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SUMMARY 

The in verse design problem is the optimization of the design geometry to obtain functional performance 
which depends on this geometry. This work presents an integrated, highly systematic and generally applicable 
approach to the inverse design problem. In numerical terms the problem is formulated as the multi-dimensional 
maximization of a target function. This target function is defined as the numerical result of a decision making 
matrix consisting of a set of cri teria, their weighting factors and a mark obtained for each cri teria. In this paper 
the developed methodology is applied to the design of a straight blade turbine mixer centrally placed inside a 
cylindrical mixing vessel. 

INTRODUCTION 

Traditionally, design is govemed exclusively by intuition, 
ingenuity and creativity ofthe engineer and therefore a good measure 
of arbitrariness and Juck. This approach has yielded most of the 
inge::nious and beneficiai technical accomplishments to mankind and 
probably will continue to do so in the future. In no way shall this be 
belittled by the following praise and outline of a more methodological 
design approach nor shall it be denied that every design no rnatter 
how rnethodically conducted can only thrive on intuition, ingenuity 
and creativity. 

However, it is desirable to work methodical wherever 
possible for the sake o f 

• transparency 
• repeatability 
• accountability 
Seldom is a design problem posed in a straight forward 

manner, i.e. a geometry can be directly derived from the required 
functional behavior of the object. More likely it is posed as an 
inverted design problem where the functional behavior is 
dependent on the design geometry or more generally the choice 
of independent design variables, but the geometry can not be 
derived from the requirements. Further, no design of practical 
interest has to fulfill only a single requirement of its functional 
behavior and seldom are ali requirements of equal importance. 
This type of problem is traditionally solved by trial and error, 
evolution and experience. 

Designs that have to fulfi ll functional requirements and are 
related to tluid tlow are particularly difficu lt because of the 
nonlinear behavior o f the tluid mechanics equations. 

Figure I shows the flow chart of an algorithm that was developed 
through strong inspiration by methods developed by Marshall et ai., 
1994. It tackles iteratively the task of optimizing the design. 
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Figure I - Flow Chan for Design Optimization 

PUC 
RIO 

!f the goodness of a design can be expressed in a single 
number then the problem of finding the best design can be 
reduced to the optimization of a target function, F, which 
depends on a number o f independent design variables, nv. 

F = F(x1,x2 , ... ,x111. ) (I) 

The main task of the design optimization isto describe the 
formulation o f a target function that takes account o f the varied 
design requirements in a rigorous manner. 

Definition ofDesign Descriptors. The first step in formulating 
the design problem is to establish a complete set of design variables 
and fixed parameters, the design descriptors, which describe the 
pertinent features of ali possible solutions to the problem,. These 
may contain geometry, material, color, etc. Given the multitude of 
possible descriptors one must exercise restraint in only selecting 
those which significantly determine the function, e.g. where color 
may be a significant variable in determining the functional behavior 
o f a solar collecwr it is prubably less the case for a tool machinc. 
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Further, since only the design variables determine the 
dimension of the optimization problem, and therefore its 
complexity, it is advisable to make as many descriptors into 
parameters as possible based on previous experience or simple 
analysis o f the physics involved in the design. 

Criteria and Constraints. The next step is to identify the 
criteria and constraints for the design, e.g. cost, safety, velocity, 
stress, efficiency, etc. 

The cri teria are the standards of judgment for the goodness 
o f the design and must be phrased in a numerical fashion. They 
will determine which features of the design will be rewarded and 
which will be penalized. Not enough care can be taken with their 
selection, marking and weighting. 

Constraints limit the possible design solution to a subset of 
thc nv-dimcnsional solution space. 

Target Function. The target function is the combination of 
ali the criteria established. lts evaluation can be seen as a 
weighted averaging process. 

To evaluate the target function the marking functions as 
well as the weight factors of each criterion with respect to the 
others must be known. The value o f the target function is a single 
number that expresses the goodness of one particular selection of 
design variables in the light of the identified criteria and 
constraints. 

The evaluation o f each criterion may require a conventional 
analysis or analysis by computerized methods, such as Finite 
Element Analysis (FEA) for stresses and natural frequencies, 
Computational Fluid Mechanics (CFD) for flow patterns, 
pressure drop or efficiency or computer based expert systems. 
This analysis is integral part of the optimization to avoid any 
need for intermediate user interfacing. 

Optimization. For optimization of a multidimensional 
constraint problem a number of algorithms are available from 
mathematical software libraries. The algorithms suitable for this 
application have to make due without the explicit evaluation of 
the function gradient because it is generally not known. 

