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PERES, Fernanda Araujo Pimentel. Seleção de Variáveis Aplicada ao Controle 

Estatístico Multivariado de Processos em Bateladas, 2018. Tese (Doutorado em 

Engenharia de Produção) – Universidade Federal do Rio Grande do Sul, Brasil. 

 

RESUMO 

A presente tese apresenta proposições para o uso da seleção de variáveis no 

aprimoramento do controle estatístico de processos multivariados (MSPC) em 

bateladas, a fim de contribuir com a melhoria da qualidade de processos industriais. 

Dessa forma, os objetivos desta tese são: (i) identificar as limitações encontradas pelos 

métodos MSPC no monitoramento de processos industriais; (ii) entender como métodos 

de seleção de variáveis são integrados para promover a melhoria do monitoramento de 

processos de elevada dimensionalidade; (iii) discutir sobre métodos para alinhamento e 

sincronização de bateladas aplicados a processos com diferentes durações; (iv) definir o 

método de alinhamento e sincronização mais adequado para o tratamento de dados de 

bateladas, visando aprimorar a construção do modelo de monitoramento na Fase I do 

controle estatístico de processo; (v) propor a seleção de variáveis, com propósito de 

classificação, prévia à construção das cartas de controle multivariadas (CCM) baseadas 

na análise de componentes principais (PCA) para monitorar um processo em bateladas; 

e (vi) validar o desempenho de detecção de falhas da carta de controle multivariada proposta 

em comparação às cartas tradicionais 𝑇2 e 𝑄 baseadas em PCA. O desempenho do método 

proposto foi avaliado mediante aplicação em um estudo de caso com dados reais de um 

processo industrial alimentício. Os resultados obtidos demonstraram que a realização de 

uma seleção de variáveis prévia à construção das CCM contribuiu para reduzir 

eficientemente o número de variáveis a serem analisadas e superar as limitações 

encontradas na detecção de falhas quando bancos de elevada dimensionalidade são 

monitorados. Conclui-se que, ao possibilitar que CCM, amplamente utilizadas no meio 

industrial, sejam adequadas para banco de dados reais de elevada dimensionalidade, o 

método proposto agrega inovação à área de monitoramento de processos em bateladas e 

contribui para a geração de produtos de elevado padrão de qualidade.  

 

Palavras-chave: Seleção de variáveis. Controle estatístico de processos multivariados. 

Processo em bateladas. Detecção de falhas. 
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PERES, Fernanda Araujo Pimentel. Variable Selection Applied to Multivariate 

Statistical Control of Batch Processes, 2018. Dissertation (Doctorate in Industrial 

Engineering) – Universidade Federal do Rio Grande do Sul, Brazil. 

 

ABSTRACT 

This dissertation presents propositions for the use of variable selection in the 

improvement of multivariate statistical process control (MSPC) of batch processes, in 

order to contribute to the enhacement of industrial processes’ quality. There are six 

objectives: (i) identify MSPC limitations in industrial processes monitoring; (ii) 

understand how methods of variable selection are used to improve high dimensional 

processes monitoring; (iii) discuss about methods for alignment and synchronization of 

batches with different durations; (iv) define the most adequate alignment and 

synchronization method for batch data treatment, aiming to improve Phase I of process 

monitoring; (v) propose variable selection for classification prior to establishing 

multivariate control charts (MCC) based on principal component analysis (PCA) to 

monitor a batch process; and (vi) validate fault detection performance of the proposed 

MCC in comparison with traditional PCA-based 𝑇2 and 𝑄 charts. The performance of 

the proposed method was evaluated in a case study using real data from an industrial 

food process. Results showed that performing variable selection prior to establishing 

MCC contributed to efficiently reduce the number of variables and overcome 

limitations found in fault detection when high dimensional datasets are monitored. We 

conclude that by improving control charts widely used in industry to accomodate high 

dimensional datasets the proposed method adds innovation to the area of batch process 

monitoring and contributes to the generation of high quality standard products. 

 

Keywords: Variable selection. Multivariate statistical process control. Batch processes. 

Fault detection. 
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1 INTRODUÇÃO 

O conceito principal do monitoramento de processos em bateladas é modelar as 

causas mais importantes de variação presentes sob condições normais de operação 

(VAN SPRANG et al., 2002). Caso variações entre bateladas (devidas a desvios das 

variáveis de processo das suas trajetórias específicas, erros no carregamento da receita e 

falhas potenciais da planta) não sejam detectadas ou corrigidas, pode ocorrer a produção 

de uma, ou de uma sequência de bateladas, de qualidade inconsistente. Tendo em vista a 

elevada competitividade dos mercados, a minimização dos custos decorrentes da má 

qualidade se torna mandatória (MARTIN; MORRIS; KIPARISSIDES, 1999; 

NOMIKOS; MACGREGOR, 1994, 1995a).  

O monitoramento de um processo envolve duas fases. Na Fase I os dados são 

coletados com o objetivo de se adquirir conhecimento sobre o processo. Devem ser 

verificados dados não usuais, bem como a estabilidade do processo, de forma a 

desenvolver um modelo de monitoramento sob controle apropriado para ser utilizado na 

Fase II (WOODALL; MONTGOMERY, 2014). A Fase II, por sua vez, constitui-se de 

quatro etapas: detecção, isolamento e diagnóstico de falhas, e intervenção no processo. 

Na detecção de falhas, os comportamentos anormais do processo são reconhecidos; 

variáveis que mais contribuem para a falha detectada são isoladas e o diagnóstico de 

falhas determina as causas-raiz para ocorrência do sinal fora do controle. Por fim, a 

intervenção é conduzida para que os efeitos das falhas sejam removidos do processo e 

não mais gerem produtos em desacordo com a especificação (CHIANG; 

KOTANCHEK; KORDON, 2004; YAN; YAO, 2015). 

Para o desempenho efetivo de um monitoramento, medidas das variáveis de 

processo (𝐗) e das variáveis de qualidade final (y) devem ser obtidas. Uma dificuldade 

encontrada para processos em bateladas reside no fato desses dados serem altamente 

colineares e auto-correlacionados, podendo também existir dados faltantes 

(MACGREGOR et al., 1994). Tal complexidade na estrutura de correlação pode 

prejudicar a correta classificação das bateladas em conformes (de acordo com a 

especificação) ou não conformes (em desacordo com a especificação) (YAN; KUANG; 

YAO, 2017). 

 Para superar esses problemas, abordagens de controle estatístico de processo 

multivariado (MSPC ou multivariate statistical process control) baseadas em métodos 

de projeção como a análise de componentes principais (PCA ou principal component 
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analysis) e a regressão por mínimos quadrados parciais (PLS ou partial least squares 

regression) foram desenvolvidas, para promover a redução da dimensionalidade do 

espaço de monitoramento a poucas variáveis latentes (KOURTI; MACGREGOR, 1995; 

MACGREGOR et al., 1994). Para análise de dados multivariados de processos em 

bateladas, variantes desses métodos devem ser utilizadas, como o PCA multidirecional 

(MPCA ou multiway PCA) (NOMIKOS; MACGREGOR, 1994) e o PLS 

multidirecional (MPLS ou multiway PLS) (NOMIKOS; MACGREGOR, 1995b). Em 

tais métodos a matriz tridimensional de dados 𝐗, de dimensão (𝐼 × 𝐽 × 𝐾), na qual 𝐼 

bateladas têm as trajetórias de suas 𝐽 variáveis medidas em 𝐾 intervalos de tempo, é 

desdobrada em uma matriz bidimensional de dimensão (𝐼 × 𝐽𝐾). Assim se torna 

possível a análise da variabilidade existente entre bateladas em 𝐗, ao resumir a 

informação contida nos dados com relação a variáveis e a sua evolução no tempo.  

Nas últimas décadas, a ampla disseminação das redes de sensores e dos sistemas 

de controle distribuídos contribuiu para a redução significativa dos custos e dificuldades 

relacionadas à coleta e armazenamento de informações. Dessa forma, bancos de dados 

de elevada dimensionalidade passaram a ser disponibilizados, compostos por centenas 

de medições de variáveis de processo (JIANG; YAN; HUANG, 2016; MEGAHED; 

JONES-FARMER, 2013; WOODALL; MONTGOMERY, 2014). Esse aumento na 

dimensionalidade das bases de dados fez com que a capacidade de detectar uma falha 

rapidamente e a habilidade de localizar variáveis que se deslocam se tornassem os 

grandes desafios do MSPC (JIANG; WANG; TSUNG, 2012; KUANG; YAN; YAO, 

2015; WOODALL; MONTGOMERY, 2014). Sendo assim, o desenvolvimento de 

novos modelos estatísticos de controle de processo, como a integração da seleção de 

variáveis a métodos de MSPC para lidar com bancos de dados de elevada 

dimensionalidade de processos em bateladas, surge como um tópico promissor 

(ANZANELLO; ALBIN; CHAOVALITWONGSE, 2012; BISGAARD, 2012; JIANG; 

YAN; HUANG, 2016).  

O principal objetivo dos métodos de seleção de variáveis é identificar o 

subconjunto de variáveis que carrega a informação mais relevante contida no conjunto 

completo de dados (ANZANELLO; FOGLIATTO, 2014). A melhoria do 

monitoramento através de cartas de controle multivariadas (CCM) pela integração com 

seleção de variáveis foi discutida por Capizzi (2015), que revisou a eficiência e as 

vantagens da abordagem combinada no monitoramento de somente um subconjunto de 

variáveis potencialmente responsáveis pelo alarme fora de controle. Recentemente, 



15 
 

 
 

Peres e Fogliatto (2018) atualizaram e ampliaram o escopo daquele estudo ao apresentar 

uma revisão sistemática sobre a integração de métodos de seleção de variáveis com 

métodos de MSPC, abordando não somente o uso de cartas de controle para monitorar 

variáveis fora do controle, mas também os diversos frameworks utilizados para a 

seleção de variáveis de processo (sob controle ou em falha) com objetivo de aprimorar o 

monitoramento de processos multivariados. O uso de conhecimento de especialistas 

(ZARZO; FERRER, 2004), máquina de vetores de suporte (SVM ou support vector 

machine) (CHU; QIN; HAN, 2004) e algoritmos genéticos (GHOSH; RAMTEKE; 

SRINIVASAN, 2014) para selecionar variáveis com o objetivo de melhorar a detecção 

de falhas durante o monitoramento de processos multivariados são outros exemplos 

dessa aplicação. Peres e Fogliatto (2018) também destacaram a importância do 

desenvolvimento de pesquisas que combinem métodos de seleção de variáveis com 

matrizes de dados tridimensionais para eficientemente promover o diagnóstico em 

processos em bateladas. A identificação do grupo de variáveis que fornecem uma 

melhor classificação de bateladas leva ao aprimoramento do monitoramento de 

processo. 

Dado esse contexto, surgem as questões de pesquisa que norteiam a presente 

tese. Em primeiro lugar: (i) qual o status atual dos métodos que integram a seleção de 

variáveis com métodos de MSPC, e quais limitações os mesmos se propõem a superar? 

Em segundo lugar, dado que a fabricação em bateladas apresenta variações no tempo de 

duração do processo, surge a questão: (ii) qual o método de sincronização e alinhamento 

de dados de bateladas é mais adequado, visando ao aprimoramento da construção do 

modelo de monitoramento na Fase I? Finalmente, (iii) é possível melhorar o 

desempenho na detecção de falhas quando bancos de dados de processos em bateladas 

de elevada dimensionalidade são monitorados por um método que integra o MSPC com 

a seleção de variáveis? Somando-se a isto, verifica-se que a melhoria de métodos de 

MSPC para processos em bateladas é bastante restrita e pouco explorada na literatura 

recente. A partir dessas observações, a presente tese visa a aprofundar o estudo dessas 

questões e propõe o desenvolvimento de um método a ser aplicado em um estudo de 

caso com dados industriais reais. 
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1.1 TEMA DA TESE 

De acordo com a contextualização apresentada previamente, esta proposta de 

tese tem seu foco em mitigar as dificuldades de detecção de falhas quando um processo 

multivariado em bateladas de elevada dimensionalidade é monitorado. Assim, a 

inserção de uma etapa de seleção de variáveis prévia a elaboração das CCM através do 

procedimento de monitoramento multivariado desenvolvido por Nomikos e MacGregor 

(1994) é proposta. Almeja-se, desta forma, reduzir a probabilidade de alarmes falsos na 

detecção de falhas e, consequentemente, minimizar o número de variáveis a serem 

isoladas após um evento especial ser detectado.  

Nesta tese, entende-se por detecção de falhas o momento no qual um sinal fora 

do controle é emitido pelas CCM 𝑇2 ou 𝑄 baseadas em métodos de projeção (KOURTI; 

NOMIKOS; MACGREGOR, 1995; NOMIKOS; MACGREGOR, 1994; WOODALL; 

MONTGOMERY, 2014).  

Os processos em bateladas são caracterizados pela sua flexibilidade, duração 

finita, comportamento não-linear, estado não estacionário, duração de processo variável 

e tempos diferentes de duração de eventos-chave entre bateladas (GARCÍA-MUÑOZ et 

al., 2003; MARTIN; MORRIS; KIPARISSIDES, 1999; NOMIKOS; MACGREGOR, 

1995a). Esses são amplamente utilizados por indústrias químicas, farmacêuticas e de 

alimentos (GONZÁLEZ-MARTÍNEZ; FERRER; WESTERHUIS, 2011; KOURTI; 

NOMIKOS; MACGREGOR, 1995; RAMAKER et al., 2003) e resultam em bancos de 

dados de processo compostos por dezenas ou centenas de variáveis, tais como 

temperatura, pressão e concentração (MEGAHED; JONES-FARMER, 2013; 

NOMIKOS; MACGREGOR, 1995b; WANG; JIANG, 2009).  

Finalmente, métodos de seleção de variáveis são considerados aqueles que 

identificam o subconjunto de variáveis que carrega a informação mais relevante contida 

no conjunto completo de dados. Exemplos incluem técnicas de seleção forward e 

backward, ferramentas de mineração de dados e ferramentas de otimização, como 

algoritmos genéticos (ANZANELLO; FOGLIATTO, 2014). 

 

1.2  OBJETIVO DA TESE  

O objetivo geral desta tese é propor um método que integre a seleção de 

variáveis ao controle estatístico de processo multivariado para aprimorar a detecção de 
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falhas em bancos de dados de elevada dimensionalidade, oriundos de processos 

industriais em bateladas de duração variável. 

Para que seja possível alcançar o objetivo geral deste trabalho, é necessário 

atingir os seguintes objetivos específicos: 

a) Identificar as limitações encontradas pelos métodos MSPC no monitoramento de 

processos industriais. 

b) Entender como métodos de seleção de variáveis são integrados para promover a 

melhoria do monitoramento de processos de elevada dimensionalidade. 

c) Discutir sobre métodos para alinhamento e sincronização de bateladas aplicados 

a processos com diferentes durações. 

d) Definir o método de alinhamento e sincronização mais adequado para o 

tratamento de dados de bateladas, visando a aprimorar a construção do modelo 

de monitoramento na Fase I do SPC. 

e) Propor a seleção de variáveis, com propósito de classificação, prévia à 

construção das CCM baseadas em PCA para monitorar um processo em 

bateladas. 

f) Validar o desempenho de detecção de falhas da carta de controle multivariada 

proposta em comparação às cartas tradicionais 𝑇2 e 𝑄 baseadas em PCA. 

 

1.3 JUSTIFICATIVA DO TEMA E OBJETIVOS 

O tema desta tese envolve 3 áreas principais: (i) controle de processos 

multivariados de elevada dimensionalidade, (ii) seleção de variáveis integrada ao MSPC 

e (iii) processos industriais em bateladas. O aprimoramento do MSPC tem recebido 

destaque nos últimos anos. Tradicionalmente, a detecção de falhas baseada em métodos 

de projeção ocorre através de um conjunto de controle multivariado composto pelas 

cartas de Hotelling 𝑇2 e de resíduos 𝑄 nos espaços reduzidos (KOURTI; 

MACGREGOR, 1995; MACGREGOR et al., 1994; YAN; YAO, 2015). No entanto, a 

viabilidade dos métodos de monitoramento multivariado baseados em MPCA é 

fortemente comprometida em situações nas quais o tamanho das 𝐽𝐾 variáveis 

desdobradas é equivalente ou maior que o tamanho das observações (ou bateladas) 𝐼, 

com 𝐽𝐾/𝐼 → ∞ (JOHNSTONE; LU, 2009; LEE; LEE; PARK, 2012). Isto ocorre 

porque, nesses casos, o PCA tradicional produz resultados inconsistentes, visto que a 

matriz de covariância amostral se torna um estimador notoriamente deficiente, com uma 
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estrutura de autovalores e autovetores diferente da população original (AMINI, 2011; 

WANG; FAN, 2017). Assim, a busca por métodos que lidem adequadamente com a 

grande disponibilidade de dados fornecidos pelos processos computadorizados tem 

recebido destaque na literatura (CAPIZZI, 2015; WOODALL; MONTGOMERY, 

2014). Um aumento significativo nos estudos desta área de conhecimento tem sido 

verificado, sendo a integração com métodos de seleção de variáveis um tópico em 

crescente desenvolvimento, principalmente nos últimos 5 anos (PERES; FOGLIATTO, 

2018). Ainda assim, são escassas as aplicações identificadas na literatura quando o foco 

de interesse é o aprimoramento do monitoramento de processo em bateladas (CHU; 

QIN; HAN, 2004; YAN; KUANG; YAO, 2017; ZARZO; FERRER, 2004), o que 

justifica a necessidade de um maior aprofundamento deste tópico (PERES; 

FOGLIATTO, 2018). 

Em relação ao objetivo principal desta tese, destaca-se a importância deste 

desenvolvimento, tanto como base para futuros desenvolvimentos acadêmicos quanto 

para a aplicação industrial destes novos métodos. O novo método ‘Seleção de Variáveis 

de Pareto integrada a Análise de Componentes Principais Multidirecional’ (PVS-

MPCA ou Pareto Variable Selection – Multiway Principal Component Analysis) almeja 

minimizar a emissão de alarmes falsos e, consequentemente, mitigar a limitação prática 

dos gráficos de contribuição, de recorrer a todas as variáveis originais para isolar as 

variáveis responsáveis pela falha detectada no processo, auxiliando no posterior 

diagnóstico e restauração da conformidade. Ao se analisar somente um número reduzido 

de variáveis, torna-se mais fácil e rápido identificar as responsáveis por um evento 

especial (WANG; JIANG, 2009), evitando-se a elevação dos custos do processo ou a 

venda de um produto de qualidade inferior ao usuário final (NOMIKOS; 

MACGREGOR, 1995a). 

 

1.4 DELINEAMENTO DO ESTUDO 

Definidos os objetivos da tese e apresentada a justificativa da importância desta 

pesquisa, esta seção estabelece o delineamento do estudo pelo qual esses objetivos serão 

alcançados, considerando o método de pesquisa e o método de trabalho utilizados. 
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1.4.1 Método de Pesquisa 

De acordo com a forma de abordagem do problema, a pesquisa realizada nesta 

tese é classificada como quantitativa. Este tipo de abordagem baseia-se em métodos 

lógico-dedutivos que buscam explicar relações de causa/efeito e, através da 

generalização de resultados, possibilitar replicações (BERTO; NAKANO, 2000). O ato 

de mensurar variáveis de pesquisa é a característica mais marcante da abordagem 

quantitativa (MIGUEL et al., 2012). 

O método científico aplicado na elaboração dos artigos é o hipotético-dedutivo, 

que se inicia pela percepção de uma lacuna nos conhecimentos, impossibilitando a 

explicação de um fenômeno e originando um problema de pesquisa. Para tentar 

solucionar esse problema são formuladas hipóteses, e evidências empíricas que 

invalidem a hipótese são buscadas. Quando não é possível demonstrar qualquer caso 

concreto capaz de derrubar a hipótese, tem-se a sua corroboração, a qual não excede o 

nível do provisório. Assim, a hipótese torna-se válida, pois superou todos os testes, mas 

não definitivamente confirmada, já que qualquer momento poderá surgir um fato que a 

invalide (GIL, 2008; MARCONI; LAKATOS, 2003).  

Em relação aos objetivos, esta tese é classificada como pesquisa exploratória e 

aplicada. Segundo Gil (2008), a pesquisa exploratória tem como principal finalidade o 

esclarecimento e delimitação de um tema buscando desenvolver, elucidar e modificar 

conceitos e ideias a fim de proporcionar uma nova visão do problema. Dessa forma, é 

possível melhorar a compreensão do mesmo ou construir hipóteses pesquisáveis, 

passíveis de investigação mediante procedimentos mais sistematizados. A natureza 

aplicada se deve ao interesse na aplicação, utilização e consequências práticas dos 

conhecimentos gerados buscando solucionar problemas específicos, como as limitações 

encontradas no monitoramento de processos industriais em bateladas de elevada 

dimensionalidade. 

 

1.4.2 Método de Trabalho 

O desenvolvimento deste trabalho é realizado a partir de três artigos com 

objetivos específicos, os quais auxiliam o atingimento do objetivo geral da tese. Cada 

artigo e objetivo a ser alcançado faz uso de um método de trabalho específico. A 

estrutura do trabalho, os temas dos artigos, seus objetivos, questões de pesquisa e 

métodos são apresentados na Tabela 1.1. 
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Cabe ressaltar que os artigos são apresentados no formato de submissão aos 

periódicos internacionais estando, portanto, escritos em língua inglesa.  

 

Tabela 1. 1 Estrutura das etapas da pesquisa desenvolvida 

Estudos Objetivos  
Questões de 

Pesquisa  
Revisão Teórica  

Método de 

Pesquisa  

Artigo 1 (a)  

Identificar métodos que 

integram a seleção de 
variáveis ao controle 

estatístico de processo 

multivariado 

1. Qual o status atual dos 
métodos que integram a 

seleção de variáveis com 

métodos de MSPC, e quais 
limitações os mesmos se 

propõem a superar? 

1. Limitações dos métodos 

de MSPC 

2. Métodos de Seleção de 
Variáveis 

3. Etapas de monitoramento 

no Controle Estatístico de 
Processo 

Pesquisa qualitativa:  
1. Revisão sistemática de 

bibliografia 

Artigo 2 (b)  

Definir o método de 
alinhamento e 

sincronização de variáveis 
mais adequado para um 

banco de dados 

multivariado de um 
processo industrial em 

bateladas com duração 

variável 

2. Qual o método de 

sincronização e alinhamento 
de dados de bateladas é mais 

adequado, visando ao 

aprimoramento da construção 
do modelo de monitoramento 

na Fase I? 

1.Monitoramento de 
processos em bateladas 

2. Alinhamento e 

sincronização de dados de 

bateladas através do DTW 

3.Técnica de classificação 

por 𝑘𝑁𝑁 
4.Processo de fabricação do 

chocolate 

Pesquisa quantitativa: 

1. Análise comparativa dos 

métodos propostos na 

literatura baseada nos 

resultados obtidos pela 

técnica de classificação por 

𝑘𝑁𝑁 

Artigo 3 (c)  

Desenvolver um método 

que integre a seleção de 

variáveis às CCM baseadas 
em PCA visando a 

melhorar a detecção de 

falhas em bancos de dados 
de elevada 

dimensionalidade do 

processo industrial em 

bateladas 

3. É possível melhorar o 
desempenho na detecção de 

falhas quando bancos de 

dados de processos em 
bateladas de elevada 

dimensionalidade são 

monitorados por um método 

que integra o MSPC coma a 

seleção de variáveis? 

1. Métodos de seleção de 

variáveis com propósito de 

classificação de bateladas 
2. CCM baseadas em PCA 

3. Critérios de avaliação de 

desempenho de cartas de 

controle 

Pesquisa quantitativa: 

1. Comparar o desempenho 
do método proposto no 

monitoramento de um 

banco de dados de elevada 
dimensionalidade (obtido 

para o estudo de caso) com 

o monitoramento mediante 

o método tradicional 

usando CCM baseadas em 
PCA. 

(a) Artigo publicado no periódico Computers & Industrial Engineering. 

(b) Artigo submetido ao periódico Journal of Food Science and Technology, em fase de revisão. 

(c) Artigo em fase de submissão. 

 

O Artigo 1 - Variable selection methods in multivariate statistical process 

control: a systematic literature review (Métodos de seleção de variáveis no controle 

estatístico de processo multivariado: uma revisão sistemática de literatura) – busca, a 
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partir de uma revisão sistemática de literatura, identificar: (i) as limitações existentes 

nos métodos de MSPC, (ii) os métodos de seleção de variáveis integrados ao MSPC 

para superar essas limitações, e (iii) as etapas do monitoramento estatístico de processo 

mais abordadas por esses métodos integrados. Mediante pesquisa e seleção de artigos 

relacionados ao tema, os métodos foram identificados, classificados e descritos. O artigo 

contribui ao apresentar a evolução do estado da arte do tema e inova ao propor (i) a 

classificação das metodologias de acordo com a abordagem de seleção de variáveis 

utilizada, e (ii) a categorização dos estudos de acordo com seu objetivo e etapa de 

monitoramento de processo para o qual foi desenvolvido. Assim, clusters de trabalhos 

foram propostos, auxiliando na identificação de lacunas e desdobramento de 

oportunidades de pesquisa sobre o tema.  

O Artigo 2 – Strategies for synchronizing chocolate conching batch process data 

using dynamic time warping (Estratégias para sincronizar dados de processos em 

bateladas da conchagem do chocolate utilizando alinhamento temporal dinâmico) – 

busca selecionar o método de alinhamento e sincronização mais adequado para um 

banco de dados obtido de um processo de conchagem do chocolate, que apresenta 

bateladas com duração variável. O alinhamento e sincronização são necessários para 

que métodos de MSPC possam ser aplicados ao banco de dados. Em um banco de dados 

industrial do processo em bateladas da etapa de conchagem do chocolate ao leite foram 

aplicados três métodos baseadas no alinhamento temporal dinâmico (DTW ou Dynamic 

Time Warping), reportados por Kassidas, MacGregor e Taylor (1998), Ramaker et al. 

(2003) e González-Martínez, Ferrer e Westerhuis (2011). Os resultados são discutidos 

sob três pontos de vista: (i) da tecnologia de fabricação do chocolate, (ii) do poder de 

classificação das bateladas em conformes e não conformes mediante aplicação do 

método de classificação por k-vizinhos mais próximos (kNN ou k nearest neighbors), e 

(iii) do método mais adequado para tratamento de dados visando a aprimorar a 

construção do modelo de monitoramento na Fase I. Os três métodos se mostraram 

hábeis para promover o alinhamento e a sincronização, sendo o que apresentou os 

maiores valores das métricas de desempenho foi indicado como o mais adequado ao 

banco de dados analisado.  

