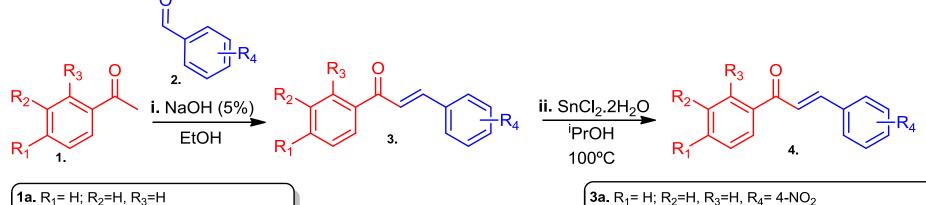


Síntese de Híbridos Quinazolina-Chalconas

Gilmar Vieira Duarte, Dennis Russowsky


INTRODUÇÃO

Chalconas são flavonoides naturais constituídos de cetonas acíclicas aromáticas α,β -insaturadas. Compostos desse tipo são bioativos para o tratamento de doenças como malária, leishmaniose e Doença de Chagas. 1

Quinazolinas são diazinas benzofundidas contendo nitrogênios na posição 1-3 e são utilizadas como blocos de construção farmacológicos.² A união de duas ou mais moléculas (Hibridização Molecular) que atuam em diferentes aspectos de uma doença pode apresentar um efeito de sinergismo, resultando em uma maior atividade da molécula.³ Nesse trabalho propôs-se a síntese de uma biblioteca de híbridos que combinem chalconas com a quinazolina a fim de averiguar sua potencial eficácia no combate a doenças negligenciadas.

METODOLOGIA E RESULTADOS

O primeiro passo da síntese (**fig. 1**) foi a obtenção das nitrochalconas através da condensação aldólica entre acetofenonas e nitroaldeídos *meta* e *para* substituídos. As nitrochalconas foram purificadas e caracterizadas por RMN de ¹H e ¹³C e infravermelho. Observou-se a formação das nitrochalconas no espectro de RMN pela presença de dois dupletos de *J*³=15,6 Hz, característico de olefinas dissubstituidas com configuração (*E*).

1b. R_1 = Me; R_2 =H; R_3 =H **1c**. R_1 = 4-propargilóxi; R_2 = H; R_3 =H **1d**. R_1 = H; R_2 =H; R_3 = 2-propargilóxi **1e**. R_1 = H; R_2 = 3-propargilóxi; R_3 =H **1f**. R_1 = 4-propargilóxi; R_2 = 3-metóxi; R_3 =H

Tab1. Rendimento produtos **3.** e **4**.

2a. $R_4 = m - NO_2$

2b. $R_4 = p - NO_2$

	Rend. (%) ¹		Rend. (%) ¹		Rend. (%) ²		Rend. (%) ²
3a.	88	3g.	82	4a.	50	4g.	71
3b.	87	3h.	89	4b.	47	4h.	69
3c.	90	3i.	68	4c.	60	4i.	65
3d.	82	3j.	78	4d.	70	4j.	70
3e.	75	3k.	65	4e.	72	4k.	91
3f.	79	31.	81	4f.	76	41.	90

¹. Rendimento isolado; ². rendimento bruto.

3a. R_1 = H; R_2 =H, R_3 =H, R_4 = 4-NO₂ **3b.** R_1 = H; R_2 =H, R_3 =H, R_4 = 3-NO₂ **3c.** R_1 = Me; R_2 =H; R_3 =H; R_4 = 4-NO₂ **3d.** R_1 = Me; R_2 =H; R_3 =H; R_4 = 3-NO₂ **3e.** R_1 = 4-propargilóxi; R_2 = H; R_3 =H, R_4 = 4-NO₂ **3f.** R_1 = 4-propargilóxi; R_2 = H; R_3 =H, R_4 = 3-NO₂ **3g.** R_1 = H; R_2 =H; R_3 = 2-propargilóxi, R_4 = 4-NO₂ **3h.** R_1 = H; R_2 =H; R_3 = 2-propargilóxi; R_3 =H= 4-NO₂ **3i.** R_1 = H; R_2 = 3-propargilóxi; R_3 =H R_4 = 3-NO₂ **3k.** R_1 = 4-propargilóxi; R_2 = 3-metóxi; R_3 =H; R_4 = 4-NO₂ **3l.** R_1 = 4-propargilóxi; R_2 = 3-metóxi; R_3 =H, R_4 = 3-NO₂

4a. R₁= H; R₂=H, R₃=H, R₄= 4-NH₂ **4b.** R₁= H; R₂=H, R₃=H, R₄= 3-NH₂ **4c.** R₁= Me; R₂=H; R₃=H;R₄= 4-NH₂ **4d.** R₁= Me; R₂=H; R₃=H;R₄= 3-NH₂

4f. R_1 = 4-propargilóxi; R_2 = H; R_3 =H, R_4 =3-NH₂ **4g.** R_1 = H; R_2 =H; R_3 = 2-propargilóxi, R_4 = 3-NH₂ **4h.** R_1 = H; R_2 =H; R_3 = 2-propargilóxi, R_4 = 3-NH₂ **4i.** R_1 = H; R_2 = 3-propargilóxi; R_3 =H= 4-NH₂

