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“It’s a dangerous business, Frodo, going out your door.
You step onto the road, and if you don’t keep your feet, there’s no knowing where

you might be swept off to”
— GANDALF THE GREY



RESUMO

Arquitetura para Thresholds Adaptativos em Sensoriamento Espectral

A política atual de alocação do espectro compreende licenciar o uso de canais de radi-
ofrequência e garantir que determinados usuários tenham acesso exclusivo a esses canais.
Através dessa política, os melhores canais para comunicações sem fio de curtas e médias
distâncias já foram licenciados. Sendo assim, é cada vez mais difícil disponibilizar canais
adequados para novos serviços sem fio que necessitem destes canais ou para melhorar os
serviços sem fio existentes. Contudo, medidas de utilização dos canais licenciados mos-
traram que estes são subutilizados em determinados períodos do dia e em certas regiões
geográficas.

A atual subutilização dos canais de radiofrequência fez com que as agências governa-
mentais considerassem um nova política de acesso ao espectro. Nessa nova política, um
usuário não licenciado pode acessar canais subutilizados temporariamente, com a restri-
ção de não causar interferência nas transmissões dos usuários licenciados. Dessa forma,
antes de acessar um canal de rádio, o usuário não licenciado precisa analisa-lo com o
objetivo de garantir que nenhum usuário licenciado esteja transmitindo. A análise dos
canais é feita através do uso de soluções de sensoriamento espectral.

A maior limitação das soluções atuais de sensoriamento espectral é o uso de parâme-
tros estáticos para detectar a transmissão de um usuário licenciado. O uso de parâmetros
estáticos é uma limitação porque o sensoriamento espectral pode encontrar diferentes ní-
veis de ruído e interferência na análise dos canais. Nesse contexto, algoritmos de apren-
dizagem de máquina podem ser empregados para adaptar dinamicamente os parâmetros
de detecção utilizados no sensoriamento espectral.

Neste trabalho é proposta a Arquitetura para Thresholds Adaptativos (ATA) para sen-
soriamento espectral. Essa arquitetura emprega algoritmos de aprendizagem de máquina
para adaptar, em tempo real, os parâmetros de detecção do sensoriamento espectral. Além
disso, um protótipo da ATA foi desenvolvido e avaliado em um ambiente de rádio expe-
rimental baseado na norma IEEE 802.22. Os resultados mostram que ATA alcança um
desempenho melhor que as soluções atuais de sensoriamento espectral em termos de pre-
cisão na detecção do usuário licenciado e no tempo necessário para analisar o canal de
rádio.

Palavras-chave: sensoriamento espectral, aprendizagem de máquina, acesso dinâmico
ao espectro, comunicação sem fio.



ABSTRACT

Adaptive Threshold Architecture for Spectrum Sensing

The current spectrum allocation policy comprises licensing the use of channels of the
radio spectrum and ensuring that licensed users have exclusive access to these channels.
Through this policy, the best channels for short and long wireless communications were
already allocated. Thus, it has become exceedingly hard to find vacant radio channels to
either deploy new wireless services or to enhance existing ones. However, recent mea-
surements of the radio spectrum showed that some allocated channels are rarely utilized
in certain geographical areas.

The relatively low utilization of some radio channels made the governmental agencies
consider a new spectrum access policy. In this new access policy, an unlicensed user can
temporarily access underutilized radio channels, with the constraint of not interfering with
the transmission of any licensed user. Thus, the unlicensed user must analyze the radio
channel before accessing it, with the objective of guaranteeing that no licensed user is
transmitting. The analysis of radio channels is made through spectrum sensing solutions.

The major drawback of current spectrum sensing solutions is the use of static param-
eters to detect the transmission of a licensed user. The usage of static parameters is a
drawback because the spectrum sensing may encounter different noise and interference
levels during the channel analysis. In this context, machine learning algorithms can be
employed to dynamically adapt the detection parameters used in the spectrum sensing.

In this dissertation, we propose the Adaptive Threshold Architecture (ATA) for spec-
trum sensing. This architecture employs machine learning algorithms to adapt the detec-
tion parameters of the spectrum sensing in real time. Furthermore, a prototype of ATA
was developed and evaluated in an experimental radio environment based in the IEEE
802.22 standard. The results show that ATA achieves a better performance than current
spectrum sensing solutions in terms of the accuracy in detecting the licensed user and in
the time required to analyze the radio channel.

Keywords: spectrum sensing, machine learning, dynamic spectrum access, wireless
communication.
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1 INTRODUCTION

Current spectrum allocation policies comprise licensing the usage of channels of the
radio spectrum during a long time and in large geographical areas. The allocation usu-
ally is responsibility of regulatory agencies, such as the Federal Communications Com-
mision (FCC) in the USA and Agência Nacional de Telecomunições (Anatel) in Brazil.
These agencies grant to licensed users, such as television broadcaster and mobile network
operators, exclusive access to their allocated channels. On the one hand, with most of the
useful radio spectrum already allocated, it became exceedingly hard to find vacant radio
channels to either deploy new wireless services or enhance existing ones (GHASEMI;
SOUSA, 2008). On the other hand, recent measurements showed that some allocated
channels are rarely utilized (FCC, 2002).

The low utilization of some radio channels suggests that the scarcity of available chan-
nels for allocation is largely due the inefficient allocation policy rather than any physical
shortage (GHASEMI; SOUSA, 2008). This observation led regulatory agencies to pro-
pose a new policy in which unlicensed radios are allowed to temporarily access under-
utilized radio channels, with the constraint of not interfering with the transmission of
licensed users. In this new access policy, the licensed users of a radio channel are the
Primary Users (PU) and unlicensed radios are the Secondary Users (SU), who seek to
temporarily use a vacant channels, i.e. channels in which no PU is transmitting. The SUs
that operate under this policy are said to perform dynamic spectrum access. Since the SU
is not allowed to interfere with the PU transmissions, it must analyze the radio channel
to evaluate its occupancy status, i.e. the channel is said to be “occupied” if a PU is trans-
mitting, otherwise the channel is said to be “vacant” (YUCEK; ARSLAN, 2009). This
analysis is performed by the Spectrum Sensing (SS).

The fundamental task of the SS is to decide whether or not a particular radio channel
is being occupied by a PU. To do this, the SS performs three operations: (I) analyzes
the signal received in a radio channel for a period of time. (II) summarizes the signal in
a single value, and (III) compares the value obtained against a decision threshold. The
decision threshold is a numerical value, preconfigured in the sensing technique, used to
determine the channel occupancy status. More precisely, the channel is considered vacant
only when the decision threshold is greater than the single value generated in operation
(II). Based on the aforementioned operations, we can define the two main metrics of the
SS: sensing duration and sensing accuracy. The first is the time required to analyze the
radio signal and summarize it in a single value. The second is the percentage of correct
decisions when compared to the real channel occupancy status. This metric is highly
related with the value defined for the decision threshold.

Different sensing techniques were proposed in the literature to analyze and estimate
the sensed channel occupancy status, such as Energy Detection (ED), Waveform De-
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tection (WFD) and Cyclostationary Feature Detection (CFD). These techniques present
different trade-offs regarding the sensing accuracy and sensing duration. For example, the
ED is the least accurate technique and the fastest one, while the CFD is the most accurate
and the slowest one. Overcoming the trade-off between sensing accuracy and duration has
proved to be one of the main challenges in developing new sensing techniques (AXELL
et al., 2012).

Research efforts in SS led to the proposal of the cooperative and multi-stage ap-
proaches to improve the performance regarding the sensing accuracy and sensing du-
ration. In the cooperative approach, multiple SUs send their decisions to a common
receiver through a reporting radio channel. Although this approach might increase the
sensing accuracy in certain radio environments, some authors showed that the overhead
required to exchange information among SUs and the need for a dedicated reporting
channel can make this approach infeasible in some scenarios (PEH et al., 2009), (ATA-
PATTU; TELLAMBURA; JIANG, 2011), (AKYILDIZ; LO; BALAKRISHNAN, 2011).
The multi-stage approach was proposed in the literature to improve the sensing of an
individual SU without the need of cooperation. This approach combines SS techniques
in a hierarchical structure, maintaining a high sensing accuracy and a low sensing dura-
tion (LUO et al., 2009), (MALEKI; PANDHARIPANDE; LEUS, 2010), (NAIR; VINOD;
KRISHNA, 2011), (EJAZ; HASAN; KIM, 2012).

The major drawback of cooperative and multi-stage approaches is the use of static
decision thresholds to determine if a radio channel is vacant or occupied. This is a draw-
back because the SU may encounter different noise or interference levels when switching
between different channels, requiring different values for the decision threshold. More-
over, SUs may be operating in unknown radio environments and may not have perfect
knowledge of the characteristics of the other existing PUs or SUs (BKASSINY; LI;
JAYAWEERA, 2013). Hence, the decision threshold of SUs needs to be adapted accord-
ingly to each particular situation. Machine learning algorithms have been highlighted as a
solution to properly adapt the decision threshold in such radio environments (BKASSINY;
LI; JAYAWEERA, 2013).

To the best of our knowledge, no solution considering the use of machine learning
to adapt the decision threshold has been proposed so far. In this sense, we propose the
Adaptive Threshold Architecture (ATA), a solution that allies machine learning and multi-
stage SS to overcome the identified constraints. ATA improves the current state-of-the-art
solutions by enabling the unlicensed user to learn and adapt the decision threshold in
real time, achieving high sensing accuracy in different radio environments. In addition,
ATA utilizes a mechanism that reduces the sensing duration when the sensing accuracy
is high. The proposed architecture comprises two components: Sensing Component and
Machine Learning Component. The first component executes any two independent SS
techniques, named First Stage and Second Stage. The second component executes the
Feedback Algorithm, which reduces the sensing duration, and the Threshold Learning
Algorithm, which dynamically adapts the decision threshold.

A prototype of ATA was developed using the GNU Radio toolkit (GNU Radio, 2004)
and the Universal Software Radio Peripheral (USRP) front-end (Ettus Research, 2008).
The prototype was evaluated considering different combinations of sensing techniques in
an experimental radio environment emulating the behaviour of public safety radio chan-
nels. Gathered results showed that the proposed architecture increased the sensing accu-
racy and reduced the sensing duration when compared to other multi-stage architectures.
Therefore, the main contributions of this dissertation are:
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1. An architecture that integrates machine learning to SS solutions. This enables the
SU to learn and adapt the decision threshold in real time, achieving high sensing
accuracy in unknown radio environments.

2. A mechanism to reduce the sensing duration when the sensing accuracy is high.
This enables the SU to provide fast and accurate decisions in radio environments
where the decision threshold is easy to learn.

3. Development of a prototype in a real radio device. With this we were able to ver-
ify the applicability of ATA in current radio platforms. In addition, the prototype
enables the analysis of other aspects of the sensing, such as processing and energy
consumption.

The remainder of this dissertation is organized as follows. Chapter 2 details the dy-
namic spectrum access and the fundamentals of signal detection by SS. In Chapter 3 we
show other research efforts that aim to improve the sensing accuracy and sensing duration
of the SS. Chapter 4 details every aspect of the proposed architecture. The hardware and
software, as well as the prototype used to evaluate the proposed architecture are presented
in Chapter 5. Chapter 6 presents and discusses the evaluation methodology and the results
obtained. Final remarks and future work are presented in Chapter 7.
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2 BACKGROUND

Through this chapter we discuss the fundamental concepts to correctly understand this
dissertation. Although other references to other articles are made, the text of this chapter
is a compendium of the articles of Ghasemi and Souza (GHASEMI; SOUSA, 2008),
Yucek and Arslan (YUCEK; ARSLAN, 2009), and Axell et al. (AXELL et al., 2012).
The underlying concepts of Dynamic Spectrum Access (DSA) and the regulatory policies
to prevent interference in PUs are presented in Section 2.1. The Software Defined Radio
(SDR) is described as a technology that enabled the design and evaluation of Spectrum
Sensing (SS) techniques in Section 2.2. The fundamental concepts for Spectrum Sensing
(SS) and the main techniques developed to detect the PU signal are presented in Section
2.3.

2.1 Dynamic Spectrum Access

Current spectrum allocation policy comprises licensing the usage of channels of the
radio spectrum during a long time and in large geographical areas. The allocation usually
is responsibility of regulatory agencies. The regulatory agencies grant the licensed hold-
ers, such as television broadcaster and mobile network operators, exclusive access to their
allocated channels. On the one hand, with most of the useful spectrum already allocated,
it became exceedingly hard to find vacant radio channels to either deploy new wireless
services or enhance existing ones (GHASEMI; SOUSA, 2008). On the other hand, re-
cent measurements showed that the allocated channels are rarely utilized, as illustrated in
Figure 2.1 (FCC, 2002).

The relatively low utilization of some radio channels suggests that the scarcity of
available channels for allocation is largely due the inefficient allocation policy rather than
any physical shortage (GHASEMI; SOUSA, 2008). This observation led regulatory agen-
cies to propose a new policy in which unlicensed users are allowed to opportunistically
access underutilized channels, with the constraint of not interfering with the signal of
any licensed user. In this policy, the PUs are the licensed users of a radio channel and
the SUs are unlicensed users, who seek to temporarily use vacant radio channels. One
major milestone towards this access policy is the IEEE 802.22 Standard (STEVENSON
et al., 2009), in which a base station acts as a SU, accessing vacant television channels to
provide Internet access in rural areas. The SUs that operate under this policy are said to
perform dynamic spectrum access.

A device performing dynamic spectrum access increases the overall usage of the radio
spectrum by taking advantage of underutilized channels, commonly referred to as “white
spaces”. The conventional definition of white space is “a band of frequencies that are not
being used by the PU of that band at a particular time in a particular geographic area”
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(KOLODZY et al., 2001). However, this definition only exploits three dimensions of the
spectrum: frequency, time, and space. Yucek and Arslan (YUCEK; ARSLAN, 2009)
added two more dimensions to this definition: code and angle.

0 5 10 15 20 25 30

2686− 2900
2500− 2686
2390− 2500
2360− 2390
2300− 2360
2200− 2300
2110− 2200
1990− 2110
1850− 1990
1710− 1850
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406− 470
255− 406
216− 255
174− 216
138− 174
108− 138
54− 88
30− 54

Utilization (%)

Frequency Bands (MHz)

Figure 2.1: Average radio spectrum usage in Atlanta, New Orleans, and San Diego

White spaces in frequency and time dimensions arise when a licensed channel of the
spectrum becomes temporarily unused. Consequently, a SU can temporarily access this
underutilized channel. Figure 2.2a illustrates the occurrence of white spaces in frequency
and time dimensions, considering three different channels, e.g., TV channels 1, 2 and 3. It
is worth noticing that the duration of the occupied and vacant periods depends on several
characteristics, e.g., television channel or mobile network channel, night or day period,
rural or urban areas. For example, in a television channel, the time scale of the occupied
and vacant periods is expected to be of months, while in mobile networks this period is in
the order of milliseconds.

Modern wireless systems can multiplex several transmitters in a single radio channel
through the use of orthogonal codes. An orthogonal code is a exclusive sequence of bits
assigned to an user. For example, an orthogonal code is given to each mobile device in
mobile systems using Code Division Multiple Access (CDMA). Multiple mobile devices
can access the same channel simultaneously, each one using its exclusive orthogonal code
to modulate the transmitted data. Thus, the total number of available orthogonal codes
represents the channel capacity, i.e. the maximum number of users that can access the
same radio channel simultaneously. White spaces in the code dimension arise when the
number of licensed users is lower than the total number of orthogonal codes. SUs can
explore unused orthogonal codes to access the channel simultaneously with PUs. Figure
2.2b depicts the occurrence of white spaces in this dimension.

In some geographical areas several channels of the radio spectrum present high uti-
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White Space
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Time

Channel 
Capacity
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Figure 2.2: White spaces dimensions explored in the dynamic spectrum access

lization by PUs. For example, in metropolitan areas it is common that all TV channels
are occupied. Any SU in such geographical area will hardly find a white space in time,
frequency, and code domains. However, it is very common that the signal of the TV
broadcaster does not reach remote rural areas. A SU located in such areas can be ben-
efited from the spatial dimension. White spaces in the spatial dimension arise when a
licensed channel is never used in specific geographical areas (YUCEK; ARSLAN, 2009),
as illustrated in Figure 2.2c.

Modern wireless antennas are capable to focus the transmitted radio signal on specific
directions, forming the so called “beams”. White spaces in the angle dimension arise
when the PU transmits its radio to a receiver using a signal beam. A SU located in the
same geographical as the PU can use the same channel without causing interference if
their beams are focused on different directions, as depicted in Figure 2.2d.

A SU accessing the spectrum dynamically must explore these five dimensions to max-
imize the access opportunities. We highlight some dimensions are clearly more simple to
explore than others. For example, any secondary user performing SS will naturally be
benefited from the spatial dimension. Whereas the code characteristic is the most com-
plex, probably requiring that the secondary user negotiate the use of a orthogonal code
with a licensed user. The operation of a SU can interfere with a PU when errors in the
spectrum sensing occur. Thus, regulatory agencies, aiming to protect the PU, impose
some constraints for the spectrum sensing.

