FLAVIO FERREIRA PRESSER

ELEMENTOS ISOPARAMÉTRICOS QUADRÁTICOS PARA A ANÁLISE DE PLACAS E CASCAS

Tese apresentada ao corpo docente do Curso de Pós-Graduação em Engenharia Civil da Escola de Engenharia da Universidade Federal do Rio Grande do Sul, como parte dos requisitos para obtenção do título de "MESTRE EM ENGENHARIA CIVIL".

PORTO ALEGRE

ESTADO DO RIO GRANDE DO SUL - BRASIL

JULHO DE 1979.

ESCOLA DE ENGENHARIA BIBLIOTECA

Esta tese foi julgada adequada para a obtenção do tí tulo de MESTRE EM ENGENHARIA CIVIL e aprovada em sua forma fi nal pelo Orientador e pelo Curso de Pos-Graduação.

> Prof. Agustin J. Ferrante Orientador

Prof. José Serafim Gomes Franco Coordenador do Curso de Pós-Graduação.

AGRADECIMENTOS

 Ao professor Agustin J. Ferrante pela orientação re cebida.

Ao professor José Serafim Gomes Franco, coordenador do Curso de Pós-Graduação em Engenharia Civil da UFRGS, pelo incentivo dado ao longo desse empreendimento.

A CAPES, pela concessão da bolsa de estudos.

A todos colegas, amigos e funcionários que de forma direta ou indireta participaram da realização deste trabalho.

SINOPSE

_______Neste trabalho desenvolvem-se dois elementos parabólicos do tipo isoparamétrico para a solução de placas e cascas, delgadas ou espessas. A formulação do elemento de cascas admite descontinuidades na superfície média destas estruturas. Ambos elementos utilizam integração numérica reduzida, e acei tam os mais variados tipos de carregamento.

Dá-se uma breve noção do método dos elementos finitos bem como da formulação isoparamétrica. Apresentam-se os elementos desenvolvidos, os detalhes dos programas e uma série de exemplos.

SYNOPSIS

In this work two parabolic isoparametric finite elements for the solution of thick and thin shells or plates are developed. The shell element formulation permits discontinuities between elements on the middle surface of structures. Both elements use reduced numerical integration and allow a wide range of loadings.

A short summary of finite elements is given with the isoparametric formulation. The elements developed are presented toghether with details of the computer programs and a series of examples.

SUMÁRIO

0	T	0	
P	A	12	
		~	

VII

CAPÍTULO 1 - INTRODUÇÃO	
1.1 - OBJETIVOS DO TRABALHO	01
1.2 - O MÉTODO DOS ELEMENTOS FINITOS	0 2
1.3 - AS CONDIÇÕES DE CONVERGÊNCIA	0 5
1.4 - A SOLUÇÃO DE PROBLEMAS DE PLACAS	
E CASCAS	0 9
CAPÍTULO 2 - OS ELEMENTOS ISOPARAMÉTRICOS	
2.1 - INTRODUCÃO	16
2.2 - TRANSFORMAÇÃO DE COORDENADAS	17
2.3 - DEFINIÇÃO DOS DESLOCAMENTOS	17
2.4 - COMPATIBILIDADE GEOMÉTRICA E CONVER	
GÊNCIA	18
CAPÍTULO 3 - ELEMENTOS ISOPARAMETRICOS PARA	
ANÁLISE DE CASCAS	
3.1 - DEFINIÇÃO DA GEOMETRIA	22
3.2 - DEFINIÇÃO DOS DESLOCAMENTOS	24
3.3 - DEFINIÇÃO DE DEFORMAÇÕES E TENSÕES	26
3.4 - MATRIZ DE RIGIDEZ DO ELEMENTO	27
3.5 - INTRODUÇÃO DO SEXTO GRAU DE LIBERDADE	34
3.6 - ROTAÇÃO DA MATRIZ DE RIGIDEZ DE COOR-	
DENADAS LOCAIS PARA GLOBAIS	3 9
3.7 - FORÇAS NODAIS EQUIVALENTES	4 C
3.7.1 - CARGA LATERAL DISTRIBUÍDA	4 1
3.7.2 - CARGA DISTRIBUÍDA SOBRE A SUPERFÍ-	
CIE DO ELEMENTO	42
3.7.3 - PESO PRÓPRIO	4 3
3.7.4 - DEFORMAÇÕES TERMICAS	4 3
3.7.5 - ROTAÇÃO DAS CARGAS NODAIS EQUIVA-	
LENTES	45

3.8 - TENSÕES	46
3.8.1 - TENSÕES NAS COORDENADAS LOCAIS	46
3.8.2 - TENSÕES NAS COORDENADAS GLOBAIS	46
CAPÍTULO 4 - PARTICULARIZAÇÃO PARA ANÁLISE DE	
PROBLEMAS DE FLEXÃO DE PLACAŠ	
4.1 - INTRODUCÃO	49
4.2 - DEFINIÇÃO DA GEOMETRIA	50
4.3 - DEFINIÇÃO DOS DESLOCAMENTOS	50
4.4 - DEFINIÇÃO DE DEFORMAÇÕES E TENSÕES	51
4.5 - MATRIZ DE RIGIDEZ DO ELEMENTO	52
4.6 - FORÇAS NODAIS EQUIVALENTES	57
4.6.1 - CARREGAMENTO PESO-PRÓPRIO	57
4.6.2 - CARREGAMENTO DISTRIBUÍDO SOBRE A SUPER	
FÍCIE DO ELEMENTO	58
4.6.3 - CARGAS DISTRIBUÍDAS SOBRE OS LADOS DOS	
ELEMENTOS	58
4.6.4 - DEFORMAÇÕES INICIAIS	59
4.7 - TENSÕES	59
CAPÍTULO 5 - DETALHES COMPUTACIONAIS	
5.1 - INTRODUÇÃO	61
5.2 - PROCEDURE PROGRAMA	61
5.3 - PROCEDURE ANÁLISE	63
5.4 - PROCEDURE RITCTR	64
5.5 - PROCEDURE SACARI	64
5.6 - PROCEDURE REALCONST	64
5.7 - PROCEDURE PAR5	65
5.8 - PROCEDURE PARIO	65
5.9 - PROCEDURE PARI	65
5.10- PROCEDURE PAR5A	67
5.11- PROCEDURE PAR5B	67
5.12- PROCEDURE PARI1	67
5.13- PROCEDURE PAR12	67
5.14- PROCEDURE NOVARIG	67
5.15- PROCEDURE SPD E PROCEDURE SPOD	67

5.16 - PROCEDURE GETLO	67
5.17 - PROCEDURE SOLGEN	67
5.18 - PROCEDURE TETCTR	68
5.19 - PROGRAMA PARA PLACAS	68
CAPÍTULO 6 - EXEMPLOS ILUSTRATIVOS E ANÁLISE DOS RESULTADOS	
6.1 - EXEMPLO 1	70
6.2 - EXEMPLO 2	72
6.3 - EXEMPLO 3	75
6.4 - EXEMPLO 4	77
6.5 - EXEMPLO 5	79
6.6 - EXEMPLO 6	89
6.7 - TEMPOS PARA A FORMAÇÃO DA MATRIZ DE	
RIGIDEZ	92
CAPÍTULO 7 - CONCLUSÕES E RECOMENDAÇÕES	94
REFERÊNCIAS BIBLIOGRÁFICAS	97

|--|--|--|

CAPÍTULO 1 - INTRODUÇÃO

1.1 - Objetivos do Trabalho

No método dos elementos finitos vários foram os el<u>e</u> mentos desenvolvidos para resolverem problemas de placas e cascas.

Porém, a maioria dos elementos de alta ordem em especial aqueles degenerados dos elementos isoparamétricos para análise tri-dimensional, por trabalharem com eixos de referên cia locais, não permitem a solução de cascas formadas por duas ou mais superfícies, em cujas linhas de intersecção exis tem descontinuidades das direções normais.

O presente trabalho, tem como objetivo desenvolver um elemento de casca, que elimina a restrição acima por expan são dos graus de liberdade nodais, a três deslocamentos e três rotações com referência ao sistema de eixos globais do problema. Para eventuais singularidades, utiliza-se uma técnicomputacional simples, jã empregada com sucesso por A.G. Groehs¹³ em elementos planos para análise de folhas poliédricas, e que será mostrada com detalhes no capítulo 3.

O elemento aceita uma variação parabólica da espessura, e pode ser solicitado externamente pelo peso próprio, forças e momentos concentrados, cargas distribuídas parabólicamente sobre a superfície, forças e momentos distribuídos quadraticamente sobre os lados, variação parabólica de temperatura sobre a superfície, e linear através da espessura.

Como resultado, obtem-se os deslocamentos nodais,as tensões em 5 pontos ao longo da espessura, referidas aos eixos locais e globais, tensões tangenciais máximas, e as solicitações simples utilizando a teoria de laminas delgadas.

Apresenta-se também um elemento para placas, que é tratado simplesmente como um caso particular do elemento de casca.

Nos capítulos posteriores, da-se uma noção sobre o me

todo dos elementos finitos, descreve-se a formulação isoparamé trica, assim como os elementos utilizados, os detalhes do programa, e no final são apresentados vários exemplos.

Cabe salientar que posteriormente esses elementos serão implementados no sistema LORANE LINEAR (Linguagem Orientada para Análise Estrutural aplicada a problemas estáticos lineares), que foi desenvolvido pelo Curso de Pós-Graduação em Engenharia Civil da UFRGS.

1.2 - O Método dos Elementos Finitos

O método dos elementos finitos é hoje um instrumento poderoso, com que contam os engenheiros para a solução de problemas da mecânica do contínuo. Devido à grande divulgação do método entre os profissionais desta área, não se entra em maio res detalhes quanto a sua formulação teórica, limitando-se ape nas a esboça-lo, e isso será feito baseando-se na referência 3.

Nas aplicações do m.e.f. encontra-se quatro formulações alternativas, das quais reter-se-ā somente a denominada método dos deslocamentos, que se baseia no princípio da energia potencial mínima.

O método requer, inicialmente, que se divida o contínuo em regiões ou elementos finitos, como mostra a figura].

FIGURA 1 - DISCRETIZAÇÃO DO CONTÍNUO EM UMA MALHA DE ELEMENTOS FINITOS

Cada elemento está ligado aos vizinhos por um número discreto de pontos chamados nos.

Para cada uma dessas regiões, define-se o seu comportamento localizado por meio de um campo de deslocamentos contí nuos, de maneira a preservar a compatibilidade de deslocamentos entre elementos vizinhos.

As incógnitas básicas do modelo discreto de análise são os deslocamentos nos nos da malha de elementos finitos.

O comportamento aproximado das variáveis do problema (no caso, os deslocamentos) pode ser expresso em termos de com binações lineares de funções de interpolação, multiplicadas p<u>e</u> las incógnitas nodais.

Representamos o campo de deslocamentos então por:

$$\mathbf{u} = \mathbf{N} \mathbf{U}^{\mathbf{e}} \tag{1.2.1}$$

onde N é uma matriz de funções de interpolação, e U^e é o vetor dos deslocamentos nodais.

As deformações podem ser obtidas a partir dos desloca mentos, e são expressas em notação vetorial por:

$$\varepsilon = B U^{e}$$
(1.2.2)

sendo B uma matriz que contém certas derivadas de N.

A energia potencial total para um sólido elástico linear é representado por

$$\pi_{p} = \frac{1}{2} \int_{V} \varepsilon^{T} \frac{D}{\omega} \varepsilon dV - \int_{V} (u^{T} \frac{b}{\omega} + \varepsilon^{T} \frac{D}{\omega} \varepsilon^{0}) dV - \int_{S \sigma} u^{T} \frac{p}{\omega} ds$$
(1.2.3)

onde D \tilde{e} a matriz de elasticidade, ϵ^0 o vetor de deformações especificas iniciais, b o vetor de cargas de volume, e p \tilde{e} o vetor de cargas de superfície.

Para o domínio de integração correspondente a um só <u>e</u> lemento, obtem-se o funcional aproximado

$$\pi_{p}^{e} = \frac{1}{2} v^{e} \qquad \underline{U}^{e,T} \underline{B}^{T} \underline{D} \underline{B} \underline{U}^{e} \quad dv - v^{e} \quad (\underline{U}^{e,T} \ \underline{N}^{T} \underline{b} + \underline{U}^{e,T} \underline{B} \underline{D} \varepsilon^{o}) dv$$

$$s_{\sigma}^{e} \ \underline{U}^{e,T} \underline{N}^{T} \ \underline{p} ds \qquad (1.2.4)$$

Como o vetor U^e não depende de posição, temos:

$$\pi_{p_{aprox}}^{e} = \underbrace{U}^{e,T} \left[\left(\frac{1}{2} \int_{ve} \underbrace{B}^{T} \underbrace{DB}_{ve} dv \right) \underbrace{U}^{e} - \int_{ve} \underbrace{(\underbrace{N}^{T} \underbrace{b}_{ve} + \underbrace{B}^{T} \underbrace{De}_{o}^{o}) dv - \int_{s} \underbrace{e}_{\sigma}^{N} \underbrace{N}^{T} \underbrace{pds}_{(1.2.5)} \right]$$

Sabendo-se que o funcional aproximado sobre todo o d<u>o</u> minio de integração é a soma dos funcionais aproximados de cada elemento, isto é:

$${}^{\pi}p_{aprox.} = \sum_{e=1}^{\infty} {}^{\pi}e_{aprox.}$$
(1.2.6)

sendo m o número total de elementos, e que para o campo de des locamentos satisfazer as condições de equilibrio \tilde{e} necessário que o funcional π_p seja estacionário, ou seja

$$\delta^{\pi} p_{aprox.} = \delta \left(\begin{array}{c} m \\ p \\ e = 1 \end{array} \right) \left(\begin{array}{c} m \\ p \\ p \\ a p rox. \end{array} \right) = \begin{array}{c} m \\ p \\ e = 1 \end{array} \right) \left(\begin{array}{c} m \\ p \\ a p rox. \end{array} \right) = 0$$
(1.2.7)

pode-se escrever que:

$$\delta^{\pi} p_{aprox.} = \sum_{e=1}^{m} \delta U^{e}, T \left[\left({}^{J} v^{e} B^{T} D B dv \right) U^{e} - {}^{J} v_{e} \left(N^{T} D + B^{T} D D D^{e} \right) dv - {}^{J} s^{e}_{\sigma} N^{T} D ds \right] = 0$$

$$(1.2.8)$$

Sendo as variações $\delta y^{e,T}$ arbitrárias

$$\sum_{e=1}^{m} \left[\left({}^{J}v^{e}\overline{B}^{T}\overline{D}\overline{B}dv \right) \underline{U}^{e} - {}^{J}v^{e} \left(\underline{N}^{T}\underline{b} + \underline{B}^{T}\overline{D}\underline{s}^{o} \right) dv - {}^{J}s^{e}\underline{N}^{T}\underline{p}ds \right] = 0$$

$$(1.2.9)$$

$$\sum_{e=1}^{m} \underbrace{K^{e} \ U^{e}}_{e=1} = \sum_{e=1}^{m} \underbrace{p^{e}}_{e=1}$$
(1.2.10)

onde

$$\mathbf{K}^{\mathbf{e}} = \mathbf{v}_{\mathbf{v}} \mathbf{e} \ \mathbf{B}^{\mathsf{T}} \mathbf{D} \mathbf{B} \ \mathsf{d} \mathbf{v} \tag{1.2.11}$$

ē a matriz de rigidez de cada elemento, e

$$\underline{P}^{e} = {}^{f}v^{e} \left(\underline{N}^{T}\underline{b} + \underline{B}^{T}\underline{D}\underline{\varepsilon}^{0}\right)dv + {}^{f}s^{e}\sigma \underline{N}^{T}\underline{p}ds \qquad (1.2.12)$$

é o vetor de cargas equivalente as forças de volume, deform<u>a</u> ções iniciais e forças de superfície, que atuam sobre um elemento qualquer "e".

Uma vez obtido o sistema de equações que representa a solução aproximada do problema, dado pela equação (1.2.10) aplica-se as condições de contorno dos deslocamentos sobre a super ficie S_u. Resolvendo-se o sistema, obtem-se os deslocamentos no dais.

Tendo em vista a equação 1.2.1 pode-se encontrar os deslocamentos em qualquer ponto do contínuo.

