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Observations show that plasma particles in the solar wind frequently display power-law velocity

distributions, which can be isotropic or anisotropic. Particularly, the velocity distribution functions

of solar wind electrons are frequently modeled as a combination of a background Maxwellian dis-

tribution and a non-thermal distribution which is known as the “halo” distribution. For fast solar

wind conditions, highly anisotropic field-aligned electrons, denominated as the “strahl” distribu-

tion, are also present. Motivated by these observations, the present paper considers a tenuous

plasma with Maxwellian ions, and electrons described by a summation of an isotropic Maxwellian

distribution and an isotropic Kappa distribution. The formalism of weak turbulence theory is uti-

lized in order to discuss the spectra of electrostatic waves that must be present in such a plasma,

satisfying the conditions of quasi-equilibrium between the processes of spontaneous fluctuations

and of induced emission. The kappa index and relative density of the Kappa electron distribution

are varied. By taking into account the effects due to electromagnetic waves into the weak turbu-

lence formalism, we investigate the electromagnetic spectra that satisfy the conditions of “turbulent

equilibrium,” and also the time evolution of the wave spectra and of the electron distribution, which

occurs in the case of the presence of an electron beam in the electron distribution. Published by
AIP Publishing. https://doi.org/10.1063/1.5009931

I. INTRODUCTION

Observations made in the space environment consis-

tently show plasma particles with velocity distributions that

have non-thermal tails, and frequently with anisotropies.1–6

Characteristically, observed solar wind electrons are mod-

eled by a combination of the Maxwellian core population

(with energy in the range of tens of eV) and a tenuous but

energetic halo distribution that contains a power-law veloc-

ity distribution in the suprathermal range (�102–103 eV). For

energy range even higher than that of the halo population,

that is, for �20–200 keV range, superhalo electrons are also

observed.7 The halo and superhalo distributions are often

modeled by the Kappa distribution.7–15 For the fast solar wind

condition,16 a field-aligned electron beam called the strahl is

often observed to stream away from the Sun. The strahl is

characterized by the similar energy range as that of the halo

electrons. Observations show that the number density of strahl
decreases as one moves away from the Sun while the halo

density increases,17 but their combined density remains con-

stant, being �4%–5% of the total density. The energetic

superhalo electrons contribute very little to the net electron

content, as their number density amounts to not more than

10�6 of the total electron density, but owing to their high

energy, their presence is evident in the velocity or energy

spectrum. The observations thus suggest that the strahl elec-

trons are but a field aligned portion of the halo population,

which are gradually pitch-angle scattered/diffused back to the

isotropic halo by some unknown processes, of which the whis-

tler wave fluctuations are the prime candidate.15,18

The Kappa distribution was introduced to phenomeno-

logically describe the non-thermal feature of the electron

velocity distribution,8 but appears nowadays in the literature

in a framework of non-extensive thermo-statistical equilib-

rium.19 Possibly the first time that a Kappa distribution was

mentioned in such a context was about 20 years ago, in Ref.

20. A family of Kappa distributions is used in the literature,

which include isotropic or anisotropic Kappa models.

Isotropic Kappa distributions are usually written in terms of

two different forms, one which can be found in Refs. 8–10

and the other which can be found in Refs. 13 and 14. These

two different forms of Kappa distributions have been used

by the plasma physics community and have been the subject

of a number of theoretical discussions in recent years.21–25 In

the present paper, we use a generic form of Kappa distribu-

tion, which, in particular cases, can reproduce the two widely

used forms mentioned earlier, and use such a distribution to

describe the halo distribution in the electron population.

Velocity distributions with power-law tails also appear

mentioned in the context of turbulence theory, as in the pio-

neering work of Ref. 26, dealing with the velocity distribu-

tions in the presence of a superthermal radiation field.

Recently, one of us put forth a rigorous theory of Kappa
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distribution from the viewpoint of weak turbulence theory,

rather than treating the Kappa distribution as simply a phe-

nomenological tool.27,28 In such a theory, it was shown that a

quasi-stationary state of electrons and a spectrum of electro-

static Langmuir fluctuations form a self-consistent pair of

solutions of the stationary weak turbulence kinetic equations.

A rather remarkable finding is that such a solution permits

only the Kappa distribution as the legitimate solution, but

nothing else, if the nonlinear interaction terms in the wave

kinetic equation are considered. This finding may explain the

physical origin of the pervasive Kappa-like electron distribu-

tion functions observed in the space environment. The

accompanying Langmuir fluctuation spectrum, according to

the above-referenced papers,27,28 is significantly modified

from the thermal equilibrium form of the spectrum in that

the long wavelength regime of the fluctuation spectrum

exhibits an inverse power-law behavior, / k�2, while for

high k, the spectrum approaches a constant value. These find-

ings and discussions were, however, carried out on the basis

of the simplifying assumption of a single electron species.

This was done for the sake of simplicity. For the actual situa-

tion, as overviewed earlier, the solar wind electrons are com-

posed of several components, typically a quasi isotropic

Maxwellian core plus a quasi isotropic halo population,

which is often modeled by a Kappa distribution. In view of

this, it is timely and appropriate to revisit the problem of

solar wind such as electron distribution and the associated

Langmuir fluctuation spectrum for multi- or, at least, a two-

component electron plasma.

Ideally, one must obtain the electron distribution and the

Langmuir fluctuation spectrum in a self-consistent manner

without making any assumption at the outset. This is possible

if one makes a simplifying assumption of single component

electrons.27,28 However, if one is to consider multiple (or

two component) electrons, then the situation becomes rather

complex. Even if one ignores the nonlinear coupling term,

the self-consistent solution for both electron distribution and
the Langmuir spectrum must be obtained by numerical itera-

tion scheme.29 In the present analysis, we are interested in

revisiting the approach taken in Ref. 29 but within the con-

text of the analytical method. In order to reduce the complex-

ity of the problem to some extent, we approach the problem

by allowing a two component electron distribution function

model and seeking the Langmuir spectrum intensity, which

is consistent with the model electron distribution function.

Thus, in the first part of the present analysis, we will

investigate the spectral form of the electrostatic fluctuation

intensity that exists in a plasma, satisfying equilibrium con-

ditions between the processes related to spontaneous fluctua-

tions and the processes induced by the waves themselves.

The analysis is made in the framework of weak turbulence

theory including spontaneous effects. We consider an

unmagnetized plasma with plasma particles described by

velocity distributions, which are a summation of an isotropic

Maxwellian background and a “halo” characterized by iso-

tropic Kappa distributions of generic form. The analysis to

be made under the framework of weak turbulence theory

shows that electrostatic waves, i.e., Langmuir (L) and ion-

sound (S) waves, can be naturally occurring in a plasma as a

result of spontaneous and induced effects. Electromagnetic

waves, i.e., transverse waves (T), cannot be generated by

these mechanisms, but can appear due to nonlinear interac-

tions involving other types of plasma waves.

