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Resumo  

Infraestruturas lineares, como as estradas, estão por todos os lugares no mundo e os 

impactos causados por elas são inúmeros e intensos. Focando no impacto de mortalidade 

de fauna por colisão com veículos, esta tese teve o objetivo de propor diferentes 

abordagens para identificar locais para a implementação de medidas de mitigação desse 

impacto. Além da introdução geral, a tese tem três capítulos que correspondem a três 

artigos científicos. O primeiro capítulo explorou dados de répteis atropelados em 33 

meses de monitoramento mensais em 277 km da BR-101 e avaliou tanto o padrão espacial 

quanto o padrão temporal de fatalidades além de estimar a magnitude de atropelamentos 

de répteis na estrada. O segundo e o terceiro capítulo exploram abordagens preditivas de 

atropelamento de fauna para dois diferentes contextos: uma única estrada e uma rede de 

estradas. O segundo capítulo teve o objetivo de testar se usando características da 

paisagem, da rodovia e dos animais, nós podemos predizer onde estão os locais com maior 

chance de um animal ser atropelado. Para isso, também para a BR-101, calculei a 

probabilidade de travessia através de mapas de conectividade e a probabilidade de colisão 

através de uma equação que considera o tráfego de veículos, o tamanho dos animais e dos 

veículos e a velocidade dos animais para duas espécies de mamíferos nativos do Brasil: 

o furão (Galictis cuja) e o zorrilho (Conepatus chinga). Para o terceiro capítulo, foi 

utilizado a rede de estradas do estado de Victoria na Austrália, na qual calculei a 

probabilidade de travessia e de colisão para o canguru cinza oriental (Macropus 

giganteus), espécie nativa da Austrália. No primeiro capítulo, demonstrei que: 15.377 

cágados, lagartos e serpentes são atropelados a cada ano na BR-101 no sul do Brasil; hot 

moments de atropelamentos de répteis ocorreram no verão, especialmente em dezembro 

para lagartos e serpentes; hotspots de atropelamentos foram coincidentes para tartarugas, 

lagartos e serpentes; existiu um efeito positivo do tráfego e da rizicultura nos 



      

 
 

atropelamentos e negativo da silvicultura; medidas de mitigação nos hotspots prioritários 

poderiam evitar 45% das fatalidades de répteis. No segundo capítulo, concluí que a 

probabilidade de fatalidade através da multiplicação das probabilidades de travessia e 

colisão não teve um bom poder de predição dos atropelamentos e que a probabilidade de 

colisão sozinha foi melhor em predizer os atropelamentos do que a probabilidade de 

travessia, entretanto as espécies apresentaram padrões diferentes. No terceiro capítulo, 

concluí que um modelo aditivo das duas probabilidades foi melhor em predizer os 

atropelamentos de cangurus do que os modelos individuais de probabilidades de travessia 

e colisão, entretanto o modelo integrado não apresentou a predição esperada. A 

probabilidade de travessia foi um preditor melhor dos atropelamentos de cangurus que a 

probabilidade de colisão para a rede de estradas. Portanto, concluo que: 1) os 

atropelamentos de fauna podem ser bastante acentuados em determinados contextos e que 

é possível identificar locais de maior agregação que seriam efetivos para mitigação; 2) é 

possível usar dados de tráfego de veículos e tamanho e velocidade dos animais para 

predizer locais de mais atropelamentos, entretanto deve se ter cuidado pois isso é 

específico para cada espécie; 3) para o contexto de rede de estradas, é possível predizer o 

atropelamento utilizando a probabilidade de travessia e a probabilidade de colisão em um 

mesmo modelo. Ainda é necessário explorar outras maneiras de calcular e integrar as 

probabilidades aqui propostas, mas nesta tese eu demonstrei uma forma possível de 

predizer atropelamentos para um contexto em que não há dados dessa natureza 

disponíveis, seja para estradas novas ou para uma rede de estradas. 

 

Palavras-chave: colisões animais-veículos, hotspots de atropelamento, ecologia da 

paisagem 

  



      

 
 

Abstract  

Linear infrastructures, such as roads, are worldwide and impacts caused by them are 

innumerable and intense. We focused on impact of road-kills due to wildlife-vehicle 

collisions and aimed to propose different approaches to identify locations to implement 

mitigation measures for this impact. Besides the general introduction, this thesis has three 

chapters which correspond to three scientific papers. The first chapter examined reptile 

road-kill data from monthly road survey during 33 months in a 277 km of BR-101 road. 

We evaluated spatial and temporal patterns of road-kills and estimated the magnitude of 

reptile road-kills on that road. The second and third chapters examined predictive 

approaches of wildlife road-kills for two different contexts: a single road and a road 

network. The second chapter aimed to test if it is possible to use of landscape, road, 

animals features to predict locations where there are more road-kills. For the same road 

(BR-101), I calculated crossing probability using connectivity maps and collision 

probability using an equation which considers traffic volume, animal and vehicle size, 

and animal speed for two native mammal species from Brazil: the Lesser Grison (Galictis 

cuja) and the Molina’s Hog-nosed Skunk (Conepatus chinga). To the third chapter, I used 

the road network of Victoria state in Australia, which I calculated crossing and collision 

probabilities for eastern grey kangaroo (Macropus giganteus), a native species from 

Australia. In the first chapter, I demonstrated that: 15,377 freshwater turtles, lizards and 

snakes are road-kills each year in Br-101 in Southern Brazil; road-kill hot moments occur 

in the summer, specially in December for lizards and snakes; road-kill hotspots are 

coincident among freshwater turtles, lizards and snakes; there is a positive effect of traffic 

and rice plantation on road-kills and a negative effect of silviculture; mitigation measures 

of priority hotspots could avoid 45% of reptile fatalities. In the second chapter, I 

concluded that fatality probability though multiplication of crossing and collision 



      

 
 

probabilities did not have a good predictive power of road-kills and collision probability 

alone was better to predict road-kills than crossing probability, however species showed 

different patterns. In the third chapter, I concluded that an additive model with the two 

probabilities was better to predict kangaroo road-kills than individual models of crossing 

and collision probabilities, however the integrated model did not present an expected 

prediction. Crossing probability was a better predictor of kangaroos road-kills than 

collision probability for the road network. Therefore, I concluded that: 1) wildlife road-

kills can be really high in some contexts and it is possible to identify locations with more 

road-kill aggregations which would be effective for mitigation; 2) it is possible to use 

traffic volume, animals size and speed to predict location of road-kills, however it is 

specific for each species; 3) for road network context, it is possible to predict kangaroo 

road-kills using crossing and collision probability in the same model. Exploring another 

ways to calculate and integrate the probabilities used here is necessary, however in this 

thesis I demonstrated one possible manner to predict road-kills in a context which road-

kill are not available, such as new roads or road networks. 

 

Keywords: wildlife-vehicle collisions, road-kill hotspots, landscape ecology 
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Introdução Geral 

 

Rodovias pelo mundo e seus impactos 

Rodovias facilitam o movimento de pessoas, por isso têm um importante papel no 

desenvolvimento econômico e urbano e, assim, fazem-se presentes onde quer que os 

humanos se estabeleçam. Contudo, a construção de rodovias de todos os tipos e o 

consequente tráfego afetam os ecossistemas terrestres e aquáticos, direta e indiretamente, 

de várias maneiras (Figura 1): a perda de habitat devido à construção da estrada, a 

mortalidade de fauna por atropelamento, a subdivisão de populações através da 

fragmentação e a inacessibilidade de recursos através do efeito de barreira (VAN DER 

REE; SMITH; GRILO, 2015). A mortalidade pode ser considerada um dos principais 

mecanismos diretos a comprometer o tamanho e persistência das populações silvestres 

(FAHRIG; RYTWINSKI, 2009; JACKSON; FAHRIG, 2011; JAEGER; FAHRIG, 2004) 

e a identificação dos fatores e ações para diminuir a mortalidade são fundamentais no 

contexto da conservação da biodiversidade. Segundo Fahrig & Rytwinski (2009), a 

mortalidade de fauna por atropelamento pode ter efeitos substanciais na densidade 

populacional, tendo aparentemente uma maior importância para a persistência das 

populações do que o isolamento por evitamento da rodovia (JACKSON; FAHRIG, 2011). 

Os atropelamentos de animais silvestres em rodovias são considerados por alguns autores 

como a principal causa antrópica direta de mortalidade de fauna, ultrapassando até mesmo 

a caça (FORMAN; ALEXANDER, 1998). Assim, tem-se despendido um esforço imenso 

em avaliar a magnitude do impacto de atropelamentos sobre a fauna. A contagem dos 

animais atropelados pode ser útil para avaliar a magnitude do impacto de rodovias, 

entretanto essa simples contagem é inadequada para entender as relações entre a rodovia 

e a fauna silvestre (CLEVENGER; CHRUSZCZ; GUNSON, 2003). Diversos trabalhos 
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têm demonstrado que os atropelamentos não ocorrem aleatoriamente ao longo das 

rodovias, mas que são agregados espacialmente (CLEVENGER; CHRUSZCZ; 

GUNSON, 2003; COELHO; KINDEL; COELHO, 2008). Por isso, alguns estudos têm 

priorizado as estimativas de pontos de agregação de atropelamentos ao longo da rodovia 

com o objetivo principal de propor locais e medidas mais adequadas para mitigar esse 

impacto.  

Estratégias e ações visando mitigar os impactos de rodovias sobre a fauna têm sido 

planejadas e implementadas ao redor do mundo (RYTWINSKI et al., 2016), sendo 

divididas em dois tipos: aquelas voltadas à mudança de comportamento dos usuários da 

rodovia, como redutores de velocidade, placas sinalizadoras e sistemas de detecção 

animal (HUIJSER et al., 2015); e aquelas voltadas ao manejo da fauna, como passagens 

subterrâneas (BHARDWAJ et al., 2017; CLEVENGER; WALTHO, 2005; JUMEAU; 

PETROD; HANDRICH, 2017; SMITH; VAN DER REE; ROSELL, 2015) e sobre a 

rodovia (GOOSEM; WESTON; BUSHNELL, 2005; SOANES et al., 2013; TEIXEIRA 

et al., 2013), cercas direcionadoras e refletores (BENTEN; ANNIGHÖFER; VOR, 2018; 

D’ANGELO; VAN DER REE, 2015; GLISTA; DEVAULT; DEWOODY, 2009). 

Contudo, o sucesso dessas ações depende diretamente da escolha das medidas mais 

adequadas a cada situação e da correta definição dos locais para sua implementação. 

Entretanto, definir esses locais não é uma tarefa fácil. Para diferentes contextos haverá 

diferentes formas que possibilitarão indicar os locais. Na minha tese de doutorado 

explorei diferentes abordagens para identificar esses lugares dependendo do tipo de dado 

disponível. 
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Figura 1. Impactos de rodovias e ferrovias na fauna silvestre, perda de habitat causada pela 

instalação das infraestruturas e degradação do habitat adjacente. Ao tentar cruzar, muitos animais 

podem morrer por colisões com veículos ou trens (a, a’) ou ainda por ficarem presos entre os 

trilhos (b’). Já o efeito de barreira ou filtro ocorre porque a presença da rodovia e da ferrovia 

impede que os animais cruzem ou diminuem seu acesso para o outro lado (c) e alguns animais 

morrem ao tentar cruzar, fazendo com que apenas alguns indivíduos consigam atravessar com 

sucesso (d). A estrada e suas cercanias também podem ser um atrator (e) para a fauna e a 

vegetação adjacente ou a própria estrada podem atuar como corredor (f), tanto para espécies 

nativas como invasoras, eventualmente resultando em um mecanismo adicional de fatalidades (g). 

Figura retirada de TEIXEIRA et al. (2018) adaptada de VAN DER REE; SMITH; GRILO (2015). 
 

Minha tese 

Essa tese nasceu da vontade de pesquisar algo que fosse diretamente aplicado, que 

pudesse de alguma forma ajudar a orientar estratégias de mitigação dos atropelamentos 

de fauna em rodovias no Brasil e no mundo.  

Se houver a possibilidade de monitorar uma estrada e obter dados de fauna atropelada, 

claramente eu posso usar essa informação para informar os locais onde foram encontrados 

mais animais atropelados. Dados de monitoramento sistemático (sejam eles semanais, 
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quinzenais, mensais, trimestrais) podem ser usados para fazer uma análise de agregações 

de atropelamentos e identificar onde estão os locais em que essa concentração é maior do 

que o esperado ao acaso, identificando os hotspots de atropelamento. Esse foi o enfoque 

da primeira parte da minha tese (capítulo 1) que explorou padrões de mortalidade de 

répteis em uma estrada do sul do Brasil. Esse trabalho explorou dados de répteis 

atropelados em 33 meses de monitoramento mensais em 277 km da BR-101 e avaliou 

tanto o padrão espacial quanto o padrão temporal de fatalidades, além de estimar a 

magnitude de atropelamentos de répteis nessa estrada. 

A abordagem explorada no capítulo 1 é extremamente útil no contexto de uma estrada 

construída e já operando, na qual é possível obter dados de atropelamento. Entretanto, o 

que fazer se eu preciso indicar locais para mitigação em estradas que estão sendo 

planejadas ou ainda se eu preciso indicar locais prioritários para mitigação em uma rede 

de estradas, onde o custo para realização de um monitoramento sistemático é altíssimo e 

as vezes temporalmente inviável. Será que eu consigo indicar locais com maior incidência 

de atropelamentos sem utilizar os dados de atropelamento para isso? Essa foi a pergunta 

motivadora dos próximos dois capítulos da tese. 

No segundo capítulo, eu testei se usando características da paisagem, da rodovia e dos 

animais, eu posso predizer onde estão os locais com maior chance de um animal ser 

atropelado. Eu baseei minha ideia no modelo conceitual apresentado na figura 2. A ideia 

foi reconhecer os dois processos que acontecem sequencialmente para que um animal seja 

atropelado. Primeiro o animal precisa tentar cruzar uma estrada, depois ele precisa ser 

atingido por um veículo. Os lugares mais críticos para a ocorrência de fatalidades serão, 

assim, os locais de maior probabilidade de cruzamento de um animal e onde há maior 

probabilidade de um veículo colidir com ele. Modelos preditivos foram previamente 

propostos, mas raramente foram validados.  Para calcular a probabilidade de colisão, 
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HELS & BUCHWALD (2001) propuseram uma equação largamente utilizada (GRILO 

et al., 2018; JAARSMA et al., 2007; LITVAITIS; TASH, 2008), contudo desconhecemos 

trabalhos que tenham validado as predições. Da mesma forma, a probabilidade de cruzar 

a estrada tem sido avaliada por distintas abordagens (BASTILLE-ROUSSEAU et al., 

2018; GIRARDET; FOLTÊTE; CLAUZEL, 2013; GRILO et al., 2011; KANG et al., 

2016) e utilizada em modelos preditivos, mas raramente validada (PATRICK et al. 2012). 

 

Figura 2. Esquema com as principais etapas e fatores necessários para o desenvolvimento do 

modelo de probabilidade de fatalidade que baseou o desenvolvimento dos capítulos 2 e 3 desta 

tese. 

 

O segundo capítulo foi focado em uma única estrada. Eu usei o mesmo trecho da BR-101 

usado no primeiro capítulo da tese e construí um modelo de probabilidade de fatalidades 

para duas espécies de mamíferos nativos: o furão (Galictis cuja) e o zorrilho (Conepatus 

chinga). A ideia foi explorar uma abordagem útil para ser usada em estradas a serem 

construídas ou pavimentadas; nessas últimas espera-se um elevado incremento de 

velocidade e tráfego de veículos e é bastante difícil obter observações de mortalidade em 
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número suficiente para fazer uma avaliação como feita no primeiro capítulo. No contexto 

de uma estrada nova, é possível modelar o tráfego e a velocidade prevista para a futura 

estrada e já se conhece a paisagem do entorno sabendo o traçado proposto. Assim, seria 

possível construir os modelos antes da construção ou pavimentação de estradas e propor 

locais para implementação de mitigação. Eu construí uma série de mapas de 

conectividade que foram usados para extrair a probabilidade de travessia e usei o tráfego 

de veículos, o tamanho do carro, do animal, da estrada e a velocidade com que o animal 

atravessa a estrada para calcular a probabilidade de colisão de cada espécie na estrada. 

Além disso, eu multipliquei essas probabilidades para obter a probabilidade de fatalidade 

final. Mas como saber se esses trechos são mesmo os trechos com maior fatalidade e se 

essa probabilidade integrada final tem um maior poder preditivo do que as probabilidades 

individuais? Eu validei os modelos e avaliei a capacidade de predição de cada uma dessas 

probabilidades usando dados de atropelamentos de furão e zorrilho na mesma estrada, 

para os mesmos trechos, obtidos em um monitoramento sistemático de fauna atropelada.  

A partir do segundo capítulo, surgiu a vontade de aplicar o mesmo modelo para uma rede 

de estradas. A primeira ideia era aplicar para estradas do Rio Grande do Sul, entretanto a 

dificuldade de acesso aos dados, principalmente de fluxo de veículos nos levou a pensar 

em alternativas. Ao longo desse percurso, me deparei com um artigo que propôs uma 

estrutura muito parecida com a minha (Visintin et al. 2016). O trabalho usava a mesma 

ideia de dois processos hierárquicos para que um animal fosse atropelado: a exposição à 

estrada e o perigo de atropelamento. A diferença é que neste trabalho, os autores 

utilizaram a ocorrência da espécie como a probabilidade de travessia e o fluxo e a 

velocidade dos veículos como a probabilidade de colisão. A partir da oportunidade do 

Doutorado Sanduíche pela CAPES, resolvi propor os modelos do segundo capítulo para 

os dados da rede de estradas do estado de Victoria na Austrália e avaliar o poder de 
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predição dos modelos para um contexto de rede de estradas. Desenvolvi o terceiro 

capítulo em quatro meses na Austrália junto ao Grupo de Ecologia Quantitativa e 

Aplicada da Universidade de Melbourne. 

No terceiro capítulo, utilizei dados da rede de estradas australianas no estado de Victoria 

(227.819 km2), focando no canguru cinza oriental (Macropus giganteus) como espécie-

alvo. A partir de mapas de uso e cobertura do solo e da ocorrência da espécie, eu construí 

mapas de conectividade que foram usados para extrair a probabilidade de travessia. A 

probabilidade de colisão considerou o fluxo de veículos, a velocidade da espécie e a 

largura das estradas, pois há dados dessa natureza disponíveis para toda a rede. Utilizei 

47.730 trechos de 500 metros e obtive a probabilidade de travessia e a probabilidade de 

colisão para cada um dos trechos. A validação foi feita com dados de presença de 

atropelamento em cada trecho baseado em ocorrências reportadas para a Wildlife Victoria 

(WILDLIFE VICTORIA, 2015), organização que trabalha com bem-estar animal. 