Assumindo-se um comportamento elástico, as tensões são determinadas pela fórmula

$$\sigma = D \left(\underline{BU}^{e} - \underline{\varepsilon}^{0} \right)$$
 (1.2.13)

1.3 - As condições de convergência

Quando as soluções obtidas, com sucessivos refinamentos da malha, aproximam-se da solução exata, dizemos que há convergência. Para que isso ocorra é necessário que alguns cri térios sejam satisfeitos pelo campo aproximado de deslocamentos. A descrição desses critérios é feita a partir da referência 26.

Colocando-se então, o problema a ser resolvido em termos gerais, pesquisa-se uma função incognita <u>u</u> tal que ela satisfaça um certo conjunto de equações diferenciais.

$$A(u) = 0$$
 (1.3.1)

no domínio Ω, juntamente com certas condições de contorno

$$B(u) = 0 (1.3.2)$$

no contorno r do domínio.

FIGURA 2 - DOMÍNIO Ω E CONTORNO Γ DO PROBLEMA

Se a integral

 $\int_{\Omega} \mathbf{v}^{\mathsf{T}} \underline{A}(\underline{u}) \, d\Omega + \int_{\Gamma} \overline{\mathbf{v}}^{\mathsf{T}} \underline{B}(\underline{u}) \, d\Gamma = 0 \qquad (1.3.3)$

for satisfeita para quaisquer $v \in \overline{v}$, as equações (1.3.1) e (1.3.2) serão satisfeitas.

Existem certas restrições que as funções $v, \overline{v} e u$ devem respeitar. Em geral, evita-se funções que tornam qualquer termo da integral infinito.

A escolha de v e \overline{v} limita-se a funções de valo-

res finitos, e se derivadas de ordem n ocorrem nos operadores diferenciais A ou B, a função u tem que ser tal, que suas n-l derivadas sejam contínuas, isto é, deverá pertencer ao espaço vetorial Cⁿ⁻¹ de todas as funções que tenham derivadas de ordem n-1 contínuas.

Integrando-se por partes a equação (1.3.3), obtem-se

$${}^{I}_{\Omega} \stackrel{C}{\simeq} (\underbrace{v}^{T}) \stackrel{D}{\simeq} (\underbrace{u}) d\Omega + {}^{I}_{\Gamma} \stackrel{E}{\simeq} (\overline{v}^{T}) \stackrel{F}{\simeq} (\underbrace{u}) d\Gamma = 0 \qquad (1.3.4)$$

onde os operadores <u>C</u> a <u>F</u> contem derivadas de menor ordem que os operadores <u>A</u> e <u>B</u>. Agora uma menor ordem de continuidade requerida na escolha de <u>u</u>, as custas de uma maior continuidade para <u>v</u> e <u>v</u>. A equação (1.3.4) representa a "forma atenuada" da equação (1.3.3).

Aproximando-se a função u por uma expansão do tipo

$$\underline{u} = \underbrace{\widehat{u}}_{i=1}^{r} \times \underbrace{N_{i}}_{i=1}^{r} = \underbrace{N_{i}}_{i=1}^{n} \underbrace{N_{i}}_{i=1}^{r}$$
(1.3.5)

e utilizando-se respectivamente para v e \overline{v} , um conjunto de fun ções prescritas da forma w_j e \overline{w}_j para j variando de l a n, on de n é o número de parâmetros indeterminados a_j (n<u><</u>r),obtem-se a partir das expressões (1.3.3) e (1.3.4) um sistema de equações ordinárias da forma

$${}^{f}_{\Omega} w_{j}^{T} \underbrace{A}(\underbrace{N}_{a} \underbrace{a}) d\Omega + {}^{f}_{\Gamma} \overline{w}_{j}^{T} \underbrace{B}(\underbrace{N}_{a} \underbrace{a}) d\Gamma = 0 \qquad (1.3.6)$$

ou

$$\int_{\Omega} \underbrace{C}(w_{j})^{T} \underbrace{D}(\underbrace{N}_{a} \underline{a}) d\Omega + \int_{\Gamma} \underbrace{E}(\overline{w}_{j})^{T} \underbrace{F}(\underbrace{N}_{a} \underline{a}) d\Gamma = 0 \qquad (1.3.7)$$

das quais pode-se determinar os parâmetros a.

Essa aproximação é chamada método dos resíduos ponderados.

Quando $w_j = N_j$, isto é, quando as funções de forma são usadas como fator de ponderação, leva o nome de formulação de Galerkin para o método dos residuos ponderados. Pode-se demonstrar que o trabalho virtual representa a "forma atenuada" das equações de equilíbrio para a análise de sólidos e fluídos, e também que a aproximação pelo método dos <u>e</u> lementos finitos é de fato uma formulação de Galerkin do método dos resíduos ponderados.

No método dos elementos finitos onde se trabalha com uma solução aproximada do tipo da equação (1.3.5), e onde as funções de interpolação estão baseadas em um comportamento loca lizado por elemento, pode-se assumir que a convergência ocorre quando o tamanho dos elementos decrescem, ou por sua vez, quando o número de parâmetros a especificados para os nos aumentam.

Pode-se estabelecer então, que a condição necessária pa ra a expansão ser convergente, quando se utiliza funções de for ma do tipo polinômio, é o critério de funções completas: um valor constante da m^ª derivada deve ser obtido no domínio do elemento quando seu tamanho tende a zero, se derivadas de ordem m ocorrem na integral.

Esse critério é automáticamente assegurado se os polinômios usados para as funções de forma Ni são completos de m^a ordem. O critério acima é equivalente ao de deformação constante, que por sua vez engloba a condição de representar movimentos de corpo rigido.

São denominados de elementos conformes, aqueles cujas funções deslocamentos satisfazem os critérios de continuidade e de funções completas.

Em problemas de placas e cascas, onde as deformações são definidas por derivadas segundas dos deslocamentos, torna--se muitas vezes difícil obter funções de interpolação que asse gurem a continuidade dos giros normais. Elementos não-conformes são usados para sobreporem esta dificuldade. Nestes elementos <u>a</u> pesar das funções deslocamentos não satisfazerem uma das condições aparentemente essenciais para a convergência, esta é obtida, e ãs vezes apresentam melhores resultados que seus elementos conformes equivalentes.

As condições de convergência de tais elementos não-con

formes são verificadas pelo "PATCH TEST".

1.4 - A solução de Problemas de Placas e Cascas.

Nesta seção, aborda-se históricamente a evolução do m<u>é</u> todo dos elementos finitos na busca de soluções para estruturas laminares.

Problemas de placas e cascas são de difícil solução, quando não se tornam impossíveis por análise convencional.Estas dificuldades são ainda maiores quando a espessura é de uma forma tal, que as deformações por corte tornam-se significativas.

O método dos elementos finitos apresenta-se como um instrumento eficaz para a solução desses problemas, por sua capacidade de considerar variações de geometria, cargas e proprie dades dos materiais.

As primeiras aplicações do método voltaram-se para a solução de problemas de estado plano de tensões.

Quando de sua aplicação aos problemas de flexão de pl<u>a</u> cas, encontraram-se dificuldades para a obtenção de funções de forma que satisfizessem as condições de compatibilidade.Funções não-conformes,que asseguravam a continuidade de w, mas violavam a continuidade dos giros normais, foram utilizadas em elementos triangulares e retangulares²⁶. Como tais funções cumpriam com o critério de deformação constante, a convergência poderia ser encontrada, porém não de forma monotônica.

Sendo impossível encontrar uma função polinômia simples capaz de satisfazer a continuidade dos giros, quando se utilizavam 3 graus de liberdade por no, passaram-se a desenvolver elementos de alta ordem.

Estes elementos apresentavam certas dificuldades de as sociação, por possuirem diferentes graus de liberdade para os nós e muitas vezes tornava-se difícil introduzir as condições de contorno. Na comparação da exatidão com o tempo computa cional, os elementos de alta ordem eram muitas vezes ultrapassa dos pelos elementos simples. Buscou-se na formulação isoparamétrica a solução deste impasse.

ESCOLA DE ENGENHARIA BIBLIOTECA As primeiras aplicações do método em problemas de cascas foram feitas através de elementos planos, cujas matrizes de rigidez eram formadas a partir das obtidas para elementos de membrana e flexão de placas. Elementos retangulares foram utili zados para analisarem cascas cilíndricas e elementos triangulares, para as de dupla curvatura⁴.

Como a superfície média curva da casca era substituída por uma superfície poliédrica, um erro adicional do tipo geométrico era então introduzido, levando os pesquisadores a procur<u>a</u> rem elementos que levassem em consideração a sua curvatura.

Os primeiros elementos curvos foram desenvolvidos para casos particulares de carga e geometria³, tais como cascas axi<u>s</u> simétricas, cilíndricas e rebaixadas (Shallow Shell).

Logo após houve uma tendência no sentido de usar elementos mais sofisticados, pois imaginava-se que, com o mesmo n \underline{u} mero de graus de liberdade, resultados mais exatos ocorreriam quando elementos complexos fossem utilizados. Tal preferência justificava-se, também, pelo fato de a geometria do problema ser representada por um menor número destes elementos. Esperava-se assim obter uma considerável economia de tempo computacional.

Várias tentativas para a solução de problemas de placas e cascas foram feitas, utilizando-se os elementos isoparam<u>é</u> tricos tri-dimensionais da fig. 3. Contudo surgiram certas dif<u>i</u> culdades.

O uso de 3 graus de liberdade para cada nó produzia um mal condicionamento no sistema de equações, quando a espessura se tornava pequena em comparação com as outras dimensões dos elementos. Ademais, o elevado número de graus de liberdade cond<u>u</u> zia a um grande tempo de computação.

Ahmad, Irons e Zienkiewicz formularam um elemento que superou esses obstáculos¹.

Para isso, foi desprezada a energia de deformação cor-

respondente às tensões perpendiculares à superficie média, e introduzida a hipótese de as normais à superficie média permanecerem retas depois da deformação.

Devido à última imposição, pode-se eliminar os nos in termediários na direção da espessura do elemento, reduzindo-se o número de graus de liberdade, originando-se os elementos degenerados da figura 4.

FIGURA 3 - ELEMENTOS TRI-DIMENSIONAIS PARABÓLICO E CÚBICO

Como as linhas que unem os nos superiores e inferiores são retas, pode-se representar a geometria do elemento através das coordenadas da superfície média e de um vetor de comprimen to igual à espessura. Recaiu-se assim em um elemento isoparamé trico de 8 ou 12 nos, como representado na fig. 5.

FIGURA 4 - ELEMENTOS DEGENERADOS

FIGURA 5 - ELEMENTO ISOPARAMETRICO QUADRILATERO QUADRATICO E CÚBICO

As hipóteses introduzidas correspondem somente a uma parte das que são usuais na teoria de cascas e placas. Aqui ca be salientar que não foi imposta a restrição das retas normais ã superfície média antes da deformação, permanecerem normais a mesma na situação deformada, o que permite a ocorrência de deformações por efeito dos esforços cortantes, que são de importância no estudo de placas e cascas espessas.

Nesses elementos era a integração numérica o mais sério problema de economia no tempo de computação, portanto a determinação de um número minimo adequado de pontos de integra ção tornou-se de fundamental importância. A integração por quadratura de Gauss foi, originalmente, efetuada em 3 x 3 x 2 ou 4 x 4 x 2 pontos de integração, nas direções ξ , n, ζ respectivamente, dependendo do elemento ser quadrático ou cúbico.

- Enquanto esses elementos apresentavam bons resultados para problemas de placas e cascas espessas, o elemento quadráti co era ineficiente na representação de deformações por flexão em aplicações de placas e cascas finas. A medida que a espessura era reduzida, os resultados obtidos apresentavam-se cada vez mais rígidos, não convergindo para a solução teórica. Quando se utilizavam funções de interpolação cúbicas, obtinha-se resultados considerados satisfatórios.

Depois, dois trabalhos apresentaram, simultaneamente, al ternativas ao processo de integração numérica, visando obter a convergência dos elementos quadráticos em situações de delgadeza.

Pawsey e Clough¹⁹ desenvolveram um método de integração seletiva para calcular a matriz de rigidez do elemento anterior, na qual cada componente da energia de deformação é calculada se paradamente, utilizando-se um número diferente de pontos de integração. Com esse procedimento evita-se a excessiva rígidez ã flexão, que resulta do uso de funções de interpolação quadráticas.

Zienkiewicz e outros²⁷ concluiram que para uma melhoria na flexibilidade basta reduzir-se a ordem de integração num<u>é</u> rica para todas as componentes da tensão. Uma integração $2 \times 2 \times 2$ nas direções ξ , n, ξ foi utilizada. O elemento, assim formulado, estã entre os mais econômicos, reduzindo em 4/9 o tempo comput<u>a</u> cional, com relação ao elemento original.

Esse último procedimento leva certas vantagens sobre a integração seletiva, pois para sua aplicação não encontra-se di ficuldades de programação, e, devido ao menor número de pontos a integrar, resulta também em uma economia de tempo no cálculo da matriz de rigidez.

Esse histórico, se limitou a elementos desenvolvi-

14

dos dentro do modelo compatível, mas deve-se salientar, que tam bém foram procuradas soluções nos modelos mistos e híbridos. Ca be destacar o trabalho de P. Bignon², que formulou um elemento isoparamétrico para estudar problemas de placas delgadas e espessas, tomando como base o modelo misto para flexão de placas, com deslocamento transversal e momentos como variáveis independentes.

L.E. Vaz²³, desenvolveu um elemento para placas, base<u>a</u> do no que foi proposto por Zienkiewicz, diferindo apenas em dois pontos. Primeiro, a integração ao longo da espessura do elemento foi realizada fora do programa, a fim de obter uma reducão no tempo de integração. Segundo, utilizou uma função de desloca mentos, que permite à deformação linear ocorrer livremente na direção da espessura, em função das outras duas deformações lineares, para lograr uma variação parabólica das tensões, devidas ao esforço cortante, não sendo necessário então o fator k na matriz constitutiva elástica. Em problemas de placas delgadas, utilizou somente dois pontos de integração numérica, recor rendo a três pontos no estudo de placas espessas, embora os erros não fossem apreciáveis quando 2 pontos de integração eram u tilizados para esses casos.

A.L. Halbritter¹⁴, partindo também da idéia de Zienki<u>e</u> wicz, desenvolveu um elemento isoparamétrico quadrático degenerado, aplicado a problemas de cascas, obtendo sua matriz de rigidez e cargas nodais equivalente. Empregando o esquema de int<u>e</u> gração numérica reduzida, resolveu com êxito problemas de cascas grossas e finas. Para cascas delgadas ignorou a influência da espessura (neste caso $\zeta = 0$), integrando explicitamente as componentes da matriz de rigidez na direção normal ã superfície média, conseguindo com esta simplificação uma diminuição no te<u>m</u> po de computação.

Este elemento possui 5 graus de liberdade por nó, sendo 3 deslocamentos em relação aos eixos globais, e duas rotações definidas com referência a um sistema de eixos locais, for mado por dois eixos tangentes e um normal à superfície média da casca. A rotação ao redor do eixo normal à superfície de Exatamente por trabalharem com eixos de referência lo cais, esses elementos não permitem a solução de cascas formadas por duas ou mais superfícies, em cujas linhas de interseção existem descontinuidades das direções normais e tangentes. CAPÍTULO 2 - OS ELEMENTOS ISOPARAMÉTRICOS 2.1 - Introdução

Para assegurar que um pequeno número de elementos pos sam representar formas complexas, passa-se a utilizar elementos de formas arbitrárias.

Através de convenientes funções de interpolação definidas em coordenadas normalizadas, pode-se distorcer ou "mapear" elementos de lados ou faces retas, em elementos de lados ou faces curvas, nas coordenadas cartesianas. Estabelece-se assim uma correspondência biunívoca entre as coordenadas cartesianas e as coordenadas curvilíneas, do tipo:

$$\begin{cases} X \\ Y \\ Z \end{cases} = f \begin{cases} \xi \\ \eta \\ \zeta \end{cases}$$
 (2.1.1)

Na figura 6 representa-se o mapeamento de um elemento tridimensional quadrático.

FIGURA 6 - a)Elemento Original b) Elemento distorcido 16

2.2 - Transformação de Coordenadas

Para representar-se as coordenadas cartesianas de um ponto qualquer no interior do elemento, utiliza-se a seguinte <u>e</u> quação:

$$\begin{cases} X \\ Y \\ Z \end{cases} = \begin{bmatrix} N & O & O \\ O & N & O \\ O & O & N \end{bmatrix} \begin{cases} X^{e} \\ \overline{Y}^{e} \\ \overline{Z}^{e} \end{cases}$$
(2.2.1)

onde N \tilde{e} o vetor formado pelas funções de interpolação, e χ^e , \underline{Y}^e , $\underline{Z}^{\tilde{e}}$ são os vetores das coordenadas nodais. É exatamente esta equação que define a distorção ou "mapeamento" de um elemento <u>o</u> riginal no correspondente elemento curvo.