2.1.1 Regulatory Constraints for Spectrum Sensing

Governmental agencies guarantee that PUs have exclusive access to their radio chan-
nels, whereas the SUs can access white spaces in the radio spectrum to opportunistically
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perform communications. In this scenario, an important aspect is to guarantee that the
operation of PUs is not damaged by harmful interferences (GHASEMI; SOUSA, 2008).
To protect the PU from harmful interferences that can be caused by the operation of SU,
sensing techniques must comply with two constraints imposed by governmental agencies:
sensing sensibility and sensing periodicity.

Sensing Sensibility

The interference caused by a SU is considered harmful if it causes the Signal-to-
Interference Ratio (SIR) of the PU to fall below a threshold value Γ, supplied by the
governmental agencies. This threshold depends on the PU robustness towards interfer-
ence and varies according to the channel used, characteristics of the transmitted signal
and interference type, e.g., continuous or intermittent interference (GHASEMI; SOUSA,
2008).

The maximum interference that a SU can cause (Γ) in a PU without causing harmful
interference depends on four variables: (I) the PU transmission power (PPU ), (II) the SU
transmission power (PSU ), (III) the maximum distance between the transmitter PU and a
receiver PU (R), which depends on the type of network considered, and (IV) the interfer-
ence range (D), which is the maximum distance that any PU can be from a transmitter SU
so that the interference is still considered harmful. The distance R is the distance from
the PU transmitter to the furthest PU receiver. It is noteworthy that R is less than or equal
to the coverage radius of the PU. Figure 2.3 illustrates the distance R, D and the PU
coverage radius.

PU 
Transmitter

SU
Transmitter

R D

PU
Receiver

SU
Signal

PU
Signal

Figure 2.3: Interference range of a SU transmitter

The relation between PPU , PSU , D and R is presented in Equation 2.1 (GHASEMI;
SOUSA, 2008). In the equation PBI is the background interference power at the PU
receiver and L(·) denotes the total path loss at a given distance. Since the path loss
depends on the frequency band, geographical characteristics and antenna heights, these
parameters indirectly affect the equation.

Γ =
PPUL(R)

PSUL(D) + PBI

(2.1)

Equation 2.1 ensures that a PU receiver is protected from harmful interferences even
if it is located at the edge of the PU transmitter coverage radius. A consequence of this
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equation is that regulatory agencies require that the SU detects any PU transmitter in the
radius of R+D. To guarantee that this requirement is fulfilled, the SU sensing sensibility
Γmin is calculated as a function of the PU transmission power PPU , the total path loss
function L(D +R) and the noise power PNP .

γmin =
PPUL(D +R)

PNP

(2.2)

In practice, regulatory agencies must take into account the type of PU and SU signal
to determine the values for Gamma, PPU and R. Based on these values, the minimum
sensing sensibility (Γmin) is calculated and SUs must adjust the total sensing duration to
comply with the defined value.

Sensing Periodicity

Sensing and transmission operations cannot be performed simultaneously in the same
white space because the SU can detect its own signal. In such a case, the SU might
evaluate the channel as occupied when in fact it is vacant. The most common solution to
work around this problem is to interleave these two operations. Therefore, the SU should
transmit in the frequency band for TTX seconds and sense for TSS seconds. Thus, the
sensing periodicity (TP = TTX + TSS) is the maximum interval between two consecutive
sensing periods. The value for TP must be defined by regulatory agencies, which must
take into account the type of service provided by the PU, e.g., the sensing periodicity
is expected to be in the order of milliseconds for public safety channels and of seconds
for television channels (GHASEMI; SOUSA, 2008). The relation between the sensing
interval TSS , the transmission interval TTX and the sensing periodicity TP is illustrated in
Figure 2.4. We note that the sensing interval TSS is different from the sensing duration.
More precisely, several channels must be sensed during a sensing interval TSS , whereas
the sensing duration is the time required to sense a single channel.

SS

TSS TTX

Transmission

TP

Figure 2.4: Sensing periodicity

The time interval during which the SU is harmfully interfering with the PU trans-
mission is defined as interference interval (TI). In the worst case, TI is equal to the
transmission period (TI = TTX) (GHASEMI; SOUSA, 2008). Figure 2.5a illustrates the
interference interval TI . In addition, when a PU signal is detected, the SU must search
another white space to use. During the searching interval (Tsearch) the SU performs SS
until a vacant channel is found, as shown in Figure 2.5b. Moreover, Tsearch = 1

pvacant
TSS ,

where pvacant is the probability of finding a vacant channel. Ideally, the searching interval
should be as fast as possible to maximize the overall throughput of the SU.

The throughput (R) of a radio that only transmits can be calculated by R = TTXr,
where r is the average data rate achieved in the radio channel (GHASEMI; SOUSA,
2008). However, a SU not only transmits but also senses the channel. In this case, we
must consider the sensing interval TSS in the calculation of R, as showed in Equation 2.3.
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Figure 2.5: Interference interval and search interval

Analysing the equation, we can note that is desirable to maintain TSS ≪ TTX in order to
maximize the time available for data transmissions and, hence, the throughput.

R =
TTX

TTX + TSS

r (2.3)

The definitions of regulatory agencies regarding sensing sensibility and periodicity,
and the sensing technique play an important role in the SU operation. In addition, as
regulatory constraints are applied to all SUs, the sensing technique becomes a significant
component to differentiate equipments that access the radio spectrum dynamically.

To detect white spaces, the SU must be able to reconfigure its Radio Frequency (RF)
parameters, such as central frequency, bandwidth, and modulation. The flexibility re-
quired for a SU to adapt the RF parameters is achieved through the use of SDR, detailed
in the next section.

2.2 Software Defined Radio

In an article published in 1993, Mitola (MITOLA, 1993) envisioned a radio which
could be completely reconfigured just by changing the software running on it. Being
software based, Mitola naturally baptised his radio as SDR. SDR refers to technologies
where the baseband processing is performed by software modules running either on Field
Programmable Gate Array (FPGA), Digital Signal Processor (DSP), General Purpose
Processor (GPP), or a combination thereof (MITOLA, 1993).

The use of software modules enables the programability of the baseband processing.
As a consequence, the operations executed in the radio, such as coding algorithm, modu-
lation type, and frequency band, can be easily changed, simply by loading a new module.
In addition, multiple radio devices with different characteristics can be replaced by a sin-
gle SDR. The architectures of conventional digital radios and SDRs are compared in
Figure 2.6.
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(a) Conventional digital radio architecture
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Figure 2.6: Comparison of conventional and SDR architectures

The components presented in Figure 2.6 are: (I) the antenna, which transmits and
receives the information encoded in radio waves, (II) the RF front-end, which is respon-
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sible for translating the radio signals to an intermediate frequency, (III) the Analog-to-
Digital Converter (ADC)/Digital-to-Analog Converter (DAC), which are responsible for
converting the encoded data between analog and digital domains, (IV) the Digital Up
Converver (DUC)/Digital Down Converver (DDC), which are responsible for translating
the intermediate digitized signal to baseband frequency, and (V) the baseband processing,
which is responsible for performing additional operations over the digitized signal, such
as equalization, frequency hopping, correlation, coding, and decoding algorithms.

The transition from the conventional to the SDR architecture results in a substantial
increase in power consumption. The higher energy consumption is one of the key reasons
why SDR has not been deployed in end-user devices. However, base stations and access
points, which usually are connected to external power sources, are being replaced by
SDRs. In addition, the received radio signal must be sampled at least at a rate determined
by the Nyquist frequency (ROCHOL, 2012). This means that high-frequency signals
require very high sampling rates and, consequently, components with high performance
to execute the baseband processing in software.

SDR is currently being used to build radios that support multiple interface technolo-
gies, such as CDMA and Global System for Mobile Communications (GSM). In addition,
new technology advances made possible the development of cost effective SDR plat-
forms. The flexibility offered by SDRs enables radios to switch functions and operations
on demand. This flexibility enables the research, design, development and evaluation of
different sensing techniques. The following section presents the background on SS, the
most important function to detect white spaces in the radio spectrum (YUCEK; ARSLAN,
2009).

2.3 Fundamentals of Spectrum Sensing

The main task of the spectrum sensing is to decide if a particular radio channel is being
occupied by a PU or if it is vacant. This decision is usually expressed as a discrimination
between two hypotheses. The channel is considered vacant under the hypothesis H0 and
occupied underH1:

H0 (vacant) vs.H1 (occupied) (2.4)

The received signal is essentially the ambient noise when the radio channel is vacant,
whereas is it the sum of the PU signal and the ambient noise when the channel is occupied.
Equation 2.5 shows the expected signal received in each of both hypotheses (AXELL
et al., 2012), where y is the signal received during the SS, w is the sum of all noises and
interferences, x is the PU signal and, n is a signal sample, and N the total of samples
considered.

H0 : y[n] = w[n], n = 1, . . . , N
H1 : y[n] = w[n] + x[n], n = 1, . . . , N

(2.5)

Based on Equation 2.5, we can reformulate the task of the spectrum sensing as “de-
ciding if a given signal y, composed of N complex samples, contains only the noise w or
if it is the sum of signal x and noise and interferences w”. This task is accomplished by
applying a test statistic Λ in the received signal y and comparing its result against a pre-
defined decision threshold τ , as showed in Equation 2.6 (AXELL et al., 2012). Although
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the SS can involve some additional operations, we can somewhat say that the SS and the
test statistic Λ.

Λ(y)
H1

≷
H0

τ (2.6)

Deciding if the PU signal is present in the received signal y is subject to errors due to
modifications caused by the sum of noises and interferences w, limited number of samples
N , and the inherent randomness of the observed data. Thus, by analyzing Equation 2.6, it
is possible to identify four different outcomes regarding the SS decision:

White space detection (PWSD): the SS correctly detects a white space, i.e. no PU is
transmitting in the analyzed frequency band. This outcome is associated with the
following conditional probability:

PWSD = Pr(H0|H0) (2.7)

False alarm (PFA): the SS detects a PU signal when only noise is present. A false alarm
may lead to a potentially wasted opportunity for the SU to transmit. This outcome
is defined by:

PFA = Pr(H1|H0) = 1− PWSD (2.8)

Miss detection (PMD): when the PU is transmitting, the SS decides that only noise is
present. A missed detection could potentially lead to a collision with the PU, lead-
ing to wasted transmissions for both PU and SU. This outcome is associated with
the following conditional probability:

PMD = Pr(H0|H1) (2.9)

PU detection (PD): the SS correctly detects a transmitting PU, i.e. a PU is transmitting
in the analyzed frequency band. This outcome is defined by:

PD = Pr(H1|H1) = 1− PMD (2.10)

The main challenge in designing a SS technique is to determine a test statistic Λ and a
decision threshold τ that maximizes the protection of the PU, which is given by PD, and
the transmission of the SU, which is given by PWSD. However, regulatory agencies fix a
maximum PFA that must be met by the SS technique. Consequently, Receiver Operating
Characteristic (ROC) curves, which is a plot of the PFA versus the achieved PD, became a
popular form to evaluate the SS performance. Figure 2.7 illustrates a typical ROC curve.
However, ROC curves do not easily represent the sensing accuracy, calculated as shown
in Equation 2.11.

Acc =
PD + PWSD

PFA + PMD

(2.11)

Sensing techniques consider different properties of the radio signal to implement the
test statistic Λ. In the following subsections we present the techniques used in this disser-
tation to conduct the experimental evaluation: ED, WFD, and CFD.
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2.3.1 Energy Detection

ED is the most efficient technique when the parameters of the PU signal are unknown
(SAHAI; HOVEN; TANDRA, 2004). This efficiency, allied with the combination of low
computational complexity and ease of implementation, made the ED widely adopted. The
most common test statistic for the ED is showed in Equation 2.12 (AXELL et al., 2012).

Λ(y) =

∑N
i=0 y(i)

2

N

H1

≷
H0

τ (2.12)

Equation 2.12 calculates the average energy of the received signal y and compares the
resulting value against the decision threshold τ . A PU is transmitting in the radio channel
when the average energy is greater than τ . Thus, the definition of a near optimal value
for τ is essential. The probability of detection PD of this detector is well known in the
literature and is expressed in Equation 2.13.

PD = P (Λ(y) > τ |H1) = 1− Fχ2
2N

(
F−1
χ2
2N
(1− PFA)

1 + PPU

PNP

)
(2.13)

where Fχ2
N
(·) is the chi-square distribution. Clearly, the probability of detection PD is a

function of PFA and the Signal-to-Noise Ratio (SNR) PPU/PNP
1. It is worth noticing

that for a fixed PFA, PD → 1 as N → ∞ at any SNR. This means that any pair of
values (PD, PFA) can be achieved if the sensing duration could be arbitrarily long. But in
practice the sensing must be done in short periods, typically in order of milliseconds.

Filter Square and Sum Compare and Decide
y Λ(y)

Figure 2.8: Block diagram of an ED

A block diagram of the ED implementation is shown in Figure 2.8. The block Filter
discards all frequencies outside the range of interest. Then, the resulting signal is digitized
in the ADC. Afterwards, the average power of the received signal y is calculated in
the Square and Sum block. In the Compare and Decide block, the resulting energy is
compared against the decision threshold τ and the final hypothesis is provided to other
modules of the dynamic spectrum access, i.e. a module that will select the best vacant
channel in terms of characteristics such as bandwidth, SNR, central frequency, among
others (CABRIC; TKACHENKO; BRODERSEN, 2006).

1We remember that PPU is the PU transmitting power and PNP is the noise power.
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2.3.2 Waveform Detection

Wireless communications usually involve the transmission of signal patterns, with the
purpose of synchronizing transmitters and receivers. These patterns included preambles,
midambles, pilot patterns, and spreading codes. If known a priori, a SU can utilize these
patterns to detect the presence of a PU (YUCEK; ARSLAN, 2009). Equation 2.6 is
rewritten for the WFD as showed in Equation 2.14, where p is a known pattern and Np is
the number of samples it contains. In Equation 2.14, the received signal y is correlated
with the conjugate of p and the resulting value is compared against the decision threshold
τ .

Λ(y) = Re

[
Np∑
i=0

y(i)p∗(i)

]
H1

≷
H0

τ (2.14)

The channel is considered occupied by a PU when the correlation of y and p is higher
than the decision threshold τ . The probability of detection PD for the WFD is expressed
in Equation 2.15.

PD = P (Λ(y) > τ |H1) =

√
Np

PPU

PNP

(2.15)

In the WFD, a linear reduction in the SNR demands a linear increase in the total
number of samples Np to maintain a fixed PD, whereas the ED requires a quadratic in-
crease. However, the performance of the WFD is degraded in the presence of frequency
and timing offsets, and fading.

The block diagram in Figure 2.9 shows the implementation of a WFD (CABRIC;
TKACHENKO; BRODERSEN, 2006). The Correlate block correlates the received signal
y and a known signal pattern p, which is stored in a Pattern Database. In practice, the
Pattern Database must store a pattern for each type of PU signal that must be identified
and each of these patterns must be correlated with the received signal. Therefore, if the
number of signal patterns and the number of samples in each pattern is high, the usage of
this detector is compromised due to the high computational power required to provide the
final hypothesis in an acceptable time interval. The WFD can also be performed in the
frequency domain, with the use of a Fast Fourier Transform (FFT) before the correlation
block. As a consequence, the number of patterns is reduced and problems with frequency
and time offsets are almost eliminated.

Filter Correlate

Pattern Database

Compare and Decide
y

p

Λ(y)

Figure 2.9: Block diagram of a WFD

2.3.3 Cyclostationary Feature Detection

A signal is said to be cyclostationary when its second order statistic parameters, i.e.
energy and autocorrelation, are periodic in time (YUCEK; ARSLAN, 2009). Digitally
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modulated signals present such periodicities due to the data rate, carrier frequency, lo-
cation of guard bands, symbol rate and cyclic prefixes. The CFD makes use of these
periodicities to detect the presence of PUs (YUCEK; ARSLAN, 2009). The device exe-
cuting the CFD is able to detect even weak signals but at the cost of high computational
power and a considerably long sensing duration when compared to other sensing tech-
niques. The test statistic for the CFD is showed in Equation 2.16, where γ is a time lag
and α is a cyclic frequency.

Λ(y) =
1

N

N∑
i=0

y(n)y∗(n+ γ)e−j2παn
H1

≷
H0

τ (2.16)

The meaning of this equation is to calculate the cyclic correlation of the received sig-
nal with a frequency f and delay γ. A PU signal is considered present when the resulting
cyclic correlation is greater than the decision threshold τ . As the cyclic correlation must
be calculated for each pair of γ and α, the total number of cyclic frequencies I and time
lags P must be carefully selected in a way that accurate sensing evaluations are possi-
ble while maintaining a low sensing duration (AXELL et al., 2012). In practice, a good
sensing accuracy and sensing duration is obtained using only a few cyclic frequencies and
time lags.

