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ABSTRACT

Obstructive Sleep Apnea (OSA) is characterized by repeated episodes of partial (hypop-

nea) or complete (apnea) obstruction of the upper airway during sleep. The clinical ef-

fects of OSA are related to the cumulative effects of exposure to periodic asphyxia and

sleep fragmentation caused by apneas and hypopneas, such as an increased risk of hy-

pertension, nocturnal dysrhythmias, ventricular failure, myocardial infarction, and stroke.

The current gold standard for diagnosing OSA is the overnight Polysomnography (PSG),

which requires a full-night sleep laboratory stay, attached to different biological sensors

and under the supervision of a technician. Besides the discomfort caused by the invasive

sensors, the necessity of a clinical setting and highly specialized infrastructure results in

a long waiting list in sleep laboratories and high costs, thus restricting the access to diag-

nosis and treatment. To improve monitoring of OSA evolution, access to diagnosis and

treatment follow up, we propose a Mobile Health (mHealth) solution to take advantage of

the smartphone capabilities to deploy a non-invasive OSA severity estimation. We make

use of the audio recorded through a smartphone to automatically detect snoring events

throughout the night and through the analysis of such events estimate patient’s necessity

for Continuous Positive Airway Pressure (CPAP) therapy. For that, we have divided our

solution into two phases: (i) a completely unsupervised solution to automatically detect

the snoring events in an uncontrolled environment and (ii) the analysis of acoustical fea-

tures of the snoring events for OSA severity estimation. In the first phase, we can prove

the viability of recording the audio and detect the snoring events using a smartphone un-

der an environment susceptible to random noises. In the second phase, we show that a

set of global acoustical features from the snoring events can predict the patient’s need

for the CPAP therapy. Our proposed solution was evaluated in an uncontrolled (patient’s

home) and controlled (sleep laboratory center) environment, reaching satisfactory results

in snoring events detection and patient’s classification according to the need for CPAP

therapy.

Keywords: OSA. Snoring events. Acoustical Analysis. Machine Learning. Digital Sig-

nal Processing. Mobile Health.



Uma Estimativa Não Invasiva da gravidade da SAHOS para a Recomendação do

Tratamento de CPAP baseado em uma Análise Acústica dos Eventos de Ronco

RESUMO

A Sindrome da Apneia Hipopneia obstrutiva do sono (SAHOS) é caracterizada por epi-

sódios repetidos de obstrução parcial (hipopneia) ou completa (apneia) das vias aéreas

superiores durante o sono. Os efeitos clínicos da SAHOS estão relacionados aos efei-

tos cumulativos da exposição à asfixia periódica e à fragmentação do sono causada por

apneias e hipopnéias, como o aumento do risco de hipertensão, disritmias noturnas, in-

suficiência ventricular, infarto do miocárdio e acidente vascular cerebral. O padrão ouro

para o diagnóstico de SAHOS é a Polissonografia (PSG), na qual requer que o paciente

permaneça durante a noite inteira no laboratorio de sono, conectado a diferentes sensores

biológicos e sob a supervisão de um técnico. Além do desconforto causado pelos sensores

invasivos, a necessidade de um ambiente clínico e infraestrutura altamente especializada

resulta em uma longa lista de espera nos laboratórios do sono e altos custos, restringindo

assim o acesso ao diagnóstico e tratamento. Para melhorar o monitoramento da evolução

da OSA, o acesso ao diagnóstico e o acompanhamento do tratamento, propõe-se uma so-

lução baseada em Mobile Health (mHealth) para utilizar os recursos do smartphone a fim

de desenvolver uma estimativa não invasiva da gravidade da SAHOS. Utiliza-se o áudio

gravado através de um smartphone para detectar automaticamente os eventos de ronco du-

rante a noite e, através da análise desses eventos, estimar a necessidade do paciente para

o tratamento de Pressão Positiva Contínua nas Vias Aéreas (CPAP). Para isso, dividimos

nossa solução em duas fases: (i) uma solução completamente não supervisionada para

detectar automaticamente os eventos de ronco em um ambiente não controlado e (ii) a

análise das características acústicas dos eventos de ronco para estimativa de gravidade da

SAHOS. Na primeira fase, podemos comprovar a viabilidade de gravar o áudio e detectar

os eventos de ronco usando um smartphone em um ambiente suscetível a ruídos aleató-

rios. Na segunda fase, mostramos que um conjunto de características acústicas globais

dos eventos de ronco pode prever a necessidade do paciente para o tratamento com CPAP.

Nossa solução proposta foi avaliada em ambiente não controlado (domicílio do paciente)

e controlado (laboratório do sono), atingindo resultados satisfatórios na detecção de even-

tos de ronco e classificação do paciente de acordo com a necessidade de tratamento com

CPAP.



Palavras-chave: SAHOS, Eventos de ronco, Análise Acústica, Aprendizagem de Má-

quina, Processamento Digital de Sinais, Mobile Health.
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1 INTRODUCTION

Obstructive Sleep Apnea (OSA) is characterized by repeated episodes of par-

tial (hypopnea) or complete (apnea) obstruction of the upper airway during sleep (JR;

ROGERS, 1996). This obstruction results in progressive asphyxia, which increasingly

stimulates breathing efforts against the collapsed airway, until the person is awakened.

The clinical effects of OSA are related to the cumulative effects of exposure to peri-

odic asphyxia and sleep fragmentation caused by apneas and hypopneas (WIEGAND;

ZWILLICH, 1994). Patients often have excessive daytime sleepiness (COLT; HAAS;

RICH, 1991) and an increased risk of hypertension, nocturnal dysrhythmias, ventricu-

lar failure, myocardial infarction, and stroke (YOUNG; PEPPARD; GOTTLIEB, 2002).

OSA severity is determined by the Apnea-Hypopnea-Index (AHI), which is calculated as

the average number of apnea and hypopnea events per hour of sleep.

The current gold standard for diagnosing OSA is the overnight Polysomnography

(PSG) exam (SATEIA, 2014). PSG requires a full-night sleep laboratory stay, attached

to different biological sensors and under the supervision of a technician. Besides the

discomfort caused by the invasive sensors, the necessity of a clinical setting and highly

specialized infrastructure results in a long waiting list in sleep laboratories and high costs,

thus restricting the access to diagnosis and treatment (FLEMONS et al., 2004). For this

reason, in most cases, PSG is performed at most once to every other patient, and treatment

follow-up is only performed through reports by patients and their partners (PANOSSIAN;

AVIDAN, 2009). Patients diagnosed with moderate to severe OSA are referred, in most

cases, for treatment with Continuous Positive Airway Pressure (CPAP), which consists of

a ventilation system device which supplies the user constant positive air pressure to pre-

vent airway collapse and hence obstructive respiratory events. CPAP improves breathing

and decreases obstructive events (OU et al., 2015).

On the one hand, one has the gold standard diagnosis tool which is highly inacces-

sible, and on the other hand, one has an effective treatment for patients suffering from a

chronic respiratory severe dysfunction. However, the treatment may only be prescribed to

such patients once they have been diagnosed. We propose to fill in the gap between access

to diagnosis and treatment through a Mobile Health (mHealth) solution. mHealth takes

advantage of the smartphone capabilities to deploy healthcare applications to a broad

population. mHealth patients can benefit from more expedite diagnosis and continuous

treatment monitoring. The preventive approach of mHealth systems promotes cost re-
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duction for governments and healthcare companies and contributes to patient’s wellness.

Moreover, smartphone sensors are being used in a broad range of healthcare applications.

One such application is the use of the built-in microphone for snoring events detection

(HAO; XING; ZHOU, 2013).

Snoring has long been investigated as a potential indicator of OSA (MAIMON;

HANLY, 2010). These acoustic events closely tied to respiration bring valuable informa-

tion about the apnea and hypopnea events during the night and have a unique advantage

over other physiological signals, namely, the possibility of acquisition through a non-

contact microphone, i.e., non-intrusively. The acoustical features extracted from snoring

events can reveal helpful information about the upper airway system and obstructions

sites, aiding in the sleep disorder severity estimation.

To improve the patient’s access to treatment, we propose a non-invasive solution

for OSA severity estimation using the built-in microphone of a smartphone. Instead of

estimating AHI, we propose a screening of patients into two groups: those in need of

CPAP treatment and those not. Specifically, we make use of the audio recorded through

a smartphone to automatically detect snoring events throughout the night and through the

analysis of such events estimate patient’s necessity for CPAP therapy. For that, we have

divided our solution into two phases: (i) a completely unsupervised solution to automat-

ically detect the snoring events in an uncontrolled environment and (ii) the analysis of

acoustical features of the snoring events for OSA severity estimation. In the first phase,

we can prove the viability of recording the audio and detect the snoring events using a

smartphone under an environment susceptible to random noises. In the second phase,

we show that a set of global acoustical features from the snoring events can predict the

patient’s need for the CPAP therapy.

For snoring events detection, we have proposed a completely unsupervised so-

lution for segmentation and classification of events using a clustering algorithm to dis-

criminate sound events according to two classes: snore and non-snore. We consider an

audio data set collected in an uncontrolled environment setting for mHealth. We intro-

duce a statistical approach to the clustering problem using the Expectation-Maximization

(EM) algorithm for Gaussian Mixture Models (GMM) to cluster the data set according

to the probability of each data point (segmented event) of belonging to one of two nor-

mal distribution components, each of which is self-consistently constructed. The results

obtained show that the EM algorithm produces better results on clustering the data, as

compared to other clustering algorithms such as Fuzzy C-Means (FCM) and K-Harmonic
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Means (KHM), reaching satisfactory accuracy rates (91.3% for simple snores and 79.7%

for OSA snores, on average).

For the classification of patients according to the necessity for CPAP Therapy,

we have proposed a decision tree classifier based on a set of relevant features extracted

from the snoring events detected during the night. The study was performed with a pop-

ulation of 113 patients that went through a PSG exam and had their night’s sleep audio

recorded concomitantly. To map the acoustical features relevant to patient classification,

we propose a decision tree inference process to perform a feature selection and patient

classification based on a large set of 79 proposal features. The decision tree allows select-

ing the most relevant features according to their ability to separate patients with benign

snoring or mild OSA (no need for CPAP) from patients with moderate or severe OSA (in

need of CPAP), according to the PSG report. The results obtained show that the classifier

was able to reach an accuracy rate of 80% in the estimation of necessity to CPAP therapy.

Our main contributions are: (i) the proposal of an unsupervised solution for snor-

ing detection in the mHealth context, (ii) the application of a statistical approach analysis

(the EM algorithm) to the clustering of sound events, (iii) the design of an accurate event

segmentation method to identify the snore candidate events boundaries, (iv) the design

of an automatic cluster labeling according to snore and non-snore, and (v) the selection

of the most relevant acoustic features for patient’s classification and underlying relations

between these acoustic features and OSA events.

The remaining of this dissertation is organized as follows. In Chapter 2, we present

the background and review related work. We show basic concepts related to clinical

aspects, digital signal processing, and machine learning. Additionally, we review some

essential related work in snoring events detection and OSA severity estimation. In Chapter

3, we introduce our solution for a complete unsupervised detection and segmentation

of snoring events and OSA severity estimation for CPAP therapy, and in Chapter 4 we

present our experimental evaluation and associated results. Finally, Chapter 5 is devoted

to final remarks and future work.
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2 BACKGROUND AND RELATED WORK

This chapter presents some concepts laying the ground to the original results of

the dissertation. First, a brief overview of OSA is performed and the clinical motivation

introduced. In the sequence, a short introduction to the vocal tract speech production

describes how upper airway obstructions modulate snoring events produced. We further

present the fundamentals of digital signal processing and machine learning, which give

support to our scientific research hypothesis. Finally, related work is shown and discussed,

emphasizing the major contributions achieved by the present work to the state-of-the-art

in the field.

2.1 Obstructive Sleep Apnea

Obstructive Sleep Apnea is a common disorder characterized by repetitive episodes

of complete (apneas) or partial (hypopneas) breathing cessations during sleep (SPICUZZA;

CARUSO; MARIA, 2015). These breathing cessations are caused by the narrowing of

the upper-airway system, which is a result of the musculature relaxation during periods of

deep sleep stages. The narrowing can be associated with different factors, such as obesity,

neck circumference, nasal congestion, craniofacial and upper-airway structure anomalies,

smoking and alcohol consumption (YOUNG; SKATRUD; PEPPARD, 2004). Figure 2.1

illustrates a comparison between a normal breathing and an OSA obstruction event. Dur-

ing moments of normal breathing, we can observe the opened airway with no resistance

to the airflow. In the sequence, we observe the obstructed airway caused by the relaxation

of the soft palate and tongue musculature, thus restricting the passage of air.

The obstructive events cause progressive asphyxia that increasingly stimulates

breathing efforts against the collapsed airway, typically until the person is awakened. As

a result, patients suffer from poor sleep quality, daytime sleepiness, and reduced cognitive

performance (COLT; HAAS; RICH, 1991). Repetitive episodes of apneas and intermittent

hypoxia also elicit an increased risk of hypertension, nocturnal dysrhythmias, ventricu-

lar failure, myocardial infarction, and stroke (YOUNG; PEPPARD; GOTTLIEB, 2002).

The gold standard method for diagnosing the OSA is the PSG, which requires a full-night

sleep laboratory stay, attached to different biological sensors and under the supervision of

a technician.

