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RESUMO

Este artigo compara previsões de Value-at-Risk (VaR) e Expected Shortfall (ES) obtidas

através do modelo GAS proposto por Creal et al. (2013) com modelos alternativos. Primeira-

mente é feita uma investigação dentro-da-amostra do GAS semiparamétrico de Blasques et

al. (2014) e é proposta uma metodologia para a escolha da bandwidth. A parte emṕırica é

realizada através de dois estudos distintos. O primeiro tem como foco explorar a capacidade

preditiva da especificação semiparamétrica contra modelos paramétricos. A segunda compara

os diversos modelos paramétricos para avaliar se o aumento da complexidade do modelo tem

impacto direto na qualidade da previsão de medidas de risco. O estudo emṕırico é conduzido

com oito indices, quatro taxas de câmbio de moedas internacionais e duas taxas de câmbio de

cripto-moedas. Os modelos são comparados em termos de Quantile Loss de Gonzales-Rivera

(2014) e através do procedimento MCS de Hansen et al. (2011). Os resultados indicam que

os modelos semiparamétricos melhoram a qualidade de previsão dos modelos GAS(n) para

o VaR e a ES. Modelos mais complexos como Beta-Skew-t-EGARCH de Surracat e Harvey

(2013) produzem melhores resultados que os modelos mais básicos. Contudo, utilizando o

procedimento MCS encontramos que na maioria dos casos os modelos são estat́ısticamente

equivalentes em termos da sua habilidade em prever o VaR.

Palavras-chaves: Generalized autoregressive score (GAS). GAS semiparamétrico. Densidade

kernel. Previsão de volatilidade. Value at risk (VaR). Expected shortfall (ES).



ABSTRACT

This paper compares Value-At-Risk (VaR) and Expected Shortfall (ES) forecasts delivered by

the recently developed GAS models of Creal et al. (2013) with alternative models. First, we

perform an in-sample investigation of the Semiparametric model of Blasques et al. (2014) and

propose a methodology for bandwidth selection. The empirical part is carried out through

two studies. The first aims to explore the semiparametric specification against its parametric

counterparts. The second compares various parametric specifications with the objective of

evaluating whether increasing the model’s complexity improves its ability to forecast risk

measures. The empirical study is conducted with eight index series, four foreign exchange

rates and two Crypto-Currency exchange rates. The models are compared in terms of Quantile

Loss of Gonzales-Rivera (2014) and with the MCS procedure of Hansen et al. (2011). We find

that the semiparametric model enhance the forecasting ability of the GAS(n) model for both

VaR and ES. More complex models such as the Beta-Skew-t-EGARCH two-components from

Surracat and Harvey (2013), produced better results than less complex models. However by

performing the MCS procedure we found that in most of cases the models are statistically

equivalent in terms of the ability to forecast VaR levels.

Key-words: Generalized autoregressive score (GAS). Semiparametric GAS. Kernel density.

Volatility forecasting. Value at risk (VaR). Expected shortfall (ES).
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1 INTRODUCTION

The attention placed into risk management has increasingly grown throughout the last decades,

in significant part due to the previous financial crises, e.g., Internet bubble (2000) and Subprime

(2008), but also as a result of the financial implications of the capital requirements banks are

restricted. In this context, the search for metrics that can model adequately the risk embedded

into financial products is of vital role. After Basel Committee I, VaR (Value-at-Risk) has

emerged as the industry standard for risk measures. The VaR provides, for a fixed time

horizon, the asset’s loss or return that is expected to be exceeded with a given confidence (or,

probability) level. More strictly speaking the VaR of a portfolio at the level of confidence α is

provided by the smallest number l such that the probability that the loss L exceeds l is no

larger than (1− α). Formally,

V aRα = inf{l ∈ R : P (L>l) ≤ (1− α)} = inf{l ∈ R : FL(l)>α}, (1)

In a statistical point of view, VaR is simply a quantile of the loss distribution which

grants its user with a straightforward way of looking at risk, Roccioletti (2015). This intuitive

character has helped to boost its popularity and turn it into the most adopted risk metric

into the financial industry. Despite its broad acceptance, VaR was criticized by Artzner

(1999), who proved that it is not a coherent measure, for the reason that it is against the

sub-additivity axiom, which means that does not always take into account diversification

benefits. Let r1 and r2 be the log-returns of any two assets, a risk measure %(r) is considered

a coherent measure if respects the following axioms:

1. Monotonicity: %(r1) ≤ %(r2) if asset 1 has weak stochastic dominance over asset 2.

2. Sub-additivity: %(r1 + r2) ≤ %(r1) + %(r2) which means that a portfolio should have less

risk than the risk of two assets measured individually.

3. Homogeneity: %(kr1) = k%(r1), This axiom states that risk preference has nothing to do

with the risk metric.

4. Risk free condition: %(kr1 + γ) = k%(r1) − γ, if the return associated with asset γ is

deterministic, then there is no risk associated to this asset.

Artzner (1999) paved the way for the arrival of the ES (Expected Shortfall), which

circumvented the problems related to the VaR by being a coherent risk measure. The

expected shortfall is defined as the expected return on the portfolio in the worst 100α% of
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the cases. Following Patton, Ziegel and Chen (2017), if Xt is the return on some asset over

some horizon with conditional (on information set Ft−1) distribution Ft, the α-level ES is

ESt(x) = −E[Xt|Xt ≤ −V aRt|Ft−1],

where V aRt = F−1t (α), for α ∈ (0, 1),

and Xt|Ft−1 ∼ Ft ,

(2)

Where Ft is strictly increasing with finite mean. Roccioletti (2015) shows that expected

Shortfall is thus related to VaR by

ESα(L) =
1

1− α

∫ 1

α

V aRβ(L)dβ, (3)

Another drawback of using the VaR is that it is tail insensitive. As we can see in eq.

(1.3), the ES integrates over the entire left tail, and thus it is sensitive to the tail shape. The

ES, however, has a defect of its own, it is not elicitable, which is a mathematical property

important for assessing forecasting performance. Gneiting (2011), argues that due to the

lack of elicitability the ES cannot be backtested. On the other hand, a current of researchers

disagree with this point of view. For instance, Acerbi and Szekely (2014) proposed three

different non-parametric backtesting methods for the ES. In the sense of being a coherent

risk measure, the ES is a better alternative to VaR. On this ground, the most recent Basel

Committee has released a consultation paper with the recommendation to replace VaR with

ES for determining the capital charge of internal based models but to kept VaR as the measure

to be backtested in the usual way.

Volatility estimation is a crucial part of both VaR and ES computation. The process

is usually addressed by GARCH models, that are by far the most accepted procedure for

volatility modelling. More recently Creal, Koopman and Lucas (2013) and Harvey (2013)

proposed to use the score of the conditional density function as the driver of time variation in

the parameters of the time series process. The model is known as Generalized Autoregressive

Score models (GAS) and is related to GARCH models in the sense that estimation process is

carried out via maximum likelihood, supposing that the residuals have some known parametric

distribution. For instance, it nests many other successful time series models, such as the

gaussian GARCH model, the Autoregressive Conditional Duration (ACD) model of Engle

and Russel (1998), and the Multiplicative Error model (MEM) of Engle and Gallo (2006). As

noted by Creal, Koopman and Lucas (2013), since the GAS framework is based on the score,
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it exploits the complete density structure rather than the mean and higher moments only, as

it is the case of GARCH models.