O Artigo 3 – Fault detection in batch processes through variable selection 

integrated to multiway principal component analysis (Detecção de falhas em processos 

em bateladas através da integração da seleção de variáveis à análise de componentes 

principais multidirecional) – propõe um método de detecção de falhas baseado nas 
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CCM 𝑇2 e 𝑄 que lide com bancos de dados em bateladas de elevada dimensionalidade. 

Isso é alcançado mediante a aplicação do método de Seleção de Variáveis de Pareto 

(PVS ou Pareto Variable Selection), proposto por Anzanello et al. (2012), que seleciona 

um número reduzido de variáveis capazes de maximizar a acurácia de classificação das 

bateladas em conformes e não conformes. Posteriormente, esse subconjunto de variáveis 

selecionadas é utilizado na construção do modelo de referência para monitoramento das 

bateladas futuras. A escolha das variáveis selecionadas pelo método PVS foi 

corroborada pela análise técnica do processo de conchagem do chocolate ao leite, 

utilizado no estudo de caso. A melhora do desempenho da detecção de falhas obtida 

pela aplicação do método proposto, quando comparado ao método de CC baseadas em 

MPCA, demonstrou que as limitações do método tradicional foram superadas quando os 

bancos de dados com um número de variáveis muito superior ao de observações foi 

analisado.  

 

1.5 DELIMITAÇÕES DO ESTUDO 

O presente trabalho se concentra na análise de lacunas relacionadas a três temas 

relevantes para o controle de processos.  

Na área de MSPC, o foco está na melhoria da detecção de falhas pelas CCM 𝑇2 

e 𝑄 baseadas em MPCA. O monitoramento através de CCM de soma acumulada 

(MCUSUM) e média móvel exponencialmente ponderada (MEWMA) (BERSIMIS; 

PSARAKIS; PANARETOS, 2007) não fazem parte do escopo desta tese. Também 

estão excluídas as etapas de isolamento de variáveis, diagnóstico de falhas e intervenção 

no processo industrial, compreendidas na Fase II do monitoramento (WOODALL; 

MONTGOMERY, 2014). 

No que tange a seleção de variáveis, somente métodos com fins de classificação 

serão avaliados (ANZANELLO; ALBIN; CHAOVALITWONGSE, 2012), não sendo 

considerados métodos com propósito preditivo. A implementação da seleção de 

variáveis se dará mediante uso da abordagem wrapper, na qual o subconjunto de 

variáveis relevantes será determinado através de um procedimento iterativo envolvendo 

um ranking de importância de variável e um algoritmo para classificação de bateladas. 

Abordagens de filtro pré- e pós-processamento, e embarcada (GHOSH; RAMTEKE; 

SRINIVASAN, 2014; MEHMOOD et al., 2012) não serão abordadas.  
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Por fim, o método proposto é delimitado para monitoramento off-line (KOURTI, 

2003) e para processos industriais em bateladas. Um conceito mais amplo, que avalie 

processos contínuos em tempo real, não se encontra no escopo deste trabalho devendo 

ser alvo de pesquisas futuras.  

 

1.6  ESTRUTURA DA TESE 

Esta tese está organizada em cinco capítulos principais. No Capítulo 1 foram 

introduzidos o problema, o tema a ser desenvolvido, bem como os objetivos, 

justificando a importância da pesquisa dos pontos de vista acadêmico e prático. O 

capítulo também apresentou o método de trabalho, a estrutura e as delimitações do 

estudo. Na sequência, os capítulos 2, 3 e 4 apresentam os artigos desenvolvidos, 

conforme estrutura apresentada na Tabela 1.1. O Capítulo 5 aborda as conclusões da 

tese e sugestões de pesquisas futuras a serem desenvolvidas a partir dos resultados 

apresentados.  
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2 ARTIGO 1 – VARIABLE SELECTION METHODS IN MULTIVARIATE 

STATISTICAL PROCESS CONTROL: A SYSTEMATIC LITERATURE 

REVIEW 

Artigo publicado em Computers & Industrial Engineering 115 (2018)  

 

Abstract  

Technological advances led to increasingly larger industrial quality-related datasets 

calling for process monitoring methods able to handle them. In such context, the 

application of variable selection (VS) in quality control methods emerges as a promising 

research topic. This review aims at presenting the current state-of-the-art of the 

integration of VS in multivariate statistical process control (MSPC) methods. Proposals 

aligned with the objective were identified, classified according to VS approach, and 

briefly presented. Research on the topic has considerably increased in the past five 

years. Thirty methods were identified and categorized in 10 clusters, according to the 

objective of improvement in MSPC and the step of process monitoring they were aimed 

to improve. The majority of the propositions were either targeted at exclusively 

monitoring potential out-of-control variables or improving the monitoring of in-control 

variables. MSPC improvements were centered in principal component analysis (PCA) 

projection methods, while VS was mainly carried out using the Least Absolute 

Shrinkage and Selection Operator (LASSO) method and genetic algorithms. Fault 

isolation was the most addressed step in process monitoring. We close the paper 

proposing five topics for future research, exploring the opportunities identified in the 

literature. 

 

Keywords: Variable selection. Multivariate statistical process control. Industrial process 

monitoring. High dimensional dataset. 

 

2.1 INTRODUCTION 

In recent decades, technological advances significantly reduced costs and 

barriers related to information collection and storage in industrial environments. 

Consequently, databases with readings from hundreds or thousands of variables 

describing the behavior of industrial processes have become available, calling for the 
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development of new multivariate statistical process control (MSPC) methods 

(MEGAHED; JONES-FARMER, 2013; MEHMOOD et al., 2012; VAN AELST; 

WELSCH; ZAMAR, 2010). Traditionally, multivariate control charts (MCCs) based on 

projection methods such as Principal Component Analysis (PCA) or Partial Least 

Squares (PLS) regression have been used to monitor multivariate processes. In those 

charts, after an out-of-control (OOC) alarm is triggered, the projected point is 

decomposed in its original variables, which are then analyzed using Contribution Plots 

to determine which variables are responsible for the alarm. As the dimensionality of the 

database under analysis increases, the decomposition step becomes infeasible due to the 

extensive work involved in the construction and interpretation of Contribution Plots. In 

such scenarios, the integration of VS methods to MSPC approaches become a promising 

research topic (KOURTI, 2005; MARTIN; MORRIS; KIPARISSIDES, 1999; 

MEGAHED; JONES-FARMER, 2013; MEHMOOD et al., 2012). 

The main objective of VS methods is to identify a subset of variables that carries 

most of the relevant information contained in the complete dataset. Some common VS 

methods applied in industrial datasets are forward selection (FS) and backward selection 

techniques, data mining tools, PLS, PCA, and clustering. Optimization tools, such as 

linear programming and genetic algorithms (GA), have also found wide application in 

the analysis of more complex systems (ANZANELLO; FOGLIATTO, 2014).  

The improvement of MCCs through integration with VS methods has been 

discussed by Capizzi (2015), who reviewed the efficiency and advantages of the 

combined approach when monitoring only a subset of variables that are potentially 

responsible for a fault alarm. However, the scope of methods integrating VS and MSPC 

is much broader, including not only MCCs to monitor OOC variables, but also several 

frameworks to promote the improvement of process monitoring. One other review by 

Anzanello and Fogliatto (2014) covered relevant VS methods in Chemometrics and 

industrial applications, aiming at a better prediction of continuous and categorical 

response variables; their review, however, did not cover works that propose VS as a 

means to attain MSPC improvement. 

This paper is the first to present the current state-of-the-art on VS methods 

integrated to MSPC through a systematic review. We provide answers to the following 

research questions: (i) which limitations in MSPC methods should be overcome?, (ii) 

which VS methods are used to improve MSPC?, (iii) which steps of process monitoring 

in statistical process control (SPC) were studied?, and (iv) which research opportunities 
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arise from gaps in the current state-of-the-art on the subject?. To answer those 

questions, methods available in the literature were identified, grouped according to 

similarity, and presented. It is not our objective to explain in depth the mathematical 

fundamentals of methods revised, but to provide a sufficient description that allows 

their comparison and visualization of deployments proposed. 

This article is organized in five sections, in addition to the present introduction. 

In Section 2.2, the methodology used for the systematic review is presented. Study 

characterization is given in section 2.3. The proposed VS-MSPC integration methods 

are presented in section 2.4, and process monitoring in SPC and performance of 

developed methods in section 2.5. Finally, conclusions and research opportunities are 

given in section 2.6. Table 2.1 shows the acronyms used in this article.  

 

Table 2. 1 Acronyms used in the article 

Acronym Description Acronym Description 

AIC Akaike information criterion  MEWMA 
Multivariate exponentially 

weighted moving average 

ADR Adaptive dimension reduction MKPCA multi-model kernel PCA 

ARL Average run length MPLS Multiway partial least squares 

BBGVS 
Bootstrapping-based 

generalized variable selection 
MRR Missing reconstruction ratio 

BSPCA Bayesian subspace PCA MSPC 
Multivariate statistical process 

control 

CC Control chart MSN Multivariate standardized shift 

CI Combined index NFDI Nonlinear fault detection index 

CUSUM Cumulative sum NIR Near infrared 

2-D-DPCA 
Two-dimensional dynamic 

principal component analysis 
NSGA-II-JG 

Non-dominated sorting genetic 

algorithm and a jumping gene 

operator 

DISSIM Dissimilarity OOC Out-of-control 

EN Elastic net OPA Orthogonal projection approach 

EWMA 
Exponentially weighted moving 

average 
PCA Principal component analysis 

FA Factor analysis PCR Principal component regression 

FAR False alarm rate PCS Principal component subspace 

FBPCA Fault-bayesian PCA PLS Partial least squares 

FDA Fisher’s discriminant analysis RMSEP 
Root-mean-square error in 

prediction 

FIR Fuzzy inductive reasoning ROS Region of Support 

FS Forward selection RS Residual subspace 

GA Genetic algorithm SFFS 
Sequential forward floating 

selection 

GLR Generalized log-likelihood ratio SDISSIM Sparse dissimilarity 

IC In-control SPC Statistical process control 

LAR Least angle regression SPLS Sparse partial least squares 

LARSEN 
Least angle regression and 

elastic net algorithm 
SR Spatial rank 
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Acronym 

(continue) 
Description 

Acronym 

(continue) 
Description 

LASSO 
Least absolute shrinkage and 

selection operator 
SVM Support vector machine 

LEWMA LASSO-based EWMA TDB Two-dimensional Bayesian 

MCC Multivariate control chart TEP Tennessee eastman process 

MCUSUM Multivariate cumulative sum U-PLS Unfold PLS 

MDR Missed detection rate VS Variable selection 

 

2.2 METHOD 

The aim of this article is to systematically review the literature on VS methods 

integrated to MSPC, guided by the research questions in section 2.1. To select the group 

of articles to be covered in this review, a series of steps was adopted to ensure 

appropriate rigor and repeatability.  

Databases surveyed were Science Direct and Web of Science. The choice was 

restricted to these two databases since they host all relevant JCR-indexed journals in the 

field of quality control. Articles in English were considered. Keywords used in the 

search were: (“variable selection”) AND ((multivariate "statistical process control") 

OR ("fault monitoring") OR (“monitoring process”) OR (“process monitoring”) OR 

(“monitoring system”)) OR ((batch)) OR (("manufacturing applications") OR 

("industrial applications") OR (“discrete manufacturing”)), provided it was present in 

article’s title, abstract or keywords. Boolean operators “AND” and “OR” were used to 

allow combining groups of words in the search. Only articles published in scientific 

journals were considered. Search in databases took place on September 28, 2017; no 

restriction was imposed on publication timespan. Exclusion criteria were: (i) repeated 

articles, and (ii) articles that did not mention the integration of VS methods and MSPC 

in the title or abstract. The final group of articles was entirely read, such that results 

could be presented and discussed.  

The sequence of steps described above, and the number of items found in each 

step are given in Figure 2.1. 
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Figure 2. 1 Search steps and results 

 

2.3 STUDY CHARACTERIZATION 

The number of studies addressing the integration of MSPC and VS methods 

revealed that the topic has been the subject of a growing number of articles in recent 

years. Table 2.2 presents the articles included in this review ordered by year of 

publication, and divided in three time periods, displaying an important increase in the 

number of publications in the most recent period. Articles are also identified according 

to journal title and country of origin. 
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Table 2. 2 Evolution by year, journal title and country of origin of selected articles 

Authors Year Journal Title Country Number of Articles per Period 

    2000-2005 2006-2011 2012-2017 

Tur et al. 2002 International Journal of General Systems Spain and USA 

6 

  

Chu, Lee and Han 2004 Industrial & Engineering Chemistry Research South Korea   

Gourvénec, Capron, and Massart 2004 Analytica Chimica Acta Belgium   

Zarzo and Ferrer 2004 Chemometrics and Intelligent Laboratory Systems Spain   

Chiang, Pell, and Seasholtz 2004 IFAC Proceedings Volumes USA   

Chu, Qin and Han 2004 Industrial & Engineering Chemistry Research Korea and USA   

Wang and Jiang 2009 Journal of Quality Technology China   

8 

  

Yao et al. 2009 Industrial & Engineering Chemistry Research China   

Zou and Qiu 2009 Journal of the American Statistical Association China and USA   

Wang and Tsung 2009 Quality and Reliability Engineering International China   

González and Sánchez 2010 Journal of Quality Technology Spain     

Ge, Zhang, and Song 2010 Journal of Process Control China   

Capizzi and Masarotto 2011 Technometrics Italy   

Ge, Gao, and Song 2011 Chemical Engineering Science China   

Jiang, Wang, and Tsung 2012 Journal of Quality Technology China     

16 

Jeong et al. 2012 International Journal of Hydrogen Energy South Korea     

Zou, Ning, and Tsung 2012 Annals of Operations Research China   

Ghosh, Ramteke, and Srinivasan 2014 Computers and Chemical Engineering Singapore     

Giannetti et al. 2014 Computers & Industrial Engineering United Kingdom     

Yan and Yao 2015 Chemometrics and Intelligent Laboratory Systems China and Taiwan     

Nishimura, Matsuura, and Suzuki 2015 Statistics & Probability Letters Japan     

Kuang, Yan, and Yao 2015 Journal of Process Control China and Taiwan   

Jiang, Yan, and Huang  2016 IEEE Transactions on Industrial Electronics China and Canada   

Zhao and Wang 2016 Journal of Process Control China   

Jiang and Huang 2016 Journal of Process Control Canada   

Li et al. 2017 Computers & Industrial Engineering China   

Abdella et al. 2017 Quality and Reliability Engineering International Qatar and USA   

Shinozaki and Iida 2017 Communications in Statistics – Theory and Methods Japan   

Yan, Kuang, and Yao 2017 ISA Transactions China and Taiwan   

Zhao and Gao 2017 Control Engineering Practice China   
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In the first period (2000 – 2005), most of the methods were applied to batch 

industrial processes, and the VS was proposed with the aim of creating new frameworks 

to improve modeling and prediction tasks performed using Fuzzy Inductive Reasoning 

(FIR) and PLS regression, and to improve monitoring of normal observations using the 

Orthogonal Projection Approach (OPA), and classification methods, such as Fisher 

Discriminant Analysis (FDA) and Support Vector Machine (SVM). The enhancement 

of MCCs and the monitoring of processes through PCA were introduced in the second 

period (2006 – 2011), and investigated in further depth in the third period (2012 – 

2017), along with articles about PLS regression, the dissimilarity (DISSIM) method, 

and the 𝑇² test. The evolution in the number papers published in these three periods 

corroborates the growing interest on the subject in the literature. From 2000 to 2005, 

there were 6 published papers (averaging 1.0 per year); from 2006 to 2011 the average 

increased to 1.3 papers/year, totaling 8 papers; in the most recent period (2012-2017) 

the number of papers doubled, averaging 2.7 papers/year, and accounting for 53.3% of 

the articles selected for this review.  

China was the country of origin of most authors, contributing with 50% of the 

papers, followed by the United States of America, with 5 papers, Spain and Taiwan with 

3 papers each, and South Korea and Japan, with 2 papers each. Articles reviewed here 

were published in 20 different journals. The largest number of articles appeared in 

Journal of Process Control (4), followed by Journal of Quality Technology (3), and 

Computers & Industrial Engineering, Chemometrics and Intelligent Laboratory 

Systems, Industrial & Engineering Chemistry Research, and Quality and Reliability 

Engineering International (2 each). Remaining journals presented one publication each, 

displaying a diversity of applications on the subject. 

Limitations encountered in the application of MSPC methods and specific 

research objectives motivated by them are summarized in Table 2.3, providing an 

answer to our first research question (‘which limitations in MSPC methods should be 

overcome?’). 
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Table 2. 3 Limitations of MSPC methods and specific objectives of articles covered in 

this review 

Authors Limitations Objectives 

Tur et al. (2002) The Fuzzy Inductive Reasoning (FIR) 

technique is well suited for qualitative 

behavioral modeling and simulation of 

physical systems. However, due to its 

computational complexity, VS algorithms 

are required 

 

Find a VS algorithm with lower 

computational complexity, in order to select 

a set of candidate input variables and reduce 

the model search space of FIR yielding high 

predictability and specificity qualitative 

models for the system outputs 

 

Chu, Lee, and 

Han (2004) 

 

The use of all unfolded variables from a 

three-way batch process data matrix may 

impair the prediction performance of PLS 

models, since only a small portion of 

those process variables are correlated to 

quality response variables 

 

Improve the prediction performance of PLS 

models in batch processes through the 

selection of  process variables related to 

quality response variables 

 

Gourvénec, 

Capron, and 

Massart (2004) 

 

In chemical process monitoring, the time 

required to acquire one spectrum and to 

transfer it to the database is too high. 

Moreover, the number of available spectra 

during a certain period could decrease if 

many absorbances at several wavelengths 

are acquired 

 

Implement VS to yield smaller spectra, 

which allows the acquisition and analysis of 

a higher volume of data in a given period, 

and improves the online prediction of 

concentration profiles  

 

Zarzo and Ferrer 

(2004) 

 

In a batch process, when several process 

variables and the quality output are 

affected by a fault, all variables are 

considered to be correlated with the 

quality response variable, but it is difficult 

to reveal which process variables are 

actually responsible for the variation in 

process quality 

 

Select variables that potentially affect the 

quality of a chemical batch process, 

allowing the determination of optimal 

process conditions using Design of 

Experiments 

 

Chiang, Pell, and 

Seasholtz (2004) 

The contribution charts perform well in 

simple faults’ identification, but are less 

effective in identifying complex process 

faults 

 

Develop an alternative method for 

identifying process faults 

Chu, Qin, and 

Han (2004) 

 

Due to the multimodal distribution of 

normal data in processes with multiple 

operation modes, fault detection using 

PCA may be seriously compromised 

 

Propose a novel method for improved fault 

detection in multimode operation along with 

the proper identification of operation modes 

 

Wang and Jiang 

(2009) 

 

In high dimensional datasets it is difficult 

to detect potential process shifts and 

locate root causes of faults 

Propose the VS-MSPC chart to monitor 

variables that are probably responsible for 

OOC alarms, simultaneously improving 

fault detection performance and isolating 

their root causes 

 

Yao et al. (2009) The assumption that the support region 

(ROS) in a two-dimensional dynamic 

principal component analysis (2-D-

DPCA) model is limited to the quarter 

plane and have a regular shape is not 

always reasonable in certain batch 

processes 

 

 

Present a solution to the problem of ROS 

determination for the 2-D-DPCA model 
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Authors Limitations (continue) Objectives (continue) 

Zou and Qiu 

(2009) 

MSPC CC with quadratic charting 

statistics are powerful in detecting shifts 

occurring due to changes in the majority 

of components in multivariate process 

mean vector. However, in practice shifts 

are often due to only a few of them. Also, 

in high dimensional processes such 

control charts, as well as conventional 

fault isolation approaches, are infeasible, 

because the total number of possible shifts 

directions increases exponentially 

 

Propose an MSPC control chart capable of 

detecting shifts in one or more mean vector 

components efficiently, implying in 

reasonably small computations and 

providing an effective post signal diagnostic 

tool for identifying shifted components 

 

Wang and Tsung 

(2009) 

The identification of non-informative 

variables is difficult in processes with 

dynamic shifts, as the contribution of each 

variable changes continuously over time 

 

Propose an adaptive dimension reduction 

scheme that adjusts the dimensions of an 

MCC online based on real-time information 

collected from the process 

 

González and 

Sánchez (2010) 

 

When redundant variables are monitored, 

process control costs unnecessarily 

increase. It may also occur that a variable 

with large measurement error is measured 

instead of another highly correlated 

variable with lower measurement error 

 

Select a subset of variables carrying the 

largest amount of information about the 

process, improving its monitoring and 

avoiding the increase in costs 

 

Ge, Zhang, and 

Song (2010) 

Traditional PCA-based monitoring 

methods assume that process variables are 

linear, normally distributed, and operated 

in single mode. In reality, those 

restrictions are easily violated in data 

obtained from complex processes 

 

Develop an improved nonlinear process 

monitoring method 

Capizzi and 

Masarotto (2011) 

VS-MSPC and LEWMA CC considered 

cases in which shifts directly involve 

components of the mean vector, but not 

shifts occurring at some stage of a 

multistage process or shifts involving the 

regression coefficients of a general linear 

profile. Those CCs were also not able to 

detect increases in process variability 

 

Develop a new CC for fault detection of 

shifts in both the mean and the total 

variability of multidimensional processes 

Ge, Gao, and 

Song (2011) 

Processes with nonlinear and multimode 

behaviors are usually monitored 

separately, calling for the development of 

a monitoring approach which considers 

both behaviors 

 

Develop an efficient monitoring method for 

processes with both nonlinear and 

multimode characteristics 

Jiang, Wang, and 

Tsung (2012) 

 

VS-MSPC chart is a Shewhart-type chart 

that only uses information from the 

current process observation 

 

Propose the VS-MEWMA chart that 

combines a VS strategy and the 

accumulation of recent process information 

Jeong et al. (2012) 

 

In an electricity generation system, false 

alarms occurs quite frequently and 

simultaneously, and faults involving drift 

of multiple variables are usually not 

detected 

 

 

 

 

Reduce the number of false alarms and 

improve fault detection using a VS heuristic 

method based on PCA and Factor analysis 
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Authors Limitations (continue) Objectives (continue) 

Zou, Ning, and 

Tsung (2012) 

A drawback in the existing parametric 

profile monitoring methods is that if 

number of profile parameters is large, 

their detection ability tends to decline 

substantially. Moreover, it is also 

challenging to identify which parameter(s) 

have changed after an alarm is triggered 

 

Design an efficient SPC scheme for 

multivariate profile monitoring and 

diagnosis 

Ghosh, Ramteke, 

and Srinivasan 

(2014) 

 

The use of all measured variables to build 

a monitoring model could impair process 

monitoring performance by MSPC 

methods 

Built a reduced PCA model based on the 

subset of most relevant variables identified 

by GA, to maximize the monitoring 

performance in a multi-fault analysis 

 

Giannetti et al. 

(2014) 

 

Discovering the root causes of defects in 

the context of foundries by 

simultaneously analyzing process data 

containing a mixture of categorical and 

continuous variables is a challenging task 

Extend the approach based on the use of co-

linearity index and penalty matrix 

(RANSING et al., 2013) to data containing a 

mixture of continuous and categorical 

variables, and discover the optimal process 

settings that are most correlated with 

responses, improving fault diagnosis via 

PCA 

 

Yan and Yao 

(2015) 

 

In a process with massive amount of 

variables, when fault directions are 

unavailable and historical fault data are 

insufficient the computational burden to 

solve conventional reconstruction-based 

methods is often too heavy to be carried 

out online 

 

Develop a method based on the LASSO 

algorithm to reconstruct variables that are 

potential responsible for faults, improving 

fault isolation via PCA 

 

Nishimura, 

Matsuura, and 

Suzuki (2015) 

 

VS-MSPC and the VS-MEWMA CC may 

have their performance impaired if the 

number of selected variables in VS is not 

equal, or nearly equal, to a predetermined 

number 

 

Propose a new criterion to establish the 

number of selected variables in VS-

MEWMA charts, resulting in the AIC-

MEWMA CC 

 

Kuang, Yan, and 

Yao (2015) 

 

In traditional fault isolation methods 

faulty variables may influence the 

contributions of non-faulty variables 

(contribution plots), all candidate fault 

directions are assumed to be known 

(reconstruction-based methods), and 

sufficient historical fault data are required 

for model training (pattern classification 

techniques) 

 

Promote another point of view for root-

cause diagnosis through the development of 

a fault isolation method that provides 

information on the relevance of process 

variables for the detected faults 

 

Jiang, Yan, and 

Huang (2016) 

 

When using a single PCA model for all 

faults (GHOSH; RAMTEKE; 

SRINIVASAN, 2014) it is disregarded 

that the subset of relevant variables for 

one fault may yield poor monitoring 

performance of other faults 

 

Develop a method for fault isolation based 

on the selection of optimal subsets of 

variables, allowing the modelling of fault 

effects 

 

Zhao and Wang 

(2016) 

 

Difficulty in deciding which process 

variables to include in a reconstruction 

model to more effectively explore fault 

effects, and thus correct the alarm signals 

for fault isolation 

 

Apply the faulty VS idea to reconstruction 

modeling building a new method for fault 

isolation 
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Authors Limitations (continue) Objectives (continue) 

Jiang and Huang 

(2016) 

Traditional distributed monitoring 

schemes are employed to deal with large-

scale processes that are assumed to have 

been properly decomposed. However, that 

is a difficult task and may not be true in 

several practical applications. Correct 

fault diagnosis in distributed monitoring is 

also an issue 

 

Introduce a performance-driven process 

decomposition and a fault isolation system 

for distributed process monitoring 

 

 

 

Li et al. (2017) 

 

The VS-MSPC and VS-MEWMA 

requires known IC mean 𝜇0 and 

covariance matrix 𝚺, or a large enough IC 

dataset to estimate them. Also in the 

modified VS-MEWMA the control limit 

cannot be obtained by simulation when 

the parameters of the underlying 

distribution are unknown 

 

Propose the SR-VSMEWMA which 

explores a self-starting technique to 

substantially reduce the amount of IC data 

required to construct the VS-MEWMA CC 

 

Abdella et al. 