Initially, a Direction Set Method was selected for this work. 
This method consists of sequential one-dimensional ( lD) 
optimization in ali nv directions of the solution space of the target 
function. These directions of lD optimization are selected such as 
to gain the largest progress to the maximum for the specific shape 
o f function to be optimized (PRESS et ai., 1992, ch I 0.5) 

To get started the algorithm needs an initial guess of the 
geometry and a set of basis vectors for the solution space. These 
are selected as the nv unit vectors if no better information about 
the principal directions of the target function exists. In some 
cases this algorithm was not able to proceed to the (known) 
maximum o f a target function without an initial guess very close 
to the actual maximum. 

Therefore, the optimization method was changed to a 
Downhill Simplex Method (Press et ai., 1992, ch 10.4). This 
method needs not only a single starting guess (a nv-dimensional 
vector), but nv+ I vertices, the corners o f a nv-dimensional 
simplex. This simplex is then reflected, stretched and contracted 
along the target function ' s topology to arrive ata maximum. This 
algorithm always proceeded robustly to the maximum of the 
target function regardless o f the initial guess. 

GOVERNING EOUATIONS FOR MIXER 

The design optimization was carried out for a single turbine 
mixer of the flat blade turbine type revolving inside a cylindrical 
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mixing tank. The geometry and nomenclature of this standard 
configuration is given in Figure 2. 

This definition sketch serves to illustrate the geometrical 
design descri ptors 

DT tank diameter [m] 
DI impeller diameter [m] 
NB number o f turbine blades [m] 
Q height of turbine blades [m] 
HI height of impeller in tank [m] 
HL height o f liquid in tank [m] 
Further parameters describe the fluid type, in the simple 

case discussed in this work the density, p, and the kinematic 
viscosity, v, o f a Newtonian fluid. 

\1 
I 

( 

NB HL 

I I I 1== 1- 51 
DI 

DT 

Figure 2 - Definition Sketch o f Mixing Tank with Impeller 

The first principal quantity of interest is the amount of 
power consumed by the mixing process. Dimensional analysis 
according to the Buckingham rc-theorem (STERBACEK, 1965 or 
HOLLAND, 1966) yields a relationship between the non­
dimensional numbers 

power number, Np 
p 

(2) • 
p · N 3 D/5 

Reynolds number, Re 
N D/2 

(3) • v 

Fraude number, Fr 
N 2 ·DI 

(4) • 
g 

with 
P hydraulic power consumption [W] 
N speed of impeller rotation [rpm] 
g gravity acceleration [m/s2

] 

Generally, the power number depends on both the Fraude 
and Reynolds numbers 

N p N p(Re,Fr) 

(5) 
where the dependency on Fraude number is merely due to the 
effect of vortexing of the fluid in the container which makes the 
mixing less efficient. The Fraude number dependency of power 
consumption can be eliminated by placing suitable baffle plates 
on o r near the wall o f the container. The design o f suitable baffle 
plates is considered a secondary design problem which can be 



solved independently of the principal design of the tank and 
impeller. Therefore, it shall not be subject to the further treatment 
o f the design optimization and we obtain the relationship: 

Np Np~~ (~ 

This function, Np can be approximated by the product of a 
geometry dependent factor, C I, anda normalized function, <p. 

N p = Cl· cp (Re) (7) 

The geometry factor, C I, the value o f the power function at 
Re = I , is tabulated by Sterbacek and Tausk, 1965 and Holland 
and Chapman, 1966 for a multitude of experimental results 
dependent on the following geometric variables: 

• relative impeller height, Q/Dl 
• rei ative impeller diameter, DIIDT 
• relative impeller height in tank, HI/DT 
• relative liquid levei in tank, HUDT 
• number o f impeller blades, NB 
In the optimization algorithm an interpolation of CI at the 

interpolation point X o in the 50 variable space was 
accomplished by a weighted averagc of ali available data. The 
weighting factors were selected to reflect a decreasing importance 
of data further away from the interpolation point, i.e. inverse to 

the distance squared between the point X o and this data point. 

11 c I-t 
i=l d; 

11 I 
I -r 
i=ld; 

for d; :f. O 
(8) 

C1; for d; =O 

with 
~ ~ 

d; Ixi- x 0 1 

The general shape o f the normalized power function, <p, can 
be descri bed by 

cp(Re) 

I · Re-I for Re < I O 

0.214· Re-0·331 for 10 ~ Re < 100 

0.040 · R e 0·
036 for I 00 ~ R e < I 000 

0.013·Re0·198 for IOOO~Re<IOOOO 

0.080 for I 0000 ~ Re 

(9) 

The second quantity that is important to know in the mixing 
process is the time required to obtain a mixed solution. Khang 
and Levenspiel, 1976 presents results for Re > 10000 and 
determines the mixing time by observing the decay of the 
amplitude of concentration of a solution that is admixed into a 
tank. 