In the second part of the present paper, we also investi-

gate the generation of electromagnetic waves, and the possi-

bility of an approximated asymptotic solution for the

spectrum of transverse waves, obtained as the outcome of

nonlinear processes described by weak turbulence theory.

Investigations on the equilibrium spectra of electrostatic

waves and on the spectrum of T waves at turbulent equilib-

rium have already been made in the case of Maxwellian plas-

mas, but to the best of our knowledge, they have not yet

been made taking into account the presence of a tenuous but

energetic population of Kappa distributed particles. In addi-

tion to the investigation of the equilibrium spectra, we also

investigate using weak turbulence theory the time evolution

of the wave-particle system when an electron beam is

assumed to exist in the medium.

The equations of weak turbulence theory can be found

in the literature and will not be reproduced here for brevity.

For the present paper, we utilize the formalism as presented

in Ref. 30, and only comment on the basic features of these

equations, which will be useful for the analysis of the results

appearing in the present paper. We start by commenting on

the equation that describes the time evolution of L waves.

In the context of weak turbulence theory, the time evolu-

tion of L waves is ruled by terms associated with spontaneous

and induced emission, three-wave decay, and spontaneous

plus induced scattering. The emission terms satisfy the wave-

particle resonance condition, rxL
k � k � v ¼ 0, where xL

k is

the dispersion relation for L waves, and r¼61 represent for-

ward or backward propagation of the waves. The three-wave

decay processes involve interactions between different types

of waves, satisfying the following resonance conditions:

rxL
k � r0xL

k0 � r00xS
k�k0
¼ 0; rxL

k � r0xL
k0 � r00xT

k�k0 ¼ 0,

rxL
k � r0xT

k0 � r00xT
k�k0 ¼ 0, and rxL

k � r0xS
k0
� r00xT

k�k0

¼ 0, where xS
k and xT

k are the dispersion relations for ion-

acoustic waves (S) and for transverse waves, respectively.

The scattering processes involve waves with two different

wavelengths and frequencies, interacting with plasma par-

ticles, satisfying the following resonance conditions: rxL
k

�r0xL
k0 � ðk � k0Þ � v ¼ 0 and rxL

k � r0xT
k0 � ðk � k0Þ � v

¼ 0. Detailed expressions for these terms can be found, for

instance, in Ref. 30.

The equation that describes the time evolution of S
waves presents a similar structure, containing spontaneous

and induced emission terms, which satisfy the resonance

condition, rxS
k � k � v ¼ 0; three-wave decay terms satisfy-

ing the resonance conditions, rxS
k � r0xL

k0 � r00xL
k�k0 ¼ 0,

and rxS
k � r0xL

k0 � r00xT
k�k0 ¼ 0; and a scattering term that

satisfies rxS
k � r0xL

k0 � ðk� k0Þ � v ¼ 0. The scattering pro-

cesses are deemed to be extremely slow in the case of S
waves and are usually neglected.30

The equation for the T waves can be considered of a dif-

ferent nature, in the sense that the superluminal T waves do

not satisfy the wave-particle resonance condition, and there-

fore, there is no emission terms, either spontaneous or

112902-2 Tigik et al. Phys. Plasmas 24, 112902 (2017)



induced. The equation that describes the time evolution of T
waves features three-wave decay terms with resonance con-

ditions given by rxT
k � r0xL

k0 � r00xL
k�k0 ¼ 0; rxT

k � r0xL
k0

�r00xS
k�k0 ¼ 0, and rxT

k � r0xT
k0 � r00xL

k�k0 ¼ 0, and a scat-

tering term satisfying rxT
k � r0xL

k0 � ðk� k0Þ � v ¼ 0.30

In addition to the wave equations, the set of weak turbu-

lence equations also contains equations for the time evolu-

tion of the particle distribution functions. In collisionless

plasmas, the equation for the time evolution of the particle

distribution function is well-known [see, for instance, Eq. (1)

of Ref. 30] and includes a quasilinear diffusion term and a

term originated from spontaneous fluctuations, both satisfy-

ing the wave-particle resonance conditions rxa
k � k � v ¼ 0,

where a can be L or S

@faðvÞ
@t
¼ pe2

a

m2
a

X
r¼61

X
a¼L;S

ð
dk

k2
k � @
@v

dðrxa
k � k � vÞ

� marxa
k

4p2
faðvÞ þ Ira

k k � @faðvÞ
@v

� �
: (1)

In Eq. (1), fa(v) is the distribution function for particles of

species a (a¼ e for electrons and a¼ i for ions), normalized

as
Ð

dv faðvÞ ¼ 1.

The present paper is organized as follows: In Sec. II, we

introduce a generic form of isotropic Kappa distribution and

describe the distribution function for plasma particles, consti-

tuted by a summation of a Maxwellian distribution and an iso-

tropic Kappa distribution, with much lower number density than

the Maxwellian population. In Sec. III, we briefly derive the

expressions that give the spectra of L and S waves and that sat-

isfy equilibrium conditions. In doing so, we take into account

the velocity distributions presented in Sec. II. In Sec. IV, we dis-

cuss the possibility of an asymptotic spectrum of transverse

waves (T), which is the result of nonlinear interaction in the

wave-particle system. We derive an expression, which approxi-

mately describes this asymptotic state. In Sec. V, we present

some results that show the wave spectra, taking into account

parameters which are compatible with conditions in the solar

wind. We also present in Sec. V some results that show the time

evolution of the wave spectra and of the particle distribution

function, obtained by numerical solution of equations of weak

turbulence theory. Section VI summarizes the results obtained.

II. THE VELOCITY DISTRIBUTIONS FOR PLASMA
PARTICLES

Let us assume that isotropic distributions for ions and

electrons are made of the summation of Maxwellian and

Kappa distributions. In three dimensions (3D), considering a

generic form for the Kappa distribution, we may write

fbðvÞ ¼ 1� njb

ne

� �
fb;MðvÞ þ

njb

ne
fb;jðvÞ; (2)

where

fb;MðvÞ ¼
1

p3=2v3
b

exp � v2

v2
b

 !
; (3)

fb;jðvÞ ¼
1

p3=2j3=2

b v3
b;j

Cðjbþ abÞ

C jb þ ab�
3

2

� � 1þ v2

jbv2
b;j

 !�ðjbþabÞ

;

(4)

where vb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tb=mb

p
is the thermal velocity of particle spe-

cies labeled b, and vb,j is a parameter with the same physical

dimension as the particle thermal velocity, and reduces to

the thermal velocity in the limit jb ! 1. The distribution

functions given by Eqs. (3) and (4) are normalized such thatÐ
d3v fb ¼ 1.

