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ABSTRACT 

 

Centrality measures are an important analysis mechanism to uncover vital information about 

complex networks. However, these metrics have high computational costs that hinder their 

applications in large real-world networks. I propose and explain the use of artificial neural 

learning algorithms can render the application of such metrics in networks of arbitrary size. 

Moreover, I identified the best configuration and methodology for neural learning to optimize 

its accuracy, besides presenting an easy way to acquire and generate plentiful and meaningful 

training data via the use of a complex networks model that is adaptable for any application. In 

addition, I compared my prosed technique based on neural learning with different centrality 

approximation methods proposed in the literature, consisting of sampling and other artificial 

learning methodologies, and, I also tested the neural learning model in real case scenarios. I 

show in my results that the regression model generated by the neural network successfully 

approximates the metric values and is an effective alternative in real-world applications. The 

methodology and machine learning model that I propose use only a fraction of computing time 

with respect to other commonly applied approximation algorithms and is more robust than the 

other tested machine learning techniques. 
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Métodos para a Aproximação de Medidas de Centralidade de Redes 

 

RESUMO 

 

Medidas de centralidades são um mecanismo importante para revelar informações vitais sobre 

redes complexas. No entanto, essas métricas exigem um alto custo computacional que prejudica 

a sua aplicação em grandes redes do mundo real. Em nosso estudo propomos e explicamos que 

através do uso de redes neurais artificiais podemos aplicar essas métricas em redes de tamanho 

arbitrário. Além disso, identificamos a melhor configuração e metodologia para otimizar a 

acurácia do aprendizado neural, além de apresentar uma maneira fácil de obter e gerar um 

número suficiente de dados de treinamento substanciais através do uso de um modelo de redes 

complexas que é adaptável a qualquer aplicação. Também realizamos um comparativo da 

técnica proposta com diferentes metodologias de aproximação de centralidade da literatura, 

incluindo métodos de amostragem e outros algoritmos de aprendizagem, e, testamos o modelo 

gerado pela rede neural em casos reais. Mostramos com os resultados obtidos em nossos 

experimentos que o modelo de regressão gerado pela rede neural aproxima com sucesso as 

métricas é uma alternativa eficiente para aplicações do mundo real. A metodologia e o modelo 

de aprendizagem de máquina que foi proposto usa apenas uma fração do tempo de computação 

necessário para os algoritmos de aproximação baseados em amostragem e é mais robusto que 

as técnicas de aprendizagem de máquina testadas. 

 

Palavras-chave: Medidas de Centralidade. Redes Neurais Artificiais. Modelo de Redes 

Complexas.
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1 INTRODUCTION 

 

The increasing development and ubiquity of large-scale networks poses several 

technological challenges for both researchers and professionals. Network digital and physical 

connections such as digital links between webpages, friend lists on social networks, wireless 

vehicular networks, cable connection between routers, streets paths and energy grids raise a 

growing number of complex questions. As a result, analyzing and understanding network 

properties is fundamental in several areas of interest and motivates the development and use of 

several metrics (COSTA et al., 2008; YU et al., 2017). Therefore, the investigation and 

development of network analysis tools that provide information about the large number of 

existing networks is clearly relevant and are fundamental tools for many fields, see e.g. 

(EASLEY and KLEINBERG, 2007; GRANDO et al., 2016; GRANDO et al., 2018). 

One class of metrics and some of the most widely used network measurements, given 

their general applicability, aim at the evaluation, ranking and identification of important 

vertices by their power, influence, or importance using only the network basic structural 

properties as input information (FREEMAN, 1978/79). This class of metrics is usually known 

as “vertex centrality measures”. A collection of metrics composed by several algorithms, each 

one capturing a different idea of centrality, which are used in typical and fundamental tasks in 

many computing procedures (COSTA et al., 2008; GRANDO et al., 2016). 

Even though its algorithms are polynomial in time, the computation of some of these 

metrics are computationally expensive becoming a considerable problem when applied to real-

world networks that are composed by thousands or even millions and billions of elements and 

their connections (COHEN et al., 2014). Moreover, there are applications where it is necessary 

to compute them in real time, where off-the-shelf hardware are used with very limited 

computing power, or in application environments with dynamical networks that are constantly 

changing in which is required the computation of such metrics from scratch at each distinct 

timestamp (BRANDES and PICH, 2007). 

These facts rise both a problem and an important research question: “how can we save 

computational resources to potentiate the application and analysis of networks using centrality 

measures?” 

In order to assist and subserve the use of centrality measures in network applications, I 

propose and test a methodology and technique to approximate vertex centrality measures using 

a regression model built by an artificial neural network. Its primal advantage is its capability of 
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approximating any centrality measures in linear time given the number of vertices of the 

network by using just a couple of simple input attributes of the analyzed network. 

Even though the use of neural networks to approximate the centrality measures is not 

new in the literature (see e.g. KUMAR et al., 2015), my methodology differs from it in several 

aspects, starting with different input attributes, neural network structure, algorithms applied and 

a larger number/size of test case scenarios. Besides, the method developed in my work can be 

used to approximate any centrality measure and not just a specific one which poses new 

challenges to find an optimized, yet generalizable, machine learning methodology. 

Moreover, I propose a generic methodology which enables anyone to approximate all 

types of centrality measures, instead of a specific one, using a simple and straightforward 

artificial neural network model. At the same time, I expand it with a simplified, although 

scalable, generic and robust, training methodology by using a versatile procedure to obtain the 

training data with a complex network model called Block Two-Level Erdős and Rényi - BTER 

(SESHADHRI et al., 2012). With it one can generate networks with diminished size but with 

the same properties of the huge real networks. 

This allows both researchers and practitioners unlimited an easy access to training data 

for whatever application one may have to tackle. The data obtained with the BTER synthetic 

networks is proven effective in training the neural network model, which is then able to 

generalize for the real datasets. 

I have tried different configurations and combinations of parameters considering the 

neural network structure, input information, learning algorithms, meta-parameters, and training 

data to optimize the artificial neural network performance. Additionally, I use synthetic and real 

networks with diverse structural properties to englobe as many as we can different test case 

scenarios. Likewise, I analyzed and compared my approximation methodology with other 

techniques found in the literature and with the exact centrality values, identifying its drawbacks 

and strengths. 

I show how the machine learning methodology produces competitive results with 

quality comparable with other approximations methods but – perhaps more importantly - at just 

a fraction of time and space. The methodology and model can compute the ranking assumed by 

the centrality measures in linear time/space requirements and under reduced error margins. 

Therefore, my research enables the use of complex centrality measures for huge 

networks by the proposal of a new approximation technique based on a regression model built 

by an artificial neural learning algorithm while defines a quick setup guide for the overall 

process to facilitate its use in any application. 
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The results of my research also include the publication of four papers in important 

conferences and one publication in a Journal, all of them ranked as A1 by the Capes foundation 

in the area of Computer Science: 

• Two of these papers, entitled: “On Approximating Networks Centrality Measures 

via Neural Learning Algorithms” (GRANDO and LAMB, 2016) and “Computing 

Vertex Centrality Measures in Massive Real Networks with a Neural Learning 

Model” (GRANDO and LAMB, 2018a), were published in the proceedings of the 

International Joint Conference on Neural Networks (IJCNN); 

• One paper entitled: “An Analysis of Centrality Measures for Complex and Social 

Networks” (GRANDO et al., 2016) in the proceedings of the IEEE Global 

Communications Conference (GLOBECOM); 

• Another one entitled: “On the Effectiveness of the Block Two-Level Erdős-Rényi 

Generative Network Model” (GRANDO and LAMB, 2018b) in the proceedings 

of the IEEE Symposium on Computers and Communications (ISCC); 

• And the last one, a journal paper entitled: “Machine Learning in Network 

Centrality Measures: Tutorial and Outlook” (GRANDO et al., 2018) in the ACM 

Computing Surveys (CSUR). 

 Several parts of the content of these papers are included in this thesis, including many 

tables and figures, with small modifications from their presentation in the papers. For a clear 

reading and to maintain simplicity, most auto-citations were omitted in the thesis. 

 The first part of this work (Section 2) explains the characteristics of complex models 

and important studies done in the area. It also presents seven complex network models that will 

be later used to generate synthetic networks for my experimental analysis and ultimately 

provided the training data for the neural model. 

 Section 3 contextualizes, defines and compares the centrality measures, presenting the 

most relevant metrics and their many research applications. These metrics, specially degree, 

eigenvector, betweenness and closeness, will be the focus of my research and analysis. They 

were divided into four groups by their similarity and meaning. 

Section 4 gives a brief introduction on machine learning and the most important 

algorithms. Section 5 explains the organization of my experimental methodology in details, 

justifying and comparing the choices in each step with other approaches proposed in the 

pertinent literature. I present, discuss and test the techniques based on sampling methods and 
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several machine learning algorithms. In this section it also presents the results in details and 

correspondent analysis of my research. 

 The last part of this work (Section 6) concludes with the main outcomes and 

contributions of my work. It also resumes the objectives of this research and outlines possible 

further investigations with complementary/improvement lines. 

 



 

2 COMPLEX NETWORK MODELS 

 

Complex networks are ubiquitous in various technological, social and biological 

domains. Several computer science domains make use of complex and social networks, which 

can be conceptualized as lying at the intersection between artificial intelligence (AI), graph 

theory and statistical mechanics, displaying a truly multidisciplinary nature (EASLEY and 

KLEINBERG, 2010). 

The research about complex network has aimed not only to the identification and 

understanding of network principles, but also to the effective use of their properties and 

applications. Today, complex network analysis is viewed as fundamental to the understanding 

of human, social, economic activities, and relationships (LIBEN-NOWELL and KLEINBERG, 

2007). 

The increasing availability of connected devices, including the unlimited perspectives 

of the internet of things (IoT), poses several challenges to both research and technology 

development directly associated to network complexity (ATZORI et al., 2014). 

Recent studies on complex networks, which includes computer and social networks, 

were mainly supported by the availability of high performance computers and large data 

collections, providing important results and increasing the interest in the area (COSTA et al., 

2008). 

Research results have shown that technological, biological, and social networks share 

common properties that cannot be explained by a fully randomized model, such as low diameter 

(“small-world” effect), high clustering coefficients, heavy-tailed degree distribution (“scale-

free” effect) and presence of community structure (COSTA et al., 2008). 

These developments have led to the identification of complex network models capable 

of stochastically generate networks with similar or related properties. These models were 

proposed with two main goals (BONATO, 2009): 

(i) To understand what underlying effects give rise to such properties; 

(ii) To produce synthetic networks with controlled characteristics that may serve as 

research tools for many disciplines. 

Complex network models have been continuously improved to better match and 

understand the structural properties and features of real-world networks. Such models are useful 

to generate sample networks with similar characteristics of the real ones that can then be used 

to improve algorithms and, at the same time, safeguard real data. 
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Several models have been studied and developed over the last few years aiming at 

matching features like heavy-tailed degree distributions, low diameter and community 

structure. 

In the next subsections, I briefly summarize the most well-known complex network 

models, starting by the simpler and elder ones. 

 

2.1 Erdős and Rényi Random Graphs 

 

Erdős and Rényi (1959) introduced the first model methodology that generates simple 

random graphs. It defined a fixed number of vertices n and a probability p of connecting each 

pair of vertices, which also corresponds to the final clustering coefficient of the graph. The 

higher is the value of p, the higher the mean degree and density, and the lower the diameter of 

the network (ERDŐS AND RÉNYI, 1959). 

These simple graphs do not represent real-world networks with high fidelity because 

they do not present any community structure and because their degree distribution follows a 

Poisson distribution. 

 

2.2 Watts and Strogatz Small-World Model 

 

In small-world networks, most vertices can be reached within short paths. In addition, 

these networks show a large number of small cycles, especially of size three. 

Watts and Strogatz (1998) proposed the first model to generate networks with the small-

world properties. The graph starts with a ring of connected vertices, each one adjacent to its k 

nearest neighbors. Then, with probability p, each edge is randomly reassigned to any available 

position. This relinking method, with an intermediate or small p (typically p should be lower 

than 0.5), will create paths among distant vertices while keeping a high clustering coefficient 

among close neighbors. 

The higher is the value of k, the higher the vertex mean degree, clustering, and density, 

although diameter decreases. In addition, the higher is p, the lower is the clustering coefficient 

and diameter (WATTS AND STROGATZ, 1998). 

 



17 

2.3 Barabási and Albert Scale-free Networks 

 

The analyses of large social networks data show that in most of these networks their 

degree distribution follows a scale-free power-law distribution. Barabási and Albert (1999) 

explained this property using the fact that networks expand continuously by the addition of new 

vertices and that these new vertices attach preferentially to vertices already well connected, i.e., 

vertices with higher degree (or “the rich get richer”). Therefore, they were the first to propose 

a model that generates network structures with the newly discovered features. 

It starts with k number of fully connected vertices and keeps adding new vertices with k 

connections, defined by a preferential attachment formula. In summary, the preferential 

attachment formula defines that the probability of a vertex pi receiving a new connection takes 

into consideration the degree d of the vertex divided by the sum over the degree of all vertices. 

This way, high degree vertices have a greater chance of receiving new connections than vertices 

with lower degree. 

The value of k is positive correlated with the mean degree, clustering coefficient, and 

density, i.e. increasing k also increases the other properties of the network with the exception 

of the diameter, which is reduced (BARABÁSI AND ALBERT, 1999). 

 

2.4 Networks with Community Structure 

 

Newman and Park (2003) analysis of several social networks showed that such networks 

are mainly formed by community structures and that the previous complex network models. 

Moreover, they noticed that each vertex has many connections with vertices inside the same 

community and few connections with vertices of other, i.e., outside communities. They 

discovered that, in such networks, high degree vertices tend to be connected with other high 

degree vertices too. Further, they showed that vertices with small degree are usually connected 

with vertices with small degree (i.e., they present dissortativity behavior). 

They proposed a model that generates random networks which present community 

structure properties. Their model starts defining c communities and an (uneven) distribution of 

vertices for each community that represents distinct group sizes. The uneven distribution is 

important to create the dissortativity behavior (vertices with higher degree tend to be connected 

with lots of vertices with low degree) seen in the real social networks and also to create 

communities with different sizes. Each vertex can, and at least some of the vertices must, be 
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assigned to more than one community. Then, each vertex has a fixed high probability p of being 

connected to every other element of its own communities and zero probability to be connected 

with vertices to which it does not share a community. Notice that the vertices that were assigned 

to more than one community are those that link the different communities and are responsible 

to create a connected graph. 

In this network model, the higher the value of p and the lower the value of c, the higher 

is the network’s mean degree, clustering, and density, although network diameter decreases 

(NEWMAN AND PARK, 2003). 

 

2.5 Geographical Models 

 

Complex networks are generally considered as lying in an abstract space, where the 

position of vertices has no definite particular meaning. However, several kinds of networks 

model physical interactions in which the positions of the vertices characterize a higher 

probability of interaction with close neighbors than with distant ones. These networks are called 

geographical networks because in most cases there is an associated cardinal position and 

coordinates for each vertex because they lie on a geographical space and generally represent 

physical connections. 

Costa et al. (2008) introduced a model for networks with these characteristics that best 

represent their behavior. In their model the probability of vertices i and j being connected decays 

exponentially with distance (usually but not restricted to Euclidian distance) between i and j. 

 

2.6 Kronecker Graphs 

 

Leskovec et al. (2010) proposed a model in which real world networks are formed by 

the same substructures, repeatedly and recursively. They also define an algorithm that estimates 

parameters capable of generating synthetic networks with properties (degree distribution, 

clustering and characteristic eigenvalues) similar to any given real network. The model starts 

with an adjacency matrix typically of order two to four. Each cell of the matrix represents the 

probability that a vertex has a link towards the other in a core substructure. 

The larger the matrix the more complex substructures can be exhibited but at the cost of 

a higher complexity for the algorithm to estimate the proper generation parameters. An 
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algorithm proposed by the same authors in which a real network is used as basis, estimates these 

initial parameters by using a mixed strategy based on an exact search and a heuristic to search 

for the optimal parameters. 

Notice that the parameters’ matrix is symmetrical for undirected graphs and 

asymmetrical for directed graphs. To recreate networks of arbitrary size, the matrix is multiplied 

by itself using the Kronecker product (which gives the name to the model), a generalization of 

the matrix outer product. The Kronecker product doubles the size of the parameter’s matrix and 

can be repeated until the desired size is achieved, i.e. the matrix’s order is close to the number 

of the desired vertices in the network. The network is then generated by using the parameters 

(comprised in the cells) in the final matrix, which represents probabilities that each vertex is 

connected to the other. 

This model is one of the more computational costly because it demands the estimation 

of the initial parameters and also a complex generation algorithm. 

I present, in Figure 2.1, six sample networks generated by my implementation of 

different complex network models. The size of the vertices is proportional to their degree. All 

networks contain a hundred vertices with the exception of the last one, which contains 128 

vertices. The figures were generated with the Gephi software and the vertices were organized 

by ForceAtlas2 algorithm (JACOMY et al., 2014) in a readable layout. 

 

Figure 2.1 – Synthetic Sample Networks 

 

 

Simple random graph, small-world model, scale-free model, networks with community structure, 

geographic model and Kronecker graphs, respectively, from top-left to bottom-right 
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2.7 Block Two-Level Erdős and Rényi Model 

 

The Block Two-Level Erdős and Rényi (BTER) model (SESHADHRI et al., 2012) 

generates networks with very similar properties of real networks and can present all the 

properties presented by the models discussed in the previous subsections. It builds a network 

based on a degree distribution, which also controls the size of the networks, and, a desired 

clustering coefficient, which can be uniquely defined for each group of vertices with equal 

degree, or, globally defined for the entire network. All networks generated by the BTER model 

present community structures and low diameter (i.e., small-world phenomena). 

The BTER model is divided into three steps (KOLDA et al., 2014): 

(a) First, the vertices are grouped by degree in communities with size equal to the 

degree of its members plus one; 

(b) Then, each community is considered an Erdős and Rényi graph where the 

probability of connection among vertices is equal to the desired clustering 

coefficient; 

(c) The last step generates connections proportional to the excess degree of each 

vertex (number of connections that a vertex needs to match its desired degree). 

This weighted distribution is based on Chung and Lu graphs (CHUNG and LU, 

2002a; 2002b). 

Figure 2.2 summarizes these steps. 

 

Figure 2.2 – BTER Generation Steps 

 

Source: SESHADHRI et la. (2015). 

 

BTER is capable to match any real degree distribution and clustering coefficient and it 

is able to generate huge networks with reasonably low computing time and memory use, 

employing a highly parallelized algorithm (KOLDA et al., 2014). However, very few 
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experiments have been carried out to support such a claim. In order to do so, I experimented 

with several combinations of network parameters to check if BTER is indeed capable of 

generating synthetic networks with structural properties presented by real networks. 

I used several kinds of degree distribution functions, networks sizes and clustering 

coefficients to analyze the ability of the model to generate networks with the desired properties. 

