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RESUMO

Expectiles são uma famı́lia de parâmetros de medidas de risco coerentes que foram

recentemente sugeridas como uma alternativa aos quantiles (VaR) e ao expected shortfall

(ES). Neste trabalho, os expectiles são usados como uma medida de risco (EVaR), discutimos

seu significado financeiro e os comparamos com VaR e ES. Destinamos a desenvolver uma

mudança de expectile ao longo do tempo que mede o risco inerente de um ativo durante

todo o peŕıodo de gerenciamento. Por fim, realizamos uma análise emṕırica para o ı́ndice

brasileiro (Ibovespa) por meio do modelo GJR-GARCH com inovações estimadas student-t

utilizando o algoritmo de Maximum Likelihood (MLE) e Markov Chain Monte Carlo

(MCMC)/Bayesian por Metropolis-Hastings e avaliamos a precisão das previsões por meio

de uma função de ganho consistente. Resultados numéricos indicam que as expectativas

são alternativas perfeitamente razoáveis para as medidas de risco VaR e ES.

Palavras-chaves: Expectil. Teoria do valor extremo. Backtesting. GJR-GARCH. Mercado

de ações.



ABSTRACT

Expectiles are a one-parameter family of coherent risk measures that have been recently

suggested as an alternative to quantiles (VaR) and to expected shortfall (ES). In this work,

the expectiles are used as a measure of risk (EVaR), we discuss their financial meaning and

compare them with VaR and ES. It is intended to develop a changing expectile over time

that measures the inherent risk of an asset throughout the management period. Lastly, an

empirical analysis is carried out for Brazilian index (Ibovespa) by means of GJR-GARCH

model with student-t innovations estimated using Maximum Likelihood (MLE) and Markov

Chain Monte Carlo (MCMC)/Bayesian by Metropolis-Hastings algorithm and we assess

the accuracy of the forecasts by means of a consistent scoring function. Numerical results

indicate that expectiles are perfectly reasonable alternatives to VaR and ES risk measures.

Keywords: Expectil. Extreme value theory (EVT). Backtesting. GJR-Garch. Stock

market.
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1 INTRODUCTION

Risk management is a very wide and complex field that is at the core of every

financial activity. The importance of this area of expertise is emphasized by the regulatory

framework which is currently at the center of many discussions and negotiations. As a

matter of fact, in December 2017 the Basel Committee on Banking Supervision (BCBS)

published a package of proposed reforms for the global regulatory framework of our industry

which is frequently referred to as ‘Basel IV’. The Committee’s aim is to make the capital

framework more robust and to improve confidence in the system.

The complexity of risk management relies on the combination of very advanced

quantitative methods that should always be combined to a deep qualitative understanding

of the market and the notions that are hidden behind every computation. The last years

have been characterized by significant instabilities in financial markets worldwide. This

has led to numerous criticisms about the existing risk management systems and motivated

the search for more appropriate methodologies able to cope with rare events that have

heavy consequences. The typical question one would like to answer is: ”If things go wrong,

how wrong can they go? ”The problem is then how to model the rare phenomena that lie

outside the range of available observations and how can I compare and verify competing

estimation procedures. In such a situation it seems essential to rely on Extreme value theory

(EVT) once provides a firm theoretical foundation on which we can build statistical models

describing extreme events and since Expectil Value at Risk (EVaR) has the property of

elictability, we will use this new coherent risk measure that has been recently suggested in

the literature as an alternative to Value at Risk (VaR) and Expected Shortfall (ES) and

compare to them.

EVT is a statistical technique for estimating extreme events with low frequency but

high severity. This technique is widely used in financial risk management since empirical

evidence from various studies (see Sheikh e Qiao (2010); Berkowitz et al. (2011)) shows

that in the majority of cases, financial asset return distributions are heavy-tailed, especially

in times of financial instability.

Recent studies show that estimates of GARCH-type models can be strongly affected

by structural breaks in the volatility dynamics (see, e.g., Lamoureux e Lastrapes (1990);

Bauwens, Dufays e Rombouts (2014)). Estimating a GARCH–type model on data displaying
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structural breaks yields a non-stationary model and implies poor risk predictions. A way

to cope with this problem is provided by Markov-switching GARCH (MSGARCH) models,

once the parameters of which vary over time according to a latent discrete Markov process.

These models can quickly adapt to variations in the unconditional volatility level, which

improves risk predictions (ARDIA et al., 2008).

Research on changing volatility using time series models has been active since

the pioneer paper by Engle (1982). From that time, ARCH (AutoRegressive Conditional

Heteroscedasticity) and GARCH (Generalized ARCH) type models grew rapidly into a

rich family of empirical models for volatility forecasting during the 80’s. These models are

widespread and essential tools in financial econometrics. In most empirical applications

it turns out that the simple specification p = q = 1 is able to reproduce the volatility

dynamics of financial data. This has led the GARCH(1,1) model to become the workhorse

model by both academics and practitioners. Given a model specification for conditional

variance (ht), the log-returns are then modelled as yt = εth
1/2
t , where εt are i.i.d distur-

bances. Common choices for εt are Normal and Student-t disturbances. The Student-t

specification is particularly useful, since it can provide the excess kurtosis in the conditio-

nal distribution that is often found in financial time series processes (unlike models with

Normal innovations). Until recently, GARCH models have mainly been estimated using

the classical Maximum Likelihood technique. The Bayesian approach offers an attractive

alternative which enables small sample results, robust estimation, model discrimination,

model combination, and probabilistic statements on functions of the model parameters

(ARDIA; HOOGERHEIDE, 2010).

Fissler, Ziegel e Gneiting (2015), Nolde, Ziegel et al. (2017) have recently proposed

to replace traditional backtests by comparative backtests based on strictly consistent

scoring functions since they allow for conservative tests and are sensitive with respect to

increasing information sets. Roughly, this means that a risk measurement procedure that

correctly incorporates more risk factors will always be preferred over a simpler procedure

that uses less information. However, comparative backtests necessitate an elicitable risk

measure. Examples of elicitable risk measures are VaR and expectiles, while expected

shortfall (ES) is not elicitable. However, ES turns out to be jointly elicitable with VaR,

which allows for comparative backtests also for ES.

In our discussion, we are focusing on the following three risk measures: VaR, a

popular risk measure that is elicitable; expectiles, the only coherent and elicitable risk
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measures; and ES, a coherent and comonotonically additive risk measure, which is jointly

elicitable together with VaR, and which is the new standard measure in banking regulation.

We consider the following three approaches to handle the forecasting procedure: fully

parametric (FP), filtered historical simulation (FHS), and a semi-parametric estimation

based on extreme value theory (EVT). VaR at level α ∈ (0, 1), denoted

V aRα(X) = inf [x|FX(x) ≥ α], (1)

where FX is the cumulative distribution function of X. From the statistical perspective,

V aRα is simply the α-quantile of the underlying distribution. Positive values of X are

interpreted as losses in this manuscript, hence we are interested in V aRα for values of α

close to one. Committee et al. (2013), p.103–108, specifically requests V aRα values for

α = 0.99, which we refer to as the standard Basel VaR level. ES of an integrable random

variable X at level ν ∈ (0, 1) is given by

ESν(X) =
1

1− ν

∫ 1

ν

V aRα(X)∂α. (2)

The Bank for International Settlements [2014] proposes ν = 0.975 as the standard

Basel ES level, as ES0.975 should yield a similar magnitude of risk as V aR0.99 under the

standard normal distribution. As introduced by Newey and Powell [1987], the τ -expectile

eτ (X) of X with finite mean is the unique solution x = eτ (X) to the equation

τ

∫ ∞
x

(y − x)∂FX(y) = (1− τ)

∫ x

−∞
(x− y)∂FX(y). (3)

As shown in Bellini et al. (2014), Ziegel (2016), τ -expectiles are elicitable coherent

risk measures for τ ∈ [1/2, 1). Expectiles generalize the expectation just as quantiles

generalize the median. Considering the level τ = 0.99855 leads to a comparable magnitude

of risk as V aR0.99 and ES0.975 under the standard normal distribution; see Bellini e

Bernardino (2017).

It is necessary to deepen the study on methodological applications for expectile

forecasting, since it is configured as a measure of risk recently studied in this type of

literature, due to its properties, being the only measure of risk coherent and elicitable.