The presence and severity of OSA are most commonly defined by the frequency
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Figure 2.1: OSA Airflow Obstruction

Normal Breathing OSA Event 

Source: Deller, Hansen e Proakis (1999).

of apneas and hypopneas per hour of sleep (AHI index). Table 2.1 presents OSA classifi-

cations as a function of AHI. Patients with less than 5 (five) obstructive events per hours

are considered normal. This class includes patients with primary snoring which can be a

result of a simple airway anomaly and does not result in significant drops in oxygenation.

Patients with mild OSA (5 < AHI ≤ 15) have a wider variety of treatment options in-

cluding, for example, weight loss, physical exercises, avoidance of alcohol for 4-6 hours

before bedtime and sleeping on one’s side rather than on the stomach or back (TUOMILE-

HTO et al., 2009). Patients with moderate (15 < AHI ≤ 30) to severe (AHI > 30) OSA

require a more intrusive treatment, in most cases, with CPAP therapy (OU et al., 2015).

CPAP is a device that sends a continuous flow of air to the airway, through a mask, avoid-

ing upper-airway narrowing or collapse. The treatment is usually expensive and uncom-

fortable. However, this procedure reaches satisfactory results in decreasing the number of

obstructive events during the night.

Table 2.1: OSA Severity Classification

Diagnosis AHI Severity
Normal <5 N/A
OSA 5-15 Mild

16-30 Moderate
>30 Severe

Source: by author (2018).
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2.2 Vocal Tract and Snoring Signal Production

The vocal tract is the air passage above the larynx which extends to the mouth.

The vocal tract can be divided into the oral cavity and the nasal cavity. The oral cavity

refers to the mouth including, among other structures, the lips, tongue, hard and soft

palate. The nasal cavity refers to the nose. The upper cavities of the pharynx, mouth, and

nose are called the resonating cavities, while the parts of the vocal tract that can be used

to produce sounds are called articulators, and can be subdivided into active (those that

move, e.g., tongue) and passive (those that are fixed, e.g., hard palate). Most sounds are

produced with at least one active and passive articulator. Figure 2.2, shows the complete

structure of the vocal tract.

Figure 2.2: Vocal Tract

Source: Deller, Hansen e Proakis (1999).

The source-filter theory of speech production assumes that speech sounds are the

response coming from a vocal tract system, where a sound source is fed into and filtered

by the resonance characteristics of the vocal tract (HUANG et al., 2001). In Figure 2.3, the

sound source x(t) is a glottal sound produced by vocal fold vibration. The fold vibration

which is caused by the air passage generates an oscillatory signal. This oscillatory signal

is modulated by the vocal tract filter h(t). The vocal tract filter h(t), changes according

to the physical changes in the structure. When the vocal tract filter h(t) changes, the
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resonance characteristics also modify, producing different snoring sounds y(t).

Figure 2.3: Source-filter Theory

Glottal Source Vocal Tract Snoring Sounds

x(t) h(t) y(t)
time

Source: by author (2018).

The narrowing of the vocal tract that occurs during an OSA event, changes the

resonance characteristics, thus producing snoring sounds with specificities which differ

from benign snoring sounds. According to the Source-filter Theory, these changes directly

reflect in the snoring events acoustical features. Therefore, the analysis of the acoustical

features of snoring events may reveal signs of different levels the vocal tract obstructions.

2.3 Digital Signal Processing

The acoustic signal recorded during the sleep night needs to be digitally processed

so one can extract useful information about the OSA severity. A set of digital signal

processing techniques in time and frequency domain are used. A brief introduction to

such techniques will be given in the following subsections.

2.3.1 Time and Frequency Analysis

The time-domain representation and the frequency-domain are two classical rep-

resentation of a signal. The time (t) domain express how the signals change over time.

Sampling is the process of reduction of a continuous-time signal (analog) to a discrete-

time signal (digital). The sampling rate fs is the number of samples per second. The time

interval between samples is called the sampling interval Ts = 1/fs.

The frequency-domain (f) representation of a signal carries information about the

signal’s magnitude and phase at each frequency. The frequency-domain representation of

a signal can be calculated using the Discrete-Time Fourier Transform (DTFT) (HAYKIN;

VEEN, 2007). The DTFT is a transformation that maps the signal x[n] in time-domain
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into a complex valued function of the real variable k, namely:

X (k) =
N−1∑

n=0

x(n)e−jωkn (2.1)

where the signal X(k) is called the spectrum of x[n] and N the number of DFT

terms. The spectrum carries information about the frequency distribution of a signal.

Digital filters may be applied to a signal’s spectrum to cancel out unwanted frequency

bands or for noise reduction, for example.

2.3.2 Adaptive Noise Reduction

The signal recorded in an uncontrolled environment suffers from additive random

noises. Since one has no access to the instantaneous realization of the contaminating

noise, one cannot cancel out noise. However, the average noise spectrum can be sub-

tracted using the statistics of the resulting signal. Such noise reduction can be performed

with a Wiener filter, which is an adaptive spectral filter that makes use of a noise template

based on a running estimation of the average background noise energy (VASEGHI, 2008).

The filter takes as the input a signal y(m), usually a distorted version of desired signal

x(m), and produces an output signal x̂(m), where x̂(m) is the least-mean-square error

estimate for the desired or target signal, x(m). The filter input-output relation is given by

x̂(m) =
N−1∑

k=0

wky(m− k)) (2.2)

where m is the discrete-time index, vector y = [y(m), y(m − 1), ..., y(m − N −
1)] is the filter input signal and the vector w = [w0, w1, ..., wN−1] is the Wiener filter

coefficient vector of order N . The filter coefficients w are obtained through a signal noise

template, which is calculated as the signal spectral mean of the lowest energy frames of

each section t = 0..T where T is the number of sections that the signal was divided for

noise reduction.

2.4 Machine Learning

Detection of snoring events and OSA severity estimation requires the use of a

machine learning classifier which can learns from the different features of the input signal
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and classifies it according to predefined classes. According to the type of learning, these

techniques can be divided into two main classes:

• Supervised Learning: uses a priori information about the inputs and expected

output. There is a training set containing pairs of features and corresponding classes

provided by the instructor. The algorithm builds a model by inferring features of

each class in the training set and formulating rules for the classification, which are

then applied to an independent test set.

• Unsupervised Learning: there is no a priori information about the classes to which

inputs belong. The model is created based on observation and discovery. Classes

are not defined, so the algorithm needs to observe the data and recognize the pat-

terns by itself.

There is a set of different machine learning algorithms for supervised and unsu-

pervised learning. Each algorithm has its properties and could perform better depending

on the type of input data and task involved. Usually, the machine learning task involve

tree types: classification, regression, and clustering. Classification aims to predict the out-

come of a given sample where the output variable is a category, while regression predicts

a real value output. The clustering involves to group samples according to the similarities

between each other. The choice of the machine learning algorithm requires understanding

the problem and identifying the type of task, and from there choosing the algorithm that

better fits the type of input data. Therefore, in the next two subsections we explore the

machine learning algorithms chosen for the snoring events detection and patient classifi-

cation.

2.4.1 Expectation-Maximization

The Expectation-Maximization (EM) is an unsupervised learning algorithm, com-

monly used for clustering. The input data are defined as coordinates in a d-dimensional

space of d features, which each point is defined as an event. Initially, we must set the

number of clusters that the data should be classified. EM works through an iterative pro-

cedure that starts with some initial estimation of θj = (ωj, µj,Σj) for j distributions, and

then proceeds to iteratively update θj parameters to maximize the log-likelihood function
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for the data set:

L(i) =
1

N

N∑

k=1

log

[
2∑

j=1

ω
(i)
j φ

(
p(k)

∣∣∣∣∣µ
(i)
j ,Σ

(i)
j

)]
, (2.3)

where L(i) represents the log-likelihood at the i-th iteration, φ(x|µ,Σ) is the Gaus-

sian distribution with average µ = (µ1, µ2) and covariance matrix Σ2×2. The parameters

{ωj} represent the weights given to each of the two Gaussians and p(k) = (p
(k)
1 , p

(k)
2 ).

Each iteration consists of an E-step and an M-step. E-step calculates the membership

weights ω(i)
j for all data points x(i), 1 6 i 6 N and all mixture components 1 6 j 6 K.

M-step uses the membership weights and the data to calculate new parameter values for

θj .

The maximization is achieved by iteratively updating the set of parameters θj until

L(i) saturates. Figure 2.4, we can observe an example for the EM iterations. In each itera-

tion, the parameters are adjusted according to the distributions present in the dataset. The

process stops when the log-likelihood saturates, resulting in two Gaussian distributions

that well fit the data clusters.

Figure 2.4: EM iterations example
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2.4.2 Classification and Regression Tree

The Classification and Regression Tree (CART) (BREIMAN et al., 1984) is a

supervised machine learning algorithm commonly used for discovering knowledge from

datasets. The goal is to create decision tree models that predicts the value of a target

variable by learning simple decision rules inferred from the data features. For that, the

rules inferred from the dataset are organized in a tree structure as shown in Figure 2.5.

This tree structure is composed of:

• Root Node: It represents the entire population, and this further gets divided into

two subsets.

• Splitting: It is the process of dividing a node into two or more sub-nodes.

• Decision Node: When a sub-node splits into further sub-nodes, then it is called the

decision node.

• Leaf: Nodes that do not split are called Leaf nodes, which represents the resulting

classification.

The key to the decision tree CART algorithm is how to define the features for each

decision node. The selection of which input feature and the specific split is chosen using

the Gini index function, which provides an indication of how pure the leaf nodes are,

according to the equation below

G = 1−
J∑

i=1

pi
2 (2.4)

whereG is the Gini index over all classes, pi is the proportion of training instances

with class i = {1, 2, ..., J}. Gini reaches its minimum (zero) when all cases in the node

fall into a single target category. Therefore, the Gini index aims to select the features

that better separate the classes (lowest impurity) to construct the decision tree. The tree

construction ends using a predefined stopping criterion, such as a minimum of training

instances assigned to each leaf node of the tree.

2.4.3 Feature Selection and Dimensionality Reduction

The problem of discovering the optimal set of features to describe the input data is

named Feature Selection. Feature Selection is an important problem in machine learning
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Figure 2.5: Decision Tree Example
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Source: by author (2018).

because, in most cases, there is a lack of a priori information about the relevance of fea-

tures collected to describe some data, thus leading to inaccurate classifications and also

the excessive number of collected features can lead to a classification with high computa-

tional cost. It is desirable that irrelevant and redundant features should be removed in the

feature selection process and the remaining set should represent enough information for

an accurate classification. There is also a lack of information on the combination between

different data features, thus encouraging the study of their joint influence, which can be

done using a dimensionality reduction technique to extract the essential information form

the set of features. Two common techniques for feature selection and dimensionality

reduction are:

• Information Gain: measures the expected reduction in entropy caused by parti-

tioning the examples according to a given feature. The entropy characterizes the

impurity of an arbitrary collection of samples and is given by

E = −
k∑

i=1

pk log2 pk (2.5)

where pk is the probability associated with the feature p in class k = {1, .., K}. The

lower entropy, the higher homogeneity of the dataset. The information gain of to

the presence of a specific feature to the target classification is given by

I = E − mL

m
EL −

mR

m
ER (2.6)

where E,EL, andER represent the entropy for the target classification feature and

the entropy for the feature evaluated, and m is the total number of instances of the
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feature.

• Principal Component Analysis (PCA): compute new variables denoted princi-

pal components which are obtained as linear combinations of the original features

(JOLLIFFE, 2002). The principal components are the directions in data that max-

imize the variance. For finding the principal components, we can deconstruct the

dataset into eigenvectors and eigenvalues as shown in Figure 2.6. Eigenvectors and

values exist in pairs: every eigenvector has a corresponding eigenvalue. An eigen-

vector is a direction, and an eigenvalue is a number, telling you how much variance

there is in the data in that direction. The eigenvector with the highest eigenvalue is

therefor the principal component.

Figure 2.6: Principal Component Analysis Example
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2.5 Related Work

Recent research efforts have indicated that acoustical analysis of the audio recorded

during the night is suitable for the implementation of an automatic snore event detection

and OSA severity estimation. However, some key issues remain open. In the next subsec-

tions, we show the principal studies on these topics.
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2.5.1 Solutions for Automatically Snoring Events Detection

The analysis of acoustic signals aimed at snoring events detection has been per-

formed in different studies. Most of the initiatives performed the recordings in a con-

trolled environment with low levels of noise and high-performance microphones to cap-

ture the sound (DAFNA; TARASIUK; ZIGEL, 2013)(DUCKITT; TUOMI; NIESLER,

2006)(WANG et al., 2017). These studies have proven the viability of extracting acoustic

features from audio recordings for the segmentation and classification of snoring events.

However, the imposed experimental constraints limit the reproducibility in uncontrolled

environments, which does not contribute to a solution to the PSG accessibility problem.

In order to overcome this limitation, the smartphone started to be seen as an alternative

tool to capture the acoustic signal at a patient’s home.

