEE 14-bus Test System. All measurements used were
generated through power flow with a fixed random noise added. Measurement values
without error are found in appendix B.

5.1.1 Multiple measurement cyber-attack scenario

Cyber-attacks on measurements are those that can occur on position A1, A2 or A3 as
depicted in Figure 3. They are detected by hypothesis testing error, which is indicated with
a high local CMEN . The affected measurement will present a CMEN above a chosen
threshold value (based on a desired level of detection sensitivity). In the state estimation
literature, usually it is equal to three standard deviations of the corresponding measurement,
i.e.β = 3 (BRETAS et al., 2017). Considering GRL above 3, if the conditions stated below
are all true, the measurement cyber-attack is recognized as true and corrected using the
CNE as described in the methodology.

i) CMEN
i value is > 3.

ii) all λCELM
N are < 3.

Supposing the measurement cyber-attack as described:

1) Cyber-attack of magnitude 9σ added to measurement Q : 08−07 = 0.1762pu (reactive
power flow from bus 8 to bus 7)
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Figure 13: IEEE 14-bus Test System

2) Cyber-attack of magnitude 5σ added to measurement P : 01− 02 = 1.5683pu (active
power flow from bus 1 to bus 2)

3) Cyber-attack of magnitude 4σ added to measurement P : 03 = −0.9420pu (active
power injection at bus 3).

The following results are found in Tables 2, 3 and 4. Each Table presents the values
found until L2 loop as described in Figure 12.

Table 2: 14-bus - multiple measurement cyber-attack - 1st loop - CMEN

CMEN descending list

Measurement CMEN CNE
Q : 07− 08 6.715 8.914

Q : 8 5.607 8.075
P : 01− 02 4.056 4.128

P : 3 3.931 4.029
P : 7 2.312 2.383

Corrected Measurement:
Q : 07− 08 0.1726

Table 5 indicates the most significant variances of state values just before and after the
states are recalculated after all measurements are corrected. Decrease in the difference
between estimated states and the real ones (generated by the original system load flow) is
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Table 3: 14-bus - multiple measurement cyber-attack -2nd loop - CMEN

CMEN descending list

Measurement CMEN CNE
P : 01− 02 4.060 4.132

P : 2 3.931 4.029
P : 03− 04 1.164 1.335

P : 2 0.870 3.559
Q : 03− 04 0.868 0.959

Corrected Measurement:
P : 01− 02 1.5714

Table 4: 14-bus - multiple measurement cyber-attack -3rd loop - CMEN

CMEN descending list

Measurement CMEN CNE
P : 03 4.020 4.120

P : 03− 04 1.085 1.244
Q : 03− 04 0.787 0.870
P : 04− 05 0.683 0.713
P : 12− 06 0.561 0.608

Corrected Measurement:
P : 03 -0.9432

considered as an answer improvement. It is possible to notice a comparative improvement
of at least 20% in all of the states. After these three L2 loops the largest CMEN value was

Table 5: States (phase in degrees and voltage in kV) variation and answer improvement for
measurement cyber-attack

StateBus IEEE values Before Cor-
rection

% After Cor-
rection

% Improvement
%

Angle13 -15.169 -15.136 0.22 -15.142 0.17 20
Angle8 -13.368 -13.347 0.16 -13.351 0.13 20
Angle14 -16.036 -16.011 0.16 -16.018 0.11 29

V oltage13 105.000 105.162 0.15 105.113 0.11 30
Angle12 -15.077 -15.054 0.15 -15.061 0.11 28

equal to 0.6284, below the threshold value of 3. The Lagrange multipliers were checked in
all loops and no value above threshold was found.

5.1.2 Multiple measurement and parameter cyber-attack scenario

Cyber-attacks on parameters are those that can occur on position A3 as depicted in
Figure 3. They are detect through the hypothesis testing error, which is indicated with
a high λNCELM . The affected parameter will present the corresponding λNCELM above
a chosen threshold value equal to three standard deviations. Individual (reactance or
resistance) parameter cyber-attacks are not possible to be observed by local CMEN

i as the
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following results prove. Malicious data to measurements and parameters were added in
order to test this cyber-attack scenario. The first multiple simultaneous measurement and
parameter set of attack using the IEEE 14-bus is described as follows:

1) Cyber-attack of magnitude 9σ added to measurement Q : 08−07 = 0.1762pu (reactive
power flow from bus 8 to bus 7)

2) Cyber-attack of magnitude 5σ added to measurement P : 01− 02 = 1.5683pu (active
power flow from bus 1 to bus 2)

3) Cyber-attack of 6% added to the 02-03 line parameter r02−03 = 0.04699pu resistance
only.

Note in Table 6 that although CMEN has values above threshold, according to the
heuristic proposed by (BRETAS et al., 2017) it is not possible to detect or identify a
parameter cyber-attack, but the λCELM

N value above three as indicated in Table 7 provides
the correct parameter cyber-attack indication.

The Hybrid Iterative relaxed approach is run adjusting the r02−03 parameter value and
states in a continuous manner until the pre-defined tolerance is reached after 350 iterations.
Table 9 indicates the states variation and answer improvement before and after the HIRA
process.

The corrected value as indicated in Table 7 is 2.33% different than the true value. As
a manner to understand why the correction was not precise, the same cyber-attack was
tested without measurement cyber-attack, and the corrected value was only 0.22% different
after 87 iterations. On the second loop the LM was still above threshold as indicated in
Table 8 and the HIRA process was run again. After two loops with similar LMs values the
parameter reached its correct value as the LM value indicated, present in Table 10.

Table 6: 14-bus - multiple measurements and parameters cyber-attacks -1st loop - CMEN

CMEN descending list

Measurement CMEN

Q:03-02 20.575
Q:02-05 15.256
Q:04-03 14.515
Q:03-04 13.830
Q:02-03 10.272

After the parameter correction, states were recalculated and the methodology con-
tinuous process verified again CMEN and λCELM

N . As expected with the corrected
parameter no λCELM

N was above three. As cyber-attacks happened simultaneously on
parameters and measurements, there were CMEN values above threshold as presented
in Table 11. The largest CMEN value was used for cyber-attack identification. The
measurement value was corrected using CNE. The continuous process was run until no
more CMEN or λCELM

N was above threshold.
In order to further test the algorithm another multiple measurement and parameter

cyber-attack simulation was tested as follows:

1) Cyber-attack of magnitude 6σ added to measurement P : 04− 09 = 0.1609pu (active
flow from bus 4 to bus 9)



49

Table 7: 14-bus - multiple measurements and parameters cyber-attacks -1st loop - λCELM
N