Além desta introdução geral, está tese está estruturada em três capítulos que 

correspondem a três artigos científicos e uma última seção de considerações finais. Nessa 

última, fiz um detalhamento das principais conclusões de cada um dos capítulos e de 

como essa tese pode contribuir para o estudo do impacto de atropelamento de fauna e da 

proposição de medidas de mitigação. 

  



      

16 
 

Capítulo 1 

 

 

 

  

 

 

 

Atropelamento de répteis no sul do brasil: composição, hot moments e 

hotspots 

 

 

 

 

 

 

 

Esse capítulo está publicado na revista Science of the Total Environment e foi feito em 

colaboração com Diego Janisch Alvares, Fernanda Zimmermann Teixeira, Gabriela 

Schuck, Igor Pfeifer Coelho, Isadora Beraldi Esperandio, Juan Anza, Júlia Beduschi, 

Vinicius Augusto Galvão Bastazini. Ele pode ser acessado em 

https://doi.org/10.1016/j.scitotenv.2017.09.053.
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Reptile road-kills in Southern Brazil: composition, hot moments and hotspots 1 

 2 

HIGHLIGHTS 3 

• Estimate of 15,377 freshwater turtles, lizards, and snakes road-killed per year;  4 

• Road-kill hot moments in summer, especially in December for lizards and snakes; 5 

• Road-kill hotspots highly coincident among freshwater turtles, lizards, and 6 

snakes; 7 

• Positive effects of traffic and rice plantation, and negative of pine plantation; 8 

• Hotspots (21% of the road extent) included 45% of reptile fatalities. 9 

 10 

GRAPHICAL ABSTRACT 11 

 12 

 13 

ABSTRACT  14 

Understanding road-kill patterns is the first step to assess the potential effects of road 15 

mortality on wildlife populations, as well as to define the need for mitigation and support 16 

its planning. Reptiles are one of the vertebrate groups most affected by roads through 17 

vehicle collisions, both because they are intentionally killed by drivers, and due to their 18 

biological needs, such as thermoregulation, which make them more prone to collisions. 19 
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We conducted monthly road surveys (33 months), searching for carcasses of freshwater 20 

turtles, lizards, and snakes on a 277-km stretch of BR-101 road in Southernmost Brazil 21 

to estimate road-kill composition and magnitude and to describe the main periods and 22 

locations of road-kills. We modeled the distribution of road-kills in space according to 23 

land cover classes and local traffic volume. Considering the detection capacity of our 24 

method and carcass persistence probability, we estimated that 15,377 reptiles are road-25 

killed per year (55 reptiles/km/year). Road-kills, especially lizards and snakes, were 26 

concentrated during summer, probably due to their higher activity in this period. Road-27 

kill hotspots were coincident among freshwater turtles, lizards, and snakes. Road-kill 28 

distribution was negatively related to pine plantations, and positively related to rice 29 

plantations and traffic volume. A cost-benefit analysis highlighted that if mitigation 30 

measures were installed at road-kill hotspots, which correspond to 21% of the road, they 31 

could have avoided up to 45% of recorded reptile fatalities, assuming a 100% mitigation 32 

effectiveness. Given the congruent patterns found for all three taxa, the same mitigation 33 

measures could be used to minimize the impacts of collision on local herpetofauna. 34 

 35 

Keywords: carcass detection, carcass removal, mitigation, road ecology, road-kill 36 

aggregation, wildlife-vehicle collisions  37 

 38 

1. Introduction 39 

Among several road impacts on wildlife, such as habitat loss, degradation, and 40 

fragmentation, fatalities due to vehicle collisions are one of the most concerning impacts 41 

(Forman et al., 2003; van der Ree et al., 2015b). Road mortality can cause faster 42 

population declines compared to other impacts, such as connectivity reduction (Jackson 43 
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and Fahrig, 2011; Jaeger and Fahrig, 2004). Road-killing can also foster evolutive 44 

changes in populations (Brady and Richardson, 2017). Understanding patterns and 45 

processes related to wildlife-vehicle collisions is fundamental for guiding policies to 46 

minimize their impact. 47 

Despite the long interest in understanding the effects of reptile-vehicle collisions 48 

(Fitch, 1949) and the fact that this group seems to be more affected than other vertebrates 49 

(D’Amico et al., 2015; Jochimsen et al., 2014), reptiles are still underrepresented in road 50 

ecology literature (Fahrig and Rytwinski, 2009; Gunson et al., 2011). The lesser interest 51 

on reptile fatalities is probably explained by the importance that other vertebrate groups, 52 

such as medium and large mammals, pose to human safety (Danks and Porter, 2010; 53 

Huijser et al., 2009). However, when mitigations are planned aiming to reduce the 54 

anthropogenic impact on biodiversity, relying on information available for a single 55 

taxonomic group might be ineffective, since road-kill patterns in space (e.g. Teixeira et 56 

al., 2013b) and time can vary among distinct taxonomic or functional groups.  57 

Even without knowledge of the demography of local populations, understanding 58 

which species and how many animals die on roads can be the first step to assess the 59 

potential effects of road mortality on wildlife populations, as well as to define the need 60 

for mitigation and support its planning. Road-kill estimates need to incorporate inherent 61 

errors of carcass surveys, such as imperfect detection and carcass persistence (Santos et 62 

al., 2011; Teixeira et al., 2013a). Studies accounting for these errors on reptile road-kill 63 

estimates are rare (but see Gerow et al., 2010 and Teixeira et al., 2013a) and the real 64 

magnitude of reptile mortality is certainly underestimated. Road mortality effects are not 65 

equally distributed in time and space (Beaudry et al., 2010), therefore assessing road-kill 66 
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hot moments and hotspots, i.e. periods and locations with significantly higher fatalities, 67 

is important to propose periods and locations for mitigation (Gunson and Teixeira, 2015).  68 

Both intrinsic and extrinsic factors can affect road-kill distribution. Species have life 69 

traits that make them more vulnerable to vehicle collisions, such as mobility and 70 

behavioral responses to traffic volume (Jacobson et al., 2016; Lima et al., 2014). 71 

Landscape and road characteristics certainly affect road-kill patterns. Variables related to 72 

the presence and distance of water bodies and to traffic volume are recognized as  73 

important factors determining spatial patterns of reptile fatalities on roads (Glista et al., 74 

2008; Langen et al., 2012, 2009). 75 

Knowledge of environmental or road attributes related to higher road-kill probability 76 

can be used to identify priority periods and locations for mitigation on other roads, for 77 

which road-kill data are unavailable (D’Amico et al., 2015; Glista et al., 2008). Although 78 

there is a number of possible mitigation strategies potentially beneficial for reptiles, 79 

passages associated with funneling fencing seem to be the most effective for multispecies 80 

purposes (Jackson et al., 2015). Currently available technologies allow for 81 

implementation of mitigation structures during road operation with relatively little trouble 82 

to traffic, whereas proper design, implementation and maintenance could result on nearly 83 

absolute effectiveness (Aresco, 2005; Van der Ree and Tonjes, 2015). 84 

In this study, we described road-kill patterns for freshwater turtles, lizards, and 85 

snakes on BR-101 road, Southernmost Brazil. We evaluated which species are road-86 

killed, how many reptiles are killed on this road (considering carcass removal and 87 

detection based on experiments), and when and where these road-kills are concentrated. 88 

We also assessed the relationship of reptile fatalities with land cover and local traffic 89 

volume. We expected temporal patterns to show a concentration of fatalities in summer 90 
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months due to higher reptile activity in this period. We expected distinct spatial 91 

distribution of fatalities for each group, considering they vary in natural history: 92 

freshwater turtles are more associated with aquatic environments, while lizards tend to 93 

occupy open and forested areas. For snakes, we expected the spatial pattern of fatalities 94 

to be less aggregated due to their higher regional species richness. We also expected that 95 

traffic volume would have a stronger association with freshwater turtle fatalities than with 96 

other groups because they are less mobile and present a ‘pauser’ behavior in reaction to 97 

upcoming vehicles (Jacobson et al., 2016). 98 

2. Methods 99 

2.1. Study area 100 

We conducted this study on a 277-km stretch of BR-101 road, located at the lowlands 101 

of Rio Grande do Sul state, Brazil (initial coordinates 30°9'1.20"S and 50°30'49.33"W, 102 

and final coordinates 32°0'23.64"S and 52°2'17.73"W; see Fig.2; Appendix A). BR-101 103 

is located in the eastern side of Patos Lagoon, adjacent to the Lagoa do Peixe National 104 

Park, a recognized Ramsar site (Ramsar Convention, 1962).This stretch is a two-lane 105 

paved road with 11 m of width, a speed limit of 80 km/h, and an average daily traffic 106 

(ADT) between 690 and 2,900 vehicles, depending on the locality. 107 

 108 

2.2. Data Collection 109 

We conducted monthly surveys from September 2012 to August 2014, and from 110 

February to October in 2015, totaling 33 surveys. Two observers (including the driver) 111 

conducted surveys by car at 40-50 km/h (speed limit followed minimum allowed speed 112 

according to Brazilian regulation) from dawn to dusk. Detected carcasses were identified 113 
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to the lowest taxonomic level and their locations were georeferenced with a handheld 114 

GPS. 115 

We used vehicle counters (Vehicle Counter Generation III - TRAFx Research Ltd.) 116 

to calculate the average daily traffic (ADT) in three locations linking the main regional 117 

settlements: Capivari do Sul (n=48 days), Mostardas (n=273 days), and São José do Norte 118 

(n=498 days). Since we found a north-to-south decrease in traffic volume, we 119 

extrapolated traffic volume for each 2-km road segment by performing a linear regression 120 

with the recorded ADT in each surveyed location and the distance to the northernmost 121 

city (Capivari do Sul). 122 

We used a land cover map from LANDSAT 5 TM images classification for 2009 123 

(UFRGS-IB-Centro de Ecologia, 2016) with eight classes: wetlands, native forest, dry 124 

grassland, water, pine plantation, rice plantation, urban areas and mixed areas (various 125 

crops, annual or perennial, and degraded grasslands). We calculated the area of each of 126 

the eight land cover classes within a 2-km buffer centered on each 2-km road segment. 127 

 128 

2.3.  Data Analyses 129 

We assumed that collision risk is related to movement capacity, and grouped reptile 130 

species according to their behavioral responses to traffic volume for subsequent analyses 131 

(Jacobson et al., 2016). Freshwater turtles usually freeze on the road in response to vehicle 132 

presence (‘pausers’), lizards usually flee (‘speeders’) and snakes usually do not respond 133 

to vehicles (‘non-responders’) or show responses as ‘pausers’ or ‘speeders’ (Jacobson et 134 

al., 2016). Therefore, we analyzed freshwater turtles, lizards, and snakes (we included 135 

amphisbaenians in snakes group) as separate groups.  136 

2.3.1. Estimates of road-kill magnitude 137 
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We estimated road-kill magnitude for all reptiles, freshwater turtles, lizards, and 138 

snakes through Nestimate function based on Korner-Nievergelt et al. (2011) using the 139 

Carcass package (Korner-Nievergelt et al., 2015) in R environment (R Core Team, 2016). 140 

This estimate considers the detection capacity of the method, carcass persistence on the 141 

road, number of surveys and survey interval. This method assumes that search intervals 142 

are regular and persistence probability and search efficiency are constant over time. 143 

Carcass persistence was estimated based on the exponential model (Korner-Nievergelt et 144 

al., 2011). 145 

To assess carcass detection and persistence we performed experiments by placing 56 146 

carcasses of reptiles (five freshwater turtles and 51 snakes) previously collected on BR-147 

101 road on a 30-km stretch of the same road. Detection was evaluated for six survey 148 

teams (each of them with two observers following the same method used in regular 149 

surveys) who monitored this 30-km stretch without knowing the location of carcasses. 150 

After all teams had surveyed the road, we checked every carcass placed and found that 151 

ten had been removed. Therefore, we considered 46 carcasses (four freshwater turtles and 152 

42 snakes) for evaluating the probability of detection of the method: 14 carcasses smaller 153 

than 15 cm, 27 from 15 to 35 cm, and five larger than 35 cm.  To estimate carcass 154 

persistence, we used the total 56 carcasses, checking their persistence for five consecutive 155 

days. We used search.efficiency and persistence.prob functions from the Carcass 156 

package to calculate carcass detection and persistence separately for freshwater turtles 157 

and snakes. As we did not include lizard carcasses in our experiment, we used detection 158 

and persistence values from snake carcasses. We used carcass detection and persistence 159 

calculated considering all carcasses as values for reptiles.  160 

2.3.2. Road-kill hot moments 161 
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We analyzed road-kill hot moments for freshwater turtles, lizards, and snakes using 162 

circular statistics in Oriana 4.02 software (Kovach, 2004) considering only data collected 163 

during the first two continuous years of surveys. Months were converted in angles (30-164 

degree intervals) and the sum of road-kills in each month was used as a frequency for 165 

each angle. We then obtained the mean angle, which represents the average period with 166 

the highest number of fatalities within the whole period. We assessed the significance of 167 

the average period in relation to an uniform distribution of road-kills through the Rayleigh 168 

test of uniformity, Z (Kovach, 2004). Then, we calculated the intensity of road-kill 169 

concentration through the average period length (r), which varies from 0 (uniform 170 

dispersion) to 1 (road-kill concentration in the same direction). 171 

2.3.3. Road-kill hotspots 172 

We evaluated on which scales road-kill hotspots occurred for freshwater turtles, 173 

lizards, and snakes using Ripley’s K statistic (Levine, 2000; Ripley, 1981) at a 174 

bidimensional space in Siriema v.2.0 software (Coelho et al., 2014). We used an initial 175 

radius of 300 m, a radius increase of 500 m, and 100 simulations of random distribution 176 

events to evaluate clustering significance (99% confidence interval). After the 177 

identification of the scales with road-kill hotspots, we performed a 2D HotSpot 178 

Identification analysis for recognizing where hotspots were located. We used a 1-km 179 

radius and divided the road into 138 segments of 2 km each. We chose this segment length 180 

because Ripley’s K statistic identified the occurrence of clustering on that scale and 181 

because some mitigation measures for reptiles can be easily implemented targeting a 2-182 

km road segment, as for example, a wildlife passage connected by funnel fencing (Baxter-183 

Gilbert et al., 2015). We performed 1,000 simulations of random distribution to assess 184 

significance of hotspots locations (95% confidence interval). We considered as hotspots 185 



      

25 
 

all segments with a road-kill intensity value higher than the upper confidence limit 186 

(Coelho et al., 2014). 187 

As many hotspots might be identified on a road and, in most cases, there are budget 188 

restrictions to mitigating all of them, we evaluated the relative contribution of mitigating 189 

hotspots. We calculated the potential reduction in road-kills in the case of mitigating each 190 

of the road segments identified as hotspots for at least one of the three reptile groups 191 

studied. We sorted hotspots by their intensity and we built a cumulative curve of the 192 

number of road-kills recorded at each hotspot location as a proxy of the potential gain 193 

obtained by mitigation.  194 

2.3.4. Road-kill association with land cover and traffic volume 195 

To assess the relationship of road-kills of freshwater turtles, lizards and snakes with 196 

land cover classes and traffic volume, we fit generalized linear models with a Poisson 197 

distribution. We divided the road into 2-km segments, using the same segments from the 198 

2D HotSpot Identification analyses, and the number of road-kills in each segment was 199 

used as response variable. Predictive variables were standardized to have a mean of 0 and 200 

standard deviation equal to 1. 201 

We used hierarchical partitioning (Mac Nally, 2002) to assess the influence of each 202 

predictive variable on the number of road-killed freshwater turtles, lizards, and snakes. 203 

Hierarchical partitioning uses models with all combinations of predictive variables to 204 

evaluate the independent (I) and joint (J) effect of each of them on the response variable. 205 

We tested the statistical significance of the contributions of independent variables using 206 

a randomization process (999 randomizations) based on a 95% upper confidence limit (Z-207 

score>1,96). This statistical analysis was conducted in R (R Core Team, 2016) with the 208 

hier.part package using log-likelihood as the goodness-of-fit measure (Walsh and Mac 209 
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Nally, 2013). Then, we assessed the explained deviance of each full model (for freshwater 210 

turtles, lizards, and snakes) calculated as 1 - (residual deviance / total deviance). 211 

 212 

3. RESULTS 213 

3.1.1.  Estimates of road-kill magnitude  214 

We recorded 1,353 carcasses of reptiles on BR-101 road, 18% of which were 215 

freshwater turtles belonging to four species, 11% were lizards (Argentine Black and 216 

White Tegus, Salvator merianae), and 70% were snakes belonging to 24 species and one 217 

amphisbaenian species (Amphisbaena trachura) (Table 1; Appendix B). We estimated 218 

carcass detection as 55% (95% IC [26%, 82%]) for freshwater turtles and 23% (95% IC 219 

[15%, 34%]) for snakes and lizards. Carcass persistence probability for freshwater turtles 220 

was 0.85 in one day (95% IC [ 59%, 94%]) with a mean persistence time of six days. 221 

Carcass persistence probability for snakes was 0.82 in one day (95% IC [76%, 87%]) with 222 

a mean persistence time of 5.2 days. After correcting for carcass detection and removal, 223 

we estimated a total of 42,287 road-killed reptiles during 33 months of survey (Table 1), 224 

which corresponds to 15,377 road-killed reptiles per year (789 freshwater turtles, 1,600 225 

lizards, and 10,206 snakes). 226 

 227 

Table 1. Number of observed carcasses and estimates of road-kill magnitude for 228 

freshwater turtles, lizards, and snakes during 33 months of surveys on BR-101 road. 229 

Lower and upper 95% confidence limits are in parentheses. 230 

Groups 
Observed 

carcasses 

Estimates of road-

kill magnitude 

Estimates of 

magnitude per 

year 

Estimates of 

magnitude 

per km per 

year 

Freshwater turtles 245 
2,170  

(550 - 9,206) 

789  

(200 - 3,347) 

2.8  

(0.7 - 12.1) 

Lizards 151 
4,400  

(2,545 - 7,671) 

1,600 

(925 - 2,768) 