(2017) 

New CCs, such as VS-MEWMA, were 

developed to deal with the performance 

degradation of MCCs in high-dimensional 

SPC applications. However, the VS-

MEWMA chart may deteriorate its 

performance in detecting small process 

changes when the VS procedure 

malfunctions 

 

Develop a MCUSUM-based method to 

improve sensitivity to detect changes in the 

mean of process variables, improve the 

detection of small mean changes in the mean 

vector of multivariate normal processes, and 

provide useful information to identify faulty 

variables in high-dimensional processes 

 

Shinozaki and 

Iida (2017) 

Increasing the number of variables does 

not necessarily lead to increased power, or 

the probability that an abnormal item is 

detected, even when parameters of the 

distribution are known. Testing 

procedures proposed for increased power 

require VS methods to seek for the 

variables’ subset with largest power 

 

Handle the problem of detecting abnormal 

items based on a 𝑇² test, and propose a 

simple and effective VS method based on 

unbiased estimators of the detection power 

of subsets 

Yan, Kuang, and 

Yao (2017) 

LASSO-based and EN-based methods 

overcome drawbacks of contribution plots 

and reconstruction-based methods in fault 

isolation, but are not applicable to batch 

process data 

 

Develop a multivariate fault isolation 

method that is particularly useful for batch 

process data analysis 

Zhao and Gao 

(2017) 

The DISSIM method has been 

successfully used for detection of 

incipient faults, but fault isolation of 

abnormal variables that distort the 

variable covariance structure has not been 

well addressed 

 

Develop a variable isolation procedure that 

takes into account the data distribution 

structure and does not need any a priori 

fault knowledge 

  

 

Fifteen MSPC and analytical methods were adapted to overcome the limitations 

of monitoring high dimensional industrial datasets. Most improvements (13 of 30 

methods) targeted at PCA and PLS projection methods. The improvement in 

exponentially weighted moving average (EWMA)-based methods was reported in five 

papers; reconstruction-based methods and FDA were addressed by two methods each. 
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Evaluating the objectives reported, three main goals in adaptations of MSPC methods 

were identified; they were: exclusive monitoring of potential OOC variables 

(ABDELLA et al., 2017; CAPIZZI; MASAROTTO, 2011; JIANG; WANG; TSUNG, 

2012; KUANG; YAN; YAO, 2015; LI et al., 2017; NISHIMURA; MATSUURA; 

SUZUKI, 2015; SHINOZAKI; IIDA, 2017; WANG; JIANG, 2009; YAN; KUANG; 

YAO, 2017; YAN; YAO, 2015; ZHAO; WANG, 2016; ZOU; NING; TSUNG, 2012; 

ZOU; QIU, 2009) better modeling and prediction of response variables (CHU; LEE; 

HAN, 2004; TUR et al., 2002; ZARZO; FERRER, 2004), and improvement in the 

monitoring of in-control (IC) variables (CHIANG; PELL; SEASHOLTZ, 2004; CHU; 

QIN; HAN, 2004; GE; GAO; SONG, 2011; GE; ZHANG; SONG, 2010; GHOSH; 

RAMTEKE; SRINIVASAN, 2014; GIANNETTI et al., 2014; GONZÁLEZ; 

SÁNCHEZ, 2010; GOURVÉNEC; CAPRON; MASSART, 2004; JEONG et al., 2012; 

JIANG; HUANG, 2016; JIANG; YAN; HUANG, 2016; WANG; TSUNG, 2009; YAO 

et al., 2009; ZHAO; GAO, 2017). 

 

2.4 PROPOSED VS-MSPC INTEGRATION METHODS 

In this section, 30 methods identified in our search are classified and briefly 

presented. Classification was carried out according to the approach proposed to 

integrate VS into MSPC, namely: Filter and Wrapper. Filter-based approaches were 

divided according to their strategy regarding the VS step, as follows: Preprocessing, in 

which the complete set of variables was reduced to a subset of relevant ones prior to the 

application of the MSPC method, and Postprocessing, in which the subset of relevant 

variables was defined from the outputs of the monitoring models. In wrapper 

approaches the subset of relevant variables was determined through an iterative 

procedure involving the VS step and the MSPC method chosen for monitoring 

(GHOSH; RAMTEKE; SRINIVASAN, 2014; MEHMOOD et al., 2012). Among the 30 

methods reviewed here, 16 were classified in the Preprocessing Filter class, 2 in the 

Postprocessing Filter class, and 12 in the Wrapper class. Figure 2.2 displays how VS 

and MSPC interact in each class. 
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                                                                      (a.2     (a.2) 

 

                                                                                                                                    (b)                                                                                         

                                                                                                                       

Figure 2. 2 Interaction between VS and MSPC steps in class (a.1) Preprocessing Filter 

Approach, (a.2) Postprocessing Filter Approach, and (b) Wrapper Approach 

 

A summary of the proposed methods informing the MSPC and VS strategies 

adopted in each case, in addition to the VS approach class, type of process, branch of 

industrial application, steps in SPC monitoring, and structure of the method they are 

aimed at is presented in Table 2.4. With that, our second research question (‘which VS 

methods are used to improve MSPC?’) is addressed.  

The most frequently used methods were Least Absolute Shrinkage and Selection 

Operator (LASSO) and GA, with five methods each. LASSO-based methods were 

developed to improve fault isolation through the development of two new EWMA-

based control charts, one new reconstruction-based framework, one framework to 

improve the dissimilarity distribution concept, and one framework that uses 

discriminant analysis. With the objective of improving the monitoring of IC variables 

using PCA and FDA, GAs were applied to develop new frameworks able to deal with 

fault detection and isolation. FS was proposed in four studies to improve the 

performance of MCCs through the selection of OOC variables that should be monitored. 

Remaining methods were based on different VS methods, which will be presented in 

subsections to follow.  
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Table 2. 4 Main characteristics of methods reviewed 

   
  Proposed Method 

Adapted Multivariate 

SPC and Analytical 

Methods 

Variable Selection 

Method 

Variable 

Selection 

Approach Class 

Process Application 
Step in SPC 

monitoring 

Method 

Structure 

2
0

0
0
-2

0
0

5
 

Tur et al. (2002) VS in FIR Qualitative Modeling FIR 

Multiple correlation 

coefficients 

PCA (B2 method) 

Cluster Analysis 

Filter 

(Preprocessing) 
Batch 

Steam 

Generator 
Detection Framework 

Chu, Lee and Han 

(2004) 
PLS via BBGVS PLS Regression 

SFFS (search 

algorithm) and 

minimization of the 

RMSEP from a 

multiple linear 

regression (selection 

criterion) 

Filter 

(Preprocessing) 
Batch 

Chemical 

Industry 
Detection Framework 

Gourvénec, Capron, 

and Massart (2004) 
GA applied to OPA OPA GA Wrapper Batch 

Chemical 

Industry 
Detection Framework 

Zarzo and Ferrer 

(2004) 

U-PLS integrated with VS and 

Block-wise PCR integrated with 

VS 

U-PLS 

PCR 

Technical knowledge 

of the process 

Filter 

(Postprocessing) 
Batch 

Chemical 

Industry 
Diagnosis Framework 

Chiang, Pell, and 

Seasholtz (2004) 
GA incorporated with FDA FDA GA Wrapper Continuous 

Chemical 

Industry 
Isolation Framework 

Chu, Qin and Han 

(2004) 

 

SVM integrated to entropy-

based VS 

 

SVM 

SFFS (search 

algorithm) and entropy 

concept (selection 

criterion) 

Filter 

(Preprocessing) 
Batch 

Semiconductor 

Industry 
Detection Framework 

2
0

0
6
-2

0
1

1
 

Wang and Jiang 

(2009) 
VS-MSPC control chart 

Generalized 

likelihood ratio test 
FS 

Filter 

(Preprocessing) 
Continuous 

Timber 

Industry 
Isolation 

Control 

Chart 

Yao et al. (2009) 
2-D-DPCA with autodetermined 

Support Region 
2-D-DPCA 

Stepwise procedure 

AIC 

Filter 

(Preprocessing)  
Batch 

Simulated 

Process 
Isolation Framework 

Zou and Qiu (2009) LEWMA control chart MEWMA 
LASSO Regression 

LAR Regression 

Filter 

(Preprocessing) 
Continuous 

Chemical 

Industry 
Isolation 

Control 

Chart 
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 Proposed Method (continue) 

Adapted Multivariate 

SPC and Analytical 

Methods 

Variable Selection 

Method 

Variable 

Selection 

Approach Class 

Process Application 
Step in SPC 

monitoring 

Method 

Structure 

Wang and Tsung 

(2009) 
ADR-2 control chart T² chart MSN index 

Filter 

(Preprocessing) 
Continuous 

Simulated 

process  
Isolation 

Control 

Chart 

González and Sánchez 

(2010) 

Two-stage procedure for 

selection and evaluation of 

variables 

PCA 
Oblique rotation 

method 
Wrapper Continuous 

Automotive 

Industry 
Detection Framework 

Ge, Zhang, and Song 

(2010) 
BSPCA method PCA 

Subspace contribution 

index 

 

Filter 

(Preprocessing) 

 

Continuous 
Chemical 

industry 
Isolation 

Control 

Chart 

Capizzi and Masarotto 

(2011) 
LAR-EWMA control chart EWMA LAR 

Filter 

(Preprocessing) 
Continuous 

Semiconductor 

manufacturing 
Detection 

Control 

Chart 

Ge, Gao, and Song 

(2011) 
TDB method PCA 

Weight index 

Correlation analysis 

Filter 

(Preprocessing) 

 

Continuous 
Chemical 

industry 
Detection 

Control 

Chart 

2
0

1
2
-2

0
1

7
 

Jiang, Wang, and 

Tsung (2012)  
VS-MEWMA control chart 

VS-MSPC control 

chart 

MEWMA control 

chart 

FS  
Filter 

(Preprocessing) 
Continuous 

Footwear 

Industry 
Isolation 

Control 

Chart 

Jeong et al. (2012) 
Heuristic recursive VS method 

based on PCA and FA 
PCA 

Heuristic recursive VS 

method using FA 
Wrapper Continuous 

Energy 

Industry 
Detection Framework 

Zou, Ning, and Tsung 

(2012) 

LEWMA control chart for 

multivariate linear profile 

monitoring 

MEWMA 
LASSO Regression 

LAR Regression 

Filter 

(Preprocessing) 
Continuous 

Logistics 

service 
Isolation 

Control 

Chart 

Ghosh, Ramteke, and 

Srinivasan (2014) 
NSGA-II-JG based VS scheme PCA GA Wrapper Continuous 

Chemical 

Industry 
Detection Framework 

Giannetti et al. (2014) 
Co-linearity index to analyze 

mixed data 
PCA 

Co-linearity Index 

Graph 

Individual Penalty 

Matrix Approach 

Interaction Individual 

Penalty Matrix 

Approach 

Filter 

(Postprocessing) 
Continuous 

Metallurgical 

Industry 
Diagnosis Framework 

Yan and Yao (2015) 
Reconstruction-based fault 

isolation method using LASSO 

Reconstruction-based 

approach 

LASSO Regression 

LAR Regression 
Wrapper Continuous 

Chemical 

Industry 
Isolation Framework 
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  Proposed Method (continue) 

Adapted Multivariate 

SPC and Analytical 

Methods 

Variable Selection 

Method 

Variable 

Selection 

Approach Class 

Process Application 
Step in SPC 

monitoring 

Method 

Structure 

2
0

1
2
-2

0
1

7
 

Nishimura, Matsuura, 

and Suzuki (2015) 
AIC-MEWMA control chart 

VS-MEWMA control 

chart 

FS 

AIC 

Filter 

(Preprocessing) 
Continuous 

Metallurgical 

Industry 
Isolation 

Control 

Chart 

Kuang, Yan, and Yao 

(2015) 

LASSO-based method 

EN-based method 
FDA 

LASSO Regression 

Ridge Regression 

LAR Regression 

Wrapper Continuous 
Chemical 

Industry  
Isolation Framework 

Jiang, Yan, and Huang 

(2016) 

FBPCA process monitoring 

method 

PCA 

Contribution plots 
GA Wrapper Continuous 

Chemical 

Industry 
Isolation Framework 

Zhao and Wang 

(2016) 

Faulty VS applied to 

reconstruction modeling 

Reconstruction-based 

approach 

Recursive VS method 

based on PCA 

decomposed 

subspaces 

Wrapper Continuous 
Chemical 

Industry 
Isolation Framework 

Jiang and Huang 

(2016) 

Distributed process monitoring 

framework 
PCA GA Wrapper Continuous 

Chemical 

Industry 
Isolation Framework 

Li et al. (2017) SR-VSMEWMA control chart 

VS-MEWMA control 

chart 

SREWMA control 

chart 

FS 
Filter 

(Preprocessing) 
Continuous Food Industry Isolation 

Control 

Chart 

Abdella et al. (2017) VS-MCUSUM control chart MCUSUM Stepwise procedure 
Filter 

(Preprocessing) 
Continuous 

Hexagonal bolt 

manufacturing 
Detection 

Control 

Chart 

Shinozaki and Iida 

(2017) 
VS based 𝑇² test 𝑇² test 

Estimate power 

p-value 

Filter 

(Preprocessing) 
Continuous 

Simulated 

process  
Detection Framework 

Yan, Kuang, and Yao 

(2017) 

SPLS-based fault isolation 

method 
PLS regression LAR algorithm Wrapper Batch 

Injection 

moulding 

process 

Isolation Framework 

Zhao and Gao (2017) 
SDISSIM algorithm for online 

incipient fault diagnosis 
DISSIM method 

Sparse regression 

LASSO Regression 

LARSEN algorithm 

Wrapper Continuous 
Cigarette 

manufacturing 
Isolation Framework 
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2.4.1 Preprocessing filter approach 

Research in this class is divided among authors who (i) integrated VS in Fuzzy 

Inductive Reasoning (FIR) methodology, (ii) applied PLS modeling preceded by a 

Bootstrapping-based Generalized Variable Selection (BBGVS) approach, (iii) used 

Support Vector Machine (SVM) pattern classification method integrated with entropy-

based VS, (iv) improved the two-dimensional dynamic principal component analysis (2-

D-DPCA), (v) applied VS based power estimate, and (vi) applied VS methods previous 

to the construction of MCCs. 

Aiming at improving the performance of the FIR methodology, Tur et al. (2002) 

evaluated the integration of several VS algorithms to it. FIR qualitative modeling is 

used for predicting the trajectory behavior of measured variables, for control purposes. 

Techniques that target the elimination of variables with strong cross-correlation to other 

inputs (e.g. multiple correlation coefficients, PCA (B2 Method), and cluster analysis) 

performed considerably better than the method of the unreconstructed variance for the 

best reconstruction, and methods based on regression coefficients (ordinary least 

squares, PCR, and PLS), since they are more aggressive in discarding variables and 

provide faster convergence.  

Chu, Lee and Han (2004) applied BBGVS as a Preprocessing step in PLS 

regression. Industrial data information were organized in an unfolded two-way matrix 

with process variables that could be related with the performance of quality variables 

inspected in the final product. Thirty different sets of bootstrapped data were obtained 

from the two-way matrix. A Sequential Forward Floating Selection (SFFS) was carried 

out to select variables to be included in each set; minimization of the Root-Mean-Square 

Error in Prediction (RMSEP) from a multiple linear regression was used as selection 

criterion. The frequency of selection of unfolded variables was selected in the various 

sets of bootstrapped data indicated those to be used as predictors in the PLS quality 

estimation model. 

In another work, Chu, Qin and Han (2004) proposed the integration of SVM to 

entropy-based VS. The method was implemented in two phases. In the first phase, VS 

was performed using an entropy measure and the SFFS algorithm was used to determine 

variables that minimized the total entropy (assuming that larger entropy values indicate 

a higher degree of disorder in a dataset). The set of variables that minimize total entropy 

compose a hyperspace in which different data clusters are identifiable. After selecting 
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variables, SVM classifiers were constructed to define decision boundaries between data 

clusters. Using the pattern classification method on the clustered dataset, correct 

boundaries between normal and fault data groups, and between different normal modes 

may be obtained, without relying on the normality assumption. Such information is used 

as criteria in the second phase, in which a hierarchical fault detection and operation 

mode identification takes place. To use the proposed method, data class information 

must be known a priori. 

The 2-D-DPCA modeling method combines lagged regression and PCA to 

capture both the 2-D dynamics and cross-correlation information among process 

variables and lagged variables in batch processes. A key step in the method is the proper 

choice of a region of support (ROS) in which all lagged measurements should be 

located. Yao et al. (2009) proposed a method for ROS auto determination. First, a past 

neighborhood of the current sample is chosen as the candidate region of ROS, using 

prior process knowledge or through simple regression. A stepwise elimination is then 

iteratively carried out. In each run, a regression model is built to relate the remaining 

candidate independent variables to the current sample’s value; models are evaluated 

using the Akaike information criterion (AIC) index. Then, one independent variable is 

eliminated from the candidate region based on the importance of variables calculated in 

each run. The best choice of the ROS is determined comparing index values calculated 

at each iteration. Once every variable’s support region is determined, the combination of 

them will be the proper ROS to be used in the 2-D-DPCA model building. The SPE 

statistic and corresponding control limits may be calculated based on model residuals 

and used for online monitoring. 

The last framework classified as Filter Preprocessing was proposed by Shinozaki 

and Iida (2017), that formulate the problem of detecting abnormal items as a hypothesis 

test based on the 𝑇² statistic. A VS method is used to maximize the test’s power, i.e. the 

probability of detecting an abnormal item. From a reference sample of observations 

from the abnormal population (composed of abnormal items), subsets of variables are 

chosen and the power of the 𝑇² tests based on the subsets are estimated. The subset with 

maximum estimated power is the one containing the variables to be selected. Multiple 

subsets may have the same estimated power, especially when the number of abnormal 

items is not large. In those cases, the test’s p-value is proposed as second criterion to 

determine the best subset, such that small values are preferred. 



45 
 

 
 

The integration of VS methods and MCC was first proposed by Wang and Jiang 

(2009), which developed the variable selection-multivariate statistical process control 

(VS-MSPC) control charts (CC). A new monitoring statistic derived from the 

generalized likelihood ratio test for a hypotheses test was proposed. By application of 

penalties and constraints to the equation that describes the rejection region for the null 

hypothesis, it was transformed into a penalized least squares problem in which 𝜇𝑡 was 

the coefficient vector to be estimated. To reduce the extensive computations needed to 

reach the optimal solution vector 𝜇𝑡
∗, a FS algorithm was implemented to select 

variables, such that the number of retained variables should be less or equal to 

parameter 𝑠, which is defined based on a priori knowledge of process experts and gives 

the maximum number of selected variables. The VS-MSPC chart statistic was obtained 

applying the optimal solution vector 𝜇𝑡
∗ in the equation for the rejection region of the 

null hypothesis. When implementing this chart, the VS step identified potentially OOC 

variables and estimated their corresponding shift magnitudes; only the selected variables 

were included in the VS-MSPC chart. Whenever the chart triggered an OOC alarm all 

variables identified as potentially OOC were considered responsible for it, concluding 

the fault isolation. 

Pursuing improvements in the performance of the VS-MSPC chart, Jiang, Wang, 

and Tsung (2012) proposed inserting a smoothing parameter in the penalized least 

squares equation, which led to the proposition of the VS-multivariate exponentially 

weighted moving average (MEWMA) CC. Similarly to the VS-MSPC chart, the 

solution was obtained using a FS algorithm and a stopping parameter 𝑠. To obtain the 

VS-MEWMA chart statistic, the optimum solution vector 𝜇𝑡
∗ was applied in the VS-

MSPC chart statistic and the EWMA statistic 𝑤𝑡 replaced the 𝑝-dimensional 

measurement vector 𝑦𝑡, observed at time 𝑡, in the monitoring equation aiming at 

improving the method’s sensitivity. The chart triggers an alarm when the VS-MEWMA 

chart statistic is higher than an upper control limit chosen for a desired performance.  

Seeking improvements in the VS-MEWMA chart two other methods were 

developed. First, Nishimura, Matsuura, and Suzuki (2015) proposed the Akaike 

information criterion-multivariate exponentially weighted moving average (AIC-

MEWMA) CC that uses a new criterion to determine the value of parameter 𝑠 aiming to 

improve the constrained optimization step. In their proposition the AIC is used to define 

the minimum number of variables to be retained in the VS step. Recently, Li et al. 
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(2017) proposed the self-starting spatial rank multivariate EWMA CC using forward 

variable selection (SR-VSMEWMA), which integrates the multivariate spatial rank and 

FS in an EWMA scheme to monitor processes with sparse mean shifts. Primarily, a self-

starting technique was applied to the VS-MEWMA chart, and 𝜇0 and 𝛴 at the current 

time point 𝑡 were replaced by appropriate estimators constructed from previous 

observations, allowing reduction of the required IC samples. The new charting statistic 

is not transformation invariant, so spatial rank was carried out to transform the original 

data and guarantee that the distribution of the resulting charting statistic was fixed, 

regardless of IC parameters. The transformed data were combined with the VS-

MEWMA modified by the self-starting technique, originating the robust SR-

VSMEWMA. 

Incorporating the LASSO VS method into the SPC problem, a new CC was 

proposed by Zou and Qiu (2009) for monitoring multiple parameters. That CC was later 

improved by Zou, Ning, and Tsung (2012) to monitor general multivariate linear 

profiles. Zou and Qiu (2009) used the sparsity property of the LASSO method to select 

the exact set of nonzero regression coefficients in multivariate regression modeling and 

propose a LASSO-based multivariate test statistic. The statistic was integrated in a 

MEWMA charting scheme for online multivariate process monitoring. The result was 

the proposition of a LEWMA CC based on the Adaptive LASSO penalized likelihood. 

The new CC was able to detect possible shift directions automatically, each time a new 

vector of observations was made available. Once the CC triggers a mean shift, the shift 

location is estimated and the specific measurement components that caused the shift are 

identified. Shift location is estimated through the generalized maximum likelihood 

approach for change-point detection; shift components were identified through the 

LASSO methodology choosing one of the LASSO estimators using a model selection 

criterion (e.g. risk inflation criterion). Since some estimators’ components are exactly 

zero, those that differ from zero are deemed responsible for the shift with no need for 

any extra tests, which are commonly required in most existing fault isolation methods. 

Zou, Ning, and Tsung (2012) extended the LEWMA chart using in a single CC both 

coefficients and variances of a multivariate linear profile.  

Aiming to develop a CC with a broader scope that could handle “unstructured” 

cases, profiles and multistage processes, Capizzi and Masarotto (2011) developed the 

LAR-EWMA CC. The MCC is able to detect shifts in the mean and increases in process 

dispersion. As in Wang and Jiang (2009), and Zou and Qiu (2009), the authors propose 
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the monitoring of subsets of possible OOC variables. To achieve that, the Least Angle 

Regression (LAR) algorithm was integrated with the MEWMA CC. Briefly, LAR starts 

with all coefficients set to zero and then proceeds in ℎ successive steps; in each step a 

potential predictor is added to the model. Once a predictor is selected by LAR in the 𝑖-th 

step, its set of coefficients is viewed as a promising 𝑘-dimensional set of parameters for 

which a shift may have occurred. So, for 𝑘 =  1, . . . , ℎ, an alternative hypotheses should 

be formulated and the corresponding generalized log-likelihood ratio (GLR) statistic 

computed. GLR estimates coefficients and LAR constrains to zero those of variables not 

selected by LAR during the first k steps of the procedure. To also detect increases in 

dispersion, an additional alternative hypothesis should be formulated, along with its 

related one-side EWMA statistic. Eventually, the overall statistic is computed for 

monitoring.  

So far, authors have worked with EWMA-based CCs; some other CCs are 

proposed in the following articles. Abdella et al. (2017) expanded the concept and 

integrated VS procedures to a multivariate cumulative sum (MCUSUM) CC, proposing 

the variable selection-based multivariate cumulative sum (VS-MCUSUM) CC to 

improve performance in the detection of small mean changes in process parameters. 

Similar to the VS-MSPC (WANG; JIANG, 2009) and VS-MEWMA (JIANG; WANG; 

TSUNG, 2012) CC, the proposed method uses a VS algorithm to identify a subset of 

process variables possibly affected by the presence of assignable causes; only such 

variables are continuously monitored. In the VS-MCUSUM CC, a stepwise VS is 

adopted and the F-ratio test used to identify the set of variables most likely to cause 

process changes. The procedure stops when q variables are selected, such that q is a 

parameter set by an experienced quality practitioner that represents the number of 

changed variables. The dimension of the mean vector 𝐲𝑡 is reduced to q, and used to 

calculate the value of the cumulative sum (CUSUM) statistic. 

Focusing on the monitoring of nonlinear processes, Ge, Zhang, and Song (2010) 

developed the Bayesian subspace-PCA (BSPCA) method. In their proposition, the 

original nonlinear space is initially approximated by several linear subspaces through 

PCA decomposition in the principal component and in the residual subspaces. Then, in 

each linear subspace the subset of most relevant variables is selected using two new 

subspace contribution indices. Next, subspace monitoring models are constructed based 

on the selected subsets, and confidence limits of their corresponding monitoring 

statistics are determined. For each monitored sample, monitoring results from different 
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linear subspaces are combined using Bayesian inference, which transforms traditional 

monitoring statistic values into fault probabilities in each individual subspace, to allow 

the combination of results from different subspaces. With that, new monitoring 𝑇² and 

SPE CCs are generated to detect process abnormalities. Once a fault is detected, a newly 

proposed fault isolation approach is implemented using the reconstruction-based 

contribution plot method on each linear subspace. Subspace results are finally combined 

to yield a decision. Both fault isolation and magnitude may be obtained simultaneously. 

Extending the procedure above, Ge, Gao, and Song (2011) developed the two-

dimensional Bayesian (TDB) monitoring method for nonlinear multimode processes. 

Briefly, a process dataset is partitioned using k-means clustering, rendering a multiple 

sub-group dataset corresponding to different operation modes. Each sub-group dataset is 

further partitioned into several linear subspaces. Different from Ge, Zhang, and Song 

(2010), VS is conducted using a two-step strategy. First a weighted index is 

implemented to select a subset of most important variables in the linear subspace. Then, 

correlations between each variable and remaining variables in the selected subset are 

evaluated, such that variables with large sums of correlation values are selected for 

linear subspace construction. A PCA model is developed in each linear subspace, for 

different operation modes. For online monitoring of new data samples, 𝑇2 and SPE 

chart statistics are calculated in each linear subspace. To combine monitoring results 

from different operation modes, a two-dimensional Bayesian monitoring approach is 

applied. First, posterior probabilities of each operation mode are determined and then 

Bayesian inference is employed to determine fault probabilities. Finally a fault detection 

index is calculated for each linear subspace and combined in a final nonlinear fault 

detection index (NFDI). Whenever NFDI values are above the confidence limits, some 

fault is considered to be acting on the process. 

Closing the application of Preprocessing filter VS approaches to MSPC, Wang 

and Tsung (2009) proposed a new CC to monitor processes with dynamic mean shifts. 