In practice the conditional distribution is unknown and normality assumption on the

innovation distribution is often assumed. Even though empirical facts about financial series

show evidence of asymmetry and heavy tails, quasi-maximum-likelihood (QML) estimation

under normality conditions does not show serious econometric problems as they are unbiased

and consistent, even if the true distribution is far from Gaussian, Bollerslev and Wooldridge

(1992). However, the misspecification of the error's conditional distribution may lead to a

significant efficiency loss. Many approaches have been proposed to deal with these features

since Bollerslev and Andersen (1986). For instance, the GJR model from Glosten, Jagannathan

and Runkle (1993) and Nelson's EGARCH, Nelson (1991), extended the scope to allow an

asymmetric reaction pattern for the volatility. The latter parameterizes the model in terms

of the log-variance which allows relaxing the non-negativity assumptions about the model's
parameters while the exponential link assures that the variance is always positive. A drawback

in Nelson's model resides in the fact that if the conditional distribution of the observation

is student's t with finite degrees of freedom the conditions needed for the existence of the

unconditional moments are rarely satisfied, Harvey (2013).

The issues around the EGARCH were addressed in Harvey and Chakravarty (2008) where

they proposed the Beta-t-EGARCH model. It consists of an EGARCH model in which the

variance is driven by an equation that depends on the conditional score, Harvey and Sucarrat

(2014). Therefore the model can be viewed as an unrestricted version of the GAS model

while belonging to the class of EGARCH models. Harvey (2013) argues that recognizing the

conditional score as a linear function of a beta variable enables for the moments and the

autocorrelations of absolute values of the observations raised to any positive power to be

derived. Therefore, it is a very convenient model that has all the advantages of the EGARCH

but without the disadvantages.

Another line of research deals with the uncertainty of the DGP by fitting a nonparametric

density and therefore improving the efficiency of the estimates. These models are called

semiparametric, and the procedure is usually two-fold. First, the vector of parameters θ

is estimated parametrically assuming normality or some known density. With the sample

residuals, the model is re-estimated using a non-parametric density to construct the maximum

likelihood function, which is usually performed via a kernel estimator. The second part of the

procedure provides a new efficient estimate of θ. Despite the rich history of the literature

concerning GARCH models, a small body of studies cover semiparametric methods. Engle

and Rivera (1991) was perhaps the first paper to address a semiparametric way to estimate

a GARCH model. For the density estimation of the standardized residuals calculated by
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QMLE, they used the discrete maximum likelihood estimation (DMPLE). Drost and Klassen

and Sun and Stengos (2006) tackled this task by estimating the error density with a kernel

method. The only paper to apply the semiparametric approach to the GAS framework was

Blasques, Ji and Lucas (2016). In the GAS context, the semiparametric estimation has the

further advantage that the score of the nonparametric density participates in the dynamics of

the time-varying volatility.

Despite only recently introduced, the GAS models have become a very active field of

research during the last years and have been successfully applied in a great variety of areas,

such as risk modeling. For instance, Bernardi and Catania (2015) used the model confidence

set (MCS) to compare the VaR forecasting performance of several GAS model specifications

with its GARCH counterparties and Engle's CaViaR models. Catania (2017) performed

a large scale empirical study to evaluate the forecasting performance of Markov-switching

GARCH models compared with standard single regime specifications. Bartels and Ziegelmann

(2016) forecasted market risk measures, such as Value at Risk (VaR) and Expected Shortfall

(ES), for large dimensional portfolios via copula modeling. Their empirical results, for assets

negotiated at Brazilian BOVESPA stock market from January, 2008 to December, 2014,

suggest that, compared to the other copula models, the GAS dynamic factor copula approach

has a superior performance in terms of AIC (Akaike Information Criterion) and a non-inferior

performance with respect to VaR and ES forecasting. In line with the aforementioned works,

the aim of this paper is to contribute with the empirical literature by comparing industry

standard models with GAS models and its recent specifications. Our goal is to provide risk

managers with more information about the performance recent models and ultimately assess

if their implementation is justified by a sufficiently higher performance.

The first contribution of the paper concerns to the semiparametric GAS framework,

developed by Blasques, Ji and Lucas (2016). We deepen the discussion about the bandwidth

effect on parameter’s estimation and propose a methodology for bandwidth selection that

is similar to likelihood cross-validation. We evaluate this methodology through a Monte

Carlo study. Additionally, we provide an extensive empirical study of the semiparametric

model comparing its performance with three parametric specifications. Up to our knowledge,

this is the first paper to apply a semiparametric GAS model to forecast risk measures. Our

second contribution is to set a performance study, considering the parametric framework

of GAS models, the Beta-t-EGARCH with one and two-components and the traditional

models GJR-GARCH, APARCH, EGARCH, three GARCH parametric specifications and the

semiparametric GAS model. We compare these models over fourteen financial time series,

composed of eight stock indices, four exchange rate series and two Crypto-Currency rates.

The remainder of the paper is structured as follows. In Section 2 we present the GAS
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models in their parametric and semiparametric specification and the Beta-t-EGARCH one

and two components, we present the benchmark models, the risk forecasting measures and the

metrics used to compare the performance of the various models. In Section 3 we perform a

simulation study of the semiparametric GAS model to test its in-sample properties. In Section

4 we carry out an extensive empirical study concerning ES and VaR forecasting ability. First

we study the semiparametric model’s performance. Second we compare the GAS parametric

models with the alternative models presented in Section 2. In Section 5 we conclude with the

final remarks.
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2 METHODOLOGY

This section is divided in five parts. In the first we cover the basics of GAS models. In

the second and third we present the semiparametric framework for GAS models and the

Beta-t-EGARCH models. In the fourth we briefly show the benchmark models. In the fourth

subsection we present the estimation procedure of forecasting of risk measures. In the final

subsection we discuss the metrics used to compare the evaluated models.

2.1 GAS Models

The Generalized Autoregressive Score (GAS) model, was proposed by Creal, Koopman and

Lucas (2013) and by Harvey (2013) under the name of DCS consists in a time-varying

parameter model where drive mechanism used to update the parameters over time is the

score function. The model is remarkably versatile, for instance, by scaling the score function

appropriately, we can recover standard observation-driven models such as the GARCH, ACD,

and ACI.

Cox (1981) classified models as parameter driven and observation driven. In the case of

parameter driven models the associated likelihood function is not available in closed form,

making the estimation process more demanding. Examples are: the stochastic volatility (SV)

model and the stochastic intensity models of Bauwens and Hautsch (2006). On the contrary,

in an observation driven model the likelihood function is available in closed form and in most

of cases forecasting is straightforward. Alike GARCH models, the GAS model is classified

as an observation driven model. The key difference between both models is that the GAS

framework explores all the information coming from the entire distribution, as it is the case

of state space models. On the other hand, GARCH models explore only the expected value of

the conditional distribution. Another important feature of the GAS framework is that it can

accommodate extensions to asymmetry, long memory, and other more complicated dynamics

without further complexities.

Formally, the GAS model is specified as following. Defining yt the dependent variable of

interest vector, ft the time varying parameter vector, θ̂ the unknown parameter vector and

conditional density of observations p(yt|ft). The available information set at time t consists

of {Y t−1, F t−1} where

Ft = {Y t−1, F t−1}, for t = 1, ..., n , (4)

Assuming that yt is generated by the observation density

yt ∼ p(yt|ft; θ) , (5)
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The updating scheme for ft is given by the equation

ft+1 = ω +

p∑
i=1

Aist−i+1 +

p∑
i=1

Bift−j+1 , (6)

Where st is an appropriate function of the past data and ω is a vector of constants. When

a new observation yt is realized, the time-varying parameter ft is updated to period t + 1

through

st = St∇t, St = S(t, ft,F , θ) ,

∇t =
∂ log p(yt|ft; θ)

∂ft
,

(7)

Where S(·) is a matrix function. The choice of an appropriate scale for this function is of

paramount importance since the score is the driving mechanism that updates the model. As

one can notice the score depends on the entire density and not just on the first and second

moments of observation series yt. The intuition behind the use of the score stems from the

fact that it defines a steepest accent direction for improving the model’s local fit in terms

of the likelihood or density at time t given the current position of the parameter ft. Hence

providing a natural direction for updating the parameter, Creal, Koopman and Lucas (2013).