Particular cases of the distribution (4) that correspond to

the forms of Kappa distributions which are widely used in

the literature can be obtained by a suitable choice of parame-

ters ab and vb,j. Namely, if ab¼ 1, and

v2
b;j ¼

jb �
3

2
jb

v2
b; (5)

then Eq. (4) becomes a form of isotropic Kappa distribution,

which is widely used in the literature8–10

fbðvÞ ¼
1

p3=2j3=2

b v3
b;j

Cðjb þ 1Þ

C jb �
1

2

� � 1þ v2

jbv2
b;j

 !�ðjbþ1Þ

: (6)

The average value of the kinetic energy, in the case of distri-

bution (6), leads to the usual notion of temperature, since it

is easily obtained that�
1

2
mv2

�
b

¼ 3Tb

2
: (7)

In the above, h� � �ib ¼
Ð

dv � � � fb.

Another customary choice is to take ab¼ 0 and vb,j¼ vb.

This corresponds to the case in which Eq. (4) becomes the

isotropic Kappa distribution, which is used, for instance, in

Refs. 13 and 14

fbðvÞ ¼
1

p3=2j3=2

b v3
b

CðjbÞ

C jb �
3

2

� � 1þ v2

jbv2
b

 !�jb

: (8)

For distribution function (8), the average value of the kinetic

energy does not lead to the usual notion of temperature, since

it is easy to obtain that�
1

2
mv2

�
b

¼ 3Tb

2

jb

jb � 5=2
: (9)

It can also be noticed that the distribution given by (8)

can be obtained as a result of the use of the non-extensive

statistical mechanics as formulated in Refs. 13, 31, and 32,

while the distribution function given by (6) results from a

modified approach to non-extensive statistical mechanics,

which utilizes the so-called escort probability functions.33,34

For convenience, we define dimensionless velocities, by

division of the velocity by the electron thermal velocity ve,
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u¼ v/ve, the normalized wavenumber q¼kve/xpe, the nor-

malized wave frequency for waves of type a, za
q ¼ xa

q=xpe

(where a¼ L, S, or T), and the dimensionless time variable,

s¼xpet, with xpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnee2=me

p
being the electron plasma

frequency. We also define the normalized wave intensity for

waves of type a

Era
q ¼

ð2pÞ2g

mev2
e

Ira
k

la
k

; (10)

and introduce other useful dimensionless quantities

u ¼ v

ve
; ub;j ¼

vb;j

ve
; ub ¼

vb

ve
;

l ¼ me

mi
; de ¼

nje

ne
; di ¼

nji

ne
:

(11)

In terms of the dimensionless variables, the dispersion

relations for the waves and the velocity distribution functions

become

zL
q ¼ 1þ 3

2
q2

� �1=2

; (12)

zS
q ¼

qffiffiffi
2
p me

mi

� �1=2

1þ 3
Ti

Te

� �1=2

1þ 1

2
q2

� ��1=2

; (13)

zT
q ¼ 1þ c2

v2
e

q2

 !1=2

; (14)

Ub;MðuÞ ¼
1

p3=2u3
b

exp � u2

u2
b

 !
; (15)

Ub;jðuÞ ¼
1

p3=2j3=2

b u3
b;j

Cðjbþ abÞ
C jb þ ab � 3

2

� � 1þ u2

jbu2
b;j

 !�ðjbþabÞ

:

(16)

III. INITIAL L AND S WAVE INTENSITIES

Making use of the equations of weak turbulence theory,

the spectra of electrostatic waves may be initialized by

neglecting the nonlinear interactions and balancing the

spontaneous and induced emission terms, and by taking

into account only the background populations. For the L
waves, using the symbol Ue(u) for the electron distribution

function in terms of normalized quantities, we utilize the

wave equation without the nonlinear terms, written in terms

of the dimensionless quantities

@

@s
ErL

q ¼
p
q2

ð
du dðrzL

q � q � uÞ

� g UeðuÞ þ ðrzL
qÞ q �

@UeðuÞ
@u

ErL
q

� �
: (17)

Using spherical coordinates in velocity space, with the z
axis along q, and considering distribution (2) written in terms

of dimensionless variables, we obtain

@

@s
ErL

q ¼
p
q2

(
g 1� deð ÞIeL

M þ deIeL
1

	 


�2ðrzL
qÞ

2
1� deð ÞIeL

M þ
deu2

e

u2
e;j

ðje þ aeÞ
je

IeL
2

" #
ErL

q

)
;

(18)

where

Iba
M ¼

ð
d3u Ub;MðuÞdðrza

q � q � uÞ;

Iba
1 ¼

ð
d3u Ub;jðuÞdðrza

q � q � uÞ;

Iba
2 ¼

ð
d3u 1þ u2

jbu2
b;j

 !�1

Ub;jðuÞdðrza
q � q � uÞ:

(19)

The equilibrium is obtained by setting the expression for

the time derivative equal to zero, which leads to

ErL
q ¼

g

2ðzL
qÞ

2

1� deð ÞIeL
M þ deIeL

1

1� deð ÞIeL
M þ

deu2
e

u2
e;j

ðje þ aeÞ
je

IeL
2

: (20)

The integrals Iba
M ; Iba

1 , and Iba
2 can be evaluated analyti-

cally. For the case b¼ e, it is possible to obtain

ErL
q ¼

g

2ðzL
qÞ

2
1� deð Þexp �neð Þ þ deue

j1=2
e ue;j

Cðje þ ae � 1Þ
Cðje þ ae � 3=2Þ

1

1þ ne;j
� �jeþae�1

" #

� 1� deð Þexp �neð Þ þ deu3
e

j3=2
e u3

e;j

Cðje þ aeÞ
Cðje þ ae � 3=2Þ

1

1þ ne;j
� �jeþae

" #�1

;

ne ¼
ðzL

q=qÞ2

u2
e

; ne;j ¼
ðzL

q=qÞ2

jeu2
e;j

: (21)

For the S waves, we obtain the following equation:

@

@s
ErS

q ¼ lS
q

p
q2

ð
du dðrzS

q � q � uÞ g UeðuÞ þ UiðuÞð ÞþðrzL
qÞ q � @UeðuÞ

@u
þ me

mi
q � @UiðuÞ

@u

� �
ErS

q

� �
; (22)
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where

lS
q ¼

q3

23=2

ffiffiffiffiffiffi
me

mi

r
1þ 3Ti

Te

� �1=2

: (23)

Following steps are similar to those employed in the

case of L waves, and the initial spectrum of S waves is seen

to obey the following expression:

ErS
q ¼

g

2ðzL
qÞðzS

qÞ
Ns

Ds
; (24)

where

Ns ¼ 1� deð ÞIeS
M þ deIeS

1 þ 1� dið ÞIiS
M þ diI

iS
1 ;

Ds ¼ 1� deð ÞIeS
M þ

deu2
e

u2
e;j

ðje þ aeÞ
je

IeS
2

þ l 1� dið Þ u
2
e

u2
i

IiS
M þ

dilu2
e

u2
i;j

ðji þ aiÞ
ji

IiS
2 :

After the evaluation of the Iba
M ; Iba

1 , and Iba
2 integrals, one

obtains the following:

ErS
q ¼

g

2ðzL
qÞðzS

qÞ

"
1� deð Þexp �neð Þ þ deue

j1=2
e ue;j

Cðje þ ae � 1Þ
Cðje þ ae � 3=2Þ

1

1þ ne;j
� �jeþae�1

þ 1� dið Þexp �nið Þ þ diue

j1=2
i ui;j

Cðji þ ai � 1Þ
Cðji þ ai � 3=2Þ

1

1þ ni;j
� �jiþai�1

#

�
"

1� dð Þexp �neð Þ þ du3
e

j3=2
e u3

e;j

Cðje þ aeÞ
Cðje þ ae � 3=2Þ

1

1þ ne;j
� �jeþae

þl 1� dið Þ u
3
e

u3
i

exp �nið Þ þ dilu3
e

j3=2
i u3

i;j

Cðji þ aiÞ
Cðji þ ai � 3=2Þ

1

1þ nið Þjiþai

#�1

; (25)

where ne and ne,j are defined in (21) and

ni ¼
ðzL

q=qÞ2

u2
i

; ni;j ¼
ðzL

q=qÞ2

jiu2
i;j

: (26)

This brings a closure to the first part of the present

paper, namely, to theoretically discuss the self-consistent

form of electrostatic Langmuir and ion-sound wave fluctua-

tion intensities that arise when the electron velocity distribu-

tion function is composed of a Maxwellian core plus a

“halo” component given by a Kappa distribution. In Ref. 29,

a similar problem was approached (minus the discussion of

ion-acoustic wave intensity) by considering the iterative

numerical solution of the self-consistent set of particle and

wave kinetic equations. The present discussion complements

Ref. 29 in that our approach has been within the context of

an analytical method. The analytical solution, while less rig-

orous that the iterative solution obtained in Ref. 29, is never-

theless useful in the subsequent discussion of transverse

wave intensity, which we turn to next.

IV. ASYMPTOTIC WAVE LEVEL FOR TRANSVERSE
WAVES

The time evolution of transverse T waves, which are

electromagnetic waves, is governed by an equation that con-

tains the terms related to three wave decay involving a T
wave and two L waves: a T wave, an L wave, and an S wave,

and two T waves and a L wave, and also a scattering term

involving a T wave, a L wave, and particles.30 The evolution

equation does not feature a quasilinear term, such as those

appearing in the equations for L and S waves, given by Eqs.

(17) and (22), because the linear resonance condition with

the particles is not satisfied by the superluminal T waves.30

The occurrence of decay processes involving L and S
waves, and also of scattering processes, has as a consequence

that T waves are generated by these nonlinear mechanisms,

even if they are not considered present as an initial condition.

It is therefore pertinent to investigate the asymptotic state

attained by the spectrum of T waves, due to the nonlinear pro-

cesses. This asymptotic state characterizes what can be called

a “turbulent equilibrium” and has already been investigated

by us considering an equilibrium plasma in which the plasma

particles are described by Maxwellian distributions.35,36 In the

present investigation, we consider the case in which the veloc-

ity distributions of plasma particles contain a population

described by Kappa distributions, as given by Eq. (2).

At the asymptotic state, it may be considered that the

decay terms are not very effective in changing the wave level,

since they do not involve particles and represent just an

exchange of momentum and energy among different waves.

The scattering term can therefore be considered to be the

dominant term for late evolution of the system. This conjec-

ture has already been used in the case of Maxwellian velocity

distributions, and has been well supported by numerical analy-

sis of the time evolution considering the complete weak turbu-

lence equation for the T waves.35,36 Consequently, using this

approximation and adopting normalized variables, the equa-

tion for late stages of the time evolution of T waves can be

written as follows:30
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The asymptotic state is obtained by taking the time derivative equal to zero. Doing this, and using the distribution func-

tions given by Eq. (2), we obtain
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Making use of the analytical expressions for the quantities Ib
M; Ib

1 , and Ib
2 , one arrives at the following:

ErT
q ¼ 2ðrzT

qÞ
2
X
r0

ð
dq0
ðq� q0Þ2

q02jq� q0j gEr0L
q0

X
b¼e;i

1� db

ub
e�fb þ db

j1=2

b ub;j

Cðjb þ ab � 1Þ
Cðjb þ ab � 3=2Þ

1

1þ fb
� �jbþab�1

 !

�
(X

r0

ð
dq0
ðq� q0Þ2

q02jq� q0j

"
g�ðrzT

qÞðr0zL
q0 Þ
X
b¼e;i

1� db

ub
e�fbþ db

j1=2

b ub;j

Cðjb þ ab � 1Þ
Cðjb þ ab � 3=2Þ

1

1þ fb;j
� �jbþab�1

 !

þl Er0L
q0 ðrzT

q � r0zL
q0 ÞðrzT

qÞ
2 1� dið Þ

u3
i

e�fi þ 2di

j3=2
i u3

i;j

Cðji þ aiÞ
Cðji þ ai � 3=2Þ

1

1þ fið Þjiþai

 !

�Er0L
q0 ðrzT

q � r0zL
q0 Þ

2 2 1� deð Þ
u3

e

e�fe þ 2de

j3=2
e u3

e;j

Cðje þ aeÞ
Cðje þ ae � 3=2Þ

1

1þ fe;j
� �jeþae

 !#)�1

;

fb ¼
ðrzT

q � r0zL
q0 Þ

2

u2
bjq� q0j2

; fb;j ¼
ðrzT

q � r0zL
q0 Þ

2

jbu2
b;jjq� q0j2

; ðb ¼ e; iÞ: (29)

This is a fairly complex expression. However, one notices that the contributions due to the Maxwellian population feature

an exponential factor, which is very peaked with maximum occurring for r0 ¼ r and q0 ’ qm, the value of q for which

zL
q0 ¼ zT

q . The contributions due to the Kappa distribution are also proportional to a factor which is unity for r0 ¼ r and

q0 ’ qm, and decrease rapidly away from this point. As a consequence, the terms corresponding to the induced scattering can

be neglected, since they are proportional to ðrzT
q � r0zL

q0 Þ, and the asymptotic spectrum of T waves can be approximated by the

following:

ErT
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: (30)

As a result of these approximations, and assuming that

in the absence of particle beams, the spectrum of L waves

remains nearly the same as in the initial state, and is there-

fore symmetrical, E�L
qm
¼ EþL

qm
, it is seen that the asymptotic

spectrum of T waves can be simplified by

ErT
q ’ 2ErL

qm
; qm ¼

ffiffiffi
2

3

r
c

ve
q: (31)

To sum up the second part of the present analysis, by mak-

ing use of the equations of electromagnetic weak turbu-

lence, we have derived the asymptotic form of the
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transverse wave intensity, which is given in terms of the

Langmuir wave intensity. The Langmuir wave fluctuation

intensity, however, was already discussed in Sec. III so that

we may readily obtain the explicit form of the transverse

wave intensity.