5.8 

(3.3 - 10.8) 
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Groups 
Observed 

carcasses 

Estimates of road-

kill magnitude 

Estimates of 

magnitude per 

year 

Estimates of 

magnitude 

per km per 

year 

Snakes 957 
28,069  

(16,654 - 48,631) 

10,206 

(6,056 - 17,684) 

36.9 

(21.8 - 63.8) 

TOTAL 1,353 
42,287  

(24,080 - 73,890) 

15,377  

(8,756 - 26,869) 

55.55  

(31.6 - 97.1) 

 231 

3.2. Road-kill hot moments 232 

Fatalities of freshwater turtles were concentrated in January, while fatalities of lizards 233 

and snakes were significantly concentrated in December (Fig.1). Freshwater turtles were 234 

the group with the lowest road-kill concentration in time (r= 0.28; Z=9.7; p<0.001), 235 

followed by snakes with intermediate concentration values (r=0.47; Z=176.7; p<0.001), 236 

and lizards with the highest values (r = 0.80; Z = 88.2; p< 0.001). 237 

 238 

Fig. 1. Road-kill hot moments for freshwater turtles, lizards, and snakes during two years 239 

of surveys (September 2012 to August 2014). Mean concentration period (full red lines) 240 

and standard error (dashed red lines).  241 

3.3. Road-kill hotspots 242 

We found road-kill clustering from 300-m to 70-km scales for freshwater turtles, 243 

from 300-m to 162-km scales for lizards, and from 300-m to 78-km scales for snakes 244 

(Appendix C). 2D HotSpot Identification analyses indicated that most hotspots were 245 
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concentrated in the Northern portion of the road, the segment with the highest traffic 246 

volume (Fig.2). For snakes, we also identified some hotspots also in the Southern part of 247 

the road (Fig.2). 248 

 249 

Fig. 2. Spatial distribution of hotspots (all reptile hotspots; snakes, freshwater turtles, and 250 

lizards hotspots separately), percentage of pine plantations, rice plantations, and traffic 251 

volume (ADT) along BR-101 road. Hotspot values correspond to road-kill intensity 252 

values from 2D Hotspot Identification analyses. Each segment corresponds to the 2-km 253 

road stretch used as sampling unit in the models. 254 

When assessing road segments that were identified as hotspots for at least one of 255 

the groups, and assuming the proposed mitigation would be 100% effective, we can infer 256 

that 45% of reptile deaths could be avoided if 21.7% of the segments of the road (the 30 257 

hotspot segments) had been mitigated (Fig. 3). That means a twofold efficiency in a cost-258 

benefit relationship (km mitigated/road-kills avoided). If we detail this potential reduction 259 

by group, we would reach a 40% road-kill decrease for snakes, 53% for freshwater turtles 260 

and 60% for lizards (Fig. 3), a 2-3 cost-benefit rate. 261 

 262 
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 263 

Fig. 3. Cumulative proportion of road-kills avoided for lizards, freshwater turtles, reptiles, 264 

and snakes considering the implementation of 100% effective mitigation measures on 265 

hotspots locations. Hotspots illustrated correspond to 21.7% of the road (upper x axis). 266 

Hotspots were ranked in the lower x axis in decreasing order of aggregation intensity. 267 

3.4. Road-kill association with land cover and traffic volume 268 

The amount of pine and rice plantations were the most important variables for 269 

determining the fatalities of freshwater turtles, lizards, and snakes (Table 2). Road-kills 270 

of freshwater turtles showed a significant positive relationship with rice plantations (I% 271 

= 26.23), urban areas (I% = 11.77), and traffic volume (I% = 8.68), and a significant 272 

negative relationship with pine plantations (I% = 34.07) and dry grasslands (I% = 8.95). 273 

For lizards, we found a positive relationship with rice plantations (I% = 33.06) and traffic 274 

volume (I% = 20.71), and a negative relationship with pine plantations (I% = 22.74). 275 

Snake fatalities were positively related to rice plantations (I% = 22.7) and mixed areas 276 

(I% = 8.59), and negatively related to rice plantations (I% = 45,75) and traffic volume 277 

(I% = 8.59). 278 
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Table 2. Results of variables’ associations from the hierarchical partition for each 279 

group. ‘Dev’ is the percentage of explained deviance for models including all variables 280 

in each reptile group. The sign of each variable is obtained from a Poisson regression 281 

model and shows the relationship between each predictive variable and the response 282 

variable. ‘I’ and ‘J’ are respectively the independent and joint contribution of each 283 

variable for each reptile group. ‘Total’ is the sum of ‘I’ and ‘J’. ‘%I’ is the relative 284 

percentage of independent contribution for each variable. ‘Z score’ is the randomization 285 

test of the independent contributions for each predictive variable (* identifies significant 286 

variables). 287 

  Freshwater turtles Lizards Snakes  

  
Dev 

39%  
I J Total %I Z.score 

Dev 

44%  
I J Total %I Z.score 

Dev 

44%  
I J Total %I Z.score 

Traffic 
volume 

+ 5.7 7.35 13.1 8.68 2.38* + 12.9 20.1 33 20.7 6.6* - 9.84 
-

8.16 
1.68 8.95 3.14* 

Water + 0.33 
-

0.31 
0.02 0.5 -0.53 - 1 0.62 1.62 1.61 -0.16 - 5.03 2.18 7.21 4.58 1.19 

Urban 
area 

+ 7.73 5.09 12.8 11.8 3.84* + 4.07 3.58 7.65 6.53 1.5 - 1.41 
-

1.13 
0.28 1.28 -0.16 

Wetland - 0.52 
-

0.45 
0.07 0.78 -0.46 - 1.82 3.44 5.26 2.92 0.33 + 1.86 0.75 2.61 1.69 -0.04 

Native 
forest 

+ 2.52 
-

2.47 
0.04 3.83 0.71 - 2.21 4.89 7.1 3.54 0.48 + 4.57 2.39 6.96 4.16 1.04 

Dry 

grassland 
- 5.88 2.14 8.01 8.95 2.49* - 2.59 3.78 6.37 4.16 0.79 + 2.54 0.54 3.08 2.31 0.23 

Mixed 
area 

+ 3.41 
-

2.38 
1.03 5.2 1.28 + 2.95 

-
2.12 

0.82 4.73 0.92 + 9.44 
-

2.36 
7.08 8.59 2.94* 

Rice 

plantation 
+ 17.2 14.6 31.8 26.2 8.58* + 20.6 23 43.6 33.1 11.47* + 25 

-

6.09 
18.9 22.7 9.01* 

Pine 
plantation 

- 22.4 10.5 32.9 34.1 11.95* - 14.2 8.54 22.7 22.7 8.28* - 50.3 27.2 77.5 45.8 21.12* 

 288 

4. DISCUSSION 289 

We estimated that 55.55 reptiles are road-killed per kilometer per year (range:  31 - 290 

97 reptiles/km/year), totaling more than 15 thousand road-killed animals every year on a 291 

277-km segment of BR-101 road. The estimated road mortality magnitude obtained in 292 

this study corresponds to 30 times the number of observed carcasses during the road 293 

surveys, and exceeded the estimates of reptile road-kills on other roads, which did not 294 

consider carcasses detection and removal (e.g. de Souza et al., 2015; Hartmann et al., 295 

2011; Pragatheesh and Rajvanshi, 2013). In a study conducted in the Brazilian Pantanal, 296 

58 vertebrate road-kills were recorded per kilometer per year (de Souza et al., 2015), in 297 

which mammals were the most representative group (61%) and reptiles corresponded 298 

only to 13% of the total. This low reptile representation was also present in other studies 299 
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(e.g. Bager and Fontoura, 2013). However, it is important to point out that both the 300 

relative frequencies and the road-kill rates are underestimated, since carcass detectability 301 

is associated with body size (Teixeira et al., 2013a) and lower for reptiles when compared 302 

to mammals. 303 

A high proportion of the reptile species known for the region is potentially affected 304 

by road-kill. We recorded 72% of the known reptile species pool from the entire coastal 305 

lowlands of Rio Grande do Sul (Borges-Martins et al., 2007) and other seven species that 306 

were not in their inventory (two freshwater turtles and five snakes). The higher number 307 

of snake species recorded as road-kill is in agreement with its higher richness for the 308 

region. 309 

The occurrence of a large number of reptile road-kills depends on two factors: (1) 310 

availability (higher exposure) and (2) lethality (higher risk of running over). In the case 311 

of reptiles, higher exposure to roads may be explained by: higher abundance near roads, 312 

necrophagy, and the habit of thermoregulation. The abundance of individuals in habitats 313 

along road verges is the most important factor determining availability, but it is rarely 314 

estimated to allow comparison (Meek, 2015, 2009). Still, several species of lizards and 315 

snakes are active foragers that prefer open environments, increasing the chance of using 316 

roads or open vegetation adjacent to roads for foraging (Brehme et al., 2013; Meek, 2009) 317 

and turtle females may use road edges for nesting (Aresco, 2004; Dorland et al., 2014).  318 

Necrophagy is part of the dietary habit of the only species of lizard recorded (11% of all 319 

records) in our study (Kiefer and Sazima, 2002; Sazima and D’Angelo, 2013), and it has 320 

been documented for our most recorded snake species (Philodryas patagoniensis) as well 321 

(Ucha and Santos, 2017). When animals are attracted to roads to feed on road-kills, they 322 

expose themselves to the risk of collisions with vehicles. In addition, reptiles might 323 

increase their exposure when they thermoregulate, as it has been demonstrated that the 324 
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asphalt temperature is strongly related to the presence of snakes from different species on 325 

roads (Mccardle and Fontenot, 2016).  326 

The second factor determining higher road-kill rates is lethality, which is related to 327 

traffic volume and, for the same traffic volume, to drivers’ and animals’ behaviors, as 328 

well as animal size and mobility. Road-kill rates are usually related to high or medium 329 

traffic volumes (Gunson et al., 2011), especially for species that do not avoid roads. 330 

Several studies demonstrated that drivers’ intentional collision with snakes and turtles is 331 

higher than observed for control objects (Ashley et al., 2007; Beckmann and Shine, 2012; 332 

Langley et al., 1989; Secco et al., 2014), and higher for snakes than for freshwater turtles 333 

(Ashley et al., 2007). Crawford & Andrews (2016) demonstrated that drivers would be 334 

less upset (a proxy of intention or care by the authors' point of view) when they run over 335 

a snake than when they run over a turtle or a large mammal. Considering animal size, 336 

Whitaker & Shine (2000) suggested that snakes are a larger target for vehicle collisions 337 

because their body is longer in relation to other animals’ when they cross the road 338 

perpendicularly. In relation to animal mobility, Andrews & Gibbons (2005) pointed out 339 

that some snakes and turtles have an immobilization behavior in response to vehicle 340 

approximation (‘pausers’ category in Jacobson et al., 2016) and could be an additional 341 

explanation for their higher road-kill rate together with their lower crossing speed. 342 

Road-kill hot moments were concentrated mostly in summer months. This temporal 343 

pattern has been demonstrated in other studies for reptiles as a whole (Garriga et al., 344 

2017), for freshwater turtles (Cureton II and Deaton, 2012), and for lizards (Meek, 2014). 345 

Hot moments have been shown to be related to climate variables, such as temperature and 346 

precipitation (Garriga et al., 2017), which influence the breeding season (Cureton II and 347 

Deaton, 2012), foraging (Meek, 2014), and species movement (Andrews and Gibbons, 348 

2005; Shine et al., 2004). Lizard from the only species recorded in our study (Salvator 349 
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merianae) are inactive almost half of the year (Borges-Martins et al., 2007), with the 350 

active period in the warm months, when they move to reproduce and to forage, increasing 351 

the probability of using roads. Temporal patterns of fatalities could differ among species 352 

(Mccardle and Fontenot, 2016; Meek, 2014), as well as among sex and age classes 353 

(Jochimsen et al., 2014), thus temporal patterns could be still more restrictive than 354 

observed because it is related to specific behavior characteristics, as thermal biology 355 

(Mccardle and Fontenot, 2016).  356 

Road-kill hot moments can be used to plan the implementation of temporary 357 

structures such as directional fences, associated with specific wildlife underpasses for 358 

reptiles (Baxter-Gilbert et al., 2015; Markle et al., 2017). The implementation of temporal 359 

directional fences can be interesting due to their lower costs, even considering the costs 360 

of installation and maintenance. Whenever reptiles are the target group for mitigation, the 361 

existence of road-kill hot moments allows the concentration of field efforts to evaluate 362 

and monitor reptile road-kills during the period with higher fatality frequency. This would 363 

abbreviate decision-making and reduce associated costs. 364 

Road-kill hotspots were predominantly coincident between freshwater turtles, 365 

lizards, and snakes, except for some aggregations of snake road-kills that were located in 366 

the southern portion of the road. The coincidence among hotspots for different groups 367 

allows mitigation strategies to be designed for the reptile group as a whole, always 368 

considering that mitigation measures must be effective in their implementation and 369 

operation, since small installation or maintenance failures can have great consequences 370 

on their effectiveness (Baxter-Gilbert et al., 2015). We hereby demonstrated that if 371 

effective mitigation measures were installed on top ranking hotspots, which represent a 372 

relatively small proportion of the road (21%), they could contribute to reduce observed 373 

fatalities in 45%.  This twofold cost-benefit ratio was obtained assuming an absolute 374 
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effectiveness of mitigation that could be attained with well-planned passages associated 375 

to drift fences with recurrent maintenance (Jackson et al., 2015; Van der Ree and Tonjes, 376 

2015). 377 

Under some circumstances, such as older roads, the use of hotspots for defining 378 

mitigation locations may not be the most adequate measure, as hotspots can change over 379 

time (as from high-traffic segments to low-traffic segments), as a consequence of 380 

population depletion by road mortality (Teixeira et al., 2017). However, this may not be 381 

the case for the road segment studied here, as its paving started in 1993 for the first 120 382 

km (near Mostardas city) and finished in 2009 for the entire 277-km segment (near São 383 

José do Norte city). Furthermore, we observed a positive relationship between fatalities 384 

and traffic volume (which decreases from north to south), except for snakes, the group 385 

with hotspots both at the northern and at the southern portions of the road. 386 

The proportion of pine plantations was the most important land cover variable that 387 

influenced fatalities of freshwater turtles, lizards, and snakes, with a relatively strong 388 

negative effect. This negative relationship has already been highlighted for other wildlife 389 

groups, such as owls (Gomes et al., 2009). Moreover, the impoverishment of habitat and 390 

wildlife caused by exotic pine and/or eucalyptus plantations has been extensively 391 

documented, especially in grassland dominated landscapes (Berthrong et al., 2009; 392 

Brockerhoff et al., 2008; Corley et al., 2006). Even in forest environments, such as in the 393 

northeastern Brazilian Amazon, the richness of both amphibians and lizards was lower in 394 

eucalyptus plantations than in native primary and secondary forests (Gardner et al., 2007; 395 

Saccol et al., 2017). The presence of pine plantations is probably reducing the abundance 396 

and richness of reptiles in the areas surrounding the road, decreasing their availability to 397 

be road-killed. 398 
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Rice plantations coverage was already recognized as determinant for reptile hotspots 399 

(Grilo et al., 2016; Seo et al., 2015), as these human-modified environments provide 400 

refuge for some wetland species. Water bodies or wetlands at road margins are recognized 401 

as important features for determining road-kill aggregations, both for vertebrates in 402 

general (Freitas and Federal, 2015) and for freshwater turtles (Cureton II and Deaton, 403 

2012; Langen et al., 2012). However, we did not find a relationship between the 404 

percentage of water cover and fatalities, probably because the water category considered 405 

in our mapping represents only large water bodies (lakes and lagoons) and what probably 406 

matters to these animals are the wet areas close to the road, such as puddles and ditches. 407 

Not only the cover percentage, but also the distance to water bodies is important for turtles 408 

and can show a negative relationship with the presence of freshwater turtles hotspots 409 

(Langen et al., 2012). As expected, we found a negative relationship between dry 410 

grassland percentage and freshwater turtle fatalities.  411 

For vertebrates in general (Seo et al., 2015), and especially for reptiles, traffic volume 412 

is widely recognized as responsible for fatality locations (see Cureton II & Deaton, 2012, 413 

and Langen et al., 2012 for freshwater turtles). Contrary to this pattern, we found a 414 

negative relationship between traffic volume and road-kill density for snakes. Some 415 

snakes may be avoiding to cross the road in areas where traffic volume is high (Siers et 416 

al., 2016) or some snake populations have already suffered a decline in these areas and 417 

have lower abundance, decreasing their interaction with the road (Teixeira et al., 2017). 418 

In addition, habitat quality in areas with lower traffic may be better (Shepard et al., 2008), 419 

allowing larger populations to thrive. 420 

Regardless of the explanations for the occurrence of road-kills (single or multiple 421 

causes or even their interactions), road mortality for the different groups evaluated 422 

showed congruent spatial and temporal patterns.  Considering this scenario, the best 423 
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strategy for an effective multispecific mitigation is to diminish the interaction between 424 

animals and the road or traffic, providing opportunities for safe crossings at each hotspot 425 

segment, associating multiple wildlife passages with directional fences specific for 426 

reptiles (Andrews et al., 2015; Jacobson et al., 2016; Markle et al., 2017). To reduce 427 

deterioration or even theft of fences, they could be installed temporarily only during 428 

summer months, although the cost-benefit of recurrent installation needs to be evaluated 429 

in comparison to permanent fences. Absolute exclusion of animals from the road should 430 

be followed by frequent maintenance inspections. Also, sufficient jump-out opportunities 431 

for animals that get stuck between fences should be provided as a complementary measure 432 

(van der Ree et al., 2015a). By adopting this set of relatively low-cost measures, we expect 433 

a significant reduction of the present-day carnage observed on this road. 434 

 435 

5. CONCLUSION 436 

Reptile fatalities in the Southern portion of BR-101 road were temporally and 437 

spatially aggregated, with hotspots and hot moments overlapping among different reptile 438 

groups. The high number of fatalities may be associated with the recent paving of this 439 

road (ended in 2009), which influenced traffic volume and vehicle speed. Since then, 440 

traffic volume has been rising and is predicted to further increase following higher human 441 

occupation in the region. When sorting hotspots by intensity of road-kill hotspots, we 442 

demonstrated a cost-benefit rate of mitigation (km mitigated/road-kills avoided) of 1:2 443 

for reptiles and even larger for single groups. By showing that areas of pine and rice 444 

plantations and that traffic volume were important for explaining reptile road-kills, we 445 

provided some clues for mitigation planning on roads in similar landscapes where road-446 

kill data is not available, and indicated important variables for the development of 447 

predictive models.  448 
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APPENDIX A.  459 