Several investigations have shown that the degree distribution of many real-world 

networks can be modeled closely by a heavy-tailed distribution or a log-normal distribution 

(COSTA et al., 2008; EASLEY and KLEINBERG, 2010). The main difference between them 

is that the log-normal presents a smoother decay than the original heavy-tailed distribution. 

I have also selected a linear distribution to further increase the variability of networks 

properties and thus to check if the model is capable of matching unusual distributions. 

Table 2.1 summarizes the formula of each function used to model the degree distribution 

and the parameter values used in the experiments that were planned to reflect as near as possible 

real-world behavior. The values generated by each function were considered as proportions 

(weights) that a given degree appears in a given network size. Therefore, the formula used to 

define the degree distribution is the same for all networks independently of their size. 

 

TABLE 2.1 – Degree Distribution of Vertices 

Distribution Formula Parameters 

Heavy-tailed k−λ λ = {1.5, 2, 2.5} 

Log-normal e
−(ln k)2

S  S = {5, 10, 15} 

Linear 𝑎𝑘 +
𝑛

5
 

a = {-2-√3, -1, √3-2} 

n = number of vertices 

 

The second main configurable parameter of the BTER model is the clustering 

coefficients and for simplicity we choose to use the global clustering coefficient. The global 

clustering of many real networks belongs to the real number’s interval between 0.1 and 0.5, but 

preliminary tests with the BTER model (and the analysis of the model by its own authors) led 

to higher choices of clustering coefficients as parameters of the model.  This is mainly because 

the phase (b) of the model decreases the overall clustering of the network defined by the 

parameter choice. Taking this into consideration, I selected as desired clustering coefficients 

for the model values belonging to the real number’s interval [0.2, 0.7]. 

There were also other configurable parameters to deal with special cases during the 

construction of the networks, like degree 1 vertices and groups of vertices with mixed degree. 
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Those were selected following the suggestions made by the BTER authors. For detailed 

information about these parameters, please see Kolda et al. (2014). 

Moreover, I have added a restriction that all networks generated should be connected. 

This way metrics like diameter and network analysis metrics such as the centrality measures 

can be computed normally. The idea of the authors of the model to accomplish connectivity 

was to remove the smallest components of the graph. However, I preferred to connect all 

components by generating an edge, uniformly at random, between two vertices of disconnected 

components. Therefore, I was able to retain the desired network size and solve the problem with 

a simpler approach. 

The final experimental setup contained 2,700 synthetic networks with sizes ranging 

from a hundred to one thousand vertices. It contained 10 samples of all 27 combinations of 

parameters selected (kinds of degree distributions and clustering coefficients values). 

The size range was chosen to be small because of two main factors: 

(i) It is more difficult for a model to reproduce properties in smaller networks, so I 

tested the model in the hardest problem; 

(ii) And, the statistical analysis is costly on larger networks because it will demand 

more computation time and larger samples to be significant. 

Sample instances of networks used in my experiments and analyses are depicted in 

Figures 2.3 to 2.5. These figures show the networks generated by the BTER model with 100 

vertices. The figures were generated with the Gephi software and the vertices were organized 

by ForceAtlas2 algorithm (JACOMY et al., 2014) in a readable layout. In addition, I set the 

vertices sizes proportionally to their degree value for an easier visualization of the degree 

distribution. 

 

Figure 2.3 – Heavy-tailed Distribution with λ = {1.5, 2, 2.5} respectively from left to right 
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Figure 2.4 – Log-normal distribution with S = {5, 10, 15} respectively from left to right 

 

 

Figure 2.5 – Linear distribution with a = {-2-√3, -1, √3-2} respectively from left to right 

 

 

The communities are difficult to notice in small networks such as the sizes depicted in 

the Figures, especially for the log-normal degree distributions. But it is difficult also to 

reproduce visually the graphs of the larger networks in a readable way. 

The idea here is to somehow show visually some of the effects of the parameters used 

in degree distributions for the generated networks. For instance, we can see the correlation 

between the density of the network and the parameters of each degree distribution (positive 

correlation for the log-normal and linear formulas and inverse correlation for the heavy-tailed) 

Notice also, that the denser is the network the harder it gets to identify the original 

communities defined in the second step of BTER algorithm because the communities become 

more and more interconnected and cluttered. Additionally, we can see a clear difference 

between each kind of degree distribution and between the parameters within a degree 

distribution in the generated networks. This difference increases even higher with larger sizes 

of networks. 

The main properties of the networks generated by each combination of parameters were 

computed and are summarized in Table 2.2 and 2.3 as a way to give a more precise idea about 
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the effect of the parameters and the degree distributions in different sizes of networks. Each cell 

of the tables represents the mean value over all samples with 100 and 1,000 vertices. The mean 

variation was insignificant and so was omitted for clarity purposes. 

It is important to highlight that the effect of the clustering coefficient (also a parameter 

of the model) played an insignificant role in the main network properties compared to the degree 

distribution parameter which means that the clustering is majorly independent from the other 

properties. 

 

TABLE 2.2 – Properties Summary – Networks with 100 vertices 

Distribution Parameter 
Max. 

Degree 

Mean 

Degree 
Diameter 

Mean 

Distance 
Density 

Heavy-tailed 

λ = 1.5 20.17 4.48 7.63 5.83 0.045 

λ = 2 13.53 2.43 12.77 9.33 0.025 

λ = 2.5 9.37 2.04 21.07 16.14 0.021 

Log-normal 

S = 5 35.13 12.93 7.23 5.53 0.131 

S = 10 46.70 22.89 4.57 3.45 0.231 

S = 15 52.70 27.66 4.17 3.21 0.279 

Linear 

a = -2-√3 5.40 2.22 23.33 17.66 0.022 

a = -1 16.80 6.09 9.90 7.38 0.061 

a = √3-2 43.03 20.09 4.53 3.50 0.203 

 

TABLE 2.3 – Properties Summary – Networks with 1000 vertices 

Distribution Parameter 
Max. 

Degree 

Mean 

Degree 
Diameter 

Mean 

Distance 
Density 

Heavy-tailed 

λ = 1.5 110.37 12.11 10.27 7.24 0.012 

λ = 2 44.50 3.10 17.13 11.50 0.003 

λ = 2.5 25.33 2.15 38.07 27.33 0.002 

Log-normal 

S = 5 154.57 28.51 8.40 6.20 0.029 

S = 10 349.63 125.27 5.43 3.91 0.125 

S = 15 425.43 192.71 4.97 3.59 0.193 

Linear 

a = -2-√3 49.80 16.61 12.33 8.78 0.017 

a = -1 172.70 64.54 7.40 5.71 0.065 

a = √3-2 401.97 195.96 4.47 3.35 0.196 

 

Despite the fact that the degree distribution formulas did not consider directly the 

networks size, the properties of the networks are still affected by it as expected. Still, the main 

features of each kind of degree distribution are present, no matter the size of the network. the 

effect of the parameters for each degree distribution remains similar in proportion with the size 

of the network. 
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It is also clear that the generation of networks by the BTER model with small diameter 

and low distances is intrinsic to the model process, being independent to the parameter’s setup. 

This fact was already pointed out by the authors of the model (KOLDA et al., 2014). 

To check and analyze the accuracy and robustness of the BTER model at following the 

configured degree distributions I designed the graphs presented by the Figure 2.6. Figure 2.6 

presents the desired degree distribution (lines) for a network with 1,000 vertices and the average 

degree distribution (points) of the synthetic networks generated by the BTER model. The axis 

scales (quantity of vertices with each degree) of the graphics are logarithmic to assist with the 

visualization. 

 

Figure 2.6 – Number of Vertices with a Given Degree 
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We can see that the BTER model was capable of generating networks with a degree 

distribution close to the one desired for every function that I have used in my experiments. In 

order to confirm that claim I compute the correlation coefficient between the desired values and 

the ones realized by the model. The mean Pearson’s correlation coefficients with 99% 

confidence intervals are summarized in Table 2.4. 

 

TABLE 2.4 – Degree Distributions’ Correlation 

Distribution Parameter Correlation 

Heavy-tailed 

λ = 1.5 0.996 ± 10-5 

λ = 2 0.997 ± 10-5 

λ = 2.5 0.894 ± 10-3 

Log-normal 

S = 5 0.933 ± 10-3 

S = 10 0.644 ± 10-2 

S = 15 0.435 ± 10-2 

Linear 

a = -2-√3 0.926 ± 10-3 

a = -1 0.773 ± 10-3 

a = √3-2 0.567 ± 10-3 

 

The correlation values reveal that the denser is the network and higher is the maximum 

desired degree value, the lower is the performance of the model, i.e., the correlation values were 

lower. An explanation for that behavior is that the BTER model generates the edges 

independently from each other. It is inevitable that it will generate lots of repeated edges 

whenever it needs to generate lots of edges for a high degree vertex. These repeated edges are 

simply discarded during the process. 

It was also interesting to notice that the denser networks depreciate the model 

performance not only for the high degree vertices but also for the lower degree vertices. This is 

visible in Figure 2.6 for all denser degree distributions like the last two log-normal and linear 

functions. 

On the other hand, the model excels in mimicking the desired degree distribution of the 

functions with a deep slope like the heavy-tailed functions and the steepest linear and log-

normal functions. For such cases the correlation values where higher than 0.9 which denotes a 

near perfect match 

This limitation of the BTER model can be easily been unnoticed since real-world 

networks tend to be sparse. Therefore, the model should be capable of generating networks 

similar to any degree distribution shown in the real-world scenarios.  
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I have also analyzed the ability of the model to match the desired clustering coefficients 

set in the parameters. I have found out that the final clustering coefficients are ultimately driven 

by the degree distributions and not by the parameter setup in the model. There are two important 

details to highlight: 

(i) The quantity of degree one vertices; 

(ii) And, the network connectivity. 

The large number of vertices with degree one (present in all degree distributions tested) 

and the restriction that grants connectivity to the generated networks forced that these degree-

one vertices degenerate the clustering coefficients of many other vertices. They affect, in 

particular, the lower degree ones which are mainly responsible for the value of the global 

clustering coefficient of the network. This way, the degree distributions that present the larger 

number of degree-one vertices, and also generate the sparser networks, prevented high global 

clustering coefficients to happen. 

The easiest solution for that problem is to delete the small components generated by the 

model (most of them formed by a solo vertex). Thereby, it was hard to control the final size of 

the network being generated. Another solution is to configure the clustering coefficient for each 

group of vertices with similar degree. This is an option of the model that enables more control 

over the connections and more stability than the global clustering. However, this option is 

costlier than the basic use of a global clustering because it requires a more complex tuning of 

the parameters. 

To visualize the effect of the degree distribution over the clustering coefficients 

parameters I designed the graphs showed in Figure 2.7. Figure 2.7 presents the mean local 

clustering coefficients by degree of networks with 1,000 vertices. The triangles represent the 

networks where the desired clustering coefficient was set as 0.7 and for the points it was set as 

0.2. 

We can see clearly that the model has difficulties to fit the desired clustering value and 

that the main difference in the achieved clustering coefficients is caused by the degree 

distribution. This result suggests that one should configure the clustering coefficients by 

communities (vertices with same degree) instead of just inform the global clustering of the 

network. In that way, configuring the lower degree vertices (usually with smaller clustering) 

and the high degree vertices (higher clustering) separately will help the model to achieve the 

desired global clustering of the network. 
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Figure 2.7 – Local Clustering Coefficients by Vertex Degree 

 

 

This fact mainly happens as a consequence of the way that the model generates the 

communities in the first step of the algorithm. Whenever it is unable to group vertices with 

equal degree, the model picks vertices with close degree to fill the group, but still considers the 

group to be formed exclusively with equal degree vertices for the second step of the algorithm. 

Thus, the lowest degree vertex of the community will achieve many of its connections inside 

the group and so a high clustering coefficient, while the other vertices inside the community 

will not. 

Considering that most of the degree distributions present low number of vertices with 

high degree, it is predictable that the model will create only blended communities near the end; 



29 

in that way, the model generates peaks in the clustering coefficients towards the end of the 

degree distribution 

In resume, I examined several different parameter setups and then show that the BTER 

is capable of matching various degree distributions. However, BTER is not capable to 

correspond to the desired clustering coefficients when restrictions such as connectivity are 

added to a given network. Further, I also show that the degree distribution plays an important 

role in the clustering coefficients, independently of how they are parameterized in the model. 

The study of complex network models has played an important role in understanding 

real networks and the development of better algorithms. I have analyzed the generative 

characteristics of the BTER complex network model and, ultimately, I have shown that the 

BTER model is a good choice to generate synthetic networks similar to real-world 

environments. 

In addition, I provided a way to set the parameters of the model to generate generic 

networks with custom-made degree distributions. Moreover, I demonstrated that the model has 

the ability to create a large variety of networks with distinct properties, which makes it a truly 

flexible model for analysis and simulations of large-scale networks. 

 In Table 2.5 I present a summary of the characteristics of the complex network models 

discussed in section 2. It shows the expected degree distribution and the assortativity 

coefficient1 of vertices degree in the networks generated with each model. I also present the 

number of configurable parameters of each model and the overall complexity to configure such 

parameters to generate networks with desired characteristics (considering the restrictions and 

capabilities of each model). 

 

 

 

 

 

                                                 
1 The assortativity coefficient or assortative mixing is the Pearson correlation coefficient of the 

degree between pairs of connected vertices. A positive assortativity means that vertices tend to 

be connected with vertices with similar degree while a negative coefficient means that vertices 

are connected with higher or lower degree vertices. 
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TABLE 2.5 – Complex Network Models Summary 

Network Model 
Degree 

Distribution 
Assortativity 

Number of 

Parameters 

Configuration 

Complexity 

Erdős and Rényi Poisson Positive 2 Low 

Small-World 

Model of Watts and 

Strogatz 

Dirac Delta Positive 3 Low 

Scale-free 

Networks 
Power Law Positive 3 Low 

Networks with 

Community 

Structure 

Multinomial Negative At least 3 Medium 

Geographical 

Models 
Poisson Negative At least 2 Low 

Kronecker Graphs Log-normal Any At least 5 High 

Block Two-Level 

Erdős and Rényi 
Multinomial Any At least 3 Medium 

 



 

3 CENTRALITY MEASURES 

 

Both the description and categorization of natural and human-made structures using 

complex networks lead to the important question of how to choose the most appropriate metrics 

and evaluations of structural properties. While such a choice should reflect specific interests 

and applications, unfortunately there is no general model, formal procedure or methodology for 

identifying the best measurements for a given network (COSTA et al., 2008). 

In addition, the large number of metrics and their respective variations are often related 

despite the fact that each one of them consider distinct ideas for measuring graph properties. 

Ultimately, one has to rely on unwarranted intuition or limited knowledge about the problem to 

decide which metric is the most suitable for an application and to interpret it properly (COSTA 

et al., 2008). 

We recall that networks are usually modeled by graphs where each vertex represents a 

node of the network and each edge may represent any kind of relationship between such nodes. 

The overall structure of a network has consequences not only over individual members, 

but also over the entire group. Furthermore, structural properties of a network may extend well 

beyond individual behaviors and social roles. Assessing the quality of relations between entities 

and understanding connection patterns has generated much interest and research in various 

disciplines (COSTA et al., 2008). 

Centrality measures can be characterized by deterministic algorithms (and associated 

formulations) that describe the computation of a “centrality” value for each vertex of a graph 

or network, usually creating a rank of vertices. However, the concept of what centrality is and 

what exactly it measures depends on its mathematical formulation and the application domain 

under analysis. 

Nonetheless, there is no widely accepted formal definition of centrality in the context of 

social complex networks. As a result, there are several centrality measures capturing distinct 

ideas of centrality. In this context it may stand for importance, authority, power, influence, 

control, visibility, independency and/or contribution. (DAS et al., 2018; FREEMAN, 1978/79; 

LANDHERR et al., 2010). 

Informally, the main question that the centrality measures try and answer is how central 

a vertex is, i.e. how much it is at the core or in the periphery of a network. Depending on the 

definition of centrality, an individual with high centrality is the one that has more control, 

visibility, or independence inside a network. Therefore, these measures are important to identify 

elements behavior and roles within a network (YU et al., 2017). 
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Vertex centrality measures make use only of the structural pattern of the network (i.e., 

vertices connections, edges weights, and temporal timeline) for their evaluation. There are 

metrics suitable for directed and weighted graphs, while others are used in strong connected 

simple graphs, or in temporal graphs. Consequently, all formulas and algorithms receive as 

input an adjacency matrix or adjacency list, with weights and temporal sequence when 

appropriate, representing the network under analysis (DAS et al., 2018; FREEMAN, 1978/79; 

LANDHERR et al., 2010). 

For certain centrality measures, meta-parameters can be tuned to adapt the metric to a 

given kind of network structure or to control the weights given to different aspects/parts of the 

centrality. The metrics adapted to directed graphs are examples of the former case and the ones 

composed of more than one centrality measure are examples of the latter case. 

Notice that in most applications where centrality is important, the vertices rank is used 

instead of their absolute centrality value. This aims at better comprehension, interpretation, and 

comparison of values. Rank centrality is a post-processing of the centrality measures where, for 

each vertex, a rank is given based on their centrality value decreasing order. If vertices are tied, 

their resulting rank is averaged. 

Some works have evaluated important characteristics with respect to the use of existing 

metrics, see e.g. (BORGATTI et al., 2006; BUTTS, 2006; GOH et al., 2003; LI et la., 2015; 

VALENTE et al., 2008). Unfortunately, the relevance of their work in real-world applications 

is restricted to specific domains as they use a small number of experimental samples and 

centrality measures or restrict their analysis to specific kinds of applications. 

It is important to highlight that there is no formal procedure to guide the choice of 

centrality measures for a given application. 

In this section, I detail four of the main vertex centrality measures: betweenness, 

closeness, degree, and eigenvector. They are the most widely applied centrality measures in 

several applications and are the basis for several other metrics. I also briefly explain some of 

the most relevant metrics in the literature. Many of these centralities are very similar to each 

other in their conception and computed results and/or are adaptations of previous metrics, while 

others are specifically designed to networks in a determined field. 

I focus on unweighted symmetric networks, so I present the metrics’ version adapted 

for such kind of graphs but most metrics have simple modifications, at the expense of a higher 

computational cost (usually an order higher in the degree of the polynomial complexity), which 

turn their use suitable for most kinds of graphs. Table 3.5 at the end of this Section present more 

information about the complexity of such measures. 
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Centrality measures can be classified into four groups with respect to their purpose and 

conceptualization. 

 

3.1 Degree Centralities 

 

These are the simplest and most straightforward centrality measures. They were 

introduced by Shaw (1954), formally defined by Nieminen (1974) and popularized by Freeman 

(1978/79). These centralities are related to the idea of visibility and communication activity that 

a vertex has among its neighbors. 

