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ABSTRACT

The shrink of the devices sizes allows the number of transistors in the integrated circuits

to grow, leading to an increase in the leakage power. The discrete gate sizing technique

consists in assigning each gate of the circuit to a cell option among the implementation

versions available in the cell library. It is a powerful method used in the design flow to

carry out optimizations, e.g., timing violations fixing and power and/or area minimiza-

tion. The Lagrangian relaxation based gate sizer proposed in [Flach et al. 2013] has the

best leakage power results published so far for the 2012 ISPD Gate Sizing Contest bench-

marks. However, its Lagrangian relaxation phase has some drawbacks. It requires many

iterations to converge to a good solution in terms of leakage power. Also, during the ini-

tial iterations, the leakage power blows up, so a parcel of the iterations is used to reduce

this peak of leakage power. Yet, the Lagrangian relaxation subproblem solver does not

rely on any technique to perform cell option candidate filtering, so it can be very timing

consuming. Therefore, in this work, the discrete gate sizing flow proposed in [Flach et al.

2013] is extended to tackle the drawbacks aforementioned. It is proposed some enhance-

ments to the Lagrange multiplier update formula that enable the Lagrangian relaxation

core to converge faster. It is also used a scaling factor to properly scale timing cost and

leakage power when evaluating a cell candidate in the Lagrangian relaxation subproblem

solver. So, the scaling factor, alongside the new Lagrange multipliers update method,

controls the leakage power blow up during the initial Lagrangian relaxation iterations.

Moreover, it is applied a cell option candidate filtering strategy to reduce the runtime of

each Lagrangian relaxation iteration. Finally, the post-processing timing recovery and

power recovery phases of the original work are improved to reduce the overall flow run-

time. The new approach achieved leakage power results similar to the baseline work,

taking 4.28× fewer iterations and 9.11× fewer cell option candidates evaluation, on av-

erage, in the Lagrangian relaxation phase. Also, the leakage power blow up during the

initial iterations of the Lagrangian relaxation was reduced from 9.55× the final value, on

average, to 2.74× the final value, on average. Finally, compared to [Sharma et al. 2017],

which is the fastest gate sizing algorithm published so far, the new approach produced,

without using the post-processing power recovery phase, similar leakage power results in

general, performing slightly better for the largest benchmark.

Keywords: Leakage Power Minimization. Timing Constraints. Lagrangian Relaxation.
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Tratando as Desvantagens de um Algoritmo de Dimensionamento Discreto Baseado

em Relaxação Lagrangiana

RESUMO

A redução das dimensões dos dispositivos permite que o número de transistores nos cir-

cuitos integrados aumente, levando ao aumento da potência estática do circuito. A técnica

de dimensionamento discreto de portas lógicas consiste em atribuir a cada porta lógica do

circuito uma célula dentre todas as opções de implementação disponíveis na biblioteca de

células. É uma poderosa técnica empregada no fluxo de síntese de circuitos integrados

para realizar otimizações, como, por exemplo, remoção de violações de timing e mini-

mização de potência e/ou área do circuito. O algoritmo de dimensionamento discreto de

portas lógicas baseado em relaxação Lagrangiana proposto em [Flach et al. 2013] apre-

senta os melhores resultados em termos de potência estática publicados até então para os

benchmarks da competição de dimensionamento discreto de portas lógicas do ISPD que

ocorreu em 2012 [Ozdal, Burns and Hu 2012]. Contudo, a fase de relaxação Lagrangi-

ana desse algoritmo possui algumas desvantagens. São necessárias muitas iterações para

o algoritmo convergir para uma boa solução em termos de potência estática. Também,

durante as iterações iniciais, a potência estática aumenta consideravelmente, assim, uma

parcela das iterações é utilizada para reduzir o pico de potência estática. Ainda, o resol-

vedor do subproblema Lagrangiano não utiliza nenhuma técnica de filtragem de células

candidatas, então, o algoritmo pode ser muito lento. Então, nesse trabalho, o fluxo de

dimensionamento discreto de portas lógicas proposto em [Flach et al. 2013] é estendido

para tratar as desvantagens citadas. São propostas algumas melhorias para a fórmula de

atualização dos multiplicadores de Lagrange que permitem a fase de relaxação Lagrangi-

ana convergir mais rapidamente. Também é utilizado um fator de escala para balancear

adequadamente o custo de timing e a potência estática quando uma célula candidata é

avaliada pelo resolvedor do subproblema Lagrangiano. Assim, o fator de escala, junta-

mente com o novo método de atualização dos multiplicadores de Lagrange, controla a

explosão de potência estática durante as iterações inicias da fase de relaxação Lagrangi-

ana. Ainda, é utilizada uma estratégia de filtragem de células candidatas para reduzir o

tempo de execução das iterações do algoritmo de relaxação Lagrangiana. Finalmente, as

etapas de pós-processamento timing recovery e power recovery foram modificadas para

reduzir o tempo de execução do fluxo. A nova abordagem atingiu resultados em termos



de potência estática similares ao algoritmo original, tendo 4,28 vezes menos iterações,

em média, e 9,11 vezes menos testes de células candidatas, em média, na fase de relaxa-

ção Lagrangiana. Também, o grande aumento de potência estática durante as iterações

iniciais da relaxação Lagrangiana foi reduzido de 9,55 vezes a potência final obtida, em

média, para 2,74 vezes a potência final obtida, em média. Finalmente, comparado ao al-

goritmo de dimensionamento discreto de células proposto em [Sharma et al. 2017], que

é o mais rápido publicado até então, a ferramenta desenvolvida nesse trabalho produziu,

mesmo não utilizando a fase de pós processamento power recovery, resultados muito pró-

ximos em termos de potência estática, tendo resultados levemente melhores para o maior

benchmark.

Palavras-chave: Minimização de potência Estática, Restrições Temporais, Relaxação

Lagrangiana, Seleção de Células, Síntese Física, EDA, Microeletrônica.
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1 INTRODUCTION

In 1958, the first integrated circuit (IC) was designed at Texas Instruments by Jack

Kilby. This technology allowed the integration of the components of an electronic cir-

cuit in the same substrate of semiconductor material [Rabaey, Chandrakasan and Nikolic

2003]. Initially, the integrated circuits were manually designed. However, with the in-

creasing number of components, this method has become prohibitive. For instance, at the

end of the 1980s, there were circuits with more than one million of transistors, such as the

Intel 486 DX [Intel 2008]. Besides, time-to-market, which is the time from conception of

a product to its sale, is a crucial factor, since the company must launch the product into

the market in the smallest time to ensure its success. Therefore, computer aided design

(CAD) tools, also known as electronic design automation (EDA) tools, were developed to

automate the design of integrated circuits [Rabaey, Chandrakasan and Nikolic 2003].

The shrinking of planar MOSFETs during the last four decades enabled a contin-

uous increase in the transistor density in the integrated circuits. However, the continuity

of this tendency is very challenging for the reason that the power consumption increases

as a consequence of the increasing number of transistors in ICs.

The power consumption of ICs falls into two main components: dynamic and

static (leakage). The dynamic power is related to the swithing activity of the transistors,

whereas the leakage power is the power consumed due to undesirable leakage currents.

According to [Dadoria, Khare and Singh 2015], the leakage power corresponds to approx-

imately 45% of the total power consumption in ICs designed using a 90nm technology.

Since many chips are embedded in mobile systems, e.g, smartphones, tablets, lap-

tops, and so forth, the reduction of power consumption, specially the undesired leakage

power, becomes an unavoidable concern because it impacts the battery’s life. Moreover,

it is also important to design systems with low power consumption due to energy costs.

If compared to the CMOS planar technology, the FinFET dramatically improved

the leakage power in modern designs [Bhattacharya and Jha 2014], however it has not

eliminated this power component. Therefore, optimization techniques addressing leakage

power minimization play a major role in modern designs.

In standard cell based designs, the discrete gate sizing may be employed in the

design flow to perform leakage power optimization. Due to the relevance of the discrete

gate sizing, the International Symposium on Physical Design (ISPD) contests 2012 [Ozdal

et al. 2012] and 2013 [Ozdal et al. 2013] addressed it. The objective in both contests was
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to minimize the leakage power of the circuit while meeting timing constraints. Since

then, several papers addressing this problem were published [Hu et al. 2012], [Li et al.

2012], [Livramento et al. 2013], [Flach et al. 2013], [Flach et al. 2013], [Sharma et al.

2015], [Yella and Sechen 2017], [Sharma et al. 2017].

State-of-the-art works addressing the discrete gate sizing problem rely on La-

grangian relaxation (LR) due to its effectiveness to produce good solutions in terms of

leakage power. However, LR based sizers can take many LR iterations to produce a good

solution in terms of leakage power and timing. For instance, although the discrete gate

sizing flow proposed in [Flach et al. 2013] has the best results in terms of leakage power

published so far for the ISPD 2012 Contest on Discrete Gate Sizing benchmarks [Ozdal

et al. 2012], its LR core requires 100 iterations to converge to a good solution. [Sharma

et al. 2017] addressed this issue by proposing a lagrange multiplier update strategy that

accelerates the convergence of the algorithm. Besides the many iterations drawback, the

evaluation of all cell options to compute the lowest LR local cost can be very slow, spe-

cially if a complex timing model is used. Furthermore, in the initial LR iterations of [Flach

et al. 2013], the leakage power tends to grow significantly, e.g 15x the final value [Flach

et al. 2013], so several iterations are required to reduce this power increase. Yet, its LRS

solver does not rely on any strategy for cell option candidate filtering. [Reimann, Sze and

Reis 2016] proposed a cell ranking method to filter cell candidates, while [Sharma et al.

2017] applied a simple filter only in their multi-gate-sizing step.

Considering that a design can have a large number of gates, a coarse-grained LR

based sizer can be very timing consuming if the drawbacks aforementioned are not prop-

erly handled. Thus, the main objective of this work is to propose a set of strategies to

tackle the drawbacks related to the LR core of the flow presented in [Flach et al. 2013].

1.1 Standard Cell Based Design Flow

The design flow of an integrated circuit is a set of steps carried out to implement an

integrated circuit from its specification. According to literature - [Sherwani 1999], [Kahng

et al. 2011], [Gerez 1999], [Wang, Chang and Cheng 2009], [Lavagno, Scheffer and

Martin 2006] -, a typical design flow is composed by high level synthesis, logic synthesis,

physical synthesis and verification. The overall flow is depicted in Figure 1.1.
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1.1.1 High Level Synthesis

The first step is the system specification, which is a high level representation of

the system to be designed. In this step, the objectives and requeriments are specified,

e.g. performance, functionalities and physical dimensions. Besides, it is also defined the

fabrication technology.

After the system is specified, it is proposed a basic system architecture to satisfy

the requeriments specified previously. For instance, if a processor is being designed,

the engineers decide if it will be RISC (Reduced Instruction Set Computer) or CISC

(Complex Instruction Set Computer), the number os ALUs (Arithmetic and Logic Unit)

and floating point units, structure and number of pipelines, amount of cache memory,

among others. The result of this step is a micro-architectural specification, which is a

textual description of the decisions taken.

Figure 1.1: Standard Cell Based Design Flow.

Source: from author (2018)
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In the last step of the high level synthesis, it is created a description of the circuit in

the register transfer level (RTL). The RTL describes the system in terms of registers, flow

of signals between them and the logic operations performed in these signals [Churiwala

and Garg 2011]. To create the description, hardware description languages (HDLs), such

as VHDL and verilog, are employed.

1.1.2 Logic Synthesis

In the logic synthesis step, the RTL description is translated into a gate level netlist

mapped to the specified technology library. Initially, the logic synthesis is technology

independent. That is, the initial gate-level netlist is composed of generic gates, such as

OR, AND and NOT that are not related to any specific technology library [Wang, Chang

and Cheng 2009]. Therefore, at this point, several technology-independent optimizations

can be performed before mapping the netlist to the target library.