According to what was exposed above, it is necessary to analyze the canonical forecasting

methodologies such as historical simulation, fully parametric and compare them with

other that have a high performance to predict extreme events like Extreme Value Theory

(EVT). The present study attempts to fill this gap by forecasting expectile with EVT
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and compares it with models and canonical risk measures applied to the Brazilian stock

market, something never observed in the Brazilian studies of risk measurement.

The questions to be answered with the realization of this work are: Is the Expectile

a good risk measure? Which models and / or distributions are more suitable for prediction?

And what is the Expectile contribution to the benchmark, VaR and ES measures? Does

the Nolde, Ziegel et al. (2017) suggestion to re-examining suitability of the GARCH-type

actually have the ability to improve the results in backtesting? EVaR is a good measure of

risk for the Ibovespa?

The paper is organized as follows. In section 2, we introduce the concept of Expectile

and how it can be applied. In section 3, we introduce EVT and the POT method. Section 4

elucidates the theoretical specification of the Markov-switching GJR-GARCH model with

t-student innovations and the transition regime process. Section 5 contains the theoretical

discussion of backtesting risk measures following the methodology of Nolde, Ziegel et al.

(2017). In section 6 we will explain the models to forecast the mentioned risk measures.

Section 7 contains an application to the returns on the Ibovespa Composite index and

conclusion in section 8 with a summary and a discussion of the findings.
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2 EXPECTILE

It is well known that the left and right quantiles x−α and x+
α of a random variable X

can be defined through the minimization of an asymmetric, piecewise linear loss function

[x−α (X), x+
α (X)] = Argmin

x∈R
αE[(X − x)+] + (1− α)E[(X − x)−] for α ∈ (0, 1) (4)

where x+ = max(x, 0) and x− = max(−x, 0); see, for example Koenker e Hallock (2001).

Expectiles eq(X) have been introduced by Newey e Powell (1987) as the minimizers of an

asymmetric quadratic loss

eq(X) = Argmin
x∈R

qE[(X − x)2
+] + (1− q)E[(X − x)2

−] for q ∈ (0, 1) (5)

When q = 1
2
, it is well known that eq(X) = E[X], thus expectiles can be seen as an

asymmetric generalization of the mean. The term ‘expectiles’ has probably been suggested

as a combination of ‘expectation’ and ‘quantiles’. Expectiles are uniquely identified by the

first-order condition (f.o.c.)

qE[(X − eq(X))+] = (1− q)E[(X − eq(X))−] (6)

Since Equation (6) is well defined for each X ∈ L1, which is the natural domain of

definition of the expectiles, we take it as the definition of eq(X). Letting

`q(x) := qx+ − (1− q)x− (7)

we see that Equation (6) can be rewritten as:

E[`q(X − eq(X))] = 0 (8)

Hence, expectiles are an example of shortfall risk measures in the sense of Föllmer

e Schied (2002), also known as zero utility premia in the actuarial literature. From this

point of view, they had been considered in Weber (2006), although the connection with

the minimization problem (4) and with the statistical notion of expectiles emerged only in

the more recent literature. In general, a statistical functional that can be defined as the

minimizer of a suitable expected loss function as in Equation (5) is said to be elicitable; we

refer to Gneiting (2011), Bellini e Bignozzi (2015), Ziegel (2016), Embrechts, Klüppelberg

e Mikosch (2013), Davis (2016) and Acerbi e Szekely (2014) for further information about
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the elicitability property and its financial relevance. See also the discussion in Section 4

on the relationship between elicitability and backtesting.

EV aRq is the financial risk measure associated with expectiles, in the same way as

V aRα is the financial risk measure associated with the quantiles. For q ≤ 1
2
, EV aRq is a

coherent risk measure, since it satisfies the well-known axioms introduced by Artzner et al.

(1999). Indeed, it is easy to see that

• EV aRq(X + h) = EV aRq(X)− h, for h ∈ R (translation invariance),

• X ≤ Y as ⇒ EV aRq(X) ≥ EV aRq(Y ) (monotonicity),

• EV aRq(λX) = λEV aRq(X), for λ ≥ 0 (positive homogeneity) and

• EV aRq(X + Y ) ≤ EV aRq(X) + EV aRq(Y ) (subadditivity)

Moreover, it has been shown in several papers that EV aRq with q ≤ 1
2

is the only

coherent risk measure that is also elicitable (see Weber (2006); ) Ben-Tal e Teboulle (2007);

Bellini e Bignozzi (2015); Bellini et al. (2014); Delbaen et al. (2016); Ziegel (2016)). In

order to better understand the financial meaning of EV aRq, it is interesting to compare its

acceptance set with V aRα and with ESα. Recall that the acceptance set of a translation

invariant risk measure ρ is defined as

Aρ = {X | ρ(X) ≤ 0} (9)

and that ρ can be recovered by Aρ by the formula

ρ(X) = inf{m ∈ R | X +m ∈ Aρ} (10)

In the case of V aRα

AV aRα = {X | P(X < 0) ≤ α} (11)

Notice that we can equivalently write

AV aRα =

{
X

∣∣∣∣P(X > 0)

P(X ≤ 0)
≥ 1− α

α

}
(12)

In the case of ESα, we have

AESα =

{
X

∣∣∣∣ 1α
∫ α

0

xu(X)∂u ≥ 0

}
(13)
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In the case of EV aRq, the acceptance set can be written as

AEV aRq =

{
X

∣∣∣∣E[X+]

E[X−]
≥ 1− q

q

}
(14)

The EV aRq is then the amount of money that should be added to a position in

order to have a prespecified, sufficiently high gain-loss ratio. We recall that the gain-loss

ratio or Ω-ratio is a popular performance measure in portfolio management. It is sometimes

argued that EV aRq is ”difficult to explain”to the financial community, but this is probably

due to the fact (2) is usually taken as starting point instead of Equation (14), which has a

transparent financial meaning: in the case of V aRα, a position is acceptable if the ratio of

the probability of a gain with respect to the probability of a loss is sufficiently high (12); in

the case of EV aRq, a position is acceptable if the ratio between the expected value of the

gain and the expected value of the loss is sufficiently high (14). In Section 6, we provide

an application of Ibovespa daily returns for the computation of expectiles by means of a

fully parametric model, an historical method (non parametric) and extreme-value-theory

(semi-parametric model). Choosing q = 0.00145, the magnitude of V aR0.01, ES0.025 and

EV aR0.00145 is closely comparable. In conclusion, we believe that EV aRq is a perfectly

reasonable risk measure, displaying many similarities with V aRα and ESα, surely worth

of deeper study and practical experimentations by risk managers, regulators and portfolio

managers.



16

3 EXTREME VALUE THEORY (EVT)

There are two methods for modeling extreme events with low frequency but high

severity; the block maxima method and the Peaks Over Threshold (POT) method. For

financial time series data, the POT method is often used to model extreme events. The

block maxima method is not commonly used to do statistical inference on financial time

series data because: the method does not make sufficient use of data as it uses only data

from sub-period maxima, the choice of sub-period length is not clearly defined, the method

is unconditional and does not take into account the effects of other explanatory variables

(TSAY, 2014). In this work we use the POT method based on the generalized Pareto

distribution (GPD). The POT method focuses on modeling the exceedances of the loss

above a certain threshold η and the time of occurrence. The threshold is selected such

that there are enough data points to do meaningful statistical analysis.