Two adaptive dimension reduction (ADR) charts are proposed, being the ADR-2 chart 

suitable to high dimensional datasets. In the ADR chart, the projection matrix performs 

in such a way that the contribution of each variable is evaluated at each step, and 

redundant variables are abandoned dynamically. Independent components are obtained 

via orthogonal decomposition using Mason, Tracy and Young (MYT)’s decomposition 

of the 𝑇² value. In order to fit the MYT-decomposed components into the projection 

framework, three projection matrices are defined. Alarms are interpreted according to 
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the projection matrix issuing them, as follows: (i) first matrix: signal originated in the 

input stream; (ii) second matrix: signal originated in the conditional output, when input 

status is known to be IC; (iii) third matrix: signal leads to the monitoring of the original 

vector, suggesting process failure. To choose the best combination of MYT decomposed 

components, VS is conducted based on the multivariate standardized shift (MSN) index, 

which measures the performance of the 𝑇² chart: components are therefore added or 

dropped based on their contribution to the MSN.  

 

2.4.2 Postprocessing filter approach 

Research in this class is divided among authors who applied VS based (i) on 

expert knowledge about the process, and (ii) on the co-linearity index.  

Zarzo and Ferrer (2004) proposed filtering process variables that are most 

correlated with a final quality parameter. For that, two methods were proposed. The first 

used Unfold Partial Least Square Regression (U-PLS) with progressive simplification of 

the model through technical knowledge to define the causal correlations. Trajectories of 

PLS weights were analyzed by juxtaposition of unfolded variables, in order to 

distinguish groups (denoted as “correlation runs”) that were related to process 

deviations. Once correlation runs were identified they were matched with the original 

trajectory, and technical knowledge was applied in search of a diagnosis, or to find an 

explanation for the observed correlation. Whenever no reasonable explanation was 

found and the process variable in the period with correlation was considered non-

important, the entire trajectory was removed from the dataset. The method was 

considered adequate for the purpose of diagnosis, since it retained the main variables 

that contributed to the model prediction capacity. The second method, named Block-

wise Principal Component Regression, was proposed considering each variable 

trajectory as a block. Carrying out PCA in the initial unfolded matrix, a Principal 

Component score matrix was obtained and analyzed using simple linear regression in 

search of predictive models for the process final quality variables. Each predictive 

model was evaluated with respect to two parameters to reduce the number of variables: 

the squared linear correlation coefficient and the p-value. Next, expert knowledge was 

used to promote a VS by comparing the CUSUM CC of each resulting variable with the 

CUSUM CC of the response variable. Even though the causes of variability of the 

response variable have not yet been identified, some process variables were pointed out 
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as likely to be critical. To finish the diagnosis, designed experiments should be run with 

those variables to define optimal process settings that would minimize process 

variability and improve its final quality. 

Searching for the best monitoring parameters for a specific industrial process, 

Giannetti et al. (2014) adapted the method that combines the co-linearity index and the 

penalty matrix approach, originally proposed by Ransing et al. (2013). To promote VS 

using this method, a two-dimensional co-linearity index plot was constructed for each 

pair of response and process variables by drawing a vector with the dimensions of the 

PCA loadings that provided a reduced representation of those variables. Next, noise-free 

correlations between IC process variables and response variables were quantified and 

visualized, such that the higher the magnitude of a process variable, the largest its 

importance in describing the dataset variance. VS was carried out directly in the plots. 

Once selected, variables were analyzed using penalty matrices for each variable and 

their interactions; such matrices converted hypotheses raised in the VS step in process 

information. Extend this strategy to analyze mixed data composed of continuous and 

categorical variables, Giannetti et al. (2014) proposed a robust method for pre-treating 

data based on Multiple Factor Analysis. The original dataset was reorganized in three 

main groups of variables (response, categorical, and quantitative variables). Separate 

analyses were carried out in each group, variables were redistributed and the different 

groups were merged back into a single dataset, which was then analyzed using the co-

linearity index method described above.  

 

2.4.3 Wrapper approach 

Works in this class proposed the use of oblique rotation, GA, factor analysis 

(FA), and LASSO regression and elastic net (EN) regularization to promote VS. 

To select and evaluate variables that should be used in a MSPC, González and 

Sánchez (2010) proposed a two-stage iterative procedure. In the first stage, the oblique 

rotation method was applied to select the single variable that carried the largest amount 

of information in the original set of variables. To start the method, a Varimax rotation 

was applied to factors obtained through PCA; the rotation was then extended to an 

oblique solution via Promax. The rotated component with the maximum sum of squared 

loadings was identified, and the selected variable was the one with the largest absolute 

loading in that component. In the second stage, the selected variable was evaluated 
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following two approaches. The first approach was based on R-like indices that informed 

the amount of residual information in the variables not selected; the second approach 

was based on the 𝑇2 chart average run length (ARL) when only the selected variable 

was used to evaluate the performance in the detection of simulated OOC events, 

comparing the result with the ARL when using all variables. If results in the evaluation 

step were considered satisfactory by the analyst, the iterative VS method was stopped; 

otherwise, the method was restarted removing the information carried by selected 

variables from those not yet selected. 

The works of Gourvénec, Capron, and Massart (2004), Ghosh, Ramteke, and 

Srinivasan (2014), Jiang, Yan, and Huang (2016), and Jiang and Huang (2016) used GA 

coupled with PCA. The work of Chiang, Pell, and Seasholtz (2004) coupled GA with 

FDA. 

Gourvénec, Capron, and Massart (2004) proposed an improvement in the 

orthogonal projection approach (OPA) described by Gourvénec et al. (2003) for 

monitoring batch processes. When OPA is applied to data from a chemical mixture 

process it is possible to define the ideal number of components in the mixture and find 

the set of pure spectra deemed representative of the process. That allows the online 

estimation of concentration values of new batches every time a new spectra is recorded. 

Gourvénec, Capron, and Massart (2004) proposed coupling GA and OPA to obtain 

smaller spectra through the selection of ranges of Near infrared (NIR) wavelengths, 

reducing the time to acquire and transfer spectra information to the database. Briefly, 

the initial population was generated randomly and represented the number of possible 

candidate solutions. The evaluation of solutions was carried out based on the measure of 

dissimilarity between concentration profiles obtained with all variables, and with a 

subset of selected variables. Once the initial population had been evaluated, it evolved 

to yield new solutions using the genetic operators of reproduction and mutation, and the 

optimal solution was obtained when the dissimilarity was minimized. Crossover and 

mutation was performed as two independent steps, measuring the dissimilarity of the 

profiles after each step. At each iterative step, the GA selected the wavelengths and 

generated a reduced spectra able to speed up the process and preserve the critical 

information in the original database, yielding better results for OPA. 

The second method that uses GA to select variables, due to  Ghosh, Ramteke, 

and Srinivasan (2014), proposed a reduced PCA model to optimize the monitoring 

performance in a multi-fault setting. A VS scheme based on the non-dominated sorting 
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genetic algorithm and a jumping gene operator (NSGA-II-JG) was proposed to reduce 

the number of variables to be monitored through the identification of a subset of 

variables that minimizes the cumulative error given by the sum of two error rates: False 

Alarm Rate (FAR) and Missed Detection Rate (MDR). Each chromosome represented a 

subset of variables selected from the normal multivariate training dataset and the 

confidence limits for 𝑇2 and SPE statistics to be applied to the validation data, to 

evaluate the performance of the PCA monitoring model. After validation, chromosomes 

were submitted to four genetic operators (selection, crossover, mutation, and jumping 

gene), and the population of the next generation was obtained by elitism. GA terminated 

when the maximum number of generations was reached. 

The third method using GA for VS was due to Jiang, Yan, and Huang (2016). It 

proposed the Fault-bayesian PCA (FBPCA) process monitoring method aiming at the 

improvement of an NSGA-II-JG-based VS scheme (GHOSH; RAMTEKE; 

SRINIVASAN, 2014). The method used GA to select the optimal variables and 

developed a specific reduced PCA model for each fault. Assuming that there were b 

faults in the validation set and that the remaining variables were assigned to a single 

block, 𝑏 + 1 blocks existed at the end of the procedure, and for each one a reduced PCA 

was constructed. Then, similar to the former method, monitoring results for each sub-

block were obtained by computing FAR and MDR, and GA continues until the best 

possible performance is achieved for one specific fault, or the stop rule is reached. After 

that, a Bayesian inference fusion scheme evaluated all subsets and constructed the final 

monitoring statistics. If a fault was detected, an FBPCA contribution plot was used to 

isolate the variables and determine their contribution in a specific block. The total 

contribution of a variable, considering that it can contribute in more than one block, 

should be calculated as the sum of its weighted contributions.  

The last proposition using GA coupled to PCA is the distributed process 

monitoring framework by Jiang and Huang (2016). They start by dividing all measured 

variables into 𝑀 blocks. To achieve the best possible monitoring performance from a 

process decomposition perspective, a GA-based performance-driven process 

decomposition method, with a user-determined number of sub-blocks, is implemented. 

The objective function for the GA-based optimization aims at minimizing the MDR. In 

GA-optimization an initial population of chromosomes is randomly generated, and 

variables are then divided into sub-blocks. Based on temporary block division results, 

local PCA monitoring may be established and the value of the fitness function 
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calculated. Once the final chromosome is obtained, variables are divided into sub-

blocks and a PCA monitoring model is established for each sub-block. 𝑇² and SPE 

statistics are constructed for each new sample from a 𝑚𝑡ℎ sub-block. These statistics are 

combined in a Bayesian Inference Comprehensive statistic that is used for fault 

detection. To promote fault isolation, the authors adapted the Bayesian fault isolation 

method for centralized monitoring by Jiang, Huang, and Yan (2016) to handle 

distributed monitoring, redefining the objective function to minimize the MDR.  

Chiang, Pell, and Seasholtz (2004) incorporated a GA to FDA for process fault 

identification. As will be further discussed when presenting Kuang, Yan, and Yao 

(2015)’s proposition, the basic assumption is that variables can be discriminated in two 

classes, normal and faulty. The method starts by randomly creating chromosomes 

composed by different subsets of the original variables. The performance of each 

chromosome is evaluated using a leave-1/5-out cross validation scheme with FDA, and 

the fitness function is calculated for all chromosomes. Cross-over and mutations are 

performed over the evolutions to increase the fitness function, improving chromosomes. 

At the end of evolutions, the chromosome with highest fitness function is saved. The 

procedure is repeated iteratively and the final chromosome with the highest fitness 

function, after all evolutions, is saved. At the end, several chromosomes are retained. A 

bar chart of the frequency of selection of each variable is then constructed. Variables are 

sorted according to their frequency of selection, and the number of variables required to 

explain the shift is determined by maximizing the fitness function. 

Jeong et al. (2012) proposed a heuristic recursive VS method based on FA to 

improve PCA modeling. First PCA was applied to normal operation data. When the 

cumulative sum of the explained variance retaining the first two principal components 

was higher than 80%, 𝑇2 and SPE statistics were run for validation. Otherwise, FA 

rearranged the variables in a descending order of standardized score coefficients, to 

group those located in a similar process region. The iterative process was carried out 

until the criteria was satisfied, and a comparative evaluation was made using the PCA 

score plot of each group of variables.  

The reconstruction modeling for fault isolation proposed by Zhao, Sun and Gao 

(2012) was improved by Zhao and Wang (2016) through VS of the most significant 

OOC variables for each fault. First, PCA-based monitoring models were constructed. 

When an alarm was triggered, the effects of faults were decomposed in the principal 

component subspace (PCS) and residual subspace (RS) revealing the most important 
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directions of fault deviations relative to normal process conditions, which were used to 

reconstruct the principal fault systematic deviations. Significance of variables was 

evaluated by a quantitative statistical index named reconstruction-based variable 

contribution. The corrected part of the fault was then checked, process variables were 

sorted by the mean variable contributions along the time direction for multiple samples, 

and the variable with the largest mean value was determined to be the most informative 

and contributive. That variable was stored in the faulty variable library, and removed 

from both the normal and OOC datasets. The updated normal dataset was used to 

redevelop the PCA monitoring models. If the faulty variables were assumed to be 

normal, the procedure should be stopped; otherwise, if there were 10 consecutive 

monitoring alarms the procedure was recursively repeated until all alarm-relevant 

variables were selected. The final result was a subset of OOC variables that were 

relevant regarding the alarms of monitoring statistics. For each type of fault there were a 

subset of significant OOC variables; variables not selected in any subset were deemed 

irrelevant regarding fault isolation. Finally, a parsimonious reconstruction model for 

fault isolation was built based on the selected OOC variables. 

A drawback in Zhao and Wang (2016)’s method is the assumption that a 

sufficient historical fault database, will be available, which may not always be the case 

in practice. In addition, it may be difficult to handle unknown disturbances not covered 

by historical fault data. To overcome that, Zhao and Gao (2017) proposed the sparse 

dissimilarity (SDISSIM) algorithm to identify the incipient variables that are 

responsible for the changes of distribution structure without a priori fault information. 

The DISSIM method (KANO; HASEBE; HASHIMOTO, 2002) considers that 

distribution variances may be used to represent the distribution dissimilarity between 

two datasets. For that, it quantitatively evaluates the distribution difference between 

normal and faulty conditions calculating the difference between process variances. 

SDISSIM extends this concept to fault isolation of abnormal variables that distort the 

variable covariance structure. First the dissimilarity distribution is decomposed and the 

critical dissimilarity component is extracted. Next, a sparse regression-type optimization 

is run to obtain sparse coefficients using LASSO regression and isolate the fraction of 

variables deemed abnormal. Whenever the sample dimension is smaller than the 

variables’ dimension, EN will be used to construct the optimization problem. Whenever 

a variable is removed the remaining variables are compared with respect to normal and 

faulty cases by rebuilding a new reference model for the remaining variables under 
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normal conditions, and checking whether remaining variables operating under faulty 

conditions behave similarly to those in the normal case. If they are deemed similar, it 

means that all faulty variables have been removed; if not, another variable should be 

removed. Carrying on this iterative procedure it is possible determine the proper number 

of faulty variables to be retained.  

Closing the methods which integrate MSPC with wrapper VS approach, three 

propositions used LASSO regression to improve fault isolation (KUANG; YAN; YAO, 

2015; YAN; KUANG; YAO, 2017; YAN; YAO, 2015). In the first, Yan and Yao 

(2015) improved the reconstruction-based approach presented by Yue and Qin (2001) 

through the proposition of a new graphical method for fault isolation based on PCA. 

The insertion of a regularization parameter in the reconstruction equation was proposed 

to approximate mathematically the method to the LASSO regression algorithm, and 

allow the identification of fault directions and the selection of variables responsible for 

each type of fault. Once a fault occurred, the subspace that characterized it was 

identified, and for each type of fault a regularization parameter was assigned to 

represent the fault’s change direction and the transition point between faults. An 

adapted LAR algorithm was used to define regularization parameter values and to 

promote the sequential estimation of coefficients, adding one by one to the model to 

compose the active set. Once convergence was achieved, variables in the active set were 

considered as potentially responsible for a specific fault; these variables were then 

reconstructed, tested in the Combined Index (CI) monitoring statistic, that uses 𝑇2 and 

SPE statistics simultaneously, and compared to the statistic applied to the original data. 

As the CI monitoring statistic returns to the IC situation after several variables were 

reconstructed, such variables were identified as the ones most related to the fault. 

Methods proposed by Kuang, Yan, and Yao (2015) were based on the 

assumption that the fault isolation task could be considered as an instance of a 

discriminant analysis in which the variables were assigned to a normal operating data 

class or to a class of data associated with the detected fault. When the right choice of 

predictors and response variable is made, FDA becomes identical to the least squares 

regression model, and the problem of multivariate fault isolation could be formulated as 

a penalized regression. By the introduction of an 𝐿1 regularization in the standard 

multiple regression model, VS could be achieved through a LASSO-based model. 

Instead of identifying OOC variables based on control limits computed using normal 

operating data, the proposed method provides a sequence of process variables according 
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to their relevance to the detected faults: the earlier the variable appears in the active set, 

the more significantly it relates to the fault. The method above does not handle properly 

highly correlated faulty variables, and may not identify all OOC variables. The second 

method proposed by Kuang, Yan, and Yao (2015) handles that drawback using an EN 

regularization technique. The LASSO-based method was revised by adding a 𝐿2 penalty 

term in the objective function of least squares regression. As in the first proposed 

method, results are presented as a sequence of process variables entering the active set. 

The EN-based method is less likely to misidentify the strongly correlated faulty 

variables.  

Yan, Kuang, and Yao (2017) proposed the Sparse PLS (SPLS)-based fault 

isolation method to handle autocorrelations and cross-correlations that characterize 

batch process data. SPLS is based on the equivalence between fault isolation and VS in 

a two-class discriminant problem, demonstrated by Kuang, Yan, and Yao (2015). SPLS 

builds a discriminant analysis model for normal and faulty operation batch data, 

achieving modeling and VS simultaneously. The model is adjusted gradually, such that 

variables enter the active set sequentially, reflecting their importance in characterizing 

process abnormalities and based on the concept of transition points, described in Yan 

and Yao (2015). The order in which variables enter the active set reflects not only their 

importance, but also indicates the most critical time interval for detecting batch 

abnormalities. 

 

2.5 PROCESS MONITORING IN SPC AND PERFORMANCE OF THE 

DEVELOPED METHODS 

Process monitoring in SPC is carried out in two phases. In Phase I data are 

collected, the process stability is evaluated, and an appropriate monitoring IC model is 

developed. In Phase II, such monitoring model is implemented with data collected 

successively over time to identify abnormal process behaviors (fault detection). Then 

process variables contributing most to the detected fault are identified (fault isolation), 

and the root cause of the observed OOC status are determined (fault diagnosis). Finally, 

fault effects are removed from the data (process recovery). The capability to detect 

process faults quickly, which addresses the sensitivity of an MSPC scheme, and the 

ability to locate shifted variables accurately, that concerns the diagnostic capability of 

the scheme, are great challenges in MSPC process monitoring (JIANG; WANG; 
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TSUNG, 2012; KUANG; YAN; YAO, 2015; WOODALL; MONTGOMERY, 2014). 

With that in mind, methods in this review were analyzed to address our third research 

question (‘which steps of process monitoring in SPC were studied?’). Fault detection 

and fault isolation in Phase II were studied by 13 and 15 methods, respectively; fault 

diagnosis was the subject of two methods. 

In the current section we categorize the methods classified in section 2.4 

according to (i) their objectives (presented in section 2.3), and (ii) the step of process 

monitoring they address; that led to the ten clusters of methods presented in Figure 2.3. 

Half of the clusters comprised 70% of the studied methods; they are: Filter 

Preprocessing VS approach to the exclusive monitoring of potential OOC variables to 

improve fault detection and isolation, Wrapper VS approach to improve the monitoring 

of IC variables as well as fault detection and isolation, and Wrapper VS approach to 

exclusively monitor potential OOC variables and improve fault isolation. 

Some objectives are predominant given the VS approach they are based on. That 

is the case of methods aimed at monitoring potential OOC variables, whose main VS 

approach is Filter Preprocessing, and methods aimed at improving the monitoring of IC 

variables, whose main VS approach is Wrapper. Choosing the best VS approach to 

achieve each objective is related to the desired properties of each method. Objectives of 

MSPC methods that used the Filter Preprocessing approach were centered at 

computational efficiency by discarding irrelevant or redundant variables before the 

application of MSPC. MSPC methods that used a Wrapper VS approach were more 

often targeted at improving the accuracy of MSPC through monitoring a reduced 

number of IC variables.  

Clusters were sorted according to the objectives of MSPC adaptations, and will 

be discussed on the basis of the monitoring step they were aimed at, and the 

performance of the proposed methods against traditional MSPC methods.  
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Figure 2. 3 VS-MSPC integration approaches clustered according to objectives and step of process monitoring they address 
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2.5.1 Exclusive monitoring of potential OOC variables 

The first 3 clusters were related to this objective, encompassing 13 methods. 

They used 6 different VS approaches and were aimed at improving fault isolation (77%) 

or fault detection (23%). Five methods in those clusters shared a characteristic: they 

used the 𝐿0-norm, 𝐿1-norm and 𝐿2-norm penalty types to remove variables with 

estimated coefficients of small magnitude.  

All 13 datasets used to illustrate propositions in this section were obtained from 

continuous processes, except for Yan, Kuang, and Yao (2017)’s, which was obtained 

from a batch process. In Cluster 1, CCs were applied in real industrial setups 

[semiconductor manufacturing in Capizzi and Masarotto (2011), and hexagonal bolt 

manufacturing in Abdella et al. (2017)], except for Shinozaki and Iida (2017), whose 

proposition was applied to simulated data. MCCs presented in Cluster 2 were applied to 

data from timber (WANG; JIANG, 2009), chemical (ZOU; QIU, 2009), footwear 

(JIANG; WANG; TSUNG, 2012), metallurgical (NISHIMURA; MATSUURA; 

SUZUKI, 2015) and food (LI et al., 2017) industries, and to data from a logistics service 

(ZOU; NING; TSUNG, 2012) attesting the potential and versatility of these new MSPC 

methodologies. Methods in Clusters 3 were applied to the Tennessee Eastman Process 

(TEP) (KUANG; YAN; YAO, 2015; YAN; YAO, 2015; ZHAO; WANG, 2016), which 

is a well-known benchmark simulation that provides realistic chemical industrial 

process data for evaluating process control and monitoring methods. The method 

proposed by Yan, Kuang, and Yao (2017) was applied to an injection moulding batch 

process dataset. 

 

2.5.1.1 Fault Isolation 

Methods developed to achieve fault isolation are positioned in Clusters 2 and 3. 

Those in Cluster 2 used FS and adaptive LASSO penalized likelihood to select 

variables, previous to the construction of five new MCCs. The isolation was carried out 

using variables with nonzero coefficients as basis for further identification of root 

causes. Those CCs that use FS seek to improve fault isolation by ensuring a better 

performance than Hotelling’s 𝑇² chart in the context of high dimensional multivariate 

datasets. The VS-MSPC chart (WANG; JIANG, 2009) was considered superior to 

Hotelling’s 𝑇² chart in detecting moderate and large shifts; the VS-MEWMA chart 

(JIANG; WANG; TSUNG, 2012) was superior to the 𝑇², MEWMA, and VS-MSPC 
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CCs in detecting small shifts, illustrating the increase in sensitivity due to the special 

weighing of recent observations from the process implemented in the chart statistic. 

Moreover, the VS-MEWMA was able to efficiently detect sparse shifts and was robust 

to inaccurate specifications in the value of parameter 𝑠. The AIC-MEWMA chart 

(NISHIMURA; MATSUURA; SUZUKI, 2015) displayed superior performance when 

only one or two variables shifted, probably due to the severe AIC penalty imposed when 

a larger number of variables was involved. Finally the SR-VSMEWMA stood out, since 

it could efficiently detect sparse shifts, especially when the process distribution is 

heavy-tailed or skewed, did not need prior knowledge of IC distribution, which makes it 

appropiate to start-up situations, and is robust to non-normally distributed data. The 

LEWMA CC (ZOU; QIU, 2009), based on LASSO, displayed chart statistic values 

much larger than its control limit when compared with REWMA and MEWMA CCs, 

better signalizing the occurrence of a shift. The LEWMA CC is suitable for cases in 

which knowledge of shift patterns is little or nonexistent; on the other hand, FS-based 

CCs are suitable for situations when the number of potential OOC is known a priori. 

The LEWMA CC showed to be capable of monitoring multivariate linear profile data 

(ZOU; NING; TSUNG, 2012). In comparison with MEWMA adapted to multivariate 

profiles, LEWMA provided reasonable diagnostic ability to identify shifted parameters 

in numerical simulated results. One important point is that LEWMA is affected by the 

size of the reference dataset. 

Works in Cluster 3 used the wrapper approach for the purpose of fault isolation 

(KUANG; YAN; YAO, 2015; YAN; KUANG; YAO, 2017; YAN; YAO, 2015; ZHAO; 

WANG, 2016). Results obtained with faulty VS applied to reconstruction modeling 

(ZHAO; WANG, 2016) were compared with those using a progressive PCA algorithm 

showing that, even when both methods correctly identified a similar number of faulty 

variables, the proposed algorithm displayed a lower of variables wrongly picked up as 

faulty variables, resulting on a significantly better performance. This method made 

easier to distinguish among different faults, even when faults were divided among the 

same OOC variables. A reconstruction model without VS was also used as comparative 

for the online fault isolation performance demonstrating the superiority of the proposed 

method in correct fault isolation, particularly for the 𝑇2 statistics. Also promoting a 

better fault reconstruction, the graphical method of Yan and Yao (2015) demanded 

much shorter computational time for isolating an abnormal sample using LASSO 

regression when compared to the reconstruction using the branch and bound algorithm.  
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The traditional 𝑇2 and SPE contribution plots were used for comparison of fault 

isolation performance using LASSO-based and EN-based methods (KUANG; YAN; 

YAO, 2015). Contribution plots presented some false alarms during evaluation, which 

was not evidenced in these new methods showing their superior performance. In 

comparison to LASSO-based method, EN-based methods proved to be better to isolate 

highly correlated fault variables. Finally, SPLS based on discriminant analysis (YAN; 

KUANG; YAO, 2017) enabled the identification of the most critical variable in a 

detected fault in a batch process, through the visualization of which variable is first 

involved in the SPLS model as long as the shrinkage task occurs using LAR algorithm. 

This method outperforms MPCA-based contribution plots and PLS-DA, which did not 

identify faulty variables clearly.  

 

2.5.1.2 Fault Detection 

Fault detection using only OOC variables was the subject of three methods in 

Cluster 1. Two of them proposed new CCs; one proposed a framework. All methods 

analyzed the improvement in the detection of changes in the mean vector assuming that 

process dispersion did not change. The VS-MCUSUM CC in Abdella et al. (2017) 

showed significant advantage in shift detection under a wide range of process settings 

when compared with the traditional MCUSUM and 𝑇² CCs. The LAR-EWMA CC, due 

to Capizzi and Masarotto (2011), was capable to detect shifts in several representative 

OOC scenarios (e.g. in elements of the mean vector, and in profile and multistage 

monitoring) that were not detected by other EWMA-based CCs that do not use a VS 

algorithm. The VS procedure proposed for the LAR-EWMA CC only detects changes in 

the mean vector; changes in process dispersion are not contemplated. The framework 

proposed by Shinozaki and Iida (2017) showed that whenever the sample size from the 

population of abnormal items increases, the performance of VS also increases, 

improving the probability of detection of an abnormal item when a 𝑇² test is run on the 

selected variables. The performance of the method is dependent on the availability of a 

large dataset of abnormal items, which may be viewed as a drawback in several 

applications. 
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2.5.2 Better modeling and prediction of response variables 

The two clusters comprised of methods developed to achieve better modeling 

and prediction of response variables include 3 methods to improve batch process 

monitoring, which use 3 distinct VS approaches.  