After the mapping was carried out, the resulting netlist can be optimized. As

described in [Flach 2015], logic minimization, gate sizing, logic restructuring, retiming

and buffering can be applied to optimize the mapped netlist.

1.1.3 Physical Synthesis

In the physical synthesis, it is generated the layout of the integrated circuit. Since

this process is complex, the physical synthesis falls into several steps: partitioning, floor-

planning, placement, clock tree synthesis (CTS) and routing [Kahng et al. 2011]. Figure

1.2 illustrates the physical synthesis flow.

An integrated circuit may be composed of millions of logic gates. Therefore, due

to limitations of processing power and memory, it could not be possible to generate the

layout considering the whole set of logic gates during the physical synthesis. Thus, in

the partitioning step, the circuit is partitioned into several sub-circuits (blocks), so that

the problem is divided into smaller and independent problems. An example of circuit

partitioning is presented in Figure 1.3, which shows a circuit that was partitioned into

three partitions. According to [Kahng et al. 2011], a common method employed to per-

form circuit partitioning is to create sub-circuits such that the number interconnections

between these circuits is minimized. An example of algorithm that is based on this ap-
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Figure 1.2: Physical Synthesis Flow.

Source: from author (2018)

proach is [Kernighan and Lin 1970], which partitions the netlist into two sub-circuits.

Figure 1.3: Partitioning example.

Source: [Sherwani 1999]

After the partitioning, the floorplanning step takes place. The floorplanning per-

forms the estimation of the chip’s dimensions, I/O pads and logic blocks placement and

the power planning. The power planning distributes the vdd and gnd signals over the chip.

Afterwards performing the partitioning and the floorplanning, the placement is

executed, which is responsible for determining the location of each logic cell. This is

a crucial step, since a low quality placement can make the circuit unroutable or gener-
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ate a solution that does not satisfy the performance requeriments. Figure 1.4 shows an

example of a random placement and a solution obtained by performing the simulated an-

nealing (SA). In the prior, it is possible to notice that there is a huge number of congested

interconnections, while in the second the congestion was dramatically reduced.

Figure 1.4: Random placement versus placement obtained with the simulated annealing
algorithm.

Source: adapted from [Hentschke, Johann and Reis 2005]

After the sequential elements, e.g. flip-flops, are placed, the next step is the clock

tree synthesis, in which it is generated a clock tree of buffers. The clock tree distributes

the clock signal to all synchronous elements, so that the timing requeriments are met.

Subsequently to the clock tree generation, the routing step determines the routes of

the interconnections. In order to ensure the chip’s manufacturability, the paths generated

must satisfy the design rules. The main objective of this step is to route 100% of the wires,

since, otherwise, the circuit will not work properly. The delay of the interconnections can

degrade the performance of the design, therefore, another important objective is to min-

imize the total wirelength, although the placement plays the major role in this objective.

The routing step usually falls into two substeps: global routing and detailed routing. The

global routing performs a planning of the routing, that is, it specifies the regions of the

chip where each wire will pass through. The detailed routing takes the planning carried

out by the global routing and determines the exact location of each wire.

Once the layout is generated, a complete verification is performed to ensure that

the solution is valid. Thus, during the physical verification, one of the processes that is ex-

ecuted is the design rule check (DRC). The DRC verifies if the layout respects the design

rules of the manufacturing process technology, e.g. minimum distance between wires.

Another process executed during the physical verification is the layout versus schematic

(LVS), which generates a netlist from the layout and compares it with the original netlist
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to verify if they are logically equivalent. A parasitic extraction process is also employed

to obtain the electrical parameters of the layout, such as resistences, capacitances and in-

dutances. Yet, the antenna rule checking process is performed to prevent antenna effects,

which could cause damages to the transistor gates in the manufacturing process. Finally,

the electrical rule check (ERC) is carried out to verify the power and ground connections

and if the slew times, fanouts and capacitive loads properly meet the constraints [Kahng

et al. 2011].

During the design flow, the discrete gate sizing is widely used to perform opti-

mizations [Lee and Gupta]. Although this technique, which is the topic of this work, is

not explicitly shown in the design flow discussed above, it can be used in different stages

of the design flow, such as logic synthesis, technology mapping, critical path optimization

and power/area optimization [Reimann, Sze and Reis 2016]. For instance, after the clock

tree synthesis, it can be used to fix setup and hold violations using the clock information

obtained from the CTS. After routing, it can be used once more to fix setup and hold

violations [Lee and Gupta]. Yet, it can be used incrementaly in a pre-optimized design to

perform power and area optimization [Reimann, Sze and Reis 2016].

It is important to highlight that, currently, the logic synthesis and physical syn-

thesis steps are not completely separated as shown in the flow above. In the old days,

the delay of interconnections were negligible if compared to the gates delay. However,

today, due to the reduction of the transistor dimensions, load capacitances and channel

resistences were dramatically reduced. Thus, the gate delay reduced as well. On the other

hand, the shrinking of the interconnections increases their resistance due to the reduction

of the transversal section. Besides, the capacitance of wires keeps increasing due to the re-

duction of the distance between these wires. Therefore, the delay of the interconnections

has became a limiting factor in the circuit performance [Rossum 2009]. For this reason,

the logic synthesis relies on physical information and the physical synthesis started to call

optimization methods that were previously used only during the logic synthesis [Flach

2015]. One example of this interation between logic synthesis and physical synthesis is

the placement algorithm proposed in [Stenz et al. 2000]. The algorithm takes a design

whose cells are previously placed and determines the propagation delay of the wires. The

delay information is used to perform transformations in the original netlist, so that the

paths delay are reduced. After the netlist is changed, the cells are placed again, since

during the netlist transformation process several cells can be added and removed.
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1.2 Objectives of this work

The objectives throughout this work are:

• Understand the discrete gate sizing problem.

• Implement a discrete gate sizing flow on Rsyn [Flach et al. 2017].

• Propose improvements to tackle some drawbacks related to the LR core of the im-

plemented algorithm.

1.3 Organization of this Work

This work is organized as follows: Chapter 2 covers the basic concepts related to

static timing analysis and power consumption in CMOS technology; Chapter 3 discusses

the gate sizing problem, presenting an overview of continuous gate sizing and covering

in detail the discrete gate sizing; Chapter 4 presents a literature review of discrete gate

sizing algorithms, covering the early work and state-of-the-art; Chapter 5 dives into the

details of the baseline algorithm proposed in [Flach et al. 2013]; Chapter 6 presents the

improvements proposed for the baseline gate sizing algorithm and the results obtained.

Finally, in Chapter 7, it is presented the conclusions and future works.
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2 CONCEPTS

2.1 Static Timing Analysis

The Static Timing Analysis (STA) [Hitchcock, Smith and Cheng 1982, Güntzel

2000] is a technique used to evaluate the timing of a digital circuit. This method performs

the timing analysis without relying on data inputs or simulations, which is in contrast

with dynamic techniques, that apply simulation vectors to carry out the analysis [Lee and

Gupta]. Considering a circuit with millions of gates, simulation techniques can be very

slow [Bhasker and Chadha 2009], thus prohibitive, since the timing of the design must

be verified several times during the design flow. On the other hand, the STA is a faster

and simpler method, hence, it is able to cope with dense designs. The ideia of STA is to

evaluate if the circuit will properly operate at the specified frequency by computing the

best and worst case path delays [Sapatnekar 2004, Bhasker and Chadha 2009]. The next

subsections dive into STA, presenting several concepts related to it.

2.1.1 Synchronous Digital Circuits

Basically, a synchronous digital integrated circuit is composed by logic gates and

storage elements, i.e., flip-flops. Due to design requeriments, a circuit can contain one or

more clock domains. A clock domain could be stated as a portion of the circuit in which

all flip-flops are synchronized by the same clock signal. As depicted in Figure 2.1, a sub-

circuit belonging to a same clock domain can be decomposed into a set of combinational

blocks interconnected by flip-flops.

Figure 2.1: High level representation of a synchronous digital circuit.

Source: from author (2018)
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Considering the illustration above, the signals must propagate through the combi-

national logic between two temporal barriers (flip-flops) within a time window. Thus, the

worst path delay between each pair of flip-flops can not exceed:

tCk→Q,max + tcomb,max ≤ T − tsetup + δ − 2tjitter (2.1)

where tCk→Q,max is the maximum propagation delay of the first flip-flop; tcomb,max is the

maximum propagation delay of the combinational block; setup time (tsetup) is the amount

of time a signal must be stable at the input of the second flip-flip before the clock signal

reaches this flip-flop; clock skew (δ) is the spatial variation in the arrival time of the clock

signal at each flip-flop; tjitteris the clock uncertainty window. If the condition above is

not satisfied, the circuit has a setup or late violation.

In order to avoid a hold or early violation, that is, a situation when signal at the

input of a flip-flop is overwritten before it is stored in this flip-flop, the following condition

must be met:

tCk→Q,min + tcomb,min > δ + thold + 2tjitter (2.2)

where tCk→Q,min is the minimum propagation delay of the first flip flop; tcomb,min is the

minimum propagation delay of the combinational block; hold time (thold) is the amount

of time a signal must be stable at the input of the second flip-flip after the clock signal

reaches this flip-flop. Figure 2.2 shows a temporal diagram from which the conditions

established in Equations 2.1 and 2.2 were derived. It is possible to notice that the Equation

2.1 was obtained by analyzing the case in which the time window that the signals have to

propagate through the circuit is minimal. It corresponds to the situation when the leading

edge of the current clock happens late (edge 3) and the leading edge of the next clock

happens early (edge 10). The Equation 2.2 is formulated by observing the case in which

the leading edge of the current clock arrives early (edge 1) in the flip-flop 1 and arrives

late (edge 6) in flip-flop 2. Hence, if the minimum path delay is small enough, a signal at

the input of flip-flop 2 will be overwritten.

In order to verify the existence of a late violation, a STA tool computes the maxi-

mum path delay, whereas the existence of an early violation is verified by performing the

computation of the minimum path delay. The computation of the minimum path delay is

called early mode analysis while the computation of the maximum path delay is called

late mode analysis. For each mode, different characterizations for cells are used. Each
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Figure 2.2: Clock signal at two flip-flops considering skew and jitter.

Source: adapted from [Rabaey, Chandrakasan and Nikolic 2003]

characterization is carried out at a specific process, voltage and temperature (PVT) corner.

Hence, in the early mode, the cells work as fast as possible, while, for the late mode, the

analysis is done such that the cells work as slow as possible. In the context of this work,

only the late mode analysis is performed. Thus, from this point forward, the early mode

is not addressed in the discussions.

2.1.2 Modeling of Synchronous Digital Circuits

Figure 2.3 shows an example of a portion of a synchronous digital circuit con-

taining combinational gates and flip-flops for storage. For the purpose of static timing

analysis, a design is modeled using a directed timing graph in which the nodes represent

the pins and the edges represent the timing arcs. A timing arc provides the timing infor-

mation between two adjacent pins of the circuit [Lee and Gupta]. There are two types of

timing arcs: cell timing arc, which connects two pins of a same cell, and net timing arc,

which provides the connection between different elements, i.e, logic gates, flip-flops and

i/o. Figure 2.4 shows the timing graph that was derived from the circuit depicted in Figure

2.3.
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Figure 2.3: Example of a portion of a synchronous digital circuit.

Source: from author (2018)

Figure 2.4: Directed timing graph.

Source: from author (2018)

2.1.3 Timing Sense

Each timing arc has a timing sense, which indicates how the output changes w.r.t.

the input signal transition. A timing arc is positive unate if a rise/fall transition at the input

causes a rise/fall transition at the output. On the other hand, a timing arc is negative unate

if a rise/fall transition at the input causes a fall/rise transition at the output. Finally, a

timing arc is non-unate if the transition at the output do not depends only on the transition

at the input, but also depends on the state of the other inputs. Figure 2.5 ilustrates these

three cases.
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Figure 2.5: Timing sense of arcs.

Source: from author (2018).