Figure 2.10 shows the block diagram of a widely known implementation of the CFD,
known as Cyclostationary Time Smoothing Fast Fourier Transform Accumulation Method
(FAM) (CABRIC; TKACHENKO; BRODERSEN, 2006). The FFT (N points) block
transforms the signal from the time to the frequency domain. The resulting N complex
numbers are shifted in frequency by multiplying the real and complex parts for e−2πkI/N ,
where k is the index of the sample in the FFT, and then correlated before going into the
FFT (M points). Afterwards, the cyclostationarity is calculated by squaring and summing
the complex output of the second FFT in the Square and Sum block. Finally, in the Com-
pare and Decide block, the cyclostationarity must be compared with a predefined decision
threshold τ .

Filter FFT (N points)

e−2πkI/N

e−2πkI/N

FFT (M points) Square and Sum Compare and Decide
y

∗

Λ(y)

Figure 2.10: Block diagram of the CFD

2.3.4 Defining the decision threshold τ

The definition of the decision threshold τ plays a major role in guaranteeing the sens-
ing accuracy of a given sensing technique. The most adopted method to define a value for
τ is the Constant False Alarm Rate (CFAR) (AXELL et al., 2012). The widely adoption
of CFAR is due to its simplicity and efficiency in maintaining a fixed probability of false
alarm PFA. Using CFAR, the value of τ is obtained as follows:

1. The SU device is positioned in the physical environment in which it is going op-
erate. Also, it must be ensured that no PU is transmitting in the environment, i.e.
only noise is present in the captured radio signal;
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2. The sensing technique of the SU is activated and the values of the test statistic Λ
are collected. We highlight the value collected is the real/complex value gener-
ated by the sensing technique and not the decision hypothesis. More precisely, the
value gathered is the one entering the Compare and Decide block of the diagrams
presented in Figures 2.8, 2.9, and 2.10;

3. Lets define as V the list of the values collected sorted in ascending order. The
decision threshold τ assumes the value given in Equation 2.17. The meaning of the
equation is selecting the element at index |V |(1− PFA) as the decision threshold.

τ = V [|V |(1− PFA)] (2.17)

2.3.5 Comparison of the Sensing Techniques

We define four characteristics that must be considered in a sensing technique: (I) com-
plexity, which specifies the computational power required and difficulty in implementing
the technique, (II) sensibility, which is the capacity to distinguish a PU signal from noise,
(III) robustness, which determines the capacity of the sensing technique to maintain a
constant PD and PFA under different interferences conditions, and (IV) duration, which
specifies the sensing duration of the technique. A basic comparison of the aforementioned
sensing techniques considering these characteristics can be seen in Table 2.1.

Sensing Technique Complexity Sensibility Robustness Duration
ED Low Low Low Low

WFD Medium High High Medium
CFD High High High High

Table 2.1: Comparison of sensing techniques

The ED is the simplest technique, being the easiest to implement and requiring low
computational power. The sensibility and robustness are reduced because the ED does
not use any information from the PU signal to perform detection, thus difficulting the
distinction of a PU signal from noise. Due to its simplicity, this technique presents the
lower sensing duration.

The WFD is considered an intermediate technique in terms of complexity. When
the number of patterns to be correlated increases, the complexity increases in the same
factor. This detector can easily distinguish PU signals from noise and from other PU
signals that are using different waveforms, e.g., distinguish signals using Gaussian Min-
imum Shift Keying (GMSK) from signals using Orthogonal Frequency Division Multi-
plexing (OFDM). The correlation with known patterns also increases the robustness of
this technique. However, the correlation calculated in the WFD increases the sensing
duration.

The complexity of the CFD is high due to the mathematical functions that are not
common outside the field of data communications, restricting the implementation of this
technique only for experienced engineers. This technique can easily distinguish one PU
signal from noise if the cyclostationary parameters are well known. Finally, the CFD
presents the highest sensing duration of all sensing techniques, generally one order of
magnitude slower than the WFD.
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The dynamic access to the radio spectrum is strongly controlled by regulatory agen-
cies, which define several constraints in the operational parameters of the sensing tech-
niques. The uttermost goal of these constraints is to guarantee the safety and quality of
the licensed channel reserved for the PU. For example, the sensing sensibility is a pa-
rameter that indirectly impacts in the interference caused in PU and, thus, is an important
parameter that must be controlled by regulatory agencies.

Performing spectrum sensing in an individual SU has a number of limitations. First of
all, energy constraints can limit the frequency of sensing periods. For example, a sensor
node might have to increase the interval between sensing periods to reduce the energy
consumption when the battery is at critical levels. Furthermore, the SU might be located
in a region where the radio signals are deeply faded, and so, making difficult the detection
of any PU transmitter. In such situations, the PU transmitter is not detected but the SU
could still harmfully interfere with PU receivers. This situation is well known in the
literature as the hidden terminal problem and is shown in Figure 2.11.

2.4 Chapter Summary

This chapter makes a review on dynamic spectrum access, showing how SUs can ac-
cess the white spaces in five different dimensions and how they can improve the overall
spectrum usage. The constraints that can be imposed by regulatory agencies were also
discussed, highlighting the sensing sensibility and periodicity. Afterwards, the chapter
presented the SDR technology and how it enables the design, implementation and evalu-
ation of new radio components.

The fundamentals of SS, the main techniques were discussed. The three main sensing
techniques presented in the literature were detailed, namely ED, WFD and CFD. Finally,
we compared different characteristics of these techniques and made clear that the basic
sensing techniques presented do not suffice the requirements of sensing accuracy and
sensing duration. In the next chapter the main research efforts that aimed to improve the
sensing techniques are presented.
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Figure 2.11: Hidden terminal problem
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3 RELATED WORK

The main research to improve the sensing techniques are presented in this chapter. We
divided the research into two approaches: cooperative and multi-stage sensing. Section
3.1 presents the cooperative approach, which utilizes algorithms to fuse the decision of
multiple SUs into a single decision (AKYILDIZ; LO; BALAKRISHNAN, 2011). After-
ward, Section 3.2 shows the multi-stage approach, which combines two or more sensing
techniques in a hierarchical structure (AXELL et al., 2012).

3.1 Cooperative Spectrum Sensing

Cooperative SS arises as a prominent approach to improve the sensing accuracy of
the SU by making it more robust against faded signals and the hidden terminal problem
(AXELL et al., 2012). The concept of cooperative SS is to make multiple SUs send their
decisions to a common receiver, which combines the decisions into one final value, as
shown in Figure 3.1. The individual decisions are sent through a reporting channel, which
can be a channel, allocated by governmental agencies, solely for this purpose or the same
channel that is accessed dynamically. Therefore, the main challenge in this approach is
to define a fusion rule, i.e. the algorithm used to combine the individual decisions of the
SUs (CHEN; CHEN; MENG, 2014).

SU coverage 
area

PU
Transmitter

SU
Common 
Receiver

Figure 3.1: Cooperative SS architecture

Zhang, Mallik and Letaief (ZHANG; MALLIK; LETAIEF, 2009) considered a co-
operative SS in which all SUs used the ED. A common receiver collects the individual
decisions from k SUs and executes the fusion rule to infer the channel occupancy status.
Additionally, it assumes that all SUs are concentrated in a small geographical area distant
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from the PU transmitter. This leads the signal sensed in all SU to have almost identical
SNR.

The objective of the authors was to derive the optimal value of n for a n-out-of-k
voting rule to maximize the sensing accuracy. The value n in the voting rule defines how
many of the k SU must decide that the channel is occupied so that the common receiver
also considers the channel as occupied. The results presented showed that the best value
for n is half the number of SUs, i.e. n = ⌈k

2
⌉. Additionally, it was shown that the sensing

accuracy of the common receiver increases with k.
The results obtained by Zhang, Mallik, and Letaief are valid only when the distance

assumption made initially is valid in a real environment. However, there are no guarantees
that this assumption will hold in real radio environments. More precisely, in real radio
environments, some SUs might be localized in a privileged position to detect the PU
signal, while others can be localized in a region where the PU signal is deeply faded.

Peh et al. (PEH et al., 2010) advanced the previous research by considering a scenario
where the SUs are distributed over a wide geographical area. As a consequence, the SNR
of the PU signal received is different among the SUs. The objective of their research was
to propose a method that attributes higher weights to the decisions of SUs that are better
localized to detect the PU. When a SU sends a decision, a common receiver updates its
weight by applying likelihood-ratio test (LEHMANN; ROMANO, 2006) considering the
newly received decision and the previous decisions of all other SU, which are stored in a
database.

The authors evaluated three variations of the proposed method. In variation I, the
parameters that can be adjusted by the proposed method are the weights of the SUs in the
common receiver, the individual decision threshold of the SU and the sensing duration of
any individual SU. The authors then considered the fact that if the number of SU is large,
adjusting the parameters mentioned above for all individual SU can be time-consuming.
Therefore, in variation II the weights of all SUs in the common receiver are constrained
to be the same. Consequently, the proposed method needs to compute only one optimal
weight. In variation III, the authors considered that the SUs know the noise power of
the environment and can optimize their decision threshold, while the common receiver
optimizes only the weight of the SUs.

The authors simulated all three variations and compared the achieved sensing accuracy
with fusion rules commonly used as a baseline in the cooperative approach, i.e. “and” rule
and “or” rule. The “and” is a special case of the voting rule in which n == k, whereas for
the “or” rule n == 1. Variation I and II presented a sensing accuracy of nearly 99%, with
variation I being slightly above. Variation III had the highest sensing accuracy, at nearly
100%. This occurs because each SU user can adjust its decision threshold based on the
SNR received from the PU. Finally, the “and” rule presented the worst results, while the
“or” rule had a sensing accuracy between the variations II and III.

The main problem of the method proposed by Peh et al. is that it needs to store a
significantly large number of decisions to calculate the weight of each SU reliably. Also,
the authors obtained the results in a static environment, i.e. the SNR of the PU signal is
constant in a given SU. Therefore, their proposal might be impractical in time-varying
environments, i.e. the SNR of the PU signal varies in time and independently for the
individual SUs. More precisely, the SNR variation increases the time to converge to the
correct weights attributed to individual SU.

Zhang, Wu, and Lu (ZHANG; WU; LU, 2014) proposed a method to adapt the weights
of the SUs in time-varying environments. To promptly react to abrupt changes in the
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PU signal, the method used a temporal discount factor, which reduces the influence of
previous individual decisions exponentially in time, i.e. a decision received in time t− 2
receives a considerably higher discount factor than a decision received in time t− 1.

The proposed method was compared with the “and” and “or” voting rules in a sim-
ulated environment. The results showed that using discount factors reduce the number
of iterations required to find the optimal weights for the individual SUs. In addition, the
proposed discount factor outperformed the “and” and “or” voting rules when individual
SUs suffered from abrupt SNR changes.

The research in the cooperative approach mentioned so far make two assumptions
to simplify the gathering of results: (I) the reporting channel is error-free, i.e. without
noise, and (II) the SNR of the PU signal is known in the individual SU. However, these
assumptions are not practical in a real radio environment and can lead to a wrong picture
of the real sensing accuracy of the cooperative approach (SHEN et al., 2009).

Atapattu, Tellambura and Jiang (ATAPATTU; TELLAMBURA; JIANG, 2011) evalu-
ated the sensing accuracy of the cooperative approach in a noisy reporting channel. They
evaluated two different methods for reporting the SS results for the common receiver:
“decision” and “data”. In the first method, only the decisions are sent to the common
receiver. Because the decision is represented in a single bit of data, this method requires
a reporting channel with a very small channel bandwidth. In the second method, each
SU acted as a relay, amplifying and sending a replica of the received signal to the com-
mon receiver. Because a replica is sent, this method requires a reporting channel with a
bandwidth equal to the received signal.

The authors evaluated the “decision” and “data” methods in the noisy reporting chan-
nel analytically. The results showed that the sensing accuracy of both methods is reduced
in the noisy channel when compared to an error-free channel. Additionally, the sensing
accuracy in both methods decreases rapidly when the number of hops between the com-
mon receiver is increased. Also, the ROC curve of the “decision” method could not reach
PFA = 1 and PD = 1 at the right upper corner and cannot reach PFA = 0 and PD = 0 at
the left lower corner.

Although the cooperative approach can increase the sensing accuracy, the final gain is
limited by many factors. For example, the individual decisions of the SUs are correlated
when they are blocked by the same obstacles. The sensing accuracy might be severely
degraded if the number of SUs blocked by obstacles is considerable (GHASEMI; SOUSA,
2005). In addition, cooperative SS incurs in cooperation overhead. The overhead refers to
any extra sensing duration, delay, energy, and operations devoted to cooperative sensing
compared to the individual SS. Moreover, vulnerability to security attacks is also a part
of the cooperation overhead (AKYILDIZ; LO; BALAKRISHNAN, 2011). Multi-stage
architectures were proposed in the literature to improve the SS of individual SU without
the need for cooperation.

3.2 Multi-stage Spectrum Sensing

The objective of the multi-stage approach is to reduce the sensing duration and in-
crease the sensing accuracy of an individual SUs by combining sensing techniques in a
hierarchical structure. Thus, a sensing technique is applied in the received signal in each
“stage”. This approach enables the SU to benefit from the best characteristics of differ-
ent sensing techniques. It is noteworthy that the multi-stage approach combines different
sensing techniques locally in a SU, while the cooperative approach combines the deci-
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sions of different SUs. Because of this, multi-stage architectures can be easily integrated
into a cooperative solution. More precisely, the single-stage solutions can be replaced by
a multi-stage solution without any modification in the common receiver.

Luo et al. (LUO et al., 2009) proposed a two-stage architecture in which the first stage
performed a coarse sensing over a large bandwidth of spectrum and the second stage per-
formed a fine sensing1. More precisely, the radio spectrum is divided into several contigu-
ous portions of equal bandwidth called “coarse blocks”, which usually comprise two or
more PU channels. The first stage senses all the coarse blocks sequentially. Afterward, the
second stage is applied in the blocks identified as vacant to detect precisely what channel
inside this coarse block is vacant.

The authors considered that the SU executed the ED in the first and second stages.
Moreover, the entire radio spectrum accessible by the SU is contiguous and comprise
multiple channels (P ) of equal bandwidth. The results, obtained analytically and through
simulations, showed that the proposed solution using the ED outperforms the traditional
single-stage ED in sensing duration when the number of vacant channel (L) is very high
(L/P → 1). However, the sensing duration required by the proposal increases dramati-
cally as the number of vacant channels is reduced, and eventually becomes slightly higher
than that of the single-stage ED. This occurs because the number of fine sensing steps
increases when L/P → 1.

Maleki, Pandharipande, and Leus (MALEKI; PANDHARIPANDE; LEUS, 2010) pro-
posed a two-stage architecture that executes an ED in the first stage and a CFD in the
second stage. In this architecture, the first stage is always active, whereas the second is
activated only when the first stage evaluates the channel as vacant. When this occurs,
the decision of the second stage is considered as correct, even if it contradicts the one
provided by the first stage. This research is used as the baseline for other multi-stage so-
lutions proposed in the literature and, also, in this dissertation. Because of its relevance,
the architecture of Maleki, Pandharipande, and Leus is depicted in Figure 3.2.

ED

CFD

y If D = H1 then declare channel as occupied

else, if D = H0 then activate CFD

H0 orH1

Figure 3.2: Two-stage architecture proposed by Maleki, Pandharipande, and Leus

Using an analytical evaluation, the authors showed that combining the ED and the
CFD in a multi-stage architecture increases the sensing accuracy when compared to the
single-stage version of the ED. In addition, the two-stage architecture reduced the sensing
duration when compared to the single-stage CFD. Consequently, this architecture allied
the best of the single-stage version of the ED and the CFD, which is a low sensing duration
and a high accuracy.

The proposal of Maleki, Pandharipande, and Leus has a simple mechanism to con-
trol activations of the second stage. More precisely, the second stage of their proposal
is activated whenever the first stage declares the channel as vacant. Thus, the sensing
duration of this architecture might be severely increased when the sensed channel is often
vacant. In addition, the sensing accuracy of the architecture may be degraded if the de-

1The nomenclature found in the literature refers to the first technique activated on the received signal as
the “first stage”, the next technique as the “second stage” and so on.
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cision threshold of the first stage is set to a value below the expected. This may lead the
first stage to frequently declare the channel as occupied and not activate the second stage.

Nair et al. (NAIR; VINOD; KRISHNA, 2011) proposed a mechanism to control the
activation of the second stage, aiming to reduce the sensing duration of the solution pro-
posed by Maleki, Pandharipande, and Leus. The authors performed a rigorous analysis
to obtain the minimum SNR at which the first stage can operate without using the sec-
ond stage. Thus, the second stage is never activated when the sensed channel presents a
SNR above the minimum required. This SNR was calculated according to a PFA, i.e. the
probability of considering a channel occupied when it is vacant.