For the GARCH parametrization, we have that ∇t = 1
2f2t

(y2t − ft) and St = 2f 2
t . Therefore

the expression for the score St · ∇t reduces to y2t − ft . Plugging it in the recursive equation,

the GAS update scheme reduces to a GARCH(1, 1)

ft+1 = ω +Bft + A(y2t − ft) , (8)

We can clearly see that the β parameter from the original GARCH(1, 1) model is here

represented by (B − A). In this paper we use three different GAS specifications: A Gaussian

GAS - GAS(n), Student's t GAS - GAS(t) and a skew Student't GAS - GAS(st). Full detail

on these specifications can be found in Creal, Koopman and Lucas (2011), Creal, Koopman

and Lucas (2012) and in Ardia, Boudt and Catania (2016).

2.1.1 Semiparametric framework for GAS models

The first proposal for a semiparametric model in the GARCH context was presented by

Engle and Rivera (1991). The density estimation was carried out with the discrete maximum

penalized likelihood estimation technique of Tapia and Thompson, (1978). Their simulation

studies suggested that the semiparametric approach can improve the efficiency of the parameter
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estimates up to 50% over QMLE. Drost and Klassen (1997) and Yang (2006), followed the

two step procedure, using a kernel estimator instead. More recently Blasques, Ji and Lucas

(2016) extended the semiparametric framework to GAS models. The new semiparametric

model was a step forward into the semiparametric time-varying volatility estimation as it

permitted the kernel density estimator to take part not only in the likelihood estimation but

also in the volatility dynamics.

The GAS parametrization pursued in this paper follows Blasques, Ji and Lucas (2016)

estimation procedure. In this paper however our focus is to shed some light on questions

that are not fully explored. For instance, the bandwidth’s choice which is a crucial part of

kernel estimation. It seems to be a consensus that values of bandwidth that lies within the

range of 0.3 ≤ bw ≤ 0.8 usually work well. Di and Gagopadhyay (2011), evaluated the impact

of the bandwidth selection on the performance of the estimator in the context of GARCH

models. We want to extend this investigation into the semiparametric GAS framework, since

the kernel density is involved in the recursion equation as well, thus making the discussion

around the bandwidth even more relevant. A major problem in adaptive estimation stems

from the fact that the bandwidth has to be pre-chosen based on pre-fitted residuals through

initial estimates of parameters.

When it comes to GAS models this issue is even more challenging as one needs to choose

the bandwidth not only for the kernel’s density but also for the kernel’s density derivative.

The Semiparametric GAS(1,1) specification is given by

yt = µ+ ξt = µ+ e
ft
2 ε, εt ∼ q(εt),

ft+1 = ω · (1− β) + αst + βft,
(9)

The GAS model is estimated by replacing ω by ω/(1−β). The value of ω then corresponds

to the annualized volatility. In eq. (2.6) ft is parametrized in terms of the log-variance.

Denoting ht as the variance in a standard GARCH model, the relationship between ht and ft

is ht = exp(ft). This parametrization is convenient bacause it ensures a positive variance for

each t without the need of imposing restrictions in the model’s parameters. We can obtain

p(yt|ft) as following
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FY (y) = P (Yt ≤ y) =P (µ+ e
ft
2 εt ≤ y),

=P (εt ≤ (y − µ)e−
ft
2 ),

=Fε((y − µ)e
−ft
2 ),

fY (y) =fε((y − µ)e
−ft
2 )e−

ft
2 ,

(10)

Supposing that the observations yt have a conditional distribution with log-density

ln p(yt|ft) = ln q
(
(yt − µ)e−ft/2

)
− ft

2
, (11)

Deriving with respect to ft

∂ log p(yt|ft; θ)
∂ft

=

(
− 1

2

)
∇q
(
(yt − µ)e−

ft
2

)
(yt − µ)e−

ft
2 − 1/2,

=

(
− 1

2

)
(∇q((yt − µ)e−

ft
2 )(yt − µ)e−

ft
2 + 1),

(12)

Where ∇q is the log derivative of q(ε) and by definition eq. (2.9) equals st, when st is the

identity. Parameter estimation in the context of GAS is carried out via maximum likelihood.

The loglikehood function is given by

LT (θ, q) =
1

T

T∑
t=1

−1/2ft(θ) + log q(e−
ft(θ)

2 (yt − µ)), (13)

Note that forecasting the one-step-ahead ft is straightforward. The procedure is carried

out in the usual way by iterating the volatility filter forward using the observed sample

(y1, y2, ..., yt). Hence, ft+1 is the last filtered value.

2.1.2 Estimation Algorithm

The estimation algorithm is two-fold. The first step consists in the estimation of the parametric

model supposing some known distribution. In this step we obtain a consistent set of parameters

θ, which is used as input into the model to generate the standardized residuals. The second

step re-estimates the model’s parameters using the standardized residuals obtained in the

first step using a non-parametric density. The step-by-step procedure follows

1. Estimate the GAS parameters θ̂ = (ω, α, β, µ) through QMLE,



17

2. Obtain the ft(θ̂) vector,

3. Obtain the vector of standardized residuals,

ε̂t =
(yt − µ)

e
ft(θ̂)

2

, (14)

4. Density estimation using a kernel and its derivative, which enables to compute:

∇q = ∂ log q
∂x

= q
′
(·)

q(·) ,

The calculation of the derivatives is futher explored in section (2.1.4).

5. Re-estimate θ using the semiparametric equation’s (2.6) e (2.10), obtaining a set of

efficient parameters θ̃ = (ω̃, α̃, β̃, µ̃)

2.1.3 Bandwidth Selection

The bandwidth selection method proposed in this paper derives from the maximal likelihood

cross-validation (MLCV) of Habbema (1974). In this paper we call it maximum likelihood

bandwidth selector (mlbs). The procedure starts by creating a grid with all the bandwidth

candidates. Once the model is parametrically estimated (step 1), we estimate the semipara-

metric step for each bandwidth candidate. The bandwidth candidate that generates set of

parameters that yield the highest maximum likelihood value is selected. If we are interested

in selecting different choices of bandwidth for the kernel density and its derivative, then the

grid is bi-dimensional. The problem then scales up to n2 iterations, so as we refine our grid (i.

e., select more points in a pre-determined range) the procedure becomes increasingly more

burdensome. Therefore, in this paper we opted to use the same bandwidth for both kernel

and its derivative.

Some remarks about our procedure are worth mentioning. In practice, researchers choose

bw from an interval in which, robustness of the parameter estimates usually hold. The

interval usually ranges from 0.3<bw<0.8. However in most of cases, no theoretical guidance

is presented in terms of selecting the most adequate value. In the GAS framework this issue

is even more relevant due to the reasons already mentioned. In this sense, we have presented

an heuristic method, which is based on the idea of selecting the best fitted model without

directly interfering with the optimization process, i. e., the estimation is carried out with

the bandwidth held constant. We also observe that the model’s generalization does not need

to be vouched by, for example a leave-one-out procedure, as the parametric structure of

the underlying model assures overfitting avoidance. The relative accuracy of SP-GAS mbls
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remains in the out-of-sample period, what reinforces that the accuracy gains are not caused

by overfitting. The plot of the maximal likelihood function in terms of the bandwidth is

shown bellow for a DGP with density student’s-t with 7 degrees of freedom.