KML file with road track, hotspots intensity of freshwater turtles, lizards and snakes. 460 

APPENDIX B.  461 

Species list (Scientific and common names) and number of observed carcasses during 33 462 

months of monitoring in the road BR-101.  463 

Cientific Name Common Name 
Observed 

carcass 

Freshwater Turtles  245 

Trachemys dorbigni Black-bellied Slider 130 

Acanthochelys spixii Black Spine-necked Swamp Turtle 72 

Phrynops hilarii Hilaire’s Side-necked Turtle 32 

Hydromedusa tectifera 
South-American Snake-headed 

Turtle 
1 

Unidentfied freshwater turtles - 10 

Lizards  - 

Salvator merianae Argentine Black and White Tegu 151 

Snakes and Amphisbaenians  957 

Philodryas patagoniensis Patagonia Green Racer 163 

Erythrolamprus poecilogyrus Yellow-bellied snake 147 

Helicops infrataeniatus Water snake 141 

Erythrolamprus semiaureus Water snake 114 

Thamnodynastes hypoconia - 59 

Erythrolamprus jaegeri Jaeger's Ground Snake 48 

Xenodon dorbignyi South American Hognose Snake 37 

Boiruna maculata Mussurana 34 
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Cientific Name Common Name 
Observed 

carcass 

Oxyrhopus rhombifer Amazon False Coral Snake 31 

Philodryas aestiva Brazilian Green Racer 31 

Xenodon merremii Wagler's Snake 30 

Lygophis anomalus - 22 

Bothrops alternatus Urutu 13 

Mastigodryas bifossatus Rio Tropical Racer 12 

Philodryas olfersii Lichtenstein's Green Racer 9 

Bothrops pubescens Pampa's lancehead snake 7 

Lygophis flavifrenatus Fronted Ground Snake 5 

Erythrolamprus almadensis Almaden Ground Snake 4 

Sibynomorphus neuwiedi Neuwied's Tree Snake 4 

Atractus reticulatus Reticulate Ground Snake 2 

Phalotris lemniscatus Dumeril's Diadem Snake 3 

Chironius bicarinatus Two-headed Sipo 1 

Psomophis obtusus Wide Ground Snake 1 

Taeniophallus poecilopogon - 1 

Erythrolamprus sp. - 1 

Unidentfied snakes - 24 

Amphisbaena sp. Blinded-snake 10 

Amphisbaena trachura Blinded-snake 2 

Unidentfied reptile - 1 

TOTAL  1.353 

 464 

APPENDIX C. 465 

 466 

FigS1:  L statistic (K observed − K simulated mean; red lines) as a function of scale 467 

distance (radius) and 99% confidence limits (black lines) for the spatial distribution of 468 

road-kills of freshwater turtles, lizards and snakes on BR-101. 469 



      

39 
 

 470 

REFERENCES 471 

Andrews, K.M., Gibbons, J.W., 2005. How Do Highways Influence Snake Movement? 472 

Behavioral Responses to Roads and Vehicles. Copeia 4, 772–782. 473 

doi:jstor.org/stable/4098651 474 

Andrews, K.M., Langen, T.A., Struijk, R.P.J.H., 2015. Reptiles: overlooked but often at 475 

risk from roads, in: Van Der Ree, R., Smith, D.J., Grilo, C. (Eds.), Handbook of 476 

Road Ecology. Wiley-Blackwell, pp. 271–280. 477 

Aresco, M.J., 2005. Mitigation measures to reduce highway mortality of turtles and 478 

other herpetofauna at a north Florida lake. J. Wildl. Manage. 69, 549–560. 479 

doi:https://doi.org/10.2193/0022-541X(2005)069[0549:MMTRHM]2.0.CO;2 480 

Aresco, M.J., 2004. Reproductive Ecology of Pseudemys floridana and Trachemys 481 

scripta (Testudines: Emydidae) in Northwestern Florida. J. Herpetol. 38, 249–256. 482 

Ashley, P.E., Kosloski, A., Petrie, S.A., 2007. Incidence of Intentional Vehicle–Reptile 483 

Collisions. Hum. Dimens. Wildl. 12, 137–143. doi:10.1080/10871200701322423 484 

Bager, A., Fontoura, V., 2013. Evaluation of the effectiveness of a wildlife roadkill 485 

mitigation system in wetland habitat. Ecol. Eng. 53, 31–38. 486 

doi:10.1016/j.ecoleng.2013.01.006 487 

Baxter-Gilbert, J.H., Riley, J.L., Lesbarrères, D., Litzgus, J.D., 2015. Mitigating Reptile 488 

Road Mortality: Fence Failures Compromise Ecopassage Effectiveness. PLoS One 489 

10, e0120537. doi:10.1371/journal.pone.0120537 490 

Beaudry, F., deMaynadier, P.G., Hunter Jr., M.L., 2010. Identifying Hot Moments in 491 

Road-Mortality Risk for Freshwater Turtles. J. Wildl. Manage. 74, 152–159. 492 

doi:10.2193/2008-370 493 

Beckmann, C., Shine, R., 2012. Do drivers intentionally target wildlife on roads? 494 

Austral Ecol. 37, 629–632. doi:10.1111/j.1442-9993.2011.02329.x 495 

Berthrong, S.T., Schadt, C.W., Piñeiro, G., Jackson, R.B., 2009. Afforestation alters the 496 

composition of functional genes in soil and biogeochemical processes in South 497 

American grasslands. Appl. Environ. Microbiol. 75, 6240–6248. 498 

doi:10.1128/AEM.01126-09 499 



      

40 
 

Borges-Martins, M., Baptista, R., Oliveira, D., Anés, C., 2007. Répteis, in: Becker, 500 

F.G., Ramos, R.A., Moura, L. de A. (Eds.), Biodiversidade. Regiões Da Lagoa Do 501 

Casamento E Dos Butiazais de Tapes, Planície Costeira Do Rio Grande Do Sul. 502 

Ministério do Meio Ambiente, Brasília, pp. 293–315. 503 

Brady, S.P., Richardson, J.L., 2017. Road ecology: shifting gears toward evolutionary 504 

perspectives. Front. Ecol. Environ. 15, 91–98. doi:10.1002/fee.1458 505 

Brehme, C.S., Tracey, J. a, McClenaghan, L.R., Fisher, R.N., 2013. Permeability of 506 

roads to movement of scrubland lizards and small mammals. Conserv. Biol. 27, 507 

710–20. doi:10.1111/cobi.12081 508 

Brockerhoff, E.G., Jactel, H., Parrotta, J.A., Quine, C.P., Sayer, J., 2008. Plantation 509 

forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 17, 925–510 

951. doi:10.1007/s10531-008-9380-x 511 

Coelho, A.V.P., Coelho, I.P., Teixeira, F.Z., Kindel, A., 2014. Siriema: road mortality 512 

software. 513 

Corley, J., Sackmann, P., Rusch, V., Bettinelli, J., Paritsis, J., 2006. Effects of pine 514 

silviculture on the ant assemblages (Hymenoptera: Formicidae) of the Patagonian 515 

steppe. For. Ecol. Manage. 222, 162–166. doi:10.1016/j.foreco.2005.09.025 516 

Crawford, B.A., Andrews, K.M., 2016. Drivers ’ attitudes toward wildlife-vehicle 517 

collisions with reptiles and other taxa. Anim. Conserv. 19, 444–450. 518 

doi:10.1111/acv.12261 519 

Cureton II, J.C., Deaton, R., 2012. Hot Moments and Hot Spots: Identifying Factors 520 

Explaining Temporal and Spatial Variation in Turtle Road Mortality. J. Wildl. 521 

Manage. 76, 1047–1052. doi:10.1002/jwmg.320 522 

D’Amico, M., Román, J., de los Reyes, L., Revilla, E., 2015. Vertebrate road-kill 523 

patterns in Mediterranean habitats: Who, when and where. Biol. Conserv. 191, 524 

234–242. doi:10.1016/j.biocon.2015.06.010 525 

Danks, Z.D., Porter, W.F., 2010. Temporal, spatial, and landscape habitat characteristics 526 

of moose–vehicle collisions in western Maine. J. Wildl. Manage. 74, 1229–1241. 527 

doi:10.2193/2008-358 528 

de Souza, J.C., da Cunha, V.P., Markwith, S.H., 2015. Spatiotemporal variation in 529 



      

41 
 

human-wildlife conflicts along highway BR-262 in the Brazilian Pantanal. Wetl. 530 

Ecol. Manag. 23, 227–239. doi:10.1007/s11273-014-9372-4 531 

Dorland, A., Rytwinski, T., Fahrig, L., 2014. Do Roads Reduce Painted Turtle ( 532 

Chrysemys picta ) Populations? PLoS One 9, e98414. 533 

doi:10.1371/journal.pone.0098414 534 

Fahrig, L., Rytwinski, T., 2009. Effects of Roads on Animal Abundance: an Empirical 535 

Review and Synthesis. Ecol. Soc. 14, 21. 536 

Fitch, H.S., 1949. Road Counts of Snakes in Western Louisiana. Herpetologica 5, 87–537 

90. 538 

Forman, R.T., Sperling, D., Bissonette, J.A., Clevenger, A.P., Cutshall, C.D., Dale, 539 

V.H., Fahrig, L., France, R., Goldman, C.R., Heanue, K., Jones, J.A., Swanson, 540 

F.J., Turrentine, T., Winter, T.C., 2003. Road Ecology: Science and Solutions. 541 

Island Press, Washington DC. 542 

Freitas, S.R., Federal, U., 2015. How landscape patterns influence road-kill of three 543 

species of mammals in the Brazilian Savanna? Oecologia Aust. 18, 35–45. 544 

doi:10.4257/oeco.2014.18.05 545 

Gardner, T.A., Ribeiro-Júnior, M.A., Barlow, J., Ávila-Pires, T.C.S., Hoogmoed, M.S., 546 

Peres, C.A., 2007. The value of primary, secondary, and plantation forests for a 547 

neotropical herpetofauna. Conserv. Biol. 21, 775–787. doi:10.1111/j.1523-548 

1739.2007.00659.x 549 

Garriga, N., Franch, M., Santos, X., Montori, A., Llorente, G.A., 2017. Seasonal 550 

variation in vertebrate traffic casualties and its implications for mitigation 551 

measures. Landsc. Urban Plan. 157, 36–44. doi:10.1016/j.landurbplan.2016.05.029 552 

Gerow, K., Kline, N.C., Swann, D.E., Pokorny, M., 2010. Estimating annual vertebrate 553 

mortality on roads at Saguaro National Park , Arizona. Human-Wildlife Interact. 4, 554 

283–292. 555 

Glista, D.J., DeVault, T.L., DeWoody, J.A., 2008. Vertebrate road mortality 556 

predominatly impacts amphibians. Herpetol. Conserv. Biol. 3, 77–87. 557 

Gomes, L., Grilo, C., Silva, C., Mira, A., 2009. Identification methods and deterministic 558 

factors of owl roadkill hotspot locations in Mediterranean landscapes. Ecol. Res. 559 



      

42 
 

24, 355–370. doi:10.1007/s11284-008-0515-z 560 

Grilo, C., Cardoso, T. de R., Solar, R., Bager, A., 2016. Do the size and shape of spatial 561 

units jeopardize the road mortality-risk factors estimates ? Nat. Conserv. 14, 8–13. 562 

doi:http://dx.doi.org/10.1016/j.ncon.2016.01.001 563 

Gunson, K.E., Mountrakis, G., Quackenbush, L.J., 2011. Spatial wildlife-vehicle 564 

collision models: a review of current work and its application to transportation 565 

mitigation projects. J. Environ. Manage. 92, 1074–82. 566 

doi:10.1016/j.jenvman.2010.11.027 567 

Gunson, K.E., Teixeira, F.Z., 2015. Road – Wildlife Mitigation Planning Can Be 568 

Improved By Identifying the Patterns and Processes Associated With Wildlife-569 

Vehicle Collisions, in: van der Ree, R., Smith, D.J., Grilo, C. (Eds.), Handbook of 570 

Road Ecology. pp. 101–109. doi:10.1002/9781118568170.ch13 571 

Hartmann, P.A., Hartmann, M.T., Martins, M., 2011. Snake Road Mortality in a 572 

Protected Area in the Atlantic Forest of Southeastern Brazil. South Am. J. 573 

Herpetol. 6, 35–42. doi:10.2994/057.006.0105 574 

Huijser, M.P., Duffield, J.W., Clevenger, A.P., Ament, R.J., McGowen, P.T., 2009. 575 

Cost-benefit analyses of mitigation measures aimed at reducing collisions with 576 

large ungulates in the united states and canada: A decision support tool. Ecol. Soc. 577 

14. doi:10.1016/j.contraception.2009.11.002 578 

Jackson, N.D., Fahrig, L., 2011. Relative effects of road mortality and decreased 579 

connectivity on population genetic diversity. Biol. Conserv. 144, 3143–3148. 580 

doi:10.1016/j.biocon.2011.09.010 581 

Jackson, S.D., Smith, D.J., Gunson, K.E., 2015. Mitigating Road Effects on Small 582 

Animals, in: Andrews, K.M., Nanjappa, P., Riley, S.P.D. (Eds.), Road and 583 

Ecological Infrastructure: Conceopts and Applications for Small Animals. Johns 584 

Hopkins University Press, Baltimore, pp. 177–207. 585 

Jacobson, S.L., Bliss-ketchum, L.L., Rivera, C.E. De, Smith, W.P., 2016. A behavior- 586 

based framework for assessing barrier effects to wildlife from vehicle traffic 587 

volume. Ecosphere 7, 1–15. doi:10.1002/ecs2.1345 588 

Jaeger, J.A.G., Fahrig, L., 2004. Effects of Road Fencing on Population Persistence. 589 



      

43 
 

Conserv. Biol. 18, 1651–1657. doi:10.1111/j.1523-1739.2004.00304.x 590 

Jochimsen, D.M., Peterson, C.R., Harmon, L.J., 2014. Influence of ecology and 591 

landscape on snake road mortality in a sagebrush-steppe ecosystem. Anim. 592 

Conserv. 17, 583–592. doi:10.1111/acv.12125 593 

Kiefer, M.C., Sazima, I., 2002. Diet of juvenile tegu lizard Tupinambis merianae 594 

(Teiidae) in southeastern Brazil. Amphibia-Reptilia 23, 105–108. 595 

Korner-Nievergelt, F., Behr, O., Brinkmann, R., Etterson, M.A., Huso, M.M.P., 596 

Dalthorp, D., Korner-Nievergelt, P., Roth, T., Niermann, I., 2015. Mortality 597 

estimation from carcass searches using the R-package carcass — a tutorial. 598 

Wildlife Biol. 21, 30–43. doi:10.2981/wlb.00094 599 

Korner-Nievergelt, F., Korner-Nievergelt, P., Behr, O., Niermann, I., Brinkmann, R., 600 

Hellriegel, B., 2011. A new method to determine bird and bat fatality at wind 601 

energy turbines from carcass searches. Wildlife Biol. 17, 350–363. doi:10.2981/10-602 

121 603 

Kovach, W.L., 2004. Oriana for Windows. 604 

Langen, T.A., Gunson, K.E., Scheiner, C. a, Boulerice, J.T., 2012. Road mortality in 605 

freshwater turtles: identifying causes of spatial patterns to optimize road planning 606 

and mitigation. Biodivers. Conserv. 21, 3017–3034. doi:10.1007/s10531-012-607 

0352-9 608 

Langen, T.A., Ogden, K.M., Schwarting, L.L., 2009. Predicting hot spots of 609 

herpetofauna road mortality along highway networks. J. Wildl. Manage. 73, 104–610 

114. doi:10.2193/2008-017 611 

Langley, W.M., Lipps, H.W., Theis, J.F., 1989. Responses of Kansas Motorists to 612 

Snake Models on a Rural Highway. Trans. Kansas Acad. Sci. 92, 43. 613 

doi:10.2307/3628188 614 

Levine, N., 2000. CrimeStat: A Spatial Statistics Program for the Analysis of Crime 615 

Incident Locations. 616 

Lima, S.L., Blackwell, B.F., Devault, T.L., Fernández-Juricic, E., 2014. Animal 617 

reactions to oncoming vehicles: a conceptual review. Biol. Rev. Camb. Philos. Soc. 618 

90, 60–76. doi:10.1111/brv.12093 619 



      

44 
 

Mac Nally, R., 2002. Multiple regression and inference in ecology and conservation 620 

biology : further comments on identifying important predictor variables. Biodivers. 621 

Conserv. 11, 1397–1401. doi:10.1023/A:1016250716679 622 

Markle, C.E., Gillingwater, S.D., Levick, R., Chow-Fraser, P., 2017. The True Cost of 623 

Partial Fencing: Evaluating Strategies to Reduce Reptile Road Mortality. Wildl. 624 

Soc. Bull. 1–9. doi:10.1002/wsb.767 625 

Mccardle, L.D., Fontenot, C.L., 2016. The influence of thermal biology on road 626 

mortality risk in snakes. J. Therm. Biol. 56, 39–49. 627 

doi:10.1016/j.jtherbio.2015.12.004 628 

Meek, R., 2015. Where do snakes cross roads? Habitat associated road crossings and 629 

mortalities in a fragmented landscape in western France. Herpetol. J. 25, 15–19. 630 

Meek, R., 2014. Temporal distributions, habitat associations and behaviour of the green 631 

lizard (Lacerta bilineata) and wall lizard (Podarcis muralis) on roads in a 632 

fragmented landscape in Western France. Acta Herpetol. 9, 179–186. 633 

doi:10.13128/Acta 634 

Meek, R., 2009. Patterns of reptile road-kills in the Vendée region of western France of 635 

western France. Herpetol. J. 19, 135–142. 636 

Pragatheesh, A., Rajvanshi, A., 2013. Spatial patterns and factors influencing the 637 

mortality of snakes on the national highway-7 along Pench Tiger Reserve, Madhya 638 

Pradesh, India. Oecologia Aust. 17, 20–35. 639 

R Core Team, 2016. R: A language and environment for statistical computing. R 640 

Foundation for Statistical Computing, Vienna, Austria. 641 

Ramsar Convention, 1962. Sites & Countries. http://www.ramsar.org/sites-countries 642 