The authors considered that both first and second stages executed an ED to obtain
the results. The target PD and PFA were kept at 90% and 10%, respectively. Also, the
PU has occupied the sensed channel in 80% of the time, i.e. PH0 = 80%. The results
showed that the control mechanism could inhibit the execution of the second stage when
the SNR is greater than −15.4 dB, thus reducing the sensing duration compared to the
work of Maleki, Pandharipande, and Leus. Moreover, the sensing accuracy was increased
in relation to the single-stage ED for SNR below −15.4 dB.

Ejaz, Hasan, and Kim (EJAZ; HASAN; KIM, 2012) extended the architecture of
Maleki, Pandharipande, and Leus by adding a third stage that executed a matched fil-
ter detector (PROAKIS, 2007). This detector is similar to the WFD, but with nearly
perfect accuracy, and low sensing duration. Despite these advantages, its overall com-
plexity is the major factor that inhibits its adoption. In their proposal, the third stage is
parallel to the first and second stages and it is activated only when specific radio channels
are sensed. These radio channels are the ones whose the PU signal is well known, and
therefore, detectable by the matched filter.

Similarly to other multi-stage solutions, the results presented by the authors showed
that the proposed architecture reduces the sensing duration when compared to the slowest
detector used, in this case, the CFD. In addition, the sensing accuracy is increased when
compared to the single-stage ED.

The main constraint of the research in cooperative and multi-stage solutions is the
use of static decision thresholds, which is a problem in dynamic radio environments. For
example, the SU may encounter different noise or interference levels when switching
between different public safety radio channels, requiring different values for the decision
threshold. Moreover, SUs may be operating in unknown radio environments and may not
have perfect knowledge of the characteristics of the other existing PUs or SUs (YUCEK;
ARSLAN, 2009). Another constraint, specifically for the multi-stage approach, is the lack
of an advanced mechanism to activate the second stage.

According to Bkassiny, Li, and Jayaweera (BKASSINY; LI; JAYAWEERA, 2013),
the use of machine learning allows the SU to increase its performance in unknown radio
environments by adapting the decision threshold. In this sense, we propose a multi-stage
adaptive threshold architecture that allies the multi-stage approach with machine learning
to overcome the identified constraints in the state-of-the-art research.

3.3 Chapter Summary

Throughout this chapter, the main research to improve the SS was presented. Ini-
tially, the research efforts on the cooperative approach were presented, with a focus on
methods to efficiently fuse the decisions received from the SUs. Although this approach
can efficiently increase the sensing accuracy, the overhead added, the need for a report-
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ing channel and security vulnerabilities are drawbacks that can make the adoption of this
approach unfeasible in certain environments.

Afterward, the chapter presented the research efforts on the multi-stage approach. In
this approach, the focus is to combine two or more SS techniques in such a way that the
improvement surpasses the single-stage version of each one. The results showed that com-
bining two or more sensing techniques in a single SU can improve the SS significantly.
Despite the improvement, multi-stage architectures are limited to static decision thresh-
olds, which is a problem for dynamic radio environments. In the next chapter, we present
our proposal: a multi-stage solution that uses machine learning techniques to adapt the
decision threshold in real time.
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4 ADAPTIVE THRESHOLD ARCHITECTURE

This chapter begins by describing the general overview of the proposed Multi-Stage
Adaptive Threshold Architecture (ATA) in Section 4.1. In this overview, we describe
the basic functionality of the Sensing Component and the Machine Learning Component.
Afterward, in Section 4.2, each component is detailed, with focus on the operations per-
formed and the order that they occur in ATA operation.

4.1 Multi-Stage Adaptive Threshold Architecture Overview

ATA has three main components, each of them with very specific functionalities, as
shown in Figure 4.1. Considering a bottom-up approach, the three components are: (I) the
RF Front-End, detailed in Subsection 4.1.1, (II) Sensing Component, which is presented
in Subsection 4.1.2, and (III) the Machine Learning Component, presented in details in
Subsection 4.1.3.

ADC

Second
Stage

First Stage

Threshold
Learning

Algorithm

Feedback Algorithm

SS Request

D1st

τ

D2nd

Other modules of
the cognitive radio

yRF Front-End

Sensing Component

Machine Learning Component

Figure 4.1: Proposed architecture

4.1.1 RF Front-End

This component is responsible for receiving and digitizing the signal of a given chan-
nel of the radio spectrum. Although this component is used in all operations involving
radio signals, such as reception and transmission of useful data, ATA uses it only to ac-
quire digitized signal samples during the sensing period. In addition, ATA assumes that
the RF Front-End is correctly configured when the sensing period starts. Thus, parameters
such as the central frequency, bandwidth, and sample rate must be configured before the
sensing period. These configurations can be performed, for example, by other modules of
the SU radio, such as a module responsible for managing all the configurations required
when a sensing or transmission period start.
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4.1.2 Sensing Component

This component performs the operations required to detect if the sensed channel is
occupied or vacant. This component utilizes a multi-stage architecture with two sensing
techniques to enable ATA to achieve a high sensing accuracy while maintaining a low
sensing duration.

The First Stage is always active, i.e. during the sensing period this stage provides
several decisions about the occupancy status. The inputs of this stage are the digitized
signal y, from the RF Front-End, and the decision threshold τ , from the Machine Learning
Component. The output is the decision that indicates if the channel is vacant or occupied.
The decision is sent to the Threshold Learning Algorithm, the Feedback Algorithm and to
SU radio modules that will use it to select which channel of the radio spectrum should be
accessed.

The Second Stage enables the adaptation of the decision threshold used by the First
Stage. The inputs are the digitized signal y and the SS Request, which is detailed in
Subsection 4.1.3. The output is the decision that indicates the channel status occupancy,
which is sent to the Machine Learning Component. With the purpose of reducing the
sensing duration of ATA, this stage is not continuously activated. More precisely, the
Second Stage is activated only after receiving a SS Request.

We highlight that the Second Stage is only activated after the First Stage finishes
its evaluation of a given signal. Lets define as t1st the time required for the First Stage to
evaluate a given signal y once and t2nd the time required for the Second Stage. Thus, when
the Second Stage is activated, the time to evaluate a given signal y is t1st + t2nd. More
generally, the average sensing time of ATA can be expressed as shown in Equation 4.1,
where n1st and n2nd are the total activations of the First and Second Stage, respectively.
Based on this equation, we can conclude that the average sensing duration is increased
the more the Second Stage is activated.

ttotal =
(n1st − n2nd)t1st + n2nd(t1st + t2nd)

n1st + n2nd

(4.1)

The selection of which sensing techniques will be executed in each stage depends
on both the sensing accuracy and the sensing duration required by the SU. Although
any sensing technique could be used, to obtain the best performance from ATA, a faster
technique should be used in the First Stage, e.g., ED, and a more accurate technique in
the Second Stage, e.g., WFD or CFD. This is required because the First Stage is con-
tinuously activated to provide updated decisions regarding the channel occupancy status,
whereas the Second Stage is activated only when the decision threshold must be adapted,
i.e. increase, and decrease or maintain the decision threshold.

4.1.3 Machine Learning Component

The Machine Learning Component is the main novelty presented in ATA, filling the
drawbacks of current SS solutions. This component is divided in two algorithms: (I) the
Threshold Learning Algorithm, which adapts the decision threshold τ of the First Stage
and (II) Feedback Algorithm, which controls the activation of the Second Stage.

The Threshold Learning Algorithm adapts the decision threshold τ of the First Stage
based on the decision received from the Sensing Component. For this adaptation, the
Threshold Learning Algorithm assumes that the decision of the Second Stage is more
accurate than the decision of the First Stage. Based on this assumption, the learning



36

algorithm can compare the received decisions and adapt τ in order to make the decisions
of both stages equal. In this context, the decision of the Second Stage is a “feedback” for
the Threshold Learning Algorithm. Although the algorithm must rely on the comparison
of decisions to adapt the decision threshold, different machine learning algorithms can be
used in the adaptation, such as Bayesian learning (GONG et al., 2009) and Q-learning
(FAGANELO et al., 2013).

The Feedback Algorithm reduces the sensing duration by controlling the activations
of the Second Stage. As inputs, the algorithm receives the decisions of both stages of
the Sensing Component. Based on these inputs, the algorithm must calculate the interval
until the next activation of the Second Stage, and consequently, until an updated feed-
back is provided to the Threshold Learning Algorithm (more details about the interval are
provided in the next section). The output of this block is the SS Request, which is sent
only when the calculated interval has expired. If the decisions received from the Sensing
Component converged to the same hypothesis, the Feedback Algorithm increases the in-
terval between activations of the Second Stage. As a consequence, the sensing duration is
reduced because only the First Stage is activated. Similarly, if the decisions did not con-
verge to the same hypothesis, the interval is reduced, which increases the sensing duration
but also quickens the threshold adaptation.

It is worth highlighting that the Feedback Algorithm and the Threshold Learning Al-
gorithm are independent. Despite this, a better sensing accuracy and a lower sensing
duration can be achieved if the Feedback Algorithm is designed considering the limita-
tions of the learning algorithm. For example, given that a learning algorithm requires
frequent feedbacks to adapt the decision threshold τ , then the interval between feedbacks
could be limited to a certain value to help the threshold adaptation.

4.2 Detailing the Adaptive Threshold Architecture

In this section, the details of each block are presented. The functionality of each block
is explained with the help of a sequence diagram, which illustrates the main interactions
and operations performed. It is noteworthy that the sequence diagrams comprise the oper-
ation of ATA only during a sensing period. In addition, considerations regarding possible
optimizations are made.

4.2.1 First Stage

The operations performed by the First Stage are illustrated in the sequence diagram in
Figure 4.2. In the digitize operation of the ADC, N samples of the signal y are collected.
Afterwards, the signal y is sent to the First Stage and Second Stage in the signalReady
operation. After receiving the signal y, the First Stage applies the test statistic Λ, gener-
ating the decision D1st. Finally, the decision D1st is sent to the Feedback Algorithm and
the Threshold Learning Algorithm, in the updateDecision operation. After this, the entire
sequence is repeated again until the sensing period is over.

It is worth highlighting that the first signalReady operation do not block the execution
of the next operation of the ADC. More precisely, the second signalReady is sent without
waiting the First Stage to finish its operation. This also applies for the updateDecision.

An optimization that can be applied in this sequence is starting the ADC digitize op-
eration right after the signalReady. Thus, when the First Stage finishes its operations, the
ADC can immediately send a new signal y. This optimization can lead to a significant
reduction in the sensing duration because the digitize and Λ operations are run in parallel.



37

Figure 4.2: Sequence diagram for the First Stage

A race condition arises if the digitize operation is faster than the test statistic Λ. In such
a case, the signalReady might be executed while the test statistic is being executed in the
First Stage. This race condition can be eliminated by discarding any signal received if the
test statistic Λ is in execution in the First Stage.

4.2.2 Second Stage

The sequence diagram of the Second Stage is illustrated in Figure 4.3. Since this
block must receive a SSRequest to start its operation, we show the SSRequest as the first
operation performed. After receiving the request, the Second Stage awaits until the signal
y is provided by the ADC. When this occurs, the test statistic Λ is applied to obtain the
decision D2nd. In the sequence, D2nd is sent to the Feedback Algorithm and the Threshold
Learning Algorithm in the updateDecision operation. After this operation, the Second
Stage awaits until the next SSRequest is received. In the meantime, the signalReady op-
erations received are ignored.

Figure 4.3: Sequence diagram for the Second Stage
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An optimization that can reduce the sensing duration is activating the Second Stage
in parallel with the First Stage. As a consequence, a control must be added to avoid race
conditions when the First Stage is considerably faster than the Second Stage. In such
case, the Machine Learning Component can receive multiple decisions D1st, while the
Second Stage is applying the test statistic in an old signal y. This control must be an
operation indicating that First Stage cannot generate any new decision until the Second
Stage generated a D2nd.

4.2.3 Threshold Learning Algorithm

The operations performed by this block are detailed in the sequence diagram in Figure
4.4. We note that functions updateDecision, newτ , and setnewτ are generic and its
specific implementation depends on the machine learning algorithm used. The operation
of this block starts only when the feedback, i.e. the decision D2nd, is received. When this
occurs, the newτ operation adapts the decision threshold τ based on the received D2nd

and the latest D1st. The newτ operation uses the machine learning techniques to select
the next value for τ . Afterward, the selected value for τ is informed to the First Stage in
the setnewτ operation.

Figure 4.4: Sequence diagram for the Threshold Learning Algorithm

The Threshold Learning Algorithm must adapt the decision threshold τ in such a way
that the decisions D1st and D2nd become equal. As mentioned, the learning algorithm
assumes that the decisions D2nd reflect the real status of the channel (DR) and tries to
make D1st converge to the same set of hypotheses. We can analyze how the threshold τ
must be adapted based on the combinations of D1st and DR. More precisely, based on
these combinations, the threshold τ must be decreased (↓), increased (↑) or maintained
(–) in order to make D1st equal to DR. Table 4.1 shows combinations of D1st and DR and
the expected adaptation of τ . A detailed explanation of the expected adjustment for τ is:

• D1st = DR: the learning algorithm does not need to adapt the decision threshold τ
because the detector is providing accurate decisions.

• D1st = H0 and DR = H1: the decision threshold τ must be decreased. For
example, given a situation where the test statistic over the received signal y re-
sulted in Λ(y) = τ − 1. By comparing both Λ(y) and τ , the decision is D1st =
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(
Λ(y)≷H1

H0
τ
)
= H0. Thus, the decision threshold τ must be decreased in order to

make D1st = DR = H1.

• D1st = H1 and DR = H0: the decision threshold τ must be increased. Considering
a similar example from the previous item, but with the test statistic over the received
signal y resulting in Λ(y) = τ + 1, the decision is D1st =

(
Λ(y)≷H1

H0
τ
)
= H1.

Thus, the decision threshold τ must be increased in order to make D1st = DR =
H1.

DR

H0 H1

D1st
H0 – ↓
H1 ↑ –

Table 4.1: Expected adaptation of τ considering D1st and DR

The combinations in Table 4.1 show the expected adaptation of the decision threshold
τ based on DR. In practice, this adjustment is based on D2nd, provided by the Second
Stage, which may be incorrect. Therefore, the combinations can be extended considering
the hypotheses for D1st, D2nd and DR, which are shown in Tables 4.2a and 4.2b. The
first table presents the combinations for DR = H0 and the second one for DR = H1 The
incorrect hypothesis for D2nd is highlighted in both tables, i.e. H1 in Table 4.2a and H0

in Table 4.2b. In such cases, the machine learning algorithm will not be able to find the
correct value for the decision threshold τ .

It is noteworthy that the convergence to a correct threshold occurs only when the Sec-
ond Stage has an accuracy above 50%. More precisely, for any learning algorithm “learn”
the correct threshold, at least more than half of its inputs must indicate the direction (in-
crease or decrease) correctly. In addition, the decision threshold will converge faster for
higher accuracies and to a wrong value if the accuracy is below 50%. Thus, it is of utmost
importance to ensure that the Second Stage have the highest possible sensing accuracy.

D2nd

H0 H1

D1st
H0 – ↓
H1 ↑ –
(a) DR = H0

D2nd

H0 H1

D1st
H0 – ↓
H1 ↑ –
(b) DR = H1

Table 4.2: Expected adaptation of τ considering D1st, D2nd and DR

4.2.4 Feedback Algorithm

The sequence diagram of the Feedback Algorithm is illustrated in Figure 4.5. The
Feedback Algorithm sends the SSRequest as soon as its operation is started. The algorithm
waits until the decision D2nd is received from the Second Stage. In the sequence, the new
interval is calculated, based on latest D1st and D2nd. After this, the Feedback Algorithm
enters a loop, which is left only when interval decisions are received from the First Stage.
After this, the entire sequence is repeated again.
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Figure 4.5: Sequence diagram for the Feedback Algorithm

The interval is measured in decisions received from the First Stage and not in duration.
Although it might seem strange at first glance, using the former brings some advantages
over the latter: (I) it is easier to design the algorithm because the sensing duration of
the First and Second Stages are abstracted, (II) the same algorithm can be used, with-
out modifications, with any combination of SS techniques, and (III) it is easier to meet
the requirements of different Threshold Learning Algorithm regarding the frequency of
feedbacks.

ATA eliminates the drawback of current SS solutions by adding a machine learning
algorithm to dynamically adapt the decision threshold τ . With this adaptation, ATA can
maintain a high sensing accuracy in different radio environments. In addition, the draw-
backs related to controlling the activations of the second stage were mitigated by the
introduction of the Feedback Algorithm. Therefore, ATA combines the advantages of a
multi-stage architecture with the capability of adaptation to different radio environments.