2.1.4 Propagation Delay of a Timing Arc

The propagation delay of a timing arc is defined as the amount of time it takes the

output to reach 50% of Vdd after the input reached 50% of Vdd [Bhasker and Chadha

2009]. Figure 2.6 ilustrates the propagation delay of a negative unate timing arc.

Figure 2.6: Propagation delay of an inverter.

Source: from author (2018).
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2.1.5 Transition Time (Slew)

The transition time is defined as the time it takes a signal to change its logic level.

The rising slew is typically measured from the time the signal reaches 30% of Vdd to

the time it reaches 70% of Vdd. In the same way, the falling slew is typically measured

from the time the signal reaches 70% of Vdd to the time it reaches 30% of Vdd. Another

typical threshold points are 10% to 90% and vice versa and 20% to 80% and vice versa.

Figure 2.7 ilustrates the measure of a rise transition time using the 30% of Vdd and 70%

of Vdd threshold points.

Figure 2.7: Rise and fall transition times.

Source: from author (2018).

2.1.6 Time Modeling

2.1.6.1 Cells

The cell libraries provide look-up table models that contain sampled values of

propagation delay and output slew for each timing arc of a cell. The look-up table model

is also referred as non-linear delay model (NLDM) [Bhasker and Chadha 2009]. Each

table entry is indexed using the input slew and output load capacitance. If the input slew

and/or output load do not match any of the table entries, the delay/output slew is obtained

by linear interpolation.

• cell_rise: Specifies values of delay for a rise transition at the output.

• cell_fall: Specifies values of delay for a fall transition at the output.

• rise_transition: Specifies values of rise output slew.

• fall_transition: Specifies values of fall output slew.
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It is presented below two look-up tables that were provided in the ISPD 2012

Contest on Discrete Gate Sizing [Ozdal et al. 2012]. The first one contains sampled values

of delay for a rise transition at the output, whereas the second one contains sampled values

of rise output slew.

Table 2.1: Look-up table which provides sampled values of delay for a rise transition.

Input slew (ps)
Output load (ff) 5.00 30.00 50.00 80.00 140.00 200.00 300.00 500.00

0.00 11.72 18.22 22.67 27.61 34.82 40.44 48.21 61.24
1.00 16.93 23.43 28.60 34.95 44.15 51.18 60.65 75.83
2.00 22.13 28.63 33.83 41.24 52.23 60.57 71.67 89.00
4.00 32.55 39.05 44.25 52.05 66.05 76.76 90.85 112.34
8.00 53.38 59.88 65.08 72.88 88.48 103.09 122.40 151.42

16.00 95.05 101.55 106.75 114.55 130.15 145.75 171.59 213.31
32.00 178.38 184.88 190.08 197.88 213.48 229.08 255.08 307.08

Table 2.2: Look-up table which provides sampled values of rise output slew.

Input slew (ps)
Output load (ff) 5.00 30.00 50.00 80.00 140.00 200.00 300.00 500.00

0.00 12.50 13.72 16.38 20.10 25.17 28.65 32.95 39.83
1.00 18.75 19.20 21.15 25.28 32.15 37.06 42.98 51.31
2.00 25.00 25.09 26.41 29.91 37.97 44.09 51.66 61.86
4.00 37.50 37.50 37.82 40.10 47.66 55.77 66.14 80.57
8.00 62.50 62.50 62.50 62.90 67.51 74.76 88.78 110.23

16.00 112.50 112.50 112.50 112.50 113.06 116.67 126.92 154.48
32.00 212.50 212.50 212.50 212.50 212.50 212.50 215.15 232.09

2.1.6.2 Interconnections

The delay of a wire is calculated based on its parasitic elements (resistences and

capacitances). In this work, the interconnection parasitics are extracted from a standard

parasitic extraction format (SPEF) file. In SPEF, three models of interconnections are

supported: distributed net model, reduced net model and the lumped capacitance. In the

distributed net model, each interconection segment has its own resistence and capacitance.

In the reduced net model, the net is modeled using a resistence-capacitance-resistence

structure connected to the driver pin and a resistence-capacitance structure connected to

each sink pin. In the lumped capacitance model, the entire net is modeled just as a single

capacitance which is summed up with the capacitances of the sink pins. Figure 2.8 shows

an example of an interconnection, while Figures 2.9, 2.10 and 2.11 depict this intercon-

nection net represented using the distributed net model, reduced net model and lumped

capacitance model, respectively. In this work, only the lumped capacitance model is used,

since the benchmarks of the ISPD 2012 Contest [Ozdal et al. 2012] used to perform the

experiments adopt this model.
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Figure 2.8: Example of an interconnection.

Source: adapted from [Bhasker and Chadha 2009]

Figure 2.9: Distributed net model.

Source: adapted from [Bhasker and Chadha 2009]

Figure 2.10: Reduced net model.

Source: adapted from [Bhasker and Chadha 2009]

Figure 2.11: Lumped capacitance model.

Source: adapted from [Bhasker and Chadha 2009]

For the lumped capacitance model, the arrival times at the driver pin of a net and

at the sink pin of the same net are equal. Hence, it is not actually used to model the delay
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of an interconnection. On the other hand, when the distributed net model is adopted, the

delay of the interconnection is considered in the analysis. In order to compute the delay,

the Elmore Delay [Elmore 1948] can be used.

Figure 2.12: Elmore example.

Source: adapted from [Bhasker and Chadha 2009]

For the circuit illustrated in Picture 2.12, the delay to the points 1, 2 and 3 are

calculated as using Elmore delay as follows:

Td1 = R1 × (C1 + C2 + C3 + C4) (2.3)

Td2 = R1 × (C1 + C2 + C3 + C4) +R2 × (C2 + C3 + C4) (2.4)

Td3 = R1 × (C1 + C2 + C3 + C4) +R2 × (C2 + C3 + C4) +R3 × (C3 + C4) (2.5)

The general form of the Elmore delay to the node i is given by Equation 2.6:

Tdi =
N∑
k=1

(Ck ×Rik) (2.6)

where N is the number of nodes of the net and Rik is the sum of all resistences shared

among the paths from the source node to nodes k and i.

The slew at a node n of a net may be calculated as in [Flach et al. 2014]:

slewn =
√
slew2

parent + 1.93× (RC)2 (2.7)

where R is the resistence which connects n to its parent node and C is the downstream

capacitance.
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2.1.7 Timing Information

A STA tool can provide many information related to timing arcs and pins. It is

presented below the typical information that is commonly used throughout this work.

• Arrival time at pin p (atp): It is the maximum time it takes a signal to arrive at the

pin p.

• Required time at pin p (rtp): It is the maximum instant at which a signal should

arrive at the pin p so that a timing violation does not occur.

• Slack at pin p (slackp): The slack is the difference between the required time and

the arrival time at the pin p, i.e., slackp = rtp − atp.

• Slew at pin p (slewp): Indicates the transition time at the pin p.

• Delay of a timing arc (delayi→j): Indicates the delay of a timing arc starting at

node i and ending at node j.

Considering the late mode analysis, a negative slack at the pin P indicates that

a timing violation has occurred at this pin. On the other hand, a positive slack may be

explored to perform optimizations.

2.1.8 Timing Propagation

This subsection discusses how the typical timing information presented in the for-

mer subsection is computed for all pins of the circuit. Since the early mode is out of the

scope of this work, only the timing propagation in late mode is presented.

In order to compute the arrival time for each pin of the circuit, the STA tool tra-

verses the timing graph in topological order. It starts from the primary inputs and, for each

timing arc visited, the arrival time at its output is computed by summing the arrival time

at its input with the timing arc propagation delay. If two or more timing arcs converge

into a same output pin, e.g. a nand gate, only the worst arrival time and largest slew at the

output are propagated towards the primary outputs. The example depicted in Figure 2.13

shows three timing arcs converging into a pin node. The arrival times at the p4 pin are

5ns, 3ns and 4ns due to the timing arcs p1->p4, p2->p4 and p3->p4, respectively. Hence,

the largest arrival time, which is 5ns, is propagated forward. Also, the largest slew at the

p4 pin is due to the p2->p4 timing arc, therefore it is the propagated transition time.



32

Figure 2.13: Arrival time and slew propagation.

Source: from author (2018).

After the arrival times for all pins of the circuit are obtained, the timing graph is

traversed in reverse topological order to compute the required time and slack for each

node. The required time at each endpoint node is set as its target delay. The required time

for a non-endpoint node vi is computed as:

rtvi = min(rtvj − delayvi→vj), vj ∈ fanout(vi) (2.8)

Figure 2.14 illustrates an example of required time propagation. The required

times at the node p1 are 6ns, 5ns and 7ns due to the timing arcs p1->p4, p2->p4 and p3-

>p4, respectively. Therefore, the p1 node receives the minimum required time, which is

5ns.

Algorithm 2.1 summarizes the static timing analysis for the late mode. For the

sake of simplicity, this algorithm presents the STA in a generic way, omitting the type of

transition at each node, since it depends on the unateness of the timing arcs. The term

slewvi→vj refers to a transition at the node vj due to the timing arc vi → vj . The other

terms are the presented in the former subsection.
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Figure 2.14: Required time propagation.

Source: from author (2018).

Algorithm 2.1: Static Timing Analysis

1 set arrival time of startpoints

2 set required time of endpoints

3 for each node vj in topological order do

4 atvj ← −∞

5 slewvj ← −∞

6 for each timing arc vi → vj do

7 atvj ← max(atvj , atvi + delayvi→vj)

8 slewvj ← max(slewvj , slewvi→vj)

9 end

10 end

11 for each node vi in reverse topological order do

12 rtvi ← +∞

13 for each timing arc vi → vj do

14 rtvi ← min(rtvi , rtvi − delayvi→vj)

15 end

16 slackvi ← rtvi − atvi
17 end
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2.1.9 WNS and TNS

For the late mode, the worst negative slack (WNS) is the slack of the endpoint

which has the largest timing violation. The total negative slack (TNS) is the summation

of all negative slacks of the endpoints.

2.1.10 Criticality and Centrality

The criticality of a pin ∈ [0, 1] is defined as the worst negative slack of this pin

divided by the worst negative slack of the design. The centrality of a pin ∈ [0, 1] is an

estimation of how many and how critical are the endpoints affected by this pin [Flach et

al. 2016].

2.2 Power Consumption in CMOS Technology

The power dissipation in CMOS circuits is divided into two componentes [Weste

and Harris 2010]:

• Dynamic power

• Static power

The dynamic power is related to the charging and discharging of the load capac-

itance and the "short circuit" current that flows when both PMOS and NMOS networks

are partially active. When the pullup stack of a gate is active, it charges the output load

capacitance. Thus, a certain quantity of energy is drawn from the power supply. Part of

this energy is stored in the output load capacitance, while the remaining part is dissipated

in the PMOS transistores. When the output load is discharged, its energy is dissipated in

the NMOS transistores. The total energy drawn from the power suply is given as follows:

E =
CL × V dd2

2
(2.9)

where CL is the output load capacitance and V dd is the power supply voltage.

The power dissipated is computed based on the switching activity factor, which is

a statistical measure of how many times the device switches per second. Therefore, the
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power dissipated is calculated as:

Pdyn = CL × V dd2 × f0→1 (2.10)

where f0→1 is the switching activity factor.

Since the transition time of the input signal is not zero, there is a short period

of time when both NMOS and PMOS transistors are active simultaneously. Therefore,

a direct current path between Vdd and GND exists during this period. The power con-

sumption due the direct path current can be approximately calculated by assuming that

the current spikes have triangle shapes and that the gate is symmetrical in its rising and

falling output edges. Thus, the energy drawn from the power supply during the switching

period is given by:

E = tsc × V dd× Ipeak (2.11)

where tsc is the period of time when both NMOS and PMOS are conduncting and Ipeak

is the maximum value of the direct path current during tsc. Then, the average power

consumption is

P = tsc × V dd× Ipeak × f (2.12)

where f is the switching activity factor.