Sendo as funções de forma N dadas em termos das coord<u>e</u> nadas curvilíneas locais, cria-se uma relação entre estas coordenadas e as coordenadas cartesianas globais. Note-se que uma distorção violenta, pode estabelecer uma relação não unívoca e<u>n</u> tre estas coordenadas.

Para que o mapeamento seja um-a-um o sinal do determinante da matriz Jacobiana desta transformação de coordenadas d<u>e</u> ve permanecer inalterado para todos os pontos do elemento mape<u>a</u> do .

Em transformações baseadas nas funções parabólicas do tipo "Serendipity" a condição necessária para a univocidade é que nenhum dos ângulos internos sejam maiores do que 180°, e d<u>e</u> ve ser assegurado, que os nos internos dos lados estejam no te<u>r</u> ço médio da distância entre os nos dos cantos destes lados, co<u>n</u> forme indica a figura 7.

2.3 - Definição dos deslocamentos

Nos elementos isoparamétricos a variação dos deslocamentos é definida a partir dos deslocamentos nodais, exatamente pelas mesmas funções de interpolação, usadas para definir a sua geometria.

Os deslocamentos serão definidos então por:

$$\begin{cases} u \\ v \\ w \end{cases} = \begin{bmatrix} N & o & o \\ o & N & o \\ o & o & N \\ \hline o & o & N \end{bmatrix} \begin{cases} U^{e} \\ V^{e} \\ W^{e} \\ \hline W^{e} \\ \hline W^{e} \end{cases}$$
(2.3.1)

sendo U^e , V^e , W^e os vetores dos deslocamentos nodais do elemento.

2.4 - Compatibilidade Geométrica e Convergência

O processo de distorção de um elemento não pode intr<u>o</u> duzir separações ou superposições em um lado ou face comum a 2 elementos vizinhos.

Para isso deverá satisfazer o seguinte teorema:

<u>Teorema 1</u>: As condições de compatibilidade geométrica entre 2 elementos curvos são satisfeitas se estes são originários de elementos nos quais estas condições se cumprem.

Como as coordenadas dos lados ou faces são unicamente definidas a partir das coordenadas nodais, e sendo estas as mesmas para lados comuns de 2 elementos adjacentes, e sendo ainda as funções de forma idênticas, ao longo desses lados $(n_1 = +1, n_2 = -1)$ para o exemplo da figura 8), as coordenadas X, Y,Z ficam expressas pelas mesmas funções conforme a expressão (2.2.1).

A condição de continuidade dos deslocamentos será satisfeita no elemento distorcido, se for verificado o teorema:

<u>Teorema 2</u>: A condição de compatibilidade geométrica, ou continuidade, dos deslocamentos fica assegurada no elemento distorci do, se as funções de interpolação usadas na equação (2.3.1),s<u>a</u> tisfazem a continuidade dos deslocamentos no elemento original.

A prova deste teorema se faz da mesma maneira que a do anterior.

Para que seja satisfeito o critério de funções compl<u>e</u> tas da convergência, enunciaremos o teorema que segue: Teorema 3: Em funcionais que contêm somente derivadas primei-

Zona Livre para o ponto médio.

FIGURA 7 - CONDIÇÕES PARA UM MAPEAMENTO UM-A-UM.

A demonstração deste teorema não serã exposta, pois pode ser encontrada em farta bibliografia^{5,9,26}.

Os teoremas acima descritos, são satisfeitos pelas funções de interpolação pertencentes à familia "serendipity", que para o elemento isoparamétrico quadrilateral quadrático da figura 9, são:

$$N_{i} = \frac{1}{4} (1 + \xi\xi_{i}) (1 + \eta\eta_{i}) (\xi\xi_{i} + \eta\eta_{i} - 1) \text{ para } i = 1, 2, 3, 4$$

$$(2, 4, 1)$$

$$N_i = \frac{1}{2} (1 - \xi^2) (1 + \eta \eta_i)$$
 para $i = 5,8$ (2.4.2)

$$N_i = \frac{1}{2} (1 + \xi \xi_i) (1 - \eta^2)$$
 para $i = 6,7$ (2.4.3)

FIGURA 8 - ELEMENTOS ADJACENTES E SUAS FUNÇÕES DE INTERPOLA-ÇÃO

FIGURA 9 - ELEMENTO ISOPARAMÉTRICO QUADRILATERAL QUADRÁTICO.

Zienkiewicz²⁶, se referiu também a elementos superparamétricos e subparamétricos.

Denominam-se elementos superparamétricos quando o polin $\underline{\hat{0}}$ mio que define seus deslocamentos, for de menor ordem com rel<u>a</u> ção ao que define sua geometria. Em caso contrário, chamam-se elementos subparamétricos. O critério de funções completas, dado pelo teorema 3, continua válido para os elementos subparamétricos, sendo que o mesmo não ocorre para elementos superparamétricos. Porém, <u>e</u> lementos superparamétricos são utilizados com sucesso em problemas de placas e cascas²⁴.

CAPÍTULO 3 - ELEMENTOS ISOPARAMÉTRICOS PARA ANÁLISE DE CASCAS

3.1 - Definição da Geometria.

O elemento adotado tem como base o elemento isoparamétrico tridimensional quadrático com 60 graus de liberdade,r<u>e</u> presentado na figura 10. Esse elemento é degenerado, diminuind<u>o</u> se as suas dimensões na direção que representa a sua espessura.

FIGURA 10

Se as linhas que unem os nos inferiores aos superiores forem retas, podemos eliminar os nos intermediários, origi nando-se um elemento típico de cascas espessas (figura ll). Suas faces externas são curvas, enquanto que as seções ao longo da espessura são geradas por linhas retas.

Se ξ, η são coordenadas curvilíneas na superfície média da casca, e ζ uma coordenada linear na direção da espess<u>u</u> ra, variando todas de +1 à -1 para as faces do elemento, as coordenadas de um ponto da casca são dadas pela formula

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}, = \begin{bmatrix} 8 \\ 1 = 1 \end{bmatrix} \times \begin{pmatrix} (1+\zeta) \\ 1 = 1 \end{bmatrix} \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix} + \begin{bmatrix} 8 \\ 1 = 1 \end{bmatrix} \times \begin{pmatrix} (1-\zeta) \\ 2 \end{bmatrix} \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}$$
sup
$$(3.1.1)$$

onde as N_i representam as funções Serendipity dos elementos isoparamétricos bidimensionais quadráticos. A compatibilidade geométrica fica então assegurada.

FIGURA 11

A geometria do elemento pode ainda ser especificada pelas coordenadas da superfície média e pelo vetor espessura. A equação anterior fica

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 8 \\ \Sigma \\ i=1 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ i \end{bmatrix} + \begin{bmatrix} 8 \\ \Sigma \\ i=1 \end{bmatrix} \begin{pmatrix} z \\ i \\ z \\ i \end{bmatrix} + \begin{bmatrix} 8 \\ \Sigma \\ i=1 \end{bmatrix} \begin{pmatrix} z \\ i \\ z \\ i \end{bmatrix}$$
(3.1.2)

onde

$$\left\{ \begin{array}{c} x_{i} \\ y_{i} \\ z_{i} \end{array} \right\}_{m} = \frac{1}{2} \left[\left\{ \begin{array}{c} x_{i} \\ y_{i} \\ z_{i} \end{array} \right\}_{sup} + \left\{ \begin{array}{c} x_{i} \\ y_{i} \\ z_{i} \end{array} \right\}_{inf} \right]$$
(3.1.3)

representa as coordenadas dos nos sobre a superficie média, e

$$\vec{v}_{3i} = \begin{cases} v_{xi} \\ v_{yi} \\ v_{zi} \end{cases} = \begin{cases} x_i \\ y_i \\ z_i \end{cases} - \begin{cases} x_i \\ y_i \\ z_i \end{cases} (3.1.4)$$
sup inf

é o vetor segundo a espessura.

3.2 - Definição dos Deslocamentos

Como a energia de deformação, correspondente as tensões normais à superficie média, é desprezada, os deslocamentos do elemento podem ser definidos pelas 3 componentes cartesianas dos deslocamentos dos nos da superficie média u_i , v_i , w_i , e por 2 rotações α_i , β_i do vetor normal \vec{V}_{3i} relativas a 2 direções mutuamente ortogonais, normais a ele.

Na figura 12, os vetores \vec{V}_{1i} , \vec{V}_{2i} e \vec{V}_{3i} são perpendiculares, e as rotações α_i , β_i são colineares com \vec{V}_{2i} e \vec{V}_{1i} , respectivamente.

No presente trabalho, esta terna de eixos ortogonais fica assim estabelecida:

 $\vec{v}_{3i} \in o$ vetor espessura para o nō i $\vec{v}_{2i} \in definido pelo produto vetorial$ $<math>\vec{v}_{2i} = \vec{v}_{3i} \times \vec{i}$, ou quando as direções do eixo x e do vetor \vec{v}_{3i} coincidirem, por $\vec{v}_{2i} = \vec{v}_{3i} \times \vec{j}$.

Como V_{1i} tem que ser ortogonal a ambos, temos

$$\vec{v}_{1i} = \vec{v}_{2i} \times \vec{v}_{3i}$$

O campo de deslocamentos do elemento pode agora ser escrito como¹

$$\begin{cases} u \\ v \\ w \end{cases} = \sum_{i=1}^{8} N_{i} \begin{cases} u_{i} \\ v_{i} \\ w_{i} \end{cases} + \sum_{i=1}^{8} N_{i} \zeta_{\phi_{i}} \frac{t_{i}}{2} \begin{cases} \alpha_{i} \\ \beta_{i} \end{cases}$$
(3.2.1)

onde N $_{\rm i}$ são as mesmas funções de interpolação que as da equação (3.1.2), t $_{\rm i}$ a espessura no nó i e

$$\Phi_{i} = \begin{bmatrix}
\ell_{1i} & -\ell_{2i} \\
m_{1i} & -m_{2i} \\
n_{1i} & -n_{2i}
\end{bmatrix}$$
(3.2.2)

sendo

$$\left\{ \begin{array}{ccc} \lambda_{1i} & m_{1i} & n_{1i} \end{array} \right\} = \frac{\overrightarrow{v_{1i}}}{\left| \begin{array}{c} v_{1i} \\ v_{1i} \end{array} \right|} \tag{3.2.3}$$

е

$$\left\{ \begin{array}{ccc} \mathfrak{l}_{2i} & \mathfrak{m}_{2i} & \mathfrak{n}_{2i} \end{array} \right\} = \frac{\overrightarrow{v}_{2i}}{\left| \overrightarrow{v}_{2i} \right|} \tag{3.2.4}$$

Deve-se salientar que ao escrever a equação (3.2.1), supõe-se que cada vetor V_{3i} é normal à superfície média (ζ =0), enquanto que na maioria dos casos esta direção é apenas aproximadamente normal a ela.

Tendo em vista as funções de interpolação N_i, a condição de compatibilidade de deslocamentos entre elementos vizinhos é satisfeita. No que diz respeito ao critério de funções completas, Zienkiewicz²⁶ afirma que, a partir da definição dos componentes de deformação, as condições de movimento de corpo rígido e deformações constantes estão disponíveis.

FIGURA 12

3.3 - Definição de Deformações e Tensões

As deformações são definidas em relação às coordenadas locais x', y', z', que possuem respectivamente direções tangentes e normal à superfície com 5 constante. Pode-se então expressar as componentes da deformação pelo vetor

$$\varepsilon^{*} = \begin{cases} \varepsilon_{x'} \\ \varepsilon_{y'} \\ \gamma_{x'y'} \\ \gamma_{x'z'} \\ \gamma_{y'z'} \end{cases} = \begin{cases} \frac{\partial u'/\partial x'}{\partial y'} \\ \frac{\partial u'/\partial y'}{\partial y'} \\ \frac{\partial u'/\partial y'}{\partial x'} \\ \frac{\partial u'/\partial x'}{\partial x'} \\ \frac{\partial u'/\partial x'}{\partial x'} \\ \frac{\partial u'/\partial z'}{\partial z'} \end{cases}$$
(3.3.1)

Como z' é normal à superfície média da casca, ao negligenciarmos a componente da deformação $e_{z'}$, asseguramos tensões nulas nesta direção.

As componentes das tensões são definidas por

$$\underline{\sigma}' = \begin{cases} \sigma_{\mathbf{x}'} \\ \sigma_{\mathbf{y}'} \\ \tau_{\mathbf{x}'\mathbf{y}'} \\ \tau_{\mathbf{x}'\mathbf{z}'} \\ \tau_{\mathbf{y}'\mathbf{z}'} \end{cases} = \underline{D}' (\underline{\varepsilon}' - \underline{\varepsilon}^{\mathbf{0}'})$$
(3.3.2)

A matriz D' para um material isotrópico é dada por

$$\underline{D}' = \frac{E}{(1-v^2)} \begin{bmatrix} 1 & v & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ & \frac{1-v}{2} & 0 & 0 \\ & & \frac{1-v}{2k} & 0 \\ sim. & & \frac{1-v}{2k} \end{bmatrix}$$
(3.3.3)

sendo introduzido o fator k=1,2 para melhorar a aproximação da distribuição das tensões de cizalhamento.

3.4 - Matriz de Rigidez do Elemento

A matriz de rigidez do elemento apresenta-se sob a forma

$$\begin{bmatrix} 1 & 1 & 1 \\ J & J & J \\ -1 & -1 & -1 \end{bmatrix} \stackrel{T}{\longrightarrow} \stackrel{T}{\bigoplus} \stackrel{T}{\bigoplus} \stackrel{D'}{\boxtimes} \stackrel{B'}{\longrightarrow} ||_{\tilde{J}}||_{d\xi d\eta d\zeta}$$
(3.4.1)

onde B' relaciona as deformações com os deslocamentos nodais

$$\varepsilon' = \underline{B}' \underline{U}^{e}$$
(3.4.2)
sendo seus termos definidos por intermédio das derivadas dos deslocamentos, com respeito ãs coordenadas cartesianas locais x',y',z', segundo a equação (3.3.1).

As derivadas dos deslocamentos em relação ãs coorden<u>a</u> das locais X',Y',Z', são referidas ãs derivadas dos deslocame<u>n</u> tos em relação ãs coordenadas globais pela equação²⁶

$$\begin{bmatrix} u', x, v', x, w', x, u', y, u', z, u', u', z, u$$

sendo 👳 a matriz de cosenos diretores dada por

onde v₁, v₂, v₃ são os versores do sistema de eixos coordenados locais, e cuja obtenção de seus valores é indicada poster<u>i</u> ormente.

A equação (3.2.1)nos fornece os deslocamentos em função das coordenadas curvilíneas. As derivadas dos deslocamen tos em relação às coordenadas globais ×,y,z estão referidas com suas derivadas em relação às coordenadas curvilíneas por²⁶

$$\begin{bmatrix} u, x & v, x & w, x \\ u, y & v, y & w, y \\ u, z & v, z & w, z \end{bmatrix} = \underbrace{J^{-1}}_{u, \zeta} \begin{bmatrix} u, \xi & v, \xi & w, \xi \\ u, v, \eta & w, \eta \\ u, \zeta & v, \zeta & w, \zeta \end{bmatrix}$$
(3.4.5)

onde J⁻¹ ē a inversa da matriz Jacobiana

$$J = \begin{bmatrix} x_{3} \xi & y_{3} \xi & z_{3} \xi \\ x_{3} \eta & y_{3} \eta & z_{3} \eta \\ x_{3} \xi & y_{3} \xi & z_{3} \xi \end{bmatrix}$$
(3.4.6)

que é calculada a partir da definição das coordenadas, dada p<u>e</u> la equação (3.1.2).

Pode-se reescrever a matriz anterior da seguinte forma²⁷

$$\mathbf{J} = \begin{bmatrix} \mathbf{J} \\ \mathbf{S} \\ \mathbf{J} \\ \mathbf{T} \\ \mathbf{V} \\ \mathbf{V} \\ \mathbf{J} \end{bmatrix}$$

(3.4.7)

onde os 2 primeiros vetores são tangentes à superfície média, e \vec{V}_3' normal a ela, isso se se considerar ζ como normal à superfície de referência. Na verdade, \vec{V}_3' é apenas aproximadamente normal a ela.