4.3 Chapter Summary

This chapter presented the Multi-Stage Adaptive Threshold Architecture (ATA) for
spectrum sensing. The chapter began with an overview of the architecture, focusing
on describing the functionality of its three components, namely RF Front-End, Sensing
Component and, Machine Learning Component. The first component is responsible for
receiving and digitizing the signal of a given channel of the radio spectrum. The second
component employs a two-stage architecture to perform the detection of PUs in the digi-
tized signal and to help in the adaptation of the decision threshold. The third component
uses a Threshold Learning Algorithm to adapt the decision threshold τ used in the Sensing
Component and a Feedback Algorithm to reduce the sensing duration.

In the sequence, a detailed description of the four blocks of the architecture was pre-
sented. (I) the First Stage, used to provide fast decisions regarding the PU presence in
the sensed channel, (II) the Second Stage, which is used as feedback to adapt the decision
threshold, (III) the Feedback Algorithm, which reduces the average sensing duration of
ATA by controlling the activations of the Second Stage and, (IV) the Threshold Learning
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Algorithm, which dynamically adapts the decision threshold τ of the First Stage based on
the feedback received.

ATA improves current SS solutions by introducing the use of machine learning to
increase the sensing accuracy and a mechanism to maintain a low sensing duration. In
addition, the dynamic adaptation of the decision threshold enables ATA to maintain its
performance in different radio environments. In the next chapter, the prototype of ATA is
detailed.
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5 PROTOTYPE

This chapter presents the prototype developed to evaluate ATA. The SDR platform
used in the prototype is detailed in Section 5.1 The sensing techniques utilized in the
evaluation are detailed with the help of block diagrams in Section 5.2. Finally, the Ma-
chine Learning Component is detailed in Section 5.3. In addition, algorithms developed
for this dissertation are detailed in pseudocode.

5.1 Software Defined Radio Platform

The SDR platform used to implement the prototype of ATA is divided into two parts:
hardware and software. The first one, which comprises the RF Front-end, is presented in
Subsection 5.1.1. The second one, in which the Sensing and Machine Learning Compo-
nents were developed, is presented in Subsection 5.1.2

5.1.1 Hardware part: Universal Software Radio Peripheral

The RF front-end of the developed prototype is the USRP. The USRP is an equipment
developed by Ettus Research (Ettus Research, 2008) to transform any General Purpose
Machine (GPM), e.g., a personal computer, in a complete SDR platform. It is one of
the most popular equipment of its class, widely adopted in the academia for research
purposes (Aguayo Gonzalez; DIETRICH; REED, 2009), (ULVERSOY, 2010), (KIM;
XIN; RANGARAJAN, 2010), (GU et al., 2010).

The USRP is divided into daughterboards and one motherboard. The number of
daughterboards depends on the USRP model, going from at least two to more than ten.
Each daughterboard is connected to a unique ADC and DAC, which in turn, are connected
to the motherboard. The motherboard is responsible to communicate with the GPM for
transferring IQ samples from/to the software modules running in it. The daughterboards
are used to hold the RF receiver and the RF transmitter interfaces.

Each daughterboard has an independent RF path and an exclusive antenna. This al-
lows a single USRP device to operate simultaneously in different portions of the radio
spectrum, increasing the range of applications that can be used with the USRP. In prac-
tice, a single equipment can be used for evaluations in simple scenarios. For example,
a single device can be used to transmit and receive a radio signal simultaneously. With
this simple setup, several algorithms involved in both transmission and reception can be
evaluated.

Ettus commercialize up to seven different models of USRP and daughterboards. In
this dissertation, we focus on the equipment used in this dissertation, which is the USRP
model N210 and the WBX daughterboard. This model has two slots for connecting up to
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two daughterboards, namely TX/RX and RX2. In the first, a daughterboard with recep-
tion and/or transmission capabilities can be connected, whereas the second accepts only
daughterboards with reception capabilities. Figure 5.1 illustrates the architecture of the
USRP board and the integration with a GPM.

GPM

USRP

Motherboard

Software

ADC

DAC

TX/RX
Daughterboard

ADC
RX2

Daughterboard

Figure 5.1: USRP N210 and integration with a GPM

The N210 is equipped with an Altera Cyclone EP1C12 FPGA (ALTERA, 2003). The
ADC used is capable to digitize 100 millions of samples per second (Msamples/s) with a
resolution of 14 bits. With this, the board can receive a radio signal with a bandwidth of
50 MHz. The DAC can generate 400 Msamples/s with 16 bits of resolution, which enables
the transmission of signals with 200 MHz of bandwidth. The equipment has a frequency
accuracy of 2.5 ppm, i.e. an error of±2.5 Hz for each 1 MHz of difference from 0 Hz. All
communications with the GPM, such as configurations and transference of digital sam-
ples, are performed through a Gigabit Ethernet interface. Given these characteristics, the
USRP hardware is ideally suited for applications requiring high RF performance and great
bandwidth. Such applications include dynamic spectrum access and cognitive radios.

The WBX daughterboard is a wide bandwidth transmitter and receiver. This daugh-
terboard has a bandwidth capacity of 40 MHz and can be tuned in any frequency between
50 MHz and 2.2 GHz. It is capable to transmit signals with up to 100 mW of power and
receive signals with a noise figure, which indicates how much noise the equipment itself
adds to the received signal, of 5 dB. The main characteristics of a radio device combining
the N210 with a WBX daughterboard are summarized in Table 5.1.

Parameter Value Unit
ADC sample rate 100 Msamples/s
ADC resolution 14 bits

DAC sample rate 400 Msamples/s
DAC resolution 16 bits

Noise figure 5 dB
Frequency accuracy 2.5 ppm

Frequency range 40− 2200 MHz
Maximum bandwidth 40 MHz
Transmission power 100 mW
Ethernet Interface 1 Gbps

Table 5.1: USRP N210 with WBX daughterboard overview
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5.1.2 Software part: GNU Radio

Since the beginning of its development in 1998, GNU Radio became the most pop-
ular software toolkit for advanced applications in SDR (GNU Radio, 2004). GNU Ra-
dio stands among other SDR toolkits due to its distribution under the GNU Public Li-
cense (GPL) model. This means that GNU Radio source code can be downloaded and
used by anyone. Also, GPL grants the right to modify the original source code. To
use the full potential of this toolkit, the application developer must have some degree of
competence with object-oriented programming, Linux operating systems, and wireless
communications systems.

The signal processing in GNU Radio is performed by “blocks”. A block is responsible
to perform simple and specific operations. GNU Radio has several blocks for the most
common signal processing tasks, such as mathematical operations, modulators, demodu-
lators, and error correction algorithms. A block in the GNU Radio is usually developed
in C++ and must be of one of the following types: “source”, “processing”, or “sink”.

Blocks of the type “source” are used to produce digital data. The data can be produced
either through mathematical functions, such as a random number generator, or through
a RF front-end, such as a USRP with a reception daughterboard. Blocks of the type
“processing” modify the data received and provide the resulting data in an output port.
Modulators, multiplexers, filters, and error correctors are examples of processing blocks.
Blocks of the type “sink” are similar to “processing” blocks, but the modified data is not
provided in an output port. USRPs with a transmitter daughterboard, files and speakers
are examples of sink blocks. The blocks that come in an installation of GNU Radio are all
developed in C++. In addition, third-party developers can implement new blocks either
in C++ for high-performance, or Python, for fast development but with a slightly higher
execution time.

A sequence of blocks connected together are referred to as a signal processing path.
This connection can also be performed in C++ or Python. Is worth highlighting that
connecting blocks in Python presents a minimal performance loss when compared to
C++. This occurs because GNU Radio uses an intermediate layer to bind Python and
C++ code, called SWIG. More precisely, the Python language is used only to connect
the blocks, while all the processing is made in blocks developed in C++. In addition, an
application can have multiple independent signal processing paths. Figure 5.2 illustrates
the GNU Radio toolkit architecture.

C++

SWIG Python

Signal Processing Path

Processing Blocks

Application

Figure 5.2: GNU Radio architecture

A basic installation of GNU Radio usually has the source and sink blocks that rep-
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resent USRP equipments. These blocks provide functions that allow the configuration
of several parameters of the equipment, such as the central frequency, sample rate, band-
width, and gain. It is important to note that any GNU Radio application is always executed
in the GPM, even when using a USRP. More precisely, the block representing a source
USRP is responsible for digitizing the received radio signal and sending the samples to
be processed in the application executing in the GPM. Similarly, the sink USRP receives
the digitized samples from the GPM and converts them to radio signals, which will be
transmitted in the antenna.

This section presented the SDR platform used to prototype ATA in details, including
the RF Front-End, the GNU Radio toolkit, and their integration. In the following section,
we present how the Sensing Component was prototyped.

5.2 Sensing Component

The prototype of ATA was evaluated using combinations of ED, WFD and CFD in
the First and Second Stages. In this section, we detail how these three sensing techniques
were implemented in the GNU Radio toolkit.

5.2.1 Energy Detection

The blocks used in the ED’s signal processing path to detect a transmitting PU are il-
lustrated in Figure 5.3. The USRP Source block generates a continuous stream of samples
from the signal received in the antenna. The Serial to Parallel stores the last N samples
received from the previous block in a buffer. When the buffer is filled, a single vector
containing the N samples is sent to the FFT block. It is worth highlighting that this vector
represents the signal y used to perform the PU detection. Thus, henceforward the vector
of samples will be referred to as signal y. The FFT block transforms the signal y from
time to frequency domain.

USRP Source Serial - Parallel (N Samples) FFT (N Points) Magnitude and Square Sum Compare and Decides y H0 orH1

Figure 5.3: Signal processing path for the ED

The Magnitude and Square block receives the signal in the frequency domain and
performs two operations in each of the N samples. The first operation is to calculate the
magnitude of each sample. The second is to replace each sample by the square of its mag-
nitude. After these two operations, each sample of the signal y will contain the energy of
each frequency received. Afterward, the N samples are summed up in a value that quan-
tifies the energy of the received signal. The value generated in the Sum block corresponds
to the tests statistic Λ(y) of the ED. Finally, the block Compare and Decide generates the
decision hypothesis by comparing the energy of the signal y against a decision threshold
τ .

The first four blocks of the ED’s signal processing path are available in any GNU
Radio installation. However, the blocks Sum and Compare and Decide had to be imple-
mented to enable the prototyping of ATA. The implemented blocks are detailed in order
to allow further research to be able to reproduce the results obtained in this dissertation.

Sum Block
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Algorithm 1 details the operations performed in the block Sum. The algorithms pre-
sented throughout this chapter will present the main functionality of a block in the name-
sake function, which in this case is the sum function. In this function, the C columns and
R rows of the input matrix are summed into a single value (line 2). Afterward, the final
value sum is sent to the next block in the processing path. This implementation is used in
the ED block, as well as the CFD, which is explained in Subsection 5.2.3.

Algorithm 1 Algorithm for the Sum block
Require: input as a matrix with C columns and R rows

1: function SUM(input)
2: sum← The sum of all elements of input
3: Send sum to the next block

Compare and Decide Block

This block performs the final operation of any SS technique, which is comparing
the result of the test statistic Λ with a predefined decision threshold and selecting the
appropriate hypothesis. This simple operation is detailed in Algorithm 2. Due to its
simplicity, this block is also used in the signal processing path of the CFD.

Algorithm 2 Algorithm for the Compare and Decide block
Ensure: input as a single real value
Ensure: τ as a single real value

1: function COMPARE_AND_DECIDE(input)
2: if input < τ then
3: SendH0 to the next block
4: else
5: SendH1 to the next block

5.2.2 Waveform Detection

Figure 5.4 illustrates the signal processing path of the WFD. The only difference
from the ED is the replacement of the last two blocks by the Correlate and Decide, which
correlates the received signal y with a set of patterns p (readers can refer back to Chapter 2
for more information). Based on the correlation of the received signal y and each pattern,
the block also decides if the sensed channel is occupied or vacant. The Correlate and
Decide, in addition to the two blocks described previously, also was implemented and
integrated with the GNU Radio toolkit.

USRP Source Serial - Parallel (N Samples) FFT (N Points) Magnitude and Square Correlate and Decide
s y H0 orH1

Figure 5.4: Signal processing path for the WFD

Correlate and Decide Block

The implementation of the Correlate and Decide block is detailed in Algorithm 3.
Internally, the algorithm stores a set of patterns (P ), which contains a pattern (p) for
each type of PU signal that must be detected. For example, if two different PUs must be
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detected, one transmitting an OFDM signal and other transmitting a television signal, then
these two patterns must be added to the set P . These patterns represent the waveform of
the PU that must be identified and must be collected before the operation of ATA is started.
In addition, each pattern can have a different decision threshold used in the comparison.
These thresholds are stored in the vector C.

When the signal y is received, the block executes a sequence of operations for each
pattern p stored (lines 2 − 7). Firstly, the correlation of the signal y and a pattern p is
calculated (line 3). Then, the algorithm verifies if the calculated correlation (c) is greater
than the threshold for the pattern p (line 4). The PU identified by the pattern p is con-
sidered as occupying the sensed channel if the correlation c is greater than the predefined
threshold (line 5); otherwise the channel is considered as vacant (line 7). Finally, the de-
cision indicating an occupied channel is sent if at least one correlation was greater than
the threshold (line 9); otherwise, the decision indicating a vacant channel is sent (line 11).

Algorithm 3 Algorithm for the Correlate and Decide block
Ensure: y is a vector with N samples
Require: P as a vector. Each element is a signal pattern p
Require: C as a vector. Each element is a threshold for a signal pattern p
Require: D as a vector. Each element is a hypothesis for a signal pattern p

1: function CORRELATE_AND_DECIDE(y)
2: for all p in P do
3: c← correlation of y and p
4: if c is greater than the threshold for p in C then
5: Add the hypothesisH1 in D for p
6: else
7: Add the hypothesisH0 in D for p
8: if C has at least one pattern with hypothesisH1 then
9: SendH1 to the next block

10: else
11: SendH0 to the next block

5.2.3 Cyclostationary Feature Detection

Figure 5.5 illustrates the signal processing path implemented for the CFD. The De-
modulates and the FAM blocks are the novelties of this implementation. The first is re-
sponsible for computing the complex demodulate of the received signal y. The second
computes the cyclostationary correlation of the demodulated signal. In this dissertation,
a brief overview of these two blocks is made. Major details can be found in the article
published by Roberts, Brown and Loomis (ROBERTS; BROWN; LOOMIS, 1991).

USRP Source S/P FFT (N Points) Demodulate FAM Sum Compare and Decides y H0 orH1

Figure 5.5: Signal processing path for the CFD

Demodulate Block
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The operations performed by the Demodulate block are detailed in Algorithm 4. The
inputs of this block are the latest M signals received from the previous block. Therefore,
the value of M defines the maximum duration in which the cyclostationarity is searched.

The Demodulate block uses a matrix of M rows and N columns to store the demodu-
late of each sample received. The algorithm calculates the demodulate independently for
each sample s of all yi, where i = 1, . . . ,M (line 2 − 4). The demodulation of a single
sample is calculated as shown in the function D(s, i) (line 6). In the end, the block sends
the demodulated matrix to the next block in the signal processing path (line 5).

Algorithm 4 Algorithm for the Demodulate block
Require: M as the internal FFT size
Require: demodulates as a matrix with M rows and N columns of real number
Require: y1, y2, . . . , yM are the received signal with N samples each

1: function DEMODULATES(yi, . . . , yM )
2: for all i in 1, . . . ,M do
3: for all sample s of yi do
4: demodulates[i][ index of s]← D(s, index of s)
5: Send demodulates to the next block
6: function D(s, i)
7: r ← Re(s) ∗ cos(2πi) + Im(s) ∗ sin(2πi)
8: i← [Im(s) ∗ cos(2πi)−Re(s) ∗ sin(2πi)]
9: return r + ij

FAM Block

The FAM block is detailed in Algorithm 5. This block uses a matrix with M rows
and 2N columns to store the cyclic correlations. Each row of the matrix stores the cyclic
correlations from the frequency −fs/2 to fs/2, where fs is the sampling rate. More
precisely, the ith row will store the coefficients of the frequency (−fs + i)/2. The input
of this block is the demodulates matrix generated in the previous block, which is used to
calculate the cyclostationary correlation (lines 2− 4). After obtaining the cyclostationary
correlation, the matrix cyclo is sent to the next block (line 5).

The function calc_cyclo details the calculations performed to obtain the correlation.
First, a vector to store M samples is initialized. Then, the samples i and j are correlated
for each of the M received signals and the value obtained is stored in the fft_in vector
(lines 8 − 9). This calculation extracts the relation between the two samples as time
passes. Afterwards, the FFT is performed in the fft_in vector (line 10). This calculation
results in high values when the correlations between the two samples are periodic in time.
Finally, the absolute value of the calculated coefficients is copied to the cyclo matrix (lines
11− 13).

In this section the implementation of the ED, WFD and CFD was detailed. These
three sensing techniques were used in the prototype of ATA. In the next section, the
implementation of the Machine Learning Component is detailed.