The static power is a consequence of the subthreshold, gate and reverse-biased

diode juntions leakage currents [Weste and Harris 2010]. The subthreshold leakage cur-

rent flows between drain-source when it is applied a gate-source voltage (VGS) smaller

than the threshold voltage (Vth). The smaller the Vth, the larger the leakage current when

the transistor is "OFF", that is, when VGS is 0V. Therefore, the smaller the Vth, the larger

the static power consumption. The gate leakage current is caused by carriers that are tun-

neled through the gate when it is biased. This current depends on the thickness of the gate

oxide and voltage across the gate [Weste and Harris 2010]. The last component of static

power, junction leakage, is caused by junction current that flows when the drain or source

diffusion is biased with a potential different from the substrate. Figure 2.15 illustrates the

three leakage components.
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Figure 2.15: Sources of leakage current.

Source: from author (2018)

In this work, only the static power is optimized. The leakage power information

of each cell is provided by a liberty file. The liberty file is the industry standard format

for representing timing and power information of the cells provided by a library [Prakash

2007]. For example, for the inverter cell in01s01 of the ISPD2012 benchmark suite [Ozdal

et al. 2012], the static power is given by the following field:

cell_leakage_power : 1.00;

The leakage power unit is specified in the liberty file header as:

leakage_power_unit : 1uW;
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3 GATE SIZING

In standard cell based designs, the gate-level netlist is mapped to a technology li-

brary, which contains different implementation options for each available logic function.

Considering a particular logic function, the versions differ in the width of the gate’s tran-

sistors, referred here as the size of the gate, and Vth. Hence, they have different timing and

leakage power characteristics to tradeoff. As illustrated in Figure 3.1 for a not gate, the

larger is the size, the faster it is, however, it has a greater power consumption. In the same

way, the lower the Vth, the greater the speed and the power consumption. In this context,

the discrete gate sizing consists in assigning each gate of the netlist to an implementation

option available in the cell library. It is a powerful technique that can be used in many

stages of the design flow to perform optimizations, such as timing violations fixing and

power and/or area minimization.

Figure 3.1: Inverter gates with different driver strengths and threshold voltages.

Source: from author (2018)

3.1 Gate Sizing Classification

The gate sizing algorithms falls into two main approaches: continuous gate sizing

and discrete gate sizing [Lee and Gupta]. The continuous gate sizing is not in the scope of

this work, however, for the sake of contextualization, it will be presented next an overview

about it.
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3.1.1 Continuous Gate Sizing

In the continuous gate sizing approach, the gates can be implemented using tran-

sistors of any size and Vth. Due to the continuous nature of the transistor parameters,

the gate sizing problem can be formulated using convex delay models. Therefore, it is

possible to find a set of continuous sizes and Vth that optimally solves the optimization

problem. Since the cells must be generated considering the solution found by the gate

sizing algorithm, a full-custom methodology or automatic cell generation are required.

In literature, several works addressing continuous sizing can be found, such as [Fishburn

and Dunlop 1985], [Berkelaar and Jess 1990], [Chen, Chu and Wong 1999], [Tennakoon

and Sechen 2002], [Posser et al. 2011] among others.

3.1.2 Discrete Gate Sizing

As mentioned earlier, the discrete gate sizing consists in assigning each gate of

the netlist to an cell option available in the cell library. It is a combinatorial optimization

problem and [Li 1993] proved to be NP-Hard, thus, efficient heuristic algorithms are

fundamental to solve this problem within feasible runtimes. The first works to tackle

the discrete gate sizing directly in the discrete domain were [Chan 1990] and [Coudert

1996]. Since then, several approaches have been proposed, such as linear programming

[Chinnery and Keutzer 2005], target slew [Held 2009], dynamic programming [Liu and

Hu 2010, Ozdal, Burns and Hu 2011], sensitivity guided metaheuristic [Hu et al. 2012],

simulated annealing [Reimann et al. 2013] and Lagrangian relaxation [Liu and Hu 2010,

Huang, Hu and Shi 2011,Li et al. 2012,Livramento et al. 2013,Flach et al. 2014,Sharma

et al. 2015,Reimann, Sze and Reis 2016,Yella and Sechen 2017,Sharma et al. 2017]. All

these algorithms are covered in the next chapter.

In this work, the discrete gate sizing is used to minimize the leakage power of a

given circuit subject to timing constraints. Therefore, the discrete gate sizing for power

optimization can be formally defined as:
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minimize leakage

subject to ati + delayi→j ≤ atj , ∀i→ j ∈ Arcs

atk ≤ T, ∀k ∈ Endpoints

xi ∈ Sizesi

(3.1)

where xi is an implementation option of the gate i; Sizesi is the set of implementation

options of the gate i; T is the clock period.

Continuous gate sizing can be used to guide the discrete gate sizing. The problem

is initially solved in the continuous domain, then, the solution is mapped to the discrete

domain. The drawback of this approach is that the mapping process degrades the solution

[Ozdal, Burns and Hu 2012]. Some of the works that rely on this strategy are [Chuang,

Sapatnekar and Hajj 1993] and [Sirichotiyakul et al. 1999].

3.2 Lagrangian Relaxation based Discrete Gate Sizing

Lagrangian Relaxation is a mathematical technique used to handle optimization

problems with hard constraints. In the LR approach, the original optimization problem,

called Primal Problem (PP), is rewritten by removing the hard constraints and incorpo-

rating them into the objective function, making the problem easier to solve. The PP is

described in a general way as follows:

minimize f(x)

subject to gi(x) ≤ 0 i = 1, 2, . . . , n

hj(x) = 0 j = 1, 2, . . . , m

(3.2)

where f(x) is the function that will be minimized and the hard constraints are given by

gi(x) and hj(x).

By incorporating the hard constraints into the objective function, it is obtained the

relaxed problem, which is given as follows in Equation 3.3:

minimize L(x, λ, µ)

subject to λi ∈ <+ i = 1, 2, . . . , n

µj ∈ < j = 1, 2, . . . , m

(3.3)
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where L(x, λ, µ) is given by

L(x, λ, µ) = f(x) +
∑

λigi(x) +
∑

µjhj(x). (3.4)

The weights λi and µj in Equations 3.3 and 3.4 are called Lagrange multipliers

(LM), which indicate how much the constraint is being violated. The solution of the

relaxed problem is a lower bound to the solution of the original problem, thus:

L(x̃, λ, µ) ≤ f(x̂) (3.5)

where x̂ is the optimum solution of the original problem and x̃ is the solution of the

relaxed problem. Therefore, the goal of the LR is to find the solution of the relaxed

problem closest to the solution of the original problem, in other words, the maximum

lower bound. The maximization of the relaxed objective function is called the Lagrangian

dual problem (LDP), Equation 3.6.

maximize min f(x) +
∑

λigi(x) +
∑

µjhj(x)

subject to λi ≥ 0 i = 1, 2, . . . , n

µj ∈ < j = 1, 2, . . . , m

(3.6)

Considering the equation above, the minimization problem is called Lagrangian

relaxation subproblem (LRS). Each LRS is defined by a set of Lagrange multipliers.

When applying the LR to solve the discrete gate sizing for leakage power mini-

mization, the objective function defined in the Equation 3.1 can be rewritten by incorpo-

rating into it the relaxed constraints, as shown below in Equation 3.7.

Lλ(x, at) = leakage+
∑
∀i→j

λi→j (ati + delayi→j − atj) +

∑
∀i∈ endpoints

λi (ati − T )
(3.7)

Therefore, the LRS for a set of multipliers λ is given as follows in 3.8:

LRSλ :

minimize Lλ(x, at)

subject to xi ∈ Sizesi

(3.8)

As shown in [Chen, Chu and Wong 1999], by applying the Karush-Kuhn-Tucker
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(KKT) conditions for optimality, the LRSλ can be simplified to:

LRSλ(simplified) :

minimize leakage+
∑
∀i→j

λi→jdelayi→j

subject to xi ∈ Sizesi

(3.9)

This simplification implies that the sum of the Lagrange multipliers of the incom-

ming timing arcs of a given pin must be equal to the sum of the Lagrange multipliers of

the outgoing arcs of this pin:

∑
∀i→j

λi→j =
∑
∀j→k

λj→k (3.10)
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4 RELATED WORK

This chapter presents a review of the discrete sizing algorithms. First, it is intro-

duced the early work, then, the state-of-the-art techniques are covered.

4.1 Early Work

4.1.1 [Chan 1990]

The algorithm proposed in [Chan 1990] has two phases: in the first one, the circuit

is traversed from the primary inputs to the primary outputs and, for each visited gate, it is

calculated the lower bound and upper bound timing requirements. Considering a gate u,

its timing values pair is calculated by subtracting every possible delay that u can assume

from the timing requirements that were propagated from its predecessor gates. A gate

that has two or more inputs receives pairs of timing values from two or more predecessor

gates. Therefore, the timing requirements of this gate are calculated considering only the

intersection of the requirements of its predecessors.

In the second phase, the circuit is traversed from outputs to inputs. Each gate is as-

signed to a cell option that satisfies the timing requirements of the gate and that minimizes

the total cost e.g. power. It is presented below in Figure 4.1 an example that considers

a simplified timing model in which a delay of a logic gate is inversely proportional to its

size and does not depend on the output load. Although the timing model used is sim-

plistic, any timing model can be used in the algorithm. For the example below, the clock

period T is 5 and the size options for the gates V1, V2, V3 and V4 are {1, 1
2
, 1
4
}. Due to

the delay model used, the delay of each gate is calculated as delay = 1
size

. Since all gates

have the same size options, the possible delay all gates can assume are 1, 2 and 4. The

algorithm starts by assigning to the primary inputs the pair of timing requirements [5,5],

therefore, this pair is propagated to the nodes V1 and V2. For these nodes, the possible

pairs of timing requirements are [4,4], [3,3] and [1,1], that are propagated forward. The

node V3 received the pairs [4,4], [3,3] and [1,1] from V2, therefore, its possible pairs of

timing requirements are [3,3], [2,2], [1,1] and [0,0], that are propagated to V4. The node

V4 received from V1 the pairs [4,4], [3,3] and [1,1] and received from V3 [3,3], [2,2],

[1,1]. Hence, only the pairs that intersect will be considered in V4, that are [3,3] and

[1,1]. From these pairs, the timing requirements calculated for V4 are [2,2], [1,1] and
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[0,0]. After all requirements were computed, it is performed the cell option assignment,

such that the lower bound and upper bound requirements at each node are satisfied. For

this example, the delay at the nodes V1, V2, V3 and V4 are 4, 2, 2 and 1, respectively,

and they satisfy the timing requirements highlighted with the red color.

Figure 4.1: Example of timing requirements propagation.

Source: adapted from [Chan 1990]

The algorithm has a pseudo-polynomial runtime if the circuit has a tree structure.

Circuits that do not have a tree structure are expanded into a cloned tree.

4.1.2 [Coudert 1996] and [Coudert 1997]

In this work, it is presented a general purpose gate sizing algorithm that can be

used to optimize delay, power and area. Different from the previous works, it uses a look-

up table delay model since, as the author states, linear delay models are quite inaccurate.

The delay optimization is based in a technique that alternates an optimization and

a perturbation steps until there are not room for improvements. In the optimization step,

the netlist is traversed and, for each visited gate, the cell options are evaluated based on the

gradient of the local cost. For each cell option, the change in the local cost is computed

only considering the gates that belong to the first two levels of fanin and fanout. The

gate and its implementation option that causes the largest reduction in the local cost are

inserted into a list of gates that have potential to be sized. After the whole netlist have

been traversed, the algorithm resizes the gates that maximise the slack of the circuit. This

optimization method drives the solution into a local minimum, therefore, the perturbation
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step is executed to get the solution out of this point, so that a potentially better solution

can be found.