A sua inversa pode ser escrita como²⁷

$$\underline{J}^{-1} = \begin{bmatrix} \dot{T} \times \dot{V}_{3} & \dot{V}_{3} & \dot{V}_{3} & \dot{S} & \dot{S} & \dot{S} & \dot{T} \end{bmatrix} \div ||\underline{J}|| \qquad (3.4.8)$$

onde as duas primeiras colunas são novamente tangentes, ou melhor, aproximadamente tangentes à superfície média, e a tercei ra, normal a ela.

Para se encontrar os versores do sistema de eixos 10 cais, promove-se o produto vetorial de 2 vetores tangentes a superfície ζ constante, a fim de obter-se um vetor normal a ela

→		÷		+		$\begin{pmatrix} x, \xi \end{pmatrix}^T$		(^x ,n) ¹	
V ₃ =	#	S	х	Т	ж.	у, _ξ }	x	у,,	(3.4.9)
						[z,ξ]		[z,η]	

que corresponde ao terceiro vetor da matriz J⁻¹ não dividido pelo determinante de J. Os outros dois vetores normais a ele serão obtidos como exposto no item 3.2.

$$\vec{v}_2 = \vec{v}_3 \times \vec{i}$$
 ou $\vec{v}_2 = \vec{v}_3 \times \vec{j}$, $\vec{v}_1 = \vec{v}_2 \times \vec{v}_3$
(3.4.10)

os versores serão dados então por

$$\vec{v}_1 = \frac{\vec{v}_1}{|\vec{v}_1|}, \quad \vec{v}_2 = \frac{\vec{v}_2}{|\vec{v}_2|}, \quad \vec{v}_3 = \frac{\vec{v}_3}{|\vec{v}_3|} \quad (3.4.11)$$

ficando assim, a matriz de rotação O determinada.

Usando a (3.4.5) pode-se reescrever a (3.4.3) como:

$$\begin{bmatrix} u', x' & v', x' & w', x' \\ u', y' & v', y' & w', y' \\ u', z' & v', z' & w', z' \end{bmatrix} = A \begin{bmatrix} u, \xi & v, \xi & w, \xi \\ u, \eta & v, \eta & w, \eta \\ u, \zeta & v, \zeta & w, \zeta \end{bmatrix}$$

$$(3, 4, 12)$$

sendo

$$\underline{A} = \underline{\Theta}^{\mathsf{T}} \underline{J}^{-\mathsf{I}} \tag{3.4.13}$$

Na apresentação de uma formulação econômica para esse elemento ²⁷, seus autores consideram nulos os seguintes termos dessa matriz

$$A_{31} = \vec{v}_{3} \cdot \vec{T} \times \vec{V}_{3}$$

$$A_{32} = \vec{v}_{3} \cdot \vec{V}_{3} \times \vec{S}$$
(3.4.14)

Contudo, esses termos serão zero somente quando V'_3 for exatamente normal à superfície média. A omissão desses termos, que são da ordem de 10^{-2} para cascas de dupla curvatura, produz momentos residuais que não satisfazem as equações de equilíbrio, correspondentes à estrutura¹⁵.

A partir das formulas (3.4.12) e (3.2.1), pode-se expressar a eguação (3.3.1) por:

$$\underbrace{\varepsilon}^{i} = \underbrace{B}_{i} \underbrace{\odot}^{T} \left\{ \begin{array}{c} u_{i} \\ v_{i} \\ w_{i} \end{array} \right\} + \frac{t_{i}}{2} \left[\underbrace{\zeta}_{i} \underbrace{B}_{i} + \underbrace{C}_{i} \right] \underbrace{\odot}^{T}_{i} \underbrace{\phi}_{i} \left\{ \begin{array}{c} i \\ \beta_{i} \\ \end{array} \right\}$$
(3.4.15)

sendo

$$B_{1i} = B_{2i} = B_{2i} = B_{1i} = B$$

onde

$$B_{1i} = A_{11} N_{i}, \xi + A_{12} N_{i}, \eta$$

$$B_{2i} = A_{21} N_{i}, \xi + A_{22} N_{i}, \eta$$

$$B_{3i} = A_{31} N_{i}, \xi + A_{32} N_{i}, \eta$$
(3.4.17)

е

onde

$$C_{1i} = A_{33} N_i$$
 (3.4.19)

Pode-se expressar a equação (3.4.15) na forma matricial característica $e' = B' U^e$, passando, então, a ser representada por:

onde

$$\overset{K}{\sim} A_{ij} = \overset{\odot}{\sim} \overset{B}{\rightarrow} \overset{T}{i} \overset{D}{\rightarrow} \overset{B}{\rightarrow} \overset{O}{j} \overset{\Theta}{\rightarrow} \overset{T}{\rightarrow} \qquad (3.4.22)$$

$$Cij = \frac{1}{4} t_i t_j \phi_i \phi_j \phi_j + C_i \phi_j + C_j \phi_j + C_j \phi_j$$
(3.4.24)

sendo:

$$B_{1}^{T} \underline{D}^{+} \underline{B}_{j} = \begin{bmatrix} B_{1i} D_{11} B_{ij}^{+} B_{2i} D_{33} B_{2j} & B_{1i} D_{12} B_{2j}^{+} B_{2i} D_{33} B_{1j} & B_{3i} D_{44} B_{1j} \\ + B_{3i} D_{44} B_{3j} & B_{2i} D_{22} B_{2j}^{+} B_{1i} D_{33} B_{1j} & B_{3i} D_{55} B_{2j} \\ + B_{3i} D_{55} B_{3j} & B_{1i} D_{44} B_{1j}^{+} \\ + B_{2i} D_{55} B_{3j} & B_{1i} D_{44} B_{1j}^{+} \\ + B_{2i} D_{55} B_{2j} & B_{1i} D_{44} B_{1j}^{+} \\ + B_{2i} D_{55} B_{2j} & B_{1i} D_{44} B_{1j}^{-} \\ B_{1i} D_{44} C_{1j} & B_{2i} D_{55} C_{1j} & 0 \\ B_{1i} D_{44} C_{1j} & B_{2i} D_{55} C_{1j} & 0 \\ B_{1i} D_{44} C_{1j} & B_{2i} D_{55} C_{1j} & 0 \\ B_{1i} D_{44} C_{1j} & B_{2i} D_{55} C_{1j} & 0 \\ B_{1i} D_{44} B_{3j} & 0 & C_{1i} D_{44} B_{1j} \\ 0 & C_{1i} D_{55} B_{3j} C_{1i} D_{55} B_{2j} \end{bmatrix}$$

$$\begin{bmatrix} c_{1i} & b_{44} & B_{3j} & 0 \\ 0 & c_{1i} & D_{55} & B_{3i} \\ 0 & 0 & 0 \end{bmatrix}$$

$$\underbrace{\mathbf{c}_{\mathbf{i}}^{\mathsf{T}} \mathbf{p}' \mathbf{c}_{\mathbf{j}}}_{\mathbf{i}} = \begin{bmatrix} \mathbf{c}_{1\mathbf{i}} \mathbf{p}_{44} \mathbf{c}_{1\mathbf{j}} & 0 & 0 \\ 0 & \mathbf{c}_{1\mathbf{i}} \mathbf{p}_{55} \mathbf{c}_{1\mathbf{j}} & 0 \\ 0 & 0 & 0 \end{bmatrix} (3.4.28)$$

Sua dimensão é de 40 x 40, já que o elemento possui 8 nos, e 5 graus de liberdade para cada um.

Posteriormente, faz-se uma reorganização da matriz de rigidez dos elementos, através de uma troca conveniente de linhas e colunas, de maneira tal que o vetor dos deslocamentos e cargas nodais equivalentes se apresente da forma

$$\underline{U}^{e,T} = \{ \dots u_{i}, v_{i}, w_{i}, \alpha_{i}, \beta_{i}, \dots \}$$
(3.4.28)
$$\underline{P}^{e,T} = \{ \dots P_{xi}, P_{yi}, P_{zi}, M_{y'i}, M_{x'i}, \dots \}$$
(3.4.29)

3.5 - Introdução do Sexto Grau de Liberdade

Para que o elemento possa ser utilizado em problemas onde não haja continuidade das normais à superfície de elementos adjacentes, como é o caso das folhas poliédricas,que são constituídas de lâminas contidas em diferentes planos,rea liza-se uma rotação na matriz de rigidez anterior, a fim de obter-se os deslocamentos em relação ao sistema de eixos globais.

Dependendo da posição dos eixos locais, os giros a e B_i podem dar origem aos componentes O_{xi}, O_{yi}, O_{zi}, que representam os giros em coordenadas globais. O mesmo ocorre com o vetor de cargas nodais equivalentes.

Ao relacionar as 5 incógnitas locais com as 6 globais, através de uma matriz de rotação de dimensão 6 x 6, tem-se que expandir as submatrizes de rigidez do elemento, que são de dimensão 5 x 5, introduzindo uma linha e uma coluna de zeros. Com isso, o elemento passa a ter uma rigidez infinita com relação ã rotação em torno do eixo normal ao elemento.

As submatrizes tomam então a forma

(3.5.1)

onde i e j variam de 1 a 8.

Geralmente, ao efetuar-se a transformação para eixos globais, todos os seus coeficientes passam a ser não nulos, sendo a última fila e coluna combinações das demáis, o que é fator de singularidade.

Para nos do tipo A, como está indicado na figura 13, que pertencem a elementos situados sobre diferentes planos,es ta singularidade desaparecerá. Nestes nos ter-se-á o aparecimento de um 0_z que não é fictício, mas real.

FIGURA 13

Como exemplo, podemos tomar o no 6 da figura 14.

- b) coordenadas locais e globais para o no 6 do elemento l;
- c) coordenadas locais e globais para o no 6 do elemento 2;

Verifica-se facilmente que, para o no considerado,

não há nenhuma contribuição de rigidez para o giro \odot_z por par te do elemento l, o mesmo não acontecendo com relação ao elemento 2, pois \odot_z = - α_i .

A matriz de rigidez global associada para o nó é da forma

					All of Sector
	$K_{11}^{1} + K_{11}^{2}$	$K_{12}^{1} + K_{12}^{2}$	$\kappa_{13}^{1} + \kappa_{13}^{2}$	$\kappa_{14}^{1} + \kappa_{14}^{2}$	$\kappa_{15}^{1} - \kappa_{15}^{2}$
	$\kappa_{21}^{1} + \kappa_{21}^{2}$	$K_{22}^{1} + K_{22}^{2}$	$K_{23}^{1} + K_{23}^{2}$	$K_{24}^{1} + K_{24}^{2}$	$\kappa_{25}^{1} - \kappa_{25}^{2}$
K = ~	$K_{31}^1 + K_{31}^2$	$K_{32}^{1} + K_{32}^{2}$	$K_{33}^{1} + K_{33}^{2}$	$K_{34}^{1} + K_{34}^{2}$	$K_{35}^{1} - K_{35}^{2}$
	$\kappa_{41}^{1} + \kappa_{41}^{2}$	$K_{42}^{1} + K_{42}^{2}$	$\kappa_{43}^1 + \kappa_{43}^2$	$K_{44}^{1} + K_{44}^{2}$	$\kappa_{45}^{1} - \kappa_{45}^{2}$
	κ <mark>1</mark> 51	к <mark>1</mark> 52	к ¹ 53	κ ¹ 54	κ ₅₅ 0
2	- K ² ₅₁	-K ² ₅₂	-к ² ₅₃	к ² 54	0 - к ² ₅₅
	annes.				(3.5.2)

Para os nos do tipo B, onde so concorrem elementos coplanares, a singularidade não desaparece, já que não se agrega nenhuma rigidez ao redor do eixo normal a esse elemento. Analisando o no 11, da figura 14, teremos a seguinte submatriz global associada

	K ² 11	÷	к <mark>3</mark> 11	к ² 12	+	к ³ 12	к <mark>2</mark> 13	+	к ³ 13	1	к ² 14	+	к <mark>3</mark> 14	0	-(K ² 15+K ³ 15)
	к ² 21	+	к ³ 21	к ² 22	+	к ³ 22	к ² 23	+	к ³ 23		к ² 24	+	к ³ 24	0	-(K ² 25+K ³ 25)
2	к <mark>2</mark> 31	+	к <mark>3</mark> 31	к ² 32	+	к32	к ² 33	+	к <mark>3</mark> 33	1	к <mark>2</mark> 34	+	к ³ 4	0	-(K ² 35+K ³ 35)
K =	к ² к ₄₁	+	к ³ 41	к242	+	к ₄₂	к ² 43	+	к ³ 43	 	к ² 44	+	к ³ 44	0	- (K ² ₄₅ +K ³ ₄₅)
		0			0			0		ŧ		0		0	0	
	- (K	2 5 1 ⁻	+K ³ ₅₁)	-(к <mark>2</mark> ;	2+1	< ³ ₅₂)-	(K ² ₅₃ -	+ K]	3 53)	1.	(к <mark>2</mark>	+ 	< ³ ₅₄)	0	-($K_{55}^2 + K_{55}^3$)
															(3.5.3)	

Essa dificuldade pode ser suplantada de várias maneiras, se bem que algumas delas introduzam erros adicionais no modelo de análise²⁶.

- Em 1969, na implementação da linguagem ICES STRUDL II, Ferrante¹⁰ utilizou a seguinte técnica para evitar o problema. Para nos pertencentes a elementos não coplanares, utilizou eixos de referências globais, e portanto considerou as 6 incógnitas nodais. Para nos onde concorrem elementos coplanares utilizou sistemas de eixos de referência locais, con siderando apenas as 5 incógnitas nodais. Deve-se notar que a aplicação desta técnica requer programas de estrutura interna muito sofisticadas¹¹.

Zienkiewicz²⁶ por sua vez, utilizou em um programa para a análise de barragens (ARCH DAMS), um conjunto de coefi cientes de rigidez ficticios $K_{\theta Z}$ em todos os elementos, sejam coplanares ou não. Esses coeficientes adicionais de fato afetam os resultados, pois eles ocorrem também em elementos não coplanares e portanto, introduzem uma aproximação.

Uma técnica talvez mais simples que estas, porém igualmente correta, foi utilizada por A.J. Ferrante ao agregar ao sistema ICES STRUDL II, um elemento triangular para a ISC Estruturas de Buenos Aires¹¹. A.G. Groehs também a utilizou em elementos retangulares para folhas poliédricas, implementados na linguagem LORANE.

Consiste em calcular primeiro a matriz de rigidez de cada elemento em coordenadas locais, em correspondência aos seus 5 graus de liberdade nodais, expandindo-se depois cada uma de suas submatrizes para uma ordem 6, agregando-se uma fi la e uma coluna de zeros. As submatrizes diagonais correspondentes aos nos do tipo A, não requerem nenhuma modificação. No caso daquelas correspondentes a nos do tipo B, agrega-se um valor não nulo $K_{\theta Z}$ no último coeficiente diagonal, que originalmente era nulo. Esta modificação tem o efeito de transformar a sexta equação nodal, originalmente do tipo 0=0, em outra do tipo $K_{\theta Z}$. $\gamma_i=0$, onde γ_i representa o giro em torno do eixo normal Z', eliminando-se assim a singularidade.

Finalmente, se efetua a transformação do sistema de referência para coordenadas globais, trabalhando-se com 6 graus de liberdade nodais. A única desvantagem desse procedimento, é que para todos os nos do tipo B se requer 6 equações, ao invés de 5, o que aumenta a ordem do sistema total de equa ções.

No presente trabalho utiliza-se esta última técnica, fazendo-se $K_{P_{2}} = 1$.

A matriz de rigidez do elemento passa a ter uma di mensão de 48 x 48 devido aos 6 graus de liberdade nodais.

3.6. Rotação da Matriz de Rigidez de Coordenadas Lo cais para Globais

Antes de associar-se as matrizes de rigidez dos el<u>e</u> mentos, para obter-se a matriz de rigidez total da estrutura, é necessário passas os giros α_i , β_i , γ_i , inicialmente em coo<u>r</u> denadas locais X', Y', Z', para as coordenadas globais X,Y,Z.