λCELM
N descending list

Parameter λCELM
N

r02−03 23.258
x02−03 20.586
x03−04 20.176
r03−04 16.600

Corrected Parameter:
r02−03 0.0481

Table 8: 14-bus - multiple measurement and parameter cyber-attack - 2nd HIRA loop -
λCELM

N

λCELM
N descending list

Parameter λCELM
N

r02−03 8.895
x02−03 8.156
x03−04 8.009
r03−04 6.154

Table 9: States (phase in degrees and voltage in kV) variation and answer improvement for
measurement and parameter cyber-attack - 1st loop

StateBus IEEE values Before Cor-
rection

% After Cor-
rection

% Improvement
%

Angle8 -13.368 -11.441 14.42 -11.521 13.82 4
Angle4 -10.324 -10.153 1.66 -10.254 0.68 59
Angle13 -15.169 -14.928 1.59 -15.054 0.76 52
Angle5 -8.783 -8.644 1.58 -8.725 0.66 58
Angle6 -14.223 -14.006 1.53 -14.124 0.69 55

Table 10: 14-bus - multiple measurement and parameter cyber-attack - 4th HIRA loop -
λCELM

N

λCELM
N descending list

Parameter λCELM
N

r02−03 1.875
r03−04 1.619
x02−04 1.590
x01−02 1.504

Corrected Parameter:
r02−03 0.0468
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Table 11: 14-bus - multiple measurement and parameter cyber-attack -5th loop - CMEN

CMEN descending list

Measurement CMEN CNE
Q:08-07 6.643 8.820492

Q:08 5.538 7.97039
P:01-02 4.956 5.042223
Q:03-04 2.299 2.370401
Q:02-03 1.633 2.836861

2) Cyber-attack of 6% added to the 06-12 line parameter x06−12 = 0.25581pu (06-12 line
reactance) only.

A similar cyber-attack scenario is suggested by (BRETAS et al., 2017) with one
difference, cyber-attacks in parameters data happen simultaneously on all line’s parameters:
branch resistance r and branch reactance x.

In this case though, the Lagrange multiplier λCELM
N for the parameter constraint is

calculated with values and respective parameters indicated in Table 12. The Table also
compares λCELM

N and the λN as described by (ZHU; ABUR, 2006). Using λCELM
N

above threshold value of 3, parameter error was correctly detected and identified. Using
the HIRA parameter and states were corrected. As one can see, in such a scenario the
methodology proposed by ZHU; ABUR (2006) would not be able to detect such a parameter
attack. Table 12 presents the λCELM

N largest values and the corrected parameter value.

Table 12: 14-bus - multiple measurements and parameters cyber-attacks case two -1st loop
- λCELM

N

λCELM
N descending list

Parameter λCELM
N λN

x06−12 3.082 2.885
r06−12 2.981 2.760
r06−13 2.347 2.118
x13−14 2.036 1.687

Corrected Parameter:
x06−12: 0.25846

Through the analysis of Table 13, which presents the second loop process, it is possible
to observe that the measurement attack was detected as the threshold defined value of
the highest CMEN was above three and in an isolated measurement. The cyber-attack
was corrected using the CNE and equations (24) and (14) were calculated again. The
continuous process iterated until no more CMEN value were above three.

Having information of power flow in both directions is an acceptable assumption in
meshed transmission systems, however in a scenario where these measurements are not
present, methodologies based on this assumption may fail to detect and identify parameter
cyber-attacks. Cyber-attacks are an evolving phenomena. This premise is analyzed in
this cyber-attack scenario, where attacks may happen in parts of the power system where
there is not such a high measurement density, exploring the Lagrange multiplier as a
complementary tool to the innovation approach.
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Table 13: 14-bus - multiple measurement and parameter cyber-attack case two -1st loop -
CMEN

CMEN descending list

Measurement CMEN CNE
Q : 07− 08 6.715 8.914

Q : 8 5.607 8.075
P : 01− 02 4.056 4.128

P : 3 3.931 4.029
P : 7 2.312 2.383

Corrected Measurement:
Q : 07− 08 0.1726

The same attack scenario was tested with some measurements of power flow missing,
those related to the parameters’ branch which had the cyber-attack. The original set
encompassed 82 measurements with a GRL of 3.04 and the new set 77 with a GRL of 2.85.

The fist loop process presents λCELM
N with values and respective parameters indicated

in table 14. Using λCELM
N above threshold value of 3, parameter error was correctly

detected and identified. Using the Hybrid iterative relaxed approach, parameter and states
were corrected. As previously explained, measurement attack was detected as the highest
CMEN value was above three.The continuous process was run until no more CMEN or
λCELM

N was above 3.

Table 14: 14-bus - multiple measurements and parameters cyber-attacks -1st loop -
λCELM

N - GRL 2.8
Parameter λCELM

N

x06−12 5.949
r12−13 4.172
r01−05 3.990
x04−05 3.707

Corrected Parameter:
x06−12: 0.256

5.1.3 Multiple measurement, parameter and topological cyber-attack scenario

A cyber-attack in system topology (inclusion or exclusion of TLs) is the equivalent
of setting the operational line status as offline, which means to set the active and reactive
power flow measurements to zero. This cyber-attack, in addition to measurement and
parameter, is tested in this scenario as described as follows:

1) Cyber-attack of magnitude 6σ added to measurement P : 09 = −0.29533 (active power
injection on bus 9)

2) Cyber-attack of 6% added to the 02-05 line parameter xsh02−05 = 0.0346pu

3) Topological cyber-attack at line 13-14, setting the operational line status as offline.
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Table 15: 14-bus - multiple measurement, topology and parameter cyber-attack -1st loop -
CMEN

CMEN descending list

Measurement CMEN

Q : 02− 05 5.700
P : 09 4.771
Q : 05 4.657

Q : 04− 09 3.638
Q : 05− 01 3.075

Table 16: 14-bus - multiple measurement, topology and parameter cyber-attack -1st loop -
λNCELM

λCELM
N descending list

Parameter λN

xsh02−05 6.422
r02−05 6.346
x01−05 4.840
r04−05 4.709

The first loop values for CMEN and λNCELM are presented in Tables 15 and 16
respectively.

Three L4 loops presented λNCELM values above threshold and the parameters were
corrected with the following values: 0.03694, 0.036392, 0.03589. Finally on the forth loop
there were no more λNCELM above three. Still, with a measurement and topology cyber-
attack, the CMEN had values above three as indicated in Table 18. Measurement P : 09
was corrected using CNE and the process proceeded to L2. After the states correction
no more CMEN values above threshold were found, so no topological cyber-attack was
detected. Nevertheless the calculated states are very close to the correct ones as presented
in Table 19, which indicates a cyber-attack without stability consequences.