The power or/and area optimization is performed on top of a delay optmized so-

lution. It is executed the optimization method described earlir with a local cost function

Relax, Equation 4.1. This function balances the gain in power taking into account the

delay, so that it acts as a penalty/benefit function. In the Relax function, S0 is the current

slack; ∆S is the slack variation; ∆P is the variation in power; ε and α are precomputed

values considering characteristics of the circuit.

Relax = (α∆P − ε)× φ
(

∆S

ε+ |S0|

)
, where

φ(x) =

1 + x ifx ≥ 0

1
1−x otherwise

(4.1)

4.1.3 [Chinnery and Keutzer 2005]

[Chinnery and Keutzer 2005] proposed a discrete gate sizing formulation using

linear programming (LP) for power reduction. The technique is divided into two main

steps that alternate until the power improves less than a threshold value. In the first one,

the algorithm starts on top of a design which was previosly optimized by a comercial tool

and, for each gate, it is computed its smallest sensitivity value, which is given by:

sensitivity =
∆P

∆d
(4.2)

where ∆P and ∆d are the power and delay variations, respectively, w.r.t the current cell

option.

The linear program finds for each gate i a real value γi in the range [0,1], which

indicates if the gate must be swapped to the cell option with the smalles sensitivity. A

gate i is swapped if its value is greater than 0.99. If timing constraints were violated, the

second step is executed to fix the violations.
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4.1.4 [Held 2009]

This work presents an algorithm based on target slew. The technique is divided

into two main phases: fast global gate sizing and local search gate sizing.

In the first phase, the algorithm starts by assigning to the output pin of each gate a

target slew, such that the input slew limit of the fanout is not violated. Then, iteratively, it

is performed a cell assignment step and a target slew refinement until the stopping crite-

rion is met. During the cell assignment step, the circuit is traversed in reverse topological

order. Each visited gate is assigned to the smallest cell option, so that that the target

slew at its output is met. Since the circuit is being traversed from outputs to the inputs,

the fanout gates are already sized, therefore, the downstream capacitance is known. How-

ever, the choice of the cell option also depends on the input slew, which is unknown, since

the fanin gates have not been sized yet. Hence, considering a predecessor pin p′ , the input

slew is estimated using the followin formula:

est_slew(p
′
) = θ slewt(p

′
)− (1− θ) slew(p

′
) (4.3)

where θ is the weighting factor ∈ [0,1], such that in the initial iteration θ is equal to 1 and

is updated in the slew refinement; slewt(p′
) is the target slew at p′; slew(p

′
) is the slew at

p
′ .

During the slew refinement, the target slew at each gate output pin p is updated

based on the global and local criticality of p. The global criticality of p, denoted as

slk+(p), is the slack of this pin, whereas the local criticality indicates if the worst slack

of p or any predecessor pin of p of cell c can be improved by increasing or decreasing the

slewt(p). Hence, it is defined the predecessor criticality of cell c slk−(c) as:

slk−(c) = min{slack(p
′
) | p′

direct predecessor of c} (4.4)

Therefore, the local criticality of p, lc(p), is calculated considering slk+(p) and

slk−(c) as follows:

lc(p) = max{slk+(p)− slk−(c), 0} (4.5)

So, if p is global critical and lc(p) is equal to 0, the target slew of p is decreased

by subtrating from it a number that is proportional to |slk+|. Otherwise, the target slew

of p is increased.
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In the local search gate sizing phase, the solution obtained in the fast global gate

sizing is improved. In each iteration of this phase, it is selected a small set of gates

connected to the most critical nets. Then, each gate of the set is sized to its local optimum

considering a more accurate slack evaluation.

4.1.5 [Liu and Hu 2010]

[Liu and Hu 2010] proposed a Lagrangian relaxation based algorithm to address

power optimization subject to timing constraints. In their formulation, they consider

two components of the power consumption. The first is the dynamic power, given by

1/2αV 2
DDfclkC, where α is the swithing factor of a gate, fclk is the clock frequency and

C is the output capacitance of a gate due to wires and gates. The second is the leakage

power, given by VDDIoff , where the off current Ioff is provided by the cell library. To

solve the Lagrangian Subproblem, they relied on a dynamic programming-like technique,

while the Lagrangian dual problem was addressed using the subgradient method [Bazaraa

2003].

The Lagrangian objective function, which was simplified as in [Chen, Chu and

Wong 1999], is given by

φ(w, u;µ) =
∑
vi∈V

p(vi) +
∑

vj ,vi∈E

µjiD(vj, vi) (4.6)

where w is the vector of gate sizes, u is the gate Vt levels, D(vj, vi) is the delay of the gate

vi and µji is the Lagrangian multiplier related to the delay of the gate vi. The objective

function φ(w, u;µ) is evaluated through the dynamic programming using the weighted

summation of power and delay in the fanout cone, which is recursively calculated travers-

ing the circuit in reverse topological order. The minimum summation of power and delay

in the fanout cone is given by

f(vki ) =
∑

minh∈options(vj)(f(vhj ) + µijD(vki , v
h
j )) + p(vki ) (4.7)

where vki is an implementation option of the gate vi, vhj is an implementation option of

the fanout gate vj and D(vki , v
h
j ) is the delay of the gate vi.

After f(vki ) is calculated, the circuit is forward traversed in order to assign to each

gate an implementation option. The algorithm chooses the option with the lowest cost,
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defined by

solution(vi) = mink∈options(vi)(f(vki ) +
∑

vj∈fanin(vi)

(µjiD(vj, v
k
i ) + p(vj))). (4.8)

4.1.6 [Huang, Hu and Shi 2011]

As in [Liu and Hu 2010], this work aims the optimization of power consumption

(dynamic and static) subject to timing constraints using Lagrangian relaxation. However,

the authors state that for discrete gate sizing, the Lagrangian dual problem is no longer

convex as in continuous cases, so the subgradient method is inefficient. To handle this

drawback, they proposed a projection-based descent method, which relies on the history

of previous iterations to update the Lagrangian multipliers. In each iteration, the algo-

rithm calculates the change in the Lagrangian multipliers at the primary outputs using the

equation

∆µi =
qi − ai
η′(Ti, µi)

(4.9)

where qi is the required arrival time, ai is the arrival time and η′ is function of the cur-

rent value of the Lagrangian multiplier and the table Ti of past values of arrival times

and Lagrangian multipliers. After the multiplier at the primary output is updated, ∆µ is

distributed to the other nodes of the circuit in reverse topological order. Although µ must

be a non-negative value, ∆µ can be negative if the constraint is met.

4.1.7 [Ozdal, Burns and Hu 2012]

In [Ozdal, Burns and Hu 2012] (extension published in journal of the paper [Oz-

dal, Burns and Hu 2011]), the authors addressed discrete gate sizing aiming leakage power

minimization for high-performance industrial designs. They proposed a Lagrangian re-

laxation formulation that decouples timing analysis from optimization, so that the sizer

can rely on slack values computed by a signoff timer. This allows the encapsulation of

the complexity of the timing analysis into the signoff timing engine, enabling the opti-

mization engine to rely on simpler timing models. In their formulation, the LRS formula
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is given as follows:

α× leakage power +
∑
i→j

µi→jdelayi→j +
∑
po

µpo(−rtpo) +
∑
pi

µpiatpi (4.10)

where α is a scaling factor to balance leakage power and timing; po and pi are primary

outputs and primary inputs, respectively; i → j is a timing arc from the node i to the

node j; µi→j , µpo and µpi are the Lagrange multipliers; rtpo is the required time at primary

outputs and atpi is the arrival time at primary inputs. The terms rtpo and atpi are fixed, so,

the only variables in this formula are the cell leakage power and the timing arc delay of

each cell. The optimization of this LRS formula can be performed relying on the data of

the cell library. Thus, the signoff timer is called only once per LR iteration after all cell

options were chosen in the LRS solver.

The Lagrange multipliers are updated using the subgradient-based algorithm pro-

posed in [Chen, Chu and Wong 1999]. The updating process relies on two margin values

provided by the signoff timer: mv and mu→v. These margin values are defined as follows:

mv = av − rv (4.11)

mu→v = au + du→v − rv (4.12)

The LRS is modeled using a graph model which accurately captures the delay

costs of discrete cells using the timing information provided by the lookup tables of the

cell library. In their graph model, it is defined a node Sji for each cell option j of each

combinational gate i of the circuit.

Figure 4.2 (a) shows an example of a subcircuit that will be optimized by the LRS

solver. a1 and a2 denote the timing arcs of cell A. In the same way, b1 and b2 denote

the timing arcs of cell B and c1 and c2 correspond to the timing arcs of cell C. In Figure

4.2 (b), the subnodes {S1
a, S

2
a}, {S1

b , S
2
b } and {S1

c , S
2
c} correspond to the implementation

options of the gates A, B and C, respectively.
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Figure 4.2: (a) Example of subcircuit. (b) Corresponding graph model.

Source: adapted from [Ozdal, Burns and Hu 2012]

Considering an LR iteration, the weight of a subnode Sji of the graph is calculated

as follows:

weight(Sji ) = power(Sji ) +
∑

k∈arcs(Sj
i )

µkdelay_refk(S
j
i ) (4.13)

where power(Sji ) is the leakage power of the implementation option Sji and µk and

delay_refk(S
j
i ) are the Lagrange multiplier and reference delay of the timing arc k of

Sji . The reference delay delay_refk(S
j
i ) is given as follows:

delay_refk(S
j
i ) = delayk

 ∑
t∈fanout(i)

cap(Sreft )

 (4.14)

where Sreft is the implementation option defined in the previous iteration for the fanout

gate t of Sji and delayk is the delay of the timing arc k of Sji considering the input load of

each cell Sreft .

The weight of an edge from Sji to Snm is calculated as follows:
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weight(Sji → Snm) = ∆cap(Snm)
∑

k∈arcs(Sj
i )

µk
∂delayk
∂cap

∣∣∣∣
ref

+ slew_impact(Sji → Snm)

(4.15)

where ∆cap(Snm) is the variation in the input capacitance of (Snm) w.r.t. the input capaci-

tance of Srefm ; ∂delayk
∂cap

is the delay sensitive of timing arc k of Sji w.r.t. its output load. The

slew impact slew_impact(Sji → Snm) is computed as follows:

slew_impact(Sji → Snm) =∑
t∈fanout(i)\m

(
µt∆cap(S

n
m)× max

k∈arcs(Sj
i )

{
∂slewk
∂cap

}
× ∂delayt

∂slew

)
(4.16)

where ∂slewk

∂cap
is the output slew sensitivity of timing arc k of Sji w.r.t. the output capaci-

tance and ∂delayt
∂slew

is the delay sensitivity of a timing arc of a fanout gate t w.r.t. the input

slew.

It is used a dynamic programming-based algorithm to choose a node of the graph

for each gate of the circuit. The graph can contain reconvergent paths. So, the authors

proposed a heuristic approach that consists in first extracting the critical trees from the

graph, then, each tree is optimized independently using dynamic programming.

4.1.8 [Rahman and Sechen 2012]

The authors proposed an algorithm for Vth selection aiming leakage power min-

imization, which is applied in post synthesis step. The technique starts with a solution

without timing violations and seeks to swap each cell to a higher Vth version in order to

reduce the leakage maintaining the delay goal. So, it is stated that the ideal option to

be selected is the one which has the best tradeoff between leakage reduction and total

available slack consuming, which allows more cells to have their Vth raised. Thus, it is

calculated a cost, Equation 4.17, for each gate of the design, which is the ratio of the total

available slack reduction and the total leakage reduction when a cell is swapped to the

next higher Vth option.

cost =
Total_slack_reduction_from_design

Total_leakage_reduction
(4.17)
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After the cost 4.17 is obtained, the algorithm evaluates the cells in the order of

least cost. The change in the Vth option is accepted only if the timing was not violated.

However, the authors state that simply increasing the Vth of each cell does not yield the

best result. Therefore, in order to improve the solution, the original target delay is itera-

tively incremented by ∆ time units, so that the Vth of more cells can be raised even further.

To restore the original target delay, the technique proposed in [Rahman, Tennakoon and

Sechen 2011] is applied.