The degree centrality (CD) of a vertex w is the number of edges connected to it, i.e., the 

number of its adjacencies (1) (GRANDO and LAMB, 2016). 

 

 
𝐶𝐷 (𝑤) =  ∑ 𝑎 (𝑖, 𝑤)

𝑛

𝑖=1

 (1) 

 

Considering a graph with n vertices and m edges, the corresponding algorithm has time 

complexity Θ(m+n) with an adjacency list (especially beneficial for sparse graphs) or Θ(n²) 

with an adjacency matrix (usually preferable for denser graphs). 

The metric is subdivided into indegree and outdegree for directed graphs. There are also 

variations in which the weights of the edges are accounted for. 

The degree centrality is the least complex and has the smallest computational cost 

among centrality measures. Consequently, the overall class of metrics based on the degree are 

simple and easy to compute to any kind of graphs because it is the only class that considers only 

local information (i.e., it did not require information from the entire network structure only 

from its immediate neighborhood) to evaluate each vertex centrality. 

However, these metrics has low capability at distinguishing vertices or ranking them, 

i.e., it considers many vertices as equally central. Notwithstanding, it is usually highly 

correlated to all other centrality measures despite its simpler formulation. 
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3.2 Path Centralities 

 

This group of centralities evaluates the vertices as being central if they are in between 

(or at the “crossroads”) of many “paths”. This fact allows the vertices to control the 

communication through such paths and measures the frequency of arrival that an information 

piece diffused in the network trespass the vertex. Each centrality of this class considers different 

kinds of paths or consists of a distinct evaluation of these paths. 

Most of these metrics require the graph to be strongly connected or evaluate each 

connected component of the graph individually and independently. However, there are more 

tolerant variations or adaptations that relax these restrictions to any kind of graph structure. 

The most widespread and used metric is the betweenness centrality (CB), which 

considers only the smallest paths, called geodesics. The betweenness of a vertex w is the number 

of geodesics between vertices i and j that passes through vertex w divided by the total number 

of geodesics between the vertices i and j (2). Considering i and j all vertices of the graph, and j 

larger than i (a geodesic from i to j and from j to i is considered only once). This concept was 

introduced by Shaw (1954) and formally defined by Freeman (1977). 

 

 
𝐶𝐵 (𝑤) =  ∑ ∑

𝑔𝑖𝑗(𝑤)

𝑔𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

 (2) 

 

The metric can be calculated using Brandes’ algorithm (BRANDES, 2001), keeping its 

time complexity at O(mn) and does not need any specific representation for the input graph. 

The betweenness centrality of a vertex is the least complex metric in this class of centrality 

measures. 

Other examples of centrality measures that belong this class of metrics are: 

• Flow betweenness (FREEMAN et al., 1991): based on the network’s maximum 

flow paths; 

• Random walk betweenness (NEWMAN, 2005): it considers all possible distinct 

paths, but weights them according to the probability in which a random walk 

would pass through it; 

• Communicability betweenness (ESTRADA, 2009): it considers all possible 

distinct paths, but rates the longest paths as less important; 
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• Range limited betweenness (ERCSEY-RAVASZ et al., 2012): considers only the 

shortest paths inside a range (length) limit. 

 

3.3 Proximity Centralities 

 

The basic idea of proximity centralities is that the lower the distance between a vertex 

to the others, the higher its centrality value and its independence from the network and its 

efficiency in propagating and spreading information. It also measures the time-until-arrival to 

the vertex of information pieces broadcasted through the network. 

The main difference among these centralities is that each metric computes the “distance” 

between vertices in a distinct way. Since these centralities are based on distance metrics, there 

is an inherent problem with disconnected graphs: depending on the centrality measure, the 

distance between two disconnected vertices are considered infinite or the largest possible 

distance for the given network size. 

The most prevalent and used centrality measure of this group is the closeness centrality 

(CC), first presented by Bavelas (1948) and then formally defined by Sabidussi (1966). 

Closeness centrality is the sum of the geodesics inverse distances from the vertex analyzed to 

all other vertices (3). 

 

 
𝐶𝐶  (𝑤) =  

1

∑ 𝑑 (𝑖, 𝑤)𝑛
𝑖=1

 (3) 

 

This metric can be calculated using a small variation of Brandes’ algorithm (2008), 

keeping the same time complexity of betweenness centrality – and it does not require any 

specific representation for a graph. Closeness and betweenness can be computed 

simultaneously by merging both algorithms and by maintaining the same asymptotic time 

complexity, sparing computation resources in practice. 

Other examples of centrality measures that belong to this class are: 

• Informational centrality (STEPHENSON and ZELEN, 1989): it is based on the 

computation of the probability that a random walk starting from the start point 

ends in the target point; 
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• Eccentricity (HAGE and HARARY, 1995): very similar to the closeness centrality 

but considers only the distance to the farther vertex from the starting point instead 

of the distance to all vertices; 

• Random walk closeness (NOH and RIEGER, 2004): the distance is measured by 

the average random walk time it takes to arrive to a target, so it leverages all 

lengths and possible distinct paths; 

• Hierarchical closeness (TRAN and KWON, 2014): it is computed by a 

composition of closeness centrality and degree centrality (out degree in directed 

graphs) building a layer of a hierarchy at each iteration. 

 

3.4 Spectral Centralities 

 

All metrics that belong to this group evaluate the vertices centrality by their participation 

in substructures of the network. These measures capture the idea of involvement and 

contribution capabilities of a vertex to the network because it leverages its influence over the 

whole network structure. They are called spectral measures because of their relation with the 

set of eigenvalues of the adjacency or Laplacian matrix of the graph representing the network. 

Perhaps the mostly widely used among these measures is the eigenvector centrality 

(CE). Bonacich (1972) suggested the centrality based on the eigenvector of the largest 

eigenvalue of a network’s adjacency matrix. Eigenvectors can be seen as a weighted sum of not 

only immediate contacts but, as well as, indirect connections with every vertex of the network 

of every length. Moreover, it weighs contacts of a vertex according to their own centrality, i.e., 

links with central vertices contribute towards their own centrality (“the more powerful your 

friends are the more powerful you become”). 

The eigenvector respective to the largest eigenvalue can be computed via an iterative 

procedure known as “power method” using the adjacency matrix and an auxiliary vector 

(RICHARDS and SEARY, 2000), which reduces its computational cost considerably and 

avoids numeric precision issues. The power method requires an infinite number of steps (worst 

case) but as the number of steps increases, the precision of the measure also increases. 

Therefore, the number of decimal places can be used to turn this measure feasible even for 

massive networks where a hundred steps usually grants enough precision to differentiate the 

vertices centrality values (RICHARDS and SEARY, 2000). 
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The eigenvector centrality value of a vertex w at an iteration it is the w index of a vector 

E multiplied by the adjacency matrix A divided by the sum of the elements of E at a previous 

iteration (4). The vector E can be initialized with any real positive number (RICHARDS and 

SEARY, 2000). 

 

 
𝐶𝐸  (𝑤) = ∑

(𝐸𝑖𝑡𝐴)𝑤

∑ 𝐸𝑖
𝑖𝑡−1𝑛

𝑖=1

+∞

𝑖𝑡=1

 (4) 

 

The following centrality measures also belong to this class of metrics: 

• Katz centrality (KATZ, 1953): similar to the eigenvector centrality, but uses an 

attenuation factor to reduce the influence of distant vertices; 

• PageRank centrality (PAGE et al., 1999): similar to the Katz centrality, but adds 

a dumping factor which enables its proper use in directed graphs (correcting the 

rank sink and drain problems caused, respectively, by cycles and vertices with 

zero outdegree); 

• Subgraph centrality (ESTRADA and RODRÍGUEZ-VELÁZQUEZ, 2005): 

evaluates the vertices by their participation in subgraph structures of the network, 

starting with subgraphs composed by only two vertices and increasing in size to 

any possible formation with unlimited bounds, but gives less weight as the 

subgraph becomes larger; 

• Functional centrality (RODRÍGUEZ-VELÁZQUEZ et al., 2007): similar to the 

subgraph centrality, but with limited range on subgraph structures. 

 

3.5 Centrality Measures Comparison 

 

I carried out a set of experiments with eight of the most used centralities to compare its 

characteristics in several networks. The selected metrics were closeness (Cc), betweenness (Cb), 

degree (Cd), eigenvector (Ce), information (Ci), subgraph (Cs) and eccentricity (Cx). 

I have chosen six complex network models with a hundred samples for each possible 

combination of the selected parameters (presented in Table 3.1). The parameters were chosen 

following a preliminary experimental setup that verified the main properties of the networks 

generated by each model. The network models were used to provide several samples to achieve 

a good generalization of my hypotheses and results so that they were statistically relevant. For 
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more information about these complex network models, comprising their main characteristics 

and explanations about their parameters, please see section 2. 

 

TABLE 3.1  – Complex Network Models Parameters Summary 

Network 

Model 
Parameters in Experiments 

Networks with 

Community 

Structure (Mcs) 

pc = probability of each vertex to belongs to each community {0.1}. 

p = edge probability between two vertices belonging to a common community 

{0.5, 0.7}. 

c = number of communities {n/10, n/20, n/50}. 

n = number of vertices {100, 500}. 

Simple Random 

Graphs (Mer) 

p = probability of connecting each pair of vertices {0.1, 0.3, 0.5}. 

n = number of vertices {100, 500}. 

Geographical 

Models (Mgr) 

pij = probability that vertices i and j are connected {𝑘−𝑠𝑖𝑗}. 

sij = distance between vertices i and j {|⌊
𝑖

√𝑛
⌋ − ⌊

𝑗

√𝑛
⌋| + |(𝑖 𝑚𝑜𝑑 √𝑛) −

(𝑗 𝑚𝑜𝑑 √𝑛)|}. 

k = variable used in the pij equation {1.2, 1.5, 2}. 

n = number of vertices organized in a determined space {100, 500}. 

Scale-Free 

Networks (Msf) 

k = initial number of fully connected vertices and the number of edges added 

with each new vertex {2, 3, 5}. 

n = final number of vertices {100, 500}. 

Small-World 

Model (Msw) 

p = probability of changing each connection (relinking) {0.1, 0.3, 0.5}. 

k = initial number of nearest neighbors which a vertex is connected {4, 8, 16}. 

n = number of vertices connected in a ring structure {100, 500}. 

Kronecker 

Graphs (Mkg) 

P = square matrix of order two with parameters estimated for different kinds of 

networks: social {Email-Inside, Epinions}, information/citation {Blog-

Nat06All}, Web {Web-Notredame}, Internet {As-Newman, As-RouteViews} 

and biological {Bio-Proteins}. 

n = number of vertices {27=128, 29=512}. 

 

I have also used non-isomorphic2 connected graphs (Nni). I selected all Nni of six (112 

graphs) and seven vertices (853 graphs) retrieved from a public dataset available at 

http://cs.anu.edu.au/~bdm/~data/graphs.html. These graphs are useful to illustrate possible 

extreme configurations for centrality values. Some of these are very unlikely in random 

generative models. The sizes (six and seven vertices) were chosen because they allow 

variability and they can be subject to experimental analyses (e.g., there is a total of 11,716,571 

non-isomorphic connected graphs of ten vertices). 

                                                 
2 Two graphs are non-isomorphic if there is no possible edge permutation that transform a given 

graph into the other. 
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The final experimental setup contained a total of 7,165 synthetic networks (accounting 

the networks generated with the six complex network models and also the non-isomorphic 

graphs). 

The analysis of my experiments starts with the centrality measures’ correlation to check 

their similarity or distinctiveness. The comparison between the measured centrality values via 

different centrality measures can unveil relevant information about a network structure. It can 

assess a distinct role for a given vertex in a network considering that each metric gives a 

different meaning of vertex importance. Therefore, the correlation among metrics gives an idea 

of the relation between such distinct roles. I used the Kendall Tau-b rank correlation coefficient 

between every combination of metrics to estimate the metrics’ relationship. This coefficient 

evaluates the degree of similarity between two sets of ranks given to the same set of objects. 

Kendall’s correlation is especially useful for centrality measures because varying normalization 

and distribution do not affect it. In addition, centrality measure values are used frequently as 

ranking factors where the absolute value itself is irrelevant. The same analytical approach was 

used by other works in similar areas (BAIG and AKOGLU, 2015; SOUNDARAJAN et al., 

2014). 

The mean Kendall rank correlation coefficients between each pair of metrics are 

summarized in Table 3.2. All values presented in the table match the real expected value with 

0.01 confidence interval (above and below) with 99% chance. The correlation values above or 

equal 0.8 are highlighted in bold. 

 

TABLE 3.2 – Mean Correlation Values 

Cc        

0.75 Cb       

0.79 0.78 Cd      

0.80 0.63 0.79 Ce     

0.83 0.77 0.91 0.79 Ci    

0.76 0.61 0.80 0.94 0.77 Cs   

0.73 0.87 0.82 0.63 0.79 0.62 Cw  

0.42 0.35 0.33 0.35 0.36 0.32 0.33 Cx 

 

In summary, all metrics (except eccentricity) presented a high redundancy in their 

evaluation of vertex centrality by showing a high correlation with the other metrics. The pairs 

of metrics closer to each other in decreasing mean correlation value order (considering all 

networks) were: eigenvector and subgraph (0.94), degree and information (0.91), betweenness 
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and walk betweenness (0.87), closeness and information (0.83). It is noticeable that eccentricity 

lags behind, with correlation values below 0.45 in the great majority of networks. 

We see that just a few pairs of centralities have low correlation (excluding those with 

eccentricity), which means that despite all centrality differences, they all have a high common 

agreement when ranking vertices of a network by their centrality in all kinds of networks tested. 

Eccentricity presented the lowest correlation values by far, mainly because it evaluates many 

vertices as being equally central. Notice that the Kendall tau-b rank correlation accounts 

positively for pairs of tied values only if both sequences present the same elements with 

equivalent ranks, penalizing them otherwise. 

Eigenvector and subgraph centralities acquired a perfect correlation coefficient (1.00) 

in most networks but, at the same time, they presented low correlation in some rare cases (below 

0.5). This emphasizes that both of them are so similar that choosing one metric over the other 

does not have any impact in the results. It also means that the idea of centrality behind each 

metric are equivalent in a practical sense. 

We also notice that the correlation values among metrics vary according to the 

generative model. In the networks generated by Msw and by Msf, the overall correlation values 

for all metrics were much lower (23% and 20% below the mean respectively) while in the 

networks generated by the Mkg and by Mer, they were considerably higher (19% above the 

mean). 

The networks generated by the other two models presented correlation values close to 

the mean. This fact is consistent with the degree variability of each model i.e., the larger is the 

range of the degree distribution generated by the model the lower is the correlation among 

centrality measures. 

The only metric that behaved differently was eccentricity. This happened due to a large 

number of tied centrality values in the Mer networks. The lower the diameter of a network, the 

lower is the variety of distances among vertices and therefore the granularity of eccentricity. 

This fact penalizes its correlation values with all other centrality measures, granting it a 66% 

lower correlation than the average value over all networks.  

The correlation among centrality measures varies, as expected, in different setups of 

parameters (including networks size) for a complex network model, but their variance was 

statically irrelevant. That is mainly because the chosen parameters preserved the fundamental 

characteristics of each complex model. 

Furthermore, I showed that the structural properties of the networks do not significantly 

affect the centralities granularity while they do have a considerable impact on their correlation. 
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These results are a strong indicative that the simultaneous use of some pairs of metrics is quite 

redundant and will provide limited results. Therefore, the simpler metrics, such as betweenness, 

closeness, degree and eigenvector, are preferable and suitable for most applications, being 

easier to interpret and having lower computational complexity. 

The second property of the measures that I analyzed was their granularity, i.e., their 

capacity to distinguish and evaluates differently, providing an exclusive centrality value for all 

the vertices in the network considering that they represent unique elements of a real-world 

environment. I calculated the percentage of distinct centrality values for each metric in each 

network. For example, if I say that there are 50% distinct values in a network of 500 vertices, 

it means that there are 250 distinct (unique) centrality values for a given metric in that network. 

I considered six decimal places (rounded) as the accuracy for the real value centralities as 

enough to distinguish the centrality values properly, considering the size of the networks used 

in my experiments. This was necessary to avoid numeric precision issues common during the 

computation of the metrics with the inherent imprecision of the operations and memory storage 

of floating-points format variables (Double for instance). They are used during the computation 

of the metrics as they are much less computational costly than the operations with precise 

decimal variables. The granularity property may be valuable in applications where centrality 

measures are used to differentiate/rank the vertices of the network (ŻAK and ZBIEG, 2014) or 

as a heuristic for vertex selection and placement (MARCHANT et al., 2015). 

Tied values in these applications may suggest many unequal solutions for a given task 

in which only a best solution is required or desired. In addition, ties between centrality values 

of distinct vertices can be viewed as lack of information or incapability of the metric to 

differentiate the vertices properly, considering the fact that they are definitely unique in many 

domains. Moreover, correlation analysis between centrality measures and other domain-

specific metrics are common. Such methods are impacted by equivalent values, reducing their 

accuracy and distorting the analysis. 

Table 3.3 presents the mean percentage of distinct values with 99% confidence intervals 

for each metric, grouped by the networks generated by the complex network models and by the 

non-isomorphic networks. The results show that the granularity of all centrality measures 

presented nearly no difference in the expected values (considering the confidence intervals) in 

all networks generated by the complex network models. This is why I put them altogether in 

Table 3.3 
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TABLE 3.3 – Mean Percentage of Distinct Values 

Metric Complex Models (%) Non-Isomorphic (%) 

𝐶𝑏 98.72 ± 0.11 59.13 ± 1.72 

𝐶𝑐 39.34 ± 0.60 55.07 ± 1.45 

𝐶𝑑 19.11 ± 0.51 48.93 ± 1.12 

𝐶𝑥   1.36 ± 0.04 26.86 ± 0.83 

𝐶𝑒 99.57 ± 0.03 70.54 ± 1.92 

𝐶𝑖 99.84 ± 0.02 69.36 ± 1.90 

𝐶𝑠 94.15 ± 0.26 69.19 ± 2.00 

𝐶𝑤 99.68 ± 0.04 69.56 ± 1.87 

 

Eccentricity underperforms all other metrics with a high number of tied vertices due to 

its simple formulation. It is followed by degree and then by closeness centralities in all synthetic 

networks. These three measures are by far worse than the others are in distinguishing vertices 

by their structural properties. 

Walk betweenness, information and eigenvector are the metrics with the best 

granularity. They are followed narrowly by betweenness and then by subgraph centralities, 

forming a group with five high granularity metrics. This fact that is supported by their more 

complex formulations compared to the other three metrics. 

Our results provide additional evidence that the degree measure is less fine-grained than 

closeness and both are inferior to betweenness in this aspect, as Freeman (1978/79) originally 

thought but did not presented empirical results as I did. The intuition behind this fact is mainly 

because the simpler way that these three metrics are evaluated. 