A few studies have address the approach of snoring events detection with smart-

phones as a recording and processing tool (SHIN; CHO, 2014)(HAO; XING; ZHOU,

2013). Hao et al. (HAO; XING; ZHOU, 2013) developed an Android application for

audio recording and detection of three different events: snoring, body movement, and

cough. The classification of the events was based on a decision-tree algorithm. Although

their proposed solution is simple and inexpensive regarding processing, the main goal of

this study is to assess sleep quality through events counting, and the work does not aim at

an acoustic analysis of snoring events for further research. Shin et al. (SHIN; CHO, 2014)

collected the acoustic signal using a smartphone and performed a formant analysis on the

signal within different frequency bands. The authors were able to select the best features

for snore classification and applied a quadratic classifier over this set of features for snor-

ing events detection. Even though these studies have obtained good results in snoring

detection, all smartphone applications implement supervised learning approaches, which

require a considerable data generalization capacity and are prone to overfitting. Further-

more, supervised approaches hinder the automatic character of the solution, which is a

necessity when one considers accessibility to a broad population.

Unsupervised learning is an exaction for the automation of snoring events de-

tection solutions. In the literature in the area, only a few works address unsupervised

classification, none of which in the context of smartphone platforms (AZARBARZIN;

MOUSSAVI, 2011)(MA et al., 2015). These works apply clustering algorithms such as

FCM and KHM, which use as a similarity criterion the distance between events in feature

space. We verified that this criterion significantly undermines clustering accuracy. We
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argue that an appropriate algorithm to the problem at hand should aim at snoring events

identification through statistical inference approaches, since snoring events from a person

are produced by a single human vocal tract, and as such may be considered as independent

identically distributed (i.i.d.) events, which ideally will be normally distributed.

The most recent work in the literature is not directly comparable with your re-

search on detecting and segmenting snoring events. Çavuşoğlu et al. (ÇAVUŞOĞLU;

POETS; URSCHITZ, 2017) applied a Multi-Layer Perceptron classifier to detect snoring

events in children. The authors restricted the data acquisition to only children and focused

on finding the most relevant acoustic features to detect snoring of children.

Analyzing Table 2.2 can compare the related work discussed in this subsection.

Note that the related work does not include research about an unsupervised detection and

segmentation of snoring events using a smartphone as a recording tool.

Table 2.2: Snoring detection solutions

Smartphone as
recording tool

Unsupervised
learning

Uncontrolled
environment

Segmentation of
snoring events

Dafna et al. x x x x
Duckitt et al. x x x x
Shin et al. X x X x
Hao et al. X x X x
Azarbarzin et al. x X x X
Ma et al. x X x x

Source: by author (2018).

2.5.2 Solutions for OSA Severity Estimation

The state-of-the-art on estimating the OSA severity using audio signal addresses

two different approaches: intra-snore and inter-snore events analysis. Intra-snore events

refer to the analysis of features extracted from each snoring event. Levartovsky et al.

(LEVARTOVSKY et al., 2016) investigated the energy intensity of snore events in cor-

relation with AHI. The authors found a weak correlation between the energy intensity

and AHI. The authors found better results using the frequency centroid. Emoto et al.

(EMOTO et al., 2011) explored the power spectra of snores in three different bands: low,

middle and high-frequency band. The authors defend that the narrowing of the upper air-

ways during OSA events results in an upward shift of snore frequencies. The study was
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performed using a high performance microphone concomitantly with the PSG, and the

results show a high prevalence of middle and high-frequency band in OSA snorers.

Inter-snore events are related to the global features extracted from the whole set of

snoring events. Azarbarzin et al. (AZARBARZIN; MOUSSAVI, 2013) hypothesize that

snoring sounds vary significantly within a subject depending on the level of obstruction

and that this variability is associated with the severity of OSA. To investigate the vari-

ability hypothesis, the authors calculated the total variation of a set of features extracted

for each individual. Alakuijala et al. (ALAKUIJALA; SALMI, 2016) found a positive

correlation in periodic snoring sounds during the night OSA severity. Ben-Israel et al.

(BEN-ISRAEL; TARASIUK; ZIGEL, 2012) combined a set of inter-snore (running vari-

ance, apnea phase ratio, and inter-event silence) and intra-snore (mel-cepstability, and

pitch density) features in a multivariate linear regression model. The authors found better

results combining inter-snore and intra-snore features.

The most recent work in the literature is not directly comparable with your re-

search on estimating the need for CPAP therapy. Akhter et al. (AKHTER; ABEYRATNE;

SWARNKER, 2017) analyzed acoustical snoring features for estimating the sleep stages

in sleep rather than estimating the OSA severity. Kim et al. (KIM; KIM; LEE, 2018)

proposed a neural network model for detecting the sleep disordered breathing accord-

ing to the OSA severity. However, the authors combined a sequence of biomarkers for

estimating the OSA severity rather than using only the acoustic signal.

Table 2.3 highlights the main differences between the related work on OSA sever-

ity estimation. Note that the use of a smartphone as a recording tool and a completely

automatic solution is still a challenge to overcome.

Table 2.3: OSA Severity Estimation Solutions

Smartphone as
recording tool

Complete automat.
solution

Intra-Snore
Features

Inter-Snore
Features

Alakuijala et al. x x x X
Azarbarzin et al. x X x X
Ben-Israel et al. x X X X
Emoto et al. x x X x
Levartovsky et al. x x x X

Source: by author (2018).



28

2.5.3 Discussion

As described in the previous sections, some research efforts are investigating the

detection of snoring events and OSA severity estimation. However, for the development

of a non-intrusive solution that brings together an automatic detection and analysis of

snoring events to the context of mHealth, some challenges remain open:

• The viability to record the audio in an uncontrolled environment with a different

level of background noises.

• The use of the generic smartphone device as the recording tool.

• A complete unsupervised solution to automatically detect and segment the snoring

events.

• A viable and cost-effective OSA severity estimation for improving the access to

patient’s treatment.

• The understanding of the underlying relations between the acoustic features and

OSA events overnight.

Differently, from the related work, we consider all these challenges to propose a

complete non-intrusive OSA estimation for CPAP screening. Our proposed solution is

described in the next chapters.
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3 OSA SEVERITY ESTIMATION FOR CPAP THERAPY SCREENING

Snoring is characterized by increasing degrees of upper airway obstruction during

sleep. We argue that the detection and analysis of acoustical features of these events

can bring valuable information about the OSA severity, allowing a nonintrusive CPAP

therapy screening. To demonstrate this, we have divided our solution into two phases:

(i) a completely unsupervised solution to automatically detect the snoring events in an

uncontrolled environment and (ii) the analysis of acoustical features of the snoring events

for CPAP/Non-CPAP classification. In this chapter, we first present and discuss each step

for the phase (i) and in the sequence for the phase (ii).

3.1 Unsupervised Snoring Event Detection

The snoring sounds produced during moments of upper airway obstructions can

be recorded for further analysis. However, during the night a variety of random sounds

may occur, especially if the recording is performed in an uncontrolled environment. The

sounds can range from a simple popping up to a car passing by, so these sound events

need to be classified into snore and non-snore events. In order to automatically detect and

classify all the sound events, we propose a sequence of steps as can be seen in Figure

3.1. The solution proposed is completely unsupervised due to the fact we are building a

mHealth solution to collect and analyze a huge amount of data. We discuss each stage of

the overall process in the following subsections.

Figure 3.1: Block diagram of the proposed solution
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Source: by author (2018).
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3.1.1 Data Acquisition

The acoustic signal is recorded using the built-in microphone of a smartphone and

transmitted to the cloud to be processed. Our proposal considers a generic smartphone

device, recording in an uncontrolled environment, and an untrained user. These settings

may hinder the acoustic quality of the signal but are necessary to achieve accessible and

continuous monitoring of the sleep quality, which contributes to the dissemination of sleep

self-assessment and patient empowerment. The following steps are cloud processed.

3.1.2 Pre-processing

Noise can significantly degrade the acoustic signal under uncontrolled environ-

ments. The background noise is the most common factor degrading the quality and sharp-

ness of the recordings. A noise reduction algorithm needs to be applied to reduce the

effects of noise whilst preserving the signal. In our proposal, we chose a Wiener filter,

a spectral filter which makes use of a noise template based on a running estimation of

the background noise energy (SCALART et al., 1996). This adaptive noise reduction

algorithm proposed is explained in details in Section 2.3.2.

3.1.3 Segmentation

The sound events that occur during the night need to be automatically identified

and segmented for future analysis. All detected events are considered as snore candidates.

Segmentation proceeds by identifying a snore candidate as an event fulfilling two criteria:

(i) its energy locally exceeds a certain threshold estimated over the whole night and (ii)

the event time duration lies within ∆tmin and ∆tmax.

A segmentation procedure involves four steps (DAFNA; TARASIUK; ZIGEL,

2013). We designed our segmentation algorithm detailed in the following:

• Threshold definition: The energy threshold is computed from the standard devia-

tion of the whole night signal energy. Considering events distribution to be sparse

in the whole night signal, we may define the energy threshold as 100 standard de-

viations. Due to memory constraints, this step is carried on by splitting the signal

into sections of length T .
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• Surpass threshold interval: The estimated threshold is applied to each T long

section. The intervals within which the energy signal exceeds the threshold are

saved as a candidate event. The threshold can be seen in Figure 3.2 (a).

Figure 3.2: Schematic view of the segmentation stage for one snore event example

*Threshold Surpass interval Event boundaries

A

B* *

*

(a) (b)

Source: by author (2018).

• Candidate event segmentation: Having identified possible candidate events, its

exact time boundaries, i.e., its beginning and ending times, must be determined.

To this end, the area of the shadowed A region, which lies to the right (or left) of

the event surpass interval, is computed (see Figure 3.2 (b)). If the relative energy

contribution of A region is greater than 0.1%, event ending (or beginning) time is

updated accordingly. A region is expanded toB region, iteratively, until the relative

energy increment is no longer significant (below 0.1%). Candidate event boundaries

(green triangles in Figure 3.2) are properly determined with this algorithm.

• Fragmentation and duration test (DAFNA; TARASIUK; ZIGEL, 2013): If two

segmented candidate events are close to each other in time, i.e., the ending of the

first and beginning of the second are separated by less than δ (of the order of 102

ms), the actual event may have been fragmented. In this case, the two candidate

events are merged into a single one. Moreover, candidate events duration must

be checked to lie within reasonable snoring durations. The time duration of the

candidate events is verified to lie within these boundaries, i.e., within ∆tmin and

∆tmax (orders of magnitude 102 ms and 103 ms, respectively), otherwise, the event

is discarded.

For each whole night recording, the segmentation stage returnsN candidate events,

with the respective boundaries for each. Each candidate event is defined by its boundaries,
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i.e., its initial and final times.

3.1.4 Feature Extraction

A set of features needs to be extracted from each snore candidate for the future

events classification. These features can be extracted from time and frequency domains

to characterize candidate events individually and are subsequently used to classify can-

didates as snore or non-snore events during the clustering process. We have generated a

set of m = 75 features, based on the pool of features proposed by Dafna et al. (DAFNA;

TARASIUK; ZIGEL, 2013). These set of features are presented in Table 3.1 and is spe-

cially designed to cover several acoustic characteristics from within events (denoted intra-

event) and comparative between events (denoted inter-event).

For each snore candidate, an N × m array M is created. Each column i of M

contains a column vector of values (f
(1)
i , f

(2)
i , . . . , f

(N)
i ), where f (k)

i corresponds to fi

feature value for the kth candidate. Each extracted feature spreads over a particular inter-

val [min k{f (k)
i },max k{f (k)

i }], and normalization should be applied, which rescales the

range of all features to lie within [0, 1]. This normalization is essential to the variance

analysis to be carried on the next stage.

3.1.5 Dimensionality Reduction

A dimensionality reduction technique can be applied to extract the essential infor-

mation (best features) from the total set of features. From the total set of 75 features, we

have selected 10 most important features, with a Mutual Information method for a feature

selection, which better describe the snoring events. We have chosen Principal Compo-

nent Analysis (PCA) to compute new variables denoted principal components which are

obtained as linear combinations of the 10 original features (JOLLIFFE, 2002). There-

fore, m dimensional set of features extracted can be reduced to only two dimensions,

which most explains the data behavior. The first principal component is the linear com-

bination of features having the highest variance in the dataset, which means this com-

ponent explains the most significant part of the data behavior. The second component

has the next highest variance and is subject to the condition that it is uncorrelated, i.e.,

orthogonal, with the first principal component. Two N vectors are returned in this stage,
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Table 3.1: Features extracted from each event

Time Domain Features

Count Feature
1 Relative energy prior to detected event
2 Relative energy posterior to detected event
3 Rhythm intensity (+- 12 sec)
4 Rhythm period (+- 12 sec)
5 Rhythm period (+- 6 sec)

6
Ratio of relative energy prior
and posterior to detected event

7 Normalized area beneath energy envelop
8 Skewness of envelop formation
9 Ratio of areas before and after the peak

10 Total event energy
11 10 seconds before and after period ratio

Frequency Domain Features

Count Feature
12 First formant frequency
13 First formant magnitude

14-33 20 Mel-Frequency Cepstrum Coefficients (MFCC)
34-53 20 Linear Prediction Coefficients (LPC)
54-57 4 moments of MFCC coefficients
58-61 4 moments of LPC coefficients
62-69 8 subband-frequency distribution

70 Spectral flux
71-74 4 moments of frequency distribution (DFT)

75 Pitch density

Source: by author (2018).

pi = (p
(1)
i , . . . , p

(k)
i , . . . , p

(N)
i ), with i=̇1, 2, which contain values for the first (i = 1) and

second (i = 2) principal component of each candidate event.