Let {xi}Ti=1 represent the loss variables of an asset return, then as T →∞, {xi}Ti=1 is

assumed to be independent and identically distributed, and (x−µ)/σ follows a generalized

extreme value (GEV) distribution:

Fξ,µ,σ(x) =


exp[−(1 + ξx)−1/ξ], for ξ 6= 0,

exp[−e−x] for ξ = 0,

where ξ is the shape parameter and 1/ξ is the tail index of the GEV distribution. x < −1/ξ

if ξ < 0 and x > −1/ξ if ξ > 0. Also, let the conditional distribution of the excesses over

the threshold, i.e. xi− η = y/xi > η, be given by

Pr(x− η ≤ y/x > η) =
Pr(η ≤ x ≤ y + η)

Pr(x > η)
=
Pr(x ≤ y + η)− Pr(x ≤ η)

1− Pr(x ≤ η)
(15a)

=
F (y + η)− F (η)

1− F (η)
= Fη(y). (15b)
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Again, as T →∞, (y + η − µ)/σ follows a GEV distribution. Therefore,

Pr(x− η ≤ y/x > η) =
F (y + η)− F (η)

1− F (η)

=

exp

[
−
(

1 + ξ(y+η−µ)
σ

)−1/ξ
]
− exp

[
−
(

1 + ξ(η−µ)
σ

)−1/ξ
]

1− exp
[
−
(

1 + ξ(η−µ)
σ

)−1/ξ
]

≈ 1−
(

1 +
ξy

σ + ξ(η − µ)

)−1/ξ

(16)

where y > 0 and σ + ξ(η− µ) > 0. If we let Ψ(η) = σ + ξ(η− µ), and as η →∞, Eqn.(16)

is approximated by the generalized Pareto distribution (GPD)

Gξ,Ψ(η)(y) =


1−

[
1 + ξy

Ψ(η)

]−1/ξ

, for ξ 6= 0,

1− exp[−y/Ψ(η)] for ξ = 0,

with shape parameter ξ and scale parameter Ψ(η). Ψ(η) > 0, y ∈ [0, x−η] when ξ ≥ 0, and

y ∈ [0,−Ψ(η)ξ] when ξ < 0. If ξ = 0, then the equations above becomes an exponential

distribution with parameter 1/σ (TSAY, 2014). y = x− η, then Eqn.(15b) can be written

as

F (y + η)− F (η)

1− F (η)
=
F (x)− F (η)

1− F (η)
≈ Gξ,Ψ(η)(x− η)

⇒ F (x) = F (η) + [1− F (η)]Gξ,Ψ(η)(x− η)

(17)

We can now state the tail estimator for the underlying distribution F (x/ξ,Ψ(η)

using the empirical estimate of F (η). i.e., F̂ (η) = (T −Nη)/T as

F (x/ξ,Ψ(η)) ≈ T −Nη

T

[
1 +

ξ(x− η)

Ψ(η)

]−1/ξ

(18)

where Nη is the number of observations above the threshold. After deciding on the choice

of η, and assuming that the number of points above η are independent and identically
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distributed, then the parameters Ψ(η) and ξ can be estimated by means of maximum

likelihood estimation with likelihood function

`(xi, ..., xNη/ξ, σ, µ) =

Nη∏
i=1

{(xi) for xi > η. (19)

The choice of the threshold η is an important step in the POT method because

Eqn.(18) is dependent on η and the number of points (i.e. exceedances) above η since the

parameters are estimated based on the exceedances. Thus, it is very important to find

the proper threshold value. Until this day, there is no clear cut satisfactory method in

determining a proper threshold. Danielsson e Vries (1998) developed a semi-parametric

estimator for the tails of the distribution and estimate the threshold through a bootstrap of

the mean square error (MSE) of the tail index, and by minimizing MSE through the choice

of the threshold. Danielsson et al. (2001) further used a two-step subsample bootstrap

method to determine the threshold that minimizes the asymptotic MSE. Hill (1975) and

Davison e Smith (1990) propose graphical tools to help identify the proper threshold

known as the Hill plot and the mean excess plot respectively. As such methods require

judgement at every time step at which conditional forecasts of risk measures are to be

made, they are prohibitive for our purposes. Hence, in this paper we adopt a pragmatic

approach as in McNeil e Frey (2000), and take k = 60 in samples of size n = 500.
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4 MARKOV-SWITCHING GARCH MODELS

We define ytεIR as the log-return at time t = 1,...,T. We consider the case when

yt has zero mean and is not serially correlated, that is, the following moment conditions

are assumed: E[yt] = 0 and E[yt, yt−h] = 0 for all t > 0 and h > 0. The general

Markov–switching GARCH specification can then be expressed as:

yt|(st = k, It−1) ∼ D(0, hk,t, ξk), (20)

where D(0, hk,t, ξk) is a continuous distribution with zero mean, time-varying variance hk,t,

and additional shape parameters gathered in the vector ξk. The additional integer-valued

stochastic variable st, defined on the discrete space (1,...,K), characterizes the Markov-

switching GARCH model. We assume that st evolves according to an unobserved first

order ergodic homogeneous Markov chain with KxK transition probability matrix P:

P =


P1,1 . . . P1,k

...
. . .

...

Pk,1 . . . Pk,k


where pi,j ≡ P [st = j|st−1 = i] is the probability of a transition from state st−1 = i to

state st = j. Obviously, the following constraints hold: 0 < pi,j < 1∀ i, jε1, ..., K, and∑K
j=1 pi,j = 1,∀i ε 1, ..., K. In (1) we denote by It−1 the information set observed up

to time t − 1, that is, It−1 ≡ [yt−i, i > 0]. Given the parametrization of D(), we have

E[y2
t |st = k, It−1, ] = hk,t, that is, hk,t is the variance of yt conditional on the realization of

st = k.

4.1 Bayesian GJR-GARCH model with Student’s-t innovations

The GJR model of Glosten, Jagannathan e Runkle (1993) with Student-t innovations

for the log-returns yt is also able to capture the asymmetry in the conditional volatility

process. This model is given by:
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rt = εt

(
v − 2

v
wtht

)1/2

(21a)

hk,t = α0,k + (α1,k + α2,k 1[yt−1<0])y
2
t−1 + βkhk,t−1, (21b)

εt ∼ N(0, 1); wt ∼ IG(
v

2
,
v

2
); t = 1, ..., T (21c)

for k = 1, ..., K, where I is the indicator function taking value one if the condition holds,

and zero otherwise. In this case, we have ψk = (α0,k, α1,k, α2,k, βk)
T . The parameter α2,k

controls the degree of asymmetry in the conditional volatility response to the past shock

in regime k. To ensure positivity, we require that α0,k > 0, α1,k > 0, α2,k ≥ 0, βk ≥ 0.

IG and N(0,1) symbolise the inverted gamma and standard normal distributions,

respectively. The degrees of freedom parameter v > 2 guarantees finite conditional variance

(GEWEKE, 1993). Eqns.(21a) and (21b) are the mean and variance equations respectively;

where rt are the log-return series and α0, αi, βi are the GARCH parameters. εi,t is a series

of independent and identically distributed random variables with zero mean and unit

variance, and can assume a standard normal, Student’s-t, generalised error (GED), or

skewed distributions (TSAY, 2014). The conditional variance is stationary and almost surely

positive if and only if α0,k > 0, α1,k ≥ 0, α2,k ≥ 0, βk ≥ 0, and(α1,k + α2,kE[η2
k,t 1[ηk,t<0]] +

βk) < 1

Σ = Σ(ψ,w) = diag(wt
v − 2

v
ht(α, β)

T

t=1
) (22)

where ht = α0 + α1y
2
t−1 + βht−1(α, β), we can express the likelihood of (ψ, v) as

L(ψ,w|y) ∝ (detΣ)−1/2exp

[
−1

2
y′Σ−1y

]
(23)

The Bayesian approach considers (φ,w) as a random variable which is characterized

by a prior density denoted by p(φ,w). The prior is specified with the help of parameters

called hyperparameters which are initially assumed to be known and constant. Moreover,

depending on the researcher’s prior information, this density can be more or less informative.

Then, by coupling the likelihood function of the model parameters with the prior density,

we can transform the probability density using Bayes’ rule to get the posterior density

p(φ,w|y) as follows

p(ψ, v|y) =
L(ψ,w|y)p(ψ,w)∫

L(ψ,w|y)p(ψ,w)∂ψ∂w
(24)
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This posterior is a quantitative, probabilistic description of the knowledge about

the model parameters after observing the data. We use truncated normal priors on the

GJR-GARCH parameters α and β

p(α) ∝ φN2(α|µα, σα) 1
[
α ε IR2

+

]
(25a)

p(β) ∝ φN1(β|µβ, σβ) 1 [α ε IR+] (25b)

where µ and σ are the hyperparameters,1∆is the indicator function and φNd is the d-

dimensional normal density. The prior distribution of vector w conditional on v is found

by noting that the components vt are independent and identically distributed from the

inverted gamma density, which yields

p(w|v) =
(v

2

)Tv
2
[
Γ
(v

2

)]−T ( T∏
t=1

wt

)− v
2
−1

exp

[
−1

2
ΣT
t=1

v

wt

]
(26)

We follow Deschamps (2006) and Geweke (1993) in the choice of the prior distribu-

tion on the degrees of freedom parameter. The distribution is a translated exponential

with parameters λ > 0 and δ ≥ 2

p(v) = λexp[−λ(v − δ)] 1[v > δ] (27)

For large values of λ, the mass of the prior is concentrated in the neighborhood of

δ and a constraint on the degrees of freedom can be imposed in this manner. Normality of

the errors is assumed when δ is chosen large. As pointed out by Deschamps (2006), this

prior density is useful for two reasons. First, it is potentially important, for numerical

reasons, to bound the degrees of freedom parameter away from two to avoid explosion of

the conditional variance. Second, we can approximate the normality of the errors while

maintaining a reasonably tight prior which can improve the convergence of the sampler.