Table 17: 14-bus - multiple measurement, topology and parameter cyber-attack -4th loop -
λNCELM

λCELM
N descending list

Parameter λN

xsh02−05 2.984
r09−10 2.972
r02−05 2.960
x09−10 2.179

Corrected Parameter:
xsh02−05 0.035540814
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Table 18: 14-bus - multiple measurement, topology and parameter cyber-attack -5th loop -
CMEN

CMEN descending list

Measurement CMEN CNE
P:09 5.018 6.08379

P:10-09 3.225 15.70697
Q:02-05 2.848 9.727092
P:07-09 2.121 2.586903

Q:05 2.093 21.11171
Corrected Measurement:

P:09 -0.2952

Table 19: 14-bus - States (phase in degrees and voltage in kV) variation of measurement,
topology and parameter cyber-attack

StateBus IEEE values After Correction %

Angle2 -4.981 -4.992 0.23%
Angle3 -12.718 -12.738 0.16%
Angle4 -10.324 -10.351 0.26%
Angle5 -8.783 -8.802 0.23%
Angle6 -14.223 -14.245 0.15%
Angle7 -13.368 -13.381 0.10%
Angle8 -13.368 -13.337 0.23%
Angle9 -14.947 -14.964 0.12%
Angle10 -15.104 -15.122 0.12%
Angle11 -14.795 -14.816 0.14%
Angle12 -15.077 -15.101 0.16%
Angle13 -15.169 -15.183 0.09%
Angle14 -16.036 -16.057 0.13%
V oltage1 106.000 105.971 0.03%
V oltage2 104.500 104.476 0.02%
V oltage3 101.000 100.970 0.03%
V oltage4 101.900 101.821 0.08%
V oltage5 102.000 101.994 0.01%
V oltage6 107.000 106.953 0.04%
V oltage7 106.200 106.155 0.04%
V oltage8 109.000 108.948 0.05%
V oltage9 105.600 105.587 0.01%
V oltage10 105.100 105.086 0.01%
V oltage11 105.700 105.664 0.03%
V oltage12 105.500 105.472 0.03%
V oltage13 105.000 104.992 0.01%
V oltage14 103.600 103.539 0.06%
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Figure 14: IEEE 57-bus Test System

5.2 IEEE 57-bus Test System

The standard IEEE 57-bus system consists of 80 transmission lines; seven generators
at buses 1, 2, 3, 6, 8, 9, 12; and 15 transformers. The IEEE 57-Bus Test Case represents a
portion of the American Electric Power System (in the Midwestern US) as it was in the
early 1960’s. It has balanced loads and transposed lines and together with 14-bus and
30-bus are often found in works related to state estimation (ZHU; ABUR, 2006; BRETAS
et al., 2017; LIU; NING; REITER, 2011; BOBBA et al., 2010).
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5.2.1 Multiple measurement cyber-attack scenario

The innovation approach used in this work should correctly deal with multiple interact-
ing and conforming bad data. In order to find which measurements cyber-attack may lead
to this situation an analysis of the II as suggested by (BRETAS et al., 2017) was carried
out. Table 20 brings the measurements with low Innovation Index, that in case of gross
errors, are hard to detect and identify correctly by the largest normalized residual test.

Table 20: 57-bus - Measurements with low II
II Ascending list

Active Reactive
Measurement II Measurement II

Power Flow
P : 37− 39 0.248 Q : 52− 53 0.1796
P : 56− 42 0.458 Q : 1− 16 0.1863
P : 12− 13 0.470 Q : 31− 32 0.2219
P : 57− 56 0.656 Q : 17− 1 0.2844
P : 34− 35 0.660 Q : 15− 45 0.3762

Power Injection
P : 07 0.007 P : 36 0.0265
P : 04 0.008 P : 37 0.0273
P : 37 0.008 P : 40 0.0461
P : 11 0.012 P : 13 0.0486
P : 03 0.020 P : 7 0.0567

Based on the analysis of Table 20 the first multiple simultaneous measurements set of
attacks using the IEEE 57-bus is described as follows:

1) Cyber-attack of magnitude 8σ added to measurement P : 12 − 13 = −0.00606pu
(active power flow from bus 12 to bus 13)

2) Cyber-attack of magnitude 6σ added to measurement P : 09 = −1.2079pu (active
power injection on bus 9)

As presented in table 21 and 22 the measurements cyber-attacks were detected and
corrected, also no λCELM

N were above threshold.

Table 21: 57-bus - multiple measurement cyber-attack -1st loop - CMEN

CMEN descending list

Measurement CMEN CNE
P : 09 5.581 5.974

P : 12− 13 2.638 6.526
P : 13− 12 2.538 2.789

P : 55 1.087 3.073
P : 07 0.960 135.835

Corrected Measurement:
P : 09 -1.2076
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Table 22: 57-bus - multiple measurement cyber-attack -2nd loop -CMEN

CMEN descending list

Measurement CMEN CNE
P : 12− 13 3.012 7.573
P : 13− 12 3.008 3.296

P : 22 0.691 2.698
Q : 32− 33 0.676 0.880
Q : 50− 51 0.651 0.795

Corrected Measurement:
P : 12− 13 -0.0060

If a the cyber-attack magnitude to measurement P : 09 is increased to a value equal or
higher to 10σ a false parameter cyber-attack identification (FPCA) was verified, as there
were λCELM

N values above threshold. If the cyber-attack magnitude to measurement
P : 12− 13 is increased to a value higher to 12σ FPCA was also noticed. Either way as
presented by the methodology flowchart depicted in Figures 12 and ?? FPCAs are expected
and correctly threated.

5.2.2 Multiple measurement and parameter cyber-attack scenario

Multiple simultaneous measurement and parameter cyber-attack using the IEEE 57-bus
is described as follows:

1) Cyber-attack of 9% subtracted to the 04-06 line parameter r04−06 = 0.043pu (04-06
line resistance) only.

2) Cyber-attack of 10% added to the 13-14 line parameter x13−14 = 0.0434pu (13-14 line
reactance) only.

3) Cyber-attack of magnitude 6σ added to measurement P : 34 − 35 = −0.07412pu
(reactive power injection at bus 50)

4) Cyber-attack of magnitude 8σ added to measurement Q : 1−16 = 0.18633pu (reactive
power injection at bus 50)

The fist loop Tables 23 and 24 present both λCELM
N and CMEN largest values. Once

more CMEN could not be used to identify a parameter cyber-attack but λCELM
N correctly

identified and the methodology proceeded to the HIRA in order to correct parameters
values. Note that in this case where there are also measurements cyber-attacks the parameter
correction is not done in the first HIRA process, having to go through L4 more three times.
Also the first HIRA number of iteration were close to 300. As a matter of comparison,
the same cyber-attack scenario was tested without measurements cyber-attack . If the
cyber-attacks happened only in parameters, i.e. r04−06 or x13−14 the HIRA process uses
less than 40 iterations to find in the first loop the correct parameter value.