Other interesting aspect of centralities analyzed in my experiments was the number of 

times each metric achieved the best-known granularity solution among the metrics tested. This 

information shows the number of times that one metric is better than all others are in 

distinguishing the vertices of a given network. 

The results are summarized in Table 3.4. The cells highlighted in bold present the 

highest values. Notice that the columns total is higher than 100% because in many networks 

more than one metric achieves the best/top granularity performance. Table 3.4 reinforces even 

more the disparity in metrics granularity. The top overall metric walk betweenness is better in 

this aspect than all others are in most networks, excluding geographic and Kronecker networks, 

where information centrality performs well, and in non-isomorphic networks, where 

eigenvector is the best-qualified one. 
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TABLE 3.4 – Percentage of Times with Best Granularity 

Metric 𝑵𝒏𝒊 𝑴𝒄𝒔 𝑴𝒔𝒇 𝑴𝒔𝒘 𝑴𝒈𝒓 𝑴𝒆𝒓 𝑴𝒌𝒈 

𝐶𝑏 38.8% 97.6% 62.8% 78.3% 70.2% 100% 10.9% 

𝐶𝑐 33.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝐶𝑑 21.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝐶𝑥 4.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

𝐶𝑒 98.4% 87.7% 51.7% 47.9% 62.0% 55.0% 82.5% 

𝐶𝑖 90.6% 98.0% 92.8% 90.6% 98.8% 67.3% 94.8% 

𝐶𝑠 93.4% 32.4% 31.3% 34.2% 34.3% 32.0% 21.3% 

𝐶𝑤 92.0% 99.8% 100% 99.9% 76.5% 100% 38.6% 

 

It also became evident the poor granularity of eccentricity, degree and closeness (in 

increasing order from the poorest one) centralities compared to the others. The only networks 

where their granularity is at least equivalent to the other metrics were special cases of non-

isomorphic networks, such as, the complete graph, when all centrality measures evaluate all 

vertices as being equally important. 

The higher granularity of the more complex measures seems to be the fundamental 

reason to use them in any application. Despite proving to be highly correlated to the simpler 

measures, they proved to be more able to differentiate the vertices of a network. The ability to 

distinguish and rank the vertices of a given network, preferably without tied elements, is very 

important for some applications. 

In Table 3.5 I present a summary of the characteristics of the centrality measures 

discussed in this section. It summarizes relevant properties of each centrality measure and may 

help one to choose the most appropriate metric for a given application. The following 

characteristics are depicted in the table: 

• If the metric’s algorithm can be applied to digraphs and weighted graphs (a * sign 

in these columns’ cells notifies that there is a more complex version of the metric’s 

algorithm that supports such characteristic or type of graphs); 

• The expected parallelism speedup due to algorithmic restrictions and 

dependencies considering that the centrality measure will be computed in parallel 

for each vertex of the analyzed network (a high parallelism speedup means that 

the centrality can be computed almost independently for each vertex with nearly 

no dependency from the other parallel threads, while in a medium speedup there 

are some dependencies and at low speedup the parallelism is close to ineffective 

due to the amount of dependencies); 

• The granularity of each measure, i.e., its ability to distinctly evaluate the vertices; 
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• The existence of manual parameters that have to be tuned considering the purpose 

and size of each kind of application; 

• The time complexity of the best-known centrality algorithm considering the 

asymptotic bounds and a graph with n vertices, m edges, diameter d and l is used 

to define the range parameter. 

It is important to notice that although Eigenvector, Katz and PageRank exact algorithms 

have quadratic upper bounds considering their time complexity, they perform in practice near 

linear time due to the application of an iterative version of the algorithms (“power method”) 

being the most efficient metrics in terms of computational costs after the class of degree 

centrality metrics. For instance, this fact enabled the use of such centralities in the core of the 

ranking system of Web search engines, such as Google (PAGE et al., 1999; RICHARDS and 

SEARY, 2000). 

 

TABLE 3.5 – Centrality Measures Summary 

Centrality 

Measure 
Digraph 

Weighted 

Graph 

Parallelism 

Speedup 
Granularity Param. Complexity 

Degree No Yes High Low No Θ(m) 

Indegree Yes Yes High Low No Θ(m) 

Outdegree Yes Yes High Low No Θ(m) 

Betweenness No* No* High High No O(mn) 

Flow 

Betweenness 
No* Yes Medium Low No O(m2n) 

Random Walk 

Betweenness 
No No Low High No O(mn2+n3) 

Communicability No No Low High No O(n4) 

Range Limited 

Betweenness 
Yes Yes Low High Yes O(mnl+l/d) 

Closeness No* No* High Medium No O(mn) 

Information No Yes Low High No O(n3) 

Eccentricity No* No* High Low No O(mn) 

Random Walk 

Closeness 
No No Medium High Yes O(n2) 

Hierarchical 

Closeness 
Yes No* High Medium No O(mn) 

Eigenvector No No Medium High Yes O(n2) 

Katz Yes No Medium High Yes O(n2) 

PageRank Yes Yes Medium High Yes O(n2) 

Subgraph No No Medium High No O(n2) 

Functional No No Medium High Yes O(n2) 
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3.6 Applications of Centrality Measures 

 

Centrality measures are used as important analyses tools for graphs and are used in 

several applications in which networks are fundamental. They are usually employed as a mean 

to identify relevant and important elements by identifying their behavior and roles within given 

complex networks or to rank such elements by their contribution for such roles which is 

important to guide selection mechanisms in numerous situations. Centrality measures are also 

effective as a comparison factor with other domain-specific metrics and can be used as a bridge 

to other areas (BRANDES, 2001; FREEMAN, 1977; GRANDO et al., 2016). 

In the coming subsections, I highlight promising areas in which recent studies have used 

centrality measures as a meaningful instrument. I do so by a simple taxonomy, classifying such 

examples considering their main application areas – of course, some of the researches are 

related to more than one application domain. 

 

3.6.1 Computer Networks 

 

Given the ubiquity of computer networks structures, the use of centrality measures is 

pertinent as heuristics to improve the solution of security problems, control issues, 

communication flow, and resources optimization. One of many examples is the study of 

Maccari and Cigno (2016), who applied the betweenness centrality in the optimization of online 

routing control protocols responsible to provide a fast and efficient recovery from a node failure 

with minimal disruption of routes. They consider that the failure of a node with high centrality 

(they have focused in the top 10 ranked vertices) generates higher loss compared to the failure 

of peripheral nodes and applied this fact in their proposed optimization problem formula to 

minimize routes’ disruption with reduced control message overhead. They also pointed it out 

that, although the centrality needs to be computed online (it takes about seconds to compute) 

and this is feasible only in networks with hundreds of vertices, there are approximation 

techniques that may be used for networks with thousands or more vertices. Moreover, the same 

technique can be extended to distance-vector protocols that are largely used in wireless mesh 

networks (VÁZQUEZ-RODAS and LLOPIS, 2015). 

Kas et al. (2012) studied social network analysis metrics and centrality measures as tools 

to improve the design of wireless mesh networks with better performance by efficiently 

allocating the resources available. 
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The allocation of network resources using the centrality measures as heuristics has been 

a topic of study in distributed placement of autonomic Internet services for the efficient support 

of users’ demands (PANTAZOPOULOS et al., 2014). 

Ding and Lu (2015) studied nodes’ importance (given by centrality measures) to 

maintain the structural controllability of a network. They introduced the control backbone for 

quantifying a single vertex’s contribution to the network controllability based on a random 

sampling algorithm that uses centrality measures as basis. 

Other key application of centrality measures is in wireless community networks 

(WCNs). WCNs are bottom-up broadband networks empowering people with their on-line 

communication means (BALDESI et al., 2015). However, WCNs often lack in performance 

because services characteristics are not specifically tailored for such networks. Centrality 

measures are used as heuristics that improve the selection of peers and chunks within WCNs in 

the communication between users to reduce the impact of P2P streaming while maintaining 

applications performance. 

There are also studies about mobile and 5G wireless networks that used centrality 

measures to reduce network traffic (BAȘTUǦ et al., 2014a; BAȘTUǦ et al., 2014b). 

Likewise, centrality measures are studied in the context of network security. For 

instance, they have been used to configure distributed firewalls (MACCARI and CIGNO, 2013) 

and to identify critical nodes in which intrusion detection and firewalling is most suitable 

(MACCARI et al., 2016). 

In addition, they were applied to build cloud-based filters and footprints of traffic 

inspection algorithms at global scrubbing centers (ZILBERMAN et al., 2015). 

 

3.6.2 Complex Networks Construction 

 

The analysis and understanding of the structure of complex networks are fundamental 

to understand variables and properties that contribute to the network formation and to identify 

which premises affect network development and evolution (EASLEY and KLEINBERG, 2010; 

CHEN et al., 2016). Centrality measures help these studies by identifying nuances and 

characteristics of components of the networks. In such context, centralities are used as means 

of understanding the role or contribution of a given element and its effect on the other elements 

of the entire network. 
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König et al. (2010) analyzed the underlying differences between technological and 

social networks and the assortativity behavior of network elements. They considered that the 

link formation is mainly based on the vertex centrality. 

Centrality measures were also used as part of a dynamic network formation model to 

explain the observed nestedness in real-world networks (KÖNIG et al., 2014) and social 

networks community structures (NEWMAN and PARK, 2003). 

They are also fundamental to several community detection and formation algorithms. 

The betweenness centrality measure was applied successfully by Newman and Girvan (2004) 

as a heuristic metric in order to define proper cuts/divisions in social networks as a way to 

separate the elements and iteratively search for communities. 

The idea behind the algorithm proposed by the authors is that the more central elements 

are bridges between different communities. As an iterative algorithm, it needs to compute the 

centrality measure again at each step/cute/division made, and because of its frequent use in 

huge social networks an efficient implementation is required. Therefore, approximation 

methodologies are preferred most of the time. 

 

3.6.3 Artificial Intelligence Applications 

 

The use of network models in communication, cooperation, or learning structures is key 

in artificial intelligence (AI). Several AI domains offer themselves to the use of centrality 

measures as means of strategy, guidance, or simply as domain information. Machine learning 

algorithms and methods can use centrality measures as heuristics to learn faster, to synthesize 

input data, or as additional information about an AI application, which in turn helps in the 

generalization for a given domain. 

Pedestrian detection is one of the example problems that used centrality measures 

associated with machine learning techniques. Detecting pedestrians in computer vision is a 

critical problem when one considers that the performance of trained detectors may drop very 

quickly when scenes vary significantly, which is frequently the case. Cao et al. (2013) proposed 

a novel methodology for such a problem based on a bag of visual words to detect pedestrians 

in unseen scenes by dynamically updating the keywords using centrality measures to select new 

keywords on the manifold model. 

Other AI application used the metrics to classify label-dependent nodes in a network 

(e.g. hyperlinks connecting web pages), citations of scientific papers, e-mail conversations, and 

social interactions in the Web (KAZIEENKO and KAJDANOWICZ, 2012). 
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Centrality measures can be applied in several ways as an optimization heuristic in multi-

agent systems and multi-robot teams, since they are essentially driven by their communication 

organization and strategies. Xu et al. (2014) noticed through simulations that the more central 

robots (considering its betweenness centrality) in a large robot team (organized frequently as 

clusters/networks) are the ones responsible to broadcast the information amongst clusters. 

Consequently, these central elements play an important role in group efficiency and are helpful 

to speed up the information diffusion. 

In addition, reinforcement learning applied to agents’ automatic skill acquisition and 

selection has also been studied using centrality measures (MORADI et al., 2010; RAD et al., 

2010). 

 

3.6.4 Social Network Analysis 

 

There is a growing amount social networks data, from different sources. Therefore, it is 

crucial to study the available information, as many networks comprise hundreds of millions of 

vertices. Centrality measures are one of the most important analyses tools for these kinds of 

networks and can be used for many purposes and fundamental comparisons, which offer 

insights on their social impact and behavior. 

Danowski and Cepela (2010) used centrality metrics to analyze the impact that 

presidential centrality role has on presidential job approval ratings. They hypothesized that 

when the centrality of the president is lower than of the other cabinet members, job approval 

ratings is higher. 

Jiang et al. (2015) introduced a model to find influential agent groups and their impact 

in multiagent software systems by using centrality measures, while Mcauley and Leskovec 

(2012) used the metrics to search and identify social circles in ego networks. 

The identification of important elements and an impact analysis of coautorship networks 

(YAN and DING, 2009) is also a research topic where centrality measures proved to be 

fundamental. They have used data from 16 journals in the field of library and information 

science with a time span of twenty years to construct a coautorship network and, they tested the 

use of four centrality measures (closeness, betweenness, degree and PageRank) as predictors of 

articles’ impact. To validate such an analysis, they compared the results obtained with the 

centralities with the citation counts. They unveiled a high positive correlation amongst it and 

the metrics, which strongly suggests that central authors are mostly likely to have a better 

reputation and produce articles with increased citations. 
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Louati et al. (2014) use software agents to formally express and interpret semantic 

information useful to evaluate trust: 

(i) Judging if the provider is worthwhile pursuing before using his services (trust in 

sociability); 

(ii) Expert-base aspect such as estimating whether the service behaves well and as 

expected (trust in expertise); 

(iii) And, recommender-based aspect such as assessing whether an agent is reliable 

and we can rely on its recommendations (trust in recommendations). 

They applied the centrality measures in several parts of their proposed algorithm as 

selection heuristics to desired trustworthy services for social networks. 

Likewise, there are studies about the setup of marketing strategies involving the 

selection of influential agents that increase the impact factor and improve the match between 

marketing content and users’ expectation and interests have also proved the need for centrality 

measures (LI et al., 2016). 

 

3.6.5 Traffic and Transport Flow 

 

Physical transport of goods and people are a huge strategic logistic problem for cities, 

states, and countries. For instance, the analysis of terrestrial, air, and water traffic networks used 

centrality measures as heuristics to solve flow and routing problems. Centrality measures are 

also applied in several applications that considers social behavior and use GPS to record and 

analyze the traffic in real-time. These algorithms are fundamental to find better solutions for 

routing and car-sharing and take in consideration several factors to be efficient. 

Gao et al. (2013) analyzed the potential of centrality to predict road traffic and flow 

patterns. They examined urban street flow using the taxis trajectory (recorded via GPS) and 

compared to the result predicted using betweenness centrality and the consideration of spatial 

heterogeneity of human activities, which was estimated using mobile phone Erlang values. The 

combination of centrality with other techniques showed to be extremely effective. 

Hua et al. (2010) analyzed the United States air transportation network to unveil the 

importance and impact on the economy that each airport has over the air traffic network in each 

region and as a whole. They also used temporal analysis to compare with previous studies about 

such networks. 
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Centrality measures and their models are also used in global and local scenarios and on 

the analysis of different points of view (intersection, road, and community views) in such 

scenarios (JAYASINGHE et al., 2016; ZHAO and ZHAO, 2016). 

 

3.6.6 Centrality in Game Theory 

 

In game theory, centrality measures are employed in studies about coalitional games. 

Coalitional or cooperative games are usually formed by groups of individuals that are connected 

via a network and the efficiency of this network is often related to the groups’ performance. 

Noble et al. (2015) studied the impact and relationship between the centrality of an agent 

with their collective performance in the resolution of cooperative problems. They tested several 

centrality measures (betweenness, closeness, degree, and eigenvector) combined with different 

network structures (defining communication channels among agents) and distinct solving 

strategies (evolutionary algorithms) in a set of minimization problems (real-valued functions). 

They showed that the centrality of an agent severely affects its contribution for the overall 

collective performance of the network. 

Centrality measures also have shown significance to define strategies for the dynamic 

formation and evolution of networks connecting individuals in social and economic game-based 

networks. Further, the measures have also been applied to risk assessment, considering fairness 

and efficiency, and to identify a bank’s systemic impact and relevance (JACKSON and 

WATTS, 2014). 

There are games that also make use of complex centrality measures, and as they require 

efficient algorithms, they sometimes apply approximation centrality algorithms to be viable 

(MICHALAK et al., 2013). 

 

3.6.7 Biological Networks 

 

Biological networks are examples of network structures not built by humans composed 

by biological structures. Protein-protein interaction (PPI) is one particular type of biological 

network where centrality measures have been applied. 

XIONG et al. (2014) have applied centrality measures like betweenness, degree and 

closeness to select proper/informative candidates (proteins) for labelling in PPI networks 

clusters and then classify/predict their purpose or function inside a biological cell. They reason 

that the more central proteins in a PPI network cluster are probably responsible for a given cell 
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function. The identification and the behavior of important proteins related to specific reactions 

in a cell constitute a huge step towards the development of drugs with minimal collateral effects 

and also to better understand diseases and hormonal interactions and their effects. Note that PPI 

networks are usually huge, sparse, and numerous. So, an efficient analysis method is 

fundamental in these applications and frequently approximation algorithms for the centrality 

measures are preferable in such environments. 

The metrics were also important in several studies about human brain connectivity and 

its behavioral interpretations. Neural connections and interactions (synapses) form huge 

complex networks where actions of a living being is controlled and determined. Therefore, the 

identification, classification, clustering, behavior, and inner-relationship are topics of high 

research interest. There is a growing demand for the applications of centrality measures in the 

biomedical sciences due to their successful use in many network related topics and the insights 

obtained from several application domains (RUBINOV and SPORNS, 2010; HEUVEL and 

SPORNS, 2013). 

The next section will give a brief introduction on machine learning and associated 

algorithms which are used in this work’s experiments. 



 

4 MACHINE LEARNING 

 

Machine learning is a subarea of artificial intelligence (AI) that uses statistical, linear 

algebra and calculus techniques to give computers the ability to “learn” by progressively 

improving the performance of a model (output generated by the learning algorithm) on a 

specific task without being explicitly programmed for such task (MITCHELL, 1997). 

Machine learning uses a variety of algorithms that iteratively learn from data to improve, 

describe data, and predict outcomes. As the algorithms consume training data, they produce 

more precise models based on that data (SEGARAN, 2010). 

Some of the machine learning models are online and continuously adapt as new data is 

presented, while others are offline, i.e. once the model is deployed (after the training) it does 

not change (CONWAY and MYLES, 2012; HEATON, 2013). 

There are many machine learning algorithms, techniques and methodologies but they 

all need some kind of training data/information about the environment or task/problem and, all 

share the same goal of creating an ideal model capable of simulating, resuming and simplifying, 

the environment. They are employed in a great range of tasks, including but not restricted to: 

• Classification – the machine learning algorithm needs to produce a model capable 

of assigning the input data into predefined sets or classes. In most of these 

problems the model is trained with labeled data (supervised learning); 

• Regression – different from the classification problems the model outputs/targets 

are continuous rather than discrete. The supervised learning is also the most 

common approach in this kind of tasks; 

• Clustering – in these tasks a set of data is to be divided into groups that are not 

known beforehand as they are in the classification problems. Because the groups 

are not known, the training data is unlabeled (unsupervised learning), 

consequently, the most common approach is to group the data by a similarity 

criterion and by using statistical approaches; 

• Reinforcement Learning – these tasks deal with dynamic settings where the model 

needs to learn by interacting with the environment (trial and error). The only 

information provided for the model in these tasks are usually sensors outputs by 

giving rewards/penalties depending on the outcomes for a given interaction with 

the environment; 



53 

• Temporal Learning – the input data in these problems, distinctly from the others, 

have time correlation, consequently, the order of the data is important. The main 

objective in such tasks are to create a model capable of predicting the future 

(expanding the timeline of the previous input data) or a model that explains and 

also recreates temporal patterns. 