4.2 Metropolis-Hastings

The joint prior distribution is then formed by assuming prior independence between

the parameters, i.e. p(ψ, v) = p(α)p(β)p(w|v)p(v). The recursive nature of the GARCH(1,1)

variance equation implies that the joint posterior and the full conditional densities cannot

be expressed in closed form. There exists no (conjugate) prior that can remedy this

property. Therefore, we cannot use the simple Gibbs sampler and need to rely on a more
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elaborated Markov Chain Monte Carlo (MCMC) simulation strategy to approximate the

posterior density. The idea of MCMC sampling was first introduced by Metropolis et al.

(1953) and was subsequently generalized by Hastings (1970). The sampling strategy relies

on the construction of a Markov chain with realizations (ψ[0], v[j]), ..., (ψ[j], v[j]),... in the

parameter space. Under appropriate regularity conditions, asymptotic results guarantee

that as j tends to infinity,ψ[j], v[j] tends in distribution to a random variable whose density

is 3. Hence, after discarding a burn-in of the first draws, the realized values of the chain

can be used to make inference about the joint posterior.

Following Chib e Greenberg (1995), suppose we have a density that can generate

candidates. Since we are dealing with Markov chains, however, we permit that density to

depend on the current state of the process. Accordingiy, the candidate-generating density

is denoted q(x,y), where
∫
q(x, J.)∂y = 1. This density is to be interpreted as saying that

when a process is at the point x, the density generates a value y from q(x,3,). If it happens

that q(x,y) itself satisfies the reversibility condition (22) for all x, y, our search is over.

But most likely it will not. We might find, for example, that for some x, y

π(x)q(x, y) > π(y)q(y, x) (28)

In this case, speaking somewhat loosely, the process moves from x to y too often

and from J, to x too rarely. A convenient way to correct this condition is to reduce the

number of moves from x to y by introducing a probability α(x, y) < 1 that the move

is made. We refer to α(x, y) as the probability of move. If the move is not made, the

process again returns x as a value from the target distribution. Thus transitions from x to

y (y 6= x) are made according to

pMH(x, y) = q(x, y)α(x, y), x 6= y, (29)

where α(x, y) is yet to be determined. Consider again inequality (27). It tells us that

the movement from y to x is not made often enough. We should therefore define a(y,x)

to be as large as possible, and since it is a probability, its upper limit is 1. But now

the probability of move a(x, y) is determined by requiring that pMH(x, y) satisfies the

reversibility condition, because then

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x)

= π(y)q(y, x)
(30)
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We now see that α(x, y) = π(y)q(y, x)/π(x)q(x, y). Of course, if the inequality in

(27) is reversed, we set α(x, y) = 1 and derive α(y, x) as above. The probabilities α(x, y)

and α(y, x) are thus introduced to ensure that the two sides of (27) are in balance or, in

other words, that pMH(x, y) satisfies reversibility. Thus we have shown that in order to be

reversible, the probability of move must be set to

α(x, y) = min

[
π(y)q(y, x)

π(x)q(x, y)
, 1

]
, if π(x)q(x, y) > 0

= 1, otherwise.

(31)
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5 BACKTESTING RISK MEASURES

5.1 Score Functions

A risk measure ρ is usually defined on some space of random variables. If ρ is

law-invariant, it can alternatively be viewed as a map from some collection of probability

distributions P to the real line R. Law-invariance means that for two random variables X

and Y that have the same distribution, we have ρ(X) = ρ(Y ). All risk measures considered

in this manuscript are law-invariant. Let Θ(X) = (ρ1(X), ..., ρk(X)) be a vector of k ≥ 1

risk measures.

Definition 1. A scoring function S : RkxR→ R is called strictly consistent for Θ

with respect to P if

E(S(Θ(X), X)) < E(S(r,X)) (32)

for all r = (r1, ..., rk) 6= Θ(X) = (ρ1(X), ..., ρk(X)) and all X with distribution in P. The

scoring function S is consistent if equality is allowed in (Eq 32). The vector of risk measures

Θ is called elicitable with respect to P if there exists a strictly consistent scoring function

for it.

Elicitability is useful for model selection, estimation, generalized regression, forecast

ranking, and, as we will detail in this paper, allows for comparative backtesting. A

comprehensive literature review on elicitability can be found in Gneiting (2011), Frongillo

e Kash (2015) and Fissler, Ziegel e Gneiting (2015). The question of elicitability of risk

measures has recently received considerable attention. All available results in the case k

= 1 are based on the simple but powerful observation that a necessary requirement of

elicitability are convex level sets in a distributional sense. Weber (2006) was the first to

study risk measures with convex level sets. Bellini e Bignozzi (2015) used his results to

study elicitability for the broad class of monetary risk measures. Under weak regularity

assumptions, they show that elicitable monetary risk measures are so-called shortfall risk

measures. For more specific classes of risk measures, such as coherent, convex or distortion

risk measures, the same result can be shown without any additional regularity assumptions.

While expected shortfall is itself not elicitable, Fissler, Ziegel e Gneiting (2015) have shown

that the pair Θ = (V aRα, ESα) is elicitable. The classes of (strictly) consistent scoring

functions for V aRα, τ -expectiles and (V aRv, ESv) have been characterized. The following

three propositions state sufficient conditions for (strict) consistency.



25

Proposition 1 (Thomson (1979), Saerens (2000)). All scoring functions of

the form

S(r, x) = (1− α− 1{x > r})G(r) + 1{x > r}G(x) (33)

where G is an increasing function on R, are consistent for V aRα, α ∈ (0, 1), with respect

to P0. The scoring functions of the above form are stricly consistent for V aRα with respect

to P ′ ⊆ P0 if G is stricly increasing, G(X) is integrable for all X with distribution in P ′,

and all distributions in P ′ have a unique α-quantile.

Proposition 2.

S(r, x) = 1{x > r}(1−2τ)(φ(r)−φ(x)−φ′(r)(r−x))− (1−τ)(φ(r)−φ′(r)(r−x)), (34)

where φ is a convex function with subgradient φ′, are consistent for the τ -expectile,

τ ∈ (0, 1), with respect to P1. If φ is strictly convex, then the scoring functions of the

above form are strictly consistent for the τ -expectile relative to the class P ′ ⊆ P1 such

that φ(X) is integrable for all X with distribution in P’.

Proposition 3 (Fissler, Ziegel e Gneiting (2015)). All scoring functions of

the form

S(r1, r2, x) = 1{x > r1}(−G1(r1) +G1(x)−G2(r2)(r1 − x))

+(1− v)(G1(r1)−G2(r2)(r2 − r1) + G2(r2))
(35)

In risk management applications, it may be useful to allow only for strictly positive

risk measure predictions, once this opens up the possibility for attractive choices of

homogeneous scoring functions in the above propositions. If r ∈ (0,∞) is assumed in (Eq

33) or (Eq 34), then, for strict consistency, we only need that G or φ are defined on (0,∞),

and that they are strictly increasing or strictly convex on this domain, respectively.

Closely connected to elicitability is the concept of identifiability.

Definition 2. The vector of risk measures Θ is called identifiable with respect to

P, if there is a function V : RkxR→ Rk such that

E(V (r,X)) = 0 ⇔ r = Θ(X), (36)

for all X with distribution in P.
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5.2 Calibration and traditional backtests

We fix the following notation. Suppose that Θ(X) = (ρ1(X), ..., ρk(X)) is an

identifiable functional with identification function V with respect to P . Let {Xt}t∈N be a

series of negated log-returns adapted to the filtration F = {Ft}t∈N and {Rt}t∈N a sequence

of predictions of Θ, which are Ft−1-measurable. Hence, the predictions are based on the

information about {Xt}t∈N available at time t-1 represented by the sigma-algebra Ft−1.