V. NUMERICAL RESULTS

In order to illustrate the effects of the presence of a

Kappa population of electrons on the spectrum of waves,

which satisfy the conditions of equilibrium with the particle

distribution, we consider that the electron population is

described by distribution function (2), with a¼ 1, and u2
e;j

¼ u2
eðje � 3=2Þ=je. The ion distribution is assumed to be

described by an isotropic Maxwellian distribution, i.e., we

assume di¼ 0. Finally, we use Te/Ti¼ 2, a value for the elec-

tron and ion temperature ratio which is within the range of

values observed in the solar wind.37

In Fig. 1, we show the initial spectrum of electrostatic

waves divided by g, as a function of normalized wavenum-

ber q¼ kve/xpe, for several values of the index je. We

assume that the electron population described by a Kappa

distribution constitute 10% of the electron population, i.e.,

de¼ 0.1. Figures 1(a) and 1(b) show the initial spectra of L
and S waves, obtained using Eqs. (21) and (25), respec-

tively. The spectra obtained in the case of purely

Maxwellian distribution, with nje/ne¼ 0.0, are also shown

in Figs. 1(a) and 1(b), for reference. In Figs. 1(a) and 1(b)

are shown the curves corresponding to several values of je

(je¼ 40, 20, 10, 5, and 2.5).

Figure 1(a) shows that the value of EL
qð0Þ in the case of

the presence of Kappa population is higher than the value

obtained in the case of a purely Maxwellian distribution,

with a difference that is already noticeable in the scale of the

figure even for the upper limit shown, q¼ 0.6, and increases

for smaller values of q, featuring a peak that diverges for q
! 0. For larger values of je, the shape of the L spectrum is

similar to the shape exhibited in the case of small values of

je, but the magnitude of the spectrum at a given value of q is

smaller for increasing values of je. It is noticed, however,

that the peak at q! 0 is present even for large values of je.

The presence of the peak in the L spectrum, for q! 0,

can be understood by the analysis of Eq. (21). In the

presence of a population of kappa electrons, even for a

small value of nje/ne, it is seen that for a sufficiently small

value of q the contribution due to the Maxwellian

population vanishes, due to the factor exp ð�ðzL
q=qÞ2=u2

eÞ.
For the region of q values where this occurs, the contribu-

tion of the Kappa population is dominant, and the

equilibrium spectrum can be given by the approximated

expression

ErL
q ’

g

2ðzL
qÞ

2

u2
e;j

u2
e

1þ
ðzL

q=qÞ2

jeu2
e;je

 !
: (32)

In the case of je ! 1, this expression reduces to

g=ð2ðzL
qÞ

2
, which is the expression obtained in the

Maxwellian case, as expected. However, for finite values of

je, no matter how large, Eq. (32) is seen to diverge at q! 0.

The explanation for this is as follows: For large values of je,

the Kappa distribution coincides with a Maxwellian distribu-

tion, in the region of velocity space with significant electron

population. However, the initial spectra of waves are

obtained from Eq. (17), which for equilibrium requires a bal-

ance between the term associated with spontaneous fluctua-

tions, which is proportional to the distribution function, and

the term associated with induced emission, which is propor-

tional to the velocity derivative of the distribution function

and to the value of the wave spectra at the resonant velocity.

For q ! 0, the resonant velocity becomes progressively

larger. Since for very large velocities the derivative of the

Kappa distribution is smaller than the derivative of the

Maxwellian distribution, the wave spectra for small q have

to be higher in the case of Kappa distribution than in the case

of Maxwellian distribution, in order to satisfy the equilib-

rium condition.

Figure 1(b) shows the values of ES
qð0Þ=g vs. q¼ kve/xpe.

In fact, the figure shows the values of ES
qð0Þ multiplied by

lS
q, but we continue to denote the quantity as ES

qð0Þ, for sim-

plicity. The figure displays the results obtained for several

values of je, but the different curves cannot be distinguished

in the scale of the figure. It is seen that the kappa index of

the Kappa distribution is not relevant for the initial spectrum

of S waves, while it was seen to be relevant for the initial

spectrum of L waves.

FIG. 1. Initial spectrum of electrostatic waves divided by g, as a function of normalized wavenumber q¼ kve/xpe, for several values of the index je. The case

of Maxwellian distribution, nje/ne¼ 0.0, is also shown for reference. (a) L waves and (b) S waves. For S waves, all curves overlap. Electron distribution given

by Eq. (2), with ae¼ 1 and u2
b;j ¼ u2

bðje � 3=2Þ=je, for nje/ne¼ 0.1. The ion distribution is an isotropic Maxwellian, and Te/Ti¼ 2. The spectra of L and S
waves are given by Eqs. (21) and (25).
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We have also obtained the initial spectrum of electro-

static waves by assuming a fixed value of the index je and

considering different values of the relative number density of

the Kappa population, nje/ne. The results obtained, both for

large and for small values of je, show that the spectra

obtained for L and S waves are almost independent of the

value of the number density of the Kappa population, as long

as it is not zero. These results are not shown here for the

sake of brevity, since the curves obtained for different values

of nje/ne are basically the same as the curves shown in

Fig. 1, for each value of je. The important point to be

emphasized is that the presence of a small population of

electrons described by a Kappa population is sufficient to

significantly affect the equilibrium spectrum of L waves in

the region of small wave numbers, leading to the formation

of the peaked feature at q ’ 0.

Figure 2 displays the asymptotic spectrum of T waves,

obtained using Eq. (31). Figure 2(a) shows ET
q=g as a func-

tion of normalized wavenumber, for nje
=ne ¼ 0:1, and sev-

eral values of je, and also present a curve obtained

considering a purely Maxwellian electron distribution,

obtained with nje/ne¼ 0. The conditions and parameters are

the same as those used to obtain the spectrum of L waves in

Fig. 1. Let us first comment on the result obtained consider-

ing nje
=ne ¼ 0, given by the red line in Fig. 2(a). This result

is explained by the analysis of Eq. (31), which shows that

the spectrum of T waves is proportional to the spectrum of

L waves, given by Eq. (21), evaluated at q¼ qm. If the

Kappa population is vanishing, nje=ne ¼ 0, the Kappa con-

tributions vanishes in Eq. (21), and the contributions due to

the Maxwellian population in the numerator and in the

denominator cancel out, and the spectrum turns out to be

given by

ErT
q ’ 2

g

2ðzL
qm
Þ2
¼ g

2þ 3q2
m

:

At q¼ 0, the amplitude of the spectrum of T waves in

the case of Maxwellian electron distribution is therefore

twice the magnitude of the spectrum of L waves, but decays

faster for larger values of q, since qm� q. With the presence

of a population described by a Kappa distribution, Fig. 2(a)

shows that the spectrum of T waves is modified in the region

of small wave numbers, in comparison with the spectrum

obtained in the Maxwellian case. In the scale of the figure,

the modification is noticeable for normalized wavenumber

q< 0.1, with a difference that increases with the decrease in

the je index, i.e., increases with the increase in the non-

thermal character of the electron distribution. The spectrum

features divergent behavior for q! 0, as already noticed for

the L waves in Fig. 1.