3.1.6 Clustering

The snoring candidate events must be split into snore and non-snore groups using

a clustering algorithm. Candidate event k is defined in the p1 − p2 plane of principal

components as a pair of coordinates (p
(k)
1 , p

(k)
2 ). We propose an EM algorithm for GMM

applied to the clustering problem. EM algorithm applied to GMM (MOON, 1996) tries

to estimate a set of parameters θj = (ωj, µj,Σj) where j=̇1, 2 which maximize the log-
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likelihood function for the set of candidate events:

L(i) =
1

N

N∑

k=1

log

[
2∑

j=1

ω
(i)
j φ

(
p(k)

∣∣∣∣∣µ
(i)
j ,Σ

(i)
j

)]
, (3.1)

where L(i) represents the log-likelihood at the i-th iteration, φ(x|µ,Σ) is the Gaussian

distribution with average µ = (µ1, µ2) and covariance matrix Σ2×2. The parameters {ωj}
represent the weights given to each of the two Gaussians and p(k) = (p

(k)
1 , p

(k)
2 ). The max-

imization is achieved by iteratively updating the set of parameters θj until L(i) saturates.

The identity of candidate events as snore or non-snore is assessed in a probabilistic manner

through the computation of membership weights, which are associated to the probability

that a given event is generated from Gaussian component 1 or 2. EM iteration is ensured

never to decrease the log-likelihood function.

3.1.7 Automatic Cluster Labeling

After constructing the clusters from the data set, each cluster needs to be automat-

ically labeled as snore or non-snore. The most significant distinction between a snore and

non-snore cluster is the internal cluster cohesion. The dataset on snore clusters tends to be

more compact as compared to non-snore clusters. The algorithm automatically labels as

snore the most compact between the two clusters. This labeling is unsupervised, which is

essential for a sleep monitoring solution to be able to attain a broad population, demand-

ing a fully automatic mHealth application. A brief illustration of cluster compactness (the

internal cohesion) and the separation distance between clusters is given in Figure 3.3.
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Figure 3.3: Compactness and separation of events clusters
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Source: by author (2018).

3.2 Acoustical Analysis of Snoring Events for CPAP/Non-CPAP Classification

The snoring events that occur during the night are the results of the different levels

of airway obstructions. These events carry important information about the severity of

the OSA obstructive events. A set of acoustic features can be extracted from the snoring

events emitted during the night, and a statistical analysis may help to find patterns between

these events and the need for CPAP therapy. To automatically infer the patient’s need

for CPAP, we propose a sequence of steps as shown in Figure 3.4. In the following

subsections, we discuss each step proposed.
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Figure 3.4: Block diagram of the CPAP/Non-CPAP therapy screening
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3.2.1 Data Acquisition

The acoustic signal is recorded using the built-in microphone of a smartphone. Our

proposal considers a generic smartphone device and the recordings were performed in a

controlled sleep laboratory environment. The technicians are responsible for starting the

audio recording concomitantly to the PSG exam. At the end of the exam, the recordings

are stopped, and a backup of the data is performed for the signal processing and analysis.

3.2.2 Audio Recording Processing

The first steps in recording processing are the signal noise reduction and segmen-

tation of snoring events. The signal is pre-processed and the events that occurred during

the sleep night are automatically detected and segmented according to the same process

proposed in Section 3.1. By the fact the signal acquisition is performed in a controlled

environment with low levels of random noises, all events that meet the criteria established

by the segmentation algorithm were considered to be snoring events.

After the sound events were automatically detected and segmented from the record-

ing, we must extract features that allow further analysis of the need for CPAP therapy. We

propose a set of 79 features extracted in the time and frequency domain, which explore
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the global acoustical aspects of the sleep night, as shown in Figure 3.2. The set of features

studied in Section 3.1 was used as the basis for this new set of global night features that

map through the detected events the different aspects of the patient’s sleep night. Most

of the global night features are obtained through the analysis of variance and average of

the features for all events detected during the night. New features were proposed to map

behaviors between the events, and not only intra-events. Details of each feature are given

in Appendix B.

Table 3.2: Global features for the patient’s sleep night

Time Domain Features

Count Feature
1 Number of Snores Events
2 Snoring Time Ratio
3 Variance of Snoring Time Duration
4 Number of Inter Snore Event Silence (>10 and <60 sec)
5 Mean of Inter Snore Events Silence
6-7 Running Energy/Distance Snores Variance
8-9 Variance and Mean of Relative Energy Prior the Detect Event
10-11 Variance and Mean of Relative Energy Posterior the Detect Event
12-13 Variance and Mean of Rhythm Intensity (12 sec)
14-15 Variance and Mean of Rhythm Period (12 sec)
16-17 Variance and Mean of Rhythm Period (6 sec)
18-19 Variance and Mean of Ratio Relative Energy Prior and Posterior
20-21 Variance and Mean of Normalized Area Beneath Energy Envelop
22-23 Variance and Mean of Skewness Envelop Formation
24-25 Variance and Mean of 10 Seconds Before and After Period
26-27 Variance and Mean of Ratio Areas Before and After the Energy Peak
28-29 Variance and Mean of Total Snore Event Energy

Frequency Domain Features

Count Feature
30 Retro-palatal Ratio
31 Snore Frequency Intercalation
32-33 Variance and Mean of First Formant
34-35 Variance and Mean of Fundamental Frequency
36-43 Variance and Mean of 4 Moments of MFCC Coeficients
44-51 Variance and Mean of 4 Moments of LPC Coeficients
52-59 Variance and Mean of 4 Moments of DFT
60-75 Variance and Mean of [#1 to #8] Subband Frequency
76-77 Variance and Mean of Spectral Flux
78-79 Variance and Mean of Pitch Density

Source: by author (2018).
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3.2.3 Classification Model

The patients are divided into two classes: CPAP and Non-CPAP, according to

the OSA severity. We propose to apply the CART (Classification and Regression Trees)

algorithm to build a decision tree classifier to combine the extracted features from the

audio recording to predict the right class for each patient. Decision trees are simple and

powerful representations of knowledge and have been widely used in classification as an

efficient methods to build classifiers that predict classes based on the attribute values.

Through the decision tree, we can perform both a feature selection (evaluate the most

important features) and measure the patient’s classification performance.

The CART algorithm works selecting input features and split points on those fea-

tures until a suitable binary tree is constructed. The selection of which input feature and

the specific split is chosen using the Gini index function, which indicates how pure the

leaf nodes are. Therefore, the Gini index aims to select the features that better separate

the classes to construct the decision tree. The tree construction ends using a predefined

stopping criterion chosen as a minimum of training instances assigned to each leaf node

of the tree. The result obtained is the decision tree, which is used to classify new cases

and explore the relationships between the data features.

In this Section, we detailed our proposed solution for the automatic detection of

snoring events and classification of patients according to the need for CPAP treatment. In

the following Section, is described the methodology and results achieved in each of these

stages.
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4 EXPERIMENTAL EVALUATION

In this chapter, we present an experimental evaluation of our proposed solution.

The evaluation process was divided into two steps. Firstly, we evaluate the performance

of the unsupervised detection and classification of snoring events. Secondly, we show the

experimental evaluation of the OSA severity estimation for CPAP/Non-CPAP classifica-

tion.

4.1 Snoring Events Detection Evaluation

In this Section, we present our experimental evaluation for the snoring events de-

tection. Firstly, we show the methodology for the sleep night recording under an uncon-

trolled environment. Secondly, we discuss the results for our unsupervised snoring events

detection.

4.1.1 Methodology for Snoring Events Detection

An Android application called MySleep was specially designed to acquire and

record the acoustic signal from the whole night (6 hours approximately) and to transmit

it to the cloud for further processing. The acoustic signal is sampled at a frequency of

44.1 kHz and a bit depth of 16 bits. This sampling rate produce maximum frequency of

20kHz, which is the highest frequency generally audible by humans. The participants

were oriented to install the application on their own smartphone and place it at a distance

of approximately 50 cm besides the bed before sleep, on a nightstand cleared for other

objects as shown in Figure 4.1. In Appendix A is presented more detail about the Android

application developed.
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Figure 4.1: Uncontrolled sleep recording acquisition

Source: by author (2018).

A trained technician was responsible for listening to all segmented candidate events

and manually classify each one as snore or non-snore for the accuracy evaluation of the

proposed solution. An interface was specially developed to show the signal of each can-

didate event and reproduce the sound. Using this interface, it is possible to classify the

candidate event as a snore or non-snore event as shown in Figure 4.2.

Figure 4.2: Manual labeling user interface

Source: by author (2018).
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Once the signal has been stored in the cloud, we proceed to stages shown in Figure

3.1 for signal processing and event classification. We describe relevant information and

parametrization for some of the stages.

• Pre-processing: The signal is divided into sections of τ = 10s long, and for each

one, a frame energy vector is calculated. The 5 lowest energy frames are elected

as noise standards and used to compute the spectral average noise of the section.

This average is estimative of the signal noise template and is updated along the

night recording (DAFNA; TARASIUK; ZIGEL, 2013). Furthermore, this template

is used as input to the Wiener filter (SCALART et al., 1996).

• Segmentation: The standard deviation is calculated over the total sum of energies

for each T = 10 min section, and the energy threshold is established. For each T

long section, an energy vector is calculated using 60 ms frames with 75% of overlap.

After, the resulting signal is tested for threshold surpassing. Having determined

the candidate event boundaries, fragmentation and duration tests must be further

applied. We chose δ = 200 ms for fragmentation test, ∆tmin = 600 ms and ∆tmax =

3500 ms for soring duration test.

• Dimensionality Reduction: The 10 features selected through the Mutual Informa-

tion method are, in order of importance: 6, 1, 29, 61, 65, 2, 36, 63, 70, 7 (count

numbers are according to Table 3.1). Using Mutual Information for feature selec-

tion involves feeding the algorithm with the manually labeled events classification

for a set of events to measure the information quantity, the presence or absence of

a feature, contributes to making the correct classification. The 10 features selected

in this manner will be applied to all recordings alike. The 10 features are fed to

PCA which will then generate a pair of principal components particular to each

recording.

4.1.2 Experimental Results

We applied our solution to six-night recordings, totalizing 32.5 hours. The seg-

mentation stage returned a total of 5323 snore candidate events, of which 3574 were man-

ually labeled as snoring. Table 4.1 depicts the actual (manually labeled) numbers of snor-

ing events for simple and OSA snorers and compares the accuracies averaged over nights

obtained for an implementation of our solution (EM) and an implementation of FCM, dis-
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criminating simple and OSA snorers. For both simple and OSA snorers, one concludes

that EM average accuracies are well above FCM corresponding accuracies (over one -

either EM or FCM - standard deviations).

Table 4.1: Algorithms comparison for simple and OSA snorers

Number
of Snore
Events

Average
Accuracy
EM (%)

Average
Accuracy
FCM (%)

Simple
Snorers 2670 91.3± 1.0 81.6± 8.8

OSA
Snorers 904 79.7± 0.9 67.7± 4.5

Source: by author (2018).

The explanation for the poor performance of FCM is illustrated in Figure 4.3. We

compare the clusters of snore and non-snore as defined by manual labeling (panel (a)),

cluster results by our EM solution (panel (b)), and cluster results by an FCM implemen-

tation (panel (c)) of the same dataset for one-night recording of an OSA snorer. We see

from the panel (a) that the two manually labeled clusters are superimposed in p1 − p2

plane which, by the PCA analysis, is ensured to span the best principal components for

data segregation. This superposition is a typical behavior for overnight sound recordings.

We demonstrate in panel (b) that EM clustering can estimate the correct snoring

distribution to an adequate accuracy, which for this specific recording is 81.0%. This accu-

racy is due to the statistical approach of EM applied to GMM, which assumes a Gaussian

distribution of snore and non-snore events, as described in Section 3.1.6. Although we

have no reason to expect non-snore events to be normally distributed, the assumption of

normal distributed snores is a reasonable one, as explained in Section 2.5.1. Meanwhile,

FCM implementation, which clusters events together considering its distances to two it-

eratively defined centroids, is not able to approximate the right snore/non-snore clusters.

In fact, in the specific recording considered in Figure 4.3, the accuracy is 61.3%. We

expect all other clustering algorithms based on geometric criteria such as FCM, KHM,

etc., to present similarly poor performances, since all of them consider point proximity as

similarity criterion.

Figure 4.4 aims to demonstrate that the Gaussian approximation to the snore dis-

tribution is an adequate one. The dataset analyzed is the same as in the previous plots.

In Figure 4.4, panel (a), we compare manually labeled snoring cluster histogram to the
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Figure 4.3: Clustering results: comparison between manually labeled, EM labeled and
FCM labeled snore and non-snore clusters for one night recording
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Source: by author (2018).

same EM estimated Gaussian distribution. Panel (b) depicts histograms of the manually

labeled and EM labeled snoring clusters.

Figure 4.4: Clustering results: comparison between EM estimated distribution for snoring
events, EM histogram for the snoring events cluster, and manually labeled snoring events
histogram
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The ideal behavior of the EM implementation occurs when the Gaussian distri-

butions estimated by the EM algorithm well approximate both the snore and non-snore

manually labeled histograms. The non-snore manually labeled histogram will usually not

approximate a Gaussian distribution, because events are not identically distributed, since

they may be as diverse as a car passing by, a cough, or an object falling on the ground.

However, even if non-snore events are not normally distributed, for simple snorers, the

manually labeled snore histogram approximates well a Gaussian distribution (with like

mean and appropriately defined variance). In such a case, EM is expected to deliver a

high accuracy, as is verified from EM average accuracy for simple snorers and its stan-
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dard deviation (Table 4.1). Below we show that even when OSA snorers are considered,

which represents a much more complex situation, EM can perform adequately.

