

ANÁLISE COMPARATIVA DO GRAU DE PRECISÃO DE ESQUEMAS DE QUADRATURAS PARA A FORMULAÇÃO DE ORDENADAS DISCRETAS DA EQUAÇÃO DE TRANSPORTE RADIATIVO

Ana Carolina Bof ^(a), Prof. Dr. Pedro H. A. Konzen ^(b), Prof. Dr. Fábio Souto de Azevedo ^(b)

^(a) Curso de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul

^(b) Universidade Federal do Rio Grande do Sul, Instituto de Matemática e Estatística - Porto Alegre, RS, CEP 91501-970

{acbof6@gmail.com, pedro.konzen@ufrgs.br, fabio.azevedo@ufrgs.br}

INTRODUÇÃO

Neste trabalho, buscamos comparar esquemas de quadraturas sobre a esfera unitária (assumindo simetria nas coordenadas $\eta \in \xi$) em problemas de transporte tridimensionais. Para tanto, discutimos sobre princípios fundamentais para a construção de tais quadraturas, como positividade dos pesos, invariância sobre rotações, entre outras. Também, buscamos analisar o erro dos esquemas de quadratura e a comparação entre quadraturas de pesos iguais, do tipo de Lebedev, de construção geométrica e de construção via quadraturas iteradas, aplicadas a problemas de transporte unidimensionais.

N = 6

Assim, foi feita uma análise comparativa do grau de precisão dos esquemas de quadraturas estudados, assumindo-se uma tolerância máxima de 10⁻⁷.

CONTEXTO

Consideramos a equação de transporte radiativo, estacionária, em um meio cinza [6]:

RESULTADOS

Fizemos, então a comparação entre as quadraturas estudadas e a quadratura de Gauss-Legendre, que é tomada como parâmetro por ter resultados conhecidos e precisos.

$$\Omega \cdot \nabla I(r, \Omega, \nu) + (\sigma + \kappa)I(r, \Omega, \nu) = \frac{\sigma}{4\pi} \int_{S^2} I(r, \Omega', \nu) d\Omega' + \kappa Q, \Omega \in S^2,$$

onde I = I(r, Ω , v) denota a intensidade radiativa associada à frequência v em um ponto r do domínio, S² := { $\Omega = (\mu, \eta, \xi)$; $\mu^2 + \eta^2 + \xi^2 = 1$ } denota a esfera unitária e Q é uma fonte externa. Uma das técnicas mais empregadas para o estudo numérico desta equação é o chamado método de ordenadas discretas, o qual consiste em aproximar o termo integral por uma quadratura numérica apropriada e, então, expandir a equação do transporte em um sistema de equações diferenciais parciais nas direções discretas Ω_i definidas pela quadratura. Mais especificamente, para problemas com geometria cartesiana unidimensional, a formulação de ordenadas discretas da equação de transporte é:

$$u\frac{dI_i}{dx} + (\sigma + \kappa)I_i = \frac{\sigma}{4\pi}\sum_{j=0}^{N-1}I_jw_j + \kappa Q, i = 0, 1, ..., N-1,$$

onde $\{(\mu_i, w_i)\}_{i=0}^{N-1}$ é o conjunto de pontos e pesos da quadratura numérica, N é a ordem da quadratura e $I_i := I(x, \mu_i, \nu)$. Desta forma, a formulação de ordenadas discretas depende da quadratura escolhida impactando na precisão da solução obtida [2,3].

Considera-se que uma dada quadratura $\sum_{i=1}^{m} \mu_i w_i$ tem grau de precisão *n* quando

$$2\pi \left| \int_{-1}^{1} \mu^k \, d\mu - \sum_{i=1}^{m} \mu_i^k w_i \right| < TOL, \qquad \forall k \le n$$

onde TOL é a tolerância desejada.

QUADRATURAS ANALISADAS

Para a comparação, analisamos quadraturas comumente usadas em problemas multidimensionais, a saber, as quadraturas: Legendre-Chebyshev triangular [5], Legendre-Chebyshev quadrangular [1], Tesselation [7] e $SRAP_N$ [4].

Para cada uma das quadraturas em questão, desenvolvemos códigos computacionais para a construção e implementação das mesmas e obtivemos os resultados esperados. A seguir temos exemplos de imagens geradas pelos códigos desenvolvidos. (*)

As tabelas abaixo indicam os erros de cada quadratura para uma dada ordem N, aumentando-se o expoente k da integração. Os dados em vermelho representam uma extrapolação da tolerância de 10^{-7} estabelecida.