 

2.5.2.1 Fault Detection 

The two methods in Cluster 4 aimed at improving fault detection using a 

preprocessing filter approach. Tur et al. (2002) proposed one of the only methods that 

accepts qualitative input data and not only predicts the output variable, but provides a 

confidence measure for the prediction. When integrated to VS, the FIR qualitative 

modeling of a steam generator displayed reduced computational complexity yielding 

high predictability and specificity. The second method, due to Chu, Lee and Han 

(2004), was an alternative to multiway partial least squares (MPLS) in the analysis of a 

three-way dataset from a polymerization batch process. PLS via BBGVS showed 

superior prediction accuracy than MPLS, which could be attributed to the Filter 

Preprocessing approach that selected variables and, consequently, increased the 

correlation between process and quality variables. The drawback of the method was that 

the computational cost was higher than that of MPLS.  

 

2.5.2.2 Fault Diagnosis 

The method by Zarzo and Ferrer (2004) in Cluster 5 used technical knowledge 

followed by a planned experiment to diagnose the critical points of a polymer 

production batch process. In addition to deep process knowledge, the method requires 

careful analysis of CCs and variables’ trajectories, which is time consuming.  

 

2.5.3 Improvement in the monitoring of IC variables 

Fourteen of the thirty papers covered in this review used VS with the objective 

of improving the monitoring of IC variables; they were assigned to five clusters 

(Clusters 6 to 10). Seven of them were developed for fault detection, 6 proposed 

improvements in fault isolation, and 1 was targeted at fault diagnosis. A total of 10 VS 

approaches were proposed.  
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Three of the proposed methods that adapted MSPC strategies were applied to 

batch processes, either using real data from industry [chemical in  Gourvénec, Capron, 

and Massart (2004), and semiconductor in Chu, Qin and Han (2004)] or from a 

simulated process (YAO et al., 2009). The remaining eleven methods were developed 

for application in continuous processes. The methods proposed by Chiang, Pell, and 

Seasholtz (2004), Ge, Zhang, and Song (2010), Ge, Gao, and Song (2011), Ghosh, 

Ramteke, and Srinivasan (2014), and Jiang and Huang (2016) were applied to the TEP 

simulated benchmark. Jiang, Yan, and Huang (2016) applied their propositions to the 

TEP to compare results with Ghosh, Ramteke, and Srinivasan (2014), but also verified 

their method’s performance in a real dataset from an oil industry. An automotive 

manufacturing dataset was the case studied by González and Sánchez (2010) and a real 

cigarette production was analyzed by Zhao and Gao (2017). Giannetti et al. (2014) and 

Jeong et al. (2012) developed their methods to deal particularly with complex, and very 

specific, manufacturing settings, such as foundry environment and molten carbonate 

fuel cell power plant, respectively. Finally, Wang and Tsung (2009) tested their method 

on simulated data. 

 

2.5.3.1 Fault Detection 

Works in Clusters 6 and 9 focused on improvements in fault detection. Five out 

of the seven methods in those clusters adapted PCA-based MSPC strategies. 

The three methods in Cluster 6 used a preprocessing filter approach: one 

proposed a framework for batch process monitoring; the other two presented new CCs 

developed to monitor continuous processes. The performance of the framework 

proposed by Chu, Qin and Han (2004) was compared with results obtained from a 

traditional PCA-based fault detection method; in opposition to the later, a zero error rate 

in the detection of faults was verified using the framework. A drawback is that Chu, Qin 

and Han (2004)’s proposition operates with a large pre-specified number of normal and 

faulty process observations to establish decision boundaries between classes, demanding 

a large training dataset containing all possible process conditions. The framework was 

developed for batch process monitoring, but may also be applied to continuous 

processes. The ADR-2 CC (WANG; TSUNG, 2009) is able to switch automatically 

between projected statistics, choosing the most efficient to be used at each process step; 

applying the principle of dimension reduction guarantees the optimality of each statistic. 
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In simulated tests, the ADR scheme substantially improved both large and small shift 

detection requiring less computational power. Aiming at dealing with nonlinear 

multimode continuous processes, the TDB method (GE; GAO; SONG, 2011) and multi-

model kernel PCA (MKPCA) showed much better monitoring performance than multi-

model PCA, since TDB and MKPCA can handle the nonlinear data behavior in each 

operation mode. TDB stands out since its computational complexity is much lower than 

MKPCA. However, some aspects of TDB methods should be improved, such as the 

determination of the number of variables in each linear subspace, the assumption that 

the number of linear subspaces is the same in different operation modes, and the fact 

that there may be some situations under which the linear correlation is weak in every 

linear subspace degrading modeling performance. 

Approaches in Cluster 9 applied a wrapper approach to MSPC in datasets from 

continuous and batch processes to promote a better fault detection when monitoring IC 

variables. There are four methods in the cluster (GHOSH; RAMTEKE; SRINIVASAN, 

2014; GONZÁLEZ; SÁNCHEZ, 2010; GOURVÉNEC; CAPRON; MASSART, 2004; 

JEONG et al., 2012). One of the major objectives of the wrapper VS approach is to 

improve the accuracy of the methods. The integration of OPA and GA (GOURVÉNEC; 

CAPRON; MASSART, 2004) obtained reduced NIR spectra which was expected to 

promote better monitoring of a batch process. However, this was the only case in which 

there was no clear evidence of the improvement when the new method was compared to 

traditional OPA. One point of discussion is that the reduction in time promoted by the 

VS did not compensate the increase in computational cost due to the use of the wrapper 

approach. In search of a better 𝑇2 chart performance, González and Sánchez (2010) 

selected and monitored only a subset of dominant variables. The 𝑇2 charts constructed 

with the selected variables were more effective in the detection of simulated alarms than 

the chart that monitored all the original variables. The other two methods that integrate 

Cluster 9 aimed at overcoming limitations of PCA monitoring. In the first one, FA was 

used recursively to identify groups of variables to be monitored by PCA (JEONG et al., 

2012). Type I and type II errors were reduced by more than half, and the total explained 

variance was increased when the method was compared to traditional PCA. In the other 

case, a reduced PCA model based on an optimal subset of variables from the training 

dataset (GHOSH; RAMTEKE; SRINIVASAN, 2014) was compared to the full PCA 

model, resulting in the reduction of both FAR and MDR when tested on validation data. 
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The detection delay was also shorter when the new method was applied, and a faster and 

more sensitive detection of multiple faults was achieved. 

 

2.5.3.2 Fault Isolation 

Methods in Clusters 7 and 10 share the objective of improving the monitoring of 

IC variables, being focused on the fault isolation task.  

Cluster 7 comprises 2 methods that use Filter preprocessing VS approaches to 

adapt PCA-based MSPC methods. The BSPCA CC in Ge, Zhang, and Song (2010) was 

proposed for nonlinear process monitoring, and compared with the traditional PCA-

based MSPC in a numerical example. Both methods successfully detected faults; 

however, using BSPCA it was possible to determine the subspace (PCS or RS) most 

responsible for the alarm. Ramp change faults, which are hardly detected using PCA-

MSPC, were well identified through BSPCA. Fault isolation was efficiently performed 

using a reconstruction-based contribution plot method, both in the combined subspace 

and in each subspace separately. When compared to conventional PCA and kernel PCA 

for fault isolation in a simulated chemical industry data, BSPCA outperformed both 

methods in most fault cases, showing its feasibility and efficiency. The framework of 

the improved 2-D-DPCA modeling method (YAO et al., 2009) requires no a priori 

process knowledge, presenting a good potential to be applied in different batch 

processes. In a simulation study, 2-D-DPCA models with auto-determined ROS 

presented better performance, both for fault detection and isolation, when compared to 

2-D-DPCA models with quarter-plane ROS. 

Fault isolation using a wrapper VS approach that integrated GA and LASSO 

with MSPC methods was the proposition in the four methods assigned to Cluster 10. 

 The FBPCA (JIANG; YAN; HUANG, 2016) extended the method in Ghosh, 

Ramteke, and Srinivasan (2014) to include a fault isolation step. The performance of this 

new method was considered superior in most cases when compared to PCA and several 

PCA-based methods. The new method was also able to effectively detect faults as early 

as at the beginning of fault occurrence in a real dataset. That was verified through the 

low values of FAR and MDR obtained. Fault isolation was successfully achieved by the 

new FBPCA contribution plots, which more clearly separated responsible from non-

responsible variables. Jiang and Huang (2016) also integrated GA with PCA in a 

distributed process monitoring framework. Monitoring results were evaluated using the 
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same numerical example in Jiang, Yan and Huang (2016). The proposed framework was 

compared to global PCA, reduced PCA with one block (similar to Ghosh, Ramteke, and 

Srinivasan, 2014), distributed PCA with two blocks, and distributed PCA with three 

blocks (similar to Jiang, Yan and Huang, 2016). As the number of sub-blocks increases, 

there is a significant reduction on the number of non-detected fault points. Regarding 

fault isolation, as the fault magnitude increases, fault status can be successfully 

identified in general.  

Chiang, Pell, and Seasholtz (2004)’s approach, which incorporated GA to FDA, 

was compared with 𝑇² and SPE statistic contribution charts for fault isolation in a 

simulated industrial process. The authors’ method provides a more direct indication of 

the variables responsible for the fault. As process faults propagate to the majority of 

process variables, GA/FDA provided better consistency in identifying the faulty 

variables when compared to contribution charts. 

The SDISSIM method proposed by Zhao and Gao (2017) integrates LASSO 

regression and the DISSIM method, and is used to isolate incipient faulty variables 

responsible for distortions in the underlying process covariance structure. The number 

of selected faulty variables and the missing reconstruction ratio (MRR; i.e. the ratio 

between alarms that have not been eliminated after removal of selected variables and 

the total number of alarms) were used as performance indicators. Applying SDISSIM, 

all the incipient faulty variables were correctly isolated resulting in the smallest MRR 

value, with all alarms eliminated after the removal of selected variables. In comparison, 

when reconstruction-based contribution and DISSIM-based methods were applied, more 

variables were wrongly isolated as faulty ones. 

 

2.5.3.3 Fault Diagnosis 

Closing our proposed categorization of articles, fault diagnosis was addressed by 

works in Cluster 8. The improvement of the fault diagnosis method of co-linearity index 

and penalty matrices, which used a Filter Postprocessing VS approach, allowed the 

evaluation of a dataset comprised of categorical and continuous variables. The 

definition of optimal process settings, which would assist engineers in the analysis of 

root causes, is possible since the method displays the noise free correlations between 

heterogeneous process variables and responses. Furthermore, the proposed data pre-
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treatment transformations were more robust to the presence of outliers and variables 

with skewed distributions. 

 

2.6 CONCLUSION AND OPEN ISSUES 

The growing dimensionality of datasets from industrial processes calls for 

adaptations on traditional MSPC methods. This systematic review presented the current 

state-of-the-art of VS methods integrated to MSPC, and answered three research 

questions. Limitations present in MSPC were associated with three main objectives that 

guided the development of the 30 methods reviewed here. Adaptations in projection 

methods such as PCA and PLS were responsible for the main improvements in MSPC, 

with LASSO regression, GA, and FS being the main VS methods applied. Fault 

isolation and detection were the main steps investigated in process monitoring. The 30 

methods in this review were classified according the VS approach applied to integrate 

VS in MSPC, categorized according to objectives that guided MSPC improvement and 

the step of process monitoring they were aimed at, resulting in ten clusters of works. 

Methods covered in this review were published between 2002 and 2017, testifying the 

increasing attention given to the topic in the SPC literature.  

Open Issues for future research 

From the analysis of investigated methods five groups of research opportunities 

were identified. They provide an answer to our fourth research question (“which 

research opportunities arise from gaps in the current state-of-the-art on the subject?”), 

and are described next. 

i) New combinations of VS and MSPC methods. Of the 27 quadrants in Figure 

2.3 corresponding to combinations of VS approaches and MSPC objectives in different 

steps of process monitoring, only 10 are currently explored in the literature. That leaves 

several situations open to investigation. Examples include (i) enhancement of methods 

to exclusively monitor potential OOC variables through Wrapper approach aiming at 

better detecting and diagnosing faults, (ii) improvements in the monitoring of IC 

variables using Filter Postprocessing to better detect and isolate faults, (iii) development 

of new methods to better explain and predict response variables aiming at fault isolation 

using all VS approaches available, and (iv) development of methods to promote fault 
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diagnosis using Filter Preprocessing and Wrapper approaches to achieve all objectives 

of MSPC adaptations (i.e. exclusive monitoring of potential OOC variables, better 

modeling and prediction of response variables, and improvement in the monitoring of 

IC variables). 

ii) Enhancements on existing methods. Further developments on works 

presented in this review are suggested; for example: (i) use of different VS methods to 

improve MSPC (JIANG; WANG; TSUNG, 2012; NISHIMURA; MATSUURA; 

SUZUKI, 2015; SHINOZAKI; IIDA, 2017; WANG; JIANG, 2009), (ii) enhancement 

of MSPC methods not explored by authors in their original works (NISHIMURA; 

MATSUURA; SUZUKI, 2015; YAN; YAO, 2015), (iii) adaptation of methods to 

handle nonnormal data (GONZÁLEZ; SÁNCHEZ, 2010), and (iv) identification of a 

VS procedure to detect shifts in process dispersion (CAPIZZI; MASAROTTO, 2011). 

As methods were adapted to specific types of processes (mainly chemical, 

semiconductor and metallurgical industries), applying those methods to datasets 

originated from different industrial segments may confirm their robustness (ZARZO; 

FERRER, 2004). 

iii) Process monitoring in SPC. Most methods reviewed in this paper focused 

fault detection or isolation. That points to research opportunities in the development of 

fault diagnosis methods, which were the subject of only two methods in this review. 

iv) Monitoring of batch processes. Only 23% of the methods covered in this 

review discussed improvements in batch process monitoring. As this type of process is 

very frequent in industry (e.g. food, chemical, and pharmaceutical sectors), monitoring 

and optimizing its performance through VS appears as a promising research topic. As 

suggested by Anzanello and Fogliatto (2014), the insertion of a preliminary VS step in 

the analysis of n-way data arrays could be a starting point.  

v) Methods for phase I monitoring. Methods presented in this review focused 

on improving the performance of Phase II of SPC. However, in some cases 

improvements in Phase I could lead to an easier monitoring of Phase II. In such context, 

Jiang, Wang, and Tsung (2012) discussed that the development of a VS chart for Phase 

I, and the development of a VS method for identifying variables responsible for OOC 

signals, are open issues to be studied. 
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3 ARTIGO 2 - STRATEGIES FOR SYNCHRONIZING CHOCOLATE 

CONCHING BATCH PROCESS DATA USING DYNAMIC TIME 

WARPING 

Artigo submetido ao Journal of Food Science and Technology; em revisão. 

Prêmio de Melhor Apresentação no 20th International Conference on Food Processing 

and Technology 

 

Abstract 

In batch processing, process control is typically carried out comparing trajectories of 

process variables with those in a reference set of batches that yielded products within 

specifications. However, one strong assumption of these schemes is that all batches 

have equal duration and are synchronized, which is often not satisfied in practice. To 

overcome that, dynamic time warping (DTW) methods may be used to synchronize 

stages and align the duration of batches. In this paper, three DTW methods are 

compared using supervised classification through the 𝑘-nearest neighbor technique to 

determine the reference set in a milk chocolate conching process. Four variables were 

monitored over time and a set of 62 batches with durations between 495 and 1,170 

minutes was considered; 53% of the batches were known to be conforming based on lab 

test results and experts’ evaluations. All three DTW methods were able to promote the 

alignment and synchronization of batches; however, the KMT method (KASSIDAS; 

MACGREGOR; TAYLOR, 1998) outperformed the others, presenting 93.7% accuracy, 

97.2% sensitivity, and 90.3% specificity in batch classification as conforming and non-

conforming. The drive current of the main motor was the most consistent variable from 

batch to batch, being deemed the most important to promote alignment and 

synchronization of the chocolate conching dataset.  

 

Keywords: Batch process monitoring; Variable duration; Reference distribution; 

Dynamic Time Warping; Chocolate conching 

 

3.1 INTRODUCTION 

Quality management (QM) practices have become increasingly important in a 

large number of industrial sectors, being either motivated by rising consumers’ 
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expectations, government regulations, or increased market competition. Despite the 

benefits arising from using such practices, Dora et al. (2013) observed a limitation in the 

literature addressing QM targeted at requirements from the food sector. Analyzing a 

sample of micro, small and medium-sized food companies in Europe, the authors found 

that statistical process control (SPC) was used by only 15% of the companies. That 

agrees with Lim, Antony, and Albliwi (2014), who reported an incipient utilization of 

SPC in food companies when compared to other sectors.  

In highly processed food products such as chocolate, the quality of raw materials 

used in the blend, the proportion in which they are used, and processing conditions are 

fundamental in establishing the quality of final products (CIDELL; ALBERTS, 2006). 

Chocolate conching is a high investment, time-consuming batch process carried out in a 

specific equipment which vigorously mixes components during 5 hours to 3 days under 

increasing temperature from 45 to 80°C in batches of 2 to 20 tons (BOLENZ; 

KUTSCHKE; LIPP, 2008; BOLENZ; MANSKE; LANGER, 2014; BOLENZ; 

THIESSENHUSEN; SCHÄPE, 2003; DI MATTIA et al., 2014; FRANKE; 

TSCHEUSCHNER, 1991; OWUSU; PETERSEN; HEIMDAL, 2012; TORRES-

MORENO et al., 2012). Conching is considered a key step in chocolate manufacturing, 

greatly affecting the product’s sensory performance and achievement of specific 

rheological properties (BOLENZ; THIESSENHUSEN; SCHÄPE, 2003; BORDIN 

SCHUMACHER et al., 2009; DI MATTIA et al., 2014; OWUSU; PETERSEN; 

HEIMDAL, 2012). Chocolate acceptability (BOLENZ; MANSKE; LANGER, 2014; 

OWUSU; PETERSEN; HEIMDAL, 2012; PRAWIRA; BARRINGER, 2009) and the 

amount of retained cocoa antioxidants (DI MATTIA et al., 2014; GÜLTEKIN-

ÖZGÜVEN; BERKTAS; ÖZÇELIK, 2016) are also affected by this process step.  

During conching a large number of process variables are monitored; e.g. rotation 

speed of shovels, drive current of the main motor, and chocolate temperature 

(BÜHLER, 2010). Processing variations, particularly in batch temperature profile and 

duration, may lead to several quality problems in the final product; e.g. heterogeneous 

and unsmooth chocolate, absence of desirable flavors or presence of acid flavor, fatty 

mouthfeel, fat and sugar bloom, and abnormal viscosity, texture and chocolate flavor. 

Thus, time/temperature settings are important process parameters, acting as indicators of 

the chocolate’s final quality (CIDELL; ALBERTS, 2006; DI MATTIA et al., 2014; 

PRAWIRA; BARRINGER, 2009; TORRES-MORENO et al., 2012). However, process 

monitoring results are rarely used to predict the product’s final quality, which is often 
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assessed after the product has been sent to the next processing step (KASSIDAS; 

MACGREGOR; TAYLOR, 1998). The use of principal component control charts to 

allow on-line and off-line monitoring of a massive amount of data emerging from 

multivariate batch processes, such as chocolate conching, has been extensively 

investigated (JACKSON; MUDHOLKAR, 1979; KOURTI; MACGREGOR, 1996; 

MACGREGOR, 1997; NOMIKOS; MACGREGOR, 1994, 1995). All schemes are 

based on the use of multiway principal components analysis (MPCA) to promote 

dimensionality reduction of process datasets. Such reduced data are then used to 

construct control charts that allow verifying the behavior of a new batch in comparison 

to a reference set of batches that yielded products within specifications.  

A main assumption constrains the use of MPCA-based control charts in the 

monitoring of batch processes: all assessed batches must present the same duration, and 

be synchronized with respect to process stages (GONZÁLEZ-MARTÍNEZ; FERRER; 

WESTERHUIS, 2011; KASSIDAS; MACGREGOR; TAYLOR, 1998; RAMAKER et 

al., 2003). That is rarely the case in the conching step of chocolate processing. The 

typical time required to conch different types of chocolate may vary due to a number of 

factors; namely: (i) environmental, such as room temperature and humidity; (ii) 

operational, such as high feeding time of the conche, closed louvres during dry 

conching phase, and unplanned interruptions in processing; and (iii) quality-related, 

such as high moisture content of raw materials. These factors cause the duration of 

batches to vary, and limit the application of MPCA-based control charts in the conching 

process. 

To overcome that, batch process datasets must be pretreated using methods that 

align and synchronize variables’ trajectories (GARCÍA-MUÑOZ et al., 2003). One of 

such methods is the Dynamic Time Warping (DTW), which stretches, compresses and 

translates intervals of process variables’ trajectories (GONZÁLEZ-MARTÍNEZ; 

WESTERHUIS; FERRER, 2013; WESTERHUIS; KOURTI; MACGREGOR, 1999). 

Gollmer and Posten (1996), for instance, used DTW to assess different process phases 

in a fermentation process using Saccharomyces cerevisiae. Similarly, Kassidas, 

MacGregor, and Taylor (1998) presented an iterative method based on DTW for the 

synchronization of batch trajectories from an industrial emulsion polymerization 

process before the application of Nomikos and MacGregor (1994, 1995)’s MPCA-based 

monitoring scheme. However, different DTW methods may lead to different sets of 

synchronized batches, and that may impact the performance of monitoring schemes, 
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particularly with respect to the determination of the reference set of conforming batches 

against which future batches will be compared to draw conclusions about process 

stability, and predict the product’s final quality.  

The purpose of this study is to verify how different methods for alignment and 

synchronization affect the ability to correctly classify batches of a milk chocolate 

dataset as conforming and non-conforming. The majority of works on batch process 

monitoring focuses on process monitoring phase (phase 2 of SPC), in which control 

charts’ parameters are already available from the analysis of reference batches 

(KOURTI, 2003; KOURTI; MACGREGOR, 1996; MACGREGOR, 1997; NOMIKOS; 

MACGREGOR, 1995). This paper focuses on the development of the monitoring in-

control model (phase 1 of SPC), analyzing the impact that different methods for 

alignment and synchronization have on the determination of the reference set of 

conforming batches. To the best of our knowledge, no previous work addressed this 

problem. 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Chocolate conching dataset 

Data from 69 conching batches of milk chocolate processed between April 2014 

and January 2015 were collected from 2 Frisse conches type ELK (Bühler AG, Uzwill, 

Switzerland) in a chocolate manufacturing plant located in the south of Brazil. The 

expected batch duration for this type of chocolate in the plant is 495 min, but the sample 

displayed batches that took up to 1,170 min of processing for completion. The dataset 

included conforming and non-conforming batches, which were classified according to 

off-line analyses of viscosity and yield value. Fineness and moisture content were also 

evaluated by the Quality Control department. Results of measurements were obtained 5 

minutes (fineness) and 15 minutes (viscosity and yield value) after sample collection, 

allowing corrections before the batch was sent to the moulding lines. Conching duration 

above the expected value usually occurs when rheological specifications are not 

achieved, requiring corrections in the chocolate mass. Moisture measurements were not 

considered for batch classification, since results were not available before 2 days after 

sample collection (note that abnormal moisture results point to raw materials out of 

specification or water leakage in the conching equipment).  Among the several variables 
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observable during conching, process experts recommend monitoring four which are 

strongly related to two key quality-related aspects of the output, namely chocolate 

flavor, which is influenced by (i) chocolate mass temperature, and chocolate rheology, 

which is influenced by (ii) main motor drive current, (iii) shovel speed, and (iv) 

frequency of soybean lecithin dosage.   

 

3.2.2 Pre-treatment of data 

Real datasets bring a new layer of complexity to data analyses, usually requiring 

adjustments before statistical methods can be correctly implemented. In this section the 

adjustments carried out in the milk chocolate conching dataset are described.   

 

3.2.2.1 Dataset unfolding 

The complete dataset may be viewed as a three-way data matrix of dimension 

(𝐼 ×  𝐽 ×  𝐾), where 𝐽 are the process variables measured in 𝐾 time intervals in 

𝐼 batches. The concept of batch-wise unfolding described by Kourti (2003) was adopted 

here, resulting in a two-dimensional matrix (𝐼 ×  𝐽𝐾), where each row corresponds to a 

𝐼 batch and each column corresponds to a 𝐽𝐾 unfolding variable. As described by 

Nomikos and MacGregor (1995), batch-wise unfolding is recommended when the 

objective is batch process monitoring with SPC methods.   

 

3.2.2.2 Missing values 

Variables were measured every 60 seconds as batches progressed. Missing 

observations occurred when sensors started registering data at different moments or 

when measurements were not taken due to sensor failure. Missing values were treated as 

follows: (i) when a missing observation (or sequence of missing observations) displayed 

equal values in the immediately preceding and subsequent entries, missing observations 

were replaced by that value; (ii) when a missing observation displayed different values 

in the immediately preceding and subsequent entries, it was replaced by the average of 

those values; and (iii) when a sequence of missing observations displayed different 

values in the immediately preceding and subsequent entries, missing observations were 

replaced by values that gradually increased/decreased, obtained by linear interpolation. 
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The largest sequence of missing observations found in the dataset corresponded to 3 

minutes. 

 

3.2.2.3 Outliers 

From the set of 69 batches, 7 were excluded for presenting drive current and 

speed readings larger than the maximum admissable values informed by the conching 

equipment manufacturer. The outlier batches were identified plotting the original data as 

a function of time (data not shown) and usually occured before or after a missing value, 

indicating that it was the result of sensor failure. 

 

3.2.3 Alignment and synchronization of multivariate batch datasets 

Three alignment and synchronization methods were applied to the milk 

chocolate conching dataset. They were all comprised of a symmetric DTW algorithm 

followed by an asymmetric synchronization procedure. The three methods were 

proposed by Kassidas, MacGregor, and Taylor (1998), Ramaker et al. (2003), and 

González-Martínez, Ferrer, and Westerhuis (2011), respectively, and denoted hereafter 

as KMT, RSWS, and GFW. 

The main principle of DTW is the non-linear warping of pairs of trajectories 

such that similar events are aligned and the best path through a grid of vector-to-vector 

distances is found, minimizing the total distance between trajectories. A weighted 

quadratic distance is used, where 𝐖 is a diagonal matrix of weights for each variable 

giving their relative importance for the next iteration (KASSIDAS; MACGREGOR; 

TAYLOR, 1998). In KMT the weights provide an indication of which process variables 

are consistent from batch to batch, and synchronization of batch trajectories relies on 

those variables. In RSWS matrix 𝐖 indicates which variables contain more warping 

information, explaining main occurrences in the process. It is clear that KMT and 

RSWS are grounded on different interpretations of weights and may lead to different 

warped datasets. Finally, GFW pursues a balance between the KMT and RSWS 

methods, defining a 𝐖 matrix in which higher weights are assigned to variables that are 

consistent from batch to batch, while simultaneously providing meaningful warping 

information.  