This set of algorithms and models are being used across industries to improve processes 

and gain insights into patterns and anomalies within data (HASTIE et al., 2017; BISHOP, 

2006). 

AI and machine learning algorithms are not new in the literature. This field dates back 

to the 1950s when Arthur Lee Samuels, an IBM researcher, developed one of the earliest 

machine learning programs for playing checkers and coined the term “machine learning” on a 

paper published in the IBM Journal of Research and Development in 1959 (RUSSELL and 

NORVIG, 2015). 

Over the years there was a growing interest in machine learning techniques by 

researchers and industry and a huge amount of money are investments today in the area. The 

success of the area is due to several factors (BIRD et al., 2009; RUSSELL and NORVIG, 2015): 

• Modern processors have become denser, cheaper and increasingly powerful; 

• The cost of storing, managing and analyzing large amounts of data has been 

dramatically reduced; 

• The ability to distribute compute processing across clusters has been improved; 

• The availability, volume and variety of commercial data sets for studies increased; 

• The machine learning algorithms have been implemented by open-source 

communities with large user bases which induced the creation availability of more 

resources, frameworks and libraries; 

• The analysis, consume and visualization of data became more popular and 

accessible for industries and researchers. 

All of this means that it is possible to produce, quickly and automatically, models 

capable of analyzing bigger and more complex data and, at the same time, deliver rapid and 

precise results even at grand scale. 

Machine learning can be divided in two main classes: symbol-based and connectionist 

learning (LUGER, 2002). Symbol-based learning methods use a set of symbols that represent 

the entities and relationships of a problem domain and attempt to infer novel, valid, and useful 

generalization that can be expressed using these symbols (LUGER, 2002). 
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The connectionist approaches represent knowledge as patterns of activity in networks 

of small, individual processing units and learn by modifying their structure and weights in 

response to training data. Rather than searching through the possible generalization afforded by 

a symbolic representation, connectionist models recognize invariant patterns in data and 

represent these patterns within their own structure. Moreover, all patterns, symbols and results 

are encoded as numerical vectors (LUGER, 2002). 

 The next subsections present a summary about three classes of machine learning 

algorithms: decision trees (symbolic learning), support vector machines and artificial neural 

networks (connectionist learning). These algorithms are commonly applied to regression tasks 

and were tested in my experimentations to approximate the centrality measures (section 5.3). 

4.1 Decision Trees 

 

Decision trees are one of the most widely, practical and readable methods for inductive 

inference. It is able to deal with continuous and discrete data and it is also robust to noisy and 

inconsistent data (MITCHELL, 1997). Decision trees are the general name for this class of 

algorithms but they also can be specifically applied to classification problems and term 

regression trees when these algorithms, or their variations, are used in regression problems. 

Decision tree algorithms creates a model in a tree structure to illustrate and map the 

possible results of a decision. They use the divide and conquer strategy to solve a complex 

decision problem that is subdivided in smaller problems recursively where each subspace can 

be adjusted by using different models and later combined to solve the full and more complex 

problem (FACELI et al., 2011). 

It also can be represented as sets of if-then rules to improve readability. In general, 

decision trees represent a disjunction of conjunctions of constraints on the attribute values of 

instances. (MITCHELL, 1997). 

Each node of a decision tree model specifies a test for some of the attributes of the 

instance and each descending branch from that node corresponds to one of the possible values 

for that attribute. An instance is classified by starting at the root node of the tree, testing the 

attribute specified by this node, then moving down the corresponding tree branch. The process 

is repeated in the subtree structure until you find a class label or regression value at a leaf node. 

It is important to highlight that in regression tasks, the output of the instances must be 

discretized first in a finite number of classes, ranges or categories. 
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There are plenty algorithms that implement a decision tree learning model. These 

algorithms are responsible to generate the tree structure by specifying the attributes testing order 

(starting with the best classifier at the root, i.e. the one that separates better the training samples 

according to the target values). For such task, the algorithms quantify the information gain that 

a determined division provides by measuring the expected reduction in entropy (measure of 

homogeneity of the samples). 

The strategy implemented by the algorithms as the selection heuristic for the order of 

attribute tests and the maximum length (pre and pos pruning) of the tree structure are the main 

differences between the algorithms in the class of decision tree models. For a regression 

decision tree learner, the number of leaves in each tree or the granularity given by the model is 

also an important parameter, as it gives the number of categories that the continuous output is 

being discretized. 

Other categories of decision tree algorithms include also the creation and use of 

ensembles of trees that use multiple strategies to create a varied set of trees that later will vote 

or compete for the best output for a given instance. For instance, the bagging technique 

produces replicate training sets by sampling with replacement from the training instances and, 

the boosting technique uses all instances at each replication, but maintain a weight for each 

instance in the training set (intended to reflect that vector’s importance). In either case, the 

multiple models produced are combined by voting to form composite model. In bagging the 

voting is equivalent in strength between all models while in boosting the votes are weighted by 

the accuracy of each model (LUGER, 2002). 

This class of algorithms are known by their flexibility (non-parametric models), 

robustness (less sensible to heavy-tailed distributions, to outliers and to irrelevant or redundant 

attributes), interpretability (conclusions are made by a series of simple and local decisions based 

on the attribute values) and efficiency (fast greedy algorithms with a divide and conquer 

strategy). However, decision and regression trees suffer with problems of replication 

(duplication of tests in different parts of a tree structure), absent values (an unknown attribute 

value causes an indecision process for the model), they suffer with real valued or continuous 

attributes (that usually need to be discretized) and are instable (few variations on the training 

set can produce a completely different model) (FACELI et al., 2011). 
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4.2 Support Vector Machines 

 

A notion that is central to the construction of the support vector learning algorithms is 

the inner-product kernel between a “support vector” and the vector drawn from the input space. 

This class of machine learning algorithms make use of a set of support vectors that separates 

the training instances in sets by their similarity (classification problems) or a set of support 

vectors which will represent functions that can produce continuous outputs with minimal 

deviation from the training data set (FACELI et al., 2011). 

The support vectors consist of a small subset of the training data extracted by the 

learning algorithm (HAYKIN, 1999). Fundamentally, the support vector machine (SVM) 

algorithms are trying to optimize such support vectors by finding the widest possible gap 

between instances of different sets/classes. 

Additionally, SVMs can efficiently perform non-linear classification/regression using 

what is called the “kernel trick”, implicitly mapping their inputs into high-dimensional feature 

spaces that are linear separable. Therefore, the kernels in SVM determines the shape of the 

decision surface and are the main hand tuned parameter of the SVM algorithms (SMOLA and 

VISHWANATHAN, 2008). 

Kernels are measures of similarity. Broadly speaking, machine learning algorithms 

which rely on the dot product between instances can map all instances by a kernel function. In 

other words, kernels correspond to dot products in some dot product or arbitrary space There 

are three main advantages of using kernels (SMOLA and VISHWANATHAN, 2008): 

(i) If the feature space is rich enough, then simple estimators such as hyperplanes and 

half-spaces may be sufficient; 

(ii) Kernels allow us to construct machine learning algorithms that use a different dot 

product space without explicitly computing it; 

(iii) And, we need not to make any assumptions about the input space of the instances 

other than for it to be a set. 

The simplest of all kernels are defined by linear function. They are easy to compute and 

are a natural representation to use for vectorial data. Polynomial kernels use a function of a 

degree d to map the instances with a larger flexibility than the linear version but with a higher 

cost in complexity to compute. A more statistical approach also can be applied in kernels using 

Gaussian functions which grants the method more robustness and generality. 
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There many other types of kernel functions that may be applied depending on the 

instances mapping desired and applications, including but not restricted to convolution, string 

and graph kernels. 

 

4.3 Artificial Neural Networks 

 

An artificial neural network is a massively parallel distributed processor made up of 

simple processing units, which has a natural propensity for storing experimental knowledge and 

making it available for use. Each processing unit (neuron) takes a number of real-valued input 

(possibly the output of other units) weighted by their synapses’ strength and produce a single 

real-valued output (which may become the input to many other units) (HAYKIN, 1999). 

The study of these algorithms has been inspired in part by the observation of the 

biological learning and thinking systems that are built of very complex webs of interconnected 

neurons (brain). It resembles the brain in three main aspects (HAYKIN, 1999): 

(i) Knowledge is acquired by the network from its environment through a learning 

process; 

(ii) Interneuron connection strengths, known as synapse weights, are used to store the 

acquired knowledge; 

(iii) In rough analogy, they are also built out of a densely interconnected set of simple 

processing units called neurons. 

They provide a general, robust and practical method for learning any kind of function 

from examples. It may be employed for classification, regression, clustering, reinforcement and 

temporal learning tasks. This class of algorithms are amongst the most effective learning models 

currently known for several tasks in many areas (MITCHELL, 1997). 

The use of neural networks offers the following useful properties and capabilities 

(HAYKIN, 1999): 

• Nonlinearity – The neurons of an artificial network can be linear or nonlinear so, 

it can solve nonlinear problems; 

• Input-Output Mapping – The artificial neural networks are able to learn with the 

help of labeled data (supervised learning), learning from sample data and creating 

a nonparametric model (without any prior assumptions for the data distribution); 

• Adaptivity – The model generated by the network can be constantly adapted to its 

environment by adjusting the synapse weights to deal with new circumstances; 
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• Evidential Response – The model can not only find and select patterns in the data 

but also indicates the confidence level it has on that decision; 

• Contextual Information – Knowledge is represented in the structure and activation 

state of the model where each unit possibly is affected by the global activity of the 

model; 

• Fault Tolerance – Due to the distributed nature of information stored in the 

network, damage in a neuron unit or synapse weight will only degrades its 

performance not causing a catastrophic failure; 

• Very Large Scale Integrated Implementability – The parallel nature of the model 

able its use and make the most of parallel and distributed computing units and 

hardware which turns it potentially fast for several tasks; 

• Uniformity of Analysis and Design – Neural networks can be modularized, 

integrated and shared among different applications and with different 

architectures; 

• Neurobiological Analogy – The design of an artificial neural network can benefit 

from new discoveries and be motivated by their biological counterpart. 

There are several kinds of artificial neural networks and associated learning algorithms. 

How the network is structured, which kind and number of connections, layers and units, 

together with the procedure applied to produce the outputs in each unit by the use of distinct 

activation functions are the main factors that distinguish different learning algorithms and 

models in this class. For instance, recurrent networks (networks with feedback loops) are often 

associated to temporal and reinforcement learning and deep networks (networks with a huge 

number of layers) are associated to image/video learning tasks. 

Moreover, these meta-parameters of the model are a mixture of pre-defined parameters 

that must to be tuned by hand (some are defined by the kind of task being solved) with 

parameters that are automatically optimized by one of a vast set of learning algorithms. 

These learning algorithms can be categorized in five classes (HAYKIN, 1999): 

(i) Error-correction learning and their algorithms such as the backpropagation use 

gradient descent to tune the network parameters to best fit a training set of input-

output pairs of values. The computation of such gradients may be so complex due 

to the network structure and problem size that several heuristics and different 

methodologies were developed by many authors as alternative solutions; 
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(ii) Memory-based learning store past experiences explicitly in a large memory of 

correctly classified input-output examples; 

(iii) Hebbian learning use as basis the associative learning where the synchrony 

between neurons strengthen their synapses and asynchrony weakens of eliminates 

synapses; 

(iv) Competitive learning implies that the output neurons compete among themselves 

to become active meaning that only one output neuron can be active at the same 

time; 

(v) Boltzman learning is rooted in statistical mechanics and it is a stochastic learning 

algorithm. Artificial neural networks that apply this kind of learning are called 

Boltzman machines. 

Hebbian and competitive learning are self-organized, unsupervised learning and 

motivated by neurobiological considerations. While the other methods are supervised learning 

which empowers them to fulfill better tasks such as classification and regression tasks. 

The techniques presented in this section were applied, analyzed and compared in ours 

experiments to approximate the centrality measures together with other approximation 

methodologies not based on machine learning. These experimentations will be detailed and 

discussed in the next section. 

It is important to mention that in my experiments I do not applied Recurrent Neural 

Networks (RNNs) and Long-short Term Memory Networks (LSTMs) because the training data 

does not have any temporal dependency between attributes and instances (main characteristics 

dealt by this kind of ANNs). Convolutional Neural Networks (CVNs) were also not considered 

in the experiments because the main idea in our methodology is to deal with the simplest inputs 

as possible and not deal with the entire graph representation, which would be the case with the 

use of CVNs. 

Considering that ANNs and SVMs are known to be equivalent in theory (HAYKIN, 

1999), considering their capabilities, I choose to optimize the one that I feel more comfortable 

with, the ANNs, at the same time that I did also a performance (accuracy) comparison in the 

approximation of centrality measures between both techniques to check if one has a clear 

advantage over the other or not. 

 



 

5 APPROXIMATION TECHNIQUES FOR CENTRALITY MEASURES 

 

Typical centrality measures algorithms do not scale up to graphs with billions of edges 

(such as large social networks and Web graphs). Even though their algorithms are polynomial 

in time, their computation requires days or even months for massive networks and are 

inefficient to use in real-time applications (BADER et al., 2007; EPPSTEIN and WANG, 2004). 

Closeness metric, for instance, takes about 5 years to compute for a network with 24 million 

vertices and 29 million edges (COHEN et al., 2014). 

This can be even more critical when one needs to compute many centrality queries, 

particularly when one is interested in the centrality of all vertices or whenever the network 

structure is dynamic through the time. This feature is common to most real networks, which are 

constantly changing and evolving in time (COSTA et la., 2008; EASLEY and KLEINBERG, 

2010). 

In this section, I describe the most common method for sampling approximation 

techniques and then detail the methodology based on machine learning techniques for network 

centrality learning and computation. 

 

5.1 Vertices Sampling Techniques 

 

The first technique proposed in the literature to approximate the centrality measures are 

based on vertices sampling (EPPSTEIN AND WANG, 2004). The underlying premises behind 

a sampling technique is simple: one should compute the exact centrality value for a predefined 

number of sampled vertices and then estimate the centrality value of the others based on such 

computation. For instance, the betweenness and closeness centralities share a quite similar 

foundation for the sampling technique: 

• One computes the single source shortest path (SSSP) for a given number of sample 

vertices; 

• Each SSSP tree gives the exact centrality value for its source vertex; 

• At the same time, one can use them as an approximation for the other vertices 

considering that all previously computed SSSP trees are partial solutions for such 

vertices; 

• Therefore, a given vertex not sampled will have its centrality value approximated 

by an average result given by all SSSP trees from the sampled vertices. 



61 

An algorithm for such objectives was defined and tested in real case scenarios by Bader 

et al. (2007) for betweenness and by Eppstein and Wang (2004) for closeness centrality.  

However, the simple approach given by the sampling technique has a few drawbacks and leads 

to relevant questioning such as: 

(i) How many vertices should be sampled and how should one select them? 

(ii) Or, how can one efficiently parallelize the sampling technique considering that it 

is not possible any longer to compute each vertex centrality independently? 

Brandes and Pich (2007) studied the vertices selection problem. They proposed several 

heuristics to choose vertices for the sampling techniques, starting with simple ones, such as 

picking the high degree vertices and finishing with more complex ones, which considers 

vertices distances and mixed strategies. They concluded that picking vertices uniformly at 

random on average is the best strategy when considering different types of network structures. 

The second question still is an open research question. To provide an answer for such 

question or at least measure the effectiveness of the sampling technique with and without 

parallelism I built an experimental setup that will be explained and discussed in detailed in the 

next subsection. 

 

5.2 Building Sampling Experiments 

 

In order to make the concepts clearer to the reader, I put the ideas into a practical 

experimentation. This will serve to illustrate the capabilities of the method in validation and 

comparative analyses. 

I shall illustrate the effect of sample sizes in a parallelized version of the sampling 

algorithms in real case scenarios using 30 real-world networks from four freely available data 

repositories. The selected networks are symmetric and binary (unweighted edges) with sizes 

ranging from a thousand to near two million vertices. Only the largest connected component 

(LCC) was used for the tutorial experiments, which was computed for all analyzed networks. 

The list of all real networks with their respective size and the size of its LCC (proportion w.r.t. 

the number of vertices), classified by network type and grouped by data repository is presented 

in Table 5.1. 

In the sequel, I computed each of the four exact centrality measures (eigenvector – CE, 

betweenness – CB, closeness – CC, and degree – CD) for all the thirty real networks depicted 

in Table 5.1. The computation of eigenvector and degree centralities is sequential, while 
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betweenness and closeness centralities are computed simultaneously with a merged algorithm 

keeping the same time complexity upper bounds and using parallelism (BRANDES, 2008). 

It is important to notice that the centrality value for each vertex of a network can be 

computed fully independent from the others in a parallel environment just at the expense of a 

higher memory cost. All algorithms were programmed in C and the parallel computations used 

the native OpenMP (Open Multi-Processing interface). The computation of the centrality 

measures was realized with the help of a computer cluster at the supercomputing national center 

in the federal university of Rio Grande do Sul (CESUP/UFRGS). The machine configuration 

used for such task was an SGI Altix Blade with 2 AMD Opteron dodeca-core (i.e. 24 real core 

processing units in total) with 2.3GHz, 128KB L1 Cache and 512KB L2 Cache per core, 12MB 

L3 cache total and 64GB DDR3 1333MHz RAM memory, Red Hat Enterprise Linux Server 

5.4. 

The computation time for the centrality measures used in our experiments is presented 

in Table 5.2, and represents the actual time spent in the execution of the exact algorithms for 

each of the metrics. I omitted from the table the degree centrality because it required less than 

1 second to compute for all the networks. Table 5.2 also presents the mean time required for 

the computation of a sample-based approximation algorithm for betweenness and closeness 

centralities. The computation of the approximation algorithm was run in the same machine, but 

in a sequential environment. 

I tested also the parallelization of the approximation algorithms but it demonstrated to 

be highly inefficient because it required a large number of dependent variables between 

different threads and a larger amount of memory. Parallelization reduced the execution time in 

about half but used 24 cores and 24 times more memory in the parallel environment. 