Figure 2(b) shows an expanded view of the region of

small values of q, for the conditions that have been discussed

in Fig. 2(a). The expanded view clearly shows the increase

in the magnitude of the T wave spectrum at small values of

q. For instance, it is seen that for q ’ 0.02, the intensity of

the spectrum of T waves in the case of je¼ 2.5 is about one

order of magnitude above the intensity displayed in the case

of je¼ 40.

We have also investigated the dependence of the T spec-

trum on the relative number density nje/ne, for a fixed value

of je. The results obtained have shown that the T wave spec-

trum obtained in the presence of a Kappa distribution is

almost independent of the number density of the Kappa pop-

ulation. The only noticeable feature in the spectra is the pres-

ence of the peak around q¼ 0, which occurs for any finite

value of nje/ne, and vanishes in the purely Maxwellian case

(nje/ne¼ 0).

In addition to these results concerning the initial spectra

of electrostatic waves and the asymptotic spectrum of trans-

verse waves, we also present some results which show the

time evolution of the wave-particle system, comparing a sit-

uation in which the background electron velocity distribution

is a Maxwellian distribution with a situation in which an

“halo” population described by as isotropic Kappa distribu-

tion is also present.

For the study of the time evolution of the system, we uti-

lize the set of weak turbulence equations, with some addi-

tional approximations. Regarding the plasma particles, we

assume that the ion velocity distribution remains constant

along the evolution and that in the case of the equation for

the electron distribution, the quasilinear diffusion due to S
waves can be neglected in comparison with the diffusion

caused by the L waves. Regarding the waves, we describe

the evolution of the L waves by including the spontaneous

and induced emission processes, the three-wave decay pro-

cesses involving L and S waves, and the scattering process

involving two L waves and the particles. Nonlinear interac-

tion involving T waves are neglected in the equation for the

time evolution of the L waves, for simplicity, which is com-

mon practice in the literature. The evolution of S waves is

described in the present analysis by taking into account the

emission terms and the three-wave decay term involving L

FIG. 2. Asymptotic spectrum of T
waves, ET

q , characterizing a state of

“turbulent equilibrium,” vs normalized

wavenumber q. (a) ET
q , for nje/ne¼ 0.1,

and several values of je. The case of

Maxwellian distribution, nje/ne¼ 0.0,

is also shown for reference; (b)

expanded view of the region of small

values of q in Fig. 3(a). Other parame-

ters and conditions are as in Fig. 1.
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and S waves, and neglecting the effect of the decay term

involving S, L, and T waves, and also the scattering term. In

the equation for the T waves, however, which contains only

nonlinear effects, we keep all the terms that have already

been described in Sec. I, namely, the decay involving a T
wave and two L waves, the decay involving a T wave, a L
wave, and a S wave, the decay involving two T waves and a

L wave, and the scattering term.

We utilize a two-dimensional approximation (2D), con-

sidering a grid of 51� 101 points in (u?, uz) space, with

0� u?� 12 and –12� uz� 12, a grid of 51� 51 points in

(q?, qz) space for L and S waves, and a grid of 71� 71 points

in (q?, qz) space for the T waves, which develop fine features

that require a better resolution than the L and S waves, con-

sidering the evolution in the interval 0� q?� 0.6 and

0� qz� 0.6 for all waves. The normalized time step has

been adopted as Ds¼ 0.1, and the equations were solved

using a fourth-order Runge-Kutta procedure for the wave

equations and the splitting method for the equation describ-

ing the time evolution of the electrons.

As starting conditions, we assume that the background

electron population is described by distribution function (2),

with the 2D versions of Eqs. (3) and (4), with the Kappa dis-

tribution defined using a¼ 1 and u2
e;j ¼ u2

eðje � 1Þ=je,

which is the proper value of u2
e;j for 2D distributions. We

assume that the ion distribution is described by an isotropic

Maxwellian distribution, with Te/Ti¼ 2. We also assume that

the plasma parameter is ðnk3
DÞ
�1 ¼ 5:0� 10�3, and

v2
e=c2 ¼ 4:0� 10�3, values that have already been used in

the analyses of the plasma emission without taking into

account the presence of a Kappa distribution.36,38

A further approximation is made for the numerical anal-

ysis, regarding the initial wave spectra. As already discussed

in the initial paragraphs of this section on numerical results

[see Eq. (32) and the accompanying comments], in the pres-

ence of a Kappa distribution, the initial spectrum of L
diverges for q ! 0. This divergence, although consistent

with the non-relativistic approach, is not appropriate for the

numerical analysis. In our numerical implementation of the

formalism, the initial spectrum of L waves is given by Eq.

(21) down to the value of q such the resonant velocity

becomes equal to c, i.e., the value of q for which

zL
q=q ¼ c=ve. It is assumed that for values of q smaller than

this value, the initial L wave spectrum is given by the same

value obtained at the limit value of the resonant q. With such

approximation, when a Kappa distribution is assumed to be

present, the initial spectrum of L has significant growth in

the region of small values of q, in comparison with the spec-

trum in the case of a Maxwellian plasma background, but the

divergence is avoided. The initial spectrum of L waves is

therefore given by Eq. (21), with an approximation in the

region of small values of q, and the spectrum of S is given by

Eq. (25). The T waves are assumed not present at initial

time.

Figure 3 shows one dimensional (1D) representations of

the spectrum of T waves, i.e., obtained after integration of ET
q

along the perpendicular component of normalized wavenum-

ber, q?. The spectra are shown for different values of s and

show the evolution of the T wave spectrum. Figure 3(a) dis-

plays the wave spectra obtained in the case of purely

Maxwellian electron distribution, i.e., nje/ne¼ 0.0. Figure

3(b) depicts the wave spectra obtained when the electron dis-

tribution contains a Kappa population, with nje/

ne¼ 5.0� 10�2, and je¼ 5.0. In panel (a), it is seen that the

amplitude of the waves increases for all values of qz and

gradually evolves toward the asymptotic solution described

by Eq. (31) in the case of nje¼ 0.0, and which appears as the

red lines in Fig. 2. The situation depicted in Fig. 3(a) corre-

sponds to the initial stages of the evolution, which is dis-

played up to a longer time in Fig. 2 of Ref. 36. In the

presence of a small Kappa population, the spectrum of T
waves evolves as shown in Fig. 3(b). The spectrum grows

for all values of qz, much as seen in Fig. 3(a), but there is a

difference. A peak is seen to appear near qz¼ 0 and grows in

time. What is seen in Fig. 3(b) are some steps in the time

evolution of the spectrum that is asymptotically given by Eq.