Definition 3. The sequence of predictions {Rt}t∈N is calibrated for Θ on average

if

E(V (Rt, Xt)) = 0 for all t ∈ N ; (37)

it is super-calibrated for Θ on average if E(V (Rt, Xt)) ≥ 0 component-wise, for all t ∈ N .

The sequence of predictions {Rt}t∈N is conditionally calibrated for Θ if

E(V (Rt, Xt) | Ft−1) = 0, almost surely, for all t ∈ N ; (38)

it is conditionally super-calibrated for Θ if E(V (Rt, Xt)|Ft−1) ≥ 0 component-wise, almost

surely, for all t ∈ N . Sub-calibration is defined analogously.

If one knows the conditional distributions L(Xt|Ft−1) and strives for the best

possible prediction of Θ based on the information in Ft−1, it is natural to use

Θ(L(Xt | Ft−1)) (39)

as a predictor, which we term the optimal F-conditional forecast for Θ. For the same

reason, we call Θ(Xt) = Θ(L(Xt)) the optimal unconditional forecast.

Calibration characterizes optimal forecasts in the following sense. The optimal

unconditional forecast is the only deterministic forecast that is calibrated for Θ on average.

Following Fissler, Ziegel e Gneiting (2015), we call any backtest that considers a

null hypothesis of the type “The risk measurement procedure is correct” a traditional

backtest. Traditional backtests are similar to goodness-of-fit tests, that is, they allow to

demonstrate that the risk measurement procedure under consideration is making incorrect

predictions, if the respective null hypothesis can be rejected. Despite the somewhat

misleading terminology that a traditional backtest is passed if the null hypothesis is not

rejected, this does not mean that in this case, one can be sure that the null hypothesis is

correct (with a pre-specified small probability of error) as this would necessitate that we

control the power of the test explicitly.
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Testing the null hypothesis

H0 : The sequence of predictions {Rt}t∈N is calibrated for Θ on average.

Conditional calibration is a stronger notion than average calibration, and it appears

more natural in a dynamic risk management context. A traditional backtest for conditional

calibration considers the null hypothesis

H0 : The sequence of predictions {Rt}t∈N is conditionally calibrated for Θ.

The requirement E(V (Rt, Xt)|Ft−1) = 0, almost surely, is equivalent to stating that

E(h′tV (Rt, Xt)) = 0 for all =t−1-measurable Rk-valued functions ht. Following Giacomini

e White (2006), we consider an = -predictable sequence {ht}t∈N of qxk-matrices ht called

test functions to construct a Wald-type test statistic:

t1 = n

(
1

n

n∑
t=1

htV (Rt, Xt)

)′
Ω̂n

−1

(
1

n

n∑
t=1

htV (Rt, Xt)

)
(40)

In applications, the choice of the test functions is motivated by the principle that

they should represent the most important information available at time point t-1. We call

this type of traditional backtests as conditional calibration tests. In cases where ht = 1,

we refer to these tests as simple conditional calibration tests.

Commonly used backtests for V aRα and ESv are closely related to conditional

calibration tests for specific choices of the test functions ht. In fact, choosing ht = 1 in the

case of V aRα, the conditional calibration test for V aRα is closely related to the standard

backtest for V aRα based on the number of VaR exceedances. In the case of ESv, the

conditional calibration test for (V aRv,ESv) is related to the backtest for ESv of McNeil e

Frey (2000) based on exceedance residuals.

5.3 Comparative backtests

Suppose now that the functional Θ = (ρ1, ..., ρk) is elicitable with respect to P.

Let {Xt}t∈N be a series of negated log-returns adapted to the filtration F = {Ft}t∈N
as well as to the filtration F∗ = {F∗t }t∈N . Let {Rt}t∈N and {R∗t}t∈N be two sequences

of predictions of Θ, which are F and F∗-predictable, respectively. We assume that all

conditional distributions L(Xt | Ft−1), L(Xt | F∗t−1) and all unconditional distributions

L(Xt) belong to P almost surely. We refer to the predictions {R∗t}t∈N as the standard

procedure, while {Rt}t∈N is the internal model. The two filtrations F and F∗ acknowledge

the fact that the internal model and the standard model may be based on different
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information sets. For example, one model may include more risk factors than the other,

or, certain expert opinion may be used to adjust one model but not the other.

Definition 4. Let S be a consistent scoring function for Θ with respect to P . Then,

{Rt}t∈N S-dominates {R∗t}t∈N (on average) if

E(S(Rt, Xt)− S(R∗t , Xt)) ≤ 0, for all t ∈ N. (41)

Furthermore, {Rt}t∈N conditionally S-dominates {R∗t}t∈N if

E(S(Rt, Xt)− S(R∗t , Xt) | F∗t−1) ≤ 0, almost surely, for all t ∈ N (42)

The definition of conditional dominance is asymmetric in terms of the role of

the standard procedure and the internal procedure. The standard procedure and the

information F∗ it is based on are considered as a benchmark of predictive ability, which is

why we condition on F∗t−1 and not on Ft−1. Any method that dominates the benchmark

has superior predictive ability relative to this benchmark.

There are several reasons why the predictions {Rt}t∈N should be preferred over

{R∗t}t∈N if the former dominates the latter. Firstly, comparison of forecasts with respect

to the described dominance relations is consistent with respect to increasing information

sets. That is, if F∗t ⊆ Ft for all t and {Rt}t∈N , {R∗t}t∈N are the optimal conditional

forecasts with respect to their filtrations as defined at (Eq 27), then the internal procedure

dominates the standard procedure, both, conditionally and on average.

The condition for conditional S-dominance in (2.15) can be formulated equivalently

as

E((S(Rt, Xt)− S(R∗t , Xt))ht) ≤ 0, for all ht ≥ 0, F∗t−1 − measurable, (43)

It is tempting to work with a vector ht of F∗-predictable test functions in order to

test for conditional S-dominance as suggested in the conditional calibration tests. However,

we are interested in comparing the standard procedure to the internal procedure and reach

a definite answer as to which one is to be preferred. If E((S(Rt, Xt)− S(R∗t , Xt))ht,i) > 0

but E((S(Rt, Xt) − S(R∗t , Xt))ht,j) < 0 for different components ht,i, ht,j of the vector

ht, no clear preference for either method can be given. Therefore, we do not pursue this

approach further.

In comparative backtesting we are interested in the null hypotheses

H−0 : The internal model predicts at least as well as the standard model.
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H+
0 : The internal model predicts at most as well as the standard model.

The null hypothesis H−0 is analogous to the null hypothesis of a correct model and

estimation procedure but now adapted to a comparative setting. As mentioned in the

introduction, considering a backtest as passed if the null hypothesis cannot be rejected is

anti-conservative or aggressive in nature and may therefore be problematic in regulatory

practice. On the other hand, the null hypothesis H+
0 is such that the comparative backtest

is passed if we can reject H+
0 . This means that we can explicitly control the type I error

of allowing an inferior internal model over an established standard model.

We assume now that the limit

λ := lim
n→∞

1

n

n∑
t=1

E((S(Rt, Xt)− S(R∗t , Xt)) ∈ [−∞,+∞] (44)

exists (while we allow it to take the values ±∞ ). It is clear that S-dominance on average

implies λ ≤ 0. If the sequence of score differences {S(Rt, Xt)−S(R∗t , Xt)}t∈N is first-order

stationary, then λ ≤ 0 implies S-dominance on average. Under (Eq 44), we can compare

any two sequences of risk measure estimates with respect to their predictive performance.

If the limit λ in (Eq 44) is non-positive, then the internal procedure is at least as good as

the standard procedure, whereas the internal procedure predicts at most as well as the

standard procedure if λ ≥ 0. Ordering risk measurement procedures is a compromise in

the quest for conditional dominance. On the one hand, it is clearly a weaker notion than

conditional dominance, but on the other hand it introduces a meaningful total order on

all risk measurement procedures given a sensible choice of the scoring function S;

Therefore, we reformulate our comparative backtesting hypotheses as

H−0 : λ ≤ 0

H+
0 : λ ≥ 0

The test statistic

∆nS :=
1

n

n∑
t=1

(S(Rt, Xt)− S(R∗t , Xt)), (45)

for n large enough, has expected value less or equal to zero under H−0 , whereas under H+
0

its expectation is non-negative. Tests of H+
0 or H−0 based on a suitably rescaled version of

∆nS are so-called Diebold-Mariano tests; see Diebold e Mariano (2002).
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5.4 Choice of the scoring function

Based on (Eq 33), (Eq 34) and (Eq 35), one has a large number of choices for

strictly consistent scoring functions for VaR, expectiles and (VaR, ES). In the case of V aRα,

the standard choice is to take G(r) = r in (Eq 33) leading to the classical asymmetric

piecewise linear loss. In the case of expectiles, one could argue that a natural choice is

taking φ(r) = r2 in (Eq 34), which simplifies to the squared error function for the mean

(up to equivalence). This is also the scoring function suggested by Newey e Powell (1987)

for expectile regression. Consistent scoring functions for (VaR, ES) have only recently

been discovered; see Acerbi e Szekely (2014), Fissler, Ziegel e Gneiting (2015). Therefore,

there is no natural classical choice for the functions G1, G2 in (Eq 35).