A matriz que transforma forças e deslocamentos de um no de coordenadas locais para globais é dada por T

$$P_{G} = TP_{L} e \qquad \bigcup_{G} = TU_{L} \qquad (3.6.1)$$

onde

$$\underline{\mathbf{T}} = \begin{bmatrix} \underline{\mathbf{I}} & \underline{\mathbf{0}} \\ \\ \underline{\mathbf{0}} & \underline{\mathbf{0}}' \end{bmatrix}_{6 \times 6}$$
(3.6.2)

sendo Θ' a matriz de cosenos diretores dada pela expressão

onde \vec{v}_1 , \vec{v}_2 , \vec{v}_3 são os versores dados por (3.4.11).

A razão da troca de colunas, realizada na matriz O' em relação à matriz O, dada pela expressão (3.4.4), é devido ao fato da ordenação dos nos, no vetor de deslocamentos, dar-se na forma

$$\underbrace{U}^{e,T} = \{u_1, v_1, w_1, \alpha_1, \beta_1, \gamma_1, \dots u_8, v_8, w_8, \alpha_8, \beta_8, \gamma_8\}$$
(3.6.4)

onde α_i representa o giro em relação ao eixo Y', β_i ao X', e γ_i ao Z'.

Cada submatriz de rigidez nodal em referência ao sistema de eixos globais é obtida por

onde K'_{ij} representa a submatriz de rigidez em coordenadas l<u>o</u> cais.

Uma vez que as matrizes de rigidez de todos os elementos tiverem sido encontradas no sistema de coordenadas gl<u>o</u> bais, pode-se formar a matriz de rigidez total da estrutura. Da solução do sistema de equações obteremos os deslocamentos em relação ãs coordenadas globais, na seguinte ordenação de seus componentes

$$\underline{U}^{e,T} = \{ \dots u_i, v_i, w_i, \Theta_{xi}, \Theta_{yi}, \Theta_{zi}, \dots \}$$
(3.6.6)

3.7 - Forças Nodais Equivalentes

As forças nodais equivalentes, para os carregamentos expostos abaixo, serão obtidas inicialmente em coordenadas locais, através da expressão (1.2.12).

3.7.1 - Carga Lateral Distribuída

As cargas nodais equivalentes são obtidas por

$$\underline{P}^{e} = \int_{\mathcal{L}} \underbrace{N}^{T} \underline{p} d\ell \qquad (3.7.1.1)$$

Desejando-se uma variação parabólica do carregamento, devemos interpolá-lo, a partir de seus valores nodais, pelas mesmas funções de interpolação utilizadas para os desl<u>o</u> camentos. Pode-se escrever, então

Supondo-se o carregamento aplicado sobre a superfi cie média ($\zeta = 0$), a expressão u = N U^e tomará a forma

$$\begin{cases} u \\ v \\ w \\ a \\ b \end{cases} = \begin{bmatrix} N_{i} & 0 & 0 & 0 & 0 \\ 0 & N_{i} & 0 & 0 & 0 \\ 0 & 0 & N_{i} & 0 & 0 \\ 0 & 0 & 0 & N_{i} & 0 \\ 0 & 0 & 0 & 0 & N_{i} \end{bmatrix} \begin{pmatrix} \vdots \\ \vdots \\ u_{i} \\ v_{i} \\ w_{i} \\ a_{i} \\ \beta_{i} \\ \vdots \end{bmatrix}$$
 (3.7.1.3)

A expressão (3.7.1.1) pode então ser reduzida, quan do para um nó, a

ESCOLA DE ENGENHARIA BIBLICITECTA

$$P_{i} = \int_{\mathcal{L}} N_{i} N_{k} \begin{pmatrix} P_{xk} \\ P_{yk} \\ P_{zk} \\ M_{y'k} \\ M_{x'k} \end{pmatrix} d\ell \qquad (3.7.1.4)$$

onde k representa os nos, que se situam sobre o lado que contém o no i.

Para dl tem-se 2 expressões

$$d\ell = \sqrt{x_{\eta}^{2} + y_{\eta}^{2} + z_{\eta}^{2}} d\eta \qquad (3.7.1.5)$$

quando & é constante;

e
$$d\ell = \sqrt{x_{\xi}^{2} + y_{\xi}^{2} + z_{\xi}^{2}}$$
. $d\xi$ (3.7.1.6)

quando n é constante.

3.7.2 - Carga Distribuída sobre a Superfície do El<u>e</u> mento.

Neste caso, as cargas equivalentes são fornecidas por

$$\underline{P}^{e} = \int_{S} \underbrace{N}^{T} \underline{q} \, ds \qquad (3.7.2.1)$$

onde a carga distribuída é representada por

$$g = \begin{bmatrix} |N_{i} & 0 & 0| \\ 0 & N_{i} & 0| \\ 0 & 0 & N_{i} \end{bmatrix}$$
(3.7.2.2)

obtendo-se, para um nó, a carga equivalente

$$P_{i} = \int_{-1-1}^{1} N_{i} N_{j} \begin{cases} q \\ x_{j} \\ q_{y_{j}} \\ q_{z_{j}} \end{cases} dA \qquad (3.7.2.3)$$

sendo a diferencial da área dada por

$$dA = \sqrt{(y_{\xi}, z_{\eta} - y_{\eta}, z_{\xi})^{2} + (x_{\xi}, y_{\eta} - x_{\eta}, y_{\xi})^{2} + (x_{\eta}, z_{\eta}, z_{\eta}, z_{\eta}, z_{\eta})^{2}} + (x_{\eta}, z_{\eta}, z_{\eta}, z_{\eta}, z_{\eta})^{2} + (x_{\eta}, z_{\eta})^{2} + (x_{$$

3.7.3 - Peso Próprio

São forças de volume constantes que podem ser representadas por

$$\underbrace{b}_{P} = \begin{cases} \rho & g_{X} \\ \rho & g_{y} \\ \rho & g_{z} \end{cases}$$

$$(3.7.3.1)$$

onde $\rho \in \sigma$ peso específico do material, e g_x, g_y, g_z são os com ponentes do versor aceleração da gravidade no sistema de eixos globais.

As cargas nodais equivalentes são expressas por

$$\underline{P}^{e} = {}^{f}_{V} \underbrace{N}_{v} \underbrace{N}_{v} \underbrace{b}_{v} dV \qquad (3.7.3.2)$$

Para um no, reduz-se a

$$P_{i} = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \left[\begin{matrix} N_{i} & 0 & 0 \\ 0 & N_{i} & 0 \\ 0 & 0 & N_{i} \end{matrix} \right] \left\{ \begin{matrix} \rho & g_{X} \\ \rho & g_{Y} \\ \rho & g_{Z} \end{matrix} \right\} ||J|| d\xi d\eta d\xi$$

$$(3.7.3.3)$$

3.7.4 - Deformações Térmicas As forças nodais equivalentes, devidas às deformações iniciais são dadas por

$$P^{e} = {}^{f} v \underline{B}^{T} \underline{D} \underline{\varepsilon}^{0} dV \qquad (3.7.4.1)$$

onde

$$\underline{\varepsilon}^{0,T} = \{\alpha T \ \alpha T \ 0 \ 0 \} \qquad (3.7.4.2)$$

sendo α o coeficiente de expansão térmica, e T a variação de temperatura, que pode ocorrer quadraticamente sobre a superfície do elemento e linearmente através da espessura.

Se a variação da temperatura é definida em função de seus valores nodais, escrever-se-á:

$$T = N_i T_{mi} + N_i \zeta \Delta T_i \qquad (3.7.4.3)$$

sendo

$$T_{mi} = \frac{T_{supi} + T_{inf_i}}{2}$$
(3.7.4.4)

e

$$\Delta T_{i} = \frac{T_{sup_{i}} - T_{inf_{i}}}{2}$$
 (3.7.4.5)

onde T inf_i e a temperatura que ocorre na face superior do ele mento, no no i, e T inf_i representa a temperatura na face inferior do elemento, no no i.

A expressão das cargas nodais equivalentes para cada no fica dada por¹⁴

$$P_{i} = \frac{\alpha E}{(1-\nu)} - \frac{1-1-1}{1-1} T \begin{bmatrix} \Theta_{11} B_{1i} + \Theta_{12} & B_{2i} \\ \Theta_{21} B_{1i} + \Theta_{22} & B_{2i} \\ \Theta_{31} B_{1i} + \Theta_{32} & B_{2i} \\ \frac{1}{2} t_{i} \zeta | B_{1i} (\Phi_{11} \Theta_{11} + \Phi_{21} \Theta_{21} + \Phi_{31} \Theta_{31}) | \\ + B_{2i} (\Phi_{11} \Theta_{12} + \Phi_{21} \Theta_{22} + \Phi_{31} \Theta_{32}) | \\ \frac{1}{2} t_{i} \zeta | B_{1i} (\Phi_{12} \Theta_{11} + \Phi_{22} \Theta_{21} + \Phi_{32} \Theta_{31}) | \\ + B_{2i} (\Phi_{12} \Theta_{12} + \Phi_{22} \Theta_{22} + \Phi_{32} \Theta_{32}) | \\ \end{bmatrix}$$

 $x ||J||d\xi d\eta d\zeta$

3.7.5 - Rotação das Cargas Nodais Equivalentes

A transformação das cargas nodais equivalentes de co ordenadas locais para coordenadas globais, dã-se como o expos to na seção 3.6.

Isto é,

$$P_{-G} = T_{-} P_{-} (3.7.5.1)$$

onde T é a matriz de transformação

e P_L o vetor de cargas nodais equivalentes, expandido pela introdução de um zero na posição correspondente a M_z,.

M_X, O Deve-se salientar que, nos casos de carregamentos com peso próprio e carga distribuída sobre a superfície do elemento, esta operação não é necessária, pois ambos envolvem apenas

forças. Ainda, para evitar a rotação de coordenadas, pode-se introduzir diretamente o carregamento lateral distribuído em coordenadas globais.

3.8 - Tensões

3.8.1 - Tensões nas Coordenadas Locais As tensões estão definidas por

 $\underline{\sigma}' = \underline{D}' (\varepsilon' - \varepsilon^{0'}) \qquad (3.8.1.1)$

e como se conhece a expressão da deformação específica, que está dada em (3.4.20) obtém-se os valores explicitados das com ponentes de tensão, dados pela fórmula (3.8.1.2), da página seguinte.

Como as componentes da tensão dependem de ζ , calcul<u>a</u> -se os seus valores para os pontos da espessura que possuem a coordenada ζ iguais a 1, 0.5, 0, -0.5, -1.

Para os nos que pertencem a mais de um elemento, os valores das tensões no no serão a média dos valores encontrados para os vários elementos.

> 3.8.2 - Tensões nas Coordenadas Globais Para obter-se as tensões referidas ao sistema de ej

 $F_{L} = \begin{cases} F_{x} \\ F_{y} \\ F_{z} \\ M_{y}, \\ M_{x}, \\ 0 \end{cases}$

$$\begin{split} & B_{1i} \left(\theta_{11} u_{1} + \theta_{21} v_{1} + \theta_{31} w_{1} \right) + \frac{\pi}{i} \frac{1}{2} t_{i} \zeta B_{1i} \left[\theta_{11} \left(\phi_{11i} u_{1} + \phi_{12i} \theta_{1} \right) + \theta_{21} \left(\phi_{21i} u_{1} + \phi_{22i} \theta_{1} \right) + \theta_{31} \left(\phi_{31i} u_{1} + \phi_{32i} \theta_{1} \right) \right] \\ & B_{2i} \left(\theta_{12} u_{1} + \theta_{22} v_{1} + \theta_{32} w_{1} \right) + \frac{\pi}{i} \frac{1}{2} t_{i} \zeta B_{2i} \left[\theta_{12} \left(\phi_{11i} u_{1} + \phi_{12i} \theta_{1} \right) + \theta_{22} \left(\phi_{21i} u_{1} + \phi_{22i} \theta_{1} \right) + \theta_{32} \left(\phi_{31i} u_{1} + \phi_{32i} \theta_{1} \right) \right] \\ & \left(B_{1i} \theta_{12} + B_{2i} \theta_{11} \right) u_{1} + \left(B_{1i} \theta_{22} + B_{2i} \theta_{21} \right) v_{1} + \left(B_{1i} \theta_{32} + B_{2i} \theta_{31} \right) w_{1} + \frac{\pi}{i} \frac{1}{2} t_{i} \zeta \left[\left(B_{2i} \theta_{11} + B_{1i} \theta_{12} \right) \times \left(\phi_{11i} u_{1} + \phi_{12i} \theta_{1} \right) + \right. \\ & \left. + \left(B_{2i} \theta_{21} + B_{1i} \theta_{22} \right) \times \left(\phi_{21i} u_{1} + \phi_{22i} \theta_{1} \right) + \left(B_{2i} \theta_{31} + B_{1i} \theta_{32} \right) \times \left(\phi_{31i} u_{1} + \phi_{32i} \theta_{1} \right) \right] \\ & B_{1i} \left(\theta_{13} u_{1} + \theta_{23} v_{1} + \theta_{33} w_{1} \right) + B_{3i} \left(\theta_{11} u_{1} + \theta_{21} v_{1} + \theta_{31} w_{1} \right) + \frac{\pi}{i} \frac{1}{2} t_{i} \left(\left[\left(B_{3i} \zeta + C_{1i} \right) \theta_{11} + B_{1i} \zeta \theta_{13} \right] \times \left(\phi_{11i} u_{1} + \phi_{12i} \theta_{1} \right) + \right. \\ & \left. + \left[\left(B_{3i} \zeta + C_{1i} \right) \theta_{21} + B_{1i} \zeta \theta_{23} \right] \times \left(\phi_{21i} u_{1} + \phi_{22i} \theta_{1} \right) + \left[\left(B_{3i} \zeta + C_{1i} \right) \theta_{31} + B_{1i} \zeta \theta_{13} \right] \times \left(\phi_{11i} u_{1} + \phi_{12i} \theta_{1} \right) + \right. \\ & \left. + \left[\left(B_{3i} \zeta + C_{1i} \right) \theta_{22} + B_{2i} \zeta \theta_{23} \right] \times \left(\phi_{21i} u_{1} + \phi_{22i} \theta_{2} \right) + \left[\left(B_{3i} \zeta + C_{1i} \right) \theta_{32} + B_{2i} \zeta \theta_{13} \right] \times \left(\phi_{11i} u_{1} + \phi_{12i} \theta_{1} \right) + \right. \\ & \left. + \left[\left(B_{3i} \zeta + C_{1i} \right) \theta_{22} + B_{2i} \zeta \theta_{23} \right] \times \left(\phi_{21i} u_{1} + \phi_{22i} \theta_{1} \right) + \left[\left(B_{3i} \zeta + C_{1i} \right) \theta_{22} + B_{2i} \zeta \theta_{13} \right] \times \left(\phi_{11i} u_{1} \theta_{1} + \phi_{12i} \theta_{1} \right) + \right. \\ \\ & \left[\left(B_{3i} \zeta + C_{1i} \right) \theta_{22} + B_{2i} \zeta \theta_{23} \right] \times \left(\phi_{21i} u_{1} \theta_{1} + \phi_{22i} \theta_{2i} \theta_{1} \right) + \left[\left(B_{3i} \zeta + C_{1i} \right) \theta_{22} + B_{2i} \zeta \theta_{33} \right] \times \left(\phi_{31i} u_{1} \theta_{1} + \phi_{32i} \theta_{1} \right) \right] \right]$$

(3.8.1.2)

xos globais da estrutura, usa-se a seguinte expressão

$$\begin{bmatrix} \sigma \mathbf{x} \mathbf{x} & \tau \mathbf{x} \mathbf{y} & \tau \mathbf{x} \mathbf{z} \\ \mathbf{\tau} \mathbf{x} \mathbf{y} & \sigma \mathbf{y} \mathbf{y} & \tau \mathbf{y} \mathbf{z} \\ \mathbf{\tau} \mathbf{x} \mathbf{z} & \tau \mathbf{y} \mathbf{z} & \sigma \mathbf{z} \mathbf{z} \end{bmatrix} = \underbrace{\Theta}_{\mathbf{z}} \begin{bmatrix} \sigma \mathbf{x} \mathbf{x} \mathbf{x}^{\dagger} \mathbf{x}^{\dagger} \mathbf{y}^{\dagger} & \tau \mathbf{x}^{\dagger} \mathbf{z}^{\dagger} \\ \mathbf{\tau} \mathbf{x}^{\dagger} \mathbf{y}^{\dagger} \sigma^{\dagger} \mathbf{y}^{\dagger} \mathbf{y}^{\dagger} & \tau \mathbf{y}^{\dagger} \mathbf{z}^{\dagger} \\ \mathbf{\tau} \mathbf{x}^{\dagger} \mathbf{z}^{\dagger} \mathbf{y}^{\dagger} \mathbf{y}^{\dagger} & \tau \mathbf{y}^{\dagger} \mathbf{z}^{\dagger} \\ \mathbf{\tau} \mathbf{x}^{\dagger} \mathbf{z}^{\dagger} \mathbf{\tau}^{\dagger} \mathbf{y}^{\dagger} \mathbf{z}^{\dagger} & \mathbf{\Theta}_{\mathbf{z}} \end{bmatrix} \xrightarrow{\Theta}_{\mathbf{z}}^{\mathsf{T}}$$
(3.8.2.1)

As tensões $\tau_x z' e \tau_y z'$ são nulas para as superficies externas ($\zeta = 1 e \zeta = -1$) da casca. Os valores destas tensões, obtidos por (3.8.1.2) e (3.8.2.1), são valores médios ao longo da espessura. As máximas tensões de cisalhamento ocorrem no eixo neutro, e são iguais a 1,5 vezes os seus valores médios.