I adopted two sample sizes for each network: 2.5% and 5% of the number of total 

vertices for the approximation algorithms. The samples were uniformly randomized, following 

the work of Brandes and Pich (2007) that found out that this is the optimal strategy for such 

task. Five independent trials with distinct random seeds for each sample size for each network 

were executed in my experiments. 
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TABLE 5.1 – Experimental Data: Real Netwroks Description 

Network Type Vertices Edges LCC % 

Stanford Large Network Dataset Collection 
Autonomous Systems AS-733 

(LESKOVEC et al., 2005) 
Routers 6,474 12,572 100.00 

Oregon-1 (LESKOVEC et al., 2005) Routers 11,174 23,409 100.00 

Oregon-2 (LESKOVEC et al., 2005) Routers 11,461 32,730 100.00 

Astro Physics (LESKOVEC et al., 2007) Collaboration 18,772 196,972 95.37 

Condensed Matter (LESKOVEC et al., 

2007) 
Collaboration 23,133 91,286 92.35 

General Relativity (LESKOVEC et al., 

2007) 
Collaboration 5,242 13,422 79.32 

High Energy Physics (LESKOVEC et 

al., 2007) 
Collaboration 12,008 117,619 93.30 

High Energy Physics Theory 

(LESKOVEC et al., 2007) 
Collaboration 9,877 24,806 87.46 

Amazon (YANG and LESKOVEC, 

2012) 
Co-Purchasing 334,863 925,872 100.00 

DBLP (YANG and LESKOVEC, 2012) Collaboration 317,080 1,049,866 100.00 

Youtube (YANG and LESKOVEC, 

2012) 
Social 1,134,890 2,987,624 100.00 

Brightkite (CHO et al., 2011) Social 58,228 212,945 97.44 

Gowalla (CHO et al., 2011) Social 196,591 950,327 100.00 

Enron (KLIMMT and YANG, 2004; 

LESKOVEC et al., 2009) 
Email 36,692 180,811 91.83 

Texas (LESKOVEC et al., 2009) Road 1,921,660 1,879,202 70.31 

Facebook (MCAULEY and 

LESKOVEC, 2012) 
Social 4,039 82,143 100.00 

Social Computing Data Repository 
Blog Catalog 3 (ZAFARANI and LIU, 

2009) 
Social 10,312 333,983 100.00 

Buzznet (ZAFARANI and LIU, 2009) Social 101,168 2,763,066 100.00 

Delicious (ZAFARANI and LIU, 2009) Social 536,108 1,365,961 100.00 

Douban (ZAFARANI and LIU, 2009) Social 154,907 327,162 100.00 

Foursquare (ZAFARANI and LIU, 2009) Social 639,014 3,214,986 100.00 

Hyves (ZAFARANI and LIU, 2009) Social 1,402,611 2,184,244 100.00 

Livemocha (ZAFARANI and LIU, 2009) Social 104,438 2,193,083 99.68 

BGU Social Networks Security Research Group 
The Marker Café (FIRE et al., 2011; 

FIRE et al., 2013) 
Social 69,411 1,644,781 99.86 

The Koblenz Network Collection 
US Power Grid (WATTS and 

STROGRATZ, 1998; KONECT, 2016) 
Supply Lines 4,941 6,594 100.00 

Catster (KONECT 2016) Social 149,700 5,447,465 99.42 

Dogster (KONECT 2016) Social 426,820 8,543,322 99.92 

Hamster (KONECT 2016) Social 2,426 16,098 82.44 

Euroroad (KONECT 2016; ŠUBELJ and 

BAJEC, 2011) 
Road 1,174 1,305 88.50 

Pretty Good Privacy (BOGUÑÁ, 2004; 

KONECT, 2016) 
Communication 10,680 24,316 100.00 
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TABLE 5.2 – Metrics Computation time with the Real Networks 

Network 

Time (hh:mm:ss) 

Exact Algorithm Sample 5% Sample 2.5% 

CE CB and CC CB and CC CB and CC 

Euroroad < 1s < 1s 00:00:52 00:00:23 

Hamster < 1s 00:00:03 00:01:42 00:00:49 

Facebook < 1s 00:00:05 00:03:31 00:01:42 

General Relativity < 1s 00:00:05 00:03:29 00:01:43 

US Power Grid < 1s 00:00:05 00:04:13 00:02:02 

Autonomous Systems AS-733 < 1s 00:00:11 00:05:35 00:02:45 

High Energy Physics Theory < 1s 00:00:25 00:07:21 00:03:36 

Pretty Good Privacy < 1s 00:00:25 00:09:07 00:04:33 

Oregon-1 < 1s 00:00:36 00:09:32 00:04:46 

Oregon-2 < 1s 00:00:37 00:09:50 00:04:49 

High Energy Physics < 1s 00:01:25 00:09:42 00:04:48 

Condensed Matter < 1s 00:03:20 00:18:54 00:09:23 

Blog Catalog 3 00:00:04 00:03:57 00:09:42 00:04:48 

Astro Physics 00:00:01 00:04:42 00:16:19 00:08:00 

Enron 00:00:01 00:10:28 00:30:46 00:15:12 

Brightkite 00:00:02 00:25:46 00:53:41 00:26:26 

Douban 00:00:03 02:10:51 02:45:48 01:23:02 

The Marker Cafe 00:00:29 03:05:17 01:50:32 00:54:31 

DBLP 00:00:09 03:33:41 07:40:50 03:49:58 

Buzznet 00:00:47 03:41:01 03:10:24 01:35:47 

Amazon 00:00:16 04:19:25 08:45:19 04:23:10 

Livemocha 00:00:39 04:30:08 03:19:42 01:40:25 

Gowalla 00:00:10 04:32:46 04:31:08 02:13:08 

Catster 00:01:17 06:16:43 07:04:34 03:15:08 

Delicious 00:00:20 09:47:57 15:34:38 07:53:01 

Foursquare 00:00:44 24:23:38 32:33:36 16:04:30 

Texas 00:00:10 33:38:20 49:06:11 24:07:02 

Dogster 00:01:39 120:30:45 27:05:10 17:11:20 

Youtube 00:01:03 188:07:33 44:04:45 22:28:10 

Hyves 00:00:41 213:16:27 54:08:52 26:24:56 

 

Notice that the times presented in Table 5.2 comprise the computation of both metrics 

(betweenness and closeness) summed up. Besides, the computation of both algorithms was 

simultaneous taking advantage of the fact that they share similar parts and so the performance 

can be increased. 

I also tested a sequential version for the betweenness and closeness centralities in the 

smaller networks (up to a hundred thousand vertices) used in the experimentations. They took 

around 16 times more computation time than their parallel versions, which indicates that the 

parallel version of the algorithm granted only about 2/3 of gain despite all threads being fully 
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independent and may be related to the fact that the physical configuration of the processor units 

in the computer are not fully independent. 

Notice that eigenvector and degree centralities are feasible even for massive networks, 

requiring orders of time less to compute than betweenness and closeness centralities, even 

though the computation of the previous were sequential and the computation of the latter made 

use of 24 cores in a parallel environment. 

One can also observe the overhead effect of the sampling algorithms. Such algorithms 

maintain the same asymptotic time complexity upper bound, but at the expense of higher 

constant variables. For such reason, they are only viable when the size of networks compensates 

this effect, which, in the tests, occurred only for the networks with more than one million 

vertices when compared with the parallelized version of the exact algorithms. 

I compared the results of the approximation algorithms (sample sizes of 2.5% and 5.0%) 

with the exact metrics using the Kendall τ-b correlation coefficient, which is a nonparametric 

measure of strength and association (interval [-1,1]) that exists between two variables measured 

on at least an ordinal scale. The 5% sample achieved a correlation of 0.9548, while the 2.5% 

sample achieved 0.9461. By such means the results show that the larger sample size, which 

required twice the time to compute in average, did not compensate its cost by showing a just a 

small increase in the algorithm accuracy at approximating the centrality measures. 

Therefore, I showed, by an experimental analysis, that one needs just a small fraction of 

vertices to approximate the centrality of all vertices of a huge real network with high accuracy, 

fact that is not empirically tested in the literature. However, at the same time, I confirmed that 

the parallel version of the approximation centralities was not efficient and so the sampling 

algorithms only started to pay off in networks of considerable size (more than a thousand 

vertices in my experiments). 

Next, I explain a faster (linear bounded) approximation technique for centrality 

measures that uses machine learning methods. 

 

5.3 Machine Learning Methods 

 

I propose and develop in my work a methodology based on machine learning to 

approximate the centrality measures rank (a regression task) but the use of such techniques for 

such problem is not novel in the literature. KUMAR et al., 2015 have tried and experimented 

with approximation methodologies based mainly on machine learning and artificial neural 
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artificial networks. However, his work is limited because he only focused the application of the 

technique to the approximation of eigenvector and PageRank centrality measures, which exact 

computations are feasible even for massive networks (Costa et al., 2008). In addition, he did 

not try to optimize the neural network meta-parameters and structure, using a generic neural 

network model instead, he did not provide a generalizable methodology for to apply the same 

technique to other centrality measures and how one can get enough training data. 

Here, I propose and explain a neural model methodology that has two major strengths: 

(i) Its adaptability – they can be used to approximate several distinct centrality 

measures; 

(ii) And its efficient computation time – they are able to compute the centrality 

measures a lot quicker than any other method and the methodology comprises also 

a fast and easy learning model. 

Moreover, I provide a straightforward methodology in which a complex network model 

is used to properly generate synthetic networks to offer plentiful training data for the model. I 

also optimize the model considering several combinations of parameters and test it on real world 

networks comprising several thousands of vertices (GRANDO and LAMB, 2015; 2016; 2018). 

The methodology underlying the machine learning method developed and tested in my 

research is divided into four main steps. 

(i) First, the training data is acquired by using a complex network model to generate 

synthetic networks in which the centrality measures are computed. This is the data 

used for training the artificial neural network; 

(ii) Second, the training algorithm, network size and meta-parameters are selected for 

training the artificial neural network; 

(iii) Third, the accuracy (over test set) of the model generated with the artificial neural 

network is compared with models generated by other machine learning techniques 

and also other approximation techniques based on sampling methodologies; 

(iv) Finally, the regression model is applied to real-world networks in an application 

and its accuracy is measured with the computation of the exact centrality 

measures. 

These steps are illustrated in a flowchart to facilitate the methodology understanding 

and reproduction of experiments using the techniques described here. Each one of these four 

steps will be detailed in the following subsections. 

Figure 5.1 summarizes how one can generate (set up and train) a model for regression 

tasks in several applications using the same methodology proposed and applied in my 
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experimentations. Each shape that it is present in the flowchart shown in figure 5.1 have a 

different conceptual meaning. The ellipses (in blue) in the figure stands for the flowchart 

beginning and ending, while the lozenges (in green) are decision steps, the rectangles (in red) 

are actions/procedures, the rhomboids (in grey) are inputs and outputs of the procedures and 

the trapezium (in orange) are loop/repeated procedures. 

 

Figure 5.1 – Summary of the Machine Learning-based method for centrality measures 

 

 

5.3.1  Training Data Acquisition 

 

When using any supervised machine learning method/algorithms, one important step is 

to obtain enough and consistent training data and to select the appropriate input data for the 

model. Since obtaining data from real networks is a costly process and that the computation of 

the centrality measures in huge networks is very expensive, one can generate his own networks 

for such purpose using a complex network model. 

The complex network model enables one to generate many synthetic networks with the 

properties enjoyed by real networks. Moreover, it allows one to generate smaller networks that 
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reduce the computing costs to calculate the exact centrality measures, but – more importantly - 

keeping the most relevant structural properties presented by massive real-world networks. 

The BTER complex network model was used to obtain enough and consistent training 

data. The BTER complex network model was chosen for such a task as it is capable to reproduce 

most real-world networks structural properties. Moreover, it is easy to implement and configure 

and capable to generate plentiful networks with reduced size keeping the most relevant 

structural properties presented by massive networks. 

BTER requires two configuration parameters: the desired degree distribution and the 

clustering coefficient (which can be configured as a global value, by vertices degree or by 

community structure). More information about this complex network model is presented in 

subsection 2.7. 

In my experiments, I applied both a heavy-tailed and a lognormal distribution as degree 

distribution to provide generic data to train the model. Both distributions are known as the best 

representatives of most real networks’ degree distribution studied in the literature 

(BOCCALETTI et al., 2006; MITZENMACHER, 2003). I selected as desired maximum 

clustering coefficients for the BTER model random values in the real numbers’ interval [0.3, 

0.7] as they are well representatives for most real networks (COSTA et al., 2008). 

Section 2.7 present further details about the generation of these networks with the BTER 

model and presents the Table 2.1, that summarizes and explains in detail the formula of each 

function used to model the degree distribution and the parameter values used in the experiments. 

The training data contained 10 networks for each kind of degree distribution (Table 2.1) 

with sizes ranging from 100 to 1,000 vertices, totaling 600 synthetic networks and 330 thousand 

vertices. These relatively small sizes were selected to enable the computation of the exact ranks 

of the metrics (betweenness and closeness) used as labels during the training (supervised 

learning). 

I also generated networks based on the degree distributions and clustering coefficients 

of six real networks as they presented the worst (Amazon, Euroroad, Facebook and PowerGrid 

networks) and the best (Blog3 and Foursquare networks) overall results amongst the tests 

obtained by the model trained with the generic training data amongst the thirty real networks 

described in Table 5.1. 

A transformation function (parameters estimated for each degree distribution using as 

reference a heavy-tailed function model) was applied in the degree distribution to reduce the 

size of the generated networks. In other words, for each of the networks was estimated the 

parameter of the heavy-tailed function that best represent its degree distribution slope and that 
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parameter than is used to retain the same slope for smaller networks (it can be checked visually 

in Figures 5.2 through 5.7). 

A total of 3600 specific networks were generated with the BTER for this experimental 

setup (600 for each set of parameters), with sizes of one thousand, two thousand and three 

thousand vertices. 

The synthetic networks with size one thousand were not used to train the artificial neural 

network models because I have considered enough the training samples obtained with the other 

synthetic network sizes. The networks with larger sizes also behave more likely to the real ones 

capturing more detailed structures. Consequently only 2400 specific networks were applied in 

the training and experimentations. These networks were used to compare the effect of 

specialized training data (based on the parameters of a given group of real networks domain) 

versus generic data (based on generic degree distribution functions as seen in Table 2.1). 

 Figures 5.2 to 5.7 present the original degree distribution (logarithmic scale in both axis) 

of each real network and the generated degree distribution by the BTER model for the networks 

with sizes ranging from one to three thousand vertices. 

The Euroroad network is already a small sized network with just 1174 vertices (Table 

5.1), therefore I configured the BTER model to generate synthetic networks with the exact same 

size of the original one. 

 

Figure 5.2  – Amazon Degree Distributions 
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Figure 5.3  – Blog3 Degree Distributions 

 

 

Figure 5.4 – Euroroad Degree Distributions 
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Figure 5.5 – Facebook Degree Distributions 

 

 

Figure 5.6 – Foursquare Degree Distributions 
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Figure 5.7  – Powergrid Degree Distributions 

 

 

 It is noticeable that the BTER model is capable to match really close the degree 

distribution of all real networks (despite their very distinct size range) at the same time it 

generates networks with diminished size. 

Moreover, the clustering coefficients of the synthetic generated networks were very 

similar to the real networks providing just a margin of 10% above or below of the desired value 

for all networks tested. However, the optimal clustering parameter was not as simple as the 

degree distribution to configure in the BTER model to achieve such similarity because the 

parameter needed to be configured accordingly to the new size network (much smaller than the 

originals) and usually is a larger number than the desired final clustering (due to restrictions of 

the BTER model – explained in detail in subsection 2.7). Therefore, the optimization process 

applied to find the clustering parameter was mainly based on binary search. 

The second issue one has to deal when training a machine learning model is the selection 

of the proper input attributes for the problem. Each centrality measure uses complex structural 

properties of the graph representing the network and the computation of most of these properties 

are the main reason that centrality measures are time expensive. For such reason, and 

considering the fact that simpler centralities are quite correlated to the other centralities (check 

subsection 3.5, I selected the fastest centrality measures (degree and eigenvector), which are 

computationally feasible even for massive networks and are highly related to the other metrics 
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(Table 3.2), as the necessary input attributes for the machine learning model in my experiments. 

This provides generality to this technique as such metrics summarize most information needed 

to compute the other extant and more complex metrics. Thus, I compute degree and eigenvector 

to serve as input data and the exact values of betweenness and closeness as desired output/label 

values (supervised learning) in the networks generated with the BTER model. 

Closeness and betweenness centralities will be the target values in our experiments but 

the same technique may be applied for any other centrality measure. These two metrics were 

chosen because they are the most applied centrality measures in the literature in several 

applications. At the same time, their exact algorithms computation is unfeasible or require too 

much time to compute in massive networks and dynamic networks. The increasing availability 

and interest of study on such huge and dynamic networks created an urge for approximation 

techniques for both measures, as they are important analysis tools for many areas (DAS et al., 

2018). 

I computed the rank of each vertex in each centrality measure, as we are interested in 

the approximation of the order of such vertices and not in the absolute centrality values. These 

will help to improve the performance of the model without restricting its applications in real 

world environments because the rank is usually preferable to deal in the application of centrality 

measures than the absolute value is in most environments (COSTA et al., 2008). Consequently, 

a sample input of training data will contain the rank a vertex considering the eigenvector and 

degree centralities (2 inputs) and the outputs/label/desired values will be the rank of the same 

vertex in one of the other centralities (betweenness and closeness in my experiments). 

It is important to highlight that when one is considering the use of the same technique 

to approximate other centrality measures (e.g. walk betweenness, hierarchical closeness or 

subgraph centralities), the input information can remain the same, the simplest centrality 

measures (degree and eigenvector). Any desired measure needs to be computed in the synthetic 

networks to serve as output labels during the training. Notice that such computation is feasible 

for any target centrality measure due to the use of the BTER complex network model that 

generates smaller synthetic networks with properties similar to that of the massive networks 

that will later be used in the application environment. 

Both input and desired values are first normalized by the size of the network, then to 

belong to the interval [-1, 1] and finally to have zero mean and variance equal to one. The 

preprocessing helps the configuration of the model and speeds up the training process for the 

machine learning algorithm. 
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The first machine learning algorithm tested in my experiments is the artificial neural 

networks due to their ability to be general purposes method and a proper regression 

methodology for many tasks in the literature. 

The next subsection will detail the configuration and training of such artificial neural 

networks while I try to determine the optimal setup for the task in hand. Later, the performance 

of the models generated with such methodology will be compared and tested against the 

performance of other common machine learning techniques that are frequently used in the 

literature to generate regression models. 

 

5.3.2 Artificial Neural Network Training 

 

The appropriate training of an artificial neural network can be a complex issue. Many 

techniques and methodologies, algorithms and tools can be applied in specific tasks. For such 

reason, I applied the neural network toolbox from MATLAB 2015 to configure and train the 

neural networks. This toolbox comprises most of the algorithms that are well established in the 

field with a built-in parallelism pool and a robust implementation for industrial, academic and 

research use. 