A scoring function S is called positive homogeneous of degree b (or b-homogeneous)

if for all r = (r1, ..., rk) and all x

S(cr, cx) = cbS(r, x), for all c > 0.

The crucial property of a scoring function is to be positive homogeneous. Patton

(2011) underlines the importance of positive homogeneity of the scoring function for

forecast ranking. Positive homogeneous scoring functions are also favorable because they

are so-called ”unit consistent”. For example, changing the units, from, say, R$ to million

R$, will not change the ordering of forecasts assessed by this scoring function, and will

thus also leave the results of comparative backtests unchanged. Concerning the choice of

the degree b of homogeneity, Patton (2006) shows that in the case of volatility forecasts,

b = 0 requires weaker moment conditions than a larger choice of b for the validity of

Diebold-Mariano tests which are used in comparative backtesting.

For the comparative backtests for VaR that we investigate in Section 4.3, we

consider the classical 1-homogeneous choice obtained by choosing G(r) = r in (Eq 33)

leading to the scoring function

S(r, x) = (1− α− 1{x > r})r + 1{x > r})x (46)

Guided by the arguments given above, we alternatively consider the 0-homogeneous

score differences by choosing G(r) = logr, r > 0 which leads to the score

S(r, x) = (1− α− 1{x > r})logr + 1{x > r})logx (47)
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The choice φ(r) = r2 in (Eq 34) leads to the strictly consistent scoring function

S(r, x) = −1{x > r}(1− 2τ)(x− r)2 + (1− τ)r(r − 2x) (48)

for the τ -expectile eτ . Besides this 2-homogeneous choice, we also investigate the 0-

homogeneous alternative that arises by choosing φ(r) = −log(r), r > 0, hence we obtain

the scoring function

S(r, x) = 1{x > r}(1− 2τ)
(
log

x

r
+ 1− x

r

)
+ (1− τ)

(
logr − 1 +

x

r

)
(49)

For (V aRv, ESv), we consider the (1/2)- homogeneous scoring function given by

choosing G1(x) = 0, G2(x) = x1/2, x > 0 in (Eq 35) for comparative backtesting in Section

4.3. It is given by

S(r1, r2, x) = 1{x > r1}
x− r1

2
√
r2

+ (1− v)
r1 + r2

2
√
r2

(50)

As for the other risk measures, we also consider the 0-homogeneous alternative by

choosing G1(x) = 0 , G2(x) = logx,x > 0 which yields the scoring function

S(r1, r2, x) = 1{x > r1}
x− r1

r2

+ (1− v)

(
r1

r2

− 1 + log(r2)

)
(51)
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6 FORECASTING OF RISK MEASURES

In this section we discuss a number of estimation procedures for producing conditio-

nal forecasts of the three risk measures discussed in this paper, namely the VaR, expectile

and ES. Owing to the widespread use of VaR in the banking sector, a great number of

methods exist to produce its point forecasts. In contrast, estimation and forecasting of

expectiles in the risk measurement context is a relatively recent topic. However, in many

cases, similar methods as those used for VaR forecasting can be adopted for expectiles.

For illustrative purposes, we consider the following framework for forecasting of the

risk measures. Suppose the series of negated log-returns {Xt}t∈N can be modeled as

Xt = µt + σtZt (52)

where {Zt}t∈N is a sequence of i.i.d. random variables with zero mean and unit variance,

and µt and σt are measurable with respect to the sigma algebra Ft−1, representing the

information about the process {Xt}t∈N available up to time t-1. In order to capture typical

time dynamics of financial time series, one possibility is to assume that the conditional

mean µt follows an ARMA process, while the condition variance σ2
t evolves according to a

GARCH model specification.

Let ρ denote any of the three risk measures we consider. In the above setting,

conditionally on the information up to time t-1, the one-step ahead forecast of ρ is

ρ(Xt|Ft−1) = µt + σtρ(Z) (53)

where Z is used to denote a generic random variable with the same distribution as the

Z ′ts. Following McNeil e Frey (2000) and Diebold, Schuermann e Stroughair (2000), one

can adopt a two-stage estimation procedure for the forecast ρ(Xt|Ft−1). First µt and σt

are estimated via the maximum likelihood procedure under a specific assumption on the

distribution of the innovations Zt in (Eq 52). The second stage involves estimation of ρ(Z),

the risk measure for i.i.d. sequence {Zt}t∈N , based on the sample of standardized residuals

{ẑt = (xt − µ̂t)/σ̂t} (54)

We consider the following three approaches to handle the second stage in the

forecasting procedure: fully parametric (FP), filtered historical simulation (FHS), and a

semi-parametric estimation based on extreme value theory (EVT).
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6.1 Fully parametric estimation

Under the fully parametric approach, a specific (parametric) model is assumed for

the sequence of innovations {Zt}t∈N . Examples of typically used probability distributions

include the normal, Student’s t and a skewed t distribution. Parameters of the assumed

distribution for Zt’s, denoted FZ , can be estimated based on the standardized residuals

{ẑt} in (Eq 54) using, for example, the maximum likelihood method. If the model for Zt’s

coincides with the one used to estimate the filter in the first stage, then no additional

estimation is required at the second stage with all model parameters coming directly from

the first stage estimation. The fitted distribution is used to compute the estimate of a

given risk measure.

6.2 Filtered historical simulation

The method employs a non-parametric estimation of the risk measures based on

the standardized residuals {ẑt}, which can be seen as representing a filtered time series.

In particular, we draw a sample {ẑ∗i ;≤ i ≤ N} of a large size N from {ẑ∗i ;≤ t ≤ n} and

then take the empirical estimate of a given risk functional as the estimate for ρ(Z). The

empirical α-quantile gives the VaR estimate V̂ aR
FHS

α (Z). The empirical τ -expectile êFHSτ

is obtained using the least asymmetric weighted squares via iterative minimization of

N∑
i=1

wi(τ)(ẑ∗i − eτ )2, wi(τ) = τ1{ẑ∗i > eτ}+ (1− τ)1{ẑ∗i < eτ} with respect to eτ

The ES is estimated by the empirical version of the conditional expectation given

that the residual exceeds the corresponding VaR estimate

ÊS
FHS

v (Z) =
1

#{i : i = 1, ..., N, ẑ∗i > V̂ aR
FHS

α (Z)}

N∑
i=1

ẑ∗i 1{ẑ∗i > V̂ aR
FHS

α (Z)}

6.3 EVT-based semi-parametric estimation

Risk is naturally associated with extremal events, and hence risk measure estimates

rely on accurate estimation of a tail of the underlying distribution. However, inference

about the distributional tails is notoriously difficult as there are frequently not enough
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data points in the tail regions neither to give a proper justification for a parametric model

nor to obtain reliable empirical estimates. Hence, unless a sufficiently long time series is

available relative to the desired risk level for risk measure estimation, the two methods

fully parametric and historical simulation are unlikely to produce accurate forecasts. An

alternative is to base estimation on asymptotic results of extreme value theory (EVT).