The night recording of an OSA snorer is typically composed of apneic and non-

apneic snores (HALEVI et al., 2016). As a result, the manually labeled snoring events

histogram is heavy-tailed and almost bimodal (see Figure 4.4, panel (a)). Although both

averages 〈p1〉 and 〈p2〉 are very close for the EM Gaussian distribution and manually

labeled snores histogram, we see from the panel (a) that the histogram is not well approx-

imated by the EM estimated distribution. Furthermore, we demonstrate in the panel (b)

that the estimated EM histogram fits almost perfectly the manually labeled snore events

histogram, as we expect from an adequate clustering. This correct estimation is quite

remarkable and is only possible because EM can cluster events together by (indirectly)

recognizing its "statistical similarity", i.e., the probability of two events being drawn from

the same given distribution.

4.2 OSA Severity Estimation Evaluation

In this Section, we present our experimental evaluation for the OSA severity esti-

mation. Firstly, we show the methodology for the sleep night recording in a sleep labora-

tory. Secondly, we discuss the results for our CPAP/Non-CPAP classification.

4.2.1 Methodology for OSA Severity Estimation

To evaluate our solution for estimating the severity of OSA is necessary to compare

the results with the gold standard (PSG). Patients who were submitted to PSG in the sleep

laboratory center of São José Hospital from Irmandade da Santa Casa de Misericórdia de

Porto Alegre were recruited to participate in this study. Ethics approval was granted by the

Institutional Review Board of the Federal University of Health Sciences of Porto Alegre

(UFCSPA), Porto Alegre, Brazil (2.230.675) and all procedures were in compliance with

the current regulations, and all participants provided written informed consent.

Participants arrived in the sleep laboratory at evening and were normally instru-

mented for the PSG exam. A smartphone was used to recording the audio of the snoring

sounds concomitantly to PSG. The smartphone was placed at a distance of approximately

50 cm besides the bed before the exam start as shown in Figure 4.5. The audio was
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recorded for each patient during the whole exam (8 hours approximately) and was stored

with the medical report produced by the PSG equipment (SONOLAB 632 - Meditron

Eletromedicina Ltda) and the physician’s evaluation. The recruitment of volunteers lasted

three months totaling a set of 113 patients.

Figure 4.5: Experiment configuration in PSG room

Source: by author (2018).

As described in Section 3.2, our solution is based on the analysis of acoustical

features of the snoring events. Therefore, it is imperative that the patient has produced

snoring events at night to be able to estimate the severity of the OSA based on these

events. To ensure a minimum number of snoring events required for OSA analysis, we

have defined a threshold based on the snoring time ratio, which is one of the 79 features

extracted from the whole sleep night. The snoring time ratio measures how long the

patient remained to snore with the total recording time.

The minimum snoring rate time was varied from zero (includes all recordings)

to the maximum value of 0.36 found in our dataset. In Figure 4.6, we can observe that

as the minimum snoring rate threshold increase, the number of patients in the data set

that satisfy this condition decreases. The average accuracy was also calculated for each
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minimum snoring rate, which reached a peak of 0.81. To build a dataset that represents

the population of CPAP/Non-CPAP patients and also has sufficient snoring events for

analysis, the minimum threshold of 0.1 for snoring rate was defined.

Figure 4.6: Minimum snoring rate vs average accuracy
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Applying the threshold defined above, we reduce our dataset from 113 patient

to 63 patients who have sufficient snoring events as input to our classification solution.

The other 50 patients are not included in this study. In Figure 4.7, we can observe the

severity distribution for the 50 patients not involved in this analysis. Although the amount

of snoring events is not adequate for our solution, we cannot assume that these patients

do not suffer from OSA only because they produce a small quantity of snoring events.

The number of snoring events produced during the night does not correlate with the OSA

severity, as we can observe in Table 4.2, patients with less than 10% snoring rate have a

lower rate of Apnea/hour and usually a higher rate of Hypopnea events. This behavior is

typical of patients that produce a few snoring events during sleep or even did not sleep at

all during the PSG, and then, it is necessary to explore different features of the snoring

events to be able to estimate the OSA severity for those patients.
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Figure 4.7: Severity distribution for the 50 patients not included in the study
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Table 4.2: Patient’s OSA severity according the snoring rate

Snoring Rate # Patients AHI Apnea/hour Hypopnea/hour

<10% 50 26.6 ± 30.9 5.3 ± 11.3 21.2 ± 21.85

>10% 63 31 ± 26.3 7.2 ± 12.8 23.8 ± 19

Source: by author (2018).

The set of 63 patients who produced a satisfactory number of snoring events is

composed of 43 CPAP patients and 20 non-CPAP patients. This non-uniform distribution

between classes causes training vies which can influence the classifier results and benefit

the selection of features that better describe the class with the largest set of data. We have

performed tests using 43 CPAP, and 20 Non-CPAP patients and the results favored the pre-

dominant class (CPAP). Next, we randomly selected 20 patients from each class (CPAP

and Non-CPAP) to create a uniform dataset between CPAP and Non-CPAP patients. In
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Table 4.3, can be shown a proper distribution of gender (20 male and 20 female), a similar

age group (average age of 56 years), and a slight increase in the Body Index Mass (BMI)

between the groups.

Table 4.3: Patient’s characteristics in the study group

Group # Patients Age BMI AHI

Non-CPAP 20 (12 female) 53 ± 11.7 24 ± 5.3 7.8 ± 4
CPAP 20 (8 female) 59 ± 12.6 31.8 ± 4 28.2 ± 24.6

Source: by author (2018).

Once the dataset for this study was defined, we performed an analysis on each

night recording. A set of 79 acoustic features were extracted from each segmented snor-

ing event. These features map different aspects of the signal regarding time and frequency

domain and are widely used in the literature for the detection and analysis of snoring

events (BUBLITZ et al., 2017). Our solution is not based on a single analysis of the

features of the snoring events detected, but instead, we explore the distribution of these

features during the night of sleep. For mapping, the vocal tract instability associated with

OSA, for each feature extracted separately from the snoring event, the variance and av-

erage for the whole night features was applied. Therefore, it is possible to analyze how

often those feature has changed during the night. Our hypothesis is in severe apneic pa-

tients, where the high vocal tract instability, alters the acoustic features of snoring events

at night, obtaining a higher variance than found in normal patients.

To evaluate our proposal we have proposed two different phases as shown in Figure

4.8. In phase A, we divided our dataset into two uniform groups regarding CPAP/Non-

CPAP patients for training and testing. The training dataset was used to generate the

decision tree model, while the testing dataset was used to evaluate the classification per-

formance. From this process, we can select the best features for patients classification

and explore the underlying relations between the features. The datasets for training and

testing, as well the proportion of CPAP and Non-CPAP patients in each one are equally

distributed to avoid a data vies which can benefit the dominant class in training/testing

process.
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Figure 4.8: Methodologies for CPAP/Non-CPAP classification evaluation
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To guarantee and evaluate the robustness of the decision tree approach and feature

selection proposed in phase A, we propose a multiple 10-Fold Cross validation process

demonstrated in phase B. This process has the objective of shuffling the input data for

the generation of multiple decisions trees. The original dataset are randomly partitioned

into 10 equal sized subsamples. A single subsample is retained as the validation data for

testing the model, and the remaining 9 subsamples are used as training data. The cross-

validation process is then repeated 10 times, with each of the subsamples used exactly

once as the validation data. This training and validation process was extensively replicated

1000 times to reduce the input data’s susceptibility by producing different sets of data for

training and validation. We extract the most selected features to patient’s classification in

the multiples decision tree generated with the objective to check the robustness of the set

o features found in phase A.

4.2.2 Experimental Results

We applied our solution to 40 patients, totalizing approximately 321 hours of

recording analyzed and 128.408 snoring events detected. For each patient, 2187±1696

snoring events were automatically extracted from the sleep recording. In Table 4.4 we
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can see the confusion matrix computed from dataset. The confusion matrix provides an

adequate measure of the classification model by showing the number of correct classifica-

tions versus the predicted classifications for each class over the dataset. We can observe

a large number of correct classification against the number of misclassification (16/4, re-

spectively).

Table 4.4: Confusion Matrix

Real/Predicted Non-CPAP CPAP

Non-CPAP 9 1
CPAP 3 7

Source: by author (2018).

Analyzing Table 4.4, we can calculate some metrics to help the evaluation of the

diagnostic agreement of our solution as shown in Table 4.5. Our solution reaches the rate

of 80% of agreement with the PSG diagnostic. In other words, we were right in recom-

mend the use or not of CPAP in 80% of the 40 patients. We underestimate the diagnosis

in only 15% of the patients, which means that we would wrongly not recommend a CPAP

treatment for 3 patients. On the other hand, we overestimate the diagnosis in only 5%

which represents the cases where the CPAP treatment was wrongly recommended.

Table 4.5: Diagnostic Agreement

Diagnostic %

Agreement 0.80
Underestimate 0.15
Overestimate 0.05

Source: by author (2018).

These results were obtained from the decision tree learned in the training process

described in Section 4.2.1. In Figure 4.9 we can observe the resultant decision tree after

training. Two features were selected for the tree nodes: Variance of Fundamental Fre-

quency and Variance of Rhythm Intensity. These features were selected for their higher

capabilities in separating CPAP and Non-CPAP classes. To better understand the reason

for selecting these features and what their connections with the OSA, we will detail their

properties.

• Variance of Fundamental Frequency (F78): We define f0(i) as the frequency at

which the global maximum of the ith snore signal’s power spectral density occurs.
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Figure 4.9: Decision Tree for CPAP/Non-CPAP classification
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The feature expresses variance of f0 over all snores in the one-night recording. The

Discrete Fourier Transform (DFT) of each snoring event signal si(t) was calculated

according to Ŝi(f) = DFT (Si(t)). From the frequency domain, the fundamental

frequency variance is given by

F78 =
1

Ns − 1

Ns∑

i=1

(f0(i)− f̄0)2,

where f0(i) = f : max
f

(∣∣∣Ŝi(f)
∣∣∣
2
)
, and f̄0 =

1

Ns

Ns∑

i=1

f0(i) (4.1)

Relation with OSA: The variance of f0 over all snores is related to the vocal tract

size and shape. The vocal tract structure, which includes mainly the pharynx, nasal

and oral cavity, and tongue body, impacts in the formants frequencies emitted dur-

ing a snoring event sound. OSA patients have alterations in the shape of the vocal

tract, due to the different levels of narrowing during sleep. This narrowing impacts

in how the frequencies resonate in the vocal tract structure, thus producing a higher

variance of the fundamental frequency over all snoring events.

Figure 4.10 illustrates variations in fundamental frequency during a period of nor-

mal snoring (without the presence of a respiratory obstruction) and an apneic phase

(with increased obstruction level and a short period of respiratory arrest). We can

observe that during a normal snoring sequence (A), the fundamental frequency re-

mains practically constant, which demonstrates the higher stability of the vocal tract

resonant frequencies. During the more apneic phases (B), there is a higher variance
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of the fundamental frequency due to the higher changes in the levels of obstruction

of the airways. Additionally, a significant decrease in the fundamental frequency in

the events that precede and succeed the obstruction period can be noted around the

5-15 minutes. Patients with severe OSA have the tendency to oscillate more fre-

quently between these phases of normal and apneic snoring during the sleep night,

resulting in a higher variance of the fundamental frequency over all snoring events.

Figure 4.10: Variance of fundamental frequency feature
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• Variance of Rhythm Intensity (F50): Calculate the period intensity feature via au-

tocorrelation, C, of an energy signal interval Se of 12 seconds, where the detected

snoring event is in the middle. The rhythm intensity is calculated as the product

of the first peak amplitude value of correlation C(τp) and the normalize square

area (Area) between the zero-lag autocorrelation and the first correlation peak (τp),

which can measure the level of the periodicity of the snoring events. A more peri-

odic energy snoring pattern will result in a higher area and, hence, a higher period

intensity value. The rhythm intensity variance is given by

F50 =
1

Ns − 1

Ns∑

i=1

(RI(i)− R̄I)
2,

where RI = C(τp)× Area, Area =
1

τp

τp∑

τ=0

(ατ + 1− C (τ))2 ,

and C(n) =
N−n∑

m=1

Se(m+ n)× Se(m) (4.2)
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Relation with OSA: Usually, the snoring phases during the night are composed of

many repeated events according to a specific time period between them. The snor-

ing frequency in the normal snoring patients usually corresponds to the respiratory

rate. The rhythm that these events repeat themselves tends to have a small variance

since they correspond to respiratory frequency, which is expected not to have sig-

nificant changes during sleep. In the case of apneic patients, snoring is a sign of

narrowing of the upper airway. Breathing cessations during apnea events interrupt

the snoring sounds, and it only returns with the efforts to resume breathing. There-

fore, the variance of the rhythm intensity of these events is usually higher for apneic

patients.

Figure 4.11 illustrates the variation of the signal autocorrelation during a period

of normal and apneic snoring. The snoring sequence with a regular period A pro-

duces a signal autocorrelation with well-defined peaks and a higher area between

the central peak and the first peak (rhythm intensity) compared to a signal with the

irregular period of events due to breathing obstructions B.