(acessed 20.06.17). 643 

Ripley, B.D., 1981. Spatial Statistics. John Wiley & Sons, New York. 644 

Saccol, S. da S.A., Bolzan, A.M.R., Santos, T.G. dos, 2017. In the Shadow of Trees: 645 

Does Eucalyptus Afforestation Reduce Herpetofaunal Diversity in Southern 646 

Brazil? South Am. J. Herpetol. 12, 42–56. 647 

Santos, S.M., Carvalho, F., Mira, A., 2011. How long do the dead survive on the road? 648 



      

45 
 

Carcass persistence probability and implications for road-kill monitoring surveys. 649 

PLoS One 6, e25383. doi:10.1371/journal.pone.0025383 650 

Sazima, I., D’Angelo, G.B., 2013. Range of animal food types recorded for the tegu 651 

lizard (Salvator merianae) at an urban park in South-eastern Brazil. Herpetol. 652 

Notes 6, 427–430. 653 

Secco, H., Ratton, P., Castro, E., Silva, P., Bager, A., 2014. Intentional snake road-kill : 654 

a case study using fake snakes on a Brazilian road. Trop. Conserv. Sci. 7, 561–571. 655 

Seo, C., Thorne, J.H., Choi, T., Kwon, H., Park, C.-H., 2015. Disentangling roadkill : 656 

the influence of landscape and season on cumulative vertebrate mortality in South 657 

Korea. Landsc. Ecol. Eng. Engine 11, 87–99. doi:10.1007/s11355-013-0239-2 658 

Shepard, D.B., Dreslik, M.J., Jellen, B.C., Christopher, A., 2008. Reptile Road 659 

Mortality around an Oasis in the Illinois Corn Desert with Emphasis on the 660 

Endangered Eastern Massasauga. Copeia 2, 350–359. doi:10.1643/CE-06-276 661 

Shine, R., Lemaster, M., Wall, M., Langkilde, T., Mason, R., 2004. Why Did the Snake 662 

Cross the Road? Effects of Roads on Movement and Location of Mates by Garter 663 

Snakes (Thamnophis Sirtalis Parietalis). Ecol. Soc. 9, 9. 664 

Siers, S.R., Reed, R.N., Savidge, J.A., 2016. To cross or not to cross : modeling wildlife 665 

road crossings as a binary response variable with contextual predictors. Ecosphere 666 

7, 1–19. doi:10.1002/ecs2.1292 667 

Teixeira, F.Z., Coelho, A.V.P., Esperandio, I.B., Kindel, A., 2013a. Vertebrate road 668 

mortality estimates: Effects of sampling methods and carcass removal. Biol. 669 

Conserv. 157, 317–323. doi:10.1016/j.biocon.2012.09.006 670 

Teixeira, F.Z., Coelho, I.P., Esperandio, I.B., Oliveira, N.R., Porto, F., Dornelles, S.S., 671 

Delazeri, N.R., Tavares, M., Martins, M.B., Kindel, A., 2013b. Are road-kill 672 

hotspots coincident among different vertebrate groups? Oecologia Aust. 17, 36–47. 673 

Teixeira, F.Z., Kindel, A., Hartz, S.M., Mitchell, S., Fahrig, L., 2017. When road-kill 674 

hotspots do not indicate the best sites for road-kill mitigation. J. Appl. Ecol. 675 

doi:10.1111/1365-2664.12870 676 

Ucha, J., Santos, T.G., 2017. Death and life on the roadway: scavenging behaviour of 677 

the green racer snake Philodryas patagoniensis (Girard, 1858) (Dipsadidae). 678 



      

46 
 

Herpetol. Notes 10, 439–441. 679 

UFRGS-IB-Centro de Ecologia, 2016. Mapeamento da cobertura vegetal do Bioma 680 

Pampa: Ano-base 2009. https://www.ufrgs.br/labgeo/index.php/dados-espaciais. 681 

van der Ree, R., Gagnon, J.W., Smith, D.J., 2015a. Fencing: a valuable tool for 682 

reducing wildlife-vehicle collisions and funneling fauna to crossing structures, in: 683 

van der Ree, R., Smith, D.J., Grilo, C. (Eds.), Handbook of Road Ecology. Wiley-684 

Blackwell, pp. 159–171. 685 

van der Ree, R., Smith, D.J., Grilo, C., 2015b. Handbook of Road Ecology. Wiley-686 

Blackwell. 687 

Van der Ree, R., Tonjes, S., 2015. How to Maintain Safe and Effective Mitigation 688 

Measures, in: van der Ree, R., Smith, D.J., Grilo, C. (Eds.), Handbook of Road 689 

Ecology. Wiley-Blackwell, pp. 138–142. 690 

Walsh, A.C., Mac Nally, R., 2013. hier.part: Hierarchical Partitioning. R package 691 

version 1.0-4. 692 

Whitaker, P.B., Shine, R., 2000. Sources of Mortality of Large Elapid Snakes in an 693 

Agricultural Landscape. J. Herpetol. 34, 121. doi:10.2307/1565247694 



      

47 
 

Capítulo 2 

 

 

 

 

 

 

 

As probabilidades de travessia e colisão predizem as fatalidades de 

fauna em rodovias? 

 

 

 

 

 

 

 

 

Este capítulo será submetido como research paper para a revista Conservation Biology e 

está formatado conforme as normas da revista. Ele foi feito em colaboração com Bruna 

Arbo Meneses e Casey Visintin.  



      

48 
 

Do crossing and collision probabilities predict wildlife fatalities on roads? 1 

 2 

Abstract  3 

Predicting road-kills is one of the most urgent task in a context of new roads and road 4 

expansion, when there are no road-kill data. We aimed to test if the integration of two 5 

probabilities (crossing and collision) improves the prediction of wildlife fatality 6 

probability on roads. By using connectivity maps based on resistance surfaces as proxy 7 

of animal crossing probability and multiplying these values with collision probability 8 

based on traffic volume, vehicle and animal speed, vehicle width, and animal body size, 9 

we predicted fatality risk at a single road level for two small carnivore species (Lesser 10 

Grison and Molina’s Hog-nosed Skunk). To validate the performance of the models, we 11 

used a road for which we had available road-kill data. Additionally, we compared the 12 

mitigation priority locations from our predictive models with the priority locations 13 

obtained from a road-kill hotspot analysis. We found that multiplicative integration of 14 

probabilities was not good to predict road-kills, and collision probability alone was better 15 

than crossing probability, at least for the Lesser Grison. Although the mitigation outcome 16 

of collision models was lower than hotspots, at least for the Lesser Grison, with a target 17 

of almost 10% of mitigated road, around 70% of road-kills of that species would be 18 

avoided, evidencing that the approach is a good alternative in a decision-making context. 19 

 20 

Key-words: Road-kill, Connectivity, Traffic volume, Road mortality, Mitigation 21 

 22 

Introduction 23 

Reducing the direct impacts of roads on biodiversity is one of the most concerning issues 24 

in conservation biology research (van der Ree et al. 2015c). Among them, mortality by 25 
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vehicle-animal collisions could have severe outcomes on some animal populations 26 

(Rytwinski & Fahrig 2011; Jackson & Fahrig 2011). Several kinds of mitigation measures 27 

and actions aim to minimise this mortality (Smith et al. 2015; van der Ree et al. 2015a). 28 

Some mitigation measures are focused on changing driver behavior, such as signs or 29 

speed controls (Huijser et al. 2015), whilst others focus on changing animal movement, 30 

e.g.  wildlife crossing structures and fencing (Smith et al. 2015; van der Ree et al. 2015a). 31 

In common, the success of all those actions depends directly on choosing suitable 32 

locations to mitigate. 33 

Mitigation location planning is a challenging task and most appropriate approaches are 34 

context dependent. Mostly, extensive road networks were implemented before 35 

environmental licensing emerged, so there is an important demand on road retrofitting for 36 

mortality mitigation and defragmentation (van der Grift 2005; Trocmé 2006; Gurrutxaga 37 

& Saura 2013). Further, developing countries are promoting a considerable road network 38 

expansion, with millions of kilometers being built and planned over the next half-century 39 

(Laurance et al. 2015). For retrofitting existing roads, it is possible to plan mitigation 40 

measures based on observational studies of road-kills or connectivity, however, this is 41 

only achievable at a single (or few) road segment level and not at an entire road network 42 

level, as often required. Regarding new roads, observational studies are not feasible at all. 43 

In both contexts the main challenge is to predict wildlife road fatalities without road-kill 44 

data. 45 

The risk of a road-kill event can be expressed as the spatial and temporal coincidence of 46 

an animal being on a given road section (exposure risk) and a moving vehicle (hazard) 47 

(Visintin et al. 2016). Exposure risk or hereafter crossing probability is given by the 48 

probability of an animal to cross a road at a specific location, which is related to road and 49 

landscape configuration and to animal occurrence and movement (Lewis et al. 2011; Grilo 50 
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et al. 2011, 2018; Gurrutxaga & Saura 2013; Thurfjell et al. 2015). Hazard, or collision 51 

probability hereafter, can be dependent on animal attributes (body length and road 52 

crossing speed) and road features including traffic volume, vehicle speed and road width 53 

(Hels & Buchwald 2001; van Langevelde & Jaarsma 2004; Jaarsma et al. 2006).  54 

Until recently, few studies addressed the integration of crossing probability and collision 55 

probability to predict fatality risk in a single model (Jaarsma et al., 2007; Patrick et al., 56 

2012; Visintin et al., 2017, 2016). These studies differed mainly in the ways crossing 57 

probability was assessed: as a result of occurrence likelihood (e.g. Visintin et al. 2016) or 58 

using movement simulations (e.g. Jaarsma et al., 2007).  Yet only Visintin et al. (2017, 59 

2016) and Patrick et al. (2012) validated model performances.  60 

Our study aimed to evaluate if the integration of these two probabilities (crossing and 61 

collision) allows for the prediction of wildlife fatality probability on roads better than 62 

sub-models of each probability. We first used connectivity maps based on resistance 63 

surfaces as proxy of animal crossing probability and calculated collision probability based 64 

on traffic volume, vehicle and animal speed, vehicle width, and animal body size. Then, 65 

we multiplied crossing and collision probabilities to predict fatality risk at a single road 66 

level for two small carnivore species. We also tested univariate and bivariate models 67 

using both probabilities. To validate the model predictive performance, we used a road as 68 

a model system and two species for which we had available road-kill data. To test our 69 

model when translated into recommendations for mitigation location in a decision-70 

making context, we used a simple cost-benefit analysis, which cost is represented by the 71 

proportion of the road that is mitigated and benefit corresponds to the proportion of 72 

avoided fatalities, assuming a perfect effectiveness of the hypothetic mitigation. 73 

Additionally, we compared the cost-benefit ratio of our predictive model to a 74 

conventional hotspot approach, using the same data set. 75 
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 76 

Methods: 77 

Target Road and Species 78 

Our study site was a 277-km road (BR-101; initial coordinates 30°9'1.20"S and 79 

50°30'49.33"W, and final coordinates 32°0'23.64"S and 52°2'17.73"W, Appendix A) at 80 

southernmost Brazil. Our target species were Lesser Grison (Galictis cuja) and Molina's 81 

Hog-nosed Skunk (Conepatus chinga), two small carnivores, and we assumed that these 82 

two species do not avoid crossing the road. The Lesser Grison is a mid-sized mustelid 83 

(1.2–2.5 kg) of southern South America (Yensen & Tarifa 2003) and the Molina’s Hog-84 

nosed Skunk, a 2kg mephitid, is distributed from mid-northern Argentina and Chile to 85 

Bolivia, Paraguay, Uruguay and southern Brazil (Bornholdt et al. 2013). We divided the 86 

road into equally sized segments and obtained the crossing probability and the collision 87 

probability for each road segment for each species. To test for scale (grain size) 88 

dependency this procedure was repeated for multiple segment lengths: 1000 m, 500 m, 89 

and 275 m. 90 

 91 

Crossing probability 92 

Crossing probability for each road segment was obtained from maps that represent the 93 

expected connectivity between source patches for each species given the assigned 94 

resistance of surrounding land cover classes to their movement. To develop a resistance 95 

surface, we used a land cover map classified from 2009 LANDSAT 5 TM images 96 

(UFRGS-IB-Centro de Ecologia 2016) with 17 land cover/use classes: water, wetland, 97 

native forest (divided in size: < 1 ha, 1-10 ha, 11-100 ha, and > 100 ha), silviculture, rice 98 

monoculture, dry agriculture, outcrop, wet grassland, degraded grassland, dry grassland, 99 

urban area, mining, sand, and mixed areas. Mixed areas included multiple crops, annual 100 
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or perennial. We queried experts on the natural history/ecology of the target species to 101 

help determine movement resistance values for each land cover class. We used the 102 

Analytic Hierarchy Process (Saaty 1987) by which experts make decisions using a series 103 

of pairwise comparisons among cover classes (see details in Appendix B). We checked 104 

the consistency of each expert’s resistance assignment and used only assignments with a 105 

ratio between consistency index and random index lower than 0.1 (Saaty 1987).   106 

We used native grassland remnants in a 25-km buffer surrounding the target road as 107 

source patches. This procedure was done in two scenarios: 1) using all grassland remnants 108 

(n=125) and 2) using only patches larger than 1 km2 (n=74). In the second scenario, we 109 

assumed that areas smaller than 1 km2 are less important as source patches due to limited 110 

resource quality and/or limited population density. This option is supported by a study in 111 

southern Brazil that estimated the average home-range for 12 Molina's Hog-nosed Skunk 112 

as 1.63 km2 (Kasper et al. 2012).    113 

We used connectivity maps based on circuit-theory and least-cost path to calculate 114 

crossing probability for each species at each road segment. We built the connectivity 115 

maps using circuit-theory in Gflow software (Leonard et al. 2017) and using least-cost 116 

corridor in Linkage Mapper (McRae & Kavanagh 2011). Circuit theory-based 117 

connectivity is modelled by assigning to each pixel in a landscape matrix a resistance 118 

value indicating the degree of landscape permeability for the electrons flow (or animals 119 

by analogy) (Leonard et al. 2017). Landscapes are represented as conductive surfaces, 120 

with low resistances assigned to landscape features that are most permeable to movement, 121 

and high resistances assigned to movement barriers (McRae et al. 2013). In the circuit-122 

theory approach we used different criteria for the convergence factor, that is, a correlation 123 

factor of the current density between pairs of source patches (it defines the number of 124 

decimal places for the correlation threshold among intermediate connectivity maps; 1N 125 
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corresponds to 0.9 and 4N correspond to 0.9999), and compared the results. The output 126 

of each circuit-theory model was a map with cell values that represented the total number 127 

of potential crossings (in amperes) between all pairwise source patches. We rescaled the 128 

cell values from 0 to 1 and sampled the mean value of all cells that intersected each road 129 

segment as the crossing probability.  130 

For the second approach, we used normalized least-cost corridor distance which is the 131 

summation of cost-weighted distance rasters calculated from each pair of connected 132 

source patches. We rescaled the least-cost corridor distance values from 0 to 1 and 133 

inverted them as cells with small distances represent high crossing probabilities. For each 134 

species, we obtained four maps in Gflow software (both source patches scenarios and two 135 

convergence factors) and two maps in Linkage Mapper (both source patches scenarios). 136 

The maps were named based on the software used, source patch criteria and convergence 137 

factor (Gflow only) (Table 1). In the final models, we only used the maps with the best 138 

road-kill predictive performance for the species (further described in the Validation 139 

section). We did not use the Gflow connectivity map which considered source patches 140 

larger than 1 km2 and a convergence factor of 4N because it was highly correlated with 141 

the one using a convergence factor of 1N (Pearson correlation of 0.85). 142 

 143 

Table 1. Nomination of each crossing model according to adopted connectivity measure 144 

approach (software) and other criteria.  145 

Model name Software 

Source patch 

inclusion criteria Convergence factor 

G-All-1 Gflow 

all habitat areas 

(n=125) 1N 

G-All-4 Gflow 

all habitat areas 

(n=125) 4N 

G-1 Gflow 

habitat areas ≥ 

1km2 1N 

L-All Linkage Mapper 

all habitat areas 

(n=125) Not applicable 
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L-1 Linkage Mapper 

habitat areas ≥ 1 

km2 Not applicable 

 146 

Collision probability 147 

For the collision probability at each road segment, we used the traffic volume, vehicle 148 

speed, animal speed, animal length, vehicle width, and road width following Hels & 149 

Buchwald (2001) and Jaarsma et al. (2006). We used the equation: 1-exp(-N*(a/v), where 150 

N is traffic volume; “a” is a kill zone (vehicle width + animal length *2 if a two-lane 151 

road), and “v” is the animal speed. We used vehicle counters (Vehicle Counter Generation 152 

III - TRAFx Research Ltd.) to calculate the average daily traffic (ADT) in three locations 153 

linking the main regional settlements: Capivari do Sul (n=48 days), Mostardas (n=273 154 

days), and São José do Norte (n=498 days) along BR 101. Since we found a north-to-155 

south decrease pattern in traffic volume, we extrapolated traffic volume for each road 156 

segment by performing a linear regression with the recorded ADT at each surveyed 157 

location and the distance to the northernmost city (Capivari do Sul). We used a mean 158 

vehicle width of 1.8 m that represented a small automobile, the most common vehicle on 159 

this road. For Molina's Hog-nosed Skunk, we used a body length of 0.40 m (Kasper et al. 160 

2011) and we used half of the fastest recorded speed (116 m/min) for a similarly sized 161 

and related species (Mephitis mephitis) (Hirt et al. 2017). We also tested collision 162 

probability using 25% of the maximum recorded speed as suggested by Jaarsma et al. 163 

(2006), however, it was highly correlated to the collision probability using the half speed. 164 

For Lesser Grison, we used a body length of 0.42 m (Jones et al. 2009) and a recorded 165 

speed for related species (Martes foina) which was 100 m/min (Posillico et al. 1995).  166 

 167 

Fatality probability and Validation 168 
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We multiplied crossing probability and collision probability to obtain a fatality 169 

probability for each road segment. To test the predictive performance of the models, we 170 

used 64 road-kills of Lesser Grison and 159 road-kills of Molina's Hog-nosed Skunk from 171 

a road-kill survey carried out on the same road (Appendix A). The data set was obtained 172 

based on monthly surveys conducted from September 2012 to August 2014, and from 173 