After r13−14 correction there were still λCELM
N above threshold as presented in Table

25. Using the largest λCELM
N for parameter cyber-attack detection and identification r4−6

was corrected and the process continued.
Fifth loop had no λCELM

N above threshold therefore only CMEN Table is presented.
The methodology corrected measurements using CNE as Table 26 indicates, with a mea-
surement difference to the correct value of 0.4%.
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Table 23: 57-bus - multiple measurement and parameter cyber-attack -1st loop - λNCELM

λCELM
N descending list

Parameter λN

x13−14 5.744
x12−13 5.700
r9−13 5.694
xsh11−13 5.665

Corrected Parameter:
x13−14 0.043405722

Table 24: 57-bus - multiple measurement and parameter cyber-attack -1st loop - CMEN

CMEN descending list

Measurement CMEN

P : 6− 4 8.728
P : 5− 4 7.527
P : 13 7.521

Q : 15− 13 6.691
Q : 14− 15 5.962

Table 25: 57-bus - multiple measurement and parameter cyber-attack -4th loop - λNCELM

λCELM
N descending list

Parameter λN

r4−6 3.947
r5−6 3.422
r6−8 3.416
r6−8 3.414

Corrected Parameter:
r4−6 0.042894373

Table 26: 57-bus - multiple measurement and parameter cyber-attack -5th loop - CMEN

CMEN descending list

Measurement CMEN CNE
P : 34− 35 3.532 6.131
P : 35− 0 3.382 8.271

P : 36 3.064 65.003
P : 37− 0 2.925 360.870
P : 37− 39 2.841 11.929

Corrected Measurement:
P : 34− 35 -0.0744
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The last cyber-attack was not detected by the proposed methodology (CMEN<3).
Comparative tests were done, the normalized residue (rN ) was calculated as presented by
Table 27 and no detection was also made using this method.

Table 27: 57-bus - multiple measuremens and parametes cyber-attack -6th loop - CMEN

CMEN descending list

Measurement CMEN CNE rN

Q : 1− 16 1.814 10.872 0.626
Q : 16 1.234 2.715 0.917
P : 37 1.181 144.665 0.463

Q : 23− 24 1.026 1.551 0.040
P : 16 0.759 0.885 2.630

In order to verify the impact of this negative cyber-attack detection the calculated final
states are compared to IEEE values as presented by Table 28.

5.2.3 Multiple Measurement, parameter and topological cyber-attack scenario

The set of attack using the IEEE 57-bus is described as follows.

1) Cyber-attack of magnitude 6σ added to measurement Q : 50 = −0.1059pu (reactive
power injection at bus 50)

2) Cyber-attack of 6% added to the 41-42 line parameter r41−42 = 0.207pu (41-42 line
reactance) only.

3) Topological cyber-attack at line 19-20, setting the operational line status as offline.

The Lagrange multiplier λCELM
N for line parameter r41−42 presented value equal to

4.8, above threshold, therefore the cyber-attack in only this parameter was detected and
identified. Necessary corrections on both parameter and states were done using the
Hybrid iterative relaxed approach. Another loop process was run and the largest Lagrange
multiplier λCELM

N was below threshold.
Table 29 exemplifies for bus 12 the state values estimated considering the use or not of

HIRA.
Following the methodology, as presented in Table 30, CMEN was above the threshold

thus a cyber-attack was detected. The heuristic proposed by (BRETAS et al., 2017) was
used and as there were high values of CMEN in power injection of bus 19 and 20, this
indicated a topological cyber-attack.

After the detection and identification, the topological cyber-attack was corrected and
the process continued. In the third loop identification was based on the analysis of CMEN

as presented in Table 31, where was an isolated high CMEN value for measurement
Q : 50. This indicated a measurement cyber-attack. The value was corrected and once
more the process was run.

Finally no more CMEN or λCELM
N values above threshold were found, as expected,

no other cyber-attack detection was made.
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Table 28: 57-bus - States (phase in degrees and voltage in kV) variation for multiple
measurement and parameter cyber-attack

Bus Phase IEEE values After Correction % Bus Voltage IEEE values After Correction %

2 -1.189 -1.180 0.75 1 143.520 143.504 0.01
3 -5.993 -5.974 0.32 2 139.380 139.357 0.02
4 -7.293 -7.324 0.42 3 135.930 135.905 0.02
5 -8.544 -8.524 0.23 4 135.005 135.354 0.26
6 -8.690 -8.654 0.41 5 134.647 134.665 0.01
7 -7.588 -7.586 0.03 6 135.240 135.216 0.02
8 -4.498 -4.456 0.94 7 135.502 135.767 0.20
9 -9.617 -9.566 0.53 8 138.690 138.662 0.02

10 -11.488 -11.437 0.45 9 135.240 135.212 0.02
11 -10.215 -10.177 0.38 10 136.027 136.035 0.01
12 -10.501 -10.467 0.32 11 134.302 134.384 0.06
13 -9.820 -9.797 0.24 12 140.070 140.041 0.02
14 -9.360 -9.336 0.25 13 134.950 135.074 0.09
15 -7.195 -7.185 0.13 14 133.694 133.832 0.10
16 -8.880 -8.861 0.22 15 136.220 136.319 0.07
17 -5.407 -5.391 0.30 16 139.835 139.765 0.05
18 -11.750 -11.715 0.30 17 140.401 140.329 0.05
19 -13.361 -13.208 1.14 18 134.564 138.114 2.64
20 -13.610 -13.418 1.41 19 131.307 133.832 1.92
21 -12.883 -12.899 0.13 20 131.059 133.003 1.48
22 -12.833 -12.850 0.13 21 138.055 139.075 0.74
23 -12.882 -12.919 0.29 22 138.400 139.351 0.69
24 -12.953 -13.259 2.36 23 138.138 139.075 0.68
25 -18.006 -18.143 0.76 24 135.820 137.833 1.48
26 -12.643 -12.959 2.50 25 129.416 135.483 4.69
27 -11.387 -11.486 0.88 26 130.451 132.314 1.43
28 -10.426 -10.456 0.29 27 134.233 135.492 0.94
29 -9.764 -9.756 0.07 28 136.565 137.563 0.73
30 -18.663 -18.696 0.17 29 138.593 139.356 0.55
31 -19.530 -19.357 0.89 30 126.974 132.719 4.52
32 -18.828 -18.474 1.88 31 124.186 129.130 3.98
33 -18.870 -18.514 1.89 32 127.774 130.929 2.47
34 -14.083 -14.113 0.22 33 127.457 130.653 2.51
35 -13.863 -13.872 0.07 34 130.976 132.309 1.02
36 -13.612 -13.602 0.08 35 132.135 133.274 0.86
37 -13.432 -13.421 0.08 36 133.612 134.656 0.78
38 -12.726 -12.720 0.05 37 134.936 135.899 0.71
39 -13.479 -13.471 0.06 38 138.980 139.764 0.56
40 -13.642 -13.632 0.07 39 134.660 135.623 0.71
41 -14.124 -14.060 0.45 40 133.211 134.242 0.77
42 -15.559 -15.511 0.31 41 137.144 137.425 0.20
43 -11.382 -11.337 0.39 42 132.908 133.284 0.28
44 -11.858 -11.869 0.09 43 139.145 139.352 0.15
45 -9.294 -9.257 0.39 44 139.670 140.318 0.46
46 -11.145 -11.898 6.76 45 142.609 142.941 0.23
47 -12.540 -12.499 0.33 46 145.866 144.866 0.69
48 -12.628 -12.599 0.23 47 142.030 142.521 0.35
49 -12.975 -12.929 0.35 48 141.160 141.694 0.38
50 -13.459 -13.398 0.46 49 142.526 142.938 0.29
51 -12.584 -12.527 0.46 50 140.857 141.147 0.21
52 -11.219 -11.476 2.30 51 145.079 145.144 0.04
53 -11.828 -12.237 3.46 52 133.529 135.216 1.26
54 -11.542 -11.699 1.36 53 131.735 133.973 1.70
55 -10.853 -10.788 0.60 54 136.151 137.418 0.93
56 -16.065 -16.051 0.08 55 141.809 142.248 0.31
57 -16.576 -16.572 0.02 56 133.046 133.556 0.38

