
ANÁLISE ADIMENSIONAL DE PRESSÕES MÉDIAS AO LONGO DA CALHA DE UM VERTEDOURO EM DEGRAU.

INTRODUÇÃO

Os vertedouros são obras de seguranças das barragens que têm por finalidade escoar o excesso de água das enchentes de forma segura. Um dos tipos é o vertedouro em degraus.

Principais Características:

- > Dissipa energia ao longo da calha;
- > Permite o uso de estruturas de dissipação a jusante de menor tamanho, custo e mesma eficiência.

Modelo Esquemático de um vertedouro em degraus.

Vertedouro em degraus da Barragem Rio Sirinhaém (PE).

OBJETIVO DO ESTUDO

Analisar o comportamento das pressões médias ao longo da calha de um vertedouro em degraus a partir de uma análise adimensional.

METODOLOGIA

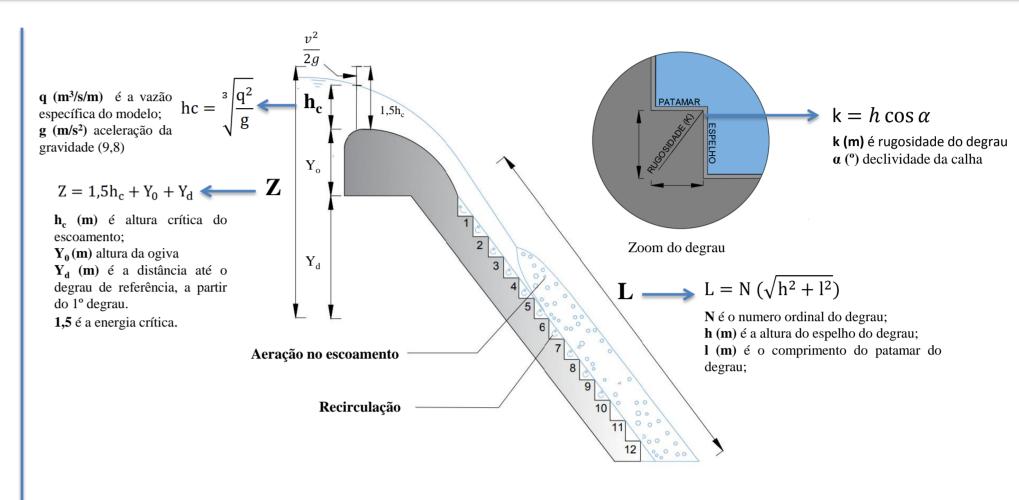
Os dados de pressão média foram obtidos em 5 modelos físicos com características geométricas distintas (ver tabela 1). A pressão média foi coletada através de transdutores de pressão instalados nos patamares e espelhos dos degraus.

DAÍ PRÁ (2004)

CONTERATO (2011) E MODELO LOH 1 (2018)

LAHE (2018)

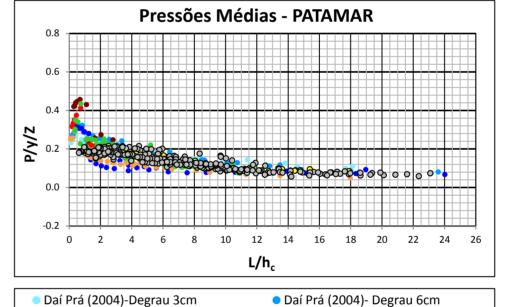
AUTORES	ALTURA DO ESPELHO (cm)	DECLIVIDADE DA CALHA	q _{min}	q _{máx}	F* _{min}	F* _{máx}
Sanagiotto (2003)	3	53,13°	0,050	0,700	7,391	103,469
	6	1,0(V):0,75(H)	0,050	0,700	2,613	36,582
	9		0,100	0,700	2,845	19,913
Daí Pra (2004)	3	45°	0,030	0,700	3,072	86,022
	6	1,0(V):1,0(H)	0,050	0,700	2,172	30,414
	9		0,100	0,700	2,365	16,555
Conterato (2011)	6	53,13° 1,0(V):0,75(H)	0,100	0,300	5,226	15,678
LAHE (2018)	9		0,100	0,360	2,845	10,117
Modelo I LOH (2018)	6		0,100	0,370	5,226	19,205

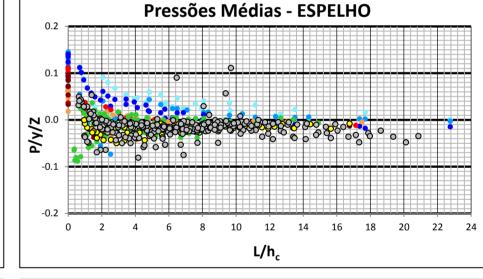

Tabela 1: Características gerais dos modelos físicos

Sendo F^* o froude rugoso obtido pela equação $F^* = \frac{1}{r}$

q (m³/s/m) a vazão específica dos modelos

k (m) a rugosidade do degrau α (°) a declividade da calha


 $\sqrt{g * k^3 * \sin(\alpha)}$


Modelo esquemático da calha de um vertedouro em degraus apresentando suas características geométricas.

RESULTADOS

A partir da coleta dos dados, foram gerados gráficos de pressão média (P) sobre a energia a montante em metros (Z) em função do comprimento longitudinal (L) sobre a altura crítica do escoamento (h_c).

Modelo LOH I

- Daí Prá (2004)- Degrau 6cm • Daí Prá (2004)- Degrau 9cm Sanagiotto (2003)-Degrau 3cm Sanagiotto (2004)-Degrau 6cm Sanagiotto (2003)-Degrau 9cm Conterato (2011)-Degrau 6cm O LAHE-AERAÇÃO NATU-Degrau 9cm
 - Daí Prá (2004)-Degrau 3cm Daí Prá (2004)- Degrau 9cm Sanagiotto (2004)-Degrau 6cm Conterato (2011)-Degrau 6cm Modelo LOH I
- o Daí Prá (2004)- Degrau 6cm Sanagiotto (2003)-Degrau 3cm • Sanagiotto (2003)-Degrau 9cm O LAHE-AERAÇÃO NATU-Degrau 9cm

CONCLUSÕES

A partir do adimensional que está sendo demonstrado no presente estudo, pode-se observar um comportamento distinto das pressões médias entre:

PATAMAR	ESPELHO			
 Menor dispersão dos dados (influência das características geométricas dos modelos, como altura do degrau e declividade da calha). O gráfico se divide basicamente em duas zonas: Uma com pressões altas, com adimensional de pressões P/y/Z próximos de 0,43; e outra com tendência assintótica, como será descrito abaixo. A partir do ponto 12 do eixo L/h_c nota-se um comportamento com tendência constante do adimensional de pressões P/y/Z aproximadamente 0,06. 	declividade da calha). • O gráfico se divide em basicamente três zonas: Uma com pressões positivas, com adimensional de pressões P/y/Z próximos de 0,14; outra com pressões negativas próximas de -0,089, e outra com tendência assintótica,			

AGRADECIMENTO

À Furnas Centrais Elétricas S. A. Aos colegas do Laboratório de Obras Hidráulicas.