All batches (conforming and non-conforming) are aligned and synchronized 

with respect to a reference batch (𝒃𝒓𝒆𝒇) such that all batches display the duration of 
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𝒃𝒓𝒆𝒇. The choice of 𝒃𝒓𝒆𝒇 varies in each DTW method. In KMT and RSWS, 𝒃𝒓𝒆𝒇 

corresponds to the batch with duration closest to the average duration of conforming 

batches; in GFW 𝒃𝒓𝒆𝒇 corresponds to the batch with duration closest to the median 

duration of conforming batches.  

In this paper, two adaptations were implemented in the methods above. First, the 

band global constraint was not used. Such constraint aims at speeding up computational 

time by excluding certain regions of the dataset in which the optimal path may lie. This 

is particularly important in on-line applications; however, as analyses were conducted 

off-line the main goal is to find the optimal path across all batches and computational 

time became a minor issue. Second, a new convergence criterion for the weight matrix 

𝐖 is proposed. In this study, the iterative procedure was stopped when the difference 

between each one of the 4 variable weights in the current iteration and its corresponding 

ones in the immediately previous iteration was smaller than |0.0010|. Evaluation of 

results after weights achieved the convergence threshold showed that they were not 

significantly improved.  

The alignment and synchronization methods tested were implemented in 

MATLAB R2012b; all codes are available upon request.  

 

3.2.4 𝒌-Nearest Neighbor classification method 

The 𝑘-nearest neighbor (𝑘𝑁𝑁) classification technique (BHATIA; VANDANA, 

2010; COVER; HART, 1967; DUDA; HART; STORK, 2001) was used to classify the 

set of aligned and synchronized batches yielded by each DTW method in one of two 

categories: conforming or non-conforming. The 𝑘-nearest neighbors are considered 

those with the smallest Euclidean distance from the new observation. The treated 

dataset was partitioned such that 80% of the data were used as training portion, and 20% 

as test portion. Five different odd numbers of neighbors (𝑘 =1, 3, 5, 7, and 9) were 

tested and the best value of 𝑘 was selected as the one that achieved the highest average 

classification accuracy in the test portion (in case of tie, the smallest 𝑘 was chosen). 

Average accuracy was computed based on 100 iterations, being given by the number of 

correctly classified batches divided by the total number of classifications 

(ANZANELLO; ALBIN; CHAOVALITWONGSE, 2009). Sensitivity and specificity 

values were also computed for each value of 𝑘. Sensitivity corresponds to the true 
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positive rate (i.e. the number of true conforming batches divided by the total number of 

batches classified as conforming), and specificity is the true negative rate (i.e. the 

number of true non-conforming batches divided by the total number of batches 

classified as non-conforming) (ALPAYDIN, 2010).   

Since the objective is to refine the definition of the reference set of conforming 

batches to be used in phase 1 of SPC, the DTW method with largest values of 

classification accuracy and sensitivity was deemed best for the milk chocolate dataset 

under analysis. Specificity is also particularly relevant in situations where the focus is to 

minimize unnecessary production line interruptions and financial losses. The 𝑘𝑁𝑁 was 

implemented in MATLAB R2012b; codes are available upon request.  

 

3.3 RESULTS AND DISCUSSION 

Three DTW methods were applied to promote the alignment and 

synchronization of batches in a milk chocolate conching dataset. Process experts 

selected 4 process variables to be monitored, with observations available at each minute. 

Variable MS6 (‘Metering System #6’) shows the frequency of soybean lecithin dosage; 

variables S (‘Speed’) and DC (‘Drive Current’) give the rotation speed of the shovels 

and current of the main motor that promotes the rotation of the conche axis; variable CT 

(‘Chocolate Temperature’) gives the temperature of the mass during conching.  

The dataset was pre-treated resulting in 62 batches classified as conforming 

(53%) and non-conforming (47%). Classification is an input of the DTW methods since 

the reference batch (𝒃𝒓𝒆𝒇) is chosen from the subset of conforming batches. Pre-treated 

variables were scaled according to their average range, in all DTW methods, resulting in 

plots shown in Figure 3.1. Variable MS6 displays occasional step changes in its level, 

being suitable to test the quality of synchronization. Variables S, DC and CT, although 

noisy, display an identifiable shape along the batch duration, proving that outliers were 

successfully removed. Differences in duration and lack of synchronization across 

batches may also be verified. 

As previously mentioned, the choice of 𝒃𝒓𝒆𝒇 varied according to the DTW 

method being tested. The final length of batches treated by KMT and RSWS was 716 

minutes, and the corresponding three-way warped data matrix had 177,568 data points. 
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In GFW the length of batches was warped to 699 minutes, and the corresponding three-

way data matrix had 173,352 data points. 

 

 

Figure 3. 1 Scaled pre-treated variables before synchronization 

 

Convergence criteria varied according to the DTW method under test. The 

number of iterations required per method was 29 for the KMT, 34 for the GFW, and 36 

for the RSWS. On average, 36 minutes were required to perform an iteration of the 

methods. Figure 3.2 shows the results of alignment and synchronization of batches 

obtained using each method. All methods were able to promote the synchronization of 

batches with similar results. Profiles of aligned and synchronized variable MS6 obtained 

by KMT and RSWS were very similar, with small differences at the end of batches. The 

synchronization promoted by GFW differs from the other methods both in the duration 

and phase change points, which may be explained by the choice of 𝒃𝒓𝒆𝒇; its shape and 

synchronization results, however, are very similar to the other methods.  

Profiles in Figure 3.2 allow identifying the progression of three industrial 

chocolate conching phases: feeding, main conching, and liquefaction (BÜHLER, 2010).  

In feeding phase, refined chocolate is loaded in the conche and temperature is raised up 

to 45°C. Emulsifiers may be added at this stage to confer a smoother structure to the 

chocolate mass, but they are often added at the liquefaction stage. Dry and plastic 

conching take place at main conching phase. In the dry conching, the chocolate mass is 

mixed under high temperature (70-80°C), and the louvres (upper windows of the 

conche) are maintained opened to allow evaporation of water and undesirable volatile 

acids, while aeration of product takes place (BOLENZ; KUTSCHKE; LIPP, 2008; 

BOLENZ; THIESSENHUSEN; SCHÄPE, 2003; BÜHLER, 2010; PRAWIRA; 

BARRINGER, 2009). Transition to plastic conching starts when fat and/or soybean 

lecithin emulsifier are loaded (BOLENZ; THIESSENHUSEN; SCHÄPE, 2003; 
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GLICERINA et al., 2015). At this point, the current dependent drive changes from 

clockwise to anti-clockwise rotation in order to continue intense shearing and ensure 

better fat incorporation in the chocolate mass. Liquefaction phase starts when chocolate 

mass temperature is reduced to 45°C, and vanilla flavor and emulsifiers (soybean 

lecithin and/or polyglycerol polyricinoleate) are added while intense shear is applied. To 

prevent the mass from splashing out of the conche and to mix additives, louvres are 

closed and the rotation speed of shovels is reduced. Upon conclusion of this phase, a 

fluid chocolate mass should be available with rheological properties that ensure the 

efficiency of remaining process steps (such as pumping, tempering, and moulding) and 

sensory characteristics (such as consistency, smooth texture, melting, mouthfeel, and 

snap) (AFOAKWA et al., 2008; BOLENZ; THIESSENHUSEN; SCHÄPE, 2003; 

BÜHLER, 2010; FRANKE; TSCHEUSCHNER, 1991; GLICERINA et al., 2013; 

OWUSU; PETERSEN; HEIMDAL, 2012; PRAWIRA; BARRINGER, 2009). To verify 

that, a sample of the mass is collected and its rheological parameters are assessed. If 

results are not in accordance with industrial standards, a new addition of emulsifiers or 

fat is usually required to correct chocolate mass’ rheology.  

From the profile of variable MS6 two additions of soybean lecithin emulsifier 

are identifiable: at minutes 19 and 496 for KMT and RSWS, and at minutes 18 and 435 

for GFW. The first addition takes place at the beginning of the feeding phase, and the 

second at the beginning of the liquefaction phase. Smaller step changes noticeable at the 

end of batches are related to lecithin additions aiming at correcting viscosity and yield 

values of non-conforming batches.  

Analyzing the profile of variable S, several oscillations are observable at the 

beginning of batches until a maximum permissible speed plateau is reached, favoring an 

adequate refined mass distribution in the conche as feeding occurs. The end of the 

chocolate feeding phase takes place at minute 133 (for KMT and RSWS), after the 

speed is reduced to ensure an adequate mass aeration during dry conching phase. At 

minute 209 vegetable fat is added and the speed increases to allow plastic conching to 

occur, when kneading of the chocolate mass is required to better incorporate the fat. The 

power (variable DC) remains high and constant until the current dependent drive 

changes rotation from clockwise to anti-clockwise at minute 274 (for KMT and RSWS). 

Speed remains high and the power starts to decrease, as the chocolate mass needs 

progressively lower power to knead. When the mass is sufficiently liquid, speed and 

power decrease to lower the shear as the chocolate mass is now very soft and offers 
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little resistance to the conching tools (such speed reduction also avoids the liquid mass 

to splash out of the equipment).  

 

 

Figure 3. 2 Variables’ profiles after synchronization using (a) KMT (top), (b) RSWS 

(middle), and (c) GFW (bottom) methods 
 

Soybean lecithin is then added to the mass at minute 496, starting the 

liquefaction phase. Variable S displays a peak at this point since intense shear is 

required to properly mix emulsifiers into the chocolate mass. In the GFW method, the 

behavior of variables S and DC is not so obvious; however, rotation changeover and 

speed reduction at the end of the plastic conching are observable after minute 265 of 

processing. The temperature gets higher when the feeding phase ends and should reduce 

when the liquefaction phase starts; however, variable CT does not show clearly such 

temperature variations in any of the methods analyzed.  

Figure 3.3 shows the progression in variables’ weights as iterations of the DTW 

methods took place. At the start of the synchronization procedure it is not possible to 

average the batch trajectories since they have different durations, so 𝐖 is assumed to be 
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an identity matrix. From the fourth iteration on, the 𝐖 matrix considered the average 

trajectory batch to be 𝒃𝒓𝒆𝒇. That explains the variation in weights in early iterations. 

Depending on each method’s objective in considering 𝐖 in the warping process, 

different information is extracted from the synchronization.  

Variable DC is the one with higher increment in synchronization capability if 

weights of the KMT method are analyzed, representing 52.19% of the total weight at the 

final iteration, and deemed the most consistent variable from batch to batch. This 

consistency is evident in variable DC’s profile in Figure 3.2 since its deviation from the 

average trajectory is almost non-existent. On the other hand, variable DC was not 

efficient in explaining the main occurrences in the process, representing only 3.45% of 

the total weight in the RSWS method. Variables S and MS6 presented some dispersion 

between synchronized batches, being assigned lower weights than DC (22.05% and 

20.21% respectively). Finally, variable CT was the most dispersed across batches 

(represented by a large variation band in Figure 3.2), being assigned the lowest weight 

in KMT method (5.55%).  

In the RSWS method the largest weight is assigned to the variable with largest 

dispersion across batches. Thus, variable CT was the one with highest warping 

information, accounting for 82.95% of the total weight. All other variables displayed 

lower weight values, since their deviation from average trajectory was smaller. Variable 

DC displayed the lowest weight (3.45%).  

In the GFW method weights were distributed in a narrower range: from 28.8% 

(variable MS6) to 20.12% (variable CT) due to a better balance between consistency and 

warping information promoted by the method. 

Results in Figure 3.2 suggest that synchronization may be dependent on the 

choice of 𝒃𝒓𝒆𝒇. To check that, the outputs of all methods implemented with the same 

𝒃𝒓𝒆𝒇 were evaluated (data not shown). First, KMT and RSWS were run using 𝒃𝒓𝒆𝒇 

proposed in GFW (i.e. the batch with duration closest to the median duration of 

conforming batches); then, GFW was run using 𝒃𝒓𝒆𝒇 proposed in KMT and RSWS (i.e. 

the batch with duration closest to the average duration of conforming batches). Results 

showed that the choice of 𝒃𝒓𝒆𝒇 defines the length and phase changing points of 

synchronized trajectories, but does not impact on the quality of synchronization or the 

importance of variables in  𝐖 matrix (the most consistent variable in KMT and the 

variable with the most warping information in RSWS remains the same, regardless of 
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𝒃𝒓𝒆𝒇). Batches synchronized with the shorter trajectory length (699 minutes) required 

more iterations to convergence than batches synchronized with the longer trajectory 

length (716 minutes). That suggests that number of iterations is not directly related to 

length, but to shape and dispersion of the chosen 𝒃𝒓𝒆𝒇.  

 

 

Figure 3. 3 Percentage of total weight per iteration number by (a) KMT (top), (b) 

RSWS (middle), and (c) GFW methods (bottom) 
 

In addition to evaluating synchronization performance, the goal is to verify how 

each DTW method affected the classification of synchronized batches in conforming 

and non-conforming, using a supervised classification technique. The 𝑘𝑁𝑁 

classification technique was chosen for that. First, the dataset of synchronized batches 

was split into training and test portions, and the influence of the number of iterations in 

the final classification was evaluated. When performing 100, 200, 300, 400 and 500 

iterations of the 𝑘𝑁𝑁 the resulting standard deviation of average accuracy, sensitivity 

and specificity was lower than 0.7%, and the difference in performance as a function of 

the number of iterations was deemed not significant. Therefore, to minimize 
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computational effort, analyses reported next resulted from running 100 iterations of the 

algorithm.  

Running the 𝑘𝑁𝑁 algorithm in the test portion of the chocolate conching dataset, 

varying parameter 𝑘 from 1 to 9, the values of average and standard deviation for three 

classification performance metrics were obtained: accuracy, sensitivity, and specificity. 

Results are given in Table 3.1. In the conching process, accuracy of classification is of 

major importance: correct classification of batches is key to an adequate SPC. A higher 

specificity value is also crucial to avoid that non-conforming batches are misclassified 

as conforming, and released to the moulding lines. As batches are classified according 

to rheological parameters, a low specificity potentially leads to a number of technical 

problems in the process, such as imperfect covering of bonbons, poor spreading of 

chocolate mass in bar molds, and blocking of pipes and moving parts of the moulding 

equipment requiring interruptions in the production line for cleaning and disposal of 

products. That results in time and financial losses to the manufacturer. On the other 

hand, high sensitivity values are desired to better define the reference set of conforming 

batches to be used in the development of the monitoring in-control SPC model. The 

KMT method with 𝑘 = 3 was selected as the one with the best combination of 

classification performance metrics. It yielded the highest average accuracy across 

methods and the second higher sensitivity and specificity average values. The RSWS 

method attained good results for 𝑘 = 1, however with lower accuracy, sensitivity and 

specificity average results than the KMT method. Analyzing these results, it is possible 

to conclude that the choice of DTW method influence the ability of classifying batches 

in conforming or non-conforming.  

RSWS’ specificity with 𝑘 = 1 resulted 2% lower than that of the KMT method 

with 𝑘 = 3. Considering the number of batches processed in the plant analyzed, that 

corresponds to the misclassification of 2 batches per year; i.e. using the RSWS method 

to obtain the reference distribution to be used in SPC would imply in 12 tons of non-

conforming chocolate mass being sent to the production line, leading to a series of 

technical problems. Losses will be greater proportionally to the deviation of the 

chocolate mass viscosity from its target value. Considering that the milk chocolate mass 

is used in the production of bonbons, and that non-conforming masses force the 

production line to halt, that would represent a total financial loss of US$ 1,700.00 in 

labor, and US$ 17,000.00 in raw materials.  
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Table 3. 1 Classification accuracy, sensitivity, and specificity for synchronized batches; 

all values given in percentage 

    KMT method   RSWS method    GFW method  

    𝑘   𝑘   𝑘 

    1 3 5 7 9   1 3 5 7 9   1 3 5 7 9 

A
cc

u
ra

cy
 

Average  93.5 93.7 91.4 90.8 90.3   91.6 90.9 90.3 88.8 87.9   89.6 91.3 92.0 92.0 91.3 

Standard 

Deviation 
6.9 6.5 8.0 8.6 8.7   6.5 7.3 7.1 8.6 8.9   7.9 7.1 6.9 7.3 7.7 

S
en

si
ti

v
it

y
 

Average 96.0 97.2 95.8 94.9 93.2   95.4 97.0 95.3 93.3 91.4   90.6 95.4 96.6 97.8 97.9 

Standard 

Deviation  
9.1 6.5 7.5 8.3 9.5   8.3 6.5 8.3 9.2 9.9   11.5 8.1 7.4 5.3 5.1 

S
p

ec
if

ic
it

y
 

Average 91.4 90.3 87.6 88.1 88.7   88.3 84.6 85.9 85.3 85.2   88.8 87.5 87.7 86.8 85.3 

Standard 

Deviation  
11.6 12.0 14.2 14.5 15.0   13.1 14.8 13.5 15.2 15.4   12.0 12.6 12.5 13.3 15.0 

 

In the assessed plant, 47% of the produced batches required some sort of 

correction. The average time to correct non-conforming masses was 52 minutes; 

assuming that production batches were expected to last average 495 minutes, 2 out of 18 

planned batches were not produced due to such corrections. In addition, extra 

expenditure with raw materials required to correct non-conforming masses (e.g. soybean 

lecithin and vegetable fat) were also noteworthy, amounting to US$ 7,500.00 per year. 

The described losses in processing time and raw material can be substantially 

minimized by correctly implementing SPC in the conching equipment. 

The 𝑘𝑁𝑁 algorithm was also run to evaluate if different choices of 𝒃𝒓𝒆𝒇 had an 

influence on the correct classification of batches (data not shown). When 𝒃𝒓𝒆𝒇 was not 

the one suggested in the original DTW method, more 𝑘 neighbors were required to 

obtain similar classification performance results. For example, when KMT used 𝒃𝒓𝒆𝒇 

suggested in the original method, 3 neighbors were required to obtain the highest 

accuracy (93.7%); on the other hand, when using 𝒃𝒓𝒆𝒇 recommended in GFW 7 

neighbors were required to obtain similar accuracy (93.3%). The same occurred with 

RSWS and GFW.  

Correct classification of batches is key when determining the reference 

distribution of conforming batches to be used in SPC. With that in view, KMT was 

deemed the most adequate DTW method to promote alignment and synchronization of 

batches in the chocolate conching dataset: it was the method that least affected 𝑘𝑁𝑁’s 

ability to correctly classify batches in conforming and non-conforming classes. Due to 
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its consistency, variable DC was deemed the most important to promote the alignment 

and synchronization of the chocolate conching dataset. 

 

3.4 CONCLUSION 

In chocolate manufacturing process, batches typically do not present the same 

duration. As a consequence, traditional techniques as MPCA-based charts are not 

suitable for process control and monitoring. To address that issue, this paper compared 

three DTW methods that align and synchronize process variables’ trajectories aimed at 

properly determining the reference distribution for multivariate statistical process 

control. Findings suggested the KMT method as the best DTW option for aligning and 

synchronizing a milk chocolate conching dataset. Such method was recommended due 

to the lowest number of iterations required to achieve convergence and highest average 

accuracy in the testing portion using the 𝑘𝑁𝑁 classification technique. Future research 

includes the development of approaches focused on dimension reduction of datasets 

through variable selection.  
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4 ARTIGO 3 – FAULT DETECTION IN BATCH PROCESSES THROUGH 

VARIABLE SELECTION INTEGRATED TO MULTIWAY PRINCIPAL 

COMPONENT ANALYSIS  

 

Abstract 

The main purpose of fault detection in batch process monitoring is to identify batches 

displaying atypical behavior in comparison to normal operating data. The current 

growth in the number of measurable variables due to process automation yields datasets 

in which the number of variables is much larger than the number of batches. That may 

compromise the performance of Multiway Principal Component Analysis (MPCA), 

which is the most popular quality control approach used in batch processes. To 

overcome that, new strategies to handle high-dimensional datasets become necessary. In 

this paper we propose the Pareto Variable Selection (PVS) – MPCA method to monitor 

batch processes described by high-dimensional datasets. The main idea of PVS-MPCA 

is to select process variables that promote the best classification of production batches 

in conforming or non-conforming, prior to the construction of 𝑇2 and 𝑄 control charts 

used to monitor batch performance. Our proposition was applied to a real dataset from a 

chocolate conching batch operation and compared to classical MPCA-based monitoring. 

PVS-MPCA promoted a reduction of 85.18% in false alarm rate retaining only 5 

unfolded variables, in opposition to 2,864 unfolded variables used in classical MPCA. 

The missed detection rate was null, ensuring that only conforming batches were 

released to the production line.  

 

Keywords: Batch process; Variable selection; Fault detection; Multiway Principal 

Component Analysis; High-dimensional data 

 

4.1 INTRODUCTION  

Batch processes are characterized as having finite duration, unsteady state, and 

non-linear nature (NOMIKOS; MACGREGOR, 1995a, 1995b). Generic steps of a batch 

process are: (i) charging batch contents, (ii) processing contents according to a protocol, 

and (iii) discharging processed contents. Even though batch processes are described by 

a large number of informative process variables, output quality is typically defined by 
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comparing results of laboratory analyses with a predefined quality standard 

(KOSANOVICH; DAHL; PIOVOSO, 1996; NOMIKOS; MACGREGOR, 1995b).  

To use process information in the definition of batch output quality, Nomikos 

and MacGregor (1994; 1995b) proposed calculating fault detection statistics in a 

reduced space obtained through multiway principal component analysis (MPCA) and 

monitoring their behavior using multivariate control charts. Chart parameters are 

determined using a reference distribution model obtained mining a historical database of 

past batches that yielded conforming outputs. The goal of fault detection through 

MPCA monitoring is to identify correctly batches displaying atypical behaviors when 

compared to normal operating data. Such potentially non-conforming batches are then 

investigated to identify process variables responsible for process failure, in a fault 

isolation step (WOODALL; MONTGOMERY, 2014; ZHAO; WANG, 2016). To attain 

successful batch process quality monitoring it is key to correctly classify batches as 

conforming or non-conforming. 

The wide spread of sensor networks and distributed control systems in industry 

gave rise to a myriad of high dimensional datasets, comprised of measurements taken on 

hundreds of process variables during batch progression (JIANG; HUANG, 2016; 

WOODALL; MONTGOMERY, 2014). In classical PCA theory the asymptotic 

normality of eigenvalues and eigenvectors is established under a fixed model with 

dimension 𝐽 (variables), as the number of 𝐼 (observations or batches) tends to infinity 

(WANG; FAN, 2017). If 𝐽 increases in parallel with 𝐼, standard PCA yields consistent 

estimates of the principal eigenvectors if and only 𝐽/𝐼 → 0. However, in many datasets 

obtained from industrial applications, which is the case of batch processes with 𝐽𝐾 

unfolding variables,  𝐽𝐾 is comparable to, or larger than the sample size 𝐼, with 𝐽𝐾/𝐼 →

∞ (JOHNSTONE; LU, 2009; LEE; LEE; PARK, 2012). When that is the case PCA 

yields inconsistent results with the sample covariance matrix being a notoriously bad 

estimator with substantial different eigen-structure from the original population 

(AMINI, 2011; WANG; FAN, 2017). That compromises the feasibility of MPCA-based 

multivariate monitoring methods in the fault detection and isolation steps, calling for 

new approaches to handle high-dimensional sets obtained from industrial batch 

processes (ANZANELLO; ALBIN; CHAOVALITWONGSE, 2012; BISGAARD, 

2012; JIANG; HUANG, 2016).  

Ideally, variables responsible for fault effects are distinguished from others and 

only a few key process variables are analyzed, expediting the process of diagnosing 
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special events and enhancing the understanding of the fault generation mechanism 

(WANG; JIANG, 2009; ZHAO; WANG, 2016). To accomplish that it is important to 

decide which variables should be included in the reference model such that fault effects 

are more effectively explored. Variable selection methods can help with that decision; 

their use, integrated to multivariate statistical process control (MSPC), has considerably 

increased in the past five years as reported by Capizzi (2015) and Peres and Fogliatto 

(2018). Normally, hundreds (or even thousands) of variables are used for fault detection 

in batch processes which could impair the correct classification of batches in 

conforming and non-conforming due to their complex correlation structure (YAN; 

KUANG; YAO, 2017). Thus, identifying the subset of variables able to provide a better 

batch classification leads to the recovering of PCA consistency (see JOHNSTONE; LU, 

2009; LEE; LEE; PARK, 2012; LUO et al., 2017), and improved process monitoring.  

In this paper, we propose the Pareto Variable Selection – Multiway Principal 

Component Analysis (PVS–MPCA) method for fault detection using control charts 

(CCs). Our method is able to handle high-dimensional datasets in which 𝐽𝐾 ≫ 𝐼. PVS-

MPCA starts by selecting the process variables that best discriminate production 

batches as conforming or non-conforming. For that, Partial Least Squares Discriminant 

Analysis (PLS-DA) is performed and its output parameters used to computed a variable 

importance index (𝑉𝐼𝐼). Then, a wrapper variable selection procedure using 𝑉𝐼𝐼 and the 

𝑘-Nearest neighbor (𝑘𝑁𝑁) classification technique is run. An initial subset comprised 

of all variables is split by 5-fold cross validation and 𝑘𝑁𝑁 is used to classify batches 

and compute classification accuracy on the testing portion. Subsequently, the variable 

with the lowest 𝑉𝐼𝐼 is removed, batches are re-classified using remaining process 

variables and classification accuracy is computed again. Variable elimination is carried 

out recursively until a single variable was left. A number of candidate sets (𝐶𝑆) of 

selected variables is chosen; using the Pareto Optimality (PO) analysis the Pareto 

frontier sets are identified and the variable subset with the smallest Euclidean distance 

from an ideal solution is selected as the Pareto Variable Selection (PVS) subset. 

Hotelling’s 𝑇2 and 𝑄 residuals CCs are then built to define the reference distribution 

using only the PVS subset of selected variables in an iterative procedure that eliminates 

batches outside the in-control region. Batches considered conforming by Phase I CCs 

are then used to build the MPCA monitoring model. For offline fault detection new 

batches have their 𝑇2 and 𝑄 statistics computed and are monitored using Phase II CCs. 
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Finally, monitoring performance of CCs is measured by the cumulative error rate, that 

combines false alarm (FAR) and missed detection (MDR) rates.  

There are two contributions here. First, we propose an off-line fault detection 

method that incorporates a variable selection step prior to the development of MPCA-

based control charts aimed at monitoring high dimensional batch process datasets. 

Second, the fault detection performance of the new method is compared to that of the 

standard MPCA-based CCs method, showing its potential to mitigate PCA limitations 

that arise in the analysis of datasets in which 𝐽𝐾 ≫ 𝐼. 