(31), and represented in Fig. 2. It must be noticed that the

peak near qz¼ 0 in Fig. 3(b) has a finite height. It does not

diverge as the peaks appearing in 2, because for the numeri-

cal analysis of the equation which describes the time evolu-

tion, we have assumed that the L wave spectrum saturates

for sufficiently small value of q, instead of growing infinitely

for q! 0.

The growth of the peak near q¼ 0 in the T wave spec-

trum can be explained as follows. The dominant process for

the formation of background spectrum of T is the scattering

involving L waves. The scattering effect is maximum for

wavelengths which satisfy zT
q ¼ zL

q0 , which means q0 ¼ qm,

where qm is defined by Eq. (31). As seen in Fig. 1(a), in the

case of a small population described by a Kappa distribution,

the spectrum of L waves is above the spectra obtained in the

purely Maxwellian case for q0 � 0:2. The scattering process

is therefore most effective to generate T waves with

q� 0.02, for the value of ve/c which we have assumed. The

FIG. 3. (a) 1D spectrum of T waves vs.

qk, for several values of s, for nje/

ne¼ 0.0; (b) 1D spectrum of T waves

vs. qk, for several values of s, for nje/

ne¼ 5.0� 10�2 and je¼ 5.0. Other

parameters and conditions are as in

Fig. 1.
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scattering of L waves is mainly responsible for the formation

of the spectrum of T waves, and the peak for large wave-

lengths, which is seen in the L wave spectrum that occurs in

the presence of Kappa distributed electrons, is the cause for

the growth of the peak for large wavelengths in the T wave

spectrum.

In what follows, we investigate the time evolution of the

beam-plasma instability, comparing the situation in which

the background electron distribution is purely Maxwellian

with a case in which there is also a “halo” population

described by a Kappa distribution. We assume a beam popu-

lation described by a displaced Maxwellian distribution, with

a normalized beam velocity ub¼ 6.0, number density given

by nb/ne¼ 1.0� 10�3, and temperature Tb¼ Te. Figure 4

shows 2D plots of the electron velocity distribution. Due to

the presence of the beam, the background electron distribu-

tion is slightly displaced in velocity space so that the average

velocity of the complete electron velocity distribution is

zero.

Figure 4 shows 2D plots of the electron velocity distri-

bution, the spectrum of L waves, and the spectrum of T
waves, at s¼ 500. The spectrum of S waves remains very

similar to the initial shape and is not shown. The three panels

at the left column were obtained considering that the back-

ground electron distribution is a Maxwellian distribution,

i.e., considering nje/ne¼ 0.0, and the panels at the right col-

umn were obtained assuming nje/ne¼ 0.05, with je¼ 5.0.

For the parameters chosen, at such a point in the time evolu-

tion, the quasilinear process has already transferred a signifi-

cant part of the energy available in the beam to the waves,

creating a peak in the spectrum of L waves. The nonlinear

processes are already operative, creating a ring-like structure

in the spectrum of L waves, creating a spectrum of T waves

over the whole grid of q values, and creating some peaked

features for the T waves, in the region of small values of q.

The situations depicted in Figs. 4(a), 4(c), and 4(e) corre-

spond to those appearing in Figs. 1(b), 2(b), and 4(b) of Ref.

39, which is dedicated to the study of emission by nonlinear

processes in a plasma with Maxwellian background distribu-

tions. It can be noticed in Figs. 4(a) and 4(b) that the region

between the core of the velocity distribution and the peak of

the beam distribution is already quite flattened, correspond-

ing to the formation of the peak in the L spectrum which is

centered at (q?, qz) ’ (0, 0.2) in Figs. 4(c) and 4(d).

The results appearing in Fig. 4 can be considered as rep-

resentative of the time evolution of the wave-particle system.

FIG. 4. (a) Electron distribution func-

tion at s¼ 500, vs. uk and u?, for nje/

ne¼ 0.0; (b) electron distribution func-

tion at s¼ 500, vs. uk and u?, for nje/

ne¼ 5.0� 10�2; (c) spectrum of L
waves at s ¼ 500, vs. qk and q?, for

nje/ne¼ 0.0; (d) spectrum of L waves

at s ¼ 500, vs. qk and q?, for nje/

ne¼ 5.0� 10�2; (e) spectrum of T
waves at s ¼ 500, vs. qk and q?, for

nje/ne¼ 0.0; and (f) spectrum of T
waves at s¼ 500, vs. qk and q?, for

nje/ne¼ 5.0� 10�2. Input parameters

are as follows: Te/Ti¼ 2.0, Tb/Te¼ 1.0,

nb/ne¼ 1.0� 10�3, vb/ve¼ 6.0, g¼ 5.0

� 10�3, and je¼ 5.0.
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For further analysis of the time evolution, we show in Fig. 5

1D representations of the electron distribution and of the

wave spectra, obtained after the integration of the 2D quanti-

ties, along u? in the case of the velocity distribution and

along q? in the case of the wave spectra. As in Fig. 4, the

left column displays the results obtained assuming nje/

ne¼ 0.0, and the right column shows the results obtained

assuming nje/ne¼ 0.05, with je¼ 5.0. The electron distribu-

tion function in each case is shown in Figs. 5(a) and 5(b),

respectively, for several values of s, between s¼ 100 and

s¼ 2000. In both panels, the gradual flattening of the peak of

the beam distribution and the formation of a plateau in the

region of velocities between the beam and the core distribu-

tion can be noticed. In Fig. 5(a), the appearance of a small

population of backscattered electrons is also noticed, which

start to become distinguishable at s ’ 1000. In panel 5(b),

these backscattered electrons are not noticeable in the scale

of the figure, because the Kappa distribution already had a

sizeable population at that region of velocity space.

Figures 5(c) and 5(d) show a 1D projection of the L
wave spectrum. In panel (c), one notices that at s¼ 100, the

only distinctive feature in the spectrum is the primary peak

generated at qz ’ 0.2, at the spectral region where the waves

are in resonance with electrons in the region of positive

velocity in the velocity distribution. At s¼ 200, there is

already a hint of a backward peak, at qz ’ �0.2. At s¼ 500,

and beyond that, the backward peak appears well developed,

and there is a profile in the wave spectrum, continuous

between the forward peak and the backward peak. This is

only a 1D projection of the ring formed by scattering and

FIG. 5. (a) 1D electron distribution

function vs. uk, for several values of s,

for nje/ne¼ 0.0; (b) 1D electron distri-

bution function vs. uk. for several val-

ues of s ¼ 500, for nje/ne¼ 5.0

� 10�2; (c) 1D spectrum of L waves

vs. qk, for several values of s, for nje/

ne¼ 0.0; (d) 1D spectrum of L waves

vs. qk, for several values of s, for nje/

ne¼ 5.0� 10�2; (e) 1D spectrum of T
waves vs. qk, for several values of s,

for nje/ne¼ 0.0; (f) 1D spectrum of T
waves vs. qk, for several values of s,

for nje/ne¼ 5.0� 10�2. (g) Spectrum

of T waves vs. q, for several values of

s, for nje/ne¼ 0.0. (h) Spectrum of T
waves vs. q, for several values of s, for

nje/ne¼ 5.0� 10�2. The parameters

are the same as those used in Fig. 4.
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decay, which is seen in the 2D representation appearing in

Fig. 4(c). On the other hand, when the electron distribution

function features the presence of a Kappa distribution, the L
wave spectrum at s¼ 100 features the peak generated by

quasilinear effect at qz ’ 0.2, and also the peak around q¼ 0,

characteristic of the spectrum at equilibrium in the presence

of a Kappa distribution. Due to the approximation that we

have adopted, of a limiting resonant velocity, the spectrum at

q¼ 0 is finite instead of divergent. The 1D projection at Fig.

