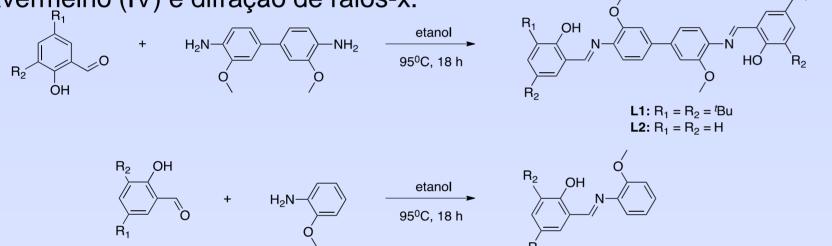


CATALISADORES DE CROMO(III) MONO- E BIMETÁLICOS CONTENDO LIGANTES DO TIPO FENOXI-IMINA SELETIVOS PARA A PRODUÇÃO DE ALFA-OLEFINAS

Igor Suedeckum Boeira, Osvaldo L. Casagrande Jr.


Introdução

A oligomerização do etileno, visando a produção seletiva de α -olefinas (AOs), tais como buteno-1 (α -C₄), hexeno-1 (α -C₆) e octeno-1 (α -C₈), representa uma das mais importantes aplicações industriais da catálise homogênea em todo o mundo. As AOs são matérias primas de alto valor agregado para a indústria química e com grande demanda mundial. Nesse contexto, este trabalho visou a síntese e caracterização de novos complexos de Cr(III) contendo ligantes fenoxi-imina e a aplicação destes em processos de oligomerização do etileno.

Parte Experimental

Síntese dos Pré-Ligantes

Os ligantes fenoxi-imina L1-L4 foram sintetizados através da reação entre um aldeído de interesse com diferentes aminas em refluxo de etanol por 18 horas. Após isolamento e purificação, L1-L4 foram obtidos como sólidos laranjas e amarelos com rendimentos variando de 72% a 94%, os quais foram caracterizados por RMN de ¹H e ¹³C, espectroscopia na região do infravermelho (IV) e difração de raios-x.

Esquema 1: Rota geral para a síntese dos pré-ligantes (L1-L4). Síntese dos Precursores Catalíticos

A reação de **L1-L4** com 2,0 equiv. no caso do **L1-L2** e 1,0 equiv. no caso do **L3-L4** com CrCl₃(THF)₃ em THF por 24 horas à temperatura de 25°C resultou na formação de quatro novos complexos de Cr(III) (**Cr1-Cr4**), os quais foram isolados como sólidos alaranjados e amarelos com rendimento variando entre 71% e 86%.

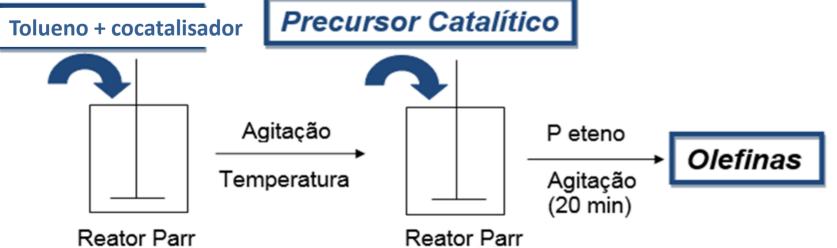
$$\begin{array}{c} R_1 \\ R_2 \\ \end{array}$$

$$\begin{array}{c} P_1 \\ P_2 \\ \end{array}$$

$$\begin{array}{c} P_2 \\ P_3 \\ \end{array}$$

$$\begin{array}{c} P_2 \\ P_4 \\ \end{array}$$

$$\begin{array}{c} P_3 \\ P_4 \\ \end{array}$$


$$\begin{array}{c} P_4 \\ P_4 \\ \end{array}$$

$$\begin{array}{c} P_4 \\ P_5 \\ \end{array}$$

$$\begin{array}{c} P_4 \\ P_6 \\ \end{array}$$

$$\begin{array}{c} P_6 \\ P_6 \\ \end{array}$$

Esquema 2: Síntese dos catalisadores Cr1-Cr4. Reações de Oligomerização

Esquema 3: Reações de oligomerização do etileno.