Figure 4.11: Rhythm Intensity Feature
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Multiple 10-Fold Cross Validation:

To guarantee and evaluate the robustness of the decision tree approach regarding

the set of most important features extracted from the resulting decision tree, we proposed

a multiple 10-Fold cross validation process for shuffle the data and decrease data suscep-

tibility to train/test datasets. After repeating the cross-validation process for 1000 times

(each time produce a complete random 10-fold cross validation), it was possible to iden-
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tify the most used features for patient’s classification across all rounds. Figure 4.12, shows

the most used features for all decision trees generated. Two features were more widely

used for the decision trees: F78 (Variance of Fundamental Frequency) and F50 (Vari-

ance of Rhythm Intensity). These features are the same found in the first training/testing

approach evaluated, which confirms that independently of the data inputs (considering our

dataset), we have two features that stand out for the classification of CPAP and Non-CPAP

patients.

Figure 4.12: Most used features for patient’s classification
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Decision tree features for CPAP/Non-CPAP classification:

Normal and apneic patients have different snoring phases during the sleep night.

Generally, the snoring phases coincide with the deeper phases of sleep, e.g., REM, in

which a relaxation of the vocal tract musculature produces the snoring events. From

the decision tree in Figure 4.9 obtained during the training process, we can infer that a

higher variance of the fundamental frequency represents the need for CPAP treatment.

The higher fundamental frequency variance shows that the vocal tract suffered different

levels of narrowing during the night, altering the resonant frequencies of the vocal tract

and consequently, resulting in snoring events with different fundamental frequencies. In
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this case, the high variance of the fundamental frequency may indicate that the patient

presented many apnea events, which altered the frequency spectrum of snoring events at

night.

The patients with a lower fundamental frequency variance means that regarding

the frequency spectrum the snoring events did not change much at night, even if the

patient must have several respiratory arrests, the snoring events emitted between the apnea

events did not present major spectral differences capable of estimating the need for CPAP

treatment. For these patients, the variance of the rhythm intensity of snoring events was

a feature capable of estimating the need for CPAP therapy. Patients with a higher rhythm

intensity variance, e.g., snoring events that are emitted in a non-uniform time interval were

classified as CPAP patients. This feature can map the moments of pause in respiration

that are characteristic of the apnea events. When the snoring events that indicate the

narrowing of the airway are interrupted, it may indicate that the vocal tract narrowing

reaches its maximum level, that is, the patient does not breathe for a few seconds. The

snoring events return with breathing efforts, and the variations of these intervals between

the apnea events help to characterize the patients who require CPAP treatment.

Finally, patients with a low fundamental frequency and rhythm intensity variance

are classified as Non-CPAP patient. A uniform snoring events fundamental frequency

and rhythm intensity during the night can reveal the patients with benign snoring phases.

These patients may have minor changes in the upper airways that cause the snoring events,

but not necessarily the more severe respiratory obstructions as in the case of severe OSA

patients.

4.3 Discussion: Overall Evaluation

We argue that our proposal solution can be a valuable alternative for a prelimi-

nary OSA severity estimation and CPAP therapy screening. The use of the smartphone

as a patient’s data capture device allows a non-intrusive, easily accessible and low cost

sensing, which contributes to the treatment access improving. Our solution was proposed

and evaluated in two steps: the unsupervised snoring event detection and the acoustical

snoring events features analysis for patient’s classification.

The unsupervised snoring event detection performs the events classifications in

an uncontrolled environment demonstrating the viability to differentiate random noises

from snoring events even in the most diverse noise levels. This event detection is a very
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important archived for the patient’s empowerment and access to treatment improving. The

EM algorithm was able to well approximate the snoring events distribution, performing

significantly better than the FCM algorithm.

The analysis of the acoustic features shows fundamental relations between the

acoustic changes in snoring events and OSA events during the night, which contribute

to better understanding of the obstructive respiratory events. The set of most important

features found through the decision tree model bring relevant information about the acous-

tical changes of the snoring events during the night of an OSA and non-OSA patient.
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5 CONCLUSION

The acoustical analysis of snoring events brings valuable information about the

presence and severity of the OSA. Moreover, the detection of snoring events using the

smartphone contributes to improving the patient access to treatment by providing an aux-

iliary tool for screening the need for a clinical diagnosis. This analysis also contributes to

the understanding of the relations between the upper airway obstructions and acoustical

changes in the snoring events produced.

In this dissertation, we proposed a noninvasive solution for CPAP therapy screen-

ing using the built-in microphone of a smartphone. Our solution comprises an unsuper-

vised segmentation and classification of snoring events responsible for process the acous-

tic signal for events segmentation and clustering into two classes: snore and non-snore,

and an acoustical analysis of features extracted from the set of snoring events for the

screening of CPAP therapy, separating patients into two classes: CPAP and Non-CPAP.

As a result, the set of snoring events produced during the night can be automatically de-

tected and analyzed for estimate the need for treatment and medical follow-up based on

a set of acoustic features. Next, we highlight some conclusions and key contributions of

our research.

5.1 Summary of Contributions

The main contributions of our research are the following:

• The design of non-invasive acoustical signal acquisition and digital signal process-

ing for automatically detect and segment all the snoring events candidates during a

sleep night;

• An unsupervised solution for snoring events classification, using a statistical ap-

proach analysis (the EM clustering algorithm) for clustering the candidate events

into two classes: snore and non-snore, reaching satisfactory accuracy rates (91.3%

for simple snores and 79.7% for OSA snores, on average);

• A CPAP therapy screening based on acoustical features analysis of snoring events

using a decision tree approach for patient classification, reaching an accuracy of

80%;

• A meaningful analysis of acoustical features and the underlying relation with the
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OSA events, as well as the novel features proposed for patients CPAP therapy

screening;

• An evaluation of the unsupervised snoring events detection and patient’s CPAP ther-

apy screening using real patient’s data collected in uncontrolled (at home) and con-

trolled (at PSG laboratory).

To the best of our knowledge, we were the first to propose a fully automatic so-

lution for detection of snoring events and CPAP therapy screening using a smartphone

as the recording tool. This solution was a very important step in the way of proving the

viability of the use of fully accessible hardware such as smartphones for improving access

to the sleep disorders treatment.

5.2 Final Remarks and Future Work

As part of our future work, we aim to expand our study to a broad population and

explore the relations between acoustic features and vocal tract anatomical properties. For

that, our future research efforts are the following:

• We aim to evaluate our solution for CPAP therapy screening applied to an uncon-

trolled environment, expanding the number of patients of the study and measuring

the effects of ambient noise on the statistical analysis of features;

• We intend to explore the relations between the patient’s anatomical vocal tract prop-

erties and the acoustical features of the snoring events, to better understand the

mechanisms of snoring production;

• Developing a source-filter model, considering anatomical characteristics of the vo-

cal tract, such as length, internal wall thickness and cross-sectional area, including

the position of obstructions;

• Studying the application of the proposed model, as well as the analysis of the acous-

tic features for the monitoring of other chronic and degenerative diseases, such as

Alzheimer and Parkinson;
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AppendixA MYSLEEP: A SLEEP MONITORING APPLICATION

The MySleep application was developed to perform the sleep recording of the

volunteers. The audio captured by the smartphone’s built-in microphone is automatically

transferred to a remote server for future analysis of the snoring events. For example,

6 hours of sleep recording takes approximately 2GB of storage. Storing this file in the

internal memory of the smartphone is impractical since the user should have at least 2 GB

free. Therefore, the application fragments the recording into small 10-minute files and

sends them to the server, where the audio files of the whole night will be merged. The

user can finish the recording in the morning or after 8 hours of recording the application

automatically finish the recording to prevent the user from forgetting to finalize.

Figure A.1 shows the main screens of the application. The user initially registers

using the email account or social network. When a new recording start, the application

shows a three-step sequence: (i) ensure the silence of the room, (ii) connect your smart-

phone to the battery charger, and (iii) the smartphone next to the bed. These steps aim to

improve the quality of the captured signal. Finally, it is possible to see the list of record-

ings that were performed and the status (uploading/upload complete). This application

has not been compared to any other sleep applications available for Android devices. The

available applications are not comparable because they do not classify the patient regard-

ing the need for CPAP / Non-CPAP therapy.
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Figure A.1: Screens of the Android application developed

Source: by author (2018).
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AppendixB ACOUSTIC FEATURES

In Table B.1 we can see the set of features extracted from the snoring events and

sleep night for each patient. In the sequence, each feature is explained in detail.

Table B.1: Global features for the patient’s sleep night

Time Domain Features

Count Feature
1 Number of Snores Events
2 Snoring Time Ratio
3 Variance of Snoring Time Duration
4 Number of Inter Snore Event Silence (>10 and <60 sec)
5 Mean of Inter Snore Events Silence
6-7 Running Energy/Distance Snores Variance
8-9 Variance and Mean of Relative Energy Prior the Detect Event
10-11 Variance and Mean of Relative Energy Posterior the Detect Event
12-13 Variance and Mean of Rhythm Intensity (12 sec)
14-15 Variance and Mean of Rhythm Period (12 sec)
16-17 Variance and Mean of Rhythm Period (6 sec)
18-19 Variance and Mean of Ratio Relative Energy Prior and Posterior
20-21 Variance and Mean of Normalized Area Beneath Energy Envelop
22-23 Variance and Mean of Skewness Envelop Formation
24-25 Variance and Mean of 10 Seconds Before and After Period
26-27 Variance and Mean of Ratio Areas Before and After the Energy Peak
28-29 Variance and Mean of Total Snore Event Energy

Frequency Domain Features

Count Feature
30 Retro-palatal Ratio
31 Snore Frequency Intercalation
32-33 Variance and Mean of First Formant
34-35 Variance and Mean of Fundamental Frequency
36-43 Variance and Mean of 4 Moments of MFCC Coeficients
44-51 Variance and Mean of 4 Moments of LPC Coeficients
52-59 Variance and Mean of 4 Moments of DFT
60-75 Variance and Mean of [#1 to #8] Subband Frequency
76-77 Variance and Mean of Spectral Flux
78-79 Variance and Mean of Pitch Density

Source: by author (2018).

Number of Snores Events: Number of snoring events detected during the segmentation

process.

Snoring Time Ratio: Snoring Time Ratio measure how long the patient remained to

snore with the total recording time.
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Variance of Snoring Time Duration: Variance of snoring time duration across all de-

tected events during the night.

Number of Inter Snore Event Silence (>10 and < 60): Number of silences detected

between two snoring events during the whole night. The silence is considered to be an

interval of >10 and <60 seconds.

Mean of Inter Snore Events Silence: Mean of the silence time duration between the

snoring events across the night.

Running Energy and Distance Snore Variance: Running energy and distance variance

is defined as the within group snore variance. For each patient, the variance across the

whole night is calculated, according to the steps below:

1. To quantify inter-snore variability across the night, the total energy of each snore

was calculated, as well as the time distance between the events;

2. All the snores were clustered into groups, according to distance from the closest

snore in the group: in cases > 1 minute duration between the group and the snore,

the snore was ascribed to the next group;

3. The variance of groups energy and distance is calculated.

Variance and Mean of Relative Energy Prior and Posterior the Detected Event: The

relative energy prior and posterior the detected event involves calculating the area of the

energy signal 10 seconds before and after the event and divide by total event area. This

process results in counting the number of similar events before or after the event being

tested and is represented by the equations below:

RelativeEnergyPrior =

∑mi

m=mi−10Fr
em∑mf

m=mi
em

(B.1)

RelativeEnergyPosterior =

∑mf+10Fr

m=mf
em∑mf

m=mi
em

(B.2)

where em is the signal energy in frame m,mi,mf are the initial and final energy

frames of the event, respectively, and Fr is the frame rate (e.g. if the energy is calculated

in frames of 15 ms, Fr is 1/15 samples/ms). The variance and mean of relative energy

prior and posterior is calculated across the whole snoring events detected during the night.

Variance and Mean of Rhythm Intensity (12 sec): Measure the rhythm intensity de-

tected in a 12-second interval, respectively, when the tested event is in the middle. The

period was calculated via autocorrelation over the energy signal associated with the tested
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interval. The intensity was calculated from the area between the zero-lag autocorrelation

and the first peak). The Rhythm Intensity is calculated according to the steps below:

1. Calculate the normalized energy of the 12-second interval;

2. Autocorrelation of the signal interval;

3. Find the first peak of the estimated autocorrelation function;

4. Calculate the period intensity feature (the area between the zero-lag autocorrelation

and the first peak).

The variance and mean of the Rhythm Intensity is calculated across the whole

snoring events detected during the night.

Variance and Mean of Rhythm Period (6 sec): Measure the period of the rhythm de-

tected in a 6-second interval when the tested event is in the middle. The period was

calculated via autocorrelation over the energy signal associated with the tested interval.

The Rhythm Period is calculated according to the steps below:

1. Calculate the normalized energy of the 6-second interval;

2. Autocorrelation of the signal interval;

3. Find the first peak of the estimated autocorrelation function;

4. Measure the distance between the zero-lag and the first peak, which represents the

Rhythm Period.

The variance and mean of the Rhythm Period is calculated across the whole snor-

ing events detected during the night.

Variance and Mean of Normalized Area Beneath Energy Envelop: Calculate the area

beneath the energy envelop of the detected event. The area is calculated according to the

steps below:

1. The area using numerical integration via the trapezoidal method;

2. Calculate the window (rectangle area that contains the event);

3. Divide the area by the window.

The variance and mean of the normalized area is calculated across the whole snor-

ing events detected during the night.

Variance and Mean of Skewness Envelop Formation: Calculate the variance and mean

of skewness (3rd moment) of the envelop formation from the all snoring events during the

night.