Figure 3 shows the general shape of <p as well as the mixing 
rate number, Mx. 

• mixing rate number, 

Mx = z { ~~ r.3 (10) 

with 
K decay exponent [1/s] 
The decay exponent, K, describes the exponential decay 

o ver time o f the concentration amplitude that a senso r measures i f 
placed at a fixed location in the tank during progressive mixing. 
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Figure 3 - Normalized Power Function and Mixing Ratc Number 
for Flat Blade Turbine Mixer 

lt relates the time and remaining concentration fluctuation 
after addition o f a substance o f concentration I by 

A 2 -K·t ·e m (l i) 

with 
A final value o f fluctuation amplitude [-] 
tm mixing time [s] 
Lee et ai., 1957 used in their experimental investigations of 

mixing time a visual observation of dye dispersion. The Reynolds 
number range covered is Re < 65. To make the experimental 
results comparable to the ones by Khang and Levenspiel, 1976 
the final amplitude, A, that is comparable to a completcly mixed 
dye solution (by visual inspection) is considered to bc I%. This 
makes the equivalent decay exponent 

K = -ln(0.5%) (1 2) 
lm 

and data from both publications can be plotted on thc same scale 
as seen in Figure 3. 

By interpolation between the known data the relationship of 
mixing time with the Reynolds number is given by 

1

340 · Re -1.
54 for R e < 46.5 

4.34 ·101lRe-7
·
0 for 46.5~Re<65 

Mx(Re) (13) 
0.021· Re0

·
343 for 65 ~ Re < 10000 

0.5 for I 0000 ~ Re 

APPLICATION OF DESIGN OPTIMIZATION 
METHODOLOGY TO MIXER 

Two-Dimensional Design Problem. The first application of 
the design methodology shall be the optimization o f only impeller 
diameter, DI, and speed, N, for an otherwise tixed mixer 
contiguration. This 20 design problem allows a graphical 
representation o f the target function and therefore a check on the 
optimization algorithm. 

The fixed parameters of a given container and fluid were 
selected to be 

• tank diameter, DT = 0.1 m 
• number o f mixer blades, NB = 6 
• impeller position, HI/DT = 0.33 
• impeller blade height, Q/DI = 0.25 
• Jiquid levei, HUDT = 1.0 
• fluid: water, p = 1000 kg/m3

, v= l.e-6 m2/s 
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Figure 4- Lines o f Equal Power, Mixing Time and Energy Consumption in 20 Oesign Problem 

Figure 4 shows the !ines of equal power mixing time and 
energy consumption, in the 20 solution space that is bounded by 
the constraints on the mixer impeller to be between I 0% and 90% 
o f the tank diameter. 

To define the target function the cri teria were selected as 
• mixing time to obtain a completely mixed solution 
• energy, E, consumed during this time with 
E = t 111 ·P (14) 

For the marking scheme a scale o fone to I O was selected. 
The following marking functions, M 1 and M2 , are designed to 
translate the values of the criteria into marks that retlect the 
desired behavior of the mixer. Clearly it is desirable to have both 
, short mixing time and low energy consumption. Therefore, both 
marking functions display a negative slope. 

To mark the mixing time criterion it is assumed that the 
mixture consists of reactive components whose individual 
stability is such that only within the criticai time t0 a reaction can 
take place and thereafter no benefit results from further mixing. 

Therefore the marking function reaches the zero mark at to with 
no marks gained for longer mixing time. 

!10-.!.Q·t for t111 <to 
Ml(lm) = to m 

O for 1111 ~ 10 

(15) 

The energy consumption on the other hand yields ever 
lowcr marks with higher consumption asymptotically 
approaching zero while at very low energy leveis, lower than Eo, 
the benefit o f even lower energy consumption is insigniticant and 
does not earn higher marks 

{
lO for E< Eo 

M 2 (E) = I O· E
0 

I E for E ~ E
0 

(16) 

Figure 5 shows the graph o f the two marking function for 
• criticai time, t0 = 5 s 
• energy threshold, Eo = 5 J 
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Figure 5- Marking Functions, M1 and M2 

The weighting factors, WF1 and WF2, were in this example 
selected as unity for both cri teria, expressing equal importance o f 
mixing time and energy consumption. 