Tabela 1: Comparação dos erros das quadraturas para $N=2$ N = 2										
0	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	1.26e+01				
1	0.00e+00	0.00e+00	3.33e-16	2.78e-16	0.00e+00	0.00e+00				
2	1.78e-15	1.78e-15	1.91e-02	8.88e-16	0.00e+00	4.19e+00				
3	0.00e+00	0.00e+00	1.11e-16	1.67e-16	0.00e+00	0.00e+00				
4	1.12e+00	1.12e+00	8.60e-03	1.42e-01	1.12e+00	2.51e+00				
5	0.00e+00	0.00e+00	1.66e-16	1.64e-16	0.00e+00	0.00e+00				
6	1.33e+00	1.33e+00	8.60e-04	2.79e-01	1.33e+00	1.80e+00				
7	0.00e+00	0.00e+00	2.89e-17	3.30e-17	0.00e+00	0.00e+00				
8	1.24e+00	1.24e+00	2.26e-04	3.56e-01	1.24e+00	1.40e+00				
9	0.00e+00	0.00e+00	1.01e-19	6.00e-17	0.00e+00	0.00e+00				

Tabela 2: Comparação dos erros das quadraturas para N=6

k	LCQQ	LCTQ	SRAP	Tesselation	Gauss-Legendre	Exact value
0	5.33e-15	3.55e-15	1.60e-14	2.84e-14	0.00e+00	1.26e+01
1	4.79e-16	5.55e-17	7.95e-16	1.55e-16	5.23e-16	0.00e+00
2	3.55e-15	4.44e-15	4.10e-04	1.24e-14	8.88e-16	4.19e+00
3	5.53e-17	1.56e-16	2.71e-16	1.22e-16	0.00e+00	0.00e+00
4	2.66e-15	4.58e-03	2.03e-03	1.07e-02	1.33e-15	2.51e+00
5	2.89e-17	8.26e-17	6.25e-17	5.75e-17	8.72e-17	0.00e+00
6	1.33e-15	8.97e-04	3.18e-03	1.41e-02	1.11e-15	1.80e+00
7	7.33e-17	8.31e-17	1.52e-16	7.43e-17	0.00e+00	0.00e+00
8	1.33e-15	3.69e-03	3.59e-03	1.54e-02	6.66e-16	1.40e+00
9	7.18e-17	3.13e-17	2.76e-17	1.74e-16	0.00e+00	0.00e+00
10	6.66e-16	5.02e-03	3.73e-03	1.59e-02	6.66e-16	1.14e+00
11	1.27e-16	1.06e-18	5.07e-17	2.04e-16	0.00e+00	0.00e+00
12	3.14e-03	7.71e-03	3.75e-03	1.61e-02	4.64e-03	9.67e-01
13	1.94e-17	5.69e-17	3.88e-18	6.00e-17	0.00e+00	0.00e+00
14	1.05e-02	1.39e-02	3.70e-03	1.60e-02	1.50e-02	8.38e-01

Pela análise dos resultados, podemos tirar algumas conclusões:

- 1) A quadratura de Legendre-Chebyshev quadrangular se compara em precisão à quadratura de Gauss-Legendre e é, então, a quadratura mais confiável dentre as estudadas;
- 2) Aumentando-se a ordem N de 2 para 6 já vemos um aumento significativo da precisão das quadraturas.

AGRADECIMENTOS

Agradecimentos ao CNPq pela bolsa PIBIC de Iniciação Científica.

¹ D.G. Cacuci, Handbook of Nuclear Engineering, Springer, New York, 2010.

² B. Hunter and Z. Guo, Numerical smearing, ray effect, and angular false scattering in radiation transfer computation, International Journal of Heat and Mass Transfer 81 (2015), 63–74.

³ R. Koch and R. Becker, Evaluation of quadrature schemes for the discrete ordinates method, Journal of Quatitative Spectroscopy & Radiative Transfer 84 (2004), 423–435.

⁴ B.-W. Li, Q. Yao, X.-Y. Cao, and K.-F. Cen, A New Discrete Ordinates Quadrature Scheme for Three-Dimensional

B.-W. EI, Q. Pao, X.-T. Cao, and R.-T. Cen, A New Discrete Ordinates Quadrature Scheme for Three-Dimensional Radiative Heat Transfer, Journal of Heat Transfer-transactions of The Asme - J HEAT TRANSFER, 1998, pp. 514–518.
⁵ G. Longoni and A. Haghighat, Development of new quadrature sets with the ordinate splitting technique, Proceedings the 2001 American Nuclear Society International Meeting on Math- ematical Methods for Nuclear Applications (M&C 2001), Salt Lake City, UT (2001).
⁶ M.F. Modest, Radiative heat transfer, Elsevier, New York, 2013.
⁷ C. Thurgood, A. Pollard, and H.A. Becker, The TN Quadrature Set for the Discrete Ordinates Method, Journal of Heat Transfertransactions of The Asme - J HEAT TRANSFER, 1995, pp. 1068–1070.
* Estes códigos podem ser encontrados em https://github.com/acbof/Transport