CAPÍTULO 4 - PARTICULARIZAÇÃO PARA ANÁLISE DE PRO-BLEMAS DE FLEXÃO DE PLACAS.

4.1 - Introdução

O elemento de placa adotado é simplesmente uma par ticularização do de casca. Através de uma série de simplifica ções e adequações, chega-se a um elemento eficaz na análise de placas finas e grossas onde as deformações por corte tornam-se significativas.

As hipóteses assumidas na degeneração do elemento de casca permanecem válidas aqui. Logo:

a) as linhas originalmente retas e normais à supe<u>r</u> fície média da placa permanecem retas durante e depois da deformação;

b) as tensões na direção normal ao plano médio da placa são consideradas nulas independentemente do carregamento, e não hã contribuição de ε_{τ} na energia de deformação.

A geometria do elemento é definida pelas coordenadas x e y, e pela espessura de cada nó. Os graus de liberdade nodais serão o deslocamento w e as rotações $\Theta_x = \Theta_y$, para ca da um dos nós da figura 15.

FIGURA 15 - ELEMENTO DE PLACA

A equação (3.1.2) particulariza-se para

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}^{*} = \sum_{i=1}^{8} N_{i} \begin{pmatrix} x_{i} \\ y_{i} \\ 0 \end{pmatrix} + \sum_{i=1}^{8} N_{i} \frac{\zeta}{2} V_{3i}$$
(4.2.1)

pois z_{im}=0, já que a superfície média da placa pertence ao pl<u>a</u> no xy. Pode-se representar o vetor espessura como

$$\vec{v}_{3i} = \begin{cases} 0 \\ 0 \\ t_i \end{cases}$$
(4.2.2)

onde t_i é a espessura do elemento no nó i, e desta maneira as coordenadas ficam estabelecidas da seguinte forma

$$x = \sum_{i=1}^{8} N_i x_{im}$$
(4.2.3)

$$y = \sum_{i=1}^{8} N_{i} y_{im}$$
(4.2.4)
$$z = \sum_{i=1}^{8} N_{i} \frac{\zeta}{2} t_{i}$$
(4.2.5)

4.3 - Definição dos Deslocamentos

Em conseqüência da hipótese (a), os deslocamentos u e v são completamente especificados pelas rotações $\Theta_x = \Theta_y$, como mostra a figura 16.

Os esforços de membrana não são considerados, portanto u=v=O na superfície média.

O campo de deslocamentos assumido passa a ser dado por

$$\begin{cases} u \\ v \\ w \end{cases} = \begin{bmatrix} 8 \\ \Sigma \\ i=1 \end{bmatrix} N_{i} \begin{bmatrix} 0 \\ 0 \\ w_{i} \end{bmatrix} + \begin{bmatrix} 8 \\ \Sigma \\ i=1 \end{bmatrix} N_{i} \zeta \frac{t_{i}}{2} \begin{bmatrix} \Theta y_{i} \\ -\Theta \\ x_{i} \end{bmatrix}$$
(4.3.1)

Esta expressão pode ser obtida a partir da fórmula (3.2.1), levando em consideração que:

- 10) o plano médio é neutro, portanto u_{im}=v_{im}=0;
- 2º) o sistema de eixos local coincide com o global, sendo dispensável a transformação de coordenadas, portanto

4.4 - Definição de Deformações e Tensões

As deformações serão definidas agora em relação ao sistema de eixos globais.

$$\varepsilon = \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{cases} = \begin{cases} u, \\ v, \\ v, \\ y \\ u, \\ y + v, \\ u, \\ z + w, \\ v, \\ z + w, y \end{cases}$$
(4.4.1)

ma

$$\underline{\sigma} = \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \\ \tau_{xz} \\ \tau_{yz} \end{cases} = \underline{D}' (\underline{\varepsilon} - \underline{\varepsilon}^{0}) \qquad (4.4.2)$$

sendo a matriz de elasticidade D', para um material isotrópico, dada pela expressão (3.3.3).

4.5 - Matriz de rigidez do ElementoA matriz de rigidez do elemento é dada por

$$K = \frac{1}{1} \frac{1}{-1} \frac{1}{-1} \frac{1}{-1} B^{T} D^{'} B ||J|| d\xi d\eta d\zeta \qquad (4.5.1)$$

Para a obtenção da matriz <u>B</u> que relaciona as deformações com os deslocamentos, tem-se que desenvolver as seguintes relações. As derivadas dos deslocamentos com respeito <u>as</u> coordenadas do sistema global, ligam-se com as suas derivadas, em relação <u>as</u> coordenadas curvilíneas por

$$\begin{bmatrix} u, x & v, x & w, x \\ u, y & v, y & w, y \\ u, z & v, z & w, z \end{bmatrix} = \underline{J}^{-1} \begin{bmatrix} u, \xi & v, \xi & W, \xi \\ u, \eta & v, \eta & W, \eta \\ u, \zeta & v, \zeta & W, \zeta \end{bmatrix} (4.5.2)$$

onde J⁻¹ é a inversa da matriz jacobiana

$$J = \begin{bmatrix} x_{,\xi} & y_{,\xi} & z_{,\xi} \\ x_{,\eta} & y_{,\eta} & z_{,\eta} \\ x_{,\zeta} & y_{,\zeta} & z_{,\zeta} \end{bmatrix}$$
(4.5.3)

em que

$$\frac{\partial x}{\partial \xi} = \Sigma N_{i}, \xi \times_{im}; \quad \frac{\partial x}{\partial \eta} = \Sigma N_{i}, \eta \times_{im}; \quad \frac{\partial x}{\partial \zeta} = 0;$$

$$\frac{\partial y}{\partial \xi} = \Sigma N_{i}, \xi y_{im}; \quad \frac{\partial y}{\partial \eta} = \Sigma N_{i}, \eta y_{im}; \quad \frac{\partial y}{\partial \zeta} = 0;$$

$$(4.5.4)$$

$$\frac{\partial z}{\partial \zeta} = \Sigma N_{i}, \zeta \frac{\zeta}{2} t_{i}; \quad \frac{\partial z}{\partial \eta} = \Sigma N_{i}, \eta \frac{\zeta}{2} t_{i}; \quad \frac{\partial z}{\partial \zeta} = \Sigma N_{i} \frac{\tau_{i}}{2};$$

Ao representar-se a inversa da matriz jacobiana por

$$\underline{J}^{-1} = \frac{1}{||\underline{J}||} \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix}$$
(4.5.5)

tem-se

$$B_{11} = y_{,\eta} \cdot z_{,\zeta}; B_{12} = -y_{,\xi} \cdot z_{,\zeta}; B_{13} = 0;$$

$$(4.5.6)$$

$$B_{21} = -z_{,\zeta} \cdot x_{,\eta}; B_{22} = z_{,\zeta} \cdot x_{,\xi}; B_{23} = 0;$$

$$B_{31} = 0; B_{32} = 0; B_{33} = x_{,\xi} \cdot y_{,\eta} - x_{,\eta} \cdot y_{,\xi}$$

Efetuando-se o produto matricial em (4.5.2), obter--se-ã

$$u_{x} = \frac{8}{i^{2}} \frac{1}{2} \cdot B_{1i} \cdot \zeta \cdot t_{i} \cdot \Theta_{yi}$$

$$v_{y} = \frac{8}{i^{2}} \frac{1}{2} \cdot B_{2i} \cdot \zeta \cdot t_{i} \cdot \Theta_{xi}$$

$$u_{y} + v_{x} = \frac{8}{i^{2}} \frac{1}{2} \cdot (B_{2i} \cdot \zeta \cdot t_{i} \cdot \Theta_{yi} - B_{1i} \cdot \zeta \cdot t_{i} \cdot \Theta_{xi})$$

$$(4.5.7)$$

$$u_{,z} + w_{,x} = \sum_{\substack{i=1 \\ 8 \\ i=1}}^{8} (B_{1i}w_{i} + \frac{1}{2} C_{3i} \cdot t_{i} \cdot \Theta_{yi})$$

$$w_{,y} + v_{,z} = \sum_{\substack{i=1 \\ i=1}}^{8} (B_{2i} \cdot w_{i} - \frac{1}{2} \cdot C_{3i} \cdot t_{i} \cdot \Theta_{xi})$$

na onde

$$B_{1i} = B_{11} \cdot N_{i} \cdot \xi + B_{12} \cdot N_{i} \cdot \eta ; B_{2i} = B_{21} \cdot N_{i} \cdot \xi + B_{22} \cdot N_{i} \cdot \eta ;$$

$$C_{3i} = B_{33} \cdot N_{i}$$
(4.5.8)

poderã então o vetor de deformações ser escrito da seguinte forma

$$\begin{split} \varepsilon &= \begin{pmatrix} \varepsilon \\ xx \\ \varepsilon \\ yy \\ \gamma \\ xy \\ \gamma \\ yz \\ \gamma \\ zy \end{pmatrix} = \begin{pmatrix} 0 & \Sigma \frac{1}{2} B_{1i}^{\zeta t}i & 0 \\ 0 & 0 & -\Sigma \frac{1}{2} B_{2i}^{\zeta t}i \\ 0 & \Sigma \frac{1}{2} B_{2i}^{\zeta t}i & -\Sigma \frac{1}{2} B_{1i}^{\zeta t}i \\ 0 & \Sigma \frac{1}{2} B_{2i}^{\zeta t}i & -\Sigma \frac{1}{2} B_{1i}^{\zeta t}i \\ \Sigma B_{1i} & \Sigma \frac{1}{2} C_{3i}^{\zeta t}i & 0 \\ \Sigma B_{2i} & 0 & -\Sigma \frac{1}{2} C_{3i}^{\zeta t}i \end{bmatrix} \begin{pmatrix} w_{i} \\ u_{i} \\ u_{i}$$

ou de uma forma semelhante ao capítulo anterior

$$\underbrace{\varepsilon}_{i=1}^{8} \underbrace{cB}_{i} \underbrace{w}_{i} + \underbrace{B}_{i=1}^{2} \frac{1}{2} t_{i} \left[\underbrace{B}_{i} \zeta + \underbrace{C}_{i} \right] \left\{ \begin{smallmatrix} \alpha i \\ \beta i \end{smallmatrix} \right\} (4.5.10)$$

sendo

 $CB_{i} = \begin{bmatrix} 0\\0\\0\\B_{1i}\\B_{2i} \end{bmatrix}$

e

(4.5.12)

 $\underline{\varepsilon} = \begin{bmatrix} C\underline{B}_{1} \dots C\underline{B}_{8} & | & \frac{1}{2} t_{1} \\ & [\zeta \underline{B}_{1} + \underline{C}_{1}] \\ & \vdots \\ &$

onde

$$\frac{K_{Aij_{1\times 1}}}{\sum Bij_{1\times 2}} = \frac{CB_{i}^{T}}{D} \frac{D'}{2} \frac{CB_{j}}{D} (4.5.16)$$

$$\frac{K_{Bij_{1\times 2}}}{\sum CB_{i}^{T}} \frac{D'}{D} \frac{1}{2} t_{j} [c_{\underline{B}j} + \underline{c}_{j}] (4.5.17)$$

56

е

$$\overset{K}{\simeq} Cij_{2\times 2} = \frac{1}{4} t_i t_j \left[\zeta \underline{B}_i + \underline{C}_i \right]^T \underline{D}' \left[\zeta \underline{B}_j + \underline{C}_j \right]$$
(4.5.18)

em que

$$\sum_{i=1}^{C} B_{i}^{T} D' \sum_{i=1}^{C} B_{j} = B_{1i} D_{44} B_{1j} + B_{2i} D_{55} B_{2j}$$
(4.5.19)

$$\underline{CB_{i}^{T} D' \underline{C}_{j}} = \begin{bmatrix} B_{1i} D_{44}C_{3j} - B_{2i}D_{55}C_{3j} \end{bmatrix} (4.5.20)$$

$$\underline{B}_{i}^{T}\underline{D}'\underline{B}_{j} = \begin{bmatrix} B_{1i}^{D}D_{1}B_{1j}^{+}B_{2i}D_{3}B_{2j} & -B_{1i}^{D}D_{1}2^{B}2j^{-}B_{2i}D_{3}B_{1j} \\ -B_{2i}D_{2}D_{1}B_{1j}^{-}B_{1i}D_{3}B_{2j} & B_{2i}D_{2}2^{B}2j^{+}B_{1i}D_{3}B_{1j} \end{bmatrix}$$

$$(4.5.21)$$

ou

$$\begin{array}{c} C_{3i} D_{44} C_{3j} & 0 \\ C_{3i} D' C_{j} = \\ 0 & C_{3i} D_{55} C_{3j} \end{array}$$
(4.5.22)

sendo que os seguintes produtos se anulam

$$\underbrace{CB}_{i}^{T} \underbrace{D}_{i}' \underbrace{B}_{j} = \underbrace{B}_{i}^{T} \underbrace{D}_{i}' \underbrace{C}_{j} = \underbrace{C}_{i}^{T} \underbrace{D}_{i}' \underbrace{B}_{j} = \underbrace{0}_{i}$$
(4.5.23)

4.6 - Forças Nodais Equivalentes

As cargas nodais equivalentes são obtidas para os carregamentos arrolados abaixo.

4.6.1 - Carregamento Peso-Próprio

A carga peso-próprio \tilde{e} considerada atuando na direção de z, e será igual a g_{z} , onde P \tilde{e} o peso específico do material da placa, e g_z \tilde{e} o versor aceleração da gravidade,que toma os valores l ou -l, segundo estiver ou não aplicada na di reção positiva do eixo z.

$$P_{i_{3x_{1}}} = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \begin{bmatrix} N_{i} & 0 & 0 \\ 0 & N_{i} & 0 \\ 0 & 0 & N_{i} \end{bmatrix} \begin{bmatrix} g_{z} \cdot \rho \\ 0 \\ 0 \end{bmatrix} ||j|| d\xi d\eta d\zeta$$

$$(4.6.11)$$

4.6.2 - Carregamento Distribuído sobre a superfície do Elemento

Neste caso as cargas nodais equivalentes serão dadas por

$$\underline{P}^{e} = {}^{J}_{S} \underline{N}^{T} \underline{q} dA \qquad (4.6.2.1)$$

Como se tem somente forças distribuídas na direção de z, fica

$$P_{i} = \int_{-1}^{1} \int_{-1}^{1} N_{i} N_{j} \qquad \begin{cases} q_{zi} \\ 0 \\ 0 \end{cases} \qquad dA \qquad (4.6.2.2)$$

onde dA está dada pela fórmula (3.7.2.4).

4.6.3 - Cargas Distribuídas sobre os lados dos Elementos.