57 132.480 133.140 0.50
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Table 29: 57-bus - States of bus 12 variation on measurement, topology and parameter
cyber-attack

State_Bus IEEE values Without HIRA With HIRA %

Voltage_12 (kV) 145.59 145.684 145.656 2.81%
Angle_12 (degrees) -15.07 -15.095 -15.063 3.20%

Table 30: 57-bus - multiple measurement, topology and parameter cyber-attack -2nd loop -
CMEN

CMEN descending list

Measurement CMEN CNE
Q : 19 21.165 40.249
Q : 20 15.686 19.970
P : 19 11.353 15.646
Q : 20 6.008 8.335
Q : 50 5.284 6.334

Table 31: 57-bus - multiple measurement, topology and parameter cyber-attack -3rd loop -
CMEN

CMEN descending list

Measurement CMEN CNE
Q : 50 13.399 16.537

Q : 49− 50 9.662 15.715
Q : 50− 51 5.022 6.042
P : 56− 42 4.616 11.215

Q : 51 3.397 9.382
Corrected Measurement:

Q : 50 -0.1065

5.3 Discussion

In order to proceed with the case study results discussion the Table 32 summaries all
types of tests carried out.

Tables 5, 9, 19, 28 presented states variation and comparisons during tests.
The presented results highlight the core contributions of the proposed methodology.

During all tests the state estimation never failed to converge, indicating that the proposed
standard deviation for pseudo and low/zero magnitudes measurements based on correlated
measurements and covariance properties works well, not bringing any addition calculation
effort to the Newton Raphson process.

Measurement and topological cyber-attacks identification, detection and correction
were done correctly in almost all cases with different GRL scenarios contemplating the
evolving cyber-attack learning behavior. The unidentified cases are related to measurements
with very low II as those presented in Table 20. These cases were tested with the normalized
residue test and no identification, detection and correction was neither possible.

Parameters cyber-attack detection and identification on cases of individual line parame-
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Table 32: Case studies summary
Cyber-attack GRL IEEE 14-bus IEEE 57-bus

Simultaneous measurements 3.1 Subsection 5.1.1 Subsection 5.2.1
Simultaneous measurements
and parameters

2.8 Subsection 5.1.2

Simultaneous measurements
and parameters

3.1 Subsection 5.1.2 Subsection 5.2.2

Simultaneous measurements ,
topology and parameters

3.1 Subsections 5.1.3 Subsections 5.2.3

ter had 100% better results that the methodologies using CMEN only (BRETAS et al.,
2017) or using LM with the normalized residue test (ZHU; ABUR, 2006), nevertheless
depending the branch position and the system meshed configuration there are parameter
cyber-attacks not detected or identified by any of the methodologies.

In order to minimize false parameter cyber-attack identification the authors proposed
methodology suggests that number of iterations should be part of the identification process,
specially on the HIRA processes that uses two types of relaxations while correcting
parameter values and states at the same time. Moreover the HIRA process uses variable
tolerances in order to verify convergence, so the non convergence fact can be used as a
good indicator of incorrect cyber-attack identification.

The methodology arrived at an autonomous behavior with attacked measurement,
topology or parameters and the system states correction. The countermeasure could bring
the state estimator back to an operating mode. Also correction is an important part to the
identification process. On cases such a false parameter cyber-attack happens, after trying to
correct it, the methodology considers other types of cyber-attack, and the right correction
and consequent convergence of the system helps the process to be more autonomous. The
proposed methodology behavior under a cyber-attack is found on Figure 10.

The HIRA performance compared to the bibliography (BRETAS et al., 2017; ZHU;
ABUR, 2006) is quite unique. Let us consider a single parameter (such as line reactance
or resistance) cyber-attack on IEEE 14 bus system. (BRETAS et al., 2017) suggested
methodology to correct parameter does not work as it is based on the CNE applied to both
resistance and reactance parameters. Correction using the augmented vector need more
than 400 iteration in order to converge. The same parameter cyber-attack need no more
than 40 iteration to be corrected using the HIRA.

The augment process has known numerical issues (MONTICELLI, 1999), when a
parameter is added to the state vector an arbitrary weight value must be used. This value
normally is very different than the values used on measurements leading to numerical
instabilities. Moreover this methodology forces the increase of the number of available
measurements in order to maintain the same degrees of freedom, as the state vector
increases.

Finally Tables 5, 9, 19, 28 indicated that the methodology states correction improves
results. On cases that the cyber-attack was not detected it is also possible to noticed minor
degradation on final states values.
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5.4 Overview

Chapter 5 explored the proposed methodology under several cyber-attacks, that could
simultaneously happen on measurements, topology and parameters. Two IEEE test cases
were used as presented by 5.1 and 5.2. Observations over each program loop and HIRA
iterations were made and presented through Tables containing CMEN , CNE, λCELM

N ,
corrected measurements and parameters.

Analysis over states values were also presented through Tables in order to identify
improvements in final estimated states values.

