









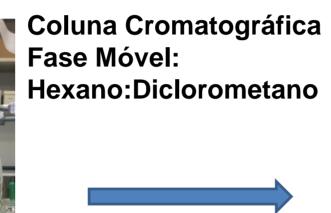
# Diterpenos de Salvia uliginosa Benth nativa do sul do Brasil

Ariane Dorneles<sup>1</sup>, Gilsane Lino von Poser<sup>1</sup>

<sup>1</sup>Laboratório de Farmacognosia, Faculdade de Farmácia

### Introdução

O gênero Salvia, pertencente à família Lamiaceae, apresenta mais de 1000 espécies, as quais são utilizadas como plantas medicinais ao redor do mundo. Os compostos majoritariamente encontrados nestas plantas são os diterpenos – que frequentemente apresentam-se como cristais que variam da cor amarela à vermelha. Eles são os responsáveis por diversas atividades biológicas, tais como, antimicrobiana, citotóxica, diurética, hipoglicemiante e anti-inflamatória.


#### **Objetivo**

Considerando a importância das atividades biológicas exercidas pelos diterpenos, esta pesquisa teve como objetivos o isolamento, purificação e elucidação estrutural destes compostos em *S. uliginosa*, espécie nativa do sul do Brasil.

#### **Materiais e Métodos**







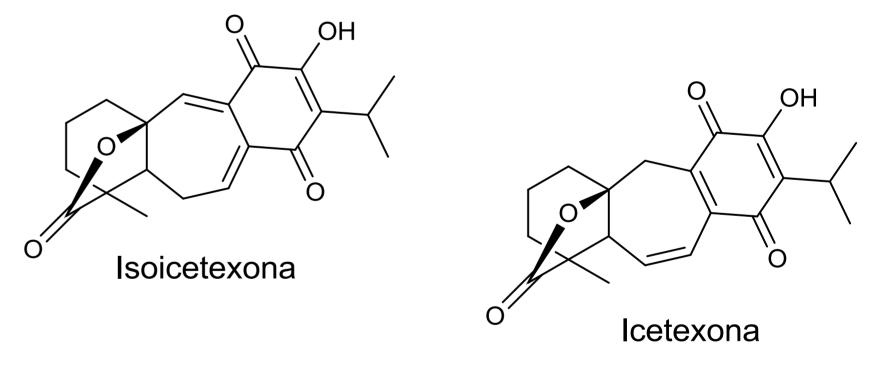
Produtos isolados: icetexona; 7-acetóxi-6,7-diidroicetexona e isoicetexona

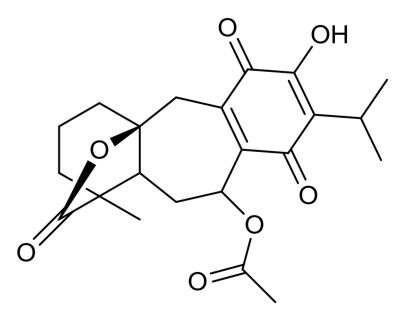




**Teste de Atividade Anti-inflamatória** 

#### Resultados


**Tabela 1.** Efeito *in vitro* de compostos isolados e exsudato de *S. uliginosa* na migração de neutrófilos em comparação com o controle positivo e negativo.


| Amostra               | Concentração<br>(µg/mL) | Migração<br>(µm) | Inibição da migração (%) |
|-----------------------|-------------------------|------------------|--------------------------|
| Exsudato S. uliginosa | 0,1                     | 14,7 ± 2,4       | 54,6***                  |
|                       | 0,01                    | 15,7 ± 1,5       | 51,5***##                |
| Isoicetexona          | 5                       | SM               | 100***##                 |
|                       | 1                       | SM               | 100***##                 |
|                       | 0,1                     | SM               | 100***##                 |
|                       | 0,01                    | 18,4 ± 1,3       | 42,9***##                |
|                       | 0,001                   | 25,3± 1,8        | 21,8***##                |
| Icetexona             | 5                       | SM               | 100***###                |
|                       | 1                       | SM               | 100***##                 |
|                       | 0,1                     | 17,8 ± 1,9       | 45,0***###               |
|                       | 0,01                    | 18,9 ± 1,5       | 41,5***##                |
|                       | 0,001                   | $20,3 \pm 1,3$   | 37,3***###               |
| Controle negativo     | -                       | 100              | 0                        |
| Indometacina          | 10                      | $31.6 \pm 6.4$   | 60,9                     |

A quimiotaxia é representada como média ± desvio padrão da migração de leucócitos. \*\*\*, ### p <0,001 e ## p<0,01 indicam os níveis de significância em relação aos grupos controle: controle negativo (LPS) e controle positivo (indometacina), respectivamente (ANOVA seguido do teste de Tukey). SM: não houve migração

#### Conclusões

A partir dos isolamentos obtidos do exsudato de *S. uliginosa* foi possível verificar que a espécie estudada é importante fonte de diterpenos, os quais apresentaram diferentes atividades biológicas. Baseado nos resultados da atividade anti-inflamatória, todas as amostras testadas mostraram uma inibição significativa da migração de leucócitos em comparação com o controle negativo (LPS) (p <0,001). Dos compostos isolados, tanto a isoicetexona quanto a icetexona apresentaram 100% de inibição da migração leucócitos nas concentrações de 0,1 e 5 μg/mL, demonstrando para estes compostos um importante efeito anti-inflamatório, por este mecanismo.





7-acetóxi-6,7-diidroicetexona

## Agradecimentos