O vetor que representa as cargas nodais equivalentes é

$$\underline{P}^{e} = \int_{\Omega} \underline{N}^{T} p \, d\ell \qquad (4.6.3.1)$$

()

$$\underline{p} = \begin{bmatrix} |N_{i} & 0 & 0| \\ 0 & N_{i} & 0| \\ 0 & 0 & N_{i} \end{bmatrix} \begin{bmatrix} \vdots \\ P_{zi} \\ M_{yi} \\ M_{xi} \\ \vdots \end{bmatrix}$$
(4.6.3.2)
portanto
$$\underline{P_{i}} = \int_{\mathcal{L}}^{I} N_{i} N_{k} \begin{bmatrix} P_{zk} \\ M_{yk} \\ M_{xk} \end{bmatrix} d\mathcal{L}$$
(4.6.3.3)

onde k diz respeito aos nos que estão sobre o lado carregado do elemento, e que contém o no i, e sendo de determinado pela expressão (3.7.1.5) ou (3.7.1.6).

sendo

4.6.4 - Deformações Iniciais

A expressão das cargas nodais equivalentes é dada

por

$$\underline{P}^{e} = {}^{f}v \underline{B}^{T} \underline{D}' \underline{\varepsilon}^{o} dv \qquad (4.6.4.1)$$

Se a variação da temperatura for quadrática sobre a superfície do elemento e linear sobre a espessura, pode-se escrever

$$\Gamma = N_i T_i + \zeta N_i \Delta T_i \qquad (4.6.4.2)$$

e sendo o vetor de deformação iniciais dada por (3.7.4.2),chega-se a

$$P_{i} = \frac{\alpha E}{(1-\nu)} \int_{-1-1-1}^{1-1-1} T(\xi, n, \zeta) \begin{cases} 0 \\ \frac{1}{2} t_{i} [\zeta B_{1i}] \\ -\frac{1}{2} t_{i} [\zeta B_{2i}] \end{cases} ||\underline{j}|| d\xi dn d\zeta$$

$$(4.6.4.3)$$

4.7 - Tensões

As tensões que estão relacionadas com as deformações por (4.4.2) podem ser escritas de uma forma mais explicíta pela seguinte expressão

$$\underline{\sigma} = \underline{D}^{\prime} \begin{bmatrix} \frac{8}{2} & \frac{1}{2} & t_{i} \in B_{1i} \\ \frac{8}{1 = 1} & \frac{1}{2} & t_{i} \in B_{2i} \\ \frac{8}{1 = 1} & \frac{1}{2} & t_{i} \in B_{2i} \\ \frac{8}{1 = 1} & \frac{1}{2} & t_{i} \in (B_{2i} \\ \alpha_{i} - B_{1i} \\ \beta_{i} = 1 \\ \frac{8}{1 = 1} \\ \frac{5}{1 = 1} \\ \frac{8}{1 = 1} \\ \frac{5}{1 = 1} \\ \frac{1}{2} & t_{i} \\ \frac{8}{1 = 1} \\ \frac{5}{1 = 1} \\ \frac{1}{2} \\ \frac{1}$$

Os seus valores para os diversos pontos da malha $\,$ são calculados para a coordenada ζ igual a 1, 0,5, 0 , -0,5, e -1.

CAPÍTULO 5 - DETALHES COMPUTACIONAIS

5.1 - Introdução

Neste capítulo serão descritas algumas particul<u>a</u> ridades presentes nas subrotinas que calculam a matriz de rígidez e de tensões, bem como algumas dificuldades apresentadas no transcorrer deste trabalho.

Os elementos de placa e casca encontram-se em programas independentes, e quando posteriormente implementados mo sistema LORANE, receberão os nomes respectivos de FPIQD e CGIQ1¹². Doravante os elementos assumirão essa nomenclatura.

A linguagem utilizada na programação é o EXTENDED ALGOL e na figura 17 apresenta-se um macrodiagrama da organização interna do programa em subrotinas. Cada subrotina é representada por um retângulo e chama as subrotinas a ela vincul<u>a</u> das e situadas a sua direita.

Como os procedimentos de entrada e saída, montagem da matriz de rigidez total, aplicação das condições de conto<u>r</u> no, e solução do sistema de equações, seguirão os padrões no<u>r</u> mais do sistema LORANE, não cabe detalha-los aqui, e receberão apenas uma breve menção.

A seguir descreve-se as funções de cada subrotina que compõe o programa para o elemento de casca CGIQ1.

5.2 - Procedure Programa

Lê os dados referentes a estrutura, e calcula a semi largura da banda da matriz de rigidez.

Na maioria dos programas até aqui desenvolvido, as componentes da espessura são fornecidas diretamente como dados de entrada. Halbritter¹⁴ abre duas possibilidades no programa por ele desenvolvido, ou se fornece as componentes da espessura, ou estas são determinadas automáticamente. Só que para este último caso, é necessário programar o seu cálculo para cada forma estrutural.

FIG. 17 - MACRODIAGRAMA APRESENTANDO A ORGANIZAÇÃO INTERNA EM SUBROTINAS DO PROGRAMA DE CASCAS. Neste programa a determinação das componentes da espessura é feita automáticamente, a partir dos valores das espessuras nos nós, independentemente da forma da estrutura. Isso é feito na PROCEDURE PAR5.

5.3 - Procedure Análise

Esta rotina consiste, própriamente, no programa d<u>e</u> senvolvido pois realiza desde a montagem da matriz de rígidez até a impressão dos resultados.

Como resultado, além dos deslocamentos, publica--se para cada no do elemento, o tensor das tensões em coorde nadas locais e globais em 5 pontos ao longo da espessura, correspondentes as coordenadas ζ iguais a 1, 0,5, 0, -0,5, -1, as sim como as tensões tangenciais máximas. Por fim, são publicados os esforços normais, momentos fletores e esforços cortantes calculados através da teoria de lâminas delgadas.

Por essa teoria, e como mostra a figura 18, pode-se dizer que

$$\sigma_{\max} = \sigma' + \sigma'' \qquad (5.3.1)$$

tem-se então que

e

$$N = \sigma' \cdot h$$
 (5.3.2)

$$M = \sigma'' \cdot \frac{h^2}{6}$$
 (5.3.3)

$$Q = \frac{2}{3} \tau_{max} \cdot h$$
 (5.3.4)

onde _{tmax} ē 1,5 vezes as tensões tangenciais médias.

Esta rotina chama as subrotinas RITCTR, SPD, SPOD, GETLO, SOLGEN, TETCTR

5.4 - Procedure RITCTR.

É nesta rotina que se realiza o cálculo da matriz de rígidez e do vetor de cargas nodais equivalentes para cada elemento. Para isso ela necessita de várias subrotinas.

E nela que se executa a técnica para tornar viavel a utilização do elemento nos casos de descontinuidade. Para isso, após a obtenção da matriz de rigidez expandida, agrega na diagonal principal nas posições correspondentes a linhas e colunas multiplas de 6 os valores 0 ou 1, caso os nós pertençam ou não a diferentes planos.

5.5 - Procedure SACAR1

Fornece as coordenadas dos nos do elemento em sua numeração interna.

5.6 - Procedure REALCONST

Fornece as constantes elásticas do material, bem como o seu coeficiente de expansão térmica. 5.7 - Procedure PAR5

É nela que se determina a matriz de rigidez do elemento, executa a reorganização nodal, a expande para uma matriz 48x48, e calcula as cargas nodais equivalentes.

Na figura 19 um macrodiagrama é apresentado para mai or clareza quanto aos passos executados por esta subrotina.

No tocante ao cálculo das componentes da espessura, pro cede-se da seguinte forma. Calcula-se a matriz de cosenos dir<u>e</u> tores Θ , para as coordenadas $\xi \in \eta$ do no i, e $\zeta=0$, isto é, na superfície média. De posse das componentes do versor do eixo z' estas são multiplicadas pela espessura do no, obtendo-se as componentes desejadas.

Na realidade ao se agir assim considera-se ζ como exatamente normal a superfície média da estrutura, enquan to sabe-se que ζ é só aproximadamente normal a ela. Porém,este fato não introduz erros maiores no cálculo das componentes,mas economiza em muito o trabalho de preparação dos dados.

Aproveita-se também o cálculo das matrizes ⊙ para armazená-las em um arranjo unidimensional para sua futura utilização na rotação da matriz de rigidez.

Outro fato que merece ser destacado é que,todas as variáveis intervenientes no processo de integração numérica tem a necessidade de serem declaradas em precisão dupla. A esta conclusão chegaram pesquisadores do COPPE-UFRJ que trabalharam com esse elemento.

5.8 - Procedure PAR10

Esta subrotina calcula as derivadas das coordenadas globais da estrutura com respeito a ζ, n e ζ. Calcula ainda a matriz de rotação Θ, a matriz Jacobiana J, seu determinante ||J|| , a matriz A e os valores de B_{li}, B_{2i}, B_{3i} e C_{li}.

Chama a subrotina PAR1.

5.9 - Procedure PARl Cálcula as derivadas das funções de interpolação em

FIG. 19 - MACRODIAGRAMA DA PROCEDURE PAR5.

relação as coordenadas curvelíneas.

5.10- Procedure PAR5A

Executa o produto ⊙BiDBj que surge por diversas vezes no cálculo da matriz de rigidez.

5.11 - Procedure PAR5B

Calcula a matriz ϕ_i .

5.12 - Procedure PAR11

Calcula as carga nodais equivalentes para a carga di<u>s</u> tribuída sobre os lados do elemento. Chama a subrotina PAR12.

5.13 - Procedure PAR12

Fornece os nos que pertencem a um determinado lado do elemento.

5.14 - Procedure NOVARIG

Realiza a rotação da matriz de rigidez.

5.15 - Procedure SPD e Procedure SPOD

Montam a matriz de rigidez total, armazenando-a em dois vetores unidimensionais. A Procedure SPD armazena as submatrizes diagonais, enquanto a Procedure SPOD armazena as outras submatrizes noutro vetor.

5.16 - Procedure GETLO

Agrega ao vetor de cargas nodais equivalentes as cargas externas aplicadas nos nos.

5.17 - Procedure SOLGEN

Resolve o sistema de equações utilizando o método de eliminação de Gauss, operando com blocos de matrizes. Este sistema leva em conta a possibilidade de operar-se com matrizes banda e esparsas.

Apos a rotação da matriz de rigidez, deparou-se com

um problema de instabilidade numérica. Conseguiu-se solucionar a questão extendendo-se à precisão dupla as variáveis intervenientes no processo de solução.

5.18 - Procedure TETCTR

A fim de melhor ilustrar o procedimento para o cálculo das tensões, achou-se conveniente traçar um macrodiagrama de bloco desta rotina, que esta representado na figura 20.

Esta rotina chama as subrotinas SACAR1, REALCONST, PAR10 e PAR5B.

5.19 - Programa para Placas.

O programa para o elemento de placas "FPIQD" mantem a mesma estrutura do que o de cascas.

Em relação ao macrodiagrama apresentado na figura 17, o programa de placas não conta com as subrotinas NOVARIG e PAR5B, sendo que os procedimentos remanescentes sofrem uma série de simplificações para se adequarem a formulação anteriormente apresentada.

Os resultados oferecidos são os deslocamentos, e o tensor de tensões para os nos dos elementos em 5 pontos da espessura, referidos ao sistema de eixos globais, assim como as tensões tangenciais máximas e as solicitações considerando-se a teoria de placas finas.

FIG. 20 - MACRODIAGRAMA DA PROCEDURE TETCTR.

CAPÍTULO 6 -EXEMPLOS ILUSTRATIVOS E ANÁLISE DOS RE-SULTADOS.

6.1 - Exemplo 1

Uma placa circular isótropa, engastada com uma carga concentrada no centro, é usada para mostrar a convergência para a solução exata de placas delgadas. Para isso, utiliza-se uma série de malhas minimizantes, representadas na figura 21.

FIGURA 21 - MALHAS UTILIZADAS

A figura 22 apresenta os dados do problema, e a figura 23 os resultados obtidos.

FIGURA 22 - PLACA CIRCULAR ENGASTADA.

Pode-se notar que a convergência se da para um valor que excede em um pouco o deslocamento vertical máximo. Isto se deve ao fato do elemento de placas considerar as deformações por corte, que para v=0,3 é responsável por um acréscimo de l,14%, no deslocamento do ponto central¹⁷.

FIGURA 23 - CONVERGÊNCIA PARA A SOLUÇÃO TEÓRICA

6.2 - Exemplo 2

Para comparar-se o comportamento do elemento de placa em relação ãs teorias de placas delgadas e espessas, tomouse uma placa quadrada simplesmente apoiada com carregamento uniformemente distribuído, como mostra a figura 24.

Usando relações entre a espessura e o lado da placa de 0,005, 0,01, 0,05 e 0,1, comparou-se os resultados obtidos pelo programa com os calculados pela teoria de placas finas²², para os deslocamentos e os momentos M_{xx} , M_{yy} ao longo de uma linha que passa pelo meio do vão.

FIGURA 24 - PLACA RETANGULAR COM CARREGAMENTO UNIFORMEMENTE DIS TRIBUÍDO E MALHA UTILIZADA.

Os resultados encontram-se nas figuras 25 e 26.

Pode-se observar que o elemento de placas com integração reduzida é capaz de fornecer excelentes resultados para o

caso de placas finas.

A fim de comparar os resultados do elemento de placas com os da teoria de placas espessas, utiliza-se valores de $0,2, 0,4 \in 0,6$ para a razão h/a.

Na situação de placas espessas, os deslocamentos podem ser expressos por¹⁷

$$W = W_{b} + W_{c} \tag{5.2.1}$$

no qual W_b representa o deslocamento devido aos efeitos da fl<u>e</u> xão calculados pela teoria de placas finas; e W_s o acréscimo de vido ãs deformações por corte,que, no caso de uma placa quadr<u>a</u> da com carga uniformemente distribuída, e v=0,3, vale

$$W_s = 0,2294929 \frac{q.a^2}{E.h}$$
 (5.2.2)

As relações h/a acima relacionadas, implicam em aumentos de 20,23%, 80,62% e 182%, respectivamente, nos valores do deslocamento no centro da placa.

Os resultados obtidos foram

h/a	W	Wp
0,2	0,154	0,15183
0,4	0,289	0,28693
0,6	1,336	1,32935

sendo W o deslocamento calculado considerando-se as deformações por corte, e W_p o deslocamento obtido do programa. Esses resultados estão representados na figura 27.

FIGURA 27 - DESLOCAMENTOS AO LONGO DA LINHA X=0. CONVERGÊNCIA PARA A SOLUÇÃO DE PLACAS ESPESSAS.

6.3 - Exemplo 3

Para testar a convergência do elemento de casca, calculou-se a energia de deformação de uma placa quadrada simple<u>s</u> mente apoiada, com carga distribuída uniformemente, que é expressa por²²

$$V = \frac{32 \ a^{6} q^{2}}{\pi^{8} D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{2} n^{2} (m^{2} + n^{2})^{2}}$$
(5.3.1)

tomando os cinco primeiros termos da série, obtém-se

$$V = 0,0008512 \frac{a^6 q^2}{D}$$
(5.3.2)

para os dados da placa em estudo, apresentados na figura 28, temos que V=851,2 kgf.cm.

Esse valor é comparado com os obtidos pelo programa, através de uma série de malhas minimizantes, no qual se utiliza a expressão da energia de deformação dada por:

$$V = \frac{1}{2} \quad \underbrace{U}^{e,T} \quad \underbrace{K} \quad \underbrace{U}^{e} \qquad (5.3.3)$$

Os resultados obtidos estão indicados na figura 29, e estão a confirmar o bom comportamento do elemento no que tange a sua convergência para a solução teórica.

FIGURA 28 - PLACA RETANGULAR. CARACTERÍSTICAS GEOMÉTRICAS E DO MATERIAL.

6.4 - Exemplo 4

Esse é um teste típico no estudo de cascas, pois tensões de membrana e flexão são nele significativas, estando pr<u>e</u> sente na maioria das referências bibliográficas, e foi analis<u>a</u> do primeiramente por A.C. Scordelis e K.S. Lo²¹.

Consiste em uma casca cilíndrica sem vigas laterais, apoiada em diafragmas rígidos nas suas extremidades, com carr<u>e</u> gamento peso-próprio. A figura 30 fornece as características geométricas e físicas do problema, bem como a malha utilizada.

FIGURA 30 - GEOMETRIA E MATERIAL DA CASCA CILÍNDRICA, E MALHA UTILIZADA.

Os resultados são comparados com o elemento CPRS1¹³, que possui forma retangular, com quatro pontos nodais. Sua matriz de rigidez é constituída pelo acoplamento da matriz de um elemento de estado plano de tensões, no qual os deslocamentos variam, segundo polinômios incompletos de segundo grau, com a de um elemento para placas delgadas em flexão, onde w varia com um polinômio incompleto de quarta ordem. A malha utilizada para este elemento é 4x4.

As figuras 31 e 32 mostram os resultados obtidos para os deslocamentos verticais (w) da seção BC, e os longitudinais, (v) para a seção AD.

FIGURA 31 - DESLOCAMENTOS VERTICAIS PARA A SEÇÃO BC.

Na tabela l, compara-se os resultados obtidos pelo programa com a solução teórica²¹.