For a detailed account, refer to, e.g., Embrechts, Klüppelberg e Mikosch (1997). The main

premise is that, for a sufficiently high threshold u, conditional excesses of random variable

Z satisfy

Z − u | Z > u ∼ GP (βu, ξ) (55)

where GP (β, ξ) denotes the generalized Pareto distribution with scale β > 0 and shape

parameter ξ ∈ R. It is common in applications to set the threshold at an upper order

statistic; i.e., u = z(k+1) for some k < n, where z(1) > z(2) > ∆∆∆ > z(n) are the

decreasing order statistics of the sample z1, ..., zn from FZ . This leads to the following

EVT-based estimates of V aRα(Z) and ESν(Z) (see McNeil e Frey (2000))

̂V aRα

EV T
(Z) = u+

β̂u

ξ̂

((
k

αn

)ξ̂
− 1

)
, ξ̂ 6= 0, (56)

and

ÊSv
EV T

(Z) = ̂V aRv

EV T
(Z)

(
1

1− ξ̂
+

β̂ − ξ̂u

(1− ξ̂) ̂V aRv

EV T
(Z)

)
, (57)

with (β̂u, ξ̂) being parameter estimates of the GP distribution fitted to excesses over u. In

the spirit of the above EVT-based estimators for VaR and ES, we derive an estimator for

the τ -expectile. The details are provided in Appendix A.1,2.

In the discussion above we assume that threshold u or equivalently k, the number

of upper order statistics, is given so as to ensure adequacy of the approximation in (3.4).

However, in practice, an accurate choice has to be made to balance the bias-variance

trade-off as a too large value of u increases variability of the parameter estimates of βu

and ξ, while insufficiently large u introduces the bias due to invalidity of (3.4). Various

techniques have been proposed to assist with the choice of threshold such as graphical

tools based on linearity of the mean excess function. As such methods require judgement

at every time step at which conditional forecasts of risk measures are to be made, they

are prohibitive for our purposes. Hence, we adopt a pragmatic approach as in McNeil e

Frey (2000), and take k = 60 in samples of size n = 500.
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7 APPLICATION IN BRAZILIAN STOCK MARKET

We have fitted an GJR-GARCH model to the negated log-returns of the IBOVESPA

Composite index using a moving estimation window of 500 data points. The time series

we consider is from Jan. 3, 2000 until March 1, 2018, which gives us an out-of-sample size

n = 3.995 to perform backtesting.

The plot of the time series is presented in Figure 1. Well-known stylized facts

observed in financial time series, such as volatility clustering and presence of outliers, are

evident from Figure 1. Furthermore, we also note that large (absolute) returns are more

frequent at the start (2000-2006) and at the end (2012-2018) of the sample, than in the

middle (2006-2012). This suggests that the shape of the log-returns distribution may be

time-varying and analyzing the qqplot we see that the distribution of returns has fat tails,

supporting the use of student-t distribution. So we consider the asymmetric two-state

MSGARCH model implemented by Ardia et al. (2008) and Mullen et al. (2011). This is

an extension of the MSGARCH model introduced in Haas et al. (2004a), where a GJR

variance specification with a Student-t distribution is defined in each regime.

Figure 1 – Norm Q-Q and log-returns Ibovespa
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Table 1 – Estimation via Maximum Likelihood (ML)

Fitted Parameters Estimate Std. Error t value Pr(> |t|)

α01 0.0000 0.0000 302.9414 < 1e−16

α11 0.0000 0.0000 3.6872 1.134e−04

α21 0.3253 0.0011 305.2837 < 1e−16

β1 0.6394 0.0010 612.1276 < 1e−16

ν1 16.9629 0.0365 465.2007 < 1e−16

α02 0.0000 0.0000 329.1283 < 1e−16

α12 0.0001 0.0000 7.0516 8.841e−13

α22 0.0824 0.0001 629.8198 < 1e−16

β2 0.9396 0.0001 9016.1452 < 1e−16

P11 0.9912 0.0000 23597.0768 < 1e−16

P21 0.0035 0.0000 184.3012 < 1e−16

Transition Matrix t+ 1|k = 1 t+ 1|k = 2 Stable Probabilities

t|k = 1 0.9912 0.0088 State 1 State 2
t|k = 2 0.0035 0.9965 0.2853 0.7147

Parameter estimates indicate that the evolution of the volatility process is he-

terogeneous across the two regimes. As well as a different reactions to past negative

returns: α21 ≈ 0.32 vs. α22 ≈ 0.08. Also the volatility persistence in the two regimes is

different. The first regime reports α1,1 + 1/2α2,1 + β1 ≈ 0.80 while the second regime

reports α1,2 + 1/2α2,2 + β2 ≈ 0.98

In summary, the first regime is characterized by: i) low unconditional volatility, ii)

strong volatility reaction to past negative returns, and iii) low persistence of the volatility

process. Differently, the second regime is characterized by: i) high unconditional volatility,

ii) weak volatility reaction to past negative returns, and iii) high persistence of the volatility

process.

Clearly, regime one would be identified by market operators as “calm market

conditions” with low volatility levels, low persistence and high reaction to past negative

returns, while regime two as “turbulent market conditions” with high volatility level,

strong persistence and lower reaction to past negative returns.

Figure 2 displays the smoothed probabilities of being in regime two (high uncon-

ditional volatility regime), P [St = 2|IT ] fort = 1, ..., T , superimposed on the Ibovespa

returns (top graph) as well as the filtered volatility of the overall process (bottom graph).



37

Figure 2 – Estimated smoothed probabilities of the second regime. The small black circles
depict the Ibovespa log-returns. Bottom: Filtered conditional volatilities.

Interestingly, we further note that the Markov Chain evolves in a transitional way

over time and that, in the limit, as reported by the probabilities of being in the two states

are about 28% and 72%.

As documented by Ardia et al. (2008) and Mullen et al. (2011), ML estimation

can be difficult for MSGARCH–type models. Fortunately, MCMC procedures can be

used to explore the joint posterior distribution of the model parameters, thus avoiding

convergence to local maxima commonly encountered via ML estimation. The Bayesian

approach offers additional advantages. Specifically, the estimation method is a random–walk
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Metropolis–Hasting algorithm with coerced acceptance rate. The controls parameters may

be defined as follows:

• par: A vector of starting parameters ⇒ We use ML parameter estimates.

• n.burn: Number of discarded draws ⇒ We use n.burn = 5000.

• Number of MCMC draws ⇒ We use n.mcmc = 12500.

• n.thin: Thinning factor ⇒ We use n.thin = 5.

We observed excellent performance in the context of (identified) mixture models.

Using the ML parameter estimates as starting values, we can estimate the model by

MCMC using the R package MSGARCH, Ardia et al. (2016).

Table 2 – Estimation via MCMC

Posterior Sample Mean SD SE TSSE RNE

α01 0.0000 0.0000 0.0000 0.0000 0.0919
α11 0.0005 0.0017 0.0000 0.0001 0.2543
α21 0.3413 0.1098 0.0022 0.0090 0.0591
β1 0.6145 0.1138 0.0023 0.0082 0.0768
ν1 18.2083 3.5608 0.0712 0.1882 0.1432
α02 0.0000 0.0000 0.0000 0.0000 0.0976
α12 0.0002 0.0002 0.0000 0.0000 0.0228
α22 0.0852 0.0232 0.0005 0.0010 0.2006
β2 0.9365 0.0183 0.0004 0.0008 0.1986
P11 0.9899 0.0049 0.0001 0.0003 0.1222
P21 0.0034 0.0018 0.0000 0.0001 0.1164

Transition Matrix t+ 1|k = 1 t+ 1|k = 2 Stable Probabilities

t|k = 1 0.9899 0.0101 State 1 State 2
t|k = 2 0.0034 0.9966 0.2529 0.7471

Finally, Figure 3 displays the estimated filtered probabilities of the first state (high

unconditional volatility state), implied by the best model parameters of solnp (in red

solid line). In addition, we report in solid blue lines, the 50% area of the paths obtained

over the (n.mcmc − n.burn)/n.thin = (12500 − 5000)/5 = 1500 runs. The parameters

obtained with MCMC estimation lead to a not clear separation of regimes in the filtering

probabilities with ups and downs over time. Although the transience, we may associate

the beginning of the serie with low unconditional volatility state. Then, from the second

half of 2005 to 2010, the returns are more associated with the high unconditional volatility

regime. From 2010 to 2018, the model remains in the low unconditional volatility regime.
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But, we clearly conclude, as already seen in the Stable Probabilities in table above, that

the regimes are very transience.

Figure 3 – Filtered probabilities of the first regime obtained by MCMC for the two–state
Markov–switching GJR model with skewed Student–t innovations. Blue line
indicates the median.