5(d) shows at s¼ 200, there is already a hint of the backward

peak. At s¼ 500, and beyond, the 1D spectrum of Fig. 5(d)

becomes similar to that appearing in Fig. 5(c), but this is

only the effect of the 1D projection. The actual spectrum in

the case of Fig. 5(d) is constituted by the primary and

the back-scattered peaks, by the peak around q¼ 0, and by

the ring structure formed by nonlinear effects, as shown

in Fig. 4(d).

The 1D projection of the spectrum of T waves appears

depicted in Figs. 5(e) and 5(f), for several values of s. In

both panels, the sequence of lines show initially the forma-

tion of a background spectrum of T waves, added of the

growth of a wave peak around qz¼ 0. Between s¼ 500 and

s¼ 1000, other peaked structures appear in the 1D represen-

tations of Figs. 5(e) and 5(f), which are the projections of the

narrow ring structure shown in Figs. 4(e) and 4(f). The 1D

representations in Fig. 5, as well as the 2D representations in

Fig. 4, show that the T wave spectrum obtained in the case of

Maxwellian electron distribution is very similar to the T
wave spectrum obtained in the case of the presence of a

“halo” described by a Kappa distribution. The only notice-

able difference is that the peaks appearing in the T wave

spectrum are slightly higher in the case of nje 6¼ 0, panel (e),

than in the case of nje¼ 0, panel (f), for the same value of s.

Another representation of the T wave spectrum appears

in Figs. 5(g) and 5(h), which display the spectrum of T waves

after integration along the pitch angle. That is, Figs. 5(g) and

5(h) show the quantity

Eq ¼
ð2p

0

dh qET
q

as a function of the normalized wave frequency. This repre-

sentation clearly shows the early formation of the T wave

background, then the onset of the primary peak of fundamen-

tal emission, with the frequency equal to the electron plasma

frequency, and later on the onset of harmonic emission, with

the peak of emission at 2xpe clearly emerging between

s¼ 500 and s¼ 1000. The comparison between Figs. 5(h)

and 5(g) show that the curves obtained in both cases are

qualitatively the same, with the sole difference that the peaks

are slightly higher in the case of nje 6¼ 0, shown in Fig. 5(h).

VI. FINAL REMARKS

In the present paper, we have discussed the spectra of

electrostatic and electromagnetic waves, which may be pre-

sent at quiescent situation in plasmas whose particles have

velocity distribution functions which are a combination of a

thermal background and an energetic “halo” distribution.

The motivation for the study has been the abundance of

measurements made in the solar wind environment, by satel-

lites at different orbits, which show the occurrence of parti-

cle distribution functions with these characteristics. For the

analysis presented in the paper, the electron velocity distri-

bution has been represented as a summation of a Maxwellian

distribution function and an isotropic Kappa distribution,

with the fraction of population having the Kappa populations

assumed as a free parameter.

The investigation has been conducted using the theoreti-

cal framework of weak turbulence theory. We have briefly

discussed basic features of the equations of weak turbulence

theory, and we have initially used these equations to obtain

expressions for the spectra of electrostatic waves, obtained

as the outcome of the balance between spontaneous fluctua-

tions and induced emission. These equilibrium spectra, for

high frequency Langmuir waves (L) and for low frequency

ion-acoustic waves (S), have been routinely discussed in the

literature for the case of Maxwellian plasmas, but this paper

presents as a novel feature a description of the effects of the

presence of a population of particles described by a Kappa

velocity distribution. Theoretical expressions for the spectra

of L and S waves have been obtained considering that both

ions and electrons can be described by a combination of

Maxwellian and Kappa distribution. Some numerical results

have also been presented, considering the case of

Maxwellian distribution for the ions and the combined distri-

bution for electrons, and considering different values of the

je index. These results show that the effect of the presence

of the Kappa distribution is noticeable in the spectrum of L
waves in the region of large wavelengths, with difference

relative to the spectrum obtained in the case of purely

Maxwellian distribution which increases for decreasing val-

ues of the index je in the energetic population. The distinc-

tive feature, which exists even for very tenuous Kappa

population, is the presence of a peak of wave intensity for

very large wavelengths (wavenumber k! 0).

We have also discussed the characteristics of the spec-

trum of electromagnetic waves (T), which is presented in the

plasma as the outcome of nonlinear processes involving L
and S waves, and particles. These spectra can be character-

ized as a state of “turbulent equilibrium.” The turbulent equi-

librium spectra have already been discussed for the case of

Maxwellian velocity distributions, and the present paper

extends the discussion for the case in which an energetic

“halo” described as a Kappa distribution is also present in

the plasma. The results obtained show that the spectrum of T
waves has the general features similar to those obtained in

the case of Maxwellian distributions, with the effect of the

presence of the Kappa population appearing as a peak of T
waves in the large wavelength region, much narrower than

the peak obtained in the spectrum of the L waves.

In addition to the results concerning the equilibrium

spectra, we have also presented some results, which show

the time evolution of the spectra of L and T waves, and the

time evolution of the electron distribution function, as a

result of the presence of a tenuous electron beam travelling

in the plasma. We have followed the time evolution of the

wave-particle system up to the formation of the plateau in
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the electron distribution function, which indicates the satura-

tion of the induced processes described by quasilinear the-

ory. The results shown in the paper compared with the

results obtained in the case in which the background electron

population is described by a Maxwellian distribution, with

the results obtained in the case of a background distribution

described as a core population with Maxwellian distribution

and a tenuous population with isotropic Kappa distribution.

It is shown that the time evolution of the spectrum of L
waves obtained in the presence of the “halo” distribution is

qualitatively very similar to the spectrum obtained in the

case of thermal background distribution, except for the

occurrence of the enhanced wave intensity for k! 0, charac-

teristic of the presence of a Kappa population of particles.

The spectra obtained for the T waves along the time evolu-

tion, in the two situations which have been considered, are

also qualitatively very similar, with the difference that the

peak corresponding to the harmonic emission is slightly

more pronounced in the presence of a tenuous Kappa distri-

bution, in comparison with harmonic emission obtained in

the case of Maxwellian background population.
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