Results were discussed in section 5.3 where core findings of the proposed approach
as described in Chapter 4 could be highlighted. With methodology and results presented
and discussed Chapter 6 brings the conclusion, possible refinements and extensions of this
work.
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6 CONCLUSION

This work presented and explored advanced applications for state estimators in smart
grids with the capability to identify, detect and correct measurements, parameters and
topology cyber-attacks in an HRC way, enabling self-protection and in case of cyber-attacks
of even cyber-errors, self-correction of data and parameters.

The methodology is firmly supported by state estimators based on the normal equations
with a standard deviation for pseudo and low/zero magnitudes measurements based on
correlated measurements and covariance properties that avoid NI issues.

This work extends the innovation approach to the Lagrange multiplier calculation.
Parameter cyber-attack identification, detection and correction is done contemplating the
evolving cyber-attack learning behavior that will target vulnerable areas with reduced
GRL.

The case studies as presented in chapter 5 were conducted on different cyber-attack sce-
narios. The proposed methodology could identify and correct simultaneous measurement,
topology and parameter cyber attacks considering measurements’ availability restrictions.
The results demonstrate the robustness of the presented methodology.

A key finding of this work is that relaxations and continuous process flow can be used
to solve the critical mathematical problem raised in the bibliography review (BRETAS;
BRETAS, 2017; LIN; ABUR, 2017): Is it possible to correct parameters with measurement
error and the other way around? The mathematical relaxation in several layers of this
classical optimization problem lead to the hybrid iterative relaxed approach in order to
identify and correct cyber-attacked parameters and measurements.

Providing mitigation, response and system recovery capabilities to the state estimator
with reduced computational burden, the proposed model and methodology have strong
potential to be integrated into SCADA state estimators for real-world applications.

6.1 Future Work

In the current implementation the system admittance matrix, Y bus, is reconstructed
from scratch each time during the HIRA process. This could be improved as the HIRA
process changes only one network parameter a time.

The software structure is strongly based on functions. They are used for data collection,
to build the system admittance matrix, to calculate the Parameters Jacobian (for both LM
and HIRA process) and to calculate main methodology variables such as CMEN , CNE
and λCELM i

N . Still, there are parts of on the main program that could be set into functions
such as the states Jacobian and the h(x) vector.

Only one type of topological cyber-attack model was tested, that is setting the operation
status to offline and have the power flow measurements value defined as zero. The inclusion
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of transmission lines should also be verified as a possible cyber-attack and even alternative
network modeling where circuit breakers (CB) are explicitly represented (LOURENCO;
COELHO; PAL, 2015) could also be verified.

A possible way to extend this work is to explore, in the light of Lagrange relaxation and
composed measurement error and HIRA, the multiarea SE and identification of observable
islands.
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APPENDIX A JACOBIAN MATRIX ELEMENTS - LM

The corresponding Jacobian matrix elements would be the following, where P∗ is
real power injection at bus, gmn the branch series conductance,θmn the voltage angles at
terminal buses of branch m-n, bmn the branch series susceptance, amn the transformer final
turns ratio, Q∗ is reactive power injection at bus, bshmn the branch shunt susceptance, bsh∗
the bus shunt susceptance (reactor), Pmn the real power flow of branch m-n and Qmn the
reactive power flow of branch m-n.

Flow measurements:

∂Pmn

∂gmn

= −VmVnamncosθmn + V 2
ma

2
mn (34)

∂Pmn

∂bmn

= −VmVnamnsinθmn (35)

∂Pmn

∂amn

= −VmVn(gmncosθmn + bmnsinθmn) + 2V 2
mamngmn (36)

∂Qmn

∂gmn

= −VmVnamnsinθmn (37)

∂Qmn

∂bmn

= +VmVnamncosθmn − V 2
ma

2
mn (38)

∂Qmn

∂bshmn

= −V 2
ma

2
mn (39)

∂Qmn

∂amn

= −VmVn(gmnsinθmn − bmncosθmn)− 2V 2
mamn(bmn + bshmn) (40)
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Bus injection measurements:

∂Pm

∂gmn

= −VmVnamncosθmn + V 2
ma

2
mn (41)

∂Pn

∂gmn

= −VmVnamncosθmn + V 2
m (42)

∂Pm

∂bmn

=
∂Pn

∂bmn

= −VmVnamnsinθmn (43)

∂Pm

∂amn

= −VmVn(gmncosθmn + bmnsinθmn) + 2V 2
mamngmn (44)

∂Pn

∂amn

= −VmVn(gmncosθmn + bmnsinθmn) (45)

∂Qm

∂gmn

=
∂Qn

∂gmn

= −VmVnamnsinθmn (46)

∂Qm

∂bmn

= VmVnamncosθmn − V 2
ma

2
mn (47)

∂Pn

∂gmn

= VmVnamncosθmn − V 2
m (48)

∂Qm

∂bshmn

=
∂Qn

∂bshmn

= −V 2
m (49)

∂Qm

∂amn

= −VmVn(gmnsinθmn − bmncosθmn)− 2V 2
mamnbmn (50)

∂Qn

∂amn

= −VmVn(gmnsinθmn − bmncosθmn) (51)

∂Qm

∂bshm
= −V 2

m (52)

(53)
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APPENDIX B MEASUREMENT VALUES IEEE14-BUS AND
57-BUS

This appendix presents the calculated measurement values, where measurements type
1 is voltage, 2 active power injection, 3 reactive power injection, 4 active power flow and 5
is reactive power flow.
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Table 33: Measurement Values IEEE14-bus
z Type Value (p.u.) From To z Type Value (p.u.) From To

1 1 1.0600 1 0 42 4 -0.1754 13 6
2 2 2.3238 1 0 43 4 0.0000 7 8
3 2 0.1830 2 0 44 4 0.2809 7 9
4 2 -0.9420 3 0 45 4 -0.2809 9 7
5 2 -0.0755 5 0 46 4 -0.0522 10 9
6 2 -0.1119 6 0 47 4 0.0941 9 14
7 2 0.0000 7 0 48 4 -0.0930 14 9
8 2 -0.2953 9 0 49 4 -0.0378 10 11
9 2 -0.0349 11 0 50 4 0.0162 12 13