The rest of the paper is organized as follows. In the section 4.2 we give the 

background of MPCA fault detection and variable selection methods used in our 

proposition. The proposed PVS-MPCA method is presented in section 4.3 and applied 

to real data from a chocolate manufacturer in section 4.4. Finally, conclusions and 

future research are presented in section 4.5. 

 

4.2 BACKGROUND  

 

4.2.1 Fault Detection using Batch-wise Multiway Principal Component Analysis 

(MPCA) 

Consider process data describing the progression of batches organized in a three-

way matrix 𝐗 (𝐼 × 𝐽 × 𝐾), such that 𝐽 variables are measured at 𝐾 time intervals in a 

sample of 𝐼 batches. Measured variables are likely to display autocorrelation in addition 

to being correlated with one another at any given time during batch progression (DE 

OLIVEIRA; MARCONDES FILHO, 2018; KOSANOVICH; DAHL; PIOVOSO, 1996; 

YAN; KUANG; YAO, 2017; ZHAOMIN; QINGCHAO; XUEFENG, 2014). Aiming at 

monitoring batch-to-batch variation MPCA promotes the batch-wise unfolding of 

matrix 𝐗 (Figure 4.1) to obtain a two-dimensional data matrix 𝐗𝐵 with dimension 

(𝐼 × 𝐽𝐾) on which principal component analysis (PCA) is performed. Through the 

unfolding procedure it is possible to address both the auto and cross-correlation of 

variables within a batch, as well as the variability across batches (EMPARÁN et al., 

2012; KHOSRAVI; MELÉNDEZ; COLOMER, 2009; KOURTI, 2003; NOMIKOS; 

MACGREGOR, 1994). 
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Figure 4. 1  Unfolding of the three-dimensional process data matrix 

Prior to obtaining a PCA model each column of 𝐗𝑩 should be standardized to 

display zero mean and unit variance; let 𝐙𝑩 denote the matrix of standardized variables. 

The purpose of standardization was to remove scale effects present when variables 

display means of different magnitude (KOSANOVICH; DAHL; PIOVOSO, 1996; 

ZHAOMIN; QINGCHAO; XUEFENG, 2014). 

Analogously to the ordinary two-way PCA, MPCA rewrites the original datasets 

into a new 𝐽𝐾–dimensional variable space, with coordinate directions known as 

principal components (PCs). Usually, most relevant process information is contained in 

a subset of 𝑅 PCs and the PCA-model used to represent process variation has reduced 

dimension if compared to the original dataset (FUENTES-GARCÍA; MACIÁ-

FÉRNANDEZ; CAMACHO, 2018; KHOSRAVI; MELÉNDEZ; COLOMER, 2009; 

KOSANOVICH; DAHL; PIOVOSO, 1996). Thus, the MPCA model rewrites the 𝐙𝑩 

matrix as the product of a score matrix 𝐓𝑹(𝐼 × 𝑅) and a transposed loading matrix 

𝐏𝑅
′ (𝑅 × 𝐽𝐾), plus a residual matrix 𝐄(𝐼 × 𝐽𝐾). Whenever 𝑅 < 𝐽𝐾, dimension reduction 

is accomplished and the model in eqn. (1) is used to represent the original dataset 

without significant information loss (FUENTES-GARCÍA; MACIÁ-FÉRNANDEZ; 

CAMACHO, 2018; KHOSRAVI; MELÉNDEZ; COLOMER, 2009; WOLD, 1978; 

ZHAOMIN; QINGCHAO; XUEFENG, 2014). 

𝐙𝑩 = 𝐓𝑅 × 𝐏
𝑅
′ + 𝐄             (1) 

To project information contained in vector 𝐱𝑛𝑒𝑤 obtained from a new batch into 

the model subspace in eqn. (1), the scores for the new batch are obtained as follows 

(FUENTES-GARCÍA; MACIÁ-FÉRNANDEZ; CAMACHO, 2018): 
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𝐭𝑛𝑒𝑤 = 𝐱𝑛𝑒𝑤 × 𝐏𝑅          (2)  

Once scores have been computed, a vector of residuals 𝐞𝑛𝑒𝑤 (eqn. 3) is 

calculated as the difference between observed data and model estimates:  

    𝐞𝑛𝑒𝑤 = 𝐱𝑛𝑒𝑤 − 𝐱̂𝑛𝑒𝑤 =  𝐱𝑛𝑒𝑤 − 𝐭𝑛𝑒𝑤 × 𝐏𝑅′                               (3) 

where 𝐱̂𝑛𝑒𝑤 is an estimate based on the MPCA model (KOSANOVICH; DAHL; 

PIOVOSO, 1996).  

The most popular criterion to decide on the number of retained PCs is the 

Kaiser-Guttman, in which components displaying eigenvalues larger than 1 are retained 

(JACKSON, 1993; RENCHER, 2002). When the mean of eigenvalues is larger than 1 

(for example, when a covariance matrix is diagonalized), a variation of the criterion  is 

adopted and all PCs for which 𝜆𝑟  ≥ 𝜆̅ (𝜆𝑟 is the eigenvalue associated with the 𝑟𝑡ℎ PC 

and 𝜆̅ is the mean value of the eigenvalues) are retained (REA; REA, 2016) 

Scores in eqn. (2) are used to compute the Hotelling 𝑇2 statistic (for the model 

space) and residuals in eqn. (3) are used to compute the 𝑄 statistic (for the residual 

space), as described next (FUENTES-GARCÍA; MACIÁ-FÉRNANDEZ; CAMACHO, 

2018; KHOSRAVI; MELÉNDEZ; COLOMER, 2009; KOSANOVICH; DAHL; 

PIOVOSO, 1996).  

(i) The Hotelling control chart statistic 𝑇𝑛𝑒𝑤
2  is obtained projecting the scores 

𝐭𝑛𝑒𝑤 on the new set of orthogonal axes given by the 𝑅 PCs retained in the 

reference data matrix 𝐙𝑩, as follows: 

𝑇𝑛𝑒𝑤
2 = ∑

𝑡𝑛𝑒𝑤,𝑟
2

𝜆𝑟

𝑅
𝑟=1           (4) 

where 𝑡𝑛𝑒𝑤,𝑟 is the score obtained from the 𝑟𝑡ℎ PC, and 𝜆𝑟 is its associated 

eigenvalue. Statistic 𝑇𝑛𝑒𝑤
2  measures the fit of new observations to the 

reference model space and monitors the behavior of known sources of 

process variability (i.e. deviations in variables’ time trajectories with respect 

to their reference trajectories). 

(ii) The 𝑄 control chart statistic 𝑄𝑛𝑒𝑤 is used to detect unusual events that affect 

the correlation and autocorrelation structure captured by the reference PCA 

model. It is calculated as follows:  

      𝑄𝑛𝑒𝑤 = ∑ (𝑒𝑗
𝑛𝑒𝑤)2𝐽𝐾

𝑗=1                  (5) 

where 𝑒𝑗
𝑛𝑒𝑤 is the residual value associated with the 𝑗𝑘𝑡ℎ unfolded variable 

in the new observation. 
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Process monitoring using PCA-based CCs is carried out in two phases. In Phase 

I, conforming batches selected from a historical database are analyzed such that process 

in-control (IC) behavior is characterized through a reference model. In Phase II, 

deviations in future batches’ behavior with respect to the IC model are detected 

(CAPIZZI, 2015; DE OLIVEIRA; MARCONDES FILHO, 2018; FUENTES-GARCÍA; 

MACIÁ-FÉRNANDEZ; CAMACHO, 2018; JONES-FARMER et al., 2014). Process 

monitoring may take place on-line (batch progress is monitored as it evolves), or off-

line (batch behavior is verified at the end of the run). Both types of monitoring present 

advantages. On-line monitoring allows the implementation of corrective actions before 

the end of the run. For that, an out-of-control signal diagnosis must be available, which 

may not be possible in some types of process (e.g. rubber processing in which batches 

typically last 5 minutes or less). Off-line monitoring, on the other hand, allows 

characterizing final product quality several hours before lab test results become 

available, based solely on batch behavior. Independent of the control strategy, fault 

detection relates to the signaling of abnormal situations, fault isolation relates to the 

decomposition of the multivariate out-of-control signal and identification of out-of-

control variables, and fault diagnosis relates to the identification of the mechanism 

responsible for the out-of-control signal (FUENTES-GARCÍA; MACIÁ-

FÉRNANDEZ; CAMACHO, 2018; KHOSRAVI; MELÉNDEZ; COLOMER, 2009; 

KOURTI, 2003). 

Potential abnormal events are acting on the process whenever the CCs statistics 

𝑇2 and 𝑄 produce points outside the charts’ in-control region, bounded by their control 

limits (FUENTES-GARCÍA; MACIÁ-FÉRNANDEZ; CAMACHO, 2018; ZHAOMIN; 

QINGCHAO; XUEFENG, 2014). Upper and Lower Control Limits (UCL and LCL) for 

the Hotelling 𝑇2 CC to be used in Phase I of process monitoring are given in eqn. (6), 

considering individual observations (𝑛 = 1) and a significance level 𝛼 (NOMIKOS; 

MACGREGOR, 1995b). 

UCL𝑇2,Phase I ≤
(𝐶𝐹−1)2

(𝐶𝐹)
×

(𝑅/(𝐶𝐹−𝑅−1))×𝐹𝛼,𝑅,(𝐶𝐹−𝑅−1)

1+(𝑅/(𝐶𝐹−𝑅−1))×𝐹𝛼,𝑅,(𝐶𝐹−𝑅−1)
    (6) 

                           LCL𝑇2,Phase I = 0 

where 𝐶𝐹 is the number of conforming batches, 𝑅 is the number of retained PCs, and 

𝐹𝛼,𝑅,(𝐶𝐹−𝑅−1) is the tabled value of an 𝐹 distribution with 𝑅 and (𝐶𝐹 − 𝑅 − 1) degrees 

of freedom and confidence limit 𝛼. 
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A common strategy in Phase I consists of iteratively revising control limits each 

time an out-of-control (OOC) batch is detected. Start iterations setting 𝐶𝐹 = 𝐼 (i.e. the 

total number of batches in 𝐙𝑩) and eliminate batches yielding 𝑇2 and/or 𝑄 values 

outside the charts’ in-control region (eqns. 6 and 8). Let 𝑂𝑂𝐶 denote a variable that 

counts the number of batches yielding out-of-control signals. Continue to iterate setting 

𝐶𝐹 = 𝐼 − 𝑂𝑂𝐶, and carry on the process until all batches yield CCs statistics values 

within control limits. Phase I results in (i) a reduced 𝐙𝑩 dataset comprised only of IC 

batches which may be used to obtain an IC reference model through PCA, and (ii) 

estimates of unknown process parameters which may be used to calculate control limits 

for CCs in Phase II (CAPIZZI, 2015). 

Phase II control limits for the 𝑇2 CC considering 𝑛 = 1 and a significance level 

𝛼 are given by (FUENTES-GARCÍA; MACIÁ-FÉRNANDEZ; CAMACHO, 2018; 

LOWRY; MONTGOMERY, 1995): 

UCL𝑇2,Phase II ≤
𝑅(𝐶𝐹2−1)

𝐶𝐹(𝐶𝐹−𝑅)
× 𝐹𝑅,(𝐶𝐹−𝑅),𝛼    (7)  

                                       LCL𝑇2,Phase II = 0 

where 𝑅 is the number of retained PCs, 𝐼 is the number of batches, 𝐶𝐹 = 𝐼 − 𝑂𝑂𝐶, and 

𝐹𝑅,(𝐶𝐹−𝑅),𝛼 is the tabled value for an 𝐹 distribution with 𝑅 and (𝐶𝐹 − 𝑅) degrees of 

freedom and confidence limit 𝛼. 𝑇𝑛𝑒𝑤
2  values outside control limits potentially represent 

a situation in which at least one variable in 𝐱𝑛𝑒𝑤 significantly deviates from its 

reference trajectory (KHOSRAVI; MELÉNDEZ; COLOMER, 2009). 

Monitoring of a new batch using the 𝑄 chart is carried out using eqns. (2), (3) 

and (5). Control limits for the 𝑄 chart in Phase II are given by (FUENTES-GARCÍA; 

MACIÁ-FÉRNANDEZ; CAMACHO, 2018): 

 UCL𝑄 ≤ 𝜃1 [
𝑧𝛼√2𝜃2ℎ0

2

𝜃1
+ 1 +

𝜃2ℎ0(ℎ0−1)

𝜃1
2 ]

1
ℎ0

⁄

     (8) 

    LCL𝑄 = 0       

where 𝜃1 = ∑ 𝜆𝑖
𝐽
𝑖=𝑅+1  , 𝜃2 = ∑ 𝜆𝑖

2𝐽
𝑖=𝑅+1  and 𝜃3 = ∑ 𝜆𝑖

3𝐽
𝑖=𝑅+1 , such that 𝜆𝑖 is the 

eigenvalue associated with the 𝑖𝑡ℎ PC, ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2 , and 𝑧𝛼 is the standard normal 

distribution value for a false alarm probability 𝛼. 𝑄𝑛𝑒𝑤 values outside control limits 

indicate that atypical events changed the correlation/auto-correlation structure 

represented in the reference model (DE OLIVEIRA; MARCONDES FILHO, 2018). 
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4.2.2 Variable selection based on accuracy classification of batches  

Consider an 𝐙𝑩(𝐼 ×  𝐽𝐾) input dataset and an 𝐲 (𝐼 ×  1) output vector giving 

the outcomes of a binary categorical variable that discriminates between conforming 

and non-conforming batches. Batches are randomly split into training (𝐼𝑡𝑟) and testing 

(𝐼𝑡𝑠) sets, such that 𝐼𝑡𝑟 + 𝐼𝑡𝑠 = 𝐼. Batches in the training set are used to select the 

optimal subset of process variables using a PVS method that considers two criteria: 

classification accuracy and percentage of retained variables (ANZANELLO; ALBIN; 

CHAOVALITWONGSE, 2012). To obtain the relationship between 𝐽𝐾 process 

variables and the categorical output variable, PLS-DA is implemented. PLS-DA is 

recommended for cases in which 𝐼 < 𝐽𝐾, i.e. the number of observations (batches) is 

smaller than the number of 𝐽𝐾 unfolding variables (YAN; KUANG; YAO, 2017). In 

addition, a variable selection based on PLS-DA relies on variables that best discriminate 

IC and 𝑂𝑂𝐶 batches, which is in agreement with the fault detection requirement of 

assigning samples in two classes, conforming and non-conforming (KUANG; YAN; 

YAO, 2015).  

In PLS-DA each entry 𝑦𝑖𝑔 of 𝐲 represents the 𝑔𝑡ℎ class of the 𝑖𝑡ℎ observation 

expressed with a binary code (1 or 0). In two-class categorization the number 1 usually 

indicates that the training observation belongs to the class of interest (conforming 

batches), while 0 indicates that the observation belongs to a different class (non-

conforming batches). However, estimates of 𝐲 obtained from a PLS-DA model are 

continuous, non-integer values, and a threshold should be defined for each class; e.g. 

whenever 𝑦𝑖𝑔 is greater than or equal to the threshold defined for the 𝑔𝑡ℎ class, sample 𝑖 

will be assigned to the 𝑔𝑡ℎ class; otherwise it will be assigned to the other class. The 

simplest approach for a two-class categorization is to use an arbitrary cut-off value such 

as 0.5 (BALLABIO; CONSONNI, 2013; PÉREZ; FERRÉ; BOQUÉ, 2009). 

PLS-DA output parameters 𝐰, 𝐩𝑎 and 𝐸𝑌𝑎
2  are used to compute the importance 

index 𝑉𝐼𝐼𝑗 for process variable 𝑗 [eqn. (9)]. The weight vector 𝐰 that defines the linear 

combination of process variables is selected to maximize the covariance with 𝐭𝑛𝑒𝑤. The 

fraction of the variance in 𝐲 explained by the retained component 𝑎 is given by 𝐸𝑌𝑎
2 . For 

each component 𝑎, a vector of loadings 𝐩𝑎 is obtained regressing the columns of  𝐙𝑩 on 

𝐭𝑛𝑒𝑤 (ANZANELLO; ALBIN; CHAOVALITWONGSE, 2012). The number of PLS-

DA components to be retained, 𝐴, could be defined through cross-validation and does 



100 
 

 
 

not need to be equal to 𝑅’s number of components retained by the PCA used for 

estimating the 𝑇𝑛𝑒𝑤
2  statistic eqn (4). 

      𝑉𝐼𝐼𝑗 = ∑ (
𝑤𝑗𝑎

𝑝𝑗𝑎× 𝑤𝑗𝑎
)

2

𝐸𝑌𝑎
2𝐴

𝑎=1                                                        (9) 

where 𝑗 = 1, … , 𝐽𝐾. 

𝑉𝐼𝐼𝑗 results are organized in a descending order to create candidate sets (𝐶𝑆) of 

selected process variables. Classification accuracy (CA) of each 𝐶𝑆 [eqn. (10)] will be 

determined using the 𝑘-nearest Neighbor (𝑘𝑁𝑁) classification technique 

(ANZANELLO; ALBIN; CHAOVALITWONGSE, 2012).  

                           𝐶𝐴 =
𝐼𝐶𝐶

𝐶𝑙𝑎𝑠𝑠𝑇𝑜𝑡𝑎𝑙
 ,                                                              (10) 

where 𝐼𝐶𝐶 is the number of correctly classified batches and 𝐶𝑙𝑎𝑠𝑠𝑇𝑜𝑡𝑎𝑙 is the total 

number of classifications. The 𝑘-nearest neighbor is a data mining technique which 

splits the 𝐼𝑡𝑟 subset into training (𝐼𝑡𝑟′) and testing portions (𝐼𝑡𝑠′), and classifies new 

observations based on the class labels of the 𝑘 nearest neighbors (i.e. the ones with 

smallest Euclidean distance) in the variable space. When the class of each observation 

in 𝐼𝑡𝑟 is known beforehand, the value of 𝑘 is the one that maximizes the classification 

accuracy in the testing portion 𝐼𝑡𝑠′ (DUDA; HART; STORK, 2001; WU et al., 2008).  

An iterative procedure involving 𝑉𝐼𝐼 and 𝑘𝑁𝑁 is run. First, the classification 

accuracy of 𝐼𝑡𝑠′ is computed using all 𝐽𝐾 variables. In the following iterations, using 

backward elimination each succeeding 𝐶𝑆 is obtained by removing the variable with the 

lowest 𝑉𝐼𝐼𝑗  from the set, until there is a single remaining variable (𝑅𝑉); see eqn. (11). 

At each step, the classification accuracy is computed. 

𝑅𝑉 = 𝐽𝐾 − 𝑗,                                                             (11)          

where 𝑗 = 1,2, … , 𝐽𝐾 − 1 

To handle the large number of 𝐶𝑆 when the number of process variables is very 

large, a Pareto Optimality (PO) analysis may be used. The idea is to determine a group 

of sets, called the non-dominated candidate sets (𝐶𝑆𝑛𝑑), such that no other sets in the 

search space are superior to them. Then, the 𝐶𝑆𝑛𝑑 with smallest Euclidean distance from 

a hypothetical ideal set, which minimizes the number of retained variables and 

maximizes classification accuracy, is chosen and named Pareto Variable Selection 

(PVS) set. Finally, the performance of the PVS set is verified in the 𝐼𝑡𝑠 subset 

(ANZANELLO; ALBIN; CHAOVALITWONGSE, 2012; TABOADA; COIT, 2007; 

ZITZLER; THIELE, 1999). 
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4.3 PVS-MPCA FAULT DETECTION METHOD  

The PVS-MPCA monitoring method consists of combining a wrapper variable 

selection aimed at reducing the original dataset to a subset of relevant variables for 

batch classification, previous to the construction of the 𝑇2 and 𝑄 CCs for fault detection 

in high dimensional datasets. A limitation of MPCA-based CCs applied to batch 

processes is that batches must have the same duration (MARTIN; MORRIS; 

KIPARISSIDES, 1999), which is rarely the case in industrial applications. Therefore, 

batch data must be pre-processed following one of the time warping strategies presented 

by Peres et al. (2018), that promote alignment and synchronization of batches.  

Figure 4.2 presents an overview of the PVS-MPCA monitoring method. Method 

steps are explained next. 

 

(1) Pareto Variable Selection 

Step 1: Split the dataset into 𝐼𝑡𝑟 (90%) and 𝐼𝑡𝑠 (10%) portions. 

Step 2: Run a PLS-DA on 𝐼𝑡𝑟 and obtain parameters 𝑤𝑗𝑎, 𝑝𝑗𝑎, and 𝐸𝑌𝑎
2 . The total 

number of retained PCs (𝐴) is determined using a 10-fold cross-validation procedure 

(WOLD; SJÖSTRÖM; ERIKSSON, 2001). 

Step 3: Determine the 𝑉𝐼𝐼𝑗 of each process variable in the dataset and organize them 

in descending order.  

Step 4:  Split 𝐼𝑡𝑟  into training (𝐼𝑡𝑟′ = 80%) and testing (𝐼𝑡𝑠′ = 20%) portions. Train 

the 𝑘𝑁𝑁 algorithm using 𝐼𝑡𝑟′ and compute the classification accuracy on 𝐼𝑡𝑠′. Iterate 

this training/testing procedure twenty times to obtain the average accuracy 

classification (ACA) at each iteration. For the first candidate set 𝐶𝑆, use 𝑅𝑉 = 𝐽𝐾; 

in the next iteration, remove the variable with the smallest 𝑉𝐼𝐼𝑗 value and obtain the 

next 𝐶𝑆. When the stopping criterion is achieved, plot %𝑅𝑉 versus ACA. The 

number of neighbors 𝑘  is determined using a 10-fold cross-validation based on 

classification performance metrics; namely accuracy, specificity and sensitivity. 

Sensitivity is determined dividing the number of true conforming batches by the 

total number of batches classified as conforming; specificity is determined dividing 

the number of true non-conforming batches by the total number of batches classified 

as non-conforming (ALPAYDIN, 2010). In case of a tie, choose the smallest 𝑘. 

Step 5: Define a Pareto frontier to reduce the number of candidate sets and select the 

𝐶𝑆 closest to the hypothetical ideal set, which minimizes the 𝑅𝑉 and maximizes the 
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ACA; in this paper, we use 𝑅𝑉 = 0.00035 (only 1 of 2,864 variables retained) and 

ACA = 1. The selected 𝐶𝑆 is the PVS set.  

Step 6: Compare the ACA in the 𝐼𝑡𝑠 portion using only the PVS subset of selected 

variables with the ACA obtained in 𝐼𝑡𝑠 using all variables. 

 

(2) Phase I – Build a reference distribution using the MPCA monitoring 

method  

Step 7: Consider an input dataset 𝐙𝑩(𝐼𝐶𝐹𝐼 × 𝑃𝑉𝑆) where 𝐼𝐶𝐹𝐼 are batches classified 

as conforming by the industry. Run a PCA and compute 𝑇2 and 𝑄 statistics for each 

batch, as well the CCs’ control limits. Using the iterative procedure for Phase I 

described in section 4.2.1, obtain the reference set of conforming batches, develop 

the PCA monitoring model for the reference distribution, and determine 𝐼𝐶𝐹𝐼,𝑁𝐶𝐹; i.e. 

the group of batches deemed conforming by industry classification but flagged as 

non-conforming in the CCs. Batches in 𝐼𝐶𝐹𝐼,𝑁𝐶𝐹 are removed from the reference 

distribution, and used to compute FAR (eqn. 13). 

 

(3) Phase II – Offline MPCA Fault Detection   

Step 8: Compute CCs’ control limits for Phase II. Calculate 𝑇𝑛𝑒𝑤
2  and 𝑄𝑛𝑒𝑤 statistics 

for each batch in 𝐼𝑁𝐶𝐹𝐼, which is comprised of batches deemed non-conforming by 

the industry. Plot batches on the CCs and run fault detection. Batches beyond 

control limits in any of the charts are flagged as non-conforming, belonging to set 

𝐼𝑁𝐶𝐹, while batches within control limits are considered conforming, belonging to 

set 𝐼𝐶𝐹2. To evaluate the monitoring performance of the CCs the cumulative error 

rate (GHOSH; RAMTEKE; SRINIVASAN, 2014) is determined as follows:  

     𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 𝐹𝐴𝑅 + 𝑀𝐷𝑅                               (12) 

       𝐹𝐴𝑅 = 100 ∗
𝐼𝐶𝐹𝐼,𝑁𝐶𝐹

𝐶𝐹𝐼𝑇𝑜𝑡𝑎𝑙
                          (13)  

     𝑀𝐷𝑅 = 100 ∗
𝐼𝑁𝐶𝐹𝐼,𝐶𝐹2

𝑁𝐶𝐹𝐼𝑇𝑜𝑡𝑎𝑙
                                            (14) 

where 𝐶𝐹𝐼𝑇𝑜𝑡𝑎𝑙 is the total number of conforming batches (according industry 

classification), 𝐼𝑁𝐶𝐹𝐼,𝐶𝐹2 is the total number of non-conforming batches (according 

industry classification) flagged as conforming in Phase II, and 𝑁𝐶𝐹𝐼𝑇𝑜𝑡𝑎𝑙 is the total 

number of non-conforming batches (according industry classification). 

 



103 
 

 
 

 

Figure 4. 2 PVS-MPCA method – implementation steps 
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4.4 CASE STUDY AND DISCUSSION  

 

4.4.1 Process description 

Process data obtained from batches of chocolate submitted to a conching 

operation were made available by a large chocolate manufacturing plant. The dataset is 

comprised of 69 batches of milk chocolate processed between April 2014 and January 

2015. Process variables were sampled at 1-minute intervals during the production of 

each batch. Process data from the same milk chocolate recipe were obtained from 22 

consecutive batches processed in a Frisse conche type ELK (Bühler AG, Uzwill, 

Switzerland), named conche A, and 47 consecutive batches processed in another Frisse 

conche type ELK, named conche B. Both conches have the same operational design and 

operate in a similar way. 

The cycle in the conche consists of four phases, namely: feeding, dry conching, 

plastic conching, and liquefaction (BÜHLER, 2010). Refined chocolate is loaded into 

the conche and temperature is raised up to 45°𝐶 during the feeding phase. After all 

refined chocolate is charged dry conching takes place, in which the chocolate mass is 

mixed under high temperature (70 − 80°𝐶) to promote the evaporation of water and 

undesirable volatiles (BOLENZ; KUTSCHKE; LIPP, 2008; BÜHLER, 2010; 

PRAWIRA; BARRINGER, 2009). Then the plastic phase begins with the addition of 

fat and/or soybean lecithin emulsifier to the chocolate mass (BOLENZ; 

THIESSENHUSEN; SCHÄPE, 2003; GLICERINA et al., 2015), allowing the current 

dependent drive to change from clockwise to anti-clockwise rotation. In order to start 

the liquefaction phase, chocolate mass temperature is reduced to 45°𝐶 and vanilla 

flavor and emulsifiers (soybean lecithin and/or polyglycerol polyricinoleate) are added, 

while intense shearing is applied. Upon conclusion of this phase, a fluid chocolate mass 

should be available with adequate rheological properties (AFOAKWA et al., 2008; 

BOLENZ; THIESSENHUSEN; SCHÄPE, 2003; BÜHLER, 2010; GLICERINA et al., 

2013). To verify that, a sample of the mass is collected and its rheological parameters 

are assessed. If results are not in accordance with industrial standards, a new addition of 

emulsifiers and/or vegetable fat is usually required to correct the chocolate mass 

rheology. 