Before one starts the training, one needs to select several meta-parameters for an 

artificial (neural) network, such as size and structure of the network, learning algorithm, and 

learning parameters. Our objective here was to find out the most efficient configuration of 

parameters considering both its computational costs and solution quality. Therefore, in the 

experiments, I initially optimized these parameters using 10-fold cross-validation (over the 

generic data described in Section 5.3.1) to find out the best configuration for these meta-

parameters to approximate the centrality measures. 

I applied the batch method which is typically used in the literature to update the weights 

of an artificial neural network because it is more robust to outliers (MITCHELL, 1997). In batch 

training, the adjustment delta values are accumulated over all training items to give an aggregate 

set of deltas and then they are applied to each weight and bias. 

The quality of the solution was measured by the determination coefficient (R²) using 

only the test set results, which considers 10% of total data. 

I have selected the fully-connected feedforward multilayer perceptron neural network 

architecture (with bias, validation stopping criteria, mean square error as error function and 

tangent hyperbolic as activation function) as first approach as this model is simple and also 
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robust to outliers, generates a highly flexible model and it is easy to implement and train using 

the backpropagation learning algorithm. 

First, I experimented with several network’s sizes (numbers of neurons and hidden 

layers). The number of neurons of the networks with more than one hidden layer was selected 

in a way that they match the total number of learning parameters of the network with only one 

hidden layer. In this way, one can make a direct comparison of the effect caused by the number 

of layers and discover the most efficient configuration of parameters considering that they have 

a close number of parameters. Table 5.3 shows all the configuration of network structures 

tested, i.e. the number of layers, the number of neurons in each layer and the total number of 

parameters. 

 

TABLE 5.3 – Artificial Neural Networks Structure Sizes 

 
One Hidden 

Layer 

Two Hidden 

Layer 

Three Hidden 

Layer 

Number of Neurons 

in Each Hidden 

Layer 

(Total Number of 

Parameters) 

7 (21) 3 (21) 2 (18) 

11 (33) 4 (32) 3 (33) 

25 (75) 7 (77) 5 (75) 

56 (168) 11 (165) 8 (168) 

84 (252) 14 (252) 10 (250) 

175 (525) 21 (525) 15 (525) 

299 (897) 28 (896) 20 (900) 

532 (1596) 38 (1596) 27 (1593) 

 

Notice that the more parameters the network comprises, the better is its performance in 

the training set, up to a tipping point where the complexity of its training computation does not 

pay off and training efficiency decays. It is important to take in consideration the fact that a 

large number of parameters may not result in a better performance at production phase due to 

the poor generalization of the model. Therefore, an important objective is also to identify such 

tipping point in the number of parameters to optimize the learning and model’s performance. 

I selected the training algorithm suggested by MATLAB environment as default (the 

Levenberg-Marquardt algorithm) to train the neural networks in this stage. Additionally, I set 

the activation function of all hidden layers to hyperbolic tangent and the activation function of 

the output layer as a linear function (due to the regression task in hand). 

Figure 5.8 present the summary of results for each centrality measure ranked (10 trials) 

with 99% confidence intervals (i.e. the expected mean value is within the shown interval with 
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99% chance if the experiment is repeated). When the interval does not appear in the figure, it 

means that the variance is too small to be significant in this scale. 

 

Figure 5.8 – Outline of Results for Different Artificial Neural Networks Structures 

 

 

The results of the experiments show that a three-hidden layer network with 20 neurons 

in each layer was the architecture that presented the best solution quality. 

In the next stage of training, I experimented with all different kinds of optimizers for 

the backpropagation algorithms available in MATLAB’s neural network toolbox for 

feedforward networks (notice that, of course, many freely available machine learning software 

tools offer several versions of such algorithms). I tested all the combinations of previously 

selected network architectures with all the available training algorithms. 

Table 5.4 depicts the training algorithms applied to artificial neural networks and their 

respective selected parameter values for this experimental stage. 

The preliminary parameters are the ones selected by default by the MATLAB 

environment. Figure 5.9 presents the performance of the different algorithms. 
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TABLE 5.4 – Parameters of the Backpropagation Algorithms 

Algorithm Parameters 

Gradient Descent (Gd) 

(HAGAN et la., 1996) 
Learning rate = 0.01 

Gradient Descent with 

Momentum (Gdm) 

(HAGAN et la., 1996) 

Learning rate = 0.01 

Momentum constant = 0.9 

Variable Learning Rate 

Gradient Descent (Gdx) 

(HAGAN et la., 1996) 

Learning rate = 0.01 

Momentum constant = 0.9 

Increase/decrease ratio to learning rate = 1.05/0.7 

One-Step Secant (Oss) 

(BATTITI, 1992) 

Linear search = 1-D minimization backtracking (DENNIS and 

SCHNABEL, 1983) 

Initial step size = 0.01 

Scale factor to sufficient performance reduction = 0.001 

Scale factor that determine sufficiently large step size = 0.1 

Step size lower/upper limit = 0.1/0.5 

Minimum/maximum step length = 10-6/100 

Linear search tolerance = 0.0005 

BFGS Quasi-Newton (Bfg) 

(GILL et la., 1981) 
The same parameters and values as the method above. 

Polak-Ribiére Conjugate 

Gradient (Cgp) (SCALES, 

1985) 

Linear search = 1-D minimization using Charalambous’ method 

(CHARALAMBOUS, 1992) 

Initial step size = 0.01 

Scale factor to sufficient performance reduction = 0.001 

Scale factor that determine sufficiently large step size = 0.1 

Scale factor to avoid small performance reductions = 0.1 

Linear search tolerance = 0.0005 

Fletcher-Powell Conjugate 

Gradient (Cgf) (SCALES , 

1985) 

The same parameters and values as the method above. 

Conjugate Gradient with 

Powel/Beale Restarts (Cgb) 

(POWELL, 1977) 

The same parameters and values as the method above. 

Scaled Conjugate Gradient 

(Scg) (MØLLER, 1993) 

Change in weight for the second derivative approximation = 5.10-5 

Regulation of the Hessian indefiniteness = 5.10-7 

Resilient Backpropagation 

(Rp) (RIEDMILLER and 

BRAUN, 1993) 

Learning rate = 0.01 

Initial weight change = 0.07 

Increment/decrement to weight change = 1.2/0.5 

Maximum weight change = 50 

Bayesian Regularization 

(Br) (MCKAY, 1992) 

Marquardt adjustment (mu) = 0.005 

mu decrease/increase factor = 0.1/10 

mu maximum value = 1010 

Levenberg-Marquardt (LM) 

(HAGAN and MENHAJ, 

1994) 

The same parameters and values as the method above. 

 

 Figure 5.9 presents a summary of results for the artificial neural network algorithms, for 

each centrality measure; ranked version with 99% confidence intervals. The algorithms were 

grouped by their category (first order, line search and second order), and then by increasing 

order of solution quality. Notice that Figure 5.9 shows only the results for the three-hidden layer 
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network architecture with 20 neurons in each layer – all the other architectures exhibited a 

similar pattern. 

 

Figure 5.9 – Outline of Results for Different Training Algorithms 

 

 

One can notice that in Figure 5.9, although the difference between most algorithms is 

considerably small, the second-order algorithms perform better than the ones with line search, 

which in their turn were generally better than the first-order algorithms. Moreover, my 

experiments have shown that despite the fact that the second order algorithms required a 

considerably larger time for each training epoch but they proved to be more efficient with a 

faster convergence, i.e., required a lower number of epochs to converge for our task. 

The LM algorithm presents a slightly better overall result than all others do for Rank 

Closeness despite being statistically like (considering the confidence intervals) all second-order 

algorithms for Rank Betweenness. Therefore, the LM algorithm was selected to further 

improvements and experiments in the final stage of parameter optimizations. 

In the third and final stage, I optimize the parameters within the LM method (Marquardt 

adjustment’s initial value, decrease/increase factors and maximum value). 
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The Marquardt adjustment (mu) initial value is set to a value close to zero. This allows 

the training algorithm to apply larger weight updates and so speed up the initial convergence, 

due to the fact that the weight values are initially set randomly (with lower and maximum 

bounds to avoid an initial and detrimental saturation of the activation function). It is not very 

important what exact value is chosen considering that the algorithm will further adjust the size 

of the steps dynamically during the training with two other parameters: mu decrease and 

increase factors. 

The LM method has also a parameter to set a maximum value for mu, which limits the 

method to a smallest step size and can avoid overfitting and the waste of time with finer grained, 

but nearly useless steps. In my application, this parameter can be set to an arbitrarily high value 

since I also use a maximum time limit to stop the training early and later (in the final setup and 

training) I use a validation set to avoid overfitting. 

Thus, I focus on the optimization of the mu decrease/increase factors, which are 

responsible for adjusting the mu factor at each training iteration and are usually sensible to each 

specific application, requiring finer adjustments to achieve the best results in solution quality 

and training performance. The decrease factor parameter is a proportion of the increase factor, 

preferably smaller than the other to prevent loops during training. The exact number of the 

increase and decrease factors depends on the numerical amplitude of the training data. As they 

are not easy to estimate, I tested a wide range [1.5,100] of parameter combinations. 

The results of this comparison for each centrality measure ranked version, with 99% 

confidence intervals, can be checked in Figure 5.10. Figure 5.10 also shows only the results for 

the three-hidden layer network architecture with 20 neurons in each layer – all the other 

architectures exhibited a similar pattern for this setup also. 

We can note by looking at Figure 5.10 that excluding the decreasing factor value of 1 

(100% of the increase factor), all other combinations of parameters were statistically similar 

within the confidence intervals. This fact demonstrates that these parameters do not interfere as 

much as one may think in this task. However, the combination 1.5 with 0.1 of increasing and 

decreasing factors, respectively, presents the lowest variance and the highest mean in my 

experimental results. 

Hence, I trained my final model using a multilayer perceptron artificial three-hidden 

layer network with 20 neurons in each layer and the LM algorithm with initial/maximum mu 

set to 0.005/1010 and increasing/decreasing mu factor set to 1.5/0.1. 
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Figure 5.10 – Outline of Results for Each Combination of Parameters of the LM Algorithm 

 

 

Figure 5.11 depicts and summarizes the artificial neural network structure visually as 

provided by the MATLAB tool. 

 

Figure 5.11 – Artificial Neural Network Architecture using the LM algorithm 

 

 

Finally, I tested a different input configuration with the addition of two-hop degree rank 

(a vertex degree value summed with the degree of its immediate neighbors). In this experiment 

I only tested the neural network configuration setup defined for the final model. The results 

showed that the addition of a new input improved the accuracy of the model to approximate 

closeness centrality by 5% on average, but it reduced the accuracy for betweenness centrality 
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by 10% on average. Therefore, I chose to use just the two basic inputs (degree and eigenvector 

ranks) for the final training of the model. 

For the setup that generates the final model, I divided the data uniformly at random 

(330,000 vertices from 600 different synthetic networks) into a set with 85% for training and a 

set with 15% for validation to prevent overfitting. The training stops whenever the solution does 

not improve for the validation set in 10 consecutive full batches with no training time limit. The 

best model result for the validation set is the one considered final (for such purpose the last 10 

states of model are saved). 

I run the experiments in the same machine specifications of the previous experiments 

with all CPU cores allocated for parallelism. The machine had the following specifications: 

Intel Core i7-5820K processor with six 3.3Ghz physical cores with 15MB shared cache 

memory, quad-channel 4x4GB DDR4 2133MHz RAM memory, Windows 10 operating 

system. 

Figure 5.12 presents the training behavior of the parameters and the mean squared error 

(MSE) evolution over each epoch of training for each target centrality measure 

 

Figure 5.12 – Parameters’ Training Behavior 
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Notice that although MSE continues to drop, the validation set serves as an early 

stopping criterion to prevent overfitting, because it was not used for training. The total training 

time took about 10min for rank closeness and about 7min for rank betweenness. 

The learning/regression of rank betweenness showed higher difficulty than rank 

closeness, even though both presented very low error bounds. This is supported by the final 

MSE values, one of each is half the other, but both are considerably small, since the output is 

in the interval [-1,1] and I used 330 thousand samples for training. 

 In the next subsection we compare the performance of the final setup for the artificial 

neural network with other common machine learning techniques in the literature and also 

available in the MATLAB tool environment. 

 

5.3.3  Comparison Between Different Machine Learning Models 

 

There are many machine learning techniques capable of creating regression models in 

tasks such as the ones tackled in this work. To reinforce the application of artificial neural 

learning models I compared their performance with other machine learning techniques from the 

literature and also available in the MATLAB environment. For such purpose I applied the same 

training data and machine configuration applied for the neural learning algorithm (depicted in 

subsections 5.3.1 and 5.3.2). 

 I applied a 10-fold cross-validation analysis to compute the R² as comparison quality 

factor and to optimize the other machine learning parameters. The results and the best 

configuration of each algorithms applied in my experiments are described in Table 5.5. Due to 

the robustness of the implementation of the algorithms in MATLAB, all the 99% confidence 

intervals lie in the fourth decimal place; therefore, they were not shown in the Table. 

The column clarity in Table 5.5 stands for Hard for methods considered “black box” and 

Easy for the “white box” methods (methods that explicitly define how they interpret the inputs 

via a readable set of parameters). The column flexibility in Table 5.5 stand for the ability of 

each model to fit any kind of data. Therefore, high flexibility models can suffer more with 

overfitting while low flexibility models cannot be able to fit the data properly. 
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TABLE 5.5 – Machine Learning Models Comparison 

Learning 

Algorithm 
Description Clarity Flexibility 

CC CB 

R² R² 

Linear 

Regression 

A linear regression model with only 

intercept and linear terms 
Easy Very low 0.95 0.87 

Interactions 

Linear 

A linear regression model with 

intercept, linear and interaction 

terms 

Easy Medium 0.95 0.87 

Robust Linear 

A robust (less sensitive to outliers) 

linear regression model with only 

intercept and linear terms 

Easy Very low 0.95 0.86 

Stepwise Linear 
A linear model with terms 

determined by a stepwise algorithm 
Easy Medium 0.95 0.87 

Fine Tree 
A fine regression tree with 

minimum leaf size of 4 
Easy High 0.96 0.88 

Medium Tree 
A medium regression tree with 

minimum leaf size of 12 
Easy Medium 0.96 0.89 

Coarse Tree 
A coarse regression tree with 

minimum leaf size of 36 
Easy Low 0.95 0.89 

Boosted Trees 
An ensemble of regression trees 

using the LSBoost algorithm 
Hard 

Medium 

to High 
0.95 0.87 

Bagged Trees 
A bootstrap-aggregated ensemble 

of regression trees 
Hard High 0.95 0.88 

Linear SVM 

A support vector that follows 

simple linear structure in the data, 

using the linear kernel 

Easy Low 0.95 0.87 

Quadratic SVM 
A support vector machine that uses 

the quadratic kernel 
Hard Medium 0.96 0.87 

Fine Gaussian 

SVM 

A support vector machine that 

follows finely-detailed structure in 

the data. It uses the Gaussian kernel 

with kernel scale √1/2 

Hard High 0.96 0.88 

Medium Gaussian 

SVM 

A support vector machine that finds 

less fine structure in the data. It 

uses the Gaussian kernel with 

kernel scale √2 

Hard Medium 0.96 0.87 

Coarse Gaussian 

SVM 

A support vector machine that 

follows coarse structure in the data. 

It uses the Gaussian kernel with 

kernel scale 4√2 

Hard Low 0.96 0.87 

MLP Neural 

Network with 

Backpropagation 

A Multilayer Perceptron Neural 

Network Implementation with 

Backpropagation Learning 

Hard High 0.97 0.92 

 

Notice that due to the high number of samples in the training data even small differences 

in the R² means a considerable disparity in the performance. 

The results show that the neural network architecture performs considerably better than 

all other techniques to approximate Betweenness centrality and slightly better for Closeness 

centrality. It proved to be the more flexible (performed equally well for both centralities) while 
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robust methodology between the ones tested in my experiments. However, it may be hard to 

interpret how it works and how it computes the centrality measures based on the inputs. 

The next step in my experiments was to compare the artificial neural network model’s 

performance in real case scenarios with the computation of the exact centrality values and with 

the sampling approximation techniques. All of these will be further detailed and discussed in 

the next subsection. 

 

5.3.4 Artificial Neural Network Learning with Real World Network Data 

 

The final stage of a machine learning application is testing the respective learning 

algorithm/model with real world data to validate the model. In my experiments, I used 30 real-

world networks from four freely available data repositories of network data. All the selected 

networks were symmetric and binary (unweighted edges). Only the largest connected 

component (LCC), which was computed for all analyzed networks, is used in the experimental 

validation. 

First, I computed eigenvector and degree centralities for all vertices of the real networks. 

The rank of the vertices in each network considering each of the centralities is then used as 

inputs for the machine learning model to approximate its rank in a target selected centrality 

(betweenness or closeness in my experiments). Notice that a different model is used depending 

on the target centrality measure because each model was trained specifically to approximate 

each one of the target centralities (subsection 5.3.2). 

I also computed the exact values for the betweenness and closeness centralities for all 

the networks, but they are only used to compute the precision/error of the results provided by 

the approximation methods and to compare their cost in time (Table 5.2 of subsection 5.2). 

The next stage is to run the model generated by the artificial neural network and 

previously trained to approximate betweenness and closeness for the vertices of the real 

networks. In order to do so, I used the same computer configuration of the training tasks in a 

parallel environment with 6 cores. The computation took less than 1s for any of the networks, 

which is a significant result and illustrates the effectiveness of the machine learning 

methodology. Then, I compared the results generated by the neural network (NN) with the 

results of the approximation algorithms (with sample sizes of 2.5% and 5.0%) using the Kendall 

τ-b correlation coefficient. 
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These results are summarized in Figure 5.13 and Figure 5.14. Figure 5.14 presents the 

results considering only three networks (Blog Catalog 3, Foursquare and Livemocha). These 

were the top 3 networks w.r.t. the model’s performance for both centrality measures. 

 

Figure 5.13 – Mean Correlation Coefficients Computed for All Real-World Networks 

 

One can see that there is just a small gain for the approximation algorithms when the 

size of sample is doubled (notice the difference between 2.5% and 5.0%), which is hardly worth 

the cost considering that the computation time is doubled. The mean results obtained with the 

model for all networks were lower in quality comparing with the sampling methods, but still 

granted good results (over 0.55 correlation for betweenness and 0.65 for closeness centralities). 

The results showed a great majority of variability: the model performed poorly for some 

of the networks (Euroroad, Power Grid, Facebook and Amazon for instance) with correlation 

coefficients lower than 0.4 and really well in others (Blog3 and Foursquare) with coefficients 

above 0.7. 
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Figure 5.14 – Mean Correlation Coefficients Considering Only the Top 3 Networks 

 

 

I thought that this behavior is mainly caused by the data used during the training, which 

was generic for all networks and unable to fulfill specificities for some of the real networks. 

That is why the specific training data was generated and new experiments were carried on to 

confirm such hypothesis. 