49

Algorithm 5 Algorithm for the FAM block
Require: cyclo is a matrix of M rows and 2N columns of real number
Require: demodulates is a matrix with M rows and N columns of real number

1: function FAM(demodulates)
2: for all i in N do
3: for all j in N do
4: CALC_CYCLO(i, j)
5: Send cyclo to the next block
6: function CALC_CYCLO(i, j)
7: fft_in is an empty vector of M elements
8: for all m in 1, . . . ,M do
9: fft_in← demodulates[m][i]∗ demodulates∗[m][j]

10: fft_out← FFT (fft_in)
11: col← i+ j − 1
12: for all m in 1, . . . ,M do
13: cyclo[i][col]← abs(fft_out[m])

5.3 Machine Learning Component

In this section, the implementation of the Feedback Algorithm and the Threshold
Learning Algorithm is detailed. These algorithms were developed and integrated with
the GNU Radio toolkit.

5.3.1 Feedback Algorithm

The details of the Feedback Algorithm are shown in Algorithm 6. The configuration
parameters are the maximum possible interval between two consecutive feedbacks (Imax)
and the base of an exponential function (b). The inputs are the decisions from the First
Stage (D1st) and from the Second Stage (D2nd).

The first operation performed by the Feedback Algorithm is requesting an updated
decision to the Second Stage (line 3). In the sequence, the Feedback Algorithm waits until
the requested decision (line 4) and the decision D1st (line 5) are received. Afterward,
the interval until the next activation of the Second Stage is calculated based on these
decisions (line 6). Finally, the algorithm wait until interval decisions are received from
the First Stage (line 7).

The operations performed to calculate the interval value are shown in the updateIn-
terval function (lines 8 − 13). The value of x is increased if both detectors provided the
same decision (lines 9−1−), or decreased if not (line 12). The interval assumes the value
given by the exponential function bx (line 13). The exponential function is used in the
prototype because, in this way, the interval is rapidly increased when the First and Sec-
ond Stages are converging to the same decision. Similarly, if the decisions start to differ
at some point, the value of interval is rapidly decreased. Such divergence can occur, for
example, when the PU and/or SU change its location.

5.3.2 Threshold Learning Algorithm

The Threshold Learning Algorithm adapts the decision threshold τ based on the deci-
sions D1st and D2nd. Based on the combinations of these two decisions, the adaptation can
be separated in the following functions: (I) increaseτ , when D1st = H1 and D2nd = H0,
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Algorithm 6 Exponential Feedback Algorithm
Ensure: D1st as the sensing result of the First Stage
Ensure: D2nd as the sensing result of the Second Stage
Ensure: Imax as the maximum interval between feedbacks
Ensure: b as a value greater than 1

1: function FEEDBACK_ALGORITHM

2: while SS is required do
3: Call the SSREQUEST of the Second Stage
4: Wait until an updated D2nd is received
5: Wait until an updated D1st is received
6: interval← UPDATEINTERVAL(D1st, D2nd)
7: Wait until interval decisions are received from the First Stage
8: function UPDATEINTERVAL(D1st, D2nd)
9: if D1st is equal to D2nd then

10: x← x+ 1
11: else
12: x← x− 1

13: return bx

(II) decreaseτ , when D1st = H0 and D2nd =H1, and (III) maintainτ , when D1st = D2nd.
The operations performed in each function depend on the machine learning algorithm
used. For the sake of brevity, we do not show the function that compares the latest deci-
sion values of D1st and D2nd and calls the corresponding function. However, this function
exists and it is executed whenever a decision D2nd is received.

In this dissertation, we based the implementation of the aforementioned functions in
the Bayesian algorithm proposed by Gong et al. (GONG et al., 2009), which is detailed
in Algorithm 7. We highlight that the original algorithm of Gong et al. was proposed to
be used in a cooperative environment. Thus, we changed the original algorithm in order
to consider a two-stage architecture.

The parameters required by this algorithm are the decision threshold (τ ), the minimum
(τmin) and maximum (τmax) value that can be assigned to τ , the vector of the Bayesian
risk for each valid threshold between τmin and τmax (R), the probabilities of having the
channel vacant (PH0) or occupied (PH1), and two vectors to store the false alarm (Pf ) and
the miss detection (Pm) probabilities achieved by each threshold used.

The function maintainτ only updates the probabilities used by the current threshold
τ (lines 2 − 3). The function increaseτ updates these same probabilities (line 5 − 6),
and in addition, updates the Bayesian risk of all thresholds in the range [τ , τmax] (line 7).
Then, the decision threshold τ is increased by selecting the threshold with the smallest
Bayesian risk in the interval [τ , τmax] (line 8). The function decreaseτ is similar to the
previous function, but updating the risk of the thresholds in the range [τmin, τ ] (line 12)
and selecting a threshold smaller than the current threshold τ (line 13).

The a priori probabilities PH0 and PH1 are calculated using the counting rule (Simple
counting rule for optimal data fusion, 2003), shown in Equation 5.1. It is worth remem-
bering that the algorithm proposed by Gong et al. is based on the exchange of decisions
between cooperative users to calculate these probabilities. However, in the developed
prototype these probabilities are based on the decisions received from the Second Stage.
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Algorithm 7 Bayesian Threshold Learning Algorithm
Require: τ as current decision threshold
Require: τmin as the minimum value for τ
Require: τmax as the maximum value for τ
Require: R as a vector of the Bayesian risk of each valid threshold between min and max
Require: Pf and Pm as vectors for the false alarm and miss detection probabilities of

each valid threshold between min and max
Require: PH0 and PH1 as a priori probabilities

1: function MAINTAINτ ( )
2: Update PH0 and PH1 using the counting rule
3: Update Pf (τ) and Pm(τ)

4: function INCREASEτ ( )
5: Update PH0 and PH1 using the counting rule
6: Update Pf (τ) and Pm(τ)
7: Update the Bayesian risk in R of all threshold in the interval [τ , τmax]
8: τ ← The threshold in R and in the interval [τ , τmax] with the smallest Bayesian

risk
9: function DECREASEτ ( )

10: Update PH0 and PH1 using D by counting rule
11: Update Pf (τ) and Pm(τ)
12: Update the Bayesian risk in R of all threshold in the interval [τmin, τ ]
13: τ ← The threshold in R and in the interval [τmin, τ ] with the smallest Bayesian

risk

PH0 =
Total of D2nd==H0

Total of D2nd

PH1 =
Total of D2nd==H1

Total of D2nd

(5.1)

The Bayesian risk of a valid threshold is calculated as shown in Equation 5.2, where
r is the risk, τ is the threshold value, Pf (·) is the probability of false alarm for τ , Pm(·) is
the probability of miss detection and k is a weight parameter. The probabilities Pf (·) and
Pm(·) are calculated independently for each valid threshold based on the decisions of the
First and Second Stages.

r(λ) = PH0Pf (λ) + kPH1Pm(λ) (5.2)

The parameter k is used to adjust the risk value of the miss detection. In a conservative
behavior, in which harmful interference with the PU is prohibited, it is desirable to reduce
the decision threshold τ . In this case, the risk value of a miss detection should be greater
than the risk value of a false alarm, i.e. it is more desirable to have several false alarms
than a single miss detection. Similarly, the decision threshold τ should be increased for a
more aggressive behavior. This behavior is achieved by assigning a risk value k < 1 for
the miss detection.
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5.4 Chapter Summary

This chapter presented the prototype developed to evaluate ATA. It began by present-
ing the SDR platform in two parts: hardware and software. The hardware part made a
brief overview of the USRP front-ends and then detailed the combination of motherboard
and daughterboard used in this dissertation. The second part detailed the GNU Radio
toolkit and its integration with the USRP. Afterwards, the implementations required by
the Sensing and Machine Learning Components were explained.

For the Sensing Component, the ED, WFD and CFD were detailed. Block diagrams
were used to provide the details about the operations performed by each sensing technique
to generate the decision hypothesis. In addition, the difference in the complexity of each
sensing technique was made clear with the analysis of the block diagrams. The use of a
multi-stage architecture, which combines two or more techniques in a SU, becomes an
interesting approach to reduce the sensing time while maintaining a high accuracy.

For the Machine Learning Component, the implementation of its two algorithms was
detailed. The first one was the Feedback Algorithm, which uses an exponential function
to adapt the interval between activations of the Second Stage. Then, details about the
Bayesian threshold learning algorithm and how this algorithm adapts the decision thresh-
old was given.

The integration of the Sensing Component and the Machine Learning Component en-
ables the developed prototype to achieve a high sensing accuracy and maintain an overall
low sensing time. In the next chapter, the evaluation scenario and the results obtained are
presented.
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6 EXPERIMENTAL EVALUATION

This chapter presents the experimental scenario and the results obtained in the eval-
uation of ATA. The evaluation scenario and the parameters are described in Section 6.1.
Afterward, the results regarding the sensing accuracy and sensing duration are presented
and discussed in Section 6.2. The proposed architecture is compared to other multi-stage
architectures in Section 6.3.

6.1 Evaluation Scenario and Parameters

ATA was evaluated in an experimental environment that emulates a public safety ra-
dio channel (STEVENSON et al., 2009). In this type of channels, the PUs are police,
ambulance, and firefighter cars. Usually, a public safety channel in a given geographical
area is vacant because there is no presence of such cars. A SU, such as a Internet Service
Provider (ISP), can access a vacant public safety channel to perform its communication.
However, in special situations, such as football games or accidents, these channels be-
come occupied. In such a scenario, the SU must sense the radio channel to detect if PU is
not transmitting, i.e. detect the white space. The PU and the SU are detailed in Sections
6.1.1 and 6.1.2, respectively.

6.1.1 The PU: Police, ambulance, and firefighter cars

An application was developed in the GNU Radio toolkit to emulate the behavior of
the PU. This application used a continuous-time Markov chain with ON and OFF states
to control the generation of radio signals. This model has been widely adopted in the
literature because it approximates the spectrum usage pattern of public safety radio chan-
nels (SALEEM; REHMANI, 2014). The application generates the radio signal in a pre-
configured central frequency only when the ON state is active. The duration of the ON and
OFF periods followed a Poisson distribution of mean and variance (σ) of 3 seconds (FA-
GANELO et al., 2013).

In our experimental scenario, we considered different probabilities for the PU to oc-
cupy the licensed channel (PON ), i.e. the probability to select the ON state. The Markov
chain with the ON and OFF states is illustrated in Figure 6.1. We obtained the results
considering three different values for PON : (I) 10%, indicating a PU that rarely occupies
its channel, i.e. low occupancy, (II) 50%, indicating a PU that usually occupies its chan-
nel, i.e. intermediate occupancy, and (III) 90%, indicating a PU that often occupies its
licensed channel, i.e. high occupancy With these probabilities, we can analyze the impact
of the PU activity in the sensing accuracy and sensing duration of ATA (MACALUSO
et al., 2013).
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ON OFF

1− PON

PON

PON

1− PON

Figure 6.1: Markov chain for the public safety PU

The signal generated by the PUs in the ON state was configured to be at the central
frequency of 200 MHz with 2 MHz bandwidth and using a OFDM signal. In addition,
we evaluated the prototype considering a signal generated in PU with different values of
Energy per bit to Noise Spectral Density Radio (EBN0), i.e. the normalized SNR per
bit transmitted. These values were: −20, −15, −10, −5, 0 and 5 dB. A EBN0 equal to
0 dB indicates that the noise power and the signal power are equal; values below 0 dB
indicate that the noise power is greater, and values above 0 dB indicate that the signal
power is greater. The use of different EBN0 allowed us to analyze the prototype perfor-
mance in detecting radio signals generated with different intensities (TANDRA; SAHAI,
2007). The parameters used in the experimental environment for the PU are summarized
in Table 6.1.

Parameter Value Description
TV Channel Central Frequency 200 MHz Central frequency when transmitting
TV Channel Bandwidth 2 MHz Channel bandwidth when transmitting
TV Signal Modulation OFDM Modulation used when when transmitting
EBN0 −20,−15,−10,−5, 0 and 5 dB Normalized energy per bit at the transmission
PON 10%, 50%, and 90% Probability to select PON

σ 3 seconds Mean time in the ON and OFF states

Table 6.1: Parameters used to configure the public safety PU

6.1.2 The SU: ISP

The prototype of ATA was deployed to sense the public safety channel and detect
whether or not a police, ambulance or firefighter car is transmitting. The results were
obtained using two different combinations of sensing techniques. The first combination
used the ED and the WFD in the First and Second Stages, respectively. In the second
combination, the WFD was replaced by the CFD. For the sake of simplicity, these two
combinations are referred to as ATA-ED/WFD and ATA-ED/CFD. These combinations
allowed the analysis of the impact of different sensing techniques in the performance of
ATA.

The configuration of the sensing techniques used in ATA was as follows: the number
of samples used to apply the test statistic Λ of the sensing techniques were fixed in 1024.
The initial decision threshold (th1st) of the Threshold Learning Algorithm was set to −75
dB, with a threshold adjustment step (∆τ1st) of 0.1 dB. The decision threshold for the
Second Stage (th2nd) was set to match a given PFA. The base b for the Feedback Algorithm
was 2 and the maximum interval between activations of the Second Stage (Imax) was 64.
The parameters used in the configuration of ATA are summarized in Table 6.2.

The PU was configured to generate its signal uninterruptedly to obtain the pattern (p)
used in the WFD. An application was developed to receive the television signal and to cal-
culate the average power received in each frequency of the signal bandwidth. Figure 6.2
illustrates the resulting pattern p in the frequency domain, wherein the x axis represents
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Parameter Value Description
N 1024 samples Samples used by the SS techniques
τ1st −75 dB Initial decision threshold for the First Stage
∆τ1st 0.1 dB Step to adjust τ
τmin -120 dB Minimum valid value for τ
τmax 0 dB Maximum valid value for τ
τ2nd Based on the PFA Decision threshold for the Second Stage
b 2 Base for the Exponential Feedback Algorithm
Imax 64 Maximum interval between feedbacks

Table 6.2: Parameters used to configurate ATA

the N points of the FFT and the y axis shows the normalized power in each point. The
signal generated by the television broadcaster is the straight line in the center of the x
axis.
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Figure 6.2: Pattern used detect the television broadcaster

Aiming to evaluate the performance of ATA, we compared it with the single-stage
version of the ED, WFD, and CFD. In addition, the comparison includes the hierarchi-
cal architecture proposed by Maleki, Pandharipande, and Leus (MALEKI; PANDHARI-
PANDE; LEUS, 2010), referred to as Two-Stage Hierarchical Architecture (TSHA). The
decision threshold of these techniques was defined in the same way as for the Second
Stage of ATA, i.e. to satisfy a given PFA. Finally, each experiment was executed for 20
seconds and repeated until a 95% confidence level was achieved.

6.2 Sensing Accuracy and Duration Results

In this section, we present the results regarding the sensing accuracy and sensing
duration obtained in the experimental radio environment. The decision thresholds were
configured to satisfy the PFA of 0%, 50% and 100%. For the sake of simplicity, we
separated the results in three analyses, based on the PFA. In addition, we show the sensing
accuracy and sensing duration for the three occupancy probabilities defined, which are
PON = 10%, 50% and 90%.

6.2.1 Results for PFA equal to 0%

The results of the first analysis are presented in Figure 6.3, in which we considered
a PFA is equal to 0%. It is worth highlighting that with this PFA the sensing techniques
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used the highest value observed when applying the test statistic in the noise. For example,
the ED used the highest energy power observed in the noise, whereas the WFD used the
highest correlation and the CFD the highest cyclic correlation. Thus, with this PFA the
sensing techniques tend to declare the channel as vacant.

The sensing accuracy obtained when PFA is equal to 0% is shown in Figures 6.3(a),
6.3(b) and 6.3(c). As can be noted, the sensing accuracy of the single-stage techniques
decreased as the channel became more occupied by the PU. More precisely, when PON is
10% the sensing accuracy is above 90%, and it decreases to 50% when PON is 50% and
to 10% when PON is 90%. This occurs because the sensing techniques tend to declare the
channel as vacant due the PFA used. We can conclude that the accuracy of a single-stage
architecture for a PFA of 0% is equal to 100−PON , i.e. probability of the PU not occupy
the sensed channel. The decrease in accuracy of the ED and the CFD also impacted in the
TSHA.

The two variations of ATA presented the highest sensing accuracy for PON equal 10%
and 50%. This occurs because the learning algorithm was able to adapt the decision
threshold. However, the two variations were not able to achieve a high sensing accu-
racy when PON was equal to 90%. This occurs because the PFA used made the learning
algorithm adapt the decision threshold in the wrong direction.