Figura 1: Plot of the maximal likelihood function - mbls procedure

2.1.4 Kernel Density Derivatives

In the GAS framework, calculation of the derivatives of the probability distribution function

is vital, since it joins the recursion equation. Under the case of the current parametrization,

we are interested in kernel derivatives. Consider f a kernel density estimator, we tackle the

problem of estimating the following derivative

f (r)(x) =
dr

dxr
f(x) , (15)

Naturally, an estimator can be found by taking derivatives of the kernel density estimator,

assuming the following form

f̂ (r)(x) =
dr

dxr
f̂(x) =

1

nb1+r

n∑
i=1

kr(x)
(Xi − x

b

)
, (16)

The estimator f̂(x) makes sense if the kernel's derivative k(r)(x) exists and it is non-zero.
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The estimator for q′ in step 4 can be found by following the procedure described above. For

instance, if we have a gaussian kernel, k1(x) assumes the form

k
′
(·) = − x 1√

2π
e
−x2
2 , (17)

Since the Gaussian Kernel is quite easy to handle and has derivatives of all orders, it is a

common choice for derivative estimation. Considering that in step 4 we are interested in the

derivative of the log-density ∇q, our estimator can be written as

∇q =
∂ log q̂(x)

∂x
=

1

nb2n

t∑
i=1

[(x− ε̂t
bn

) 1√
2π
e

−

( ε̂t − x
bn

)2
2

]

1

nbn

t∑
i=1

[
1√
2π
e

−

( ε̂t − x
bn

)2
2

] , (18)

2.2 Beta-t-EGARCH Models

The Beta-t-EGARCH Model was first presented by Harvey and Chakravarty (2008) and

it can be viewed as a particular case of a GAS model. The main feature of this model is

to accommodate important characteristics that are present in financial time series, such as

time varying volatility, fat-tailedness, leverage, conditional skewness and a decomposition of

volatility into a short-term and a long-term component. Harvey and Sucarrat (2014) extended

the Beta-t-EGARCH model defining that when it has a skewed-t conditional distribution, the

log density is represented by

ln(ft) = ln(2)− ln(γ + γ−1) + lnΓ((ν + 1)/2)− lnΓ(ν/2)

−1

2
ln(ν)− λt|t−1 −

ν + 1

2
ln

(
1 +

(yt − µ)2

γ2sgn(yt−µ)νe2λt|t−1

)
,

(19)

The first order one-component Beta-Skew-t-EGARCH is given by

yt = exp(λt)εt = σtεt, εt ∼ st(0, σ2
ε , ν, γ), ν > 2, γ ∈ (0,∞), t = 1, 2, ..., n ,

λt = ω + λ†t ,

λ†t = φ1λ
†
t−1 + k1ut−1 + k∗sgn(−yt−1)(ut−1 + 1), |φ1|<1,

(20)
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Where ut is the conditional distribution score, σt is the scale, εt is the error and is defined

by εt = ε∗t − µε. ε∗t follows a skewed-t distribution with ν degrees of freedom, asymmetry γ

and mean µε∗ . The forecasting equation for the conditional volatility σt h steps ahead is

Et(σt+h) = exp(ω + φh1λ
†
t)

h∏
i=1

Et[exp(φ
h−i
1 gt+i−1)], (21)

Where gt is i.i.d and equal to k1ut + k∗sgn(−ε)(ut + 1). When i = 1 the value of

Et[exp(φ
h−i
1 )gt+i−1] is equal to (φh−11 gt), Muller (2016).

Harvey and Sucarrat (2014), extended the one component model by decomposing the

volatility into a long term component and a short-term component. The reason for a two

component model comes from the fact that after a large movement it is likely to be after-

shocks, the DCS model by its nature does not react quickly enough to the short term

movements, therefore justifying the need for the short term component. The two component

Beta-Skew-t-EGARCH model is given by

yt = exp(λt)εt = σεt, εt ∼ st(0, σ2
ε , ν, γ), ν > 2, ν, γ ∈ (0,∞) t = 1, 2, ..., n,

λt = ω + λ†1,t + λ†2,t,

λ†1,t = φ1λ
†
1,t−1 + k1ut−1, |φt|<1,

λ†2,t = φ2λ
†
2,t−1 + k2ut−1 + k∗sgn(−yt−1)(ut−1 + 1), |φ2|<1, φ1 6= φ2,

, (22)

Where λ†1,t and λ†2,t can be interpreted as the long and short run components. To assure

that the model is stationary and stable it is required that |φ1| and |φ2| to be both less than

one. The forecasting equation for the two component model is

Et(σt+h) = exp(ω + φh1λ
†
1,t + φh2λ

†
2,t)

h∏
(i=1)

Et[exp(φ
h−i
1 g1,t+i−1 + φh−i2 g2,t+i−1)] , (23)

Where g1,t = k1ut and g2,t = k2ut + k∗sgn(−ε)(ut + 1),

2.3 Other Conditional Variance Models

In this section we briefly discuss the other conditional variance models used throughout the

empirical investigation section. A more complete review of these models can be found on

Bauwens, Hafner and Laurent (2012).
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2.3.1 GARCH Models

The seminal paper of Engle (1982) addressed the empirical findings about financial time series

by introducing the ARCH(q) model. Thereafter, numerous refinements have been introduced,

from which, the most known is certainly the GARCH model conceived by Bollerslev and

Andersen (1986).

1. GARCH

The process (Yt)t ∈ Z is a GARCH(p,q) process if it is strictly stationary and if it satisfies,

for all t ∈ Z and some strictly positive-valued process (σt)t ∈ Z, the equations

Yt = σtεt,

σ2
t = α0 +

p∑
i=1

αt−iY
2
t +

q∑
j=1

βjσ
2
t−j,

(24)

where α0>0, αi ≥ 0, i = 1, ..., p, and βj ≥ 0, j = 1, ..., q. Heavy tails may be

accommodated by using the conditional distribution t-student. The one step ahead

variance forecast σ̂t+1|t for the GARCH(p, q) model equals

σ̂t+1|t = αt0 + σqi=1α
(t)
i ε

2
t−i+1 +

(t)∑
j

σ2
t−j+1, (25)

2. EGARCH

A critique about GARCH models stems from the fact that it does not take into

consideration leverage effects. The EGARCH(p,q) model from Nelson (1991), proposes

to overcome this problem by specifying a exponential link function. It assumes that the

conditional volatility dynamics follows

Yt = σtεt,

ln(σ2
t ) = ω +

q∑
j=1

ln(σ2
t−j) +

q∑
i=1

kig(εt − i),
(26)

And the exponential link function

g(εt) = θεt + γ[|εt| − E(|εt|)], (27)
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Where θ and γ are real parameters; εt and |εt| − E(|εt|) are a sequence of random

variables i.i.d with zero mean and continuous distribution.

3. GJR-GARCH

The GJR-GARCH, proposed by Glosten, Jagannathan and Runkle (1993), introduces

asymmetry into the volatility process by adding an indicator variable, Cuthbertson and

Nitzsche (2005),

ht = α0 + α1ε
2
t−1 + α2ht−1 + γ(ε2t−1Dt−1), (28)

where,

Dt−1 =

1 if εt−1 ≤ 0

0 otherwise,

4. APARCH

The variance equation of the APARCH(p, q) model is defined as

εt = ztσt,

zt ∼ N (0, 1),

σρt = ω + αk(εt−1)
δ + βσδt−1,

k(εt−1) = |εt−1| − γεt−1,

(29)

Where γ captures the leverage or asymmetry effect in return volatility and δ is the

Taylor effect, regarding the difference in the sample autocorrelations of absolute and

squared returns.