The target function, F, is now defined as 
li c 

F(Dl,N)=LM;·WF; (17) 
i=l 

with 
nc number o f cri teria 

Figure 6, displays the contou r plot o f the target function, F. 
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Figure 6- Contour Plot of Target Function 

It can be seen in Figure 6 that the unconstrained target 
function shows a maximum at 

• DI 7.93 em 
• N 67.6 rpm 
Depending on the required accuracy and the initial guess it 

takes different computational effort, i.e. number of evaluations of 
the target function, ITER. The existing maximum was reached 
regardless of the initial guess with only marginal influence on the 
computational effort. For an initial master vertex developed from 
the point 3.0 em, 70.0 rpm the influence of the tolerance 
requirement for the incrementai function value. FTOL, on the 
computational effort is summarized in Table l . 

Table I - 20 Design Optimization 

FfOL !TER DI N F 
[em] [ m] 

unconstrained 1% 15 7.25 76.0 18.604 
0.1 % 31 7.81 69.1 18.706 
0.01% 48 7.87 68.6 18.722 

0.001 % 64 7.92 67.8 18.724 
lO-' 121 7.93 67.6 18.724 
10'' 131 7.93 67.6 18.724 

P<5W 0.01 % 48 7.95 57.8 18.516 
P < 5 W and 0.01 % 67 7.80 60.3 18.515 
N > 60 m 

It can be seen that the number of function evaluations 
increases significantly with an increase in the tolerance 
requirement. On the other hand, the return on the improvement in 
the value of the target funclion and the variables diminishes. A 
reasonable tole1 anc\: requirement was considered to be 0.0 I%. 

Having solved lhe unconstrained design problem 
(unconslrained except for the geometry rcquirement of an 
impeller smaller than lhe tank diameter) we can proceed to ask 
lhe queslion what the best design according to our criteria is if 
the largest available drive can deliver a maximum of 5 W to the 
mixer. Table I also shows the results for the constrained cases. In 
the power constrained case we fill find the best combination of 
diameter and speed at 7.95 em and 57.8 rpm. 

Additional constraints can be introduced. For example if 
the mini mal drive speed dueto transmission restrictions is 60 rpm 
we will find the best impeller diamcter at 7.80 em and 60.3 rpm 

An observation in this context is that the presence of 
constraints also increases the computational effort significantly. 

Multi-Dimensional Desi~rn Problem. Up to this point the 
real power of this methodology has not presented itself very well 
because we could have gained ali the insight about optimum 
design without ever bothering to device an optimization 
algorithm. 

This notion will falter immediately when we enter the 
multi-dimensional solution space. Where are the hills and valleys 
of the target function topology in nv dimensions? The tools of 
graphical representation of the target function will not have the 
power to solve this question for us. 

So the further discussion shall treat the optimization of an 
open flat blade turbine mixer for a volume of water of 7.85398 
liters (incidentally the same volume as in the 2D example to have 
a point o f reference). The six relevant variables are thcn 

• impeller diameter, DI [m) 
• impeller speed, N [rpm] 
• number o f blades, NB [ -] 
• relative impeller height in container, HI/DT [-) 
• rei ative impeller blade height, Q/DI [ -) 
• relative liquid height in container, HUDT [-) 
The impeller and tank diameter and t,he impeller speed 

influence directly the power, energy and mixing time cri teria. The 
other variables only enter the power and energy criterion via the 
geometry factor CI. This makes for a group of variables with 
strong and another group with weak influence on the target 
function. Therefore, we will tackle the problem cautiously with 
an intermediate step at the 3D design problem with DI, N and DT 
as variables. Table 2 summarizes the optimization results. 

Following the same strategy as outlined on the 2D problem, 
i.c. starting from an initial guess of 3.0 em and 70 rpm at a 
relative liquid height of I .O we go through a sequence o f tougher 
and tougher tolerance requirements to assure a stable target 
function maximum. As a second check we start the search for the 
maximum from this just found maximum and confirm it is there, 
at impeller diameter 8.94 em, 58.7 rpm and a liquid levei of 1.07. 
Further, the target function has a higher value than what we 
obtained in the 2D case, i.e. we found a better solution. 



Ali this indicates that we could be satisfied and implement our 
optimized design. 