The sensing duration of the techniques is shown in Figures 6.3(d), 6.3(e), 6.3(f). The
sensing duration of the single-stage architectures is constant for all values of PON . This
occurs because the sensing duration of this architecture does not depend on the decision
threshold used or the channel status occupancy. Specifically, the ED, WFD, and CFD had
a sensing duration of approximately 0.1 ms, 0.30 ms and 0.56 ms, respectively. The PFA

equal to 0% makes the TSHA activate the second stage frequently. Because of this, the
sensing duration of TSHA was of approximately 0.65 ms, which is higher than the single-
stage version of the two sensing techniques used in the architecture (ED and CFD).
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(f) PON = 90%

Figure 6.3: Results for PFA = 0%

The sensing duration of ATA-ED/CFD was 0.5 ms for PON equal to 50%, indicat-
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ing that the learning algorithm required frequent feedbacks while adapting the decision
threshold. For PON equal to 10% and 90%, the sensing duration of ATA-ED/CFD was
of approximately 0.22 ms, indicating that less feedbacks were required to adapt the deci-
sion threshold. This occurred because the decision threshold converged to the value that
made the decisions of the First and Second Stages of ATA equal. However, for PON equal
to 90%, the threshold converged to a wrong value. Moreover, ATA-ED/WFD presented a
sensing duration similar to the single-stage ED, i.e. 0.11 ms, indicating that few feedbacks
were required.

With the obtained results we can conclude that ATA-ED/WFD is the best solution
when PFA is equal to 0%. ATA-ED/WFD presented a sensing accuracy higher than
other solutions, while the sensing duration was near to the single stage ED. In addition,
ATA-ED/CFD presented a high accuracy, but the sensing duration was higher than ATA-
ED/WFD.

6.2.2 Results for PFA equal to 50%

The second analysis considered a PFA equal to 50%. The results of this analysis are
shown in Figure 6.4. A PFA of 50% uses the median value observed when applying the
test statistic in the noise1. Thus, with this PFA the sensing techniques declare the channel
as vacant in 50% of the decisions made when only noise is present.

The sensing accuracy obtained is shown in Figures 6.4(a), 6.4(b) and 6.4(c). The
single-stage architectures maintained the sensing accuracy in approximately 55% in all
values PON . We highlight that with this PFA the sensing accuracy should increase when
the channel is often occupied. However, this was not observed in the collected results
because the values used for EBN0 were not high enough to easily separate the noise from
the PU signal.

The increase in accuracy achieved by the TSHA is very clear in this analysis. We can
note that the TSHA achieves better accuracies for channels often occupied. This occurred
because a PFA equal to 50% is suited for channels often occupied.

The two combinations of ATA achieved a sensing accuracy higher than TSHA for all
values of PON . For PON equal to 10% and 50%, the two combinations and TSHA had a
similar accuracy for EBN0 below −10, whereas for other EBN0, ATA achieved a higher
sensing accuracy. In addition, the two combinations of ATA and TSHA had a similar
sensing accuracy when PON is equal to 90%. From these results, we can conclude that
the sensing accuracy of ATA and TSHA are equivalent for low EBN0, while for higher
EBN0 ATA is better.

The sensing duration achieved for the PFA equal to 50% is shown in Figures 6.4(d),
6.4(e), 6.4(f). The sensing duration of the single-stage architectures was equal for all
values of PON and, in addition, equal to the previous PFA. The TSHA reduced the number
of activations of the second stage and, consequently, reduced the sensing duration, when
compared to the PFA equal to 0%. Also, the sensing duration of TSHA reduced as PON

increased, being equal to 0.59 ms, 0.56 ms and 0.53 ms for PON equal to 10%, 50% and
90%, respectively. This occurred because the number of activations of the second stage is
reduced when the occupancy of the sensed channel increases.

The sensing duration of both combinations of ATA was higher than the sensing dura-
tion obtained when PFA was equal to 0%. This occurred because the learning algorithm
required more feedbacks to adapt the decision threshold and not because of the change

1Another definition is that a PFA of 50% is equivalent to select the 50th percentile of the observed
values.
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(b) PON = 50%
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(d) PON = 10%
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(f) PON = 90%

Figure 6.4: Results for PFA = 50%

in PFA. Moreover, given a fixed PON , we can note that the sensing duration decreased
as the EBN0 increased. This occurred because ATA requires frequent feedbacks to adapt
the decision threshold for lower values of EBN0, i.e. the PU is weaker than noise, which
hardens the threshold adaptation.

The results showed that ATA-ED/WFD was the best combination when PFA is equal
to 50%. This variation presented a sensing accuracy similar to or higher than the other
architectures and a sensing duration that was always below the single-stage version of the
WFD.

6.2.3 Results for PFA equal to 100%

The third and final analysis considered a PFA equal to 100%. Figure 6.5 shows the
obtained results. This PFA has the effect of making the sensing technique select as de-
cision threshold the lowest value observed when applying the test statistic in the noise.
Thus, the sensed channel is evaluated as occupied in practically all decisions.

The sensing accuracy obtained for PFA equal to 100% is shown in Figures 6.5(a),
6.5(b) and 6.5(c). In this analysis, the sensing accuracy of the single-stage architectures
and the TSHA increased with PON . More precisely, when PON is 10% the sensing accu-
racy was approximately of 10%, and it increased to 50% when PON was 50% and to 90%
when PON was 90%. This occurred because the PFA declares the channel as occupied in
practically all decisions. So, the sensing accuracy increases as the PU occupies the sensed
channel more often. In effect, a PFA of 100% causes the sensing accuracy to be directly
related with the PU occupancy probability.

The combinations of ATA presented the highest sensing accuracy for PON equal 50%
and 90%. However, the two combinations were not able to achieve a high sensing accu-
racy when PON was equal to 10%. In this case, the PFA used made the learning algorithm
adapt the decision threshold in the wrong direction, which is the same problem mentioned
when PFA and PON are equal to 0% and 90%, respectively.
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The sensing duration obtained is shown in Figures 6.3(d), 6.3(e), 6.3(f). As expected,
the sensing duration of the single-stage architectures remains unchanged. The sensing
duration of the TSHA was of approximately 0.12 ms for all values of PON , which is
near the single-stage ED. The TSHA achieved such a low sensing duration because the
first stage declared the channel as occupied in almost all decisions, rarely activating the
CFD in the second stage. It is noteworthy that this PFA lead the TSHA to achieve the
lowest sensing duration possible by combining the ED in the first stage and the CFD in
the second.
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(a) PON = 10%
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(d) PON = 10%
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(e) PON = 50%
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Figure 6.5: Results for PFA = 100%

The sensing duration achieved by the ATA-ED/CFD combination was higher than the
sensing duration of TSHA. However, the ATA-ED/WFD combination achieved a sensing
duration better than TSHA for all PON . This occurred because executing the Second Stage
with the WFD is faster than executing it with the CFD.

With the obtained results we can conclude that ATA-ED/WFD is the best solution
for all values of PFA. In almost all analyses ATA-ED/WFD presented a sensing accuracy
higher than the other solutions, while the sensing duration was near to the single stage ED.
The two exceptions are when the PFA configured lead the learning algorithm to adapt the
threshold in the wrong direction, leading to low sensing accuracies.

6.3 Comparison of Multi-Stage Architectures

Finally, we perform a comparison of the current multi-stage architectures for SS.
We summarized the main characteristics of the architectures in the following items: (I)
sensing techniques used in each stage, (II) if the architecture considers threshold adapta-
tion mechanisms, (III) if a mechanism to optimize the activations of the second stage is
present, and (IV) the evaluation methodology used to obtain the results. The comparison
is summarized in Table 6.3.
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The lack of mechanisms to adapt the decision threshold in real time is one of the
constraints identified in current multi-stage architectures for SS. To overcome the lack
of such a mechanism, we integrate machine learning algorithms and SS. The threshold
adaptation enabled the proposed architecture to achieve a high sensing accuracy in radio
environments with different channel occupancy probabilities.

Another constraint identified in current architectures is the lack of an efficient mecha-
nism to control the activations of the second stage. For example, the proposal of Maleki,
Pandharipande, and Leus activates the second stage whenever the first stage evaluates the
channel as vacant. Such mechanism is not efficient in channels often vacant. In this dis-
sertation, we proposed a mechanism to control the activations of the second stage based
on the accuracy of the first stage. Thus, the activations of the second stage are reduced
when the first stage is accurate. The results showed that this mechanism enabled the pro-
posed architecture to achieve a lower sensing duration when compared to the proposal of
Maleki, Pandharipande, and Leus.

Finally, we evaluated the proposed architecture in an experimental radio environment
using the USRP radio front-end and the GNU Radio toolkit. Through the experimental
evaluation and the results obtained, we proved that the proposed architecture is applicable
in current radio platforms.

Proposal Techniques Threshold Adaptation Optimize 2nd Stage Evaluation Methodology
Luo et al. ED No No Analytical and Simulation

Maleki, Pandharipande, and Leus ED and CFD No No Analytical
Nair et al. ED and CFD No No Simulation

Ejaz, Hasam and Kim ED, CFD and Match Filter No No Simulation
Proposal Any Yes Yes Experimental

Table 6.3: Comparison of multi-stage architectures
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7 CONCLUSION AND FUTURE WORK

In this dissertation, we presented the inefficiency of the current spectrum allocation
policies. Governmental agencies, knowing that the licensed users scarcely use allocated
radio channels, are willing to propose new solutions to enhance the usage of the radio
spectrum. In such a scenario, the dynamic spectrum access arose as the most promising
solution to enhance the spectrum usage.

The dynamic spectrum access enables unlicensed users to transmit in underutilized
radio channels. One constraint imposed by regulatory agencies is that these transmissions
cannot interfere in the operation of a licensed user. Therefore, a radio performing dynamic
access needs to perform spectrum sensing to analyze whether or not a licensed user is
using a given radio channel.

The device performing spectrum sensing may encounter different noise and interfer-
ence levels when sensing the radio channels. Also, the secondary user can be mobile,
changing its location over time. Thus, the operating parameters of the spectrum sensing
need to be adapted to different situations. Despite the research efforts to improve the per-
formance of spectrum sensing techniques, few research efforts considered the adaptation
of spectrum sensing parameters.

In this dissertation, we proposed the Multi-Stage Adaptive Threshold Architecture
(ATA). The proposed architecture employs machine learning algorithms to adapt the de-
cision threshold of sensing techniques. In addition, ATA uses a mechanism to reduce the
sensing duration in environments where the sensing accuracy is high.

7.1 Main Contributions and Results Obtained

Along with the proposed architecture, this dissertation contributes to the development
of a prototype of ATA. The prototype shows that the architecture can be deployed in future
radios performing spectrum sensing. Moreover, a marginal contribution is the implemen-
tation of the energy detection, waveform detection, and cyclostationary feature detection
sensing techniques in the GNU Radio toolkit.

Another significant contribution of this dissertation is the proposal and implementa-
tion of a more robust mechanism to control the activations of the second stage in multi-
stage architectures for spectrum sensing. Although this mechanism was integrated into
ATA to reduce the sensing duration when the sensing accuracy is high, other multi-stage
architectures could adopt it.

ATA prototype was evaluated in an experimental radio environment resembling the
IEEE 802.22. Different occupancy probabilities, noise power and probabilities of false
alarm were considered. The results showed that the proposed architecture achieves a high
sensing accuracy and a low sensing duration in different radio environments.



62

7.2 Final Remarks and Future Work

There are several opportunities for future research. Once the operation of ATA was
shown as an improvement of current state-of-the-art sensing architectures, we intend to
extend the analyses to more dynamic radio environments, such as the radio channels used
by the 4G cellular network. To enable it, the licensed user must be modified to emulate the
operation of 4G mobile devices and 4G base stations. In addition, ATA can be compared
with cooperative sensing solutions.

Another improvement to ATA is to consider different machine learning algorithms
to adjust the decision threshold. Such algorithms must consider some restrictions that
difficult their operation, such as real-time learning and only one feedback to verify their
correctness. Rafael Rodrigo Nicolay conducted an initial analysis in his course conclusion
work entitled “Sensoriamento Espectral por Detecção de Energia Utilizando Aprendizado
por Reforço”. Nicolay proposed a State-Action-Reward-State-Action (SARSA) learning
algorithm and compared it with the Bayesian learning algorithm used in this dissertation.
The results showed that SARSA achieves a similar sensing accuracy bayesian but with a
much lower sensing duration.

Finally, ATA can be improved to consider a cooperative feedback. More precisely,
an additional input in ATA could be the cooperative decision provided by a common
receiver. This input could be used as feedback by the learning algorithm to adapt the
decision threshold. In addition, an algorithm to give different weights for the feedback
provided by the Second Stage and the cooperative decision can be added.
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Abstract—Cognitive Radio devices perform dynamic access to
the radio frequency spectrum opportunistically. Since current
governmental policies do not allow interference with license
holders, a cognitive radio device must perform a spectrum sensing
to find vacant channels for use. Spectrum sensing techniques are
based on the detection of signal characteristics, such as energy
and waveform. These techniques present a trade-off regarding
sensing accuracy and sensing duration. In this sense, Multi-Stage
solutions emerged to combine different sensing techniques and
take benefit from the best characteristics of each one. The major
drawbacks in current Multi-Stage solutions are the use of fixed
decision thresholds to decide if a channel is vacant and the lack
of an efficient mechanism to activate the second stage. Fixed
detection thresholds makes unfeasible the adaptation to different
radio environments, while frequent activations of the second stage
highly increases the sensing duration. In this paper we propose a
Multi-Stage Adaptive Threshold Architecture for spectrum sens-
ing, using Machine Learning algorithms to dynamically adjust
the decision threshold and a feedback algorithm to control the
activations of the second stage. Results showed that the proposed
architecture increased the accuracy up to 36%, providing results
up to 14 times faster, when compared to the literature.

I. INTRODUCTION

Channels of the radio spectrum are usually statically al-
located to primary users for a long period of time, spread
along a large geographical area. The radio spectrum itself is
a finite resource, and with the increasing of the spectrum
usage, vacant channels are quickly becoming unavailable.
Therefore, a strategy where secondary users could temporarily
access allocated but idle channels should be adopted, thus
overcoming the scarcity of available channels. In such a
strategy, for example, a non-licensed Internet Service Provider
(ISP), operating in a remote rural area, could use channels
originally allocated to licensed TV broadcasters whose signal
do not reach such a remote area [1].

Since secondary users must not interfere in the proper trans-
missions of licensed primary users, a secondary user’s device
must analyze the radio spectrum to evaluate which channels
are vacant for use [2]. This analysis is called Spectrum
Sensing (SS) and is the main function of Cognitive Radio (CR)
devices [3]. In the last decade, the main techniques employed
in SS were based on analyzing signal characteristics such as
energy and waveform [2]. Each technique presents different
performance in terms of sensing accuracy and sensing dura-
tion. For example, the Energy Detection (ED) technique is the
fastest one, but it is also the least accurate, whereas the match

filtering is a more accurate technique, despite also being one of
the slowest [2]. To take advantage of the best characteristic of
each technique, multi-stage sensing solutions were proposed,
where SS is split in multiple stages, each executing different
SS techniques. Usually, multi-stage solutions comprise two
stages, using ED in the first stage and a Ciclostationary Feature
Detection (CFD) in the second stage [4] [5].

Current state-of-the-art on SS presents two major draw-
backs. The first one is related to the use of static decision
thresholds to determine whether a channel is vacant. These
fixed thresholds may be inappropriately defined for signal
detection, mainly in unknown radio environments, where there
are uncertainty about the noise power. Machine learning algo-
rithms have been highlighted as a solution to properly adjust
these thresholds, independently of the radio environment [6].
However, given the dynamicity of radio environments, ma-
chine learning techniques cannot be previously trained to
automatically adapt thresholds properly to every radio envi-
ronment. Another drawback in multi-stage solutions is related
to the lack of an efficient mechanism to dynamically activate
the second stage, which may lead to an increase in the sensing
duration, degrading the performance of the CR device. To the
best of our knowledge, no multi-stage solution considering the
use of machine learning with a control mechanism for second
stage activations, has been proposed so far.

In this paper we introduced a multi-stage Adaptive Thresh-
old Architecture (ATA) for SS that applies machine learning
to dynamically adjust the decision thresholds. In addition, a
feedback algorithm to control the activation of the second stage
was designed. A prototype has been developed to validate
the proposed architecture in an experimental environment,
using the GNU Radio framework1 and the Universal Software
Radio Peripheral 2 (USRP2) front-end2. The novelties of
our proposed architecture are: (i) the use of a new machine
learning based on reinforcement learning algorithm to auto-
matically adjust the decision threshold, and (ii) an algorithm
to dynamic control the activation of the second stage. Our
proposal was compared with a two-stage (ED/CFD) solution
found in the literature [4] and with the most used sensing
techniques. Furthermore, we evaluated our ATA using two
configurations: ED/CFD and ED/WFD. Results shown that the
proposed architecture increased up to 36% the accuracy of SS

1http://www.gnuradio.org; 2http://www.ettus.com
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and reduced up to 14 times the sensing duration.
The remainder of this paper is organized as follows. Related

work on multi-stage SS is presented in Section II. Our pro-
posed architecture is introduced in Section III. Performance
evaluations are discussed in Section IV. Finally, conclusions
and future work are presented in Section V.