One can see that the learning model achieved a poorer result for the infrastructure 

networks (Euroroad, Texas, and US Power Grid for instance) and a better performance in social 

networks. Moreover, because of the generic formulations based mainly on social networks 

characteristics that were input for the BTER model (which generates the synthetic networks 

used for the artificial neural network training), I expected a large variance in the results 

presented by the model considering distinct kinds of networks. This variance in the results, 

however, is not observed for the sample-based algorithms, which perform nearly equally well 

in all networks tested. For such reason, I trained a specific neural network model for each of 

the six networks that presented the lower and higher results (Euroroad, Power Grid, Foursquare, 

Amazon, Blog3 and Facebook) with specific generated networks with the parameters provided 

by each of these networks. 
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I also tested multitasking neural networks capable of learning both centralities 

(closeness and betweenness) at the same time. Moreover, I tried to add another attribute for the 

training. In addition to the degree and eigenvector, I added a metric composed by the sum of 

the vertex degree with the degree of his neighbors (called second level or two-hop degree). The 

experiments comprised all the combinations of sizes of training set networks (2000 or 3000), 

three or just two attributes (addition second level degree or not) and the use of multitasking or 

not. I generated networks with the same size of the original network exclusively for the 

Euroroad real network due to its original size of less than 2000 vertices. 

To simplify the visualization of the comparative analysis I used the code NN (baseline) 

for the neural network model trained with the generic dataset and the code NNTAM for the 

model trained with the specific training set. T assumes value 2 for the networks with size 2000 

and 3 for the size 3000, A is the input attributes (1 – for degree and eigenvector; 2 – for two-

hop degree and eigenvector; 3 – for all the three attributes) and M assumes 1 for simple tasking 

and 2 for multitasking networks. 

First, I have compared and analyzed the correlation values between the approximation 

methods. Tables 5.6 and 5.7 summarizes the correlation results of some of the combinations 

tested with best neural network model for each network highlighted in gray. The other tests 

(3xx and 231) were omitted because they generated results similar to their counterparts. 

The sampling techniques performed better than all neural models tested but the 

difference is minimal in some cases. I already expected that the sampling-based techniques 

performs better than the machine learning models simply because they have access to more 

information about the overall network structure with the drawback of requiring a lot more of 

computation time to acquire such information 

 

TABLE 5.6 – Correlation Coefficients for Betweenness 

Network 

Approximation Technique 

Sample Neural Network Model 

2.5% 5.0% NN 211 212 221 222 232 

Amazon 0.91 0.91 0.27 0.35 0.32 0.26 0.26 0.27 

Blog3 0.89 0.90 0.73 0.80 0.80 0.71 0.70 0.71 

Euroroad 0.86 0.88 0.16 0.41 0.41 0.44 0.44 0.46 

Facebook 0.67 0.75 0.36 0.30 0.35 0.24 0.20 0.29 

Foursquare 0.89 0.92 0.73 0.75 0.72 0.66 0.66 0.68 

PowerGrid 0.93 0.92 0.21 0.57 0.51 0.43 0.42 0.45 
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TABLE 5.7 – Correlation Coefficients for Closeness 

Network 

Approximation Technique 

Sample Neural Network Model 

2.5% 5.0% NN 211 212 221 222 232 

Amazon 0.99 0.99 0.10 0.42 0.52 0.66 0.65 0.65 

Blog3 0.95 0.96 0.69 0.89 0.89 0.92 0.93 0.93 

Euroroad 0.87 0.90 0.09 0.60 0.60 0.62 0.62 0.62 

Facebook 0.87 0.93 0.26 0.38 0.34 0.35 0.36 0.43 

Foursquare 0.93 0.94 0.48 0.85 0.84 0.88 0.88 0.88 

PowerGrid 0.90 0.93 0.12 0.03 0.14 0.26 0.26 0.24 

 

The neural models trained with generic networks performed considerably worse than 

the ones trained with the specific training set of networks excluding one case (Facebook 

network), where the generic model performed a little better. The difference among the neural 

models is greater on networks where the first model performed worse. 

Amongst the parameters tested, I noticed that the size of the specific networks used for 

training the model was statistically irrelevant for the results considering 99% confidence 

intervals with 10 trials. This was also true in most cases for the multitasking. 

The addition of a third attribute seems to contribute for the overall performance when 

approximating the closeness centrality, but sometimes it is harmful to approximate 

betweenness. 

In the next step, I computed and analyzed the percentage of correctly classified vertices 

by their rank considering percentile sets of the network. For this analysis, I ordered the vertices 

by their exact centrality values, divided such set of vertices in percentiles (from 0.2% of the 

first ranked vertices to the first 25% vertices), and computed the percentage of these vertices 

for each percentile that appears in the same percentile in each approximation technique. A 100% 

match means that every element from one set is on the other (perfect classification), while 0% 

means that both sets are completely disjoint. Such kind of analysis is important to give us an 

idea of how close/distant the rankings of the vertices are considering only the more important 

vertices of the network (generally speaking, the ones of interest for most applications). It also 

shows us better and gives insights “where” the mistakes are, fact that is obscured when 

considering only the correlation coefficients. 

Figure 5.15 presents the effect of different sampling sizes considering the mean results 

over the six networks analyzed. It only reinforces what the correlation values already show 
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(Tables 5.6 and 5.7). The upgrade in solution quality for the 5% sample is minimal comparing 

that it costs twice in terms of computational time. 

 

Figure 5.15 – Percentiles Accuracy Comparison Between Different Sampling Sizes 

 

 

Figure 5.16 through 5.21 compares the results of the approximation methodologies for 

each network. Only the best approximation techniques (5% sample and best neural models) are 

showed to facilitate the reading of the figures. 

 

Figure 5.16 – Correctly Classified Vertices by Percentiles for Amazon Network 
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Figure 5.17 – Correctly Classified Vertices by Percentiles for Blog3 Network 

 

 

Figure 5.18 – Correctly Classified Vertices by Percentiles for Euroroad Network 
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Figure 5.19 – Correctly Classified Vertices by Percentiles for Facebook Network 

 

 

Figure 5.20 – Correctly Classified Vertices by Percentiles for Foursquare Network 
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Figure 5.21 – Correctly Classified Vertices by Percentiles for Powergrid Network 

 

 

 

We can see that the Blog3 and Foursquare networks were the only case scenario where 

the neural models performed as good as or a little better that the sampling methodologies for 

closeness centrality and near as good for betweenness. These networks probably have a simpler 

structure, therefore the information contained in the degree and eigenvector centralities (used 

as training inputs) fully characterize the network structure while in the other networks more 

complex information is needed to achieve a better performance. 

In addition, the NN232 (i.e., multitasking network with three input attributes) 

configuration seems better than the other NN architectures to rank the first 25% ranked vertices 

except for betweenness centrality in Foursquare network and for both centralities in Facebook 

network. 

One should also consider that the neural learning model is capable to compute the 

centrality for all vertices of a given network in seconds (even for massive networks) and that 

the sampling techniques takes at least some minutes for the smaller networks and hours or even 

days for the biggest networks. 

 Lastly, I analyzed visually the results obtained by the approximation neural model by 

drawing the representative graph of the Euroroad network. 
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5.3.5 Visual Graph Analysis of the Capabilities of the Neural Model 

 

 I generated comparison graphs (using the software Gephi and the algorithm Force Atlas 

2) for the Euroroad network to see the behavior of each centrality measure and the artificial 

neural network model. 

I was unable to do the same visual analysis for the other real networks due to their size. 

It was impossible to organize properly and visually clear all the vertices so one can interpret 

the graphs. 

Figure 5.22 shows the Euroroad network vertices and edges with an emphasizes on its 

community structures (which is due to the use of Force Atlas 2 algorithm to organize the 

vertices in the graph). The sizes of the vertices and the intensity of the color are correlated 

(logarithmic scaled for clarity) to the vertices’ degree. 

 

Figure 5.22 – Euroroad Network with Vertices Sized and Colored by their Degree 

 

 

 The first figure serves only as basis to interpret the comparisons that will be realized in 

the following figures. All the subsequent figures will retain the same vertices’ position and 
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color from the Figure 5.22 but, the size of the vertices will be related to another centrality 

measure. 

Figure 5.23 sizes the vertices in the graph by the two-hop degree, Figure 5.24 by the 

eigenvector centrality, Figure 5.25 by the betweenness centrality and Figure 5.26 by the 

closeness centrality. 

All the centrality values used in Figures 5.23 to 5.26 were the exact values computed 

with the exact algorithm of each centrality. These figures will serve as basis to compare the 

input information, provided by the degree, two-hop degree and eigenvector centralities 

(respectively, Figure 5.22 above and subsequent Figures 5.23 and 5.24), with the desired output, 

i.e. target values, of betweenness and closeness centralities (correspondingly to the Figures 5.25 

and 5.26). 

 

Figure 5.23 – Vertices Sized by their Two-Hop Degree 
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Figure 5.24 – Vertices Sized by their Eigenvector Value 

 

Figure 5.25 – Vertices Sized by their Betweenness Value 
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Figure 5.26 – Vertices Sized by their Closeness Value 

 

 

 As one can see in Figures 5.22, 5.23 and 5.24, the two-hop degree is a mid-term between 

degree and eigenvector centralities. We can also notice the main differences amongst the 

betweenness, closeness and input centralities. Betweenness leverages more paths and control 

(the more exclusive the path the better for the vertex centrality value because it has control by 

many others) while closeness considers more important the independency of a vertex by taking 

in consideration only the distances it has to all others. It is also noticeable that closeness is 

easier to predict with the input centralities than it is betweenness because the higher similarity 

that closeness has with the input centralities. 

 Next, I present the Figures 5.27 and 5.28 that show the results of the model trained with 

the generic synthetic networks (NN at Tables 5.6 and 5.7, and at Figure 5.18) for the 

approximation of betweenness and closeness centrality respectively. 
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Figure 5.27 – Approximated Betweenness 

 

 

Figure 5.28 – Approximated Closeness 
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 We can see that the results for some vertices both in closeness and betweenness are 

distant from the ideal but the approximation method still captures some aspects of the target 

centralities even though it has few information provided by the input centralities considering 

the expected target results. 

For instance, several highly central vertices for betweenness centrality, the belt of 

vertices in the northwest part of the graph in Figure 5.25, are considered peripherical by all the 

three input centralities. Similarly, it happens for closeness centrality at the narrow part of the 

graph at the center of the figures. To improve such results, remember that I have generated and 

tested specific synthetic networks to train the neural model. Figures 5.29 and 5.30 show the 

results of the NN232 model which numeric analysis is summarized in Tables 5.6 and 5.7, and 

Figure 5.18. 

 

Figure 5.29 – Approximated Betweenness with the NN232 Model 
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Figure 5.30 – Approximated Closeness with the NN232 Model 

 

 

 A considerable improvement is perceptible in many parts of the network for both target 

centralities where the previous model was incapable to capture such nuances in the graph 

substructures with the generic training data. It is also imperative to remember that the model 

performance in the Euroroad network was one of the lowest amongst all the 30 real scenarios 

tested. Fact that can be checked in Tables 5.6 and 5.7 and also confirmed by comparing the 

Figures 5.16 to 5.21. So, a good disparity between the results obtained (Figures 5.29 and 5.30) 

and the expected target values (Figures 5.25 and 5.26) were already expected. Nevertheless, the 

model still was unable to correctly assign the betweenness centrality values for the northwest 

belt of vertices and assign the correct closeness in the central area of the figures. 

More importantly, with such analysis we can perceive that the input information 

(Figures 5.22 to 5.24) lacks enough evidence to the model in such kind of network structures. 

Consequently, additional information needs to be provided for the model to improve its 

performance even further. Despite all that, it is important to remember that the model was 

trained with networks far smaller than the real ones and that results shown a quite robust and 

generalizable model for most of the real cases scenarios. 
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All these results show that even though the neural network model was not capable to 

rank all the vertices in the correct order, it is effective enough to classify chunks of vertices as 

highly central and has a close performance with respect to the sample approximation methods 

that require considerably more computational time. 

Many applications of centrality measures are interested in the selection of the top central 

vertices and not in their exact centrality order. For instance, the selection of influencers to 

optimize advertisement, the control and protection of critical spots in a communication network 

and the allocation of resources to enhance their distribution usually make use of a group of 

elements and do not rely on their specific order. 

Moreover, these kind of networks and applications, massive and constantly evolving, 

require continuous analysis and the computation of such metrics become quite expensive in 

terms of computing resources. Therefore, the time and machine processing power saved by the 

use of a machine learning model is quite relevant in such applications and environments. 

Still, the use of machine learning may not be adequate to approximate centralities in 

applications that rely on the exact centrality values or are oversensitive to the order of the 

centrality rank. 

Ultimately, the machine learning techniques, especially the ones demonstrated and 

developed in this work for the approximation of centrality measures, are more adequate for 

applications where the use of centrality measures offers complementary analysis or are used as 

part of a decision process or heuristics. 

 



 

6 CONCLUSION 

 

The growing relevance of network research and applications demand the development 

of appropriate tools and methods for network analysis. These methods include vertex centrality 

measures which are widely used in many application domains. However, as networks grow in 

size, availability and relevance in several fields, their analysis and computational costs present 

challenges which may hinder some important applications and studies.  

Machine learning techniques have recently been successful in a number of relevant 

applications tackling large amounts of data (GARCEZ et al., 2015; HAGAN and MENHAJ, 

1994; LECUN et al., 2015). Moreover, the referred growing availability of massive network 

databases demands the use of effective techniques to better exploit and to interpret and take 

advantage of these data in an efficient, robust and scalable manner. 

This work aimed at providing an effective approximation technique for the computation 

of centrality measures and, consequently, enabling their proper use in important applications 

with massive and/or dynamic networks by saving computational resources and providing an 

alternative solution in a short time.  But my main objective it not restricted to that area, the main 

idea behind it is to aid developers and scientists by creating, validating and testing new 

strategies to tackle the complexity inherent to the efficient computation of graph analysis 

metrics in massive and dynamic networks. 

I started by the principle that the more complex metrics are highly correlated with the 

simpler ones. Fact that was also empirically analyzed with the set of the eight centrality 

measures that are most commonly applied in the literature. 

My experimental results revealed that two simple centralities, eigenvector and degree 

(and also the derivate two-hop degree version), can be used as input vector to approximate 

closeness and betweenness centralities although it proved to provide insufficient information in 

some cases for a precise and more accurate approximation. Likewise, using the two-hop degree 

as input information for the model seems to prejudicial or with little significance in some of the 

real scenarios tested. 

In this context, I presented a comprehensive empirical analysis on the use of artificial 

neural networks learning to estimate centrality measures. I have tested and identified the best 

configuration for the artificial neural network training, including network structure, training 

algorithm, training meta-parameters and training data. 

By means of extensive experimentations I found out that the multitasking network 

structure with three hidden-layers, 20 neurons in each layer, trained with the LM algorithm 
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(initial/maximum mu set to 0.005/1010 and increasing/decreasing mu factor set to 1.5/0.1) 

acquire the most promising results in the approximation of centrality measures (Figures 5.8, 

5.9, 5.10 and Tables 5.6 and 5.7). 

Nonetheless, the experimental results show us that the machine learning methodology 

is sufficiently general and robust for both centralities tested and it can be easily adapted and 

used with any other similar metric as targeted value, which increases their potential use. 

It is also exposed that the neural network model is able to approximate the target 

centrality measures with considerable accuracy and reduced computational costs in 30 real-

world experimental case scenarios (Figure 5.13 and 5.14). I have shown also how one can use 

the BTER generative complex network model as a way to provide unlimited and multipurpose 

training data as it may be configured to generate synthetic networks of any size and, at the same 

time, by preserving similar structural patterns of real networks present in any kind of application 

or environment. 

The potential of the BTER model and its characteristics were tested by a series of 

experiments with a varied set of parameters (being represented by a different degree distribution 

functions and clustering coefficients). I have presented the primal advantage of the BTER 

model, its formidable capability to match a wide-ranging of degree distributions, and also its 

main flaw, the difficulty to parametrized correctly the clustering coefficient of the network 

being generated. 

The methodology, algorithms and approximation models were tested in real-world case 

scenarios where I also generated networks with specific parameters to enhance the results of 

the previous models. The performance of the neural model improved considerably with this 

approach (Figures 5.16 to 5.21). The research also shows that the data used for training the 

model is one major factor that affects the learning model. Therefore, is fundamental to invest 

resources and time to provide a representative set of training data. Considering this result, one 

should always use the knowledge (degree distribution and clustering coefficients) about the 

network of interest to generate specialized training data; this will lead to improvements in the 

performance of the artificial neural learning model. 

The methodology based on the artificial neural network model showed a noticeable and 

clear advantage and tradeoff with respect to computational costs, making it a viable option for 

applications where accuracy is not the solo goal, but in scenarios and configurations in which 

computation resources are limited. In such common situations, approximations via machine 

learning are an effective alternative, in particular in the context of large-scale complex network 

applications. 
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In summary, my work accomplished several tasks and objectives by a series of 

experiments: 

(i) I associated and analyzed a set of eight centrality measures which resulted in the 

selection of the degree and eigenvector centralities as inputs attributes to 

approximate the more complex ones and by the preliminary selection of 

betweenness and closeness centralities as the more important targets for the 

experiments; 

(ii) I compared and investigated the most widespread complex network models in the 

literature which resulted in the selection of the BTER model to generate synthetic 

networks with diminished size but still preserving the structural properties of real 

massive networks fact that is availed to generate plentiful and meaningful training 

data for the machine learning algorithms; 

(iii) I tested and compared several approximation methodologies for the centrality 

measures, starting with the sampling techniques and then with several machine 

learning algorithms, including decision trees, SVMs and artificial neural 

networks. The results led to the choice and further testing and improvements for 

the artificial neural network structure; 

(iv) I optimize the artificial neural network models (MLP) by empirically determining 

the best meta-parameters values for such task besides verifying its use in a varied 

set of synthetic and real cases scenarios comprising networks from several fields 

and with several sizes ranging to just a thousand vertices until about a million 

vertices; 

(v) The main results of this work were published in important conferences and 

journals in the area of computer science and the field of artificial intelligence. This 

work resulted in four A1 (CAPES foundation evaluation) conference papers (two 

for IJCNN, one at ISCC and one at GLOBECOM) and in one A1 journal paper 

(ACMCSUR). 

I believe that further improvements and work would be possible with the test and use of 

adversarial networks, graph neural networks and the study and selection of additional 

informative attributes as input for the model. These will consequently improve the accuracy of 

the artificial neural learning model and possibly open new opportunities for applications in 

other areas were accuracy plays a more critical role. 

Suggested future research avenues include the approximation of temporal centrality 

measures using recurrent neural models and the development of tools capable of automatically 
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generating/training artificial neural networks able to approximate several centrality measures 

which would also facilitate further applications for this method in many areas and for many 

studies. The methodology presented in this work elicits the requirements towards building such 

tools. 
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