Os resultados para os momentos transversais e longit<u>u</u> dinais, assim como para os esforços longitudinais, estão repr<u>e</u> sentados nas figuras 33, 34 e 35.

TABELA 1 - Deslocamentos(ft), Esforços Normais(Kips/ft), e Momentos fletores(ft.kips/ft)

	10W _B	100W _c	100u _A	10 v _B	N _{YB}	М _{ҮВ}	МХВ
CGIQ1	-2,974	4,536	-1,234	-1,567	78,27	-0,712	2,233
EXATO	-3,086	4,375	-1,261	-1,636	77,00	-0,927	2,353

Os resultados, conseguidos através de uma malha pouco refinada pelo elemento quadrático, corroboram com a conclusão obtida por Zienkiewicz²? "Com a completa redução da ordem de i<u>n</u> tegração, o elemento mostra uma convergência mais rápida e de maior exatidão que qualquer outro até aqui utilizado".

6.5 - Exemplo 5

Para verificar-se o comportamento do elemento de casca em problemas onde haja descontinuidade da superfície média, analisou-se uma folha poliédrica, testada experimentalmente por Gaafar.

Nas referências 6 e 13, encontra-se uma descrição do modelo, bem como uma comparação entre os resultados experimentais e os obtidos pelo método dos elementos finitos.

A simetria, quanto à geometria e carga, permite analisar apenas uma quarta parte do modelo, que está representada na figura 36.

FIGURA 34 - FORÇAS LONGITUDINAIS PARA A SEÇÃO CENTRAL.

FIGURA 35 - FORÇAS LONGITUDINAIS PARA O BORDO LIVRE ($\phi = 450$).

A malha utilizada para o elemento CGIQ1 é apresentada na figura 37.

Os deslocamentos verticais e horizontais para os pontos da seção transversal AB, e os deslocamentos verticais para o bordo horizontal livre estão representados nas figuras 38,39 e 40.

Pode-se verificar a grande aproximação dos resultados obtidos pelo método dos elementos finitos com os experimentais.

As tensões normais longitudinais para a seção AB estão representadas na figura 41; bem como mostra-se, respectivamente nas figuras 42 e 43, os nõs da seção transversal AB, e os diagramas das tensões para estes nõs a partir dos valores para os vários pontos ao longo da espessura.

Os momentos fletores para a seção do meio do vão estão mostrados nas figuras 44 e 45. Apesar de se dispor apenas de um valor experimental para o momento, pode-se observar que o valor obtido pelo elemento CGIQI, está dele muito próximo, situando-se entre o valor obtido experimentalmente e aqueles obtidos pela "slab-plate theory"⁶.

FIGURA 36 - GEOMETRIA E MATERIAL DA FOLHA POLIÉDRICA.

FIGURA 41 - TENSÕES $\sigma_{\rm X}$ PARA A SEÇÃO AB.

FIGURA 42 - NOS DA SEÇÃO TRANSVERSAL AB.

NÕ 71

NŐ 70

FIGURA 43 - DISTRIBUIÇÃO DAS TENSÕES σ_X PARA OS PONTOS DA SE-ÇÃO AB.

89,69

92,30

183,29

1,30

6.6 - Exemplo 6

Analisou-se também um parabolóide hiperbólico com to dos os seus lados engastados, e sujeito a uma carga uniformemente distribuída. A geometria e as propriedades do material estão dadas na figura 46.

Esse tipo de estrutura tem sido analisada por diversos investigadores. Os resultados encontrados pelo elemento CGIQI são comparados com os fornecidos pelas referências 7,8 16,18,20 e 25.

A tabela 2 mostra os resultados para o deslocamento vertical do ponto central, obtidos por diversos elementos utilizando uma mesma malha 4x4; a tabela 3 apresenta os valores para o momento no engaste de uma linha central.

As figuras 47 e 48 mostram os resultados obtidos para os deslocamentos verticais e momentos fletores $M_{\chi\chi}$, ao longo da linha Y=0.

TABELA 2 - DESLOCAMENTOS VERTICAIS PARA O CENTRO (10⁻³in)

Elemento	CGIQI	LAURSEN ¹⁶	DHATT ⁸	DHATT ⁷	WOLF ²⁵
W	8,16	8,889	8,824	8,94	8,88

TABELA 3 - MOMENTO M_{xx} NO ENGASTE PARA O PONTO $X = \frac{+}{-} a \in Y = 0$ (1b.in/in).

Elemento	DHATT 7	WOLF ²⁵	CHETTY ²⁰ e TOTTENHAM	PECKNOLD ²⁰ e SCHNOBRICH	CGIQ1	CPRS1 ¹³
M _{XX}	-2,18	-2,62	-2,438	-2,15	-1,98	-1,37

FIGURA 46 - PARABOLÕIDE HIPERBÕLICO. GEOMETRIA E MATERIAL.

FIGURA 47 - DESLOCAMENTOS VERTICAIS PARA A LINHA Y=0.

FIGURA 48 - MOMENTOS FLETORES AO LONGO DA LINHA Y=0.

6.7 - Tempos para a formação da matriz de rigidez.

Não realizou-se nenhum esforço no sentido de tentar d<u>i</u> minuir o tempo de processamento dos dois programas, o que por certo será feito quando de suas implementações no LORANE. Mas, achou-se necessário informar quanto ao tempo que atualmente co<u>n</u> somem.

No que tange ao tempo para a formação da matriz de rígidez, o programa para placas está levando em média 4,3 segundos por elemento, enquanto o de cascas consome 28 segundos em média por elemento.

Para uma placa retangular, uma malha com 16 elementos do tipo "FPRNC"¹² gastou 8,67 segundos para montar a matriz de rígidez, enquanto que uma malha com 4 elementos "FPIQD" levou 19,37 segundos.

No exemplo da folha poliédrica tem-se os seguintes tem pos

Nº de elementos	elemento	tempo total para a formação da ma triz de rigidez (em segundos)	tempo por eleme <u>n</u> to.
18	CGIQl	478,15	26,56
48	CPTH1	70,21	1,46
24	CPRS1	19,07	0,79

Desenvolveu-se para o caso particular de cascas finas um programa no qual ignorava a influência da espessura. Com isso, tornou-se viável integrar explícitamente a matriz de rigi dez do elemento na direção normal a superfície média.

Através desta simplificação conseguiu-se já uma notável diminuição no tempo de computação. Com a eliminação de uma integração o elemento passa a consumir 10,26 segundos por elemento. Talvez seja êste o caminho mais lógico para a solução destes casos particulares de problemas.

O que não se pode é julgar os elementos isoparamétricos apenas a luz do tempo por ele consumido, já que trata-se de um elemento de alta ordem, e de grande potencialidade.

CAPÍTULO 7 - CONCLUSÕES E RECOMENDAÇÕES

Dos exemplos, pode-se afirmar que os elementos "FPIQD" e "CGIQl" situam-se entre os mais precisos na solução de placas e cascas. Soluções com uma desejável exatidão foram conseguidas, a despeito de malhas pouco refinadas. Isso associado as suas capacidades de representarem as mais variadas formas ge<u>o</u> métricas, lhes conferem uma potencialidade que poucos elementos possuem.

O volume de resultados que os programas apresentam concorrem para tornar ainda mais fácil o trabalho posterior de dimensionamento da estrutura.

Ficou evidenciado para esses elementos, que o simples expediente de redução da ordem de integração, possibilita a obtenção de soluções convergentes para problemas de placas e cascas, tanto finas quanto espessas.

Deve-se salientar também os bons resultados obtidos pela utilização da técnica descrita na seção 3.5, para cascas que possuem descontinuidades das normais à superfície média.

Uma atenção especial deve ser dada para a redução do tempo de computação desses elementos. Para isso, pode-se considerar a matriz <u>B</u> constituída de uma matriz <u>B</u> independente de ζ e de uma matriz ζB_1 que é linear em ζ , portanto <u>B</u> = <u>B</u> + ζB_1 .

A matriz $K = \int_{V_{\alpha}} B^{T} D' B dv$ resume-se a

$$\overset{K}{\sim} = {}^{f} v \overset{B}{\sim} \overset{T}{\circ} \overset{D}{\sim} \overset{B}{\sim} \overset{D}{\circ} \overset{B}{\circ} \overset{dv}{\circ} + {}^{f} v \varsigma^{2} \overset{B}{\sim} \overset{B}{_{1}} \overset{T}{_{2}} \overset{D}{_{2}} \overset{B}{_{1}} \overset{1}{_{2}} dv \qquad (7.1)$$

jã que os termos lineares em ζ se anulam ao realizar-se a integração através da espessura.

Integrando-se, em relação a ζ , a equação anterior assume a seguinte forma

$$K = \frac{f}{1} \frac{f}{-1} \left(2 B_0^T D'B_0 + \frac{2}{3} B_1^T D'B_1 \right) \left| |J| \right| d\xi d\eta$$
(7.2)

Embora essa aproximação seja razoável, ela nos forn<u>e</u> ce resultados errados para cascas de grande espessura.Isto se deve ao fato da variação de⊙com⊊não mais pode ser negligenciada.

Essa aproximação foi introduzida no elemento CGIQI, obtendo-se uma redução no tempo de computação necessário a formação da matriz de rigidez, da ordem de 50% (ver seção 6.7).

Para conseguir-se uma diminuição ainda maior no tempo de computação, pode-se adotar a formulação econômica propos ta por Zienkiewicz²⁷, que anula os termos $A_{31} = A_{32}$ da matriz A referida na seção 3.4, que são da ordem de 10^{-2} a 10^{-4} conforme a casca for, respectivamente, de curvatura dupla ou sim ples.

Pode-se dar uma maior generalidade aos elementos, es tendendo-se a sua aplicação para materiais anisotrópicos, e para construções não-homogêneas, como é o caso de estruturas do tipo "sandwich".

Para atender a esse último caso, pode-se proceder de duas maneiras distintas. A primeira²⁶, resume-se únicamente em considerar a matriz de elasticidade D' como uma função de ς . A segunda⁵, não requer nenhuma modificação na matriz D', continuando-se a utilizá-la como se a estrutura fosse homogênea, só que com uma espessura igual a 2h, onde h é por exemplo a espessura do revestimento, como mostra a figura 49.

FIGURA 49 - ESTRUTURA DO TIPO SANDWICH.

Com isso, a rigidez a flexão é subestimada, e para corrigi-la multiplica-se a contribuição de $B_1^T D'B_1$ da expressão (7.2) pelo coeficiente.

$$\frac{D_{\text{sand.}}}{D_{\text{homog.}}} = \frac{3(c+h)^2}{4h^2}$$

onde c>>h.

Deve-se, também, multiplicar os termos D_{44} e D_{55} da matriz de elasticidade por c/2h, assim como as deformações cau sadas por flexão pelo fator (c+2h)/2h.

Como continuação desse trabalho, pode-se desenvolver um elemento, utilizando-se a mesma formulação, porém simplificada, para atender aos problemas de cascas axi-simétricas.

REFERÊNCIAS BIBLIOGRÁFICAS

- AHMAD, S.; IRONS, B.M.; ZIENKIEWICZ, O.C. Analysis of thick and thin shell structures by curved finite elements. <u>International Journal for Numerical Methods in Engineering</u>, Sussex, 2:419-51, 1970.
- BIGNON, P.G. <u>Elementos finitos isoparamétricos mixtos para</u> flexión de placas. Rio de Janeiro, COPPE/UFRJ, 1972. [Tese(M.C.)]
- 3. BREBBIA, C.A. & FERRANTE, A.J. The finite element technique. Porto Alegre, Edições UFRGS, 1975.
- CLOUGH, R.W. & WILSON, E.L. Dynamic finite element analysis of arbitrary thin shells. <u>Computers & Structures</u>, Oxford, 1 (1/2): 33-56, Aug. 1971.
- COOK, R.D. Concepts and applications of finite element analysis. New York, John Wiley, 1974.
- DAUGHTRIDGE Jr., A.S. <u>General analysis of folded plates by</u> the finite element method. Ann Arbor, Mich., University Microfilms, 1969.
- DHATT, G.S. An efficient triangular shell element. <u>AIAA</u> Journal, New York, 8(11):2100-2, Nov. 1970.
- 8. _______.Numerical analysis of thin shells by curved triangular elements based on discrete-Kirchhoff hypothesis. In: SYMPOSIUM ON APPLICATION OF FINITE ELEMENT METHODS IN CIVIL ENGINEERING, 1969. Proceedings. American Society of Civil Engineers, Vanderbilt University, 1969. p.255-78.
- 9. ERGATOUDIS, J.G. <u>Isoparametric finite elements in two and</u> three dimensional stress analysis. Swansea, Division of Civil Engineering of School of Engineering, 1968. [Thesis (Ph.D) - Univ. of Swansea]
- 10. FERRANTE, A.J. The generalization of a computer system for structural analysis. Cambridge, Department of Civil Engineering of MIT, 1969. [Thesis(Ph.D.) - Massachusetts Inst. of Technology]
- 11. FERRANTE, A.J.; HALBRITTER, A.L.; GROEHS, A.G. Analisis de estructuras laminares mediante el método de elementos finitos. In: JORNADAS SUL-AMERICANAS DE ENGENHARIA ESTRUTURAL, 17., Caracas, 1975.
- 12. FERRANTE, A.J. et alii. A linguagem LORANE linear para analise estrutural por computador. Porto Alegre, Curso de Pos-Graduação em Engenharia Civil da UFRGS, 1977.
- 13. GROEHS, A.G. Um estudo de tensões e deformações em folhas poliedricas utilizando o metodo dos elementos finitos. Porto Alegre, Curso de Pos-Graduação em Engenharia Civil da UFRGS, 1975. 154p. [Tese(M.C.) - Esc. Eng. UFRGS.]

- 14. HALBRITTER, A.L. <u>Analisis de cascaras gruesas y finas en</u> elementos tridimensionales.Rio de Janeiro, COPPE/UFRJ, 1974. [Tese(M.C.)]
- 15. KATNIK, R. A note on moment balance in the isoparametric shell element. International Journal for Numerical Methods in Engineering, Sussex, 11(1):199-200, 1977.
- 16. LAURSEN, M.E.; NEILSEN, M.P.; GELLERT, M. Application of a new stress finite element to analysis of shell structures. Computers & Structures, Oxford, 7(6):751-7, Dec. 1977.
- 17. MARGUERRE, K. & WOERNLE, H-T. Elastic plates. Waltham, Mass., Blaisdell Pub., 1969.
- MINICH, M.D. & CHAMIS, C.C Doubly-curved variable-thickness isoparametric heterogeneous finite element. <u>Computers &</u> Strucutures, Oxford, 7(2):295-301, Apr. 1977.
- PAWSEY, S.F. & CKOUGH, R.W. Improved numerical integration of thick shell finite elements. International Journal for Numerical Methods in Engineering, Sussex, 3:575-86, 1971.
- 20. SCHNOBRICH, W.C. Analysis of hyperbolic paraboloic shells. In: SYMPOSIUM ON CONCRETE THIN SHELLS, New York, 1970. Proceedings. Detroit, American Concrete Institute, 1971. p.275-311.
- SCORDELIS, A.C. & LO, K.S. Computer analysis of cylindrical shells. Journal of the American Concrete Institute, Detroit, 61(5):539-61, May 1964.
- 22. TIMOSHENKO, S. & WOINOWSKY-KRIEGER, S. Theory of plates and shells. 2.ed. New York, McGraw-Hill, 1959.
- 23. VAZ, L.E. <u>Cálculo de placas e grelhas delgadas pelo método</u> <u>dos elementos finitos.</u> Rio de Janeiro, COPPE/UFRJ, 1973 <u>[Tese(M.C.)]</u>
- 24. VENANCIO FILHO, F. Elementos isoparamétricos. In: SEMINARIO INTERNACIONAL SOBRE ELEMENTOS FINITOS E UTILIZAÇÃO DA LINGUAGEM LORANE, Porto Alegre, 1973.
- 25. WOLF, J.P. Alternate hybrid stress finite element models. International Journal for Numerical Methods in Engineering, Sussex, 9(3):601-15, 1975.
- ZIENKIEWICZ, O.C. The finite element method.
 3.ed. London, McGraw-Hill, 1977.
- 27. ZIENKIEWICZ, O.C.; TAYLOR, R.L.; TOO, J.M. Reduced integration technique in general analysis of plates and shells. <u>International Journal for Numerical Methods in Engineering</u>, Sussex, 3:275-90, 1971.