68

Variance and Mean of 10 Seconds Before and After Period Ratio: Calculate the vari-

ance and mean of the ratio between the period calculated over 10 seconds before and after

the detected event.

1. Normalize the energy signal;

2. Get energy intervals of 10 seconds before and after the event interval;

3. Calculate the autocorrelation of the intervals;

4. Find the first peak (period) in the autocorrelation function for both intervals (before

and after);

5. Divide the period calculated in the prior 10 seconds by posterior 10 seconds period.

Variance and Mean of Ratio Areas Before and After Energy Peak: Calculate the

variance and mean of the ratio between the areas located prior and after to the maximum

energy peak location of the snoring event. The ratio of areas is calculated according to

the steps below:

1. Find the maximum energy peak of the detected event;

2. Calculate the area before and after the maximum peak location using numerical

integration via the trapezoidal method;

3. Divide the calculated area before by the area after the peak.

Variance and Mean of Total Snore Event Energy: Calculate the variance and mean of

the total event energy for all snoring detected.

Retro-Palatal Ratio: Calculate the ratio between the counting of snoring events with the

first frequency in the retro-palatal frequency band (> 100 Hz and < 1500 Hz) and the total

snoring events counting. The ratio is calculated according to the steps below:

1. Find the first formant frequency for each event detected;

2. Count the number of events in the retro-palatal frequency band;

3. Divide the number of retro-palatal snore event by the total snore events.

Snore Frequency Intercalation: Counting the number of times that the snoring first

formant have ranged from the [< 500 Hz] to [> 500 Hz and < 1800 Hz] range.

Variance and Mean of First Frequency Formant: Estimate the first formant frequency

and magnitude from the detected event using Linear Predictive Coding (LPC). The vari-

ance and mean of the first frequency formant is calculated across the whole snoring events

detected during the night.
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Variance and Mean of Fundamental Frequency: Calculate the variance and mean of

fundamental frequency for each snoring event detected during the night.

Variance and Mean of 4 Moments of MFCC Coefficients: Calculate the variance and

mean of the 4 moments (mean, variance, skewness and kurtosis) from the 20 MFCC

extracted from the snoring events detected.

Variance and Mean of 4 Moments of LPC Coefficients: Calculate the variance and

mean of 4 moments (mean, variance, skewness and kurtosis) from the LPC coefficients

from the snoring events detected.

Variance and Mean of 4 Moments of DFT: Calculate the variance and mean of 4 mo-

ments (mean, variance, skewness and kurtosis) from the DFT coefficients from the snoring

events detected.

Variance and Mean of [#1 to #8] Subband Frequency: Calculate the variance and mean

for each 8 sub-bands of the DFT-128 content of the detected snoring event. The sub-bands

is calculated according equation below:

SubbandFrequencies(i) =

∑8i+7
k=8i |DFTk|∑127
k=0 |DFTk|

(B.3)

where DFTk denotes a 128-coefficient DFT of the snoring event signal, and i =

1..8 is the sub-band frequencies.

Variance and Mean of Spectral Flux: Spectral flux is a measure of how quickly the

power spectrum of a signal is changing, calculated by comparing the power spectrum for

one frame against the power spectrum from the previous frame. It is calculated by the

standard deviation of the squared differences of the frame sequence of 40 ms of the event,

according to equation below:

SpectralF lux(i) = std

(
N∑

j=1

[Norm(abs(DFTj+1))−Norm(abs(DFTj))]
2

)
(B.4)

where DFTj represents the DFT at the frame index j, and N is the total number

of frames of the event. The variance and mean of the spectral flux is calculated across the

whole snoring events detected during the night.

Variance and Mean of Pitch Density: The pitch density for each snore was calculated

as the fraction of the snoring time where the pitch is detectable (peak(Rii) > 0.5) over the
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total snoring time, according the equation below:

PitchDensity(i) =

(∑Ns

i bool {peak(Rii) > 0.5}
)

Ns

(B.5)

where Rii is the autocorrelation function of ith frame and Ns is the number of

frames in the sth snore. The variance and mean of the pitch density is calculated across

the whole snoring events detected during the night.
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AppendixC PUBLISHED PAPER – GLOBECOM 2017

Mobile Health broadens the accessibility to healthcare applications using mobile

devices, such as smartphones. These devices can be used for tracking the patient health

signals for remote monitoring and treatment follow up. Sleep disorders affect a substan-

tial part of the population and may have serious comorbidities. To improve monitoring of

evolution of sleep disorders and/or treatment follow up, we propose an unsupervised seg-

mentation and classification of snoring events (as snore or non-snore) on a Mobile Health
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Abstract—Mobile Health broadens the accessibility to health-
care applications using mobile devices, such as smartphones.
These devices can be used for tracking the patient health
signals for remote monitoring and treatment follow up. Sleep
disorders affect a substantial part of the population and may
have serious comorbidities. To improve monitoring of evolution
of sleep disorders and/or treatment follow up, we propose an
unsupervised segmentation and classification of snoring events
(as snore or non-snore) on a Mobile Health context. We ap-
ply a statistical analysis through the Expectation-Maximization
algorithm applied to Gaussian Mixture Models to cluster the
data sets. We evaluate our solution using recordings from simple
and Obstructive Sleep Apnea (OSA) snorers. The results show
that our proposal is able to classify snoring events achieving
average accuracies of 91.3% for simple snorers and 79.7% for
OSA snorers.

Index Terms—Mobile Health, Snoring events, EM, Clustering.

I. INTRODUCTION

The latest generations of smartphones have provided more
powerful computing capability, larger storage capacity, multi-
ple embedded sensors, and operating systems that encourage
the development of applications [1]. Mobile Health (mHealth)
takes advantage of these smartphone capabilities to deploy
healthcare applications to a wide population. mHealth patients
can benefit from more expedite diagnosis and continuous
treatment monitoring. The preventive approach of mHealth
systems promotes cost reduction for governments and health-
care companies and contributes to patient’s wellness. More-
over, smartphone sensors are being used for a broad range
of healthcare applications. As an important instance, one may
mention the utilization of the built-in microphone for snoring
events detection [2].

Sleep has a vital role in good health maintenance and well-
being throughout an individual’s life [3]. Insufficient sleep
has severe mental and physiological consequences [4]. Sleep
disorders may cause or exacerbate preexisting psychiatric
and medical conditions, which can be associated with high
rates of depression, anxiety, and impaired daytime function-
ing, as well as an increased risk of developing high blood
pressure, strokes, heart diseases and obesity [5]. The current
gold standard for diagnosing sleep disorders is the overnight
Polysomnography (PSG) exam [3]. The patient must sleep in a
laboratory attached to different sensors under the supervision

of a technician. Notwithstanding its efficiency, the necessity of
a clinical setting and highly specialized infrastructure results
in a long waiting list in sleep laboratories and high costs,
thus restricting the access to diagnosis and treatment [6]. For
this reason, in most cases, PSG is performed at most once to
every other patient, and treatment follow-up is only performed
through reports by patients and/or their partners [4].

The study of snoring events can bring valuable information
about the sleep quality. It can provide relevant information to
the diagnostics of sleep-related respiratory disorders such as
Obstructive Sleep Apnea (OSA) [7]. Moreover, snoring events
can be detected through the processing and analysis of the
audio recorded during one night of sleep [1]. Some studies
tried to implement such solution using a high-performance
microphone to capture the sound [8]-[9], but only a few
research works investigated the detection of snoring events on
smartphone platforms [7]. Smartphones are nowadays widely
available devices anytime and anywhere. Hence, we argue
that a smartphone can lend itself as an auxiliary tool in the
accessibility problem to PSG, since it allows for a preliminary
monitoring which can aid the screening of patients according
to the need for laboratory sleep exams. Moreover, it allows for
continuous monitoring of sleep treatments and sleep disorders
evolution.

The state-of-the-art on detection of snoring events on
smartphones addresses a supervised machine learning process
to classify the sound events as snore/non-snore [1][2]. The
concern about supervised learning is the limited amount of
training data available that cannot well represent the snoring
events distribution in the overall population and also the high
susceptibility to overfitting [10]. To overcome this limitation,
some studies focused on unsupervised learning as a way of
creating a model with a greater capacity of data generalization
[11][12]. However, these studies have not applied the proposed
solutions to the mHealth context.

In this paper, we propose an unsupervised segmentation and
classification of snoring events using a clustering algorithm
to discriminate sound events according to two classes: snore
and non-snore. We consider an audio data set collected in
an uncontrolled environment setting for mHealth. We intro-
duce a statistical distribution analysis using the Expectation-
Maximization (EM) algorithm for Gaussian Mixture Models
(GMM) to cluster the data set according to the probability
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of each data point of belonging to some normal distribution
component. The results obtained show that the EM algorithm
produces better results on clustering the data, as compared to
other clustering algorithms such as Fuzzy C-Means (FCM) and
K Harmonic Means (KHM), reaching satisfactory accuracy
rates (91.3% for simple snores and 79.7% for OSA snores,
on average). Our main contributions are: (i) the proposal of
an unsupervised solution for the mHealth context, (ii) the
application of a statistical distribution analysis (EM algorithm)
to the clustering of sound events, (iii) the design of an accurate
event segmentation method to identify the snore candidate
events boundaries, and (iv) the design of an automatic cluster
labeling according to snore and non-snore.

The remainder of the paper is organized as follows. In
Section 2, a brief overview of related work is presented. In
Section 3, we describe and explain our proposal solution. In
Section 4, results of our solution are presented as well as an
evaluation of its implementation. Finally, final remarks and
perspectives for future works are presented in Section 5.

II. RELATED WORK

The analysis of acoustic signals aimed at snoring events
detection has been performed in different studies. Most of
the initiatives performed the recordings in a controlled en-
vironment with low levels of noise and high-performance
microphones to capture the sound [13][14]. These studies have
proven the viability of extracting acoustic features from audio
recordings for the segmentation and classification of snoring
events. However, the imposed experimental constraints limit
the reproducibility in uncontrolled environments, which does
not contribute to a solution to the PSG accessibility problem.
In order to overcome this limitation, the smartphone started to
be seen as an alternative tool to capture the acoustic signal at
a patient’s home.

The approach of snoring events detection with smartphones
as a recording and processing tool has been addressed by a few
studies [1][2]. An Android application was developed by Hao
et al. [2] for audio recording and detection of three different
events: snoring, body movement, and cough. The classification
of the events was based on a decision-tree algorithm. Although
their proposed solution is simple and inexpensive in terms
of processing, the main goal of this study is to assess sleep
quality through events counting, and the work does not aim at
an acoustic analysis of snoring events for further study. Shin
et al. [1] collected the acoustic signal using a smartphone and
performed a formant analysis on the signal within different fre-
quency bands. The authors were able to select the best features
for snore classification and applied a quadratic classifier over
this set of features for snoring events detection. Even though
these studies have obtained good results on snoring detection,
all smartphone applications implement supervised learning
approaches, which require a considerable data generalization
capacity and are prone to overfitting. Furthermore, supervised
approaches hinder the automatic character of the solution,
which is a necessity when one considers accessibility to a
wide population.

Unsupervised learning is an exaction for the automation of
snoring events detection solutions. In the literature in the area,
only a few works address unsupervised classification, none of
which in the context of smartphone platforms [11][12]. These
works apply clustering algorithms such as FCM and KHM,
which use as similarity criterion the distance between events
in feature space. We verified that this criterion significantly
undermines clustering accuracy. We argue that an appropriate
algorithm to the problem at hand should aim at snoring events
identification through statistical inference approaches, since
snoring events from a person are produced by a single human
vocal tract, and as such may be considered as independent
identically distributed (i.i.d.) events, which ideally will be
normally distributed.

III. UNSUPERVISED SEGMENTATION AND
CLASSIFICATION OF SNORING EVENTS

The unsupervised segmentation and classification of snore
events proposed in this paper involve a sequence of steps as
can be seen in Figure 1. We discuss each stage of the overall
process in the following subsections.

Figure 1: Block diagram of the proposed solution

A. Data Acquision

The acoustic signal is recorded using the built-in mi-
crophone of a smartphone and transmitted to the cloud to
be processed. Our proposal considers a generic smartphone
device, recording in an uncontrolled environment, and an
untrained user. These settings may hinder the acoustic quality
of the signal but are necessary to achieve an accessible and
continuous monitoring of the sleep quality, which contributes
to the dissemination of sleep self-assessment and patient
empowerment. The following steps are cloud processed.

B. Pre-processing

Noise can significantly degrade the acoustic signal under
uncontrolled environments. The background noise is the most
common factor degrading the quality and sharpness of the
recordings. To reduce the effects of noise whilst preserving
the signal, a noise reduction algorithm needs to be applied. In
our proposal we chose a Wiener filter, a spectral filter which
makes use of a noise template based on a running estimation
of the background noise energy [15].
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C. Segmentation

The sound events that occur during the night need to be
automatically identified and segmented for future analysis. All
detected events are considered as snore candidates. Segmen-
tation proceeds by identifying a snore candidate as an event
fulfilling two criteria: (i) its energy locally exceeds a certain
threshold estimated over the whole night and (ii) the event
time duration lies within ∆tmin and ∆tmax.

A segmentation procedure involves four steps [13]. We
designed a segmentation algorithm detailed in the following:

• Threshold definition: The energy threshold is computed
from the standard deviation of the whole night signal
energy. Considering events distribution to be sparse in the
whole night signal, we may define the energy threshold
as 100 standard deviations. Due to memory constraints,
this step is carried on by splitting the signal into sections
of length T .