4.1.9 [Hu et al. 2012]

The algorithm proposed is divided into two stages: global timing recovery (GTR)

and power reduction with feasible timing (PRFT). In both stages, greedy heuristics are

executed in parallel and the best solutions, which are determined by the metaheuristic

go-with-the-winners (GWTW) [Aldous and Vazirani 1994], are stored.

The GTR stage starts with a minimum leakage solution and seeks to generate a

solution without timing violation by increasing cell sizes or lowering cell Vth. For each

gate ci of the circuit, it is calculated the sensitivity of each cell option, given by the

equation below

sensitivityGTR =
∆TNS

∆leakage_powerα
(4.18)

where α was empirically determined. It is prohibitive to run the STA whenever the impact

on TNS is calculated. Thus, ∆TNS is aproximated by

∆TNS(mk
i ) ≈

∑
cj∈Ni

−∆delaykj ×
√
NPathsj (4.19)

where mk
i is the cell option of ci, Ni is a set composed by ci and the gates that have a

driver in common with ci, ∆delaykj is an estimate of the change on delay of a gate cj

due to mk
i and NPathsj is the number of fanin and fanout gates of cj affected by the

change on delay of cj . The sensitivities are sorted in non-increasing order and just the

first γ% are commited, since the error after some changes may be considerable. γ was

empirically determined and is in the range 0 < γ < 60%. At each iteration of the GTR,

the capacitance violations are fixed.

The PRFT stage, which aims the leakage power reduction, starts with a solution
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without timing, load capacitance and slew violations. In this stage, the cells are downsized

using a heuristic based on sensitivity. Since five sensitivities functions are employed,

Equations 4.20 to 4.24, the heuristic is executed in parallel and the best result, with the

smallest leakage power, is considered.

SF1 = −∆leakage_power
∆delay

(4.20)

SF2 = −∆leakage_power × slack (4.21)

SF3 = − ∆leakage_power
∆delay ×#paths

(4.22)

SF4 = −∆leakage_power × slack
#paths

(4.23)

SF5 = −Deltaleakage_power × slack
∆delay ×#paths

(4.24)

In the Equations above, ∆leakage_power and ∆delay are the changes in leakage

power and cell delay after the cell ci is downsized. #paths is the number of paths passing

through ci.

4.1.10 [Li et al. 2012]

The authors state that the power optimization subject to timing using Lagrangian

relaxation will often be inefficient. Thus, they proposed a hybrid technique that is di-

vided into three stages: Minimum clock period Lagrangian relaxation (Min-Clock LR),

network flow based cell optimization and power pruning. In the Min-Clock LR step, the

capacitance and slew violations are removed, then the performance of the circuit is max-

imized through the Lagrangian relaxation method. Since the power consumption is not

considered in this stage, the Lagrangian subproblem is given by

min Lµ =
∑
uv

µruvd
r
uv +

∑
uv

µfuvd
f
uv (4.25)

where druv is the rise delay of the timing arc from the input u to the output v of a cell,

µruv is the Lagrangian multiplier associated with the rise delay, dfuv is the fall delay of the
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timing arc from the input u to the output v of a cell and µfuv is the Lagrangian multiplier

associated with the fall delay.

The network flow based cell optimization step starts with a solution free of timing

violations and seeks to optimize the power consumption subject to timing constraints.

The sizing problem is modeled using a network flow, in which the implementation option

of a gate with the largest sensitivity is choosen when a cell is swapped.

In the last step, the power pruning, a greedy heuristic is employed to further reduce

the leakage, subject to timing, using the residual slacks obtained in the network flow step.

4.1.11 [Reimann et al. 2013]

In this work, the logical effort [Sutherland, Sproull and Harris 1999] and the

fanout-of-4 rule [Rabaey 2002, Weste and Harris 2010] were used to provide a good

initial solution. In order to optimize the leakage power of the circuit subject to timing

constraints, the simulated annealing was employed. In each iteration, the SA randomly

chooses a gate and randomly changes its implementation option. The SA cost function

adopted in this work, given by the Equation 4.26, is such that allows some violations dur-

ing the initial iterations when the temperature is high, and don’t accept violations when

the temperature is decreased.

cost =α× (timingviolation + slewviolation)+

β × loadviolation + leakagetotal
(4.26)

where the terms α and β are given by

α = temperature−1 (4.27)

β = temperature−2 (4.28)

This work was submitted to the ISPD 2012 Contest on Discrete Gate Sizing [Ozdal

et al. 2012] and achieved the second place at the primary ranking, in which the quality of

the solution was evaluated. It also won the first place in the second ranking, in which the

tradeoff between quality of the solution and runtime is evaluated.
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4.1.12 [Livramento et al. 2013]

In this work, the Lagrangian relaxation is employed to minimize the leakage power

of the circuit subject to timing constraints. Different from other works based on LR, it was

adopted in this work a LR formulation that incorporates into the LRS the max capacitance

and max slew constraints provided by the library. Thus, the Lagrangian function is given

by

Lµ,γ,β(w, u) =
∑
vi∈X

αpi(wi, ui) +
∑

vi∈(X∪PI)

µiDji(wi, ui)+

∑
vi∈(X∪PI)

γi(out_slewi −max_slew)+

∑
vi∈(X∪PI)

βi(out_capi −max_capi(wi, ui))

(4.29)

The authors claim that it is enough to select a cell based only on local information,

since the delay of a gate depends only on its neighborhood. Therefore, the Lagrangian

subproblem is solved by a greedy heuristic that selects a cell which minimizes locally the

Lagrangian function.

It was adopted a modified subgradient method from [Tennakoon and Sechen 2002]

to update the Lagrangian multipliers related to the delays. Differently from the traditional

subgradient method, which uses a unique step size ρk, the modified subgradient method

is sensitive to local delay information. To update the Lagrangian multipliers related to

the output capacitances, was used a step size which is scaled by the maximum capac-

itance value of the current implementation of the gate. The authors observed that the

slew constraints can be handled by only controlling the capacitance constraints. Thus, the

Lagrangian multipliers related to the slew are not employed in the algorithm.

In order to fix remaining capacitance and slew violations, a final LR-based step

is executed. This procedure traverses the circuit in reverse topological order and tries to

raise the width of gates whose output capacitance is violated.
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4.2 State-of-the-Art

4.2.1 [Flach et al. 2014]

This work is an extension of [Flach et al. 2013], that was built upon the ISPD

2012 Contest infrastructure [Ozdal et al. 2012], in which the wires are modeled as lumped

capacitances. In this work, the previous tool was changed to support the new ISPD 2013

Contest benchmarks [Ozdal et al. 2013], in which the interconnections are modeled as

RC trees.

The algorithm uses Lagrangian relaxation for leakage power minimization subject

to timing constraints. It starts assigning each gate to the smallest leakage implementation

option. Then, load and slew violations are removed using the algorithm proposed in [Li

et al. 2012].

After load and slew violations were removed, the LR-based power optimization

phase begins. The Lagrangian subproblem is solved by a greedy heuristic which relies on

a Lagrangian cost funtion that captures the timing information of the immediate neighbor-

hood and whole logical cone. In order to quickly estimate how a change in a cell affects

the whole logic cone, a technique based on sensitivities is employed.

The Lagrangian multipliers related to each timing arc are updated by multipling

their current value by a damping value. The damping value is calculated using the arrival

time a and the required timing q at the output of the arc and the clock period T , Equation

4.30.

damping =


(
1 + a−q

T

)+1/k
a ≥ q(

1 + q−a
T

)−k
a < q

(4.30)

After the Lagrangian relaxation based optimization step, if there are some timing

violations to be fixed, the timing recovery step is executed to fix them. Finally, to further

improve the leakage power consumption of the circuit, a final step called power recovery

is executed.

This work was used as the baseline discrete gate sizing algorithm in this work.

Therefore, it is covered in detail in the next chapter.
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4.2.2 [Sharma et al. 2015]

The algorithm proposed in this work relies on Lagrangian relaxation for leakage

power minimization subject to timing constraints. The main contribution of this work is

the parallelization of the Lagrangian subproblem solver. The authors observed that there

are two key properties that must be satisfied to change two or more cells at the same

time: gates being processed simultaneously should not have the same fanin and a gate

that will be swapped should not have it’s fanin undergoing resizing as well. Thus, to

ensure these properties, it was proposed a technique that firstly computes the precendence

counter of each gate, which indicates the number of fanins and pseudofanins of the gate.

Then, gates whose precendence counter equals zero are queued into the ready queue and

picked up by threads. Whenever a gate is changed, the precendence counter of its fanout

and pseudofanout gates are decremented. If the precendence counter becomes zero, the

fanout gate is queued into the ready queue and waits for a thread to process it.

To further improve the runtime of the algorithm, the STA and Lagrangian multi-

pliers update were parallelized as well. To perform a parallel STA, the circuit is traversed

in topological order and groups of ten gates at the same topological level are processed

simultaneously. After all cells of the same level were updated, cells of the next level

are visited. The Lagrangian multipliers update is performed in the same way, the only

difference is that the circuit is traversed in the reverse topological order.

After the Lagrangian relaxation iterations, the fast greedy timing recovery (Fast-

GTR) algorithm is executed to fix remaining timing violations without increasing too

much leakage power consumption of the circuit. The Fast-GTR is based on the observa-

tion that visited gates that do not improve the timing probably won’t optimize the timing

in future iterations unless one of its side cells is upsized. Thus, such gates are skipped

until a side cell is upsized.

4.2.3 [Reimann, Sze and Reis 2016]

In the work presented in [Reimann, Sze and Reis 2016] (extension published in

the Integration journal of the paper [Reimann, Sze and Reis 2015]), it is inserted an LR-

based discrete gate sizing algorithm after a timing optimization step of an industrial flow.

The LR-based sizer is based on [Flach et al. 2014], which is extended to keep the timing

quality obtained during the timing optimization step. In order to keep the timing quality,
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the Lagrange multipliers update method is modified as follows to handle designs with

negative slacks:

Algorithm 4.1: Lagrange Multipliers Update
1 for each timing arc i→ j do
2

λi→j ← λi→j ×


(

1 +
atj−rtj+slkinit

T

)+1/k

atj ≥ rtj − slkinit(
1 +

rtj−atj−slkinit

T

)−k
atj < rtj − slkinit

3 end
4 KKT projection

In the above method, slkinit is the initial slack of the timing arc i→ j. This factor

aims the preservation of the timing quality of the input solution.

Although the LR-based sizer was successfully integrated into the industrial flow,

it presents some drawbacks. It is not able to perform an incremental optimization, since

it is not used a set of initial Lagrange multipliers that reflect the timing quality of the

input solution. As a consequence, the TNS is degraded in the initial LR iterations. Hence,

some iterations are required to mitigate the timing degradation. Another issue is the lack

of the capability of handling a multi-objective optimization, such that area and power

can be both optimized. Thus, in [Reimann, Sze and Reis 2016], published in ISPD, these

drawbacks are addressed. Rather than focusing only in leakage power, it was inserted into

the objective function the area, so that the area of the circuit is not dramatically affected

in the optimization process. In their new formulation, the LRS is given as follows:

LRS :

minimize β × power + θ × area+ α×
∑

λi→jdelayi→j
(4.31)

In the formulation above, β, θ and α are library dependent scaling factors used

to balance power, area and timing, respectively, since they are from different natures.

These factors are computed as shown in Equations 4.32, 4.33 and 4.34, where cn is the

cell option with the highest leakage power whereas c0 is the cell option with the lowest

leakage power; NCREF
is the number of cell options available in the cell library for a

reference cell CREF ; Pl(c) and A(c) are the leakage power and area, respectively, of a

given cell c; D(c) is the delay of a cell c and is computed based on the cell library with
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the same reference output load.