2.4 Prediction methods of VaR and ES

To account for the stylized empirical financial facts, the estimation of risk measures through

conditional variance models has become a very popular choice. To proceed the calculation of

the conditional risk measures, we make the following assumption, Mcneil, Frey and Embrechts

(2015),

Assumption 1 The process of losses (Lt)t∈Z is adapted to the filtration (Ft)t∈Z and follows

a stationary model of the form Lt = µt + σtZt, where µt and σt are Ft−1 measurable and the

(Zt) are SWN(0,1) innovations.
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Under the assumption, if we write G for the cdf of (Zt), we can calculate that

FLt+1|Ft(l) = P (µt+1 + σt+1Zt+1 ≤ l | Ft) = G((l − µt+1)/σt+1), (30)

From the conditional mean equation of the aforementioned conditional volatility models,

we obtain the one-step-ahead conditional mean forecast µ̂t+1 and from the conditional variance

equation we obtain the one-step-ahead conditional variance forecast σ̂2
t+1. Thus, the estimated

VaR at time t+ 1 can be obtained through the following equation

V aRt+1
α = µ̂t+1 + σ̂t+1qα(Z), (31)

Where Z a generic rv with df G and qα is the left tail quantile. In the parametric

framework qα estimates are performed by inverting the underlying conditional cumulative

density distribution function. For the semiparametric GAS qα is the empirical quantile of the

residual distribution. Therefore the VaR forecast for the SP-GAS case is fully semiparametric

in the sense that both volatility and quantile are non-parametrically estimated. Our intention

is to recover efficiency loss in both ends. By definition the one step-ahead Expected Shortfall

(ES) is computed as

ESt+1
α = E(X|X<V aRt+1

α ) =

∫ V aRt+1
α

−∞ xf(x) dx

p
, (32)

2.5 Evaluating the different approaches

We select two backtesting methods to evaluate the precision of the VaR predictions. These

methods are: The Loss Function of Rivera, Mishra and Lee (2004) and the Model Confidence

Set procedure from Hansen (2005). A loss function QL based backtest for a given α is given

by

QL =
1

P

T∑
t=R

(α− dαt+1)(yt+1 − V aRα
t+1), (33)

Where dαt+1 is an indicator function equal to 1(yt+1<V aR
α
t+1). As one can observe the

Q function is asymmetric, penalizing more intensively returns showing VaR exceedance

with weight (1 − α). A lower value of QL represents a better goodness of fit. The models

are compared in terms of the averaged QL over the out-sample period. We normalize the

performances using the GAS(n), which is the benchmark model. Therefore, if the model

presents a result less than 1, the model is outperforming the GAS(n) model. The MCS

procedure consists of a sequence of statistic tests which permits to construct a set of superior
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models, the Superior Set Models (SSM), where the null hypothesis of equal predictive ability

(EPA) is not rejected at a certain confidence level α. The EPA statistic tests is calculated for

an arbitrary loss function, in our case we use lost function of Gonzalez-Rivera above described.

The evaluation of the accuracy of the ES forecasts is assessed using the Shortfall Test

of Mcneil and Frey (2000). The test consists on calculating the difference between the ES

forecasts and the realized losses for observations where the loss is greater than the VaR

forecast. If the ES forecasts are appropriate, the standardized residuals should be i.i.d and

have zero mean. Bootstrap is used to mitigate any bias with respect to the ES underlying

distribution. We set the bootstrap samples as 1.000. The main steps of the empirical study

can be summarized as

1. Implement a rolling forecast for the out-of-sample horizon;

2. Compute VaR and ES measures with eqs. (2.29) and (2.30);

3. Perform the statistic backtest and obtain the values of Q for all models;

4. Comparison between the models using Q as the main metric and perform MCS procedure;

2.6 Codes and packages

The empirical application was conducted using R. The main packages used were: fGarch and

rugarch to estimate GARCH models. For the estimation of Beta-Skew-t-EGARCH models

we used betaegarch package. The codes for the GAS and Semiparametric GAS estimation are

our own and are available on github www.github.com/luizbezerraneto. Some functions from

the GAS package of Ardia, Boudt and Catania (2016) were used. All the VaR backtesting

was carried out using the MCS package from Bernardi and Catania (2015). The package

rugarch was used to perform ES backtesting.
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3 SIMULATION STUDIES

In this section, we study the performance of the semiparametric estimator proposed by

Blasques, Ji and Lucas (2016), using simulation studies. First, we compare the performance

of the SP-GAS with parametric GAS and GARCH models. Secondly, we evaluate the role

of bandwidth selection on the performance of the estimator and propose a new method to

select the bandwidth based on the log likelihood of the estimated model. The data generating

process (DGP) is a GAS(1, 1) model with parameter values θ(µ, ω, α, β) = (0, 2, 0.3, 0.9).

Three innovation distributions being considered are: Gaussian, t-student and skewed t-

student. The purpose of such choices is to get a grasp of the efficiency issue by adding more

complexity to the DGP such as heavy tail and asymmetry. We study the efficiency of the

estimators by calculating the parameters RMSE. Some options of density specification for the

first step are available. For example, we could consider using a density such as a Students-t .

However we find that great part of the model's novelty comes from the fact that no assumption

about the density has to be made beforehand (i.e: simply considering the normal), therefore

all studies conducted in this paper consider the Gaussian QMLE for the first step of the

semiparametric estimation.

3.1 Estimation accuracy

Table 1 compares the performance of estimated parameters in terms of RMSE. It is possible

to notice that the performance of the candidate models vary according to the choice of

conditional density for the DGP. First we evaluate the in-sample estimates under Gaussianity.

In this case all models performed very closely and no improvements were noticed with the

semiparametric (SP) approach. The results for ω calls attention, as the GARCH models

performed very poorly and the SP models performed significantly worse than the parametric

models. With respect to the t-student as conditional density for DGP, we have tested three

values for the degrees of freedom ν = 5, ν = 7, ν = 10. In all cases the GAS(t) model is the

best performing model. Here, however, we notice that the SP performs better than GAS(n)

for all degrees of freedom and in most cases the loss of efficiency recovered is significant. For

the skewed t-student density, the semiparametric models were the best performing models for

all parameters, except for ω, for which GAS-t performed better. Boxplots provided in figure 1

exhibit the sampling distributions of the estimated parameters. For the sake of brevity only

the results associated with t(5) distribution are shown.

The results are expected and in line with the literature, however there are some points

worth mentioning. First, we can observe that the estimation of ω clearly improves from the

GAS-N model to the SP-GAS models. This fact contradicts the literature, for instance Drost
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and Klaassen (1997) restrict their analysis only to α and β, arguing that these are the only

adaptive estimable parameters. Overall, we can conclude that as the model’s underlying

density departure from the true DGP, the semiparametric estimation is more attractive. The

semiparametric approach outperforms GAS(n) model in all density specifications, recovering

up to 60% of the efficiency loss. Finally, we compare our methodology for bandwidth selection

with the literature’s optimal bandwidth 0.5. We notice that both perform very closely, however,

it seems that fixed choice of 0.5 dominates the mbls approach in terms of RMSE.

Figura 2: Sampling distribution of the estimates of β. Data generated from a t(5).

Figura 3: Sampling distribution of the estimates of α. Data generated from a t(5).
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Figura 4: Sampling distribution of the estimates of ω. Data generated from a t(5).