February to October 2015, totaling 33 surveys. Two observers (including the driver) 174 

conducted surveys by car at 40-50 km/h from dawn to dusk. We fitted four Poisson 175 

models to the data using the number of observed road-kills on each segment for each 176 

species: crossing model, collision model, fatality model and crossing and collision in the 177 

same model (bivariate). For the crossing model, we selected one map among the five 178 

connectivity outcomes based on their predictive performance (Table 2).  179 

We cross-validated the models by randomly splitting the data into 10 folds (nine subsets 180 

used for training the model and one for testing the model fit). We repeated this procedure 181 

100 times for each model. We obtained the mean absolute error (MAE) to assess the 182 

model predictions (Willmott & Matsuura 2005; Chai & Draxler 2014). MAE varies 183 

between zero and the highest observed number for each sampling unit (Lesser Grison - 184 

six road-kills for 1 km road length and four for 500 m and 275 m lengths; Molina’s Hog-185 

nosed Skunk - six road-kills for 1 km and 500 m road length and four for 275 m). We also 186 

compared the Akaike information criterion (AIC) of each model for each species. We 187 

performed these analyses by using the train function in the caret package (Kuhn 2008) in 188 

the R environment (R Core Team 2017). 189 

 190 

Decision support outcome of models 191 

We simulated a mitigation planning scenario and compared the performance of different 192 

models using a cost-benefit approach similar to that previously used by Ascensão et al. 193 
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(2017) and Gonçalves et al. (2018). For multiple road segment sizes (1000, 500 and 275 194 

meters) and for multiple thresholds of percentage of road mitigated (cost proxy), we 195 

estimated how many fatalities (% of observed carcasses) of each species would be 196 

avoided (benefit proxy). We assumed that mitigation would be 100% effective. For each 197 

segment size, the first cost threshold was defined using the number of segments 198 

prioritized by a hotspot analysis (see below). The following thresholds were arbitrarily 199 

defined as 2 and 3 times the number of segments of the first one. For each model, we 200 

selected the segments with the largest predicted probabilities until the target threshold 201 

cost was achieved.  202 

Hotspot number and location was obtained in a two-step analysis. Firstly, we 203 

checked if road-kill aggregation is significant at the selected segment lengths (1000, 500 204 

and 275 m) with Ripley’s K statistics (Ripley 1981). We then performed a 2D HotSpot 205 

Identification analyses using half of the segment length as the radius and 1000 206 

simulations. We considered as hotspots all segments with a road-kill intensity value 207 

higher than the upper confidence limit of 95% (Coelho et al., 2014). For both analyses 208 

we used Siriema software (Coelho et al. 2014).  209 

 210 

Results 211 

 212 

Different crossing models were selected for the two species (Table 2). The circuit-theory 213 

approach using areas larger than 1 km2 as source patches was the best connectivity map 214 

for the Lesser Grison (Table 2) whereas least-cost corridor using all source patches was 215 

the best for Molina's Hog-nosed Skunk (Table 2). We used these crossing models to build 216 

the final fatality models (Figure 1 and 2). 217 

 218 
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 219 

 220 

 221 

Table 2: Predictive performance results for each crossing model for each species (Lesser 222 

Grison - Galictis cuja and Molina's Hog-nosed Skunk - Conepatus chinga) and segment 223 

length (1000 m, 500 m, and 275 m). MAE is the mean absolute error, SD is the standard 224 

deviation of mean absolute error, and AIC is the Akaike Information Criteria. 225 

 Segment length 

 1000 m 500 m 275 m 

 MAE (SD) AIC MAE (SD) AIC MAE (SD) AIC 

Lesser Grison      

G-1 0.30 (0.11) 255.53 (0.17) 0.17 (0.05) 317.48 (0.10) 0.10 (0.02) 382.85 

G-All-4 0.34 (0.11) 281.23 (0.18) 0.18 (0.05) 342.46 (0.11) 0.11 (0.02) 407.5 

G-All-1 0.34 (0.11) 285.41 (0.18) 0.18 (0.05) 347.39 (0.11) 0.11 (0.02) 411.74 

L-All 0.41 (0.11) 377.54 (0.17) 0.21 (0.05) 438.4 (0.12) 0.12 (0.02) 504.19 

L-1 0.41 (0.11) 378.40 (0.17) 0.21 (0.05) 439.04 (0.12) 0.12 (0.02) 504.33 

Molina's Hog-nosed Skunk     
L-All 0.69 (0.10) 569.73 (0.44) 0.44 (0.07) 750.32 (0.27) 0.27 (0.03) 900.82 

L-1 0.70 (0.10) 575.50 (0.44) 0.44 (0.07) 753.72 (0.27) 0.27 (0.03) 904.34 

G-All-4 0.79 (0.08) 630.56 (0.47) 0.47 (0.06) 810.98 (0.28) 0.28 (0.03) 961.24 

G-1 0.79 (0.08) 630.83 (0.47) 0.47 (0.07) 811.28 (0.28) 0.28 (0.03) 961.77 

G-All-1 0.80 (0.08) 638.82 (0.47) 0.47 (0.07) 819.71 (0.28) 0.28 (0.03) 969.56 

 226 

Spatial distribution of collision probabilities showed a similar pattern for both species, 227 

however crossing and fatality probabilities, road-kills and hotspots were different (Figure 228 

1 and Appendix C). Predictive performances were also different among species (Figure 229 

2). For Lesser Grison, for all road lengths, collision models and bivariate models, which 230 

considered crossing and collision, had the lowest mean absolute errors (Figure 2), but 231 

collision models presented the lowest AIC (Table 3). Fatality models performed the worst 232 

at predicting road-kill fatalities on BR-101 road for Lesser Grison (Table 3). Although, 233 

bivariate model was better than other models to predict road-kills for Molina's Hog-nosed 234 

Skunk, for all road lengths, (Figure 2 and Table 3), all models were very similar, except 235 

the crossing model which had the highest mean absolute error (Table 3). Mean absolute 236 
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errors were lower with decreasing segment size for all models and for both species (Figure 237 

2). 238 

 239 

Figure 1: Collision, Crossing and Fatality probabilities, road-kill records and Hotspots 240 

for Lesser Grison (A) and Molina's Hog-nosed Skunk (B) for segment length of 275 m 241 

along BR-101.  242 

 243 

 244 
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Table 3: Akaike Information Criteria of the four models (Collision, Crossing, Crossing 245 

+ Collision, and Fatality) for each species (Lesser Grison - Galictis cuja - and Molina's 246 

Hog-nosed Skunk - Conepatus chinga) and each segment length (1000 m, 500 m, and 247 

275 m).  248 

  AIC 

  1000 m 500 m 275 m 

Lesser Grison    

Crossing  255.53 317.48 382.85 

Collision 232.11 292.54 358 

Fatality 346.46 407.38 472.58 

Crossing + Collision 233.91 294.4 359.81 

Molina's Hog-nosed Skunk 

  

  

Crossing  569.73 750.32 900.82 

Collision 530.74 711.56 861.51 

Fatality 529.95 710.72 860.66 

Crossing + Collision 517.07 697.04 847.06 

 249 

Figure 2: Mean absolute error of predictive models for each species: Lesser Grison 250 

(Galictis cuja) and Molina's Hog-nosed Skunk (Conepatus chinga). We presented four 251 
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models (Collision, Crossing, Crossing + Collision, and Fatality) for the three different 252 

segment sizes: 1000 m (left above), 500 m (right above) and 275 m (below). 253 

 254 

Crossing models, even with a good predictive performance, were not good at planning 255 

spatial placements of mitigation structures, especially for the Lesser Grison (Table 4). As 256 

expected, given the predictive performance of collision models, the potential mitigation 257 

outcome for the Molina's Hog-nosed Skunk was smaller than for the Lesser Grison. The 258 

best cost-benefit ratio (% of mitigated road divided by the % of fatalities avoided) resulted 259 

from predictive models for the Molina's Hog-nosed Skunk and was 1:2.6 whereas for the 260 

Lesser Grison the best ratio was 1:14.1 (Table 4). 261 

Although the mitigation outcome of collision models was in general lower than the one 262 

resulting from hotspot analyses, at least for the Lesser Grison, with a target of almost 10% 263 

of mitigated road (segment size of 1000 m in Table 4), around 70% of road-kills of that 264 

species would be avoided. Additionally, for this species, the cost-benefit ratio did not 265 

change among road segment sizes (nearly 1:7 with a 5% road mitigation effort; Table 4).  266 

 267 

Table 4: Percentage of recorded road-kills that could be avoided if mitigation was 268 

planned considering hotspots analyses, or collision, crossing, and fatality predictive 269 

models for each species (Lesser Grison - Galictis cuja and Molina's Hog-nosed Skunk - 270 

Conepatus chinga), for multiple segment sizes and multiple thresholds of percentage of 271 

mitigated road. At hotspots column, the first threshold was the number segments which 272 

were identified as hotspots, so there was no percentage of fatalities avoided for the other 273 

two thresholds of number of segments. 274 

 275 

 276 
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 277 

 278 

      

Lesser Grison 

       

Molina's Hog-nosed Skunk 

 

   % of fatalities avoided     % of fatalities avoided 

Segment 

size 

number 

of 

segments 

% 

road hotspots collision crossing fatality   

number 

of 

segments 

% 

road hotspots collision crossing fatality 

1000 m  

13 4.7 62.50 35.94 0 0  19 7 39.62 10.69 13.21 10.69 

26 9.5 - 68.75 0 0  38 14 - 35.85 22.01 35.85 

39 14 - 79.69 0 0  57 20.7 - 49.06 33.96 49.06 
              

500 m 

10 1.8 29.69 21.88 0 0  35 6.35 28.93 6.29 6.29 6.29 

20 3.6 - 34.38 0 0  70 12.7 - 31.45 20.75 31.45 

30 5.4 - 35.94 0 0  105 19 - 45.28 25.16 45.28 
              

275 m  

10 1 21.88 14.06 0 0  38 3.8 18.87 1.89 5.66 1.89 

20 2 - 26.56 0 0  76 7.6 - 11.32 10.06 11.32 

30 3 - 28.13 0 0   114 11.4 - 23.90 18.24 23.90 

 279 

Discussion 280 

 281 

Our approach demonstrated that we can predict road-kill risk using traffic volume as a 282 

main predictor and that connectivity has a potential use for modelling road-kill risk for 283 

some species. As traffic volume information at a single road could be relatively easily 284 

measured with traffic counters and/or modelled and is an important determinant of 285 

wildlife-vehicle collisions (Gunson et al. 2011), we considered the use of our collision 286 

probability equation as a good alternative for predicting road-kills in the absence of road-287 

kill data.  288 

Our collision model, however, used the same animal speed and, for a given species, this 289 

value could change depending on traffic volume (Jacobson et al. 2016). Traffic volume 290 

was the main predictor because it was the only variable that changed along the road 291 

segments. Other variables may be incorporated into the equation, such as vehicle speed 292 

(Jaarsma et al. 2006). Vehicle speed has also been documented as a relevant predictor for 293 

wildlife collisions (Gunson et al. 2011) however, it is more difficult to obtain or model 294 

for all road segments. Another potential limitation of the collision probability equation is 295 
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the exponential relationship between road-kill probability and traffic volume (Litvaitis & 296 

Tash 2008). It has been shown for some species that the highest road-kill risk is observed 297 

with an intermediate traffic volume, since animals are likely to avoid crossing the road 298 

when the traffic is too high (Jacobson et al. 2016). Although our modelled traffic varied 299 

from 140 to 2.500 vehicles/day, the higher level is still within the range of what is 300 

generally recognized as low traffic (van Langevelde & Jaarsma 2004; Sadleir & Linklater 301 

2016), so we assumed that road avoidance not influenced our results.  302 

The predictive performance of models using crossing probability based on connectivity 303 

maps was worse than models using the collision probability equation for both species. 304 

The relationship between crossing probability and road-kills for the Lesser Grison was 305 

contrary to expectation; the highest crossing probabilities were at locations with no road-306 

kills which could result in poor mitigation decisions. This inverse relationship can be 307 

biased by species occurrence since we did not consider this variable to improve the 308 

selection of our source patches and calculate connectivity. Differences in species 309 

occurrence may modify the connectivity pattern.  310 

The use of expert opinion as a tool for building resistance maps can have limitations as 311 

an overestimation of the importance of some habitats (Clevenger et al. 2002), however it 312 

can be suitable for species with strong habitat preferences. Further, subjectivity on 313 

resistance assignment could be controlled with the Analytical Hierarchy Process used 314 

(Saaty 1987). It has already been used for predicting wildlife fatalities on roads (Hurley 315 

et al. 2009).  316 

To improve the accuracy of connectivity mapping and, consequently, crossing probability 317 

on roads, an alternative is to obtain movement data by telemetry, (Bastille-Rousseau et 318 

al. 2018). Although telemetry is becoming cheaper and more popular, it is still very 319 

difficult to implement for multiple species and study sites. Another possible improvement 320 
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for crossing probability estimation may be obtained by also incorporating the traffic 321 

volume as another layer in our resistance map (Dutta et al. 2016). Our connectivity 322 

modelling approach is simple and potentially applicable to other roads or at the road 323 

network scale and could possibly be improved if source patches could be modelled from 324 

presence-absence, occurrence or occupancy modelling approach (Mackenzie et al. 2006; 325 

Guillera-Arroita 2017).   326 

We proposed the fatality probability (multiplication of crossing probability and collision 327 

probability) based on the logic of collision events – animals and moving vehicles must 328 

coincide in space and time. However, the fatality probability was not good at predicting 329 

road-kills for our target species. Bivariate models (additive) had a better predictive 330 

performance, although not considerably better than the univariate collision model. This 331 

apparently results from the poor performance of crossing models possibly due to low 332 

accuracy of source patch assignment. No other single road study integrated the two sub-333 

models (crossing and collision) in this manner, therefore comparison with other studies 334 

is difficult due to variation in the use of different statistics to measure predictive 335 

performance. Jaarsma et al. (2007) proposed a very similar idea using an animal 336 

simulation movement approach, but they did not validate their models. Although, new 337 

roads are specially challenging for road-kill mitigation (van der Ree et al. 2015b), and 338 

traffic seems to be a very important variable to predict where road-kill risk is higher, the 339 

approach described here may be applicable for modelling and predicting traffic volume 340 

using variables such as human population density, distance to main cities or main roads, 341 

and road class (Visintin et al. 2016),  342 

Our cost-benefit analysis demonstrated that, at least for one of our target species, the 343 

collision model could identify potentially effective mitigation locations with a good 344 

benefit-cost ratio for any evaluated road segment size (scale). Thus, our approach may be 345 
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useful to apply to roads where road-kill data are not available or on large road networks 346 

as well. Road retrofitting or new road construction are two contexts that demand a move 347 

of road ecology from a tradition of descriptive approaches to the development of 348 

predictive tools able to provide management recommendations with few or no data. 349 
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Supplementary material 522 

 523 

Appendix A. KML file with road track, road-kill records, road-kill hotspots, crossing 524 

probability, collision probability of Lesser Grison (Galictis cuja) and Molina's Hog-nosed 525 

Skunk (Conepatus chinga). 526 

 527 

Appendix B. Explanation for how we obtained the resistance value based on expert 528 

opinion and Analytic Hierarchy Process. 529 

 530 

We used the Analytic Hierarchy Process to facilitate decision making about resistance 531 

values.  Experts determined resistance values by a series of pairwise comparisons based 532 

on Saaty (1987). 533 

Experts’ responses varied from 1 to 9 and were based on the comparison between land 534 

use classes. The larger the score is, more resistant to kangaroo movement is that class: 535 

Intensity of 

importance on 

an absolute scale 

Definition Explanation 

1 Equal importance Two classes contribute equally for the goal 

3 
Moderate importance of one over 

another 

Experience and judgement slightly favour one 

class over another 

5 Essential or strong importance 
Experience and judgement strongly favor one 

class over another 

7 Very strong importance 
A class is strongly favoured and its dominance 

demonstrated in practice 

9 Extreme importance 
The evidence favouring one class over another is 

of the highest possible order of affirmation 

2, 4, 6, 8 
Intermediate values between the two 

adjacent judgements 
When compromise is needed 

 536 
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Table below showed the 17 classes of land cover used obtained from UFRGS-IB-Centro 537 

de Ecologia (2016): 538 

Code Land cover 

A Water 

B Rock outcrop 

C Sand 

D Wetland 

E Native forest < 1 ha 

F Native forest 1-10 ha 

G Native forest 11 - 100 há 

H Native forest > 100 ha 

I Dry grassland 

J Wet grassland 

L Degraded grassland 

M Silviculture 

N Mixed areas 

O Dry agriculture 

P Rice monoculture 

Q Mining 

R Urban area 

 539 

Three experts gave values for each class based on the pairwise comparison (one value per 540 

class). We present result for one expert in the table below. The value in each cell of the 541 

table below corresponds to the result of the pairwise comparison. All comparisons were 542 

always made between rows and columns in this order. For example, class A is five times 543 

more resistant than class G. Consequently, class G is five times less resistant than class 544 

A (1/5=0.20). 545 

 546 

Code A B C D E F G H I J L M N O P Q R 

A 1.00 2.00 2.00 3.00 7.00 7.00 5.00 3.00 9.00 9.00 7.00 7.00 6.00 5.00 7.00 3.00 2.00 

B 0.20 1.00 1.00 0.50 1.00 0.50 0.20 0.14 3.00 3.00 1.00 1.00 1.00 0.50 3.00 0.33 0.20 

C 0.20 1.00 1.00 1.00 1.00 0.50 0.33 0.14 3.00 3.00 2.00 1.00 1.00 0.50 2.00 0.33 0.20 

D 0.33 2.00 1.00 1.00 1.00 0.50 0.33 0.20 3.00 3.00 2.00 1.00 1.00 1.00 2.00 0.33 0.20 
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 547 

On the next step, all cell values were divided by the sum of its specific column resulting in the 548 

table below: 549 

 550 

Code A B C D E F G H I J L M N O P Q R 

A 0.23 0.06 0.06 0.10 0.17 0.26 0.28 0.38 0.14 0.14 0.17 0.23 0.21 0.26 0.15 0.17 0.27 

B 0.05 0.03 0.03 0.02 0.02 0.02 0.01 0.02 0.05 0.05 0.02 0.03 0.04 0.03 0.06 0.02 0.03 

C 0.05 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.03 0.04 0.03 0.04 0.02 0.03 

D 0.08 0.06 0.03 0.03 0.02 0.02 0.02 0.03 0.05 0.05 0.05 0.03 0.04 0.05 0.04 0.02 0.03 

E 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.02 0.05 0.05 0.02 0.02 0.02 0.03 0.02 0.02 0.03 