β =
NCREF

Pl(cn)− Pl(c0)
(4.32)

θ =
NCREF

A(cn)− A(c0)
(4.33)

α =
NCREF

D(cn)−D(c0)
(4.34)

In order to make the algorithm capable of incremental optimization, it is proposed

a simple method to provide a set of good initial lagrange multipliers values that reflect

the timing quality of the input solution. The initial Lagrange multipliers are obtained by

running a few LR iterations. At the end of each iteration, the initial solution of the design

is restored.

As in the previous work, the Lagrange multiplier update method enables the algo-

rithm to handle designs with negative slack, since the designs may have timing violations

that are not expected to be solved during the sizing. However, the new work relies on a

more aggressive update method to achieve fast convergence.

In the new flow, it is incorporated a sign-off timer to ensure the accurary of the

timing of the solution. However, evaluating all cells options during the LRS solver using

a sign-off timer is very timing consuming. Thus, the authors proposed a cell filtering

technique, which is based on cell options ranking. Each cell option is ranked using a

less accurate timing model. After that, only the top t ranked cells are evaluated using the

sign-off timer. In their experiments, t was set to 2.

It was also incorporated into the flow modified versions of the timing recovery and

power reduction methods from [Flach et al. 2014]. The timing recovery was adapted to

take into account placement legalization. A cell option being evaluated could not fit in

the current position due to increase in its size, so the algorithm searches a new location

for the cell. Thus, the timer considers the change in the interconnection during the timing

update. The power reduction was enhanced to prioritize the choice of a smaller size cell

for gates in the fanout of critical paths.
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4.2.4 [Yella and Sechen 2017]

Different from previous works based on Lagrangian relaxation, this algorithm con-

siders in the LRS cost function the delay of wires, which are computed using SPEF delay

calculation [Wang and Sechen 2014]. Yet, the number of lambda delay arcs is reduced

to half, since, for each timing arc, just the worst case between rise and fall delays are

considered.

In the LRS cost minimization step, the implementation option that locally min-

imizes the lambda delay and leakage product is initially choosen and the next two best

options are stored as well to be explored in the future by the proposed try_new_cell_option

algorithm for timing recovery. After each LR iteration, the algorithm tries to down size

and raise the Vth of non-critical cells in order to reduce the leakage power.

The authors state that if a design has a large number of logic levels, the LRS cost

function of gates in topological lower levels is dominated by the lambda-delay product

instead of the leakage. Thus, when the Lagrange multipliers are propagated from primary

outputs towards the inputs, a constant term called level_factor is introduced to make the

λs near primary outputs more emphasized than the λs near primary inputs.

4.2.5 [Sharma et al. 2017]

It was proposed in [Sharma et al. 2017] the rapid gate sizing (RGS), an LR based

gate sizing algorithm for leakage power minimization. As illustrated in Figure 4.3, the

algorithm is mainly divided into 3 phases: initialization, LR optimization and a greedy

post-processing for timing violations removal.

In the initialization phase, all cell are swapped to the smallest leakage implemen-

tation option and the circuit is traversed in reverse topological order to remove load and

slew violations, as in [Li et al. 2012] and [Flach et al. 2013]. Also, the Lagrange multi-

pliers are set to 1.

After the initializations were performed, the LR based optimization phase takes

place. The LR is divided into two main stages: timing recovery and power recovery. In

the timing recovery, most of the timing violations are fixed. It is basically composed of

LRS solving and Lagrange multipliers update, as in the traditional LR based gate sizing

algorithms. This stage runs until the TNS is not below a specified threshold value.

The power recovery is divided into 5 steps. In the first step, it is performed a
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Figure 4.3: RGS flow.

Source: adapted from [Sharma et al. 2017]

coarse-grained leakage power optimization. It iteratively alternates between LRS solving,

STA update, critical path sizing (CPS) and Lagrange multipliers update until the improve-

ment in power is not less than a specified threshold value. The CPS is employed to reduce

the timing violations of the critical paths. During the iterations, the CPS is invoked only

when the timing violations exceed a specified threshold value, so that the overall timing

violations of the cricuit are kept under control.

In phases two through five, it is performed a finer-grained power optimization.

Phase two starts by executing the multi-gate sizing (MGS), followed by a STA update,

CPS and Lagrange multiplier update. In the MGS, the circuit is traversed in topological

order and the algorithm tries to downsize each gate g visited. If the change does not

generate load and slew violations, the fanout of g is sized as well. In order to avoid large

perturbations during the MGS and also to favor the runtime, only three implementation

options are evaluated for each fanout of g: the current cell option, the cell option with the

next smaller size and the option with the next bigger size. In phase three, it is executed two

iterations composed of LRS solving, STA update CPS and Lagrange multipliers update.

Phases four and five are the same of phases two and three, respectively.
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The Lagrange multipliers are updated using the Equation 4.35:

λi→j = λi→j ×
(
delayi→j

T

)k
(4.35)

where λi→j is the Lagrange multiplier associated with the timing arc i→ j and delayi→j

is the worst path delay through the timing arc i → j. The exponent k assumes different

values in the timing recovery and power recovery stages. When the timign recovery is

executed, k is set to 4 for critical arcs and 1 for non-critical arcs, so that the delay of timing

arcs with timing violations are emphasized, enabling a fast timing recovery. During the

power recovery, k is set to 1 for critical arcs and 6 for non-critical arcs. Thus, the leakage

power is emphasized, allowing the power recoveryto quickly reduce the power.

After the LR based optimization phase, there could be remaining timing violations.

In such cases, the greedy timing recovery is executed. The timing recovery used in this

work is similar to the one used in [Flach et al. 2013].

4.3 Summary

Table 4.1 summarizes the discrete gate sizing algorithms covered in this chapter,

presenting the optimization techniques employed in each one.

Table 4.1: Summary of the discrete gate sizing algorithms presented in this chapter.
Work Optimization techniques
[Chan 1990] Greedy heuristic
[Coudert 1996] Greedy heuristic
[Chinnery and Keutzer 2005] Linear programming
[Held 2009] Target slew
[Liu and Hu 2010] Lagrangian relaxation
[Huang, Hu and Shi 2011] Lagrangian relaxation
[Ozdal, Burns and Hu 2012] Lagrangian relaxation and

dynamic programming
[Rahman and Sechen 2012] Lagrangian relaxation
[Hu et al. 2012] Sensitivity
[Li et al. 2012] Lagrangian relaxation and

network flow
[Reimann et al. 2013] Simulated annealing
[Livramento et al. 2013] Lagrangian relaxation
[Flach et al. 2014] Lagrangian relaxation
[Sharma et al. 2015] Lagrangian relaxation
[Reimann, Sze and Reis 2016] Lagrangian relaxation
[Yella and Sechen 2017] Lagrangian relaxation
[Sharma et al. 2017] Lagrangian relaxation
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5 BASELINE DISCRETE GATE SIZING FLOW

This chapter covers in detail the discrete gate sizing algorithm proposed in [Flach

et al. 2013], which was used as the baseline flow in this work. This algorithm has the best

leakage power results published so far for the ISPD 2012 Discrete Gate Sizing Contest

benchmarks [Ozdal et al. 2012].

5.1 Formulation

As described earlier in subsection 2.1.2, the digital circuit is modeled as a tim-

ing graph, in which the nodes represent pins and the edges are the timing arcs. All the

information which is commonly used throughout this chapter is presented in Table 5.1.

Table 5.1: Definitions.
T clock period
TNS total negative slack
STA static timing analysis
i→ j timing arc from node i to node j
delayi→j delay of timing arc i→ j
ati arrival time at node i
rti require time at node i
slewi slew at node i
islewi→j input slew of timing arc i→ j
oslewi→j output slew of timing arc i→ j
λi→j Lagrange multiplier of timing arc i→ j

The discrete gate sizing for leakage power minimization is formulated as follows:

Primal Problem (PP):

minimize leakage

subject to ati + delayi→j ≤ atj ,∀i→ j ∈ Arcs

atk ≤ T,∀k ∈ Endpoints

xi ∈ Sizesi

(5.1)

The Lagrangian relaxation subproblem is obtained by incorporating the constraints
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into the objective function:

LRS:

minimize leakage +∑
λi→j(ati + delayi→j − atj) +∑
λk(atk − T )

(5.2)

By applying the Karush-Kuhn-Tucker conditions, the problem presented above is

simplified to:

LRS (simplified):

minimize leakage +
∑

λi→jdelayi→j
(5.3)

where the term
∑
λi→jdelayi→j is referred as lambda-delay.

At last, by maximizing the LRS, it is obtained the Lagrangian dual problem:

LDP :

maximise
(

minimize leakage +
∑

λi→jdelayi→j

) (5.4)

5.2 Baseline Flow Overview

The overall flow of the base algorithm [Flach et al. 2013] is presented in Figure

5.1. The first step is the assignment of each gate to the smallest leakage cell option.

Next, load and slew violations are removed. After performing the preconditioning of the

solution, the LR-based power optimization comes into play. If any timing violation is left

after the LR terminates, a post-processing timing fixing algorithm is executed. Finally, in

order to reduce even further the leakage power, a power recovery algorithm is executed.
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Figure 5.1: Overall flow of the baseline sizer.

Source: adapted from [Flach et al. 2014]

5.2.1 Load and Slew Violations Removal

The removal of load and slew violations are performed using a technique based on

the method presented in [Li et al. 2012]. The circuit is traversed in reverse topological

order. For each gate visited, it is selected the smallest leakage cell option such that the

gate is able to drive a load 30% greater than the actual load being driven. Since each

interconnection is modeled using a lumped capacitance, the slew is not degraded. Hence,

when it is chosen a cell that satisfies the load condition aforementioned, it is assumed that

the slew is fixed as well.

This step produces a solution without load and slew violations. So, during the

optimization process, each cell option is validated so that load and slew violations are not

created. The Algorithm 5.1 summarizes the load and slew violations process.

Algorithm 5.1: Load and Slew Violations Removal
1 for each gate g in reverse topological order do
2 for each cell option c from lowest leakage to largest leakage do
3 if 0.7×max_load(c) > actual_load(g) then
4 stop for loop
5 end
6 end
7 end
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5.2.2 Lagrangian Dual Problem Solver

The main phase of the flow is based on Lagrangian relaxation. In Algorithm 5.2,

it is presented the Lagrangian dual problem solver. At each iteration of the LDP, the

Lagrange multipliers (λ) are updated, so that they indicate how much a constraint, that is

incorporated into the objective function, is being violated. The resulting set of λs define

a specific Lagrangian relaxation subproblem, which is greedly solved using the method

shown in Algorithm 5.5. The initial value of λs was empirically determined and is equal

to 12. During each iteration, the solution found is accepted only if its cost is smaller than

the cost of the previous solution and the worst negative slack is less than 10% of the clock

period.

Algorithm 5.2: LDP Solver
1 set initial value of λs to 12
2 update λs //Alg. 5.3
3 update Lambda-Delay Sensitivities
4 bestCost← +∞
5 γ ← (−(min(0, worstSlack))/T + 1)
6 for iter ← 1; iter ≤ 100; iter + + do
7 solve LRS //Alg. 5.5
8 update timing (STA)
9 γ ← (−(min(0, worstSlack))/T + 1)

10 cost← γ × total_leakage
11 if cost < bestCost and γ < 1.1 then
12 store solution
13 bestCost← cost

14 end
15 update λs //Alg. 5.3
16 update Lambda-Delay Sensitivities
17 end
18 restore best solution found

5.2.2.1 Lagrange Multipliers Update Method

For each transition edge of each timing arc, the λ is updated by multiplying its

current value by a damping value, as shown in Algorithm 5.3. After the Lagrange multi-

pliers were updated, it is performed the KKT projection, Algorithm 5.4, to ensure that the

λs satisfy the KKT conditions of optimality.
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Algorithm 5.3: Lagrange Multipliers Update Method
1 for each timing arc i→ j do
2

damping =


(

1 +
atj−rtj

T

)+1

atj ≥ rtj(
1 +

rtj−atj
T

)−1
atj < rtj

λi→j = λi→j × damping

3 end
4 KKT projection //Alg. 5.4

Algorithm 5.4: KKT projection
1 for each pin p in reverse topological order of the circuit do
2 if number of outgoing arcs of p == 0 then
3 continue
4 end
5

6 Compute sum of incoming timing arc lambdas of pin p
7 Compute sum of outgoing timing arc lambdas of pin p
8

9 for each edge (rise and fall) do
10 for each incoming timing arc do
11 λarc = sumOutgoingLambdas∗ (λarc/sumIncomingLambdas)
12 end
13 end
14 end

5.2.3 Lagrangian Relaxation Subproblem Solver

Each Lagrangian relaxation subproblem instance is minimized through the method

presented in Algorithm 5.5. It traverses the circuit in topological order and, for each gate,

it selects the cell option that locally minimizes the sum of leakage power and lambda-

delay cost.