Table 2 - 30 Design Optimization 

FfOL !TER DI N HU F 
[em! [!Em] DT 

initial 3.00 70.0 1.00 
final 1% 26 8.52 58.7 1.07 18.871 
initial 3.00 70.0 1.00 
final 0.01% 75 8.92 58.9 1.03 18.904 
inilial 3.00 70.0 1.00 
final 10"6 145 8.94 58.9 1.02 18.905 
initial 3.00 70.0 1.00 
final 10"' 181 8.94 58.9 1.02 18.905 
initial 8.9-1 58.9 1.02 
final 10 .• 131 8.94 58.9 1.02 18.905 

However, thinking smarter we can also use the insight we 
gained on the 20 design and start the search from an initial vertex 
at the 20 optimum. Table 3 shows the sequence of using the 
found solution as the new initial vertex and progress in this 
manner to another stable maximum. Ali we can do at this point is 
note that the target function at this maximum at impeller diameter 
7. 27 em, I 07 rpm and a liquid levei o f I. 90 h as a higher target 
function value than the previous found which makes that 
maximum only a local one. 

Further quest into solution space starting from 500 rpm 
yields a maximum at 473 rpm which proves not to be stable by 
the restart from itself, but converges onto the previously found 
absolute maximum. 

Table 3 - 30 Design Optimization 

FfOL I TER DI N HU F 
[em] [!Em] DT 

initial 7.93 67.6 1.00 
final 10 .• 197 7.27 82.3 1.90 19.217 
initial 7.27 82.3 1.90 
final 10 .. 130 7.27 107 1.90 19.397 
initial 7.27 107 1.90 
final 10 .. 160 7.27 107 1.90 19.397 
initial 3.00 500 1.00 
final 10 .• 157 2.43 473 1.90 18.307 
initial 2.43 473 1.90 
final 10 .. 407 7.27 107 1.90 19.397 

Having probed the solution space from various loeations we 
conclude that the global maximum is probably at 

• impeller diameter, DI= 7.27 em 
• impeller speed, N = I 07 rpm 
• relative liquid levei, HUDT = 1.90 
1-fowever, we can not be absolutely sure about this since we 

do not have comprehensive knowledge about the topology o f the 
target function in the 30 solution space. This means that the art 
of optimization in multi-dimensional solution space finds itself a 
bit probing in the dark and has to rely on good engineering 
judgment and a bit o f luck. 

This is even more the case now, that we introcluce the 
remaining three variables and optimize the 60 design problem. 
Table 4 shows a sample solution output for the optimized design 
after having followed a strategy as described for the 30 
optimization of increased tolerance refinement and restart on 
earlier found solutions. 

The found 60 solution again improves the target funct ion 
value slightly and therefore provides a better solution than the 30 
solution. 

CONCLUSIONS ANO FUTURE WORK 

In thi s work a design optimization algorithm was 
developed. With the use of numerical analysis tools cri teria were 
evaluated and then summed up according to their individual 
value to the design, expressed in a marking function and 
weighting factor. The resulting target function, representing the 
goodness of the design according to the specified criteria, was 
then maximized using a simplex downhill optimization algorithm. 
This methodology was successfully applied to the design of an 
open straight blade turbine mixer centrally mounted in a 
cylindrical vessel. In this applieation no advanced numerical 
simulation was employed, but existing experimental results were 
interpolated to find values for the criteria of power, energy and 
mixing time. It certainly is an area of expansion of the algorithm 
to include numerical simulation, in particular Computational 
Fluid Dynamics (CFD) of the mixing process. Other expansions 
may include a variety of mixer types and a wider range of design 
variables. 

Table 4- 6D Design Optimization 

Dl (m) N(!Em) NB HUDT HUDT F 

initial .07260 107 3.00 .33 1.90 19.396 
final .07260 109.1 3.00 .2814 1.89 19.408 
initial .07260 107 3.00 .33 1.90 19.151 
final .06260 109.1 3.00 .2844 1.89 19.408 
inilial .07260 109 3.00 .33 1.90 19.407 
final .07260 109.1 3.00 .2906 1.89 19.408 
initial .07260 107 3.00 .33 1.90 19.396 
final .07260 109.1 3.00 .2789 1.89 18.408 
inilial .07260 107 4.00 .43 1.90 19.396 
final .07260 109.1 3.00 .2825 1.89 19.408 

initial .07260 107 3.00 .33 1.90 19.396 
final .07260 109.1 3.00 .2858 1.89 19.408 

initial .07260 107 3.00 .33 1.80 19.370 
final .07260 109.1 3.00 .2855 1.89 19.408 

Formulation o f the design problem led to a 60 optimization 
problem whieh was solved by a strategy of successive 
optimization of the 20 and 30 subspace. The effects of design 
eonstraints were presented for the 20 case only. 

However, in this type of optimization where the topology of 
the target funetion is unknown it will always remai n uncertain if 
the found optimum is truly a global one or only local. 
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