It is interesting to note that the RW adaptive estimation leads to results similar to

the more complex MCMC estimation strategy. The posterior distribution of mixture and

Markov–switching models often exhibits non-elliptical shapes which lead to non-reliable

estimation of the uncertainty of model parameters. This invalidates the use of the Gaussian

asymptotic distribution for inferential purposes infinite samples. Our results display this

characteristic as shown in Figure 4 where we plot 2,500 draws of the posterior sample for
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the parameters α1,1 and α1,2. The blue square reports the posterior mean while the red

triangle reports the ML estimate.

Figure 4 – Scatter plot of posterior draws from the marginal distribution of (α1,1, α1,2)T

obtained with the adaptive random walk strategy. The blue square reports the
posterior mean, and the red triangle reports the ML estimate. The graph is
based on 2,500 draws from the joint posterior sample.

An interesting aspect of the Bayesian estimation is that we can make distributional

(probabilistic) statements on any (possibly nonlinear) function of the model parameters.

This is achieved by simulation. For instance, for each draw in the posterior sample we can

compute the unconditional volatility in each regime, to get its posterior distribution. Figure

5 displays the posterior distributions of the unconditional annualized volatility in each

regime. In the low-volatility regime, the distribution is centered around 0.003*sqrt(250)=

4,7% per annum. For the high-volatility regime, the distribution is centered around
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0.006*sqrt(250)= 9,4% per annum. Notice that both distributions exhibit positive skewness

(0.19and0.18, respectively). Hence, relying on the asymptotic Normal approximation would

yield erroneous overestimates of the 95% confidence band of the unconditional volatility in

each regime.

Figure 5 – Histograms of the posterior distribution for the unconditional volatility in each
regime. Both graphs are based on 2,500 draws from the joint posterior sample.
The blue square reports the posterior mean, and the red triangle reports the
ML estimate.
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7.1 Backtesting

In order to link to the previously used approaches to assess the quality of VaR

forecasts (and to make comparisons between the methods), we computed the percentage

of times the observations exceeded the V aRα forecasts, commonly referred to as the

percentage of violations. Based on the values reported under the column ”% Viol.”in

Table 1 , we observe that some of the misspecified models were actually able to hit nearly

exactly the expected proportion of violations by matching the risk measure level (1− α).

This is the case, for instance, for ”n-EVT”and ”t-EVT”methods at α = 0.99. Although

large deviations from the risk measure confidence level do suggest substantial method

deficiencies (as in the case of ”n-FP”and ”t-FP”methods), these values also highlight

that the deviations from the (1− α) level alone are unlikely to provide a good basis for

differentiating the methods’ performance in terms of prediction.
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Table 3 – Summary of traditional and comparative backtesting based on the negated log-
returns on the IBOVESPA Composite index with an GJR-GARCH(1,1) filter
fitted over moving estimation window of 500 observations, and the out-of-sample
size of n =3.995. The second column reports the average risk measure forecasts.
“% Viol.” gives the percentage of V aR0.99 forecast exceedances. The simple
CCT and general CCT columns contain the p-values for two-sided simple and
general conditional calibration tests, respectively. The final two columns show
the average scores, scaled by one minus the risk measure confidence level for
presentation purposes, based on the specified scoring functions along with the
corresponding method ranks (in brackets). In bold the methods that cct tests
reject at a level of 5%.

Method V aR0.99 % Viol. simple CCT General CCT S̄[eq.46] S̄[eq 47]

n-FP 4.077 1.302 0.000 0.000 5.268 (4) 1.622 (4)
n-FHS 4.390 1.101 0.016 0.021 5.283 (5) 1.626 (5)
n-EVT 4.311 1.101 0.539 0.212 5.214 (2) 1.609 (2)
st-FP 4.294 1.126 0.044 0.012 5.230 (3) 1.612 (3)

st-FHS 4.377 1.227 0.039 0.189 5.297 (6) 1.629 (6)
st-EVT 4.302 1.076 0.640 0.398 5.121 (1) 1.601 (1)

e0.99855 simple CCT General CCT S[eq.48] S[eq.49]

n-FP 4.078 0.000 0.000 31.604 (5) 0.676 (6)
n-FHS 4.447 0.045 0.002 30.732 (2) 0.658 (5)
n-EVT 4.427 0.034 0.008 31.084 (3) 0.653 (3)
st-FP 4.543 0.083 0.031 31.727 (6) 0.646 (1)

st-FHS 4.446 0.446 0.194 30.905 (2) 0.655 (4)
st-EVT 4.422 0.330 0.178 30.255 (1) 0.649 (2)

ES0.975 simple CCT General CCT S[eq.50] S[eq.51]

n-FP 4.077 0.000 0.000 5.268 (4) 1.622 (4)
n-FHS 4.390 0.022 0.021 5.283 (5) 1.626 (5)
n-EVT 4.311 0.539 0.021 5.214 (1) 1.609 (1)
st-FP 4.294 0.004 0.012 5.230 (3) 1.612 (3)

st-FHS 4.377 0.193 0.189 5.297 (6) 1.629 (6)
st-EVT 4.302 0.640 0.398 5.221 (2) 1.610 (2)

Table 3 summarizes results of traditional and comparative backtesting for six

forecasting methods and, as before, for the three risk measures (VaR, expectile and the

(VaR, ES) pair) at their standard Basel levels.

In the case of V aR0.99, the traditional backtests based on the two-sided simple

conditional calibration tests are passed only under the n-EVT and st-EVT methods. At

this relatively high risk measure level, the EVT-based methods outperform their other
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Figure 6 – Expectile0.99855 for the Ibovespa log-return series, evaluated using the three
considered methods based on rolling windows of length N = 500: Fully Para-
metric (red line), historical method (green line) and Extreme Value Theory
(purple line)

competitors based on both the traditional backtests and the average scores. It should

also be noted that the two scoring functions have lead to the same rankings of the

forecasting procedures. The historical simulation methods (n-FHS and st-FHS) show

the worst performance in terms of their predictive ability. On the other hand, for the

0.99855-expectile, the tests of simple conditional calibration are rejected (at 5% level) for

all the methods that use the normal likelihood.
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For V aR0.99, we performed the conditional calibration tests also with the test

function ht = (1, V (rt−1, xt−1))
′. They lead to conclusions similar to those based on the

simple conditional calibration tests. This example underlines the importance of further

studies on appropriate choices of test functions. The results for (V aRV , ESv) with v = 0.975

suggest better performance when a more flexible model such as the st is used to fit the

GJR-Garch filter, although the use of EVT-based methods has a potential to compensate

for likelihood mis-specifications. Again, fully parametric methods (n-FP and st-FP) faill

in the comparative backtests against most of the other more flexible alternatives. The

outcomes show one interesting aspect which is not in contradiction with the theory but may

be puzzling and merit further investigation in future studies: The conditional calibration

test rejects all methods using a normal likelihood but the scoring functions rank the n-EVT

method as the best or second best performing method. It seems that the test function

used in the conditional calibration test is sensitive to the likelihood function used in fitting

the GJR-GARCH filter whereas the scoring functions are more sensitive to the method at

the second stage giving preference to the EVT methods.
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8 CONCLUSION

In this research paper, Expectil is analyzed as a measure of the inherent risk of a

financial asset, with the aim of answering the following questions: is the Expectil a good

measure of financial risk? Which method is best for your prediction?

Expectil is defined as a matrix for capital requirements, that is, as the amount of

capital that must be added to a position or portfolio to obtain a sufficiently high profit and

loss ratio. In order to respond as widely as possible to the rest of the questions posed, an

analysis was carried out with Ibovespa returns, using a fully parametric, non parametric

and semi-parametric methods with the GJR-GARCH. In response to the first question, in

this paper we bet on the Expectil since it is a risk measure with the capacity to absorb

the possible losses of capital in the left tail of the distribution of yields. to allow the real

risk to be adjusted as much as possible by considering the information available for the

entire distribution. With respect to the second question, Extreme Value Theory tend to

be preferred in backtesting.

It is expected that the expectiles will better capture the risk compared to the VaR

and the ES by: i) being sensitive to the magnitudes of the values that exceed the VaR and

also taking into account the magnitudes of the most extreme values of the distribution,

ii) take into account the information of both tails, so if the profile of the right queue

is modified, the expectiles will be affected, unlike ES that does not, iii) because it is a

coherent and elicitable measure.

Finally, this work could be extended with its extension to the portfolios using

multivariable distributions, variable correlations over time, non-linear dependency, in-

depth analysis of the Expectil validation and further development.
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