II. RELATED WORK

SS has gained attention from the scientific community in
the last years, due to its importance in the development of
CR devices. Current state-of-the-art in SS aims to develop
techniques capable of evaluate the radio channel occupancy
status with the highest accuracy in the shortest duration [1].
However, balancing the existing trade-off between sensing
accuracy and sensing duration is challenging. Attempting to
achieve this balance, solutions such as multi-stage sensing and
cooperative sensing were proposed [2] [4].

Multi-stage solutions improve the SS by applying different
techniques in each stage to obtain fast yet accurate evaluations
regarding the channel occupancy status. Maleki, Pandhari-
pande, and Leus [4] proposed a two-stage architecture that
executes an ED in the first stage and a CFD in the second
stage. When the ED evaluates the channel as vacant, the CFD
is activated to confirm its result. Using an analytical evaluation,
the authors showed that combining these two techniques in a
hierarchical scheme increases the accuracy when compared
to a single-stage solution of both techniques. In addition, this
two-stage architecture reduced the sensing duraiton when com-
pared to the single-stage CFD. Nevertheless, in this solution
the second stage is frequently activated in environments where
the channels are often vacant, increasing the sensing duration.

Nair, Vinod, and Krishna [5] proposed an algorithm to
control the activation of the second stage, aiming to reduce
the sensing duration of the solution proposed by Maleki, Pand-
haripande, and Leus [4]. The authors calculated the minimum
Signal-to-Noise Ratio (SNR) value necessary to consider the
radio channel vacant without activating the second stage. This
SNR was calculated according to a Constant False Alarm Rate
(CFAR), i.e., a probability of considering a channel occupied
when it is vacant. Results, obtained by simulation, showed that
with a minimum SNR of −15.4 dB the second stage can be
inhibited without accuracy loss.

In scenarios where the cyclostationary features of licensed
users are unknown, the CFD technique may be unfeasible. To
overcome this obstacle, Li, Wang, and Kuang [7] extended
the research of Maleki, Pandharipande, and Leus [4] by
applying the maximum eigenvalue detection technique in the
second stage. The performance of this extended research was
evaluated analytically and by simulations. Similarly to other
multi-stage solutions, the results showed that the combination
of two different techniques reduces the sensing duration and
raises the accuracy when compared to single-stage solutions.
If the decision threshold of the first stage is unadjusted, no
corrections in this sense are made, i.e., in unknown environ-
ments, it may provide inaccurate results.

Different from multi-stage solutions, the goal of cooperative
sensing is to improve the sensing accuracy by addressing
situations where hidden users and transmission impairments
could lead to a wrong picture of the spectrum occupancy. A
cooperative solution may be achieved through the composition
of local SS results of two or more CRs in a fusion center, i.e.,
a centralized node responsible for providing the final result
regarding the radio channel occupancy. A combination of
multi-stage and cooperative sensing was proposed by Fahim,
Ismail, and Tawfik [8]. In such a proposal, all CR devices
execute an ED in the first stage. In the second stage, the CRs
send their sensing results to a fusion center, which combine
all results by majority voting. If the voting result is occupied,
then all CRs assume that the radio channel is occupied. On the
other hand, if the voting result is vacant, each CR considers
the result of its local ED as the true result. Simulations showed
that the performance of this multi-stage solution surpass the
conventional cooperative solutions. Similarly, Liu et al. [9]
proposed a Two-Stage solution that executes an ED in both
stages, each one with different decision thresholds. In addition,
a fusion center was introduced to gather SS results from all
CRs and determine which radio channels are vacant. The main
contribution of this proposal is that multi-stage sensing can be
easily extended to a cooperative solution. In this sense, we
argue that our architecture is also extensible to cooperative
sensing.

All investigated SS solutions presented results regarding the
increase of accuracy and reduction of the sensing duration.
Nevertheless, we identified as one recurring constraint the use
of static decision thresholds, which is a problem for dynamic
radio environments. For example, different noise power and
interference levels may be encountered by a mobile device
that changes its location to an unknown radio environment.
In such scenario, a static threshold is unfeasible [6]. Another
constraint is the lack of a mechanism to activate the second
stage. According to Bkassiny et al. [6], the use of machine
learning allows the CR to increase its performance in differ-
ent radio environments, by adapting its SS parameters, e.g.,
decision threshold. In this sense, we proposed an adaptive
threshold architecture to overcome the identified constraints
in the discussed works. Our proposal is a multi-stage solution
that uses machine learning techniques to adjust the decision
threshold of the first stage, and it is better described in the
next section.

III. ADAPTIVE THRESHOLD ARCHITECTURE

In this section the proposed Multi-Stage Adaptive Threshold
Architecture (ATA) for SS is presented. In Subsection III-A,
we detail the architecture modeling as well as the operation
of the comprised components. Finally, the feedback algorithm
is explained in Subsection III-B.

A. Multi-Stage Architecture

Considering a bottom-up approach, the proposed architec-
ture is composed of a radio front-end, the Sensing Component,
and the Machine Learning Component, as can be seen in
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Fig. 1. The radio front-end, e.g., USRP2, provides information
about the radio frequency spectrum to the Sensing Component.

ADC

Second Stage First Stage

Threshold
Learning

Algorithm

Feedback Algorithm

SS Request

y

D1st

τ

D2nd

RF Front-End

Sensing Component

Machine Learning Component

Fig. 1. Proposed Architecture

The Sensing Component is composed of the First and
the Second Stage. The First Stage executes continuously,
providing fast results regarding the channel occupancy for a
Channel Assignment Function. The goal of the Second Stage
is to be used as a feedback to verify and improve the accuracy
of the First Stage. In this sense, a fast SS technique should be
used in the First Stage, e.g., ED, and a more accurate in the
Second Stage, e.g., CFD or WFD.

The Machine Learning Component is the main novelty
presented in this architecture and it is composed of two
algorithms: a Threshold Learning Algorithm and a Feedback
Algorithm. The first is responsible for adapting the decision
threshold of the First Stage based on the results received
from the Feedback Algorithm. The decision threshold may
be adjusted using different machine learning algorithms, e.g.,
bayesian learning [10] or Q-learning [11]. On the other hand,
the Feedback Algorithm controls the activation of the Second
Stage and analyses the results of both First and Second Stages.
If both stages provide divergent results, the Second Stage is
assumed as correct, and the decision threshold of the First
Stage is adjusted by the Threshold Learning Algorithm. ATA
solution aims to improve the sensing accuracy and reduce
sensing duration, since the number of executions of the Second
Stage decreases as the accuracy of the First Stage increases.
Since the Feedback Algorithm is one of the contributions of our
proposal, we explain it in details in the following subsection.

B. Feedback Algorithm

This algorithm is responsible for (i) controlling the acti-
vation of the Second Stage of the Sensing Component, (ii)
comparing the results of the First and Second Stages, and (iii)
providing feedbacks about the accuracy of the First Stage to

the Threshold Learning Algorithm. The designed algorithm
can be seen in Algorithm 1.

We define D1st and D2nd as the results provided by the First
Stage and Second Stage, respectively. In addition, the interval
between feedbacks is expressed as bx activations of the First
Stage, where b is a positive integer value configured at the
algorithm initialization, and x is controlled by the Feedback
Algorithm. The maximum value that bx can assume is given
by Imax, also configured in the initialization.

Algorithm 1 Feedback Algorithm
Ensure: Imax as the maximum interval between feedbacks
Ensure: b as a value greater than 1

1: function FEEDBACK ALGORITHM
2: while SS is required do
3: Call the SSREQUEST of the Second Stage
4: Wait until an updated D2nd is received
5: Wait until an updated D1st is received
6: interval← UPDATEINTERVAL(D1st, D2nd)
7: Wait until interval decisions are received from the

First Stage
8: end function
9: function UPDATEINTERVAL(D1st, D2nd)

10: if D1st is equal to D2nd then
11: x← x+ 1
12: else
13: x← x− 1

14: return bx

15: end function

The first operation performed by the Feedback Algorithm is
requesting an updated decision to the Second Stage (line 3). In
the sequence, it waits until the requested decision (line 4) and
the decision D1st are received (line 5). Afterwards, the interval
until the next activation of the Second Stage is adjusted based
on these decisions (line 6). Finally, the algorithms wait until
interval decisions are received from the First Stage (line 7).

The operations performed to adjust the interval value are
shown in the updateinterval function (lines 8−13). The value
of x is increase if both detectors converged in the same
hypothesis (line 11−12) or decreased if not (line 13−14). The
interval assumes the value given by an exponential function,
i.e., bx (line 13). The exponential function is used in the
prototype because the interval is rapidly increased when the
First and Second Stages are converging to the same decision.
Similarly, the interval is rapidly decreased if the threshold τ
becomes invalid and must be adapted to another valued.

The first drawback presented in the researched multi-stage
solutions was eliminated in this architecture, by adding a
machine learning algorithm to dynamically adapt the decision
threshold. In addition, the second drawback, related to the
control of second stage activations was mitigated by the design
of the Feedback Control Algorithm. Therefore, we combined
the advantages of a multi-stage architecture with the capability
of adaptation to unknown radio environments. In the next
section the proposed architecture is evaluated and results are
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discussed.

IV. PERFORMANCE EVALUATION

The evaluation of the proposed architecture as well as
the obtained results are presented in this section. In Sub-
section IV-A, the experimental scenario and parameters are
detailed. Finally, results are presented in Subsection IV-B.

A. Experimental Scenario and Parameters

The scenario comprises an Internet Service Provider (ISP)
in a rural area that does not hold a licensed channel, as can
be seen in Fig. 2. This ISP is a secondary user and operates
within the same coverage area of a TV Broadcaster, which
is a primary user. Since in our scenario the TV Broadcaster
does not use its licensed channel all the time, the ISP performs
opportunistic access to this channel, providing Internet access
to all its clients.

TV
Primary User

ISP
Secondary User

ISP
Base Station

TV
Base Station

TV
Primary User

ISP
Coverage Area

TV Broadcast
Coverage Area

Fig. 2. Experimental Scenario

We deployed the ISP and TV Base Stations in the USRP2
radio front-end using the GNU Radio framework. The TV
Base Station occupies the channel according to a Poisson
distribution [11], with mean and variance (λ) of 2 seconds.
The ISP Base Station performs SS to detect the primary
user activity. In our experimental scenario, we considered
three variations of the TV Base Station occupancy probability,
defined as Pocc = 10%, and 90%. Since ATA is based on
machine learning, these occupancy probabilities were chosen
in order to stress ATA and verify if the learning process does
not interfere negatively in the spectrum sensing, as highlighted
by Macaluso et al. [12].

Additional parameters considered in the experimental en-
vironment can be observed in Table I. The TV Broadcaster
signal central frequency was set to 200 MHz with 2 MHz
bandwidth, using a OFDM modulation. The number of signal
samples (Nsamp) considered in all sensing techniques was
fixed as 1024. We used as the Threshold Learning Algorithm
the Bayesian Detector proposed by Gong et al. [10] with an
initial decision threshold (th1st) of −75 dB and a threshold
adjustment step (∆th1st) of 0.1 dB. The decision threshold
for the Second Stage (th2nd) was defined as a correlation
coefficient of 0.1 in all analysis. The base b for the Feedback
Algorithm is 2 and the maximum interval between activations
(Imax) is 32. Finally, each experiment was executed for
20 seconds and repeated until a 95% confidence level was
achieved.

TABLE I
PARAMETERS IN THE EVALUATION

Parameter Value
TV Channel Central Frequency 200 MHz
TV Channel Bandwidth 2 MHz
TV Signal Modulation OFDM
Nsamp 1024 samples
th1st −75 dB
∆th1st 0.1 dB
th2nd 0.1
b 2
Imax 64 activations
λ 2 s
Execution Time 20 s
Confidence Level 95%

B. Results

Aiming to evaluate the performance of ATA, we compared it
to the hierarchical architecture of Maleki, Pandharipande, and
Leus [4], referred to as Two-Stage Hierarchical Architecture
(TSHA). The decision thresholds were configured to satisfy the
PFA of 0%, 50% and 100%. For the sake of simplicity, we
separated the results in two analysis, based on the probability
of occupancy PON .

ATA results were obtained using two different combinations
of SS techniques: ED/CFD and ED/WFD. These combinations
allowed the analysis of the impact of different SS techniques in
ATA performance. In addition, the obtained results considered
two metrics: the accuracy and the sensing duration. These
metrics were measured considering different Energy per Bit
to Noise Spectral Power Density Ratio (Eb/N0), i.e., the
normalized SNR per bit transmitted. An Eb/N0 less than 0
indicates that the noise power is greater than the signal power.

The results of the first analysis are presented in Fig. 3. The
sensing accuracy and sensing duration for PFA = 0% are
shown in Figs. 3(a) and 3(b). The accuracy of all techniques
were constant for all Eb/N0 values. This occurred because the
PFA = 0% makes the sensing techniques declare the channel
as vacant, i.e., the sensing accuracy is high because the channel
is often vacant in this analysis. In addition, this PFA made the
first stage of TSHA declare the channel as vacant frequently,
consequently activating the second stage and increasing the
sensing duration. Because of this, the sensing duration of
TSHA was above the single-stage version of the CFD. Both
ATA combinations presented a higher sensing accuracy and a
lower sensing duration than TSHA.

In Figs. 3(c) and 3(d) are showed the results when PFA =
50%. The TSHA presented a lower sensing duration for
PFA = 50%, since less activations of CFD were required.
However, both combinations of ATA were faster than TSHA.
It is worth noticing that the sensing duration of ATA decreased
for Eb/N0 greater than −10 dB. This occurred because the
learning algorithm was able to adapt the decision threshold to
a correct value, as can be noted in the increase in the sensing
accuracy for Eb/N0 greater than −10 dB.
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Fig. 3. Results obtained for Pocc = 10%

Results for PFA = 100% are presented in Figs. 3(e) and
3(f). Using this PFA the sensing techniques always declare the
channel as vacant. Because of this, TSHA did not activated the
second stage, which in turn reduced it sensing duration to 0.12
ms. In addition, this PFA reduced the accuracy of all sensing
techniques because the sensed channel is rarely occupied.
Moreover, this PFA made the learning algorithm used in ATA
converge the decision threshold in the wrong direction, i.e., the
learning algorithm adapted the decision threshold to a value in
which the First Stage always declared the channel as occupied,
matching the feedbacks provided by the Second Stage.

The second analysis performed to evaluate the architectures
considering a PU that occupies the channel in 90% of the time,
i.e., Pocc = 90%. The results obtained in this environment are
showed in Fig. 4. The same PFA used in the previous analysis
were considered.

Results for PFA = 0% are presented in Figs. 3(a) and
3(b). Differently from the previous analysis, in which this
PFA benefited the sensing techniques, in this analysis the
sensing accuracy was severely degraded due the PFA used,
i.e., the channel was often occupied and the PFA made the
sensing techniques declare the channel as vacant. In addition,
the sensing duration of both combinations of ATA were lower
than TSHA and the single-stage WFD and CFD.

In Figs. 3(c) and 3(d) are showed the results when PFA =
50%. Is worth noticing that the results obtained for the sensing
accuracy and sensing duration are very similar to when Pocc =
10%. This occurred because the decision threshold used by the
sensing techniques is the same in both analysis and because the

Pocc are complementary, i.e., in the first analysis the channel
was occupied in 10% of the time and in the second analysis
is was vacant in 10% of the time.

The accuracy and sensing duration for PFA = 100% are
shown in Figs. 3(e) and 3(f). In this case the sensing accuracy
of all techniques was high. This occurred because the PFA

used made the sensing techniques declare the channel as
occupied in almost all decisions. Thus, in radio environments
where the PU is constantly occupying the channel, this PFA

is well suited. Although the sensing accuracy was similar for
all sensing techniques, the ATA-ED/WFD variation achieved
a lower sensing duration when compared to TSHA.

V. CONCLUSION

In this paper we proposed a multi-stage Adaptive Threshold
Architecture for spectrum sensing. The proposed architecture
comprises a Sensing Component and a Machine Learning
Component. The first one is responsible for providing updated
and accurate evaluations regarding the channel occupancy
status. The second one applies machine learning techniques
to improve the sensing accuracy and the sensing duration.
In addition, the Machine Learning Component enables an
adaptation to different radio environments.

Results to evaluate the proposed architecture were obtained
from experiments performed in a real radio environment using
the GNU Radio framework and the USRP2 radio front-
end. Outcomes showed that the proposed solutions outper-
forms the static threshold architectures in radio environments
with different channel occupancy probabilities. Directions for
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Fig. 4. Results obtained for Pocc = 90%

future investigations include other threshold learning algo-
rithms, such as Q-learning and State-Action-Reward-State-
Action (SARSA), different feedback algorithms and the ef-
fect of frequency selective fading effects over the sensing
performance. Another possibility is to evaluate the proposed
architecture in cooperative environments.
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