• Surpass threshold interval: The estimated threshold is
applied to each T long section. The intervals within which
the energy signal exceeds the threshold are saved as a
candidate event. See Figure 2 (a).

*Threshold Surpass interval Event boundaries

A

B* *

*

(a) (b)

Figure 2: Schematic view of the segmentation stage

• Candidate event segmentation: Having identified pos-
sible candidate events, its exact time boundaries, i.e. its
beginning and ending times, must be determined. To this
end, the area of the shadowed A region, which lies to the
right (or left) of the event surpass interval, is computed
(see Figure 2 (b)). If relative energy contribution of A
region is greater than 0.1%, event ending (or beginning)
time is updated accordingly. A region is expanded to
B region, iteratively, until the relative energy increment
is no longer significant (below 0.1%). Candidate event
boundaries (green triangles in Figure 2) are properly
determined with this algorithm.

• Fragmentation and duration test [13]: If two seg-
mented candidate events are close to each other in time,
i.e. the ending of the first and beginning of the second
are separated by less than δ (of the order of 102 ms),
the actual event may have been fragmented. In this case,

the two candidate events are merged into a single one.
Moreover, candidate events duration must be checked to
lie within reasonable snoring durations. The time duration
of the candidate events is verified to lie within these
boundaries, i.e., within ∆tmin and ∆tmax (orders of
magnitude 102 ms and 103 ms, respectively), otherwise,
the event is discarded.

For each whole night recording, the segmentation stage
returns N candidate events, with the respective boundaries for
each. Each candidate event is defined by its boundaries, i.e.,
its initial and final times.

D. Feature Extraction
A set of features needs to be extracted from each snore

candidate. These features can be extracted from time and fre-
quency domains to individually characterize candidate events
and are subsequently used to classify candidates as snore
or non-snore events during the clustering process. We have
generated a set of m = 75 features, based on the pool of
features proposed by Dafna et al. [13]. These set of features are
presented in Table I and further analyzed in Section IV. This
set of features is specially designed to cover several acoustic
characteristics from within events (denoted intra-event) and
comparative between events (denoted inter-event).

For each snore candidate an N × m array M is created.
Each column i of M contains a column vector of values
(f

(1)
i , f

(2)
i , . . . , f

(N)
i ), where f

(k)
i corresponds to fi feature

value for the kth candidate. Each extracted feature spreads
over a particular interval [min k{f (k)i },max k{f (k)i }] and a
normalization should be applied, which rescales the range of
all features to lie within [0, 1]. This normalization is essential
to the variance analysis to be carried on in the next stage.

E. Dimensionality Reduction
A dimensionality reduction technique can be applied to

extract the most important information from the set of features.
From the total set of 75 features, we have selected 10 most
important features, with a Mutual Information method for
a feature selection. We have chosen Principal Component
Analysis (PCA) to compute new variables denoted principal
components which are obtained as linear combinations of
the 10 original features [16]. Therefore, the m dimensional
set of features extracted can be reduced to only two dimen-
sions, suitable for the clustering process. The first principal
component is the linear combination of features having the
greatest variance in the data set, which means this component
explains the largest part of the data behavior. The second
component has the next highest variance and is subject to the
condition that it is uncorrelated, i.e. orthogonal, with the first
principal component. Two N vectors are returned in this stage,
pi = (p

(1)
i , . . . , p

(k)
i , . . . , p

(N)
i ), with i=̇1, 2, which contain

values for the first (i = 1) and second (i = 2) principal
component of each candidate event.

F. Clustering
The snoring candidate events must be split into snore

and non-snore groups using a clustering algorithm. Candidate
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Table I: Features extracted from each event

Time Domain Features

Count Feature
1 Relative energy prior to detected event
2 Relative energy posterior to detected event
3 Rhythm intensity (+- 12 sec)
4 Rhythm period (+- 12 sec)
5 Rhythm period (+- 6 sec)

6
Ratio of relative energy prior
and posterior to detected event

7 Normalized area beneath energy envelop
8 Skewness of envelop formation
9 Ratio of areas before and after the peak
10 Total event energy
11 10 seconds before and after period ratio

Frequency Domain Features

Count Feature
12 First formant frequency
13 First formant magnitude

14-33 20 Mel-Frequency Cepstrum Coefficients (MFCC)
34-53 20 Linear Prediction Coefficients (LPC)
54-57 4 moments of MFCC coefficients
58-61 4 moments of LPC coefficients
62-69 8 subband-frequency distribution

70 Spectral flux
71-74 4 moments of frequency distribution (DFT)

75 Pitch density

event k is defined in the p1−p2 plane of principal components
as a pair of coordinates (p

(k)
1 , p

(k)
2 ). We propose an EM

algorithm for GMM applied to the clustering problem. EM
algorithm applied to GMM [17] tries to estimate a set of
parameters θj = (ωj , µj ,Σj) where j=̇1, 2 which maximize
the log-likelihood function for the set of candidate events:

L(i) =
1

N

N∑

k=1

log




2∑

j=1

ω
(i)
j φ

(
p(k)

∣∣∣∣∣µ
(i)
j ,Σ

(i)
j

)
 , (1)

where L(i) represents the log-likelihood at the i-th iteration,
φ(x|µ,Σ) is the Gaussian distribution with average µ =
(µ1, µ2) and covariance matrix Σ2×2. The parameters {ωj}
represent the weights given to each of the two Gaussians
and p(k) = (p

(k)
1 , p

(k)
2 ). The maximization is achieved by

iteratively updating the set of parameters θj until L(i) sat-
urates. The identity of candidate events as snore or non-snore
is assessed in a probabilistic manner through the computation
of membership weights, which are associated to the probability
that a given event is generated from Gaussian component 1 or
2. EM iteration is ensured to never decrease the log-likelihood
function.

G. Automatic Cluster Labeling

After constructing the clusters from the data set, each
cluster needs to be automatically labeled as snore or non-
snore. The most significant distinction between a snore and
non-snore cluster is the internal cluster cohesion. The data
set on snore clusters tends to be more compact as compared
to non-snore clusters. The algorithm automatically labels as
snore the most compact between the two clusters. This labeling
is unsupervised, which is essential for a sleep monitoring
solution to be able to attain a wide population, demanding
a fully automatic mHealth application.

IV. EVALUATION

In this Section, we discuss and evaluate our unsupervised
snoring events detection solution for mHealth. We first de-
scribe how the proposal solution was implemented and in the
sequence, we present and discuss the results obtained.

A. Methodology

An Android application was specially designed to acquire
and record the acoustic signal from the whole night (6 hours
approximately), and to transmit it to the cloud for further
processing. The acoustic signal is sampled at a frequency of
44.1 kHz and a bit depth of 16 bits. The participants were
oriented to install the application on their own smartphone
and place it at a distance of approximately 50 cm beside
the bed before sleep, on a night stand cleared for other
objects. A trained technician was responsible for listening to
all segmented candidate events and manually classify each
one as snore or non-snore for the accuracy evaluation of the
proposed solution.

Once the signal has been stored in the cloud, we pro-
ceed to stages III-B-III-G for signal processing and event
classification. We describe below relevant information and
parametrization for some of the stages.

• Pre-processing: The signal is divided into sections of τ
= 10s long and for each one, a frame energy vector is
calculated. The 5 lowest energy frames are elected as
noise standards and used to compute the spectral average
noise of the section. This average is estimative of the
signal noise template and is updated along the night
recording [13]. This template is then used as input to
the Wiener filter [15].

• Segmentation: The standard deviation is calculated over
the total sum of energies for each T = 10 min section
and the energy threshold is established. For each T
long section, an energy vector is calculated using 60 ms
frames with 75% of overlap. The resulting signal is then
tested for threshold surpassing. Having determined the
candidate event boundaries, fragmentation and duration
tests must be further applied. We chose δ = 200 ms,
∆tmin = 600 ms and ∆tmax = 3500 ms.

• Dimensionality Reduction: The 10 features selected
through the Mutual Information method are, in order of
importance: 6, 1, 29, 61, 65, 2, 36, 63, 70, 7 (count num-
bers are according to Table I). Using Mutual Information
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Figure 3: Clustering results: comparison between manually labeled, EM labeled and FCM labeled snore and non-snore clusters
for one night recording

for feature selection involves feeding the algorithm with
the manually labeled events classification for a set of
events to measure how much information the presence
or absence of a feature contributes to making the correct
classification. The 10 features selected in this manner will
be applied to all recordings alike. The 10 features are
fed to PCA which will then generate a pair of principal
components particular to each recording.

B. Results

We applied our solution to 6 night recordings, totalizing
32.5 hours. The segmentation stage returned a total of 5323
snore candidate events, of which 3574 were manually labeled
as snoring. Table II depicts the actual (manually labeled)
numbers of snoring events for simple and OSA snorers, and
compares the accuracies averaged over nights obtained for an
implementation of our solution (EM) and an implementation of
FCM, discriminating simple and OSA snorers. For both simple
and OSA snorers, one concludes that EM average accuracies
are well above FCM corresponding accuracies (over one -
either EM or FCM - standard deviations).

Table II: Algorithms comparison for simple and OSA snorers

Number
of Snore
Events

Average
Accuracy
EM (%)

Average
Accuracy
FCM (%)

Simple
Snorers 2670 91.3± 1.0 81.6± 8.8

OSA
Snorers 904 79.7± 0.9 67.7± 4.5

The explanation for the poor performance of FCM is
illustrated in Figure 3. We compare the clusters of snore and
non-snore as defined by manual labeling (panel (a)), cluster
results by our EM solution (panel (b)), and cluster results by an
FCM implementation (panel (c)) of the same data set for one
night recording of an OSA snorer. We see from panel (a) that
the two manually labeled clusters are superimposed in p1−p2

plane which, by the PCA analysis, is ensured to span the best
principal components for data segregation. This superposition
is a typical behavior for overnight sound recordings.

We demonstrate in panel (b) that EM clustering is able to
estimate the true snoring distribution to an adequate accuracy,
which for this specific recording is 81.0%. This is due to the
statistical approach of EM applied to GMM, which assumes
a Gaussian distribution of snore and non-snore events, as
described in Section III-F. Although we have no reason
to expect non-snore events to be normally distributed, the
assumption of normal distributed snores is a reasonable one,
as explained in Section II. Meanwhile, FCM implementation,
which clusters events together considering its distances to two
iteratively defined centroids, is not able to approximate the
true snore/non-snore clusters. In fact, in the specific recording
considered in Figure 3, the accuracy is 61.3%. We expect all
other clustering algorithms based on geometric criteria such as
FCM, KHM, etc, to present similarly poor performances, since
all of them consider point proximity as similarity criterion.

Figure 4 aims to demonstrate that the Gaussian approxi-
mation to the snore distribution is an adequate one. The data
set considered is the same as in the previous plots. In Figure
4, panel (a), we compare manually labeled snoring cluster
histogram to the same EM estimated Gaussian distribution.
Panel (b) depicts histograms of the manually labeled and EM
labeled snoring clusters.

The ideal behavior of the EM implementation occurs when
the Gaussian distributions estimated by the EM algorithm
well approximate both the snore and non-snore manually
labeled histograms. The non-snore manually labeled histogram
will usually not approximate a Gaussian distribution, because
events are not identically distributed, since they may be as
diverse as a car passing by, a cough, or an object falling on the
ground. However, even if non-snore events are not normally
distributed, for simple snorers, the manually labeled snore
histogram approximates well a Gaussian distribution (with like
mean and appropriately defined variance). In such a case, EM
is expected to deliver a high accuracy, as is verified from EM
average accuracy for simple snorers and its standard deviation
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Figure 4: Clustering results: comparison between EM estimated distribution for snoring events, EM histogram for the snoring
events cluster, and manually labeled snoring events histogram

(Table II). Below we show that even when OSA snorers are
considered, which represents a much more complex situation,
EM is able to perform adequately.

The night recording of an OSA snorer is typically composed
of apneic and non-apneic snores [7]. As a result, the manually
labeled snoring events histogram is heavy tailed and almost
bimodal (see Figure 4, panel (a)). Although both averages
〈p1〉 and 〈p2〉 are very close for the EM Gaussian distribution
and manually labeled snores histogram, we see from panel
(a) that the histogram is not well approximated by the EM
estimated distribution. Still, we demonstrate in panel (b) that
the estimated EM histogram fits almost perfectly the manually
labeled snore events histogram, as we expect from an adequate
clustering. This is quite remarkable and is only possible
because EM is able to cluster events together by (indirectly)
recognizing its ”statistical similarity”, i.e. the probability of
two events being drawn from the same given distribution.

V. CONCLUSION

In this paper, we proposed an unsupervised segmentation
and classification of snoring events for the mHealth context.
The design highlighted a sequence of stages, which process the
acoustic signal for events segmentation and clustering into two
classes: snore and non-snore. The proposal was evaluated with
recordings collected from simple and OSA snorers, reaching
satisfactory accuracy results. The EM algorithm was able to
well approximate the snoring events distribution, perform-
ing significantly better than the FCM algorithm. The results
demonstrated that our proposal is a viable solution for the
detection of snoring events in uncontrolled environments.

For future works, we intend to expand the number of record-
ings to investigate new features and behaviors of the OSA
snore events. Statistical methods should be applied aiming to
establish relations between the distributions of event features
and sleep disorders.
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