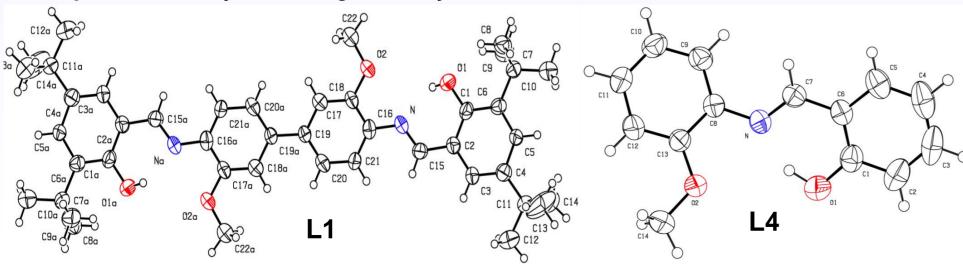


Figura 1. Estrutura molecular no estado sólido dos ligantes L1 e L4.

Resultados e Discussão

Tabela 1: Reações de oligomerização do etileno

	Entr.	Cat	FR ^b (10³·h ⁻¹)	C ₄ (α-C ₄)	C_6 $(\alpha - C_6)$	C ₈ (α-C ₈)	C ₁₀ (α-C ₁₀)	C ₁₂₊	Olig. (%)	PE (%)	produto (mg)
]	1 ^d	Cr1	3,9	25,1 (66,6)	23,5 (72,3)	18,9 (67,4)	10,2 (71,5)	22,1	47,4	52,6	570
	2 ^e	Cr1	2,3	45,4 (88,3)	13,6 (100)	12,5 (100)	8,4 (100)	19,8	67,3	32,7	238
	3	Cr3	21,4	20,7 (95,2)	21,9 (96,5)	18,1 (96,3)	12,6 (96,8)	24,9	94,5	5,5	2096

 a Condições reacionais: tolueno = 100 mL, tempo de oligomerização = 20 min, [Cr] = 5,0 ± 0,5 μmol, P(etileno) = 20 bar, temperatura = 80 °C. Os resultados mostrados são representativos de duplicatas no mínimo. b Frequência de Rotação: mol de etileno convertido por mol de Cr por hora, determinado quantitativamente por cromatografia gasosa. c C_n, quantidade de olefinas com n átomos de carbono em oligômeros; α-C_n, quantidade de alceno terminal na fração; C_n, quantidade determinada por CG. d razão molar [Al]/[Cr] = 300. e razão molar [Al]/[Cr] = 600

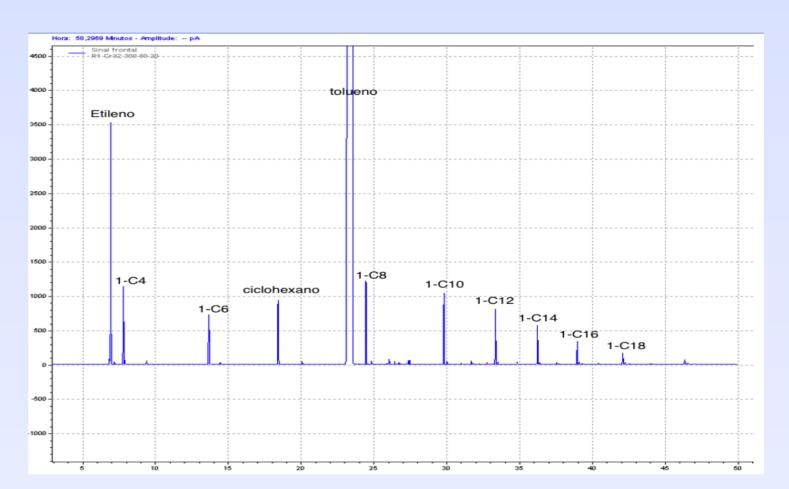


Figura 2. Cromatograma típico para a fração solúvel em tolueno utilizando Cr3/MAO.

Conclusão

- 4 novos ligantes do tipo fenoxi-imina foram sintetizados e caracterizados por espectroscopia na região do infravermelho (IV), ressonância magnética nuclear (RMN) e análise elementar;
- A partir destes ligantes, 4 novos complexos de Cromo (III) foram sintetizados;
- o precatalisador bimetálico **Cr1** apresentou uma distribuição quase equivalente entre a massa de oligômero e PEAD, enquanto que o precatalisador **Cr3** foi altamente seletivo para a produção de oligômero com alta seletividade para a produção de α -olefinas.

Referências

[1]Belov, G.P.; Matkovsky, P.E. Pet. Chem., 2010, 50, 4, 283.

[2]Forestière, A.; Olivier-Bourbigou, H.; Saussine, L.; Oil Gas Sci. Technol. Rev. IFP. 2009, 64, 649.

[3] Alpha Olefins (02/03-4), PERP Report, NexantChem Systems.

Agradecimentos