10 2 -0.1354 13 0 51 4 -0.0161 13 12
11 2 -0.1486 14 0 52 4 -0.0556 14 13
12 3 -0.1691 1 0 53 5 -0.2039 1 2
13 3 0.0552 3 0 54 5 0.0349 1 5
14 3 0.0568 4 0 55 5 0.0260 5 1
15 3 -0.0078 5 0 56 5 0.0158 3 2
16 3 0.0016 7 0 57 5 0.0356 2 3
17 3 0.1733 8 0 58 5 0.0356 4 2
18 3 -0.1672 9 0 59 5 0.0071 2 5
19 3 -0.0177 11 0 60 5 0.0393 3 4
20 3 -0.0160 12 0 61 5 -0.0430 4 3
21 3 -0.0584 13 0 62 5 -0.1457 5 4
22 4 1.5683 1 2 63 5 -0.0946 4 7
23 4 -1.5254 2 1 64 5 0.1067 7 4
24 4 0.7555 1 5 65 5 -0.0032 4 9
25 4 0.7319 2 3 66 5 0.1284 5 6
26 4 -0.7087 3 2 67 5 -0.0731 6 5
27 4 0.0778 6 12 68 5 -0.0335 11 6
28 4 0.4151 2 5 69 5 0.0250 6 12
29 4 -0.4061 5 2 70 5 -0.0235 12 6
30 4 -0.2333 3 4 71 5 0.0720 6 13
31 4 0.2370 4 3 72 5 -0.1688 7 8
32 4 -0.6126 4 5 73 5 0.1733 8 7
33 4 0.6178 5 4 74 5 -0.0509 9 7
34 4 -0.2687 7 4 75 5 0.0429 9 10
35 4 0.1609 4 9 76 5 -0.0425 10 9
36 4 -0.1511 9 4 77 5 0.0366 9 14
37 4 0.4406 5 6 78 5 -0.0155 10 11
38 4 0.0734 6 11 79 5 0.0158 11 10
39 4 -0.0728 11 6 80 5 -0.0074 13 12
40 4 -0.0771 12 6 81 5 0.0169 13 14
41 4 0.1775 6 13 82 5 -0.0158 14 13
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Table 34: Measurement Values IEEE57-bus - Part 1
z Type Value (p.u.) From bus To bus z Type Value (p.u.) From bus To bus

1 1 1.04 1 0 41 2 -0.00131 40 0
2 2 4.22864 1 0 42 2 -0.06258 41 0
3 2 -0.02698 2 0 43 2 -0.07104 42 0
4 2 -0.00696 3 0 44 2 -0.02 43 0
5 2 0.002017 4 0 45 2 -0.12894 44 0
6 2 -0.13353 5 0 46 2 0.004018 45 0
7 2 -0.74678 6 0 47 2 -0.45789 46 0
8 2 -0.00306 7 0 48 2 -0.04957 47 0
9 2 3.003364 8 0 49 2 -0.00877 48 0

10 2 -1.20792 9 0 50 2 -0.18196 49 0
11 2 -0.04841 10 0 51 2 -0.20914 50 0
12 2 0.001423 11 0 52 2 -0.18203 51 0
13 2 -0.66987 12 0 53 2 -0.05051 52 0
14 2 -0.18129 13 0 54 2 -0.19758 53 0
15 2 0.106539 14 0 55 2 -0.04311 54 0
16 2 -0.22568 15 0 56 2 -0.06734 55 0
17 2 -0.43095 16 0 57 2 -0.07725 56 0
18 2 -0.42084 17 0 58 2 -0.06623 57 0
19 2 -0.27179 18 0 59 3 1.12656 1 0
20 2 -0.0338 19 0 60 3 -0.88863 2 0
21 2 -0.02252 20 0 61 3 -0.22551 3 0
22 2 -0.00232 21 0 62 3 0.011365 4 0
23 2 0.029284 22 0 63 3 -0.0512 5 0
24 2 -0.08545 23 0 64 3 -0.00452 6 0
25 2 0.00434 24 0 65 3 -0.00393 7 0
26 2 -0.06241 25 0 66 3 0.403392 8 0
27 2 -0.00432 26 0 67 3 -0.23898 9 0
28 2 -0.09158 27 0 68 3 1.053461 12 0
29 2 -0.04055 28 0 69 3 -0.00888 13 0
30 2 -0.17606 29 0 70 3 0.085814 14 0
31 2 -0.03721 30 0 71 3 -0.04922 15 0
32 2 -0.05684 31 0 72 3 -0.03627 16 0
33 2 -0.02014 32 0 73 3 -0.08672 17 0
34 2 -0.03418 33 0 74 3 -0.09702 18 0
35 2 0.000346 34 0 75 3 -0.007 19 0
36 2 -0.06358 35 0 76 3 -0.00871 20 0
37 2 0.007875 36 0 77 3 -0.00583 21 0
38 2 -0.00143 37 0 78 3 0.028764 22 0
39 2 -0.13151 38 0 79 3 -0.0456 23 0
40 2 -0.00072 39 0 80 3 -0.00789 24 0
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Table 35: Measurement Values IEEE57-bus - Part2
z Type Value (p.u.) From bus To bus z Type Value (p.u.) From bus To bus

81 3 -0.03207 25 0 121 4 1.781363 8 9
82 3 0.007553 26 0 122 4 0.172447 9 10
83 3 -0.00347 27 0 123 4 0.12917 9 11
84 3 -0.01922 28 0 124 4 0.026248 9 12
85 3 -0.03025 29 0 125 4 0.02405 9 13
86 3 -0.01925 30 0 126 4 -0.10408 13 14
87 3 -0.02723 31 0 127 4 -0.48792 13 15
88 3 -0.01317 32 0 128 4 1.487916 1 15
89 3 -0.01539 33 0 129 4 0.791808 1 16
90 3 0.000514 34 0 130 4 0.932975 1 17
91 3 -0.03423 35 0 131 4 0.340174 3 15
92 3 0.00211 36 0 132 4 0.178736 4 18
93 3 -0.00256 37 0 133 4 0.178736 4 18
94 3 -0.06271 38 0 134 4 0.004239 5 6
95 3 0.002172 39 0 135 4 -0.78122 7 8
96 3 0.001812 40 0 136 4 -0.17529 10 12
97 3 -0.03101 41 0 137 4 -0.09752 11 13
98 3 -0.04521 42 0 138 4 -0.00606 12 13
99 3 -0.00579 43 0 139 4 -0.3324 12 16

100 3 -0.01162 44 0 140 4 -0.48336 12 17
101 3 -0.00246 45 0 141 4 -0.68616 14 15
102 3 -0.19758 46 0 142 4 0.046573 18 19
103 3 -0.05526 47 0 143 4 0.011683 19 20
104 3 -0.01065 48 0 144 4 0.010886 21 20
105 3 -0.08653 49 0 145 4 -0.01321 21 22
106 3 -0.1059 50 0 146 4 0.118254 22 23
107 3 -0.05237 51 0 147 4 0.032641 23 24
108 3 -0.0258 52 0 148 4 0.067849 24 25
109 3 -0.09618 53 0 149 4 0.067849 24 25
110 3 -0.01628 54 0 150 4 -0.10168 24 26
111 3 -0.03068 55 0 151 4 -0.106 26 27
112 3 -0.02352 56 0 152 4 -0.19965 27 28
113 3 -0.01858 57 0 153 4 -0.24278 28 29
114 4 1.015941 1 2 154 4 0.600549 7 29
115 4 0.97587 2 3 155 4 0.076048 25 30
116 4 0.60092 3 4 156 4 0.037727 30 31
117 4 0.139074 4 5 157 4 -0.01985 31 32
118 4 0.141281 4 6 158 4 0.034243 32 33
119 4 -0.17695 6 7 159 4 0.074462 34 32
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Table 36: Measurement Values IEEE57-bus - Part3
z Type Value (p.u.) From bus To bus z Type Value (p.u.) From bus To bus