Figura 5: Sampling distribution of the estimates of µ. Data generated from a t(5).
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Tabela 1: Simulation results in terms of relative Root Mean Square Error (RMSE)

Gaussian GARCH(n) GARCH(t) GAS(n) GAS(t) SP-GAS(b = 0.5) SP-GAS(mlbs)

β 0.117862 0.110384 0.036232 0.037830 0.038650 0.040177

α 0.174711 0.173623 0.019516 0.019874 0.020436 0.021884

ω 1.260358 1.227295 0.078829 0.079277 0.238948 0.190514

µ 0.055228 0.057516 0.055380 0.055141 0.055712 0.057046

t(5) GARCH(n) GARCH(t) GAS(n) GAS(t) SP-GAS(b = 0.5) SP-GAS(mlbs)

β 0.171572 0.175711 0.171257 0.050719 0.130864 0.132402

α 0.172688 0.148343 0.082766 0.029947 0.058439 0.061224

ω 0.796043 0.657438 0.545444 0.088641 0.421639 0.490112

µ 0.085698 0.072869 0.092481 0.072372 0.086068 0.089016

t(7) GARCH(n) GARCH(t) GAS(n) GAS(t) SP-GAS(b = 0.5) SP-GAS(mlbs)

β 0.161150 0.162534 0.119599 0.044586 0.067788 0.071921

α 0.146821 0.147770 0.039467 0.025703 0.031350 0.035957

ω 0.897542 0.882844 0.352599 0.082150 0.170595 0.282764

µ 0.075257 0.069719 0.078229 0.068727 0.073701 0.084665

t(10) GARCH(n) GARCH(t) GAS(n) GAS(t) SP-GAS(b = 0.5) SP-GAS(mlbs)

β 0.157480 0.156529 0.098077 0.043979 0.057484 0.061331

α 0.147189 0.148009 0.032976 0.029863 0.030187 0.035236

ω 1.076311 1.058162 0.227184 0.086115 0.090933 0.143428

µ 0.059394 0.057138 0.060539 0.057398 0.059529 0.061542

skt(ν = 3, δ = 0.5) GARCH(n) GARCH(t) GAS(n) GAS(t) SP-GAS(b = 0.5) SP-GAS(mlbs)

β 0.104124 0.090295 0.121728 0.173491 0.110012 0.116341

α 0.282428 0.226753 0.100593 0.023782 0.076146 0.063513

ω 1.263529 1.118616 1.079046 0.405470 0.787918 0.891711

µ 0.203095 0.248333 0.212141 0.371742 0.157967 0.164462

3.2 Impact of bandwidth bw on parameter estimates

In this subsection we analyse the stability of the estimates with regard to several bandwidth

values. In practice such procedure is useful to analyse the estimates robustness. Since the

GAS framework have the error density participating in the volatility dynamics as well, testing

for parameter stability becomes even more relevant. In Figure 03 we can observe the variation

of sample estimators with respect to different values of bandwidth. The plots indicate that a

wider bandwidth is associated smaller variability, however at the cost of larger mean deviation

from the true parameter. This pattern is clear in both parameters α and β. This fact clearly

shows impact of the bandwidth bn with regard to the bias-variance trade-off. Table 2 presents

the variance, the deviation from the mean and Root Mean Square Error (RMSE) of the

parameter estimates for certain values of bandwidth. The underlying process is a student’s t
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with 7 degrees of freedom, based on 100 Monte Carlo replications. We can observe that the

differences of RMSE between values of bandwidth varying in the range of 0.3 ≤ b ≤ 0.8 are

minimal, corroborating with the literature, e. g. Sun and Stengos (2006) and Blasques, Ji

and Lucas (2016).

Figura 6: Distribution of the estimates of β for bandwidth values over the range 0.3 ≤ b ≤ 0.8.

Figura 7: Distribution of the estimates of α for bandwidth values over the range 0.3 ≤ b ≤ 0.8.
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Tabela 2: Comparison of the estimates variance, mean deviation and estimation accuracy for
different values of bandwidth. Data generated from a t(7)

h=0.3 h=0.4 h=0.5 h=0.6 h=0.7 h=0.8

Variance 0.001410 0.001125 0.000969 0.000904 0.000899 0.000905

β - β̃ 0.005373 0.005356 0.004841 0.005285 0.005787 0.006018

RMSE 0.074231 0.066775 0.067788 0.065147 0.066620 0.069602

h=0.3 h=0.4 h=0.5 h=0.6 h=0.7 h=0.8

Variance 0.002985 0.003228 0.003305 0.002635 0.002203 0.001930

α - α̃ 0.050553 0.035534 0.036375 0.040447 0.047514 0.054164

RMSE 0.037751 0.033804 0.031350 0.030385 0.030384 0.030537
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4 EMPIRICAL APPLICATION

The empirical application is performed considering three distinct sets of data, adding up

to 17 time series. The first set consists on the log returns of four foreign exchange rates:

USD against BRL, EUR, JPY and GBP against EUR. The data was retrieved from the

website https://br.investing.com/. The second set consists on the log returns of eight stock

indices: CAC 40 (France), DAX 30 (Germany), Dow Jones Industrial Average (US,DJI), Euro

Stoxx 50 (Europe), FTSE 100 (UK), Bovespa (Brazil, IBOV), Nasdaq (US), Nasdaq (US)

and S&P500 (US). All indices were retrived from https://finance.yahoo.com/. We also run

a study with two Crypto-Currency Bitcoin (BTC) and Litecoin (LTC). The criteria used

to choose the series was first based on the market capitalization and the number of data

observations available. Both are among the top 5 crycurrencies with largest capitalization

and also with the most data available. Yet the series are still too short. Therefore we analyse

these series only over semiparametric experiment and in terms of QL. The data was collected

in https://coinmarketcap.com.

Tabela 3: Descriptive statistics of return series

Exchange Rates N. Obs Min Max Mean Stdev Skewness Kurtosis E.Quantile J-B
USD/BRL 4732.00 -9.97 8.65 0.02 1.07 0.30 7.73 -1.52 11877.81
USD/EUR 2142.00 -2.62 3.07 -0.01 0.59 0.01 1.62 -0.93 235.26
GBP/EUR 4701.00 -8.06 3.52 -0.00 0.60 -0.65 9.87 -0.93 19558.65
USD/JPY 4733.00 -3.70 5.35 0.00 0.65 -0.04 3.67 -1.00 2667.72
Indices N. Obs Min Max Mean Stdev Skewness Kurtosis E.Quantile J-B
CAC40 4125.00 -9.47 10.59 0.00 1.44 -0.00 5.61 -2.30 5408.93
DAX 4097.00 -7.43 10.80 0.02 1.48 -0.01 4.92 -2.38 4145.12
DJI 4060.00 -8.20 10.51 0.02 1.11 -0.04 9.58 -1.68 15554.52
STOXX50 4054.00 -9.01 10.44 -0.00 1.48 -0.04 5.06 -2.35 4338.07
FTSE 4075.00 -9.26 9.38 0.01 1.18 -0.14 7.17 -1.83 8753.50
IBOV 3994.00 -12.10 13.68 0.05 1.75 -0.10 4.47 -2.80 3331.50
Nasdaq 4060.00 -11.11 11.85 0.04 1.44 -0.00 5.90 -2.38 5903.11
S&P 500 4060.00 -9.47 10.96 0.02 1.19 -0.26 10.05 -1.83 17166.17
Crypto-Currency N. Obs Min Max Mean Stdev Skewness Kurtosis E.Quantile J-B
BTC 1756.00 -26.62 35.75 0.25 4.50 -0.19 8.11 -6.68 4837.19
LTC 1756.00 -51.39 82.90 0.23 6.98 1.81 25.13 -8.43 47288.09

The indices data set was collected over a 16-year period, from January 01, 2002 to February

18, 2018 and the currency data over a 18-year period, from January 01, 2000 to February 18,

2018, except only for the USD/EUR that covers a period from January 01, 2010 to February

18, 2018. The Crypto-Currency data was collected over 5 year period, from April 28, 2013 to

February 18, 2018. All returns are calculated as the logarithmic difference of the daily index

level multiplied by 100.
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yt = (log(pt)− log(pt−1))× 100, (34)

Where pt is the closing price of each class of asset. The descriptive statistics are presented

in table 2. Clearly all series display high degree of leptokurtosis. The presence of skewness

is found for most of series. Furthermore, Jarque and Bera statistic strongly rejects the null

hypothesis of normality for all series.