F 0.03 0.06 0.06 0.07 0.05 0.04 0.02 0.02 0.08 0.08 0.07 0.03 0.04 0.05 0.04 0.06 0.05 

G 0.05 0.14 0.15 0.10 0.12 0.11 0.06 0.03 0.08 0.08 0.10 0.07 0.07 0.05 0.11 0.11 0.07 

H 0.08 0.20 0.21 0.17 0.17 0.22 0.28 0.13 0.14 0.14 0.17 0.10 0.11 0.10 0.15 0.17 0.14 

I 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 

J 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 

L 0.03 0.03 0.01 0.02 0.02 0.01 0.01 0.02 0.03 0.03 0.02 0.03 0.04 0.03 0.02 0.03 0.03 

M 0.03 0.03 0.03 0.03 0.05 0.04 0.03 0.04 0.03 0.03 0.02 0.03 0.04 0.03 0.04 0.03 0.03 

N 0.04 0.03 0.03 0.03 0.05 0.04 0.03 0.04 0.03 0.03 0.02 0.03 0.04 0.05 0.04 0.03 0.03 

O 0.05 0.06 0.06 0.03 0.05 0.04 0.06 0.06 0.05 0.05 0.05 0.07 0.04 0.05 0.06 0.06 0.05 

P 0.03 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.03 

Q 0.08 0.09 0.09 0.10 0.07 0.04 0.03 0.04 0.05 0.05 0.05 0.07 0.07 0.05 0.06 0.06 0.05 

R 0.11 0.14 0.15 0.17 0.12 0.11 0.11 0.13 0.11 0.11 0.12 0.17 0.18 0.15 0.11 0.17 0.14 

 551 

Finally, we calculated the weight, lambda and relative weight (resistance values) following the 552 

equations indicated in the table below: 553 

 554 

Land 

Cover 

Code 

Sum of 

rows 

Sum of 

columns 

Weight (sum 

of 

rows/number 

of classes) 

λ 

(weight/sum 

of columns) 

Relative 

Weight 

(Resistances) 

E 0.14 1.00 1.00 1.00 1.00 0.50 0.20 0.14 3.00 3.00 1.00 0.50 0.50 0.50 1.00 0.33 0.20 

F 0.14 2.00 2.00 2.00 2.00 1.00 0.33 0.17 5.00 5.00 3.00 1.00 1.00 1.00 2.00 1.00 0.33 

G 0.20 5.00 5.00 3.00 5.00 3.00 1.00 0.20 5.00 5.00 4.00 2.00 2.00 1.00 5.00 2.00 0.50 

H 0.33 7.00 7.00 5.00 7.00 6.00 5.00 1.00 9.00 9.00 7.00 3.00 3.00 2.00 7.00 3.00 1.00 

I 0.11 0.33 0.33 0.33 0.33 0.20 0.20 0.11 1.00 1.00 0.50 0.50 0.50 0.33 0.50 0.33 0.14 

J 0.11 0.33 0.33 0.33 0.33 0.20 0.20 0.11 1.00 1.00 0.50 0.50 0.50 0.33 0.33 0.33 0.14 

L 0.14 1.00 0.50 0.50 1.00 0.33 0.25 0.14 2.00 2.00 1.00 1.00 1.00 0.50 1.00 0.50 0.20 

M 0.14 1.00 1.00 1.00 2.00 1.00 0.50 0.33 2.00 2.00 1.00 1.00 1.00 0.50 2.00 0.50 0.20 

N 0.17 1.00 1.00 1.00 2.00 1.00 0.50 0.33 2.00 2.00 1.00 1.00 1.00 1.00 2.00 0.50 0.20 

O 0.20 2.00 2.00 1.00 2.00 1.00 1.00 0.50 3.00 3.00 2.00 2.00 1.00 1.00 3.00 1.00 0.33 

P 0.14 0.33 0.50 0.50 1.00 0.50 0.20 0.14 2.00 3.00 1.00 0.50 0.50 0.33 1.00 0.33 0.20 

Q 0.33 3.00 3.00 3.00 3.00 1.00 0.50 0.33 3.00 3.00 2.00 2.00 2.00 1.00 3.00 1.00 0.33 

R 0.50 5.00 5.00 5.00 5.00 3.00 2.00 1.00 7.00 7.00 5.00 5.00 5.00 3.00 5.00 3.00 1.00 
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A 3.28 4.40 0.19 0.85 100.00 

B 0.52 35.00 0.03 1.06 15.75 

C 0.54 33.67 0.03 1.08 16.59 

D 0.64 29.17 0.04 1.09 19.39 

E 0.44 41.67 0.03 1.08 13.52 

F 0.84 27.23 0.05 1.34 25.55 

G 1.48 17.75 0.09 1.55 45.26 

H 2.67 8.00 0.16 1.26 81.44 

I 0.24 63.00 0.01 0.89 7.35 

J 0.24 64.00 0.01 0.89 7.24 

L 0.42 41.00 0.02 1.01 12.82 

M 0.56 30.00 0.03 0.99 17.08 

N 0.59 28.00 0.03 0.97 18.03 

O 0.86 19.50 0.05 0.99 26.32 

P 0.37 46.83 0.02 1.01 11.21 

Q 1.03 17.83 0.06 1.08 31.45 

R 2.30 7.39 0.14 1.00 70.11 

 555 

We checked the consistency between comparisons based on the equation CI = (∑ λ-n)/(n-1) where 556 

“n” is the number of classes and “λ” is obtained from the table above. Our Consistency Index (CI) 557 

equals 0.071. 558 

To evaluate if the consistency is acceptable or not, we also calculated a Consistency Ratio as CR 559 

= CI/RI. The CR is obtained by comparing the CI with an average random consistency index (RI) 560 

(Saaty, 1987). If CR it is not lower than 0.10, experts must revise their judgments related to 561 

pairwise comparisons. The RI for 17 variables is 1.61 (Saaty, 1987). We calculated the CR as 562 

0.044 and, thus, we accepted and used the experts evaluation for each cover class resistance in 563 

the connectivity map. 564 

That was one example for one assignment of one expert. Below we present a table with the 565 

consistency index (CI) of the three experts for two target species: 566 

Expert Lesser Grison 

Molina's Hog-nosed 

Skunk 

1 0.044 0.044 

2 0.085 0.186 

3 0.116 0.379 
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 567 

For Lesser Grison, two experts were consistent in their evaluation (CI<0.1). Resistance values 568 

provided by these experts were correlated (0.90), so we used the mean of resistance values 569 

between them. For Molina's Hog-nosed Skunk only one expert was consistent, so we used the 570 

resistances gave for this expert. 571 
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Predicting road fatalities at a road network using crossing and collision probabilities 1 

 2 

Abstract 3 

There is an urgent demand to predict wildlife-vehicle collisions at a regional scale due to 4 

the extension and expansion of road networks worldwide. On these networks it is often 5 

unfeasible to obtain road-kill data for mitigation planning. We predicted road-kills of the 6 

eastern grey kangaroo (Macropus giganteus) for Victoria roads (South-eastern Australia) 7 

based on the integration of crossing probability (exposure) and collision probability 8 

(hazard). We estimated crossing probability with connectivity maps using occurrence 9 

likelihood of the species as source areas and landscape resistance to movement based on 10 

experts’ opinion. We estimated collision probability using models fit to traffic volume, 11 

road width, and animal speed when crossing a road. Both a standard equation and an 12 

alternative equation that included a road avoidance parameter were tested to model 13 

collision probability. Several model variations were validated using spatial locations of 14 

known road-kills through cross-validation. The best model was bivariate which used 15 

crossing and collision sub-models calculated with the avoidance factor. We discuss 16 

possible improvements to the crossing and collision sub-models that may increase the 17 

predictive performance of the integrated model. 18 

 19 

 20 

 21 

Key-words: connectivity, expert opinion, road-kill, wildlife-vehicle collisions, road 22 

mortality 23 
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Introduction 24 

There is a massive and dense road and railroad network worldwide (Laurance and 25 

Balmford 2013) and it causes several environmental impacts (van der Ree et al. 2015a) 26 

such as landscape modification, environmental degradation and direct wildlife mortality 27 

(van der Ree et al. 2015b). Road and railroad fatalities may result in negative 28 

consequences for both wildlife population persistence and human safety (van der Ree et 29 

al. 2015b), as they can cause notable economic damage, mainly on roads (Huijser et al. 30 

2009). Therefore, implementing structures and actions for mitigation are necessary to 31 

avoid wildlife-vehicle collisions.  32 

 Due to the extent of national or regional road networks (CIA 2016) and the potential 33 

cumulative effects of wildlife-vehicle collisions on animal populations (Fahrig and 34 

Rytwinski 2009; Ceia-Hasse et al. 2018), regional scale planning of mitigation is 35 

important. At this scale, observational studies are often unfeasible or extremely costly for 36 

most species, except for those which cause high economic losses or injuries to humans – 37 

connected to road accidents (Danks and Porter 2010; Found and Boyce 2011) – or for 38 

those which are detected and reported by drivers such as open citizen science repositories; 39 

for example, the Taiwan Roadkill Observation Network (https://roadkill.tw/en) or 40 

California Roadkill Observational System (http://www.wildlifecrossing.net/california/). 41 

On a regional scale, the use of predictive models is almost a commitment. 42 

In many scientific areas, statistical models are used mostly for causal explanation, and 43 

models that possess high explanatory power are often assumed to inherently possess 44 

predictive power (Shmueli 2010). However, explanatory and predictive models 45 

investigate different questions in different ways. Explanatory models correspond to the 46 

use of statistical models for testing correlation between variables and predictive modeling 47 

is the process of applying a statistical model for predicting new or future observations 48 
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(Shmueli 2010). In road ecology, it is not different. There is vast array of explanatory 49 

studies (Gunson et al. 2011), however, few predict to new data and have been developed 50 

to plan mitigation measures for reducing road-kills and/or increase connectivity (Dussault 51 

et al. 2007; Lewis et al. 2011; Nelli et al. 2018). Further, most studies have been 52 

conducted at a local scale or did not validate the predictions (Jaarsma et al. 2007; Patrick 53 

et al. 2012). There is still a need for improving road-kill prediction risk at a regional scale. 54 

Visintin et al. (2016) proposed a framework for predictive models for road-kills which 55 

integrated two hierarchically related processes on roads: animal presence on the road 56 

(exposure risk, according to authors’ definition), indicated by species occurrence, and 57 

collision probability (hazard according to authors’ definition), represented by traffic 58 

volume and vehicle speed. Combining these two processes resulted in a collision risk, or 59 

as we redefine it, ‘fatality risk’. Other studies also used these same variable sets (Jaarsma 60 

et al. 2007; Patrick et al. 2012; Girardet et al. 2015), however, Visintin et al. (2016), 61 

formally set up a conceptual framework for predictive road-kill models.  62 

In this paper, we adopted a conceptually similar approach to predict road fatality risk on 63 

the Victoria road network (South-eastern Australia) using the Eastern Grey kangaroo 64 

(Macropus giganteus) as a case study species. However, we predicted crossing 65 

probability using a connectivity model that considered species occurrence probability and 66 

landscape resistance to movement. The likelihood of crossing a road depends on both the 67 

occurrence of a species at one side of the road and on the connectivity among habitats 68 

across roads. Thus, we expect that a connectivity metric could better predict crossing 69 

probability than species occurrence in the vicinity of the road – as applied by Visintin et 70 

al (2016). To obtain collision probability, we used an equation which considers traffic 71 

volume, a kill zone (road width) and the animal speed when crossing a road (Hels and 72 

Buchwald 2001; Jaarsma et al. 2006; Litvaitis and Tash 2008). We tested two approaches 73 
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for this later process: the original exponential equation (higher traffic results in higher 74 

collision risk) and an adapted equation which includes an avoidance parameter which 75 

means that from a given traffic volume animals start to avoid crossing the road and 76 

collision risk decreases.   77 

 78 

Methods 79 

Study area and target species 80 

The study area was the 227,819 square kilometer state of Victoria in south-east Australia 81 

and its road network. We considered only freeways, highways, and major arterial roads 82 

based on VicRoads classification (VicRoads 2017a) and divided the road network into 83 

500 m segments (n = 47,730 segments). We used an Australian native species, the Eastern 84 

Grey kangaroo (Macropus giganteus), as the target species. Grey kangaroos are large 85 

mammals and road-kills are frequently reported on Victorian roads (Visintin et al. 2016).  86 

Given their large body size, there is a human safety concern (Abu-zidan et al. 2002; 87 

Klöcker et al. 2006). 88 

 89 

Crossing probability 90 

We used a land cover map with a pixel resolution of 100m and nine cover classes: exotic 91 

largely treeless, native woody cover, exotic tree cover (urban trees), exotic plantation 92 

forestry, native grasslands and shrublands, native sparse cover (other native cover and 93 

bare ground), native open, non-woody wetlands and waterbodies, artificial 94 

impoundments, and exotic potential plantation trees (Newell et al. 2006). We elicited two 95 

experts on kangaroo ecology to provide resistance values to kangaroo movement for each 96 

land cover class. We combined their responses using an analytic hierarchy process (Saaty 97 

1987; Hurley et al. 2009) by which experts make decisions using a series of pairwise 98 
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comparisons among classes (see details in Appendix A). We verified the consistency of 99 

experts' evaluation with a ratio between the Consistency Index and the Random Index of 100 

less than 0.1, which means that values for each class were consistent between experts 101 

(Saaty 1987). We tested three thresholds of relative likelihood of grey kangaroo 102 

occurrence from Visintin et al. (2016) to serve as source areas for the connectivity maps: 103 

only patches with more than 0.5 (n = 373), 0.7 (n = 164) or 0.8 (n = 65) relative likelihood 104 

of occurrence (Appendix B). 105 

We developed the connectivity maps using circuit-theory in Gflow software (Leonard et 106 

al. 2017). Circuit theory-based connectivity is modelled by assigning a resistance value – 107 

indicating the degree of permeability – to each pixel in a landscape matrix for electron 108 

flow (or animals by analogy). Landscapes are represented as conductive surfaces, with 109 

low resistances assigned to landscape feature types that are most permeable to movement, 110 

and high resistances assigned to movement barriers (McRae et al. 2013). We used 111 

different criteria for convergence factor (1N and 4N; Leonard et al. 2017), that is, a 112 

correlation factor of the current density between pairs of source areas (it defines the 113 

number of decimal places for the correlation threshold among intermediate connectivity 114 

maps; 1N corresponds to 0.9 and 4N correspond to 0.9999). The output map for each 115 

criterion was a summation of per-cell current density (in amperes) for all source pairwise 116 

nodes. We re-scaled the current density values to be from 0 to 1 and sampled the mean 117 

current density in all intersecting grid cells for each 500 m road segment as the crossing 118 

probability.  We obtained six connectivity maps based on the previous criteria (Table 1). 119 

For class 0.5 of species occurrence, we retained only one result, because for convergence 120 

factors 1N and 4N the connectivity maps were highly correlated (> 0.95). In the final risk 121 

models, we only used the map with the best road-kill predictive performance (based on 122 

validation). 123 
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Collision probability 124 

To obtain collision probability for each 500m road segment, we used the traffic volume, 125 

animal speed, and road width following Hels and Buchwald (2001) and Jaarsma et al. 126 

(2006) equation: 1-exp(-N*(a/v), where N is traffic volume; “a” is a kill zone (road 127 

width), and “v” is animal speed. We refer to this model as collision probability 1 (Co-1). 128 

We adapted the Hels and Buchwald (2001) equation to include an avoidance factor: 1-129 

exp(-N*(a/v) * exp(- c*N), where N is traffic volume; “a” is a kill zone (road width), “v” 130 

is animal speed, and “c” is a parameter related to the traffic threshold of road avoidance. 131 

We selected our parameter “c” based on data from Visintin et al. (2017) which found the 132 

peak of collision rate for kangaroo species at 5.000 vehicles/day. We refer to this adapted 133 

model approach as collision probability 2 (Co-2). 134 

We modeled traffic volume for each segment using the same approach as Visintin et al. 135 

(2016). Average annual daily traffic (AADT) counts were recorded on, and provided by, 136 

VicRoads for 2333 road segments in the year 2013. We regressed AADT on distance to 137 

developed land use (km), distance to freeways and highways (km), population density 138 

(individuals per km2), road class and road density (km per km2) using random forests 139 

(Breiman 2001). Using the model fit, we predicted traffic volume to all 47,730 road 140 

segments. Road widths were obtained from VicRoads (2017) and for Eastern Grey 141 

kangaroo road crossing speed, we used half of the fastest recorded speed for the genus 142 

Macropus which equals 333 m/min (Hirt et al. 2017).  143 

 144 

Validation 145 

We used 1,023 kangaroo road-kill recordings from reported incidents to the Wildlife 146 

Victoria organization between 2010 and 2014 (Wildlife Victoria 2015). We then fitted 147 

Binomial models to the data using the presence of observed road-kills on each segment. 148 
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We fitted three types of models: crossing models, collision models, and crossing and 149 

collision in the same model (bivariate). For the bivariate model, we selected the best 150 

crossing model among the six connectivity outcomes – based on its predictive 151 

performance – and the best collision model. 152 

We cross-validated the models by randomly splitting the data into 10 folds (nine of these 153 

subsets for training the model and one for assessing model performance). We repeated 154 

this procedure 100 times for each model. We obtained ROC values to assess the model 155 

predictions. We also compared the Akaike information criterion (AIC) of each model. 156 

We performed these analyses using the train function in the caret package (Kuhn 2008) 157 

in the R environment (R Core Team 2017). 158 

 159 

Results 160 

 161 

Crossing probability 162 

The Cr-0.7-4 model, which used connectivity maps generated from 0.7 species 163 

occurrence likelihood as source patches and 4N convergence factor (Figure 1), was the 164 

best predictive model for estimating kangaroo crossing probability (Table 1) and was 165 

selected for final modelling.  166 
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167 

Figure 1: Eastern grey kangaroo road crossing probability map for the Victoria state road 168 

network based on a connectivity map generated from 0.7 species occurrence likelihood 169 

as source patches and 4N convergence factor. 170 

 171 

Table 1: Crossing models acronyms, named according to species occurrence 172 

likelihood and convergence factor, and their predictive performance measured by 173 

Akaike Information Criteria (AIC) and Receiver Operator Characteristic (ROC). 174 