160 4 -0.07412 34 35 200 4 -0.17112 10 9
161 4 -0.20949 37 38 201 4 -0.1287 11 9
162 4 0.039408 37 39 202 4 -0.0252 12 9
163 4 0.036143 36 40 203 4 -0.02402 13 9
164 4 -0.10219 22 38 204 4 -1.44896 15 1
165 4 0.091772 11 41 205 4 -0.76547 16 1
166 4 0.088867 41 42 206 4 -0.91374 17 1
167 4 -0.11587 41 43 207 4 -0.33784 15 3
168 4 -0.23673 38 44 208 4 -0.17096 18 4
169 4 0.371534 15 45 209 4 -0.17096 18 4
170 4 0.687708 14 46 210 4 -0.00411 6 5
171 4 0.229823 46 47 211 4 0.790177 8 7
172 4 0.178435 47 48 212 4 0.177158 12 10
173 4 0.000895 48 49 213 4 0.09778 13 11
174 4 0.096247 49 50 214 4 0.012987 13 12
175 4 -0.11373 50 51 215 4 0.33452 16 12
176 4 0.297994 10 51 216 4 0.492905 17 12
177 4 0.32396 13 49 217 4 0.694872 15 14
178 4 0.179137 29 52 218 4 -0.04548 19 18
179 4 0.123988 52 53 219 4 -0.01163 20 19
180 4 -0.07481 53 54 220 4 -0.01184 20 21
181 4 -0.11942 54 55 221 4 0.013224 22 21
182 4 0.135872 11 43 222 4 -0.11809 23 22
183 4 -0.36733 44 45 223 5 0.751324 1 2
184 4 0.034739 40 56 224 5 -0.04591 2 3
185 4 -0.05442 56 41 225 5 -0.08734 3 4
186 4 -0.01584 56 42 226 5 -0.03951 4 5
187 4 0.038632 39 57 227 5 -0.04941 4 6
188 4 -0.0276 57 56 228 5 -0.01534 6 7
189 4 -0.04484 38 49 229 5 -0.06555 6 8
190 4 -0.16606 38 48 230 5 0.198146 8 9
191 4 0.189922 9 55 231 5 -0.09098 9 10
192 4 -1.00285 2 1 232 5 0.02021 9 11
193 4 -0.94805 3 2 233 5 -0.15869 9 12
194 4 -0.5967 4 3 234 5 -0.02057 9 13
195 4 -0.13777 5 4 235 5 0.230108 13 14
196 4 -0.14034 6 4 236 5 0.050168 13 15
197 4 0.177607 7 6 237 5 0.338355 1 15
198 4 0.431823 8 6 238 5 -0.00684 1 16
199 4 -1.74976 9 8 239 5 0.043717 1 17
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Table 37: Measurement Values IEEE57-bus - Part4
z Type Value (p.u.) From bus To bus z Type Value (p.u.) From bus To bus

240 5 -0.18203 3 15 290 5 -0.00553 52 53
241 5 0.011674 4 18 291 5 -0.04389 53 54
242 5 0.011674 4 18 292 5 -0.06201 54 55
243 5 -0.06877 5 6 293 5 0.045907 11 43
244 5 -0.12638 7 8 294 5 0.035702 44 45
245 5 -0.20291 10 12 295 5 0.041239 40 56
246 5 -0.04545 11 13 296 5 0.006511 56 41
247 5 0.601919 12 13 297 5 0.015092 56 42
248 5 0.09243 12 16 298 5 0.029221 39 57
249 5 0.093906 12 17 299 5 0.007483 57 56
250 5 -0.09932 14 15 300 5 -0.104 38 49
251 5 0.014436 18 19 301 5 -0.1867 38 48
252 5 0.005806 19 20 302 5 0.101979 9 55
253 5 0.003089 21 20 303 5 -0.84271 2 1
254 5 -0.00892 21 22 304 5 0.043864 3 2
255 5 0.055924 22 23 305 5 0.064426 4 3
256 5 0.010073 23 24 306 5 0.017565 5 4
257 5 0.016698 24 25 307 5 0.019192 6 4
258 5 0.016698 24 25 308 5 -0.00795 7 6
259 5 -0.02375 24 26 309 5 0.052167 8 6
260 5 -0.01676 26 27 310 5 -0.03946 11 9
261 5 -0.02341 27 28 311 5 0.086609 12 9
262 5 -0.04663 28 29 312 5 -0.01829 13 9
263 5 0.130408 7 29 313 5 -0.23755 14 13
264 5 0.046619 25 30 314 5 -0.05049 15 13
265 5 0.0257 30 31 315 5 -0.24083 15 1
266 5 -0.00265 31 32 316 5 0.068801 16 1
267 5 0.015442 32 33 317 5 0.013291 17 1
268 5 0.038535 34 32 318 5 0.136731 15 3
269 5 -0.03802 34 35 319 5 0.001949 18 4
270 5 -0.06987 35 36 320 5 0.001949 18 4
271 5 -0.10719 36 37 321 5 0.178597 12 10
272 5 -0.13841 37 38 322 5 0.028361 13 11
273 5 0.027138 37 39 323 5 -0.63941 13 12
274 5 0.039567 36 40 324 5 -0.10507 16 12
275 5 -0.03611 22 38 325 5 -0.10001 17 12
276 5 0.035646 11 41 326 5 0.113002 15 14
277 5 0.033502 41 42 327 5 -0.01281 19 18
278 5 -0.03109 41 43 328 5 -0.00573 20 19
279 5 0.048598 38 44 329 5 -0.00324 20 21
280 5 -0.00763 15 45 330 5 0.00895 22 21
281 5 0.42269 14 46 331 5 -0.05567 23 22
282 5 0.183876 46 47 332 5 -0.01821 24 23
283 5 0.1267 47 48 333 5 -0.01068 25 24
284 5 -0.07462 48 49 334 5 -0.01068 25 24
285 5 0.045268 49 50 335 5 0.026448 26 24
286 5 -0.06263 50 51 336 5 0.01994 27 26
287 5 0.125162 10 51 337 5 0.027411 28 27
288 5 0.340184 13 49 338 5 0.050244 29 28
289 5 0.02628 29 52