4.1 Empirical Performance - Semiparametric GAS

In order to evaluate the usefulness of the proposed semiparametric GAS model, we compare

its performance with its parametric counterparts. For this empirical study we use the last

2.500 returns from the series described above. The data sets are divided into two samples: an

in sample period from approximately Jul, 2008, to May, 2012 and an out-sample period from

approximately May, 2012, to Feb 18, 2018. The exact date is not specified as it may vary due

to local holidays. A rolling window approach is used to produce one-day ahead VaR and ES

forecasts with α = 1%, α = 2.5% and α = 5% thresholds.

Table 4 reports the average QL ratios for the SPGAS, GAS(st), GAS(t) with respect

to GAS(n) for the indices data set. We report the results for the three VaR confidence

levels. The best performing model was GAS(t) model, closely followed by GAS(st). The

SPGAS outperformed GAS(n) for the confidence levels of α = 1% and α = 5% for indices

series. For the currency series the Semiparametric GAS had better average performance for

all thresholds.

Tabela 4: QL Ratios for Semiparametic GAS and Parametic GAS Specifications

Model (Indices) α = 1% α = 2.5% α = 5%
GAS(n) 1.0000 1.0000 1.0000
GAS(t) 0.9517 0.9655 0.9648
GAS(st) 0.9563 0.9685 0.9665
SPGAS 0.9896 1.0016 0.9946
Model (Currencies) α = 1% α = 2.5% α = 5%
GAS(n) 1.0000 1.0000 1.0000
GAS(t) 0.9683 0.9610 0.9612
GAS(st) 0.9701 0.9646 0.9625
SPGAS 0.9717 0.9761 0.9705

Table 5 reports the MCS ranking in relation to the index series. For the sake of brevity

the MCS procedure was applied only to VaR forecasts at 5%. We can observe that SPGAS

outperforms the GAS(st) for most of the cases. This is surprising since the average QL results
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for GAS(st) were in average 3.15% better. However a closer look at the results reveals that

GAS(t) and GAS(st) models had a striking performance in DOW30, outperforming SPGAS

in up to 20%. These results pushed their average QL down. Not surprisingly, the MCS model

eliminated GAS(n) and SPGAS models in that series. When the ranking position is not

displayed (−) indicates that the model was eliminated by the MCS process. Overall, we

had a low number of eliminated models, indicating a high homogeneity between the models.

Therefore, for greatest part of the series the models are statistically equivalent in terms of

their ability to forecast future VaR levels.

Table 6, shows the MCS procedure applied to the currencies series. Once more we can

observe a low number of eliminated models and a prevailing out-performance of GAS(t) model.

The Semiparametric model improved GAS(n) model for most of cases, with the exception of

USD/JPY series.

Tabela 5: MCS procedure for Semiparametic GAS and Parametic GAS Specifications - Indices

Asset CAC40 DAX DJI STOXX50 FTSE IBOV Nasdaq SP&500
GAS(n) 3 4 - 4 2 3 3 4
GAS(t) 1 1 1 2 1 4 1 1
GAS(st) 2 3 2 3 3 1 4 3
SPGAS 4 2 - 1 4 2 2 2

Tabela 6: MCS procedure for Semiparametic GAS and Parametic GAS Specifications - Foreign
Exchange Rates

Model GBP/EUR USD/BRL USD/EUR USD/JPY
GAS(n) 4 4 - 3
GAS(t) 1 1 2 1
GAS(st) 2 2 3 2
SPGAS 3 3 1 4

Table 7 shows the p-values obtained performing the ES backtesting. The p-values that

are greater than 0.05 indicates that models are appropriate for the forecasting of ES at the

confidence levels 95%, 97.5% and 99%. As we can see, GAS(n) model performs very poorly in

all series with the only exception of FTSE, which had p-value greater than 0.05. On contrary,

the remaining models perform rather well in all series, the only exception was IBOV, which

only GAS(t) model had p-value greater than 0.05. The results show that the Semiparametric

GAS model consistently outperform the GAS model with gaussian innovations. For the

currency series all models had p-values greater than 5%.

The QL values for the Crypto-Currency series are displayed in table 8. Here we notice
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Tabela 7: The backtesting results of ES forecasting

Asset GAS(n) GAS(t) GAS(st) SPGAS
CAC40 0.01 0.57 0.19 0.49
DAX 0.01 0.95 0.66 0.51
DJI30 0.04 0.99 0.96 0.80
STOXX50 0.00 0.32 0.10 0.61
FTSE 0.10 0.95 0.80 0.66
IBOV 0.01 0.09 0.02 0.00
NASDAQ 0.00 0.77 0.00 0.62
S&P500 0.03 0.90 0.87 0.85
Asset GAS(n) GAS(t) GAS(st) SPGAS
GBP/EUR 1.00 1.00 1.00 1.00
USD/BRL 0.13 0.97 0.79 0.99
USD/EUR 1.00 1.00 1.00 1.00
USD/JPY 0.85 1.00 1.00 1.00

that the GAS(st) had the best performance among the competitors. Hence, the inclusion of

skewness seems to improve the performance of the model. To some extent this was expected,

since the Crypto-Currency series are more leptokurtic and asymmetric than usual financial

series. As a matter of fact we could report to table 4 to verify that the inclusion of skewness

did not enhance the GAS models performance under the currency and index time series. We

also note that the Semiparametric GAS improves performance of the GAS(n) model for all

confidence levels, with the only exception of α = 5% for the Bitcoin series.

Tabela 8: QL Ratios for Semiparametic GAS and Parametic GAS Specifications - Crypto-
Currencies

Model (Bitcoin) α = 1% α = 2.5% α = 5%
GAS(n) 1.0000 1.0000 1.0000
GAS(t) 0.9622 0.9420 0.9547
GAS(st) 0.8819 0.9448 0.9837
SPGAS 0.9305 0.9636 1.0217
Model (Litecoin) α = 1% α = 2.5% α = 5%
GAS(n) 1.0000 1.0000 1.0000
GAS(t) 1.1859 1.0805 1.0063
GAS(st) 0.9680 0.9550 0.9710
SPGAS 0.9446 0.9818 1.0143
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4.2 Empirical Performance - Parametric Models

In this subsection we evaluate the performance of the parametric models. Our main goal is to

verify if GAS models can generate more accurate VaR forecasts. Moreover, we investigate

whether the addition of further complexities in the model can lead to more accurate out-of-

sample VaR and ES prediction. In this empirical study, we use the full returns series. The

data sets are divided into two samples. For the indices data set we have an in-sample period

from approximately (Jan, 2002) to (May, 2012) and an out-sample period from approximately

(May, 2012) to (Feb, 2018). For the currencies data set we have an in sample period from

(Jan, 2002) to (May, 2012) and an out-sample period from approximately (May, 2012) to (Feb

, 2018). A rolling window approach is used to produce one-day ahead forecasts of α = 1%,

α = 2.5% and α = 5% thresholds.

Table 9 displays results related to the QL ratios for the 11 models. We can note that the

Beta-Skew-t-EGARCH two-components model consistently outperformed all other models for

the indices data. The average improvement was 7.6% comparing to the GAS(n). These results

were closely followed by the Beta-Skew-t-EGARCH one-component model. The results suggest

that even though the two-component model has improved the VaR forecasts, accounting

for the second component did not bring expressive enhancements to VaR forecast over the

series considered. The improvements were, on average, only 0.30%. Among the GARCH

models, the GJR-GARCH specification had the best performance, followed closely by the

APARCH model. For the currencies data set the results are similar. The best performing

models are the Beta-Skew-t-EGARCH two-components model, the Beta-Skew-t-EGARCH

one-component model and the GAS(st) model for the confidence levels of 1%, 2.5% and 5%,

respectively. Beta-Skew-t-EGARCH two-components improved over GAS(n) model in about

7.3%, on average. Among the GARCH models the APARCH specification showed the best

results followed closely by the GJR-GARCH.