Highlighted model (in bold) was selected for the final models. 175 

 176 
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Model Acronym 

Occurrence 

Likelihood 

threshold 
Convergence 

Factor 
AIC ROC 

Cr-0.5 0.5 1N/4N 9791 0.663 

Cr-0.7-1 0.7 1N 9827 0.423 

Cr-0.7-4 0.7 4N 9582 0.692 

Cr-0.8-1 0.8 1N 9824 0.611 

Cr-0.8-4 0.8 4N 10027 0.326 

 177 

Collision probability 178 

As expected, the Collision Probability 1 (Co-1) and Collision probability 2 (Co-2) models 179 

differed in their relationship to traffic volume (Figure 2). Collision probability 2 (AIC = 180 

9632.6; ROC = 0.66; Figure 3) was a better predictor of eastern kangaroo fatalities than 181 

collision probability 1 (AIC = 9878.3; ROC = 0.65). We used Co-2 for final modelling 182 

(Figure 3). 183 

 184 



      

88 
 

Figure 2: Relationship between Collision Probabilities 1 and 2 models and traffic volume 185 

for Eastern Grey kangaroos on each road segment (n = 47,730) of the Victoria state road 186 

network. 187 

 188 

Figure 3: Eastern Grey kangaroo collision probability map based on the Co-2 model for 189 

the Victoria state road network. 190 

 191 

Predictive performance 192 

The bivariate Cr-07-4 + Co-2 Model, which considered crossing and collision probability 193 

2, showed the best predictive performance when we compared all final models (Figure 194 
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4). It also had the lowest AIC (AIC = 9337) when we compared to Cr-07-4 model and 195 

Co-2 model separately. The resulting predicted fatality probability map of this model is 196 

presented on Figure 5.  197 

 198 

Figure 4: Predictive performance based on receiver operator characteristic (ROC) for 199 

Co-2 (Collision probability 2), Cr-0.7-4 (Crossing probability) and Cr-0.7-4+Co-2 200 

(Crossing probability and Collision probability 2). The bars correspond to standard 201 

deviations. 202 

 203 



      

90 
 

 204 

Figure 5: Predicted fatality probability of the Eastern Grey kangaroo on all road segments 205 

in Victoria state from the Cr-0.7-4+Co-2 model, which considered crossing probability 206 

and collision probability 2 in the same model. 207 

 208 

Discussion 209 

In this study we demonstrated that taking crossing probability and collision probability 210 

into account in an integrated model may provide better predictions of kangaroo road-kill 211 

risk than univariate models. Although we used the same framework as Visintin et al. 212 

(2016), considering crossing probability (exposure) and collision probability (hazard), 213 

and the same species and road network, our model had a lower predictive performance 214 
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(ROC = 0.72 versus ROC = 0.81). Both studies differ on the variables used to build each 215 

sub-model (occurrence likelihood versus connectivity maps to estimate crossing 216 

probability and traffic volume and vehicle speed versus traffic, road width, and animal 217 

speed to estimate collision probability). Apparently, the simpler model of Visintin et al. 218 

(2016) outperformed our model. However, our model may be more appropriate for 219 

researchers that have empirical movement data or good information about species 220 

movements. Furthermore, as road segmentation and road-kill sample for validation also 221 

differed among studies, only comparing models with all the possible combinations of sub-222 

models building, in the same road system and with the same dataset, will allow us to 223 

select the best approach. 224 

One apparent improvement of our approach is the adapted collision equation, which 225 

considered not only the traffic volume but also a species road avoidance parameter, 226 

resulting in a better collision probability model. Some previous studies found that an 227 

exponential distribution was not the best description for collision risk and traffic 228 

association (Gunson et al. 2011). Thurfjell et al. (2015) demonstrated that above a given 229 

traffic volume, animals start to avoid crossing and, thus, they are not hit by vehicles. We 230 

suggest that the use of the collision probability equation, in its original version (Hels and 231 

Buchwald 2001; Jaarsma et al. 2006), should be used with caution on roads or road 232 

networks with high traffic or traffic variation and other alternatives should be tested, with 233 

thresholds modeled that are unique to each species. 234 

In our study we used a connectivity map to predict the crossing probability. This option 235 

is supported by Kang et al. (2016) who found that the effect of habitat connectivity on 236 

road-kill abundance was stronger for large mammal species than for small species. 237 

However, the ability of connectivity to explain road-kills is lower than local landscape 238 

variables and road characteristics (Girardet et al. 2015; Kang et al. 2016). Contradicting 239 
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our initial expectation, the better overall predictive performance of the Visintin et al. 240 

(2016) model may result from their use of occurrence likelihood only, since kangaroo 241 

crossings and consequently road-kills may be more affected by local landscape variables 242 

than connectivity. 243 

We have demonstrated an easily implemented landscape resistance assessment by 244 

expert’s opinion. Whilst it had been used previously by Hurley et al. (2009) to predict 245 

moose-vehicle collisions, and touted as a valuable tool, some critics have depreciated this 246 

method (Clevenger et al. 2002). Connectivity maps could be improved with the use of 247 

more than one layer to define the landscape resistance values, as in Dutta et al. (2016), 248 

which considered transportation infrastructure. Although rarely available, telemetry data 249 

would strongly improve resistance estimates and connectivity maps (Proctor et al. 2015; 250 

Loraamm and Downs 2016) and movement simulations are another possible approach to 251 

improve these maps (Beier et al. 2008; Semeniuk et al. 2014). In contrast to Gonçalves et 252 

al. (2018), which applied the same general approach to obtain crossing probability for a 253 

single road, the crossing model outperformed the other collision models in our study. 254 

Here, we selected core areas by using species occurrence likelihood data. This performed 255 

better than selecting core areas using habitat preference based on expert opinion as done 256 

by Gonçalves et al (2018). 257 

Visintin et al. (2016) propose their framework to be highly flexible and uses several 258 

modelling approaches and input data to build the sub-models. This largely depends on 259 

available information for each study area. Testing multiple approaches in a single study 260 

for multiple species would help compare the performance in each situation. At a network 261 

scale, and even at a road scale, combining solutions for multiple species is a challenge; 262 

however there have already been proposals in that direction (e.g. dispersal guild approach 263 

where species are grouped on similar behavior, see Lechner et al. 2017).  264 
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Few other studies also showed good performances for predicting road-kills using these 265 

two processes in a single model (Visintin et al. 2017; Nelli et al. 2018). Although we are 266 

not aware of any precedents using this kind of models to plan for mitigation installation, 267 

the accumulating evidence supports their use for this purpose in contexts where 268 

observations are not available or not attainable, like regional road networks. 269 
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Supplementary material 399 

Appendix A. Explanation for how we obtained the resistance value based on experts 400 

opinion and Analytic Hierarchy Process. 401 

 402 
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We used the Analytic Hierarchy Process to facilitate decision making about resistance 403 

values.  Experts determined resistance values by a series of pairwise comparisons based 404 

on Saaty (1987). 405 

Experts’ responses varied from 1 to 9 and were based on the comparison between land 406 

use classes. The larger the score is, more resistant to kangaroo movement is that class: 407 

Intensity of 

importance on an 

absolute scale 
Definition Explanation 

1 Equal importance Two classes contribute equally for the goal 

3 
Moderate importance of one over 

another 
Experience and judgement slightly favour one class 

over another 

5 Essential or strong importance 
Experience and judgement strongly favor one class 

over another 

7 Very strong importance 
A class is strongly favoured and its dominance 

demonstrated in practice 

9 Extreme importance 
The evidence favouring one class over another is of 

the highest possible order of affirmation 

2, 4, 6, 8 
Intermediate values between the two 

adjacent judgements 
When compromise is needed 

 408 

Table below showed the nine classes of land use of Victoria state used in our land cover 409 

and use map obtained from Newell et al. (2006):  410 

Cover 

Class 

Code 
Land Use 

A Exotic - largely treeless (Not native vegetation or tree cover) 
B Native - woody cover (including heaths and woody wetlands) 
C Exotic - tree cover (Urban trees, windbreak trees and other exotic trees) 
D Plantation - tree cover (Plantation forestry (mainly Blue Gums and Pines) 
E Native - grasslands and chenopod shrublands (including some wetlands) 

F 
Native - sparse cover (Other native cover and bare ground (fires scars, sand dunes, very low 

cover on floodplains etc.) 

G 
Native - open, non-woody wetlands and waterbodies (Potential or existing non-woody 

wetland cover - includes smaller embayments and estuaries) 

H Artificial impoundment (Large artificial freshwater impoundments) 
I Exotic - tree cover (Potential plantation trees) 

 411 
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Two experts discussed their opinions and gave values for each class based on the pairwise 412 

comparison (one value per class). The value in each cell of the table below corresponds 413 

to the result of the pairwise comparison. All comparisons were always made between 414 

rows and columns in this order. For example, class G is five times more resistant than 415 

class A. Consequently, class A is five times less resistant than class G (1/5=0.20). 416 

Land 

cover 

Code 
A B C D E F G H I 

A 1.00 1.00 1.00 0.50 1.00 0.33 0.20 0.14 0.50 

B 1.00 1.00 1.00 1.00 1.00 0.50 0.25 0.14 1.00 

C 1.00 1.00 1.00 1.00 1.00 0.50 0.25 0.14 1.00 

D 2.00 1.00 1.00 1.00 1.00 0.50 0.25 0.14 1.00 

E 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.14 1.00 

F 3.00 2.00 2.00 2.00 2.00 1.00 1.00 0.14 1.00 

G 5.00 4.00 4.00 4.00 2.00 1.00 1.00 0.25 1.00 

H 7.00 7.00 7.00 7.00 7.00 7.00 4.00 1.00 1.00 

I 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 417 

On the next step, all cell values were divided by the sum of its specific column resulting in the 418 

table below: 419 

Land 

cover 

Code 
A B C D E F G H I 

A 0.0435 0.0526 0.0526 0.0270 0.0588 0.0270 0.0237 0.0459 0.0588 

B 0.0435 0.0526 0.0526 0.0541 0.0588 0.0406 0.0296 0.0459 0.1176 
C 0.0435 0.0526 0.0526 0.0541 0.0588 0.0406 0.0296 0.0459 0.1176 
D 0.0870 0.0526 0.0526 0.0541 0.0588 0.0406 0.0296 0.0459 0.1176 
E 0.0435 0.0526 0.0526 0.0541 0.0588 0.0406 0.0592 0.0459 0.1176 
F 0.1304 0.1053 0.1053 0.1081 0.1176 0.0811 0.1183 0.0459 0.1176 
G 0.2174 0.2105 0.2105 0.2162 0.1176 0.0811 0.1183 0.0804 0.1176 
H 0.3043 0.3684 0.3684 0.3784 0.4118 0.5677 0.4734 0.3215 0.1176 
I 0.0870 0.0526 0.0526 0.0541 0.0588 0.0811 0.1183 0.3215 0.1176 
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 420 

Finally, we calculated the weight, lambda and relative weight (which corresponds to the used 421 

resistance value) following the equations indicated in the table below: 422 

Land 

Cover 

Code 

Sum of 

rows 
Sum of 

columns 

Weight (sum of 

rows/number of 

classes) 

λ (weight/sum 

of columns) 
Relative Weight 

(Resistances) 

A 0.390 23 0.043 0.997 11.78 
B 0.495 19 0.055 1.046 14.96 
C 0.495 19 0.055 1.046 14.96 
D 0.539 18.5 0.060 1.108 16.27 
E 0.525 17 0.058 0.992 15.85 

F 0.930 12.33 0.103 1.274 28.08 
G 1.370 8.45 0.152 1.286 41.36 
H 3.312 3.11 0.368 1.143 100 
I 0.944 8.5 0.105 0.891 28.50 

 423 

 424 

We checked the consistency between comparisons based on the equation CI = (∑ λ-n)/(n-1) where 425 

“n” is the number of classes and “λ” is obtained from the table above. Our Consistency Index (CI) 426 

equals 0.0977. 427 

To evaluate if the consistency is acceptable or not, we also calculated a Consistency Ratio as CR 428 

= CI/RI. The CR is obtained by comparing the CI with an average random consistency index (RI) 429 

(Saaty, 1987). If CR it is not lower than 0.10, experts must revise their judgments related to 430 

pairwise comparisons. The RI for nine variables is 1.45 (Saaty, 1987). We calculated the CR as 431 

0.067 and, thus, we accepted and used the experts evaluation for each cover class resistance in 432 

the connectivity map. 433 

 434 
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Appendix B. Source areas based on predicted relative likelihood of grey kangaroo 442 

presence. Black are areas with more than 0.5 of occurrence, red are areas with more than 443 

0.7 of occurrence and yellow are areas with more than 0.8 of kangaroo occurrence. These 444 

data are based on the occurrence likelihood of kangaroo estimated by Visintin et al. 445 

(2016).  The larger likelihood thresholds are within the smaller ones. 446 

 447 
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Considerações finais 

Nessa tese, explorei diferentes formas de identificar quais são os locais com maior 

incidência de atropelamentos e poder, com isso, indicar locais prioritários para 

implementação de medidas de mitigação. Com os resultados do primeiro capítulo, concluí 

que os atropelamentos de fauna podem ser muito numerosos em determinados contextos, 

neste caso, para os répteis na BR-101, no qual estimei que mais de 15 mil répteis podem 

morrer atropelados por ano em 277 km. Além disso, mostrei que é possível identificar 

locais de maior agregação e que se eles tivessem uma mitigação 100% efetiva poderiam 

evitar 45% dos atropelamentos encontrados.  Nesse capítulo exemplifiquei como é 

importante levar em consideração os erros de amostragem na estimativa da fatalidade, 

bem como ilustrei como a identificação das zonas de agregação de fatalidades pode 

otimizar o esforço de mitigação. Além disso, evidenciei a importância do estudo dos 

atropelamentos em répteis que ainda é um grupo negligenciado em trabalhos de ecologia 

de estradas e apresentei atributos da paisagem que podem estar associados aos trechos de 

maior número de fatalidades. 

O segundo e terceiro capítulos dessa tese apresentaram uma abordagem preditiva para 

identificar locais que seriam prioritários para mitigação do impacto de atropelamento de 

fauna. Explorei nesses modelos os dois processos associados à ocorrência de fatalidades 

em uma estrada: a probabilidade de travessia do animal e de colisão com um veículo. 

Com o segundo capítulo, conclui que é possível usar dados de tráfego de veículos e 

tamanho e velocidade dos animais para predizer locais de maior concentração de 

atropelamentos, entretanto deve se ter cuidado pois a performance dos modelos variou 

com a espécie. Essa abordagem pode ser utilizada em um contexto de construção de novas 

estradas ou de pavimentação de estradas existentes, para as quais é possível modelar o 

futuro tráfego e avaliar a conectividade da paisagem para espécies de especial interesse. 
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Contudo, ainda são necessárias avaliações multiespecíficas, pois principalmente em 

países megadiversos, são raras as situações nas quais a proposição de medidas de 

mitigação é justificável apenas em uma espécie. 

Para o contexto de rede de estradas, concluí a partir do capítulo 3 que é possível predizer 

o atropelamento utilizando a probabilidade de travessia e a probabilidade de colisão em 

um mesmo modelo. Demonstrei ainda que a equação adotada pela maioria dos autores 

para calcular a probabilidade de colisão precisa ser utilizada com cautela, pois nem 

sempre a relação entre o risco de atropelamento e o tráfego é exponencial. O modelo 

proposto no terceiro capítulo da tese é apropriado, por exemplo, para o contexto do 

Programa de Rodovias Federais Ambientalmente Sustentáveis (Portaria Interministerial 

n° 288, de 16 de julho de 2013), que prevê que rodovias construídas anteriormente à 

exigência de licenciamento ambiental passem por um processo de regularização dentro 

de um período de 06 a 20 anos. Espera-se que o impacto de 55.000 quilômetros de 

estradas seja avaliado, com a proposição de medidas mitigadoras relacionadas 

especialmente à diminuição da mortalidade e aumento da permeabilidade da paisagem 

para a fauna. Desconheço o andamento da implantação do processo de regularização 

ambiental demandado pela portaria, mas é notório que nessa escala a geração de dados 

observacionais de fatalidades é extremamente onerosa. Assim, considerando as 

limitações de recursos para estudos de monitoramento da mortalidade e extrema 

complexidade de executá-los nessa abrangência, acredito que os modelos propostos no 

terceiro capítulo podem ser úteis não só para identificar locais prioritários para mitigação, 

mas também para indicar locais importantes para focar os estudos que queiram avaliar 

localmente este impacto, explorando efeitos populacionais, por exemplo.  

Portanto, concluo que os resultados aqui apresentados podem auxiliar na identificação de 

locais para possível implementação de medidas de mitigação dos atropelamentos de 
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fauna. Além de servirem para ajudar na identificação de áreas prioritárias para execução 

de estudos locais de fatalidade em rodovias. Ainda é necessário explorar outras maneiras 

de calcular e integrar as probabilidades utilizadas nesta tese, tanto a probabilidade de 

travessia quanto a de colisão. Entretanto, demonstrei aqui uma forma possível de predizer 

atropelamentos para um contexto em que não há dados dessa natureza disponíveis, seja 

para estradas novas ou para uma rede de estradas. A utilização de modelos preditivos é 

uma abordagem ainda pouco usada e aplicada no Brasil, mas muito urgente e necessária 

para a conservação da natureza de uma forma menos onerosa e mais rápida. 

Para além dos artigos que compõem esta tese, queria também utilizar essas considerações 

finais para dizer o que concluo desses quatro anos e três meses de doutorado no Programa 

de Pós-Graduação em Ecologia da Universidade Federal do Rio Grande do Sul. Acredito 

que o período de doutorado pra mim foi muito além destas páginas aqui escritas e que 

não têm espaço para descrição em nenhuma seção. Além dos artigos aqui apresentados, 

alcancei objetivos importantes pra minha formação: orientei e participei de outros 

trabalhos acadêmicos (FREITAS et al., 2017), fiz divulgação científica, que considero 

uma atividade bastante importante e pouco valorizada (GONÇALVES, 2015; KINDEL 

et al., 2017a; colunas Fauna e Estradas em www.faunanews.com.br), participei de cursos 

para capacitação de profissionais na área de Ecologia de Estradas e de atividades 

diretamente ligadas às políticas públicas para o setor de transportes, as quais também 

resultaram em trabalhos acadêmicos (KINDEL et al., 2017b). Consegui mesmo com a 

atual situação do nosso país, ter uma experiência acadêmica fora do país que foi 

extremamente enriquecedora tanto profissional quanto pessoalmente. Com certeza, todas 

essas experiências fortaleceram a minha formação como aluna e pesquisadora.  
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