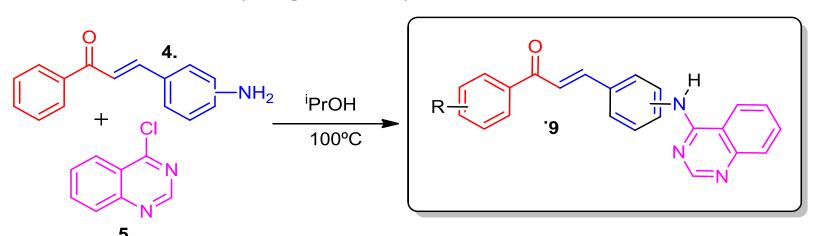
4e. R_1 = 4-propargilóxi; R_2 = H; R_3 =H, R_4 = 4-NH₂

41. 90

4j. R₁= H; R₂= 3-propargilóxi; R₃=H R₄= 3-NH₂

4k. R₁= 4-propargilóxi; R₂= 3-metóxi; R₃=H;R₄= 4-NH₂

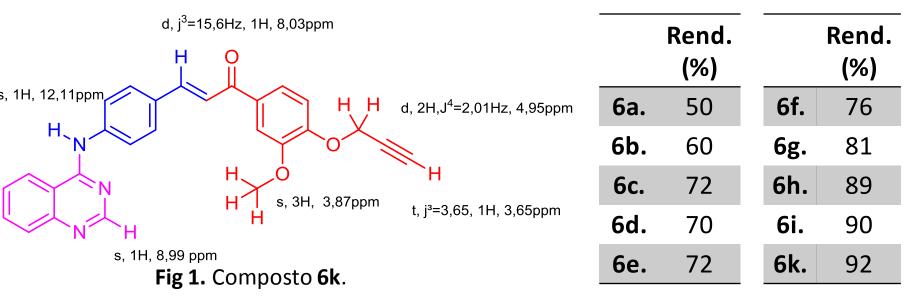
4l. R₁= 4-propargilóxi; R₂= 3-metóxi; R₃=H, R₄=3-NH₂


Esquema 1. Síntese das nitrochalconas e aminochalconas.

As aminochalconas foram obtidas por redução dos compostos **3.** utilizando SnCl₂.2H₂O como agente redutor. Seu processo de purificação levou a baixos rendimentos. Analisando o bruto reacional por RMN, notou-se que consistia majoritariamente da amina de interesse, assim, optou-se por utilizar o bruto reacional na etapa seguinte.

REFERÊNCIAS:

- Shivahare, R. Korthikunta, V. Chandasana, H. Suthar, M. K. Agnihotri, P. Vishwakarma, P. Chaitanya, T. K. Kancharla, P. Khaliq, T. Gupta, S. Bhatta, R. S. Pratap, J. V. Saxena, J. K. Gupta, S. Tadigoppula, N. *J. Med. Chem.* **2014**, *57*, 3342.
- •Ajani, O. O. Aderohunmu, D. V. Umeokoro, E. N. Olomieja, A. O. *Bangladesh J. Pharmacol.* **2016,** *11*. 716. •Berubé, G. *Expert. Opin. Drug. Discov.* **2016,** *20*, 1746.


Tendo sintetizado as aminochalconas, realizou-se reação de substituição na 4-cloro-quinazolina a fim de sintetizar os híbridos quinazolina-chalcona (**esquema 1**).

Esquema 2. Síntese do híbrido quinazolina chalcona

Os compostos finais foram caracterizados por RMN de ¹H e ¹³H, infravermelho e ponto de fusão e apresentaram bons rendimentos. Abaixo segue tabela com valores de rendimentos e espectro de RMN ¹H de um exemplo representativo da família de compostos.

Tab 2. Rendimentos dos híbridos.

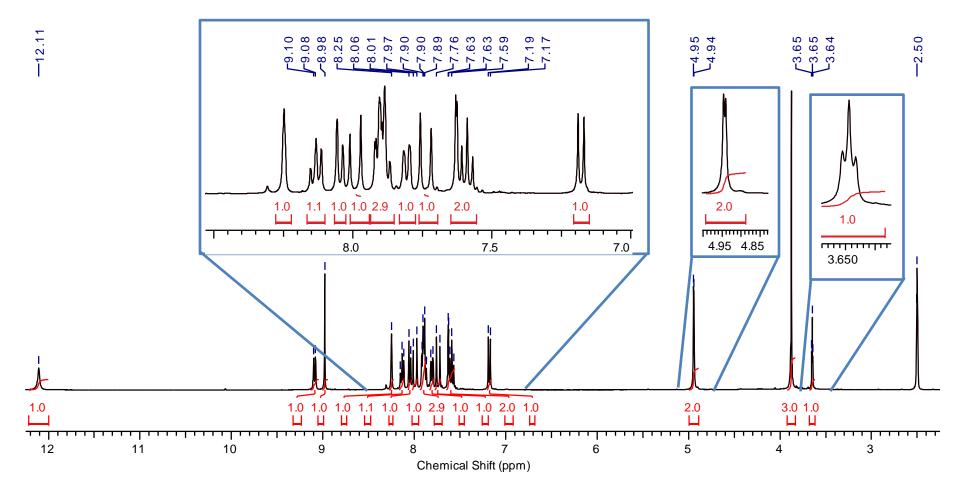


Fig 2. Espectro de RMN ¹H e ampliações do composto **6k**.

CONSIDERAÇÕES FINAIS

Através de uma rota sintética simples, eficaz e rápida foi possível a construção de um conjunto de compostos híbridos moleculares altamente funcionalizados, e bons rendimentos, que podem atuar como potenciais compostos bioativos. Além disso, vale salientar que dos doze híbridos planejados, dez são compostos inéditos.

AGRADECIMENTOS