Table 10 shows the MCS ranking for the 11 parametric models at α = 5%. First we

observe a clear superiority of the Beta-Skew-t-EGARCH with two-components model over

all competitors. This finding is connected to its high performance in terms of QL, since

it is the main metric under MCS procedure. We can observe that only in three out of

eleven series we had some kind of elimination. The models eliminated were the GAS(n) and

GARCH(n). This is expected, since these are the the simplest models in our study. However,

the paucity eliminations calls attention. We report to Bernardi and Catania (2015), where

similar results were found. It general terms, this fact highlights the forecast equivalence of

the various GAS(n) and GARCH(n) specifications, from simpler to more complex models

such as Beta-Skew-t-EGARCH.

Table 11 shows the MCS procedure results for the foreign exchange rates. We can observe
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Tabela 9: QL Ratios for Parametic Models

Models (Indices Data Set) α = 1% α = 2.5% α = 5%
GAS(n) 1.0000 1.0000 1.0000
GAS(t) 0.9495 0.9817 0.9942
GAS(st) 0.9238 0.9564 0.9760
Beta-Skew-t-EGARCH (1comp.) 0.9010 0.9272 0.9522
Beta-Skew-t-EGARCH (2comp.) 0.8958 0.9263 0.9491
GARCH(n) 1.1953 1.1119 1.0653
GARCH(t) 0.9264 0.9526 0.9761
GARCH(st) 0.9564 0.9810 1.0005
APARCH 0.9357 0.9493 0.9619
GJR 0.9090 0.9391 0.9597
EGARCH 0.9352 0.9530 0.9665
Models (Currencies Data Set) α = 1% α = 2.5% α = 5%
GAS(n) 1.0000 1.0000 1.0000
GAS(t) 1.0443 1.0291 1.0108
GAS(st) 0.9128 0.9255 0.9453
Beta-Skew-t-EGARCH (1comp.) 0.9139 0.9250 0.9458
Beta-Skew-t-EGARCH (2comp.) 0.9104 0.9281 0.9462
GARCH(n) 0.9829 0.9890 0.9931
GARCH(t) 0.9537 0.9552 0.9577
GARCH(st) 0.9695 0.9622 0.9637
APARCH 0.9128 0.9381 0.9504
GJR 0.9159 0.9410 0.9568
EGARCH 0.9114 0.9367 0.9544

that for each exchange rate we have a different number of eliminated models. Once more

it is clear that the when eliminations occur, they tend to reject less complex models. For

instance the most eliminated models were again the GARCH(n) and GAS(n) followed by the

EGARCH model.

The p-values for the ES backtests are reported in table 12. From the first part of the table,

i.e, index series, we find that the only models capable of forecasting adequately the ES were

the Beta-Skew-t-EGARCH models. They reported p-values higher than 0.05 for all series,

with the exceptions of STOXX50 and IBOV, for which no model had satisfactory performance.

For the second part of the table, we find that all models perform well on forecasting the ES

for the usual confidence levels.
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Tabela 10: MCS procedure for Parametic Models - Index Series

Asset CAC40 DAX DOW EURO FTSE IBOV NASDAQ SP500
GAS(n) - 9 - 8 6 7 8 9
GAS(t) 8 8 6 7 7 4 7 8
GAS(st) 6 6 8 6 9 3 6 7
Beta-Skew-t-EGARCH (1comp.) 4 2 1 4 2 5 3 2
Beta-Skew-t-EGARCH (2comp.) 1 1 2 1 1 1 1 1
GARCH(n) - - 7 9 8 9 11 6
GARCH(t) 7 7 9 10 10 2 10 11
GARCH(st) 9 10 10 11 11 11 9 10
APARCH 2 5 4 3 4 8 4 4
GJR 5 4 3 2 3 6 2 3
EGARCH 3 3 5 5 5 10 5 5

Tabela 11: MCS procedure for Parametic Models - Foreign Exchange Series

Model USD/BRL USD/EUR GBP/EUR USD/JPY
GAS(n) 11 4 - -
GAS(t) 10 9 - -
GAS(st) 1 5 4 5
Beta-Skew-t-EGARCH (1comp.) 2 6 1 6
Beta-Skew-t-EGARCH (2comp.) 3 8 2 2
GARCH(n) 8 3 - -
GARCH(t) 7 2 3 -
GARCH(st) 9 1 5 -
APARCH 4 7 6 4
GJR 6 10 7 3
EGARCH 5 - - 1

Tabela 12: The backtesting results of ES Forecasting - Parametric Models

Currency Beta-Skew-t-EGARCH (2comp.) Beta-Skew-t-EGARCH (1comp.) GJR-GARCH APARCH

CAC40 0.03 0.02 0.00 0.00

DAX 0.18 0.19 0.01 0.00

DJI30 0.94 0.93 0.00 0.08

STOXX50 0.00 0.01 0.00 0.00

FTSE 0.11 0.48 0.00 0.09

IBOV 0.00 0.00 0.00 0.00

NASDAQ 0.21 0.43 0.00 0.00

S&P500 0.79 0.59 0.00 0.03

Currency Beta-Skew-t-EGARCH (2comp.) Beta-Skew-t-EGARCH (1comp.) GJR-GARCH APARCH

USD/BRL 1.00 1.00 1.00 1.00

USD/EUR 1.00 1.00 1.00 1.00

USD/GBP 0.81 0.86 0.01 0.88

USD/JPY 1.00 1.00 1.00 1.00
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5 CONCLUSION

In this paper, we compare various volatility models in terms of their ability to forecast

VaR and ES. Our objective resides in evaluating the performance of the recently developed

GAS models, focusing on the semiparametric GAS model proposed by Blasques, Ji and

Lucas (2016), and on other parametric specifications, such as the Beta-Skew-t-EGARCH

model from Harvey and Sucarrat (2014). First, we perform an in-sample investigation of

the semiparametric model. We study the impact of bandwidth selection on parameter’s

efficiency and propose a methodology for bandwidth selection in the volatility estimation

context. Secondly, we run two distinct empirical experiments. The first aims to explore the

semiparametric specification against its parametric counterparts. The second study compares

various parametric specifications and our objective is to evaluate whether increasing the

complexity, i. e., incorporating more features into the model, can help to improve its ability

to forecast risk measures. The models are compared in terms of Quantile Loss of Rivera, Lee

and Mishra (2004) and with the MCS procedure of Hansen (2005). Our main findings can be

summarized as follows.

First, the semiparametric GAS showed good in-sample performance recovering partially

the efficiency loss from the QMLE estimation. Our proposed procedure for the selection

of bandwidth has not improved the in-sample properties of the semiparametric estimator.

The dearth of theoretical guidance for bandwidth selection in the context of semiparametric

estimation evoke a necessary discussion on the topic and yet the method has not improved

estimation performance, it seems to be more a reasonable criteria compared to the pre-

fixed bandwidth method. Further investigation points out that values of bandwidth ranging

from 0.3 ≤ bw ≤ 0.8 do not significantly alter the parameter’s in-sample performance in

terms of RMSE. This finding is consistent to Blasques, Ji and Lucas (2016). Our emprical

results, suggest that the semiparametric GAS specification improves the forecasting ability

of the Gaussian GAS model in terms of both VaR and ES. Moreover, in several cases, the

improvements are comparable to the GAS(st) model, exhibiting potential to be used in a

forecasting combination exercises, for example, in the VaR dynamic technique of Bernardi

and Catania (2015).

Second, more complex models such as the Beta-Skew-t-EGARCH with one and two

components produced better results than simpler models. Although the improvements were

substantial in some cases, the MCS results hardly ever had more than two models eliminated.

This fact indicates a high homogeneity between the models, leading to the conclusion that in

most of cases the models are statistically equivalent in terms of their ability to forecast VaR.
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