The expected batch duration is 495 minutes, divided as follows: 60 minutes of 

feeding, 150 minutes of dry conching, 150 minutes of plastic conching, 120 minutes of 
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liquefaction and 15 minutes for discharging (BÜHLER, 2010). However, the real 

duration is variable and batches may take up to 1,170 minutes of processing for 

completion. Batch duration above the expected usually occurs when rheological 

specifications are not achieved, requiring corrections in the chocolate mass.  

To ensure that all batches have the same total duration the dataset was pre-

treated as described in section 4.3. After alignment and synchronization, a dataset of 62 

batches (𝐼) in which 4 process variables (𝐽) were measured 716 times (𝐾) was available. 

The list of 𝐽 process variables is shown in Table 4.1. The classification of each batch 

was based on off-line viscosity results; laboratory measurements of this single quality 

output were made after batch completion, and results were available 15 minutes after 

sample collection. Using the plant threshold viscosity value, batches were classified as 

conforming (56%) or non-conforming (44%). 

 

Table 4. 1 Process variables measured during batch progression 

Variable name Variable description 

Metering system n°6 Frequency of soybean lecithin dosage 

Speed Rotation speed of conche shovels 

Drive current Current of the conche’s main motor 

Chocolate temperature Temperature of chocolate mass during the conching 

 

4.4.2 Variable selection 

To find the best subset of process variables for classification of production 

batches in conforming and non-conforming, the PVS method was applied to 𝐙𝑩 (62 

batches ×  2,864 variables) and 𝐲 (62 batches ×  1 categorical quality parameter). 

Applying a 10-fold cross-validation, 8 components were retained to build the PLS-DA 

regression model. The dataset was randomly split in 90% training (𝐼𝑡𝑟) and 10% testing 

(𝐼𝑡𝑠) portions, and PLS-DA regression was applied in the training portion. To avoid 

basing 𝑉𝐼𝐼𝑗  results on only one partition of the dataset, 12,000 PLS-DA models were run 

to obtain convergence in importance indices; the final ordering of process variables was 

named 𝑉𝐼𝐼𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑. The PLS-DA partition that best resembled the ordering of 

variables in 𝑉𝐼𝐼𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 was chosen; 95.92% of the variation in 𝐲 was captured by the 

retained PCs. 
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To define the value of parameter 𝑘 in the 𝑘𝑁𝑁 classification technique a 10-fold 

cross-validation was applied; 𝑘 = 3 yielded the highest average accuracy, sensitivity, 

and specificity across all tested values. The PVS method was applied to minimize the 

number of 𝑅𝑉 (retained variables) and maximize the ACA. 

Results obtained during the iterative process between 𝐶𝑆 and 𝑘𝑁𝑁 classification 

technique are displayed in Figure 4.3.  

 

 

Figure 4. 3 Average accuracy classification for different candidate sets of variables 

 

The Pareto frontier is signalized as red points, and the hollow circle represents 

the 𝐶𝑆𝑛𝑑 selected by the PVS method as the closest solution to the hypothetical ideal 

point (hollow square in detail). The PVS solution is composed of 5 variables yielding 

100% ACA. Considering that with the complete set of 2,864 variables the ACA was 

95.91%, retaining only 0.17% of them greatly improved the power of classification of 

batches in conforming and non-conforming, simplifying the CC analyses to follow.  

Retained variables and their time periods of measurement are shown in Table 

4.2. Variable ‘Metering system n°6’ was not retained in any time period in which it was 

measured during batch progression. Remaining three variables were retained in five 

time periods; note that measurements of ‘Chocolate temperature’ at the beginning and 

end of batches were retained.  
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To finish implementing the method, the 𝐼𝑡𝑠 portion was classified using only the 

variables in the PVS set, yielding 100% of ACA. This result was the same obtained 

running the classification on 𝐼𝑡𝑠 using all 𝐽𝐾 original variables. This is an important 

result, since it is highly desirable not to lose the classification ability after variable 

selection, since correct classification is key for the construction of a reference model 

and the monitoring of future batches.  

 

Table 4. 2 List of retained process variables and their time of measurement during batch 

progression 

Variable name Time period Step of conching process 

Drive Current 68 Feeding 

Speed 
203 Dry conching 

204 Dry conching 

Chocolate temperature 
1 Feeding 

716 Liquefaction 

 

4.4.3 Offline fault detection 

In this section, results of fault detection based on traditional MPCA on the 

dataset including all variables were compared to those obtained using the PVS-MPCA 

method on selected variables.  

According to the manufacturer specifications 35 batches were considered 

conforming. Thus, the performance of MPCA in Phase I was evaluated based on the 

dataset 𝐙𝑩 (35 batches ×  2,864 variables), following an iterative procedure in which 

batches with chart points falling beyond control limits were removed one at a time. 

After several iterations the reference distribution was obtained using only 8 batches 

identified as IC by 𝑇2 and 𝑄 CCs (Figure 4.4). Two PCs were retained considering a 

modified Kaiser-Guttman criterion (REA; REA, 2016), explaining 74.75% of the 

variance in the process. Data were normalized, as discussed in section 4.2.1, prior to 

analysis. 

In Phase II of traditional MPCA monitoring all batches classified as non-

conforming by the industry were rescaled using the sample mean and variance obtained 

from the IC data. They were then projected onto the loading matrix to obtain the 

corresponding PC scores, and monitoring statistics 𝑇2 and 𝑄 were computed. Figure 4.5 
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shows that during Phase II all batches were considered conforming in the 𝑇2 chart; 

however, all batches were tagged as non-conforming in the 𝑄 residuals CC.  

Based on 𝑇2 and 𝑄 CC results 27 conforming batches were wrongly discarded as 

non-conforming in Phase I, totalizing 77.14% of FAR. All non-conforming batches 

were correctly signalized in Phase II representing a null MDR. The cumulative error 

rate computed for MPCA method was therefore 77.14%. 

 

 

Figure 4. 4 Final iteration of Phase I of the MPCA method 

 

 

Figure 4. 5 Monitoring of new batches in Phase II using the MPCA method 

 

We now present the results of applying the proposed method to the same dataset 

analyzed above. Phase I of PVS-MPCA was evaluated based on the dataset of 𝐗̅𝑩 (35 

batches ×  5 variables), and the reference model was built using 31 batches identified as 

IC by 𝑇2 and 𝑄 CCs (Figure 4.6), after some iterations. Two principal components were 
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retained using the Kaiser-Guttman criterion; they accounted for 60.83% of the total 

variance in the dataset. All 4 batches were eliminated based on 𝑇2 CC results, indicating 

deviations of process variables with respect to their reference trajectories.  

In Phase II 3 non-conforming batches were wrongly identified as conforming in 

the 𝑇2 CC, but correctly signalized as non-conforming in the 𝑄 CC. All other new 

batches were correctly signalized as non-conforming in both charts (Figure 4.7).  

 

 

Figure 4. 6 Final iteration of Phase I using the PVS-MPCA method 

 

 

Figure 4. 7 Monitoring of new batches in Phase II using the PVS-MPCA method. 

 

The 4 conforming batches wrongly detected as non-conforming in Phase I 

represented 11.43% of FAR. Based on 𝑇2 and 𝑄 CCs results, all non-conforming 

batches were correctly signalized during Phase II, representing a null MDR. The 

cumulative error rate computed for PVS-MPCA method was therefore 11.43%.  
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4.4.4 Discussion 

PCA promotes data dimensionality reduction by finding PCs that are linear 

combinations of the original variables in the dataset and keeping only a portion of them 

for further use. Such simple strategy has been challenged by modern applications where 

the massive number of process variables compromises the interpretation of retained 

PCs, particularly in the context of fault detection, isolation, and diagnosis. 

The application of a standard MPCA to the high dimensional dataset obtained 

from the chocolate conching batch process highlighted the method’s limitations. First, 

eigenvalues obtained in the analysis were very large in scale. When eigenvalues are 

obtained through diagonalization of a correlation matrix (which is the equivalent of 

obtaining eigenvalues from the covariance matrix of a normalized dataset) their mean is 

equal to 1, which is the basis of the Kaiser-Guttman criterion to decide the number of 

retained PCs (JACKSON, 1993; RENCHER, 2002). In the chocolate dataset, even 

though MPCA was performed on the correlation matrix the mean of the eigenvalues 

was 82.7 and all eigenvalues (except for one) were greater than 1, with the first seven 

being larger than 100. That could be attributed to the poor estimates resulting from 

using the sample correlation matrix when the number of variables is much larger than 

the number of observations (AMINI, 2011; WANG; FAN, 2017). That corroborates the 

recommendation in Stevens (2009) apud Gajjar, Kulahci, and Palazoglu (2018) of 

applying the Kaiser-Guttman criterion only in datasets with less than 30 variables and at 

least 250 observations.  

To verify the impact of obtaining standard MPCA-based CCs using high 

dimensional datasets, a variation of the Kaiser-Guttman criterion (REA; REA, 2016) 

was applied. The high FAR observed in Phase I for 𝑇2 and 𝑄 CCs, probably due to the 

use of a wrong IC model, proved MPCA to be unreliable for the monitoring of high 

dimensional processes. Capizzi (2015) and Jones-Farmer et al. (2014) recommended 

process characterization using a large number of observations (batches) and data 

sampling covering long periods, capturing both long- and short-term process 

characteristics and achieving reasonably accurate parameter estimates to be use in Phase 

II of process monitoring. In addition, MacGregor and Kourti (1995) recommended to 

use 50 or more conforming batches to obtain a representative sample and correctly 

estimate confidence limits for the normal operating region. However, in our case study 

it would be infeasible to solve the MPCA drawbacks reported above by increasing the 
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number of batches, since the number of variables is over 40 times larger than the 

number of batches.  

In Phase II all new batches were labeled conforming by the 𝑇2 chart; and non-

conformities appeared in the 𝑄 CC. That indicates low variability in the means within 

PCs, revealing the inability of the MPCA model to describe significant process 

variation. The 𝑄 statistic displayed large values, which indicates that it was significantly 

affected by process noise. According to Nomikos and MacGregor (1995b), in offline 

monitoring the 𝑄 statistic in a certain time period accumulates values from previous 

periods, and large squared residuals tend to be levelled out by small squared residuals 

over time. In our case, the large 𝑄 statistic values indicate an important lack of fit of 

non-conforming data to the MPCA model. 

There is an increasing number of methods proposed to solve problems attributed 

to running MPCA on high dimensional datasets; they integrate variable selection to 

MSPC methods. However, the majority of them are proposed for continuous processes 

(PERES; FOGLIATTO, 2018), and only a few address batch processes. Some examples 

of integration of variable selection and batch process monitoring methods are described 

next. 

Two early methods by Zarzo and Ferrer (2004) aimed to use variable selection 

based on technical knowledge to find variables that most contributed to model 

prediction performance in batch processes for later use in fault diagnosis. In the first, 

MPLS regression was applied to a batch dataset and weights were analyzed to 

distinguish groups that were related to process deviations. Technical knowledge was 

used to find an explanation for the observed correlation; whenever no reasonable 

explanation was found, variables were removed from the dataset. In the second method 

named Block-wise PCR, the unfolded matrix of batch process data was subdivided into 

blocks of variables’ trajectories and a PCA was run in each block. A simple linear 

regression was conducted for every latent variable of a PC score matrix, considering one 

response variable. Based on the squared linear correlation coefficient and the p-value, 

variables significantly correlated with the response were selected. Then, expert 

knowledge was used to promote a second round of variable selection searching for 

latent variables displaying a change in trend in the CUSUM CC happening in parallel 

with changes in the response.  

Chu, Qin, and Han (2004) performed a variable selection using an entropy 

measure and the sequential forward floating selection algorithm to determine variables 
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that minimize the total entropy. These variables were used to compose a hyperspace in 

which different data clusters were identifiable. Next, Support Vector Machine (SVM) 

classifiers were constructed to define decision boundaries between normal and faulty 

data groups (and between different normal modes) without relying on the normality 

assumption. Such information was used as a criterion to conduct a hierarchical fault 

detection and operation mode identification.  

Recently the improvement of fault isolation in batch processes was discussed by 

Yan, Kuang, and Yao (2017), who proposed the use of sparse Partial Least Squares 

(sPLS) to handle with (i) the asymptotic inconsistency of the PLS estimator in datasets 

with very large 𝐽 and small 𝐼, (ii) autocorrelations and cross-correlations in batch 

process data, and (iii) identification of process critical variables when abnormalities 

have already been detected. sPLS builds a discriminant analysis model for normal and 

faulty operation batch data, achieving regression modeling and variable selection 

simultaneously; the order in which variables enter the sPLS model reflects their 

importance and the most critical time interval in a previously detected abnormal batch.  

Zarzo and Ferrer (2004) based their propositions on the use of technical 

knowledge to select variables that most contributed to model prediction capacity. Their 

approach differs from sPLS (YAN; KUANG; YAO, 2017) and our proposed PVS-

MPCA method that applied quantitative methods to select variables based on their 

ability to classify batches in conforming and non-conforming.  

The SVM classification technique applied in Chu, Qin, and Han (2004)’s 

method was evaluated in the selection of the most important variables for product 

classification, resulting in higher number of retained variables and lower classification 

accuracy when compared to the 𝑘𝑁𝑁 classification technique used in the PVS-MPCA 

method. SVM integrated to entropy-based variable selection applied for fault detection 

(CHU; QIN; HAN, 2004) and the sPLS-based fault isolation method (YAN; KUANG; 

YAO, 2017) are methods that do not use MPCA-based CCs for fault detection and 

isolation. In opposition, the PVS-MPCA method proposes an innovative way to extend 

the use of traditional 𝑇2 and 𝑄 control charts for fault detection in high dimensional 

batch datasets.  

When applying PVS-MPCA to the chocolate dataset 5 out of 2,864 unfolded 

variables were retained in the PVS set. They represent transition points in the original 

(unfolded) variables’ trajectories. Aligned and synchronized batches were time-warped 

to last 716 minutes; of those, 133 minutes corresponded to the feeding operation, 141 to 
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dry conching, 222 to plastic conching, and 220 to liquefaction. The variable ‘Drive 

current’ was selected at the time period when the current starts to increase during the 

feeding phase (𝑡 = 68). Variable ‘Speed’ was selected in time periods 203 and 204 

when speed is reduced and then set to the maximum allowable speed until the chocolate 

mass becomes more fluid, requiring less power and speed to be mixed. Finally, variable 

‘Chocolate temperature’ was selected at the beginning and at the end of the batch, 

where variations in the temperature profile are more evident. Warped trajectories of 

variables ‘Drive current’, ‘Speed’ and ‘Chocolate temperature’ are shown in Figure 4.8. 

Variable ‘Metering system n°6’ was not selected at any time period, suggesting that the 

instants in which the addition of soybean lecithin takes place are not determinant of the 

final classification of batches. 

 

 

Figure 4. 8 Aligned and synchronized trajectories of original (unfolded) variables 

 

The PVS-MPCA method for high dimensional datasets yielded a reduction of 

85.18% in FAR (from 77.14% to 11.43%) when compared to traditional MPCA 

monitoring applied to the chocolate dataset. That greatly improves fault detection. Four 

conforming batches were wrongly signalized as non-conforming in Phase I of PVS-

MPCA. In practice, that is not viewed as a significant problem since to adjust the 

rheology of an out-of-specification batch an additional viscosity analysis will be 

required; any misclassification of conforming batches would be detected at this point.  
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The 4 conforming batches eliminated in Phase I of PVS-MPCA were not 

produced in sequence. Two were produced in conche A, and two in conche B during the 

last period of data collection, from November to January. The conches clearly do not 

have an effect on accuracy of batch classification; however, outside temperature may 

influence the results. November, December and January are summer months in the 

plant’s location, when the temperature may reach 40°C and affect the measurement 

quality of sensors.  

In Phase II, 𝑄 values were much smaller in PVS-MPCA (Figure 4.7) than in 

MPCA monitoring (Figure 4.5) which indicates a better performance of MPCA model. 

The fact that MDR is 0 is of great practical importance since the misclassification of 

non-conforming batches leads to severe technical problems (e.g., imperfect covering of 

bonbons, poor spreading of chocolate mass into bar molds, and clogging of pipes and 

moving parts of the moulding equipment). 

 

4.5 CONCLUSION 

In this paper we present a new fault detection method in which a wrapper 

variable selection step is applied prior to the construction of MPCA-based 𝑇2 and 𝑄 

control charts. The performance of our proposed method was verified using real data 

from a chocolate conching batch process. The iterative procedure based on the variable 

importance index 𝑉𝐼𝐼 obtained using PLS-DA regression output parameters and the 

𝑘𝑁𝑁 classification technique retained only the subset of most discriminating variables, 

improving the accuracy of batch classification from 95.91% with 2,864 unfolded 

variables to 100% with only 5 variables. Control charts’ performance using only 

variables in the PVS set reduced the false alarm rate by 85.18% when compared to CCs 

built using all variables.  

PVS-MPCA clearly overcome the limitations of MPCA-based CCs when 

applied to high dimensional datasets. Moreover, it potentially improves fault isolation 

since variable selection greatly reduces the number of variables to be further 

investigated in the contribution plots. That will be the subject of future research on the 

method.   
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5 CONSIDERAÇÕES FINAIS 

Este capítulo apresenta as conclusões da tese, além de sugestões para trabalhos 

futuros. 

5.1 CONCLUSÕES 

A presente tese teve por objetivo desenvolver um novo método para o controle 

estatístico de processos industriais em bateladas. A seleção das variáveis mais 

importantes para maximizar a acurácia de classificação de bateladas foi conduzida 

visando à construção de um modelo de monitoramento de processo capaz de melhorar o 

desempenho da detecção de falhas e mitigar as limitações dos métodos tradicionais 

quando bancos de dados de elevada dimensionalidade, e com duração variável, são 

analisados. Esse objetivo geral foi alcançado mediante a execução de seis objetivos 

específicos. 

Os dois primeiros objetivos específicos: identificar as limitações encontradas 

pelos métodos MSPC no monitoramento de processos industriais; e entender como 

métodos de seleção de variáveis são integrados para promover a melhoria do 

monitoramento de processos de elevada dimensionalidade foram alcançados no 

Artigo 1. 

O Artigo 1 apresentou uma revisão sistemática da literatura demonstrando como 

as limitações dos métodos de MSPC na análise de bancos de dados industriais de 

elevada dimensionalidade estão sendo solucionadas pela integração a métodos de 

seleção de variáveis. Assim, foi possível o entendimento do problema de forma a 

fomentar e justificar a escolha do tema desta tese. Esse primeiro artigo se utilizou de 

uma análise qualitativa, com o intuito de mapear os métodos publicados que 

propuseram o uso de seleção de variáveis para promover a melhoria dos métodos de 

MSPC. A evolução do estado da arte nesse tópico foi demonstrada sendo cada um dos 

30 métodos identificados na literatura brevemente descritos e discutidos. O artigo 

inovou ao propor uma classificação dos métodos propostos em relação a abordagem de 

seleção de variáveis implementada, e ao categorizar esses em 10 clusters de acordo seus 

objetivos e etapa de monitoramento de processo para a qual foram desenvolvidos. 

Assim, o artigo contribui para auxiliar pesquisadores no desenvolvimento desse tópico 

mediante a definição das lacunas existentes sinalizando para oportunidades de pesquisas 

futuras, bem como auxiliando profissionais responsáveis por departamentos de 
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qualidade a identificar métodos que o possam ajudar na solução de problemas 

industriais reais.  

O terceiro e quarto objetivos declarados, discutir sobre métodos para 

alinhamento e sincronização de bateladas aplicados a processos com diferentes 

durações; e definir o método de alinhamento e sincronização mais adequado para o 

tratamento de dados de bateladas, visando aprimorar a construção do modelo de 

monitoramento na Fase I do SPC foram encaminhados no Artigo 2. 

O Artigo 2 buscou identificar o tratamento adequado a ser realizado para 

eliminar a duração variável existente em um banco de dados em bateladas real da 

conchagem do chocolate ao leite, de forma a permitir sua posterior análise por métodos 

de MSPC. Seguindo uma abordagem quantitativa, três métodos de DTW foram 

aplicados para promover o alinhamento e sincronização das trajetórias de 4 variáveis 

coletadas de 62 bateladas com durações entre 495 e 1.170 minutos. Os resultados foram 

considerados satisfatórios, sendo exitosa a aplicação dos métodos no preparo do banco 

de dados analisado. Isto pode ser evidenciado nos resultados obtidos para as trajetórias 

analisadas, bem como na identificação das fases do processo de conchagem quando os 

resultados foram avaliados do ponto de vista da tecnologia de fabricação do chocolate. 

Posterior ao alinhamento, o objetivo é a utilização desse banco de dados alinhado e 

sincronizado na construção da distribuição de referência para monitoramento do 

processo em bateladas. Assim, o desempenho de classificação das bateladas em 

conformes e não conformes foi verificado. Mediante aplicação da técnica de 

classificação por 𝑘𝑁𝑁, o método proposto por Kassidas, MacGregor e Taylor (1998) foi 

considerado o mais adequado para tratar esse banco de dados já que apresentou a 

melhor combinação das métricas de desempenho (acurácia, sensibilidade e 

especificidade), mantendo o poder de classificação das bateladas após as mesmas serem 

ajustadas para um mesmo tempo de duração,  além de ter requerido o menor número de 

vizinhos (𝑘=3) para obtenção desses resultados. De acordo com esse método, a variável 

mais importante para o processo de alinhamento e sincronização, e a mais consistente de 

batelada para batelada, foi a ‘Corrente do motor da concha’. A maioria dos métodos de 

monitoramento de processos tem seu foco no desempenho da Fase II do monitoramento 

(PERES; FOGLIATTO, 2018; WOODALL; MONTGOMERY, 2014). Nesse contexto, 

até onde se tem conhecimento, a análise do impacto dos diferentes métodos de 

alinhamento e sincronização na determinação do conjunto de referência de bateladas 

conformes não foi previamente explorada, fazendo com que esse artigo contribua de 
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maneira inovadora para o desenvolvimento de modelos sob-controle mais adequados 

para a Fase I do CEP.  

Por fim, os dois últimos objetivos específicos, propor a seleção de variáveis, 

com propósito de classificação, prévia à construção das CCM baseadas em PCA 

para monitorar um processo em bateladas; e validar o desempenho de detecção de 

falhas da carta de controle multivariada proposta em comparação às cartas 

tradicionais 𝑻𝟐 e 𝑸 baseadas em PCA foram atingidos no Artigo 3. 

O Artigo 3 propôs o método PVS-MPCA para detecção de falhas em bancos de 

dados de elevada dimensionalidade de processos industriais em bateladas. O banco de 

dados bidimensional com 2.864 variáveis desdobradas e 62 bateladas, pré-tratado, 

alinhado e sincronizado, foi utilizado para o estudo de caso do método proposto. O 

número de bateladas conformes e não conformes era conhecido à priori, baseado nas 

análises do laboratório de qualidade da indústria. Sendo assim, a seleção seguiu uma 

abordagem wrapper envolvendo um índice de importância de variáveis, baseado nos 

parâmetros de saída da Análise Discriminante em Mínimos Quadrados Parciais (PLS-

DA ou Partial Least Squares – Discriminant Analysis), e a técnica de classificação 

𝑘𝑁𝑁. Dessa forma, a cada iteração a variável menos importante para a classificação das 

bateladas foi descartada e a acurácia de classificação do subgrupo remanescente 

avaliada. Após a implementação da análise de otimalidade de Pareto, o subgrupo com 

0,17% de variáveis retidas foi considerado o que maximizava a acurácia em 100% com 

o menor número de variáveis (5 variáveis desdobradas retidas). Essas variáveis 

representavam pontos de transição de fases em 3 das 4 variáveis originais coletadas no 

processo. O desempenho desse subgrupo de variáveis foi comparado ao desempenho do 

grupo com todas as variáveis na construção do modelo de referência (Fase I) e do 

modelo de monitoramento off-line de bateladas futuras (Fase II). Foi verificado um 

colapso na matriz de correlações quando a análise PCA foi executada no banco de dados 

completo compreendido por uma quantidade de variáveis muito superior a quantidade 

de observações. Na construção do modelo de referência, as cartas 𝑇2 e 𝑄 sinalizaram 

que 27 das 35 bateladas consideradas conformes pela indústria eram não conformes, 

totalizando em 77,14% de taxa de alarme falso (FAR). Quando essas cartas foram 

construídas baseadas no subconjunto com 5 variáveis selecionadas, a FAR reduziu em 

85,18% sinalizando erroneamente somente 4 das 35 bateladas consideradas conformes 

pela indústria (FAR = 11,43%). As bateladas futuras (não conformes segundo a 

indústria) foram corretamente sinalizadas em ambas as situações (Fase II). Tendo em 
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vista que os métodos publicados para detecção e isolamento de falhas em bancos de 

dados em bateladas de elevada dimensionalidade têm sido propostos para substituir o 

uso das cartas de controle baseadas em PCA (CHU; QIN; HAN, 2004; YAN; KUANG; 

YAO, 2017; ZARZO; FERRER, 2004), o método PVS-MPCA surge como uma 

proposta inovadora para estender o uso das tradicionais CCM 𝑇2 e 𝑄 na detecção de 

falhas, mitigando suas limitações. 

 

5.2 SUGESTÕES PARA TRABALHOS FUTUROS 

Pesquisas futuras podem ser desenvolvidas como extensões dos desenvolvimentos 

aqui propostos. São elas: 

a) Propor um novo método de alinhamento e sincronização de dados em bateladas 

de duração variável. 

b) Avaliar o uso de outros métodos de seleção para identificar as variáveis mais 

importantes para o monitoramento de processos. 

c) Propor um método de seleção de variáveis que não necessite de um grande 

número de bateladas não conformes para treinamento do algoritmo de 

classificação. 

d) Analisar o impacto promovido pela seleção de variáveis no isolamento de falhas 

pelos gráficos de contribuição. 

e) Validar a implementação do método proposto em diferentes ramos de atuação 

industriais. 

f) Comparar o método proposto com outros métodos de detecção e isolamento de 

falhas em processos em bateladas de elevada dimensionalidade. 

g) Estender o método proposto para monitoramento de processos em bateladas em 

tempo real. 
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