Whenever a cell is swapped, running a full STA update or an incremental STA

update would make the LRS solver very timing consuming. Hence, only the timing infor-

mation related to the cell being changed and its neighboring cells is updated.

Since the LR method starts upon a solution without load and slew violations, the

LRS solver filters cell options that create these violations. Thus, it is not necessary to

handle load and slew violations ahead.

The term localNegativeSlack is referred as the sum of the negative slacks at



67

the output pins of the current gate and its neighboring gates (fanin, fanout and the gates

being driven by the fanin of the current gate). The parameter γ is used to simulate a "hill

climbing" of stochastic methods. Hence, during the initial iterations, when the timing

violations are high, the local negative slack is allowed to increase a little, so that larger

changes are allowed. As the solution converges to a low timing violation solution, larger

changes are avoided.

Algorithm 5.5: LRS Solver
1 for each gate g in topological order do
2 originalNegativeSlack ← computeLocalNegativeSlack(g)
3 bestCandidate← version(g)
4 bestCost← lambdaDelayCost(g) + leakage(g)
5

6 for each gate version t ∈ versions(g) do
7 version(g)← t
8

9 if load violation has increased then
10 go to te next candidate
11 end
12

13 update timing locally
14 localNegativeSlack ← computeLocalNegativeSlack(t)
15

16 if localNegativeSlack < γ ∗ originalNegativeSlack then
17 go to te next candidate
18 end
19

20 cost← lambdaDelayCost(t) + leakage(t)
21 if cost < bestCost then
22 bestCandidate← t
23 bestCost← cost

24 end
25 end
26 version(g)← bestCandidate
27 update timing locally
28 end

5.2.3.1 Lambda-Delay Cost of a Cell Option

As shown in Equation 5.3, the objective function of the LRS problem consists in

minimizing the sum of the leakage power and lambda-delay. Whenever a gate is swapped,

the lambda-delay of the whole logic cone starting from the fanin of the swapped gate
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may be affected. Thus, the lamba-delay cost of a cell option indicates how much the

cell option affects the lambda-delay of the logic cone. Keeping the timing information

of the logic cone updated when a cell is changed would require an incremental STA.

However, performing an incremental STA everytime a cell option is evaluated would lead

to infeasible runtimes. Hence, as mentioned earlier, only the timing information of the

neighboring cells of the cell being changed is updated. For the remaining cells of the

logic cone, the lambda-delay cost computation relies on an estimation of how the timing

of these cells is affected.

Considering a gate g, e.g., the g4 gate highlighted in Figure 5.2, the lambda-delay

cost of each one of its cell options is given in Equation 5.5.

Figure 5.2: Example of Lambda-Delay Cost Computation

Source: from author (2018)

lambdaDelayCost(g) =
∑

i→j ∈ driverArcs(g) ∪ gateArcs(g) ∪ sinkArcs(g)

λi→jdelayi→j+

∑
i→j ∈ sideArcs(g)

∆islewi→jφi→j +
∑

n ∈ drainNets(g)

∆slewnΦn

(5.5)

where

• driverArcs(g) is the set of arcs driving the driver nets of g (e.g g1_a→g1_o,

g1_b→g1_o, g2_a→g2_o and g2_b→g2_o in Figure 5.2);

• sinkArcs(g) is the set of arcs driven by the output net of g (e.g g6_a→g6_o,

g6_b→g6_o, g7_a→g7_o and g7_b→g7_o in Figure 5.2);

• sideArcs(g) is the set of arcs driven by the driver nets of g, but which do not belong

to g (e.g. g3_b→g3_o and g5_a→g5_o in Figure 5.2);
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• gateArcs(g) is the set of arcs of g (e.g. g4_a→g4_o and g4_b→g4_o in Figure

5.2);

• drainNets(g) is the set of nets driven by sink gates of g (e.g. n14 and n15 in Figure

5.2);

• ∆islewi→j is the input slew change at the input of timing arc i→ j;

• ∆slewn is the slew change at net n;

• φi→j is the cumulative back-propagated lambda-delay sensitivity of arc i → j (ex-

plained later);

• Φn is the cumulative back propagated lambda-delay sensitivity at net n (explained

later).

5.2.3.2 Back-Propagated Cumulative Lambda-Delay Sensitivity

As stated earlier, when a cell option is evaluated, it is performed only a local

timing update, since an incremental STA would be very timing consuming. Thus, in

order to quickly evaluate the timing change not only in the vicinity, but also in the whole

logical cone, the back-propagated cumulative lambda-delay sensitivity is used.

The lambda-delay sensitivity of an timing arc i→ j is defined as:

lambda-delay sensitivity = λi→j
δdelayi→j
δislewi→j

(5.6)

The sensitivities can be back-propagated from outputs to inputs. Thus, the result-

ing cumulative sensitivity of a timing arc provides in a single operation an estimation of

how much the timing of the logical cone starting at such arc is affected due to a change in

its input slew. During the back-progation process, it is assumed that each interconnection

is modeled using a lumped capacitance, thus, the output slew of a gate is not degraded.

It is presented below in Figure 5.3 an example which shows how it is computed

the back-propagated cumulative lambda-delay sensitivities of the timing arc g1_a→g1_o.

Figure 5.3: Example of Lambda-Delay Sensitivity Computation

Source: from author (2018)
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The lambda-delay change in the timing arc g2_a→g2_o due to a change in its input

slew is computed by multiplying the timing arc lambda-delay sensitivity by the input slew

change:

∆delayg2_a→g2_o = ∆islewg2_a→g2_o ∗ λg2_a→g2_o ∗
δdelayg2_a→g2_o

δislewg2_a→g2_o
(5.7)

In the same way, the lambda-delay change for the timing arc g1_a→g1_o is given

the lambda-delay sensitivity times the change in its input slew plus the delay change in

timing arc g2_a→g2_o, which was shown in Equation 5.7.

∆delayg1_a→g1_o = ∆islewg1_a→g1_o ∗ λg1_a→g1_o ∗
δdelayg1_a→g1_o

δislewg1_a→g1_o
+

∆delayg2_a→g2_o

(5.8)

Assuming that

∆islewg2_a ≈ ∆islewg1_a→g1_o ∗
δoslewg1_a→g1_o

δislewg1_a→g1_o
(5.9)

and by combining 5.7 and 5.7, the delay change for timing arc g1_a→ g1_o is obtained,

as shown in Equation 5.10. Thus, the delay change depends only on the back-propagated

cumulative lambda-delay sensitivity (the terms summed inside the parentheses) and the

unknown ∆islewg1_a.

∆delayg1_a→g1_o = ∆islewg1_a→g1_o ∗
(
λg1_a→g1_o ∗

δdelayg1_a→g1_o

δislewg1_a→g1_o
+

λg2_a→g2_o ∗
δoslewg1_a→g1_o

δislewg1_a→g1_o
∗
δdelayg2_a→g2_o

δislewg2_a→g2_o

) (5.10)

Generalizing, the delay change of a timing arc i→ j is defined as follows:

∆delayi→j = ∆islewi→jφi→j (5.11)

where φi→j is the back-propagated cumulative lambda-delay sensitivity of the timing arc
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i→ j. φi→j is computed using the following recurrence relation:

φi→j =
δdelayi→j
δislewi→j

+
δoslewi→j
δislewi→j

Φn (5.12)

where n is the net driven by the timing arc i → j and Φn is
∑
φi→j′ for each timing arc

i→ j
′

driven by n.

5.2.4 Timing Recovery

The timing recovery (TR) step is executed after the LR optimization step if there

are remaining timing violations to be fixed, i.e., if the TNS is higher than ε (ε = 1e-6).

The TR method is presented in Algorithm 5.6. The algorithm starts by sorting the nets

in decreasing number of critical paths passing through them. For each net n of the list of

sorted nets, the algorithm tries to swapp the driver of n to the next larger cell option. The

new cell option is accepted if it does not generate slew and load violations and if it does

not worsen the TNS. Whenever a cell is changed, the list of nets are sorted again and the

algorithm continues by the first net sorted. This process stops when there are not timing

violations left.

5.2.5 Power Recovery

In order to further reduce the leakage power of the solution, the power recovery

(PR) algorithm is executed. The PR method is presented in Algorithm 5.7. It is divided

into two main steps: in the first one, the circuit is traversed in topological order and, for

each gate g visited, the algorithm tries to swapp g to the next higher Vth cell option. In

the second step, the circuit is traversed in topolical order again, but the algorithm tries to

change each gate g to the first smaller size option. These two steps alternates iteratively

until no changes are made.
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Algorithm 5.6: Timing Recovery
1 Sort nets in decreasing number of critical paths passing through them
2 for each net n sorted by critical path counter do
3 t is the actual cell type of the gate g driver of n
4 t+ 1 is the next larger cell option with the same Vth
5

6 Try to upsize the gate driver on n changing t by t+ 1
7 previousTNS ← TNS
8

9 if g is upsizable then
10 update TNS
11

12 if TNS < previousTNS then
13 update cell type to t+ 1
14

15 if TNS < ε then
16 break
17 end
18

19 Update the number of critical paths through each net
20

21 Process continues by the first net sorted by critical
22 path counter
23

24 end
25 end
26 end
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Algorithm 5.7: Power Recovery
1 repeat
2 changedCellsCounter ← 0
3 for each gate g of the circuit in topological order do
4

5 if Vth of g is increasable then
6 increase Vth of g
7 update timing (STA)
8

9 if TNS ≥ 0 and no load/slew violations generated then
10 changedCellsCounter + +
11 else
12 undo
13 end
14 end
15 end
16

17 for each gate g of the circuit in topological order do
18

19 if g is downsizable then
20 downsize g
21 update timing (STA)
22

23 if TNS ≥ 0 and no load/slew violations generated then
24 changedCellsCounter + +
25 else
26 undo
27 end
28 end
29 end
30 until changedCellsCounter = 0;
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6 PROPOSED IMPROVEMENTS

In this chapter, it is presented several extensions proposed to enhance the base

algorithm [Flach et al. 2013]. First, it is discussed some drawbacks related to the LR

phase. Then, it is presented a set of improvements proposed to handle these drawbacks.

Yet, it is proposed some modifications to the post-LR timing recovery and power phases

that were done in order to improve the runtime. Finally, the experimental results obtained

are discussed.

6.1 Points for Improvement in the LR Core of the Baseline Work

Although the baseline work [Flach et al. 2013] has the best leakage power results

published so far for the set of benchmarks of the ISPD 2012 Contest on Discrete Gate

Sizing [Ozdal et al. 2012], it presents some drawbacks in its LR core. The first point is

that the algorithm requires an expressive number of iterations (100) to converge to a good

solution. A portion of the iterations is used to reduce the huge increase in leakage power

(e.g. 15× the final value) that occurs in the first iterations of the LR. Also, the algorithm

does not rely on any cell option candidate filtering strategy, thus, computing the lowest

LR local cost can be a slow process. Therefore, in the subsequent sections, it is presented

a set of improvements to tackle these drawbacks. The objective of the proposed strategies

is to reduce the number of iterations required by the LR core and dramatically reduce the

number of cell options evaluated during the LR phase.

6.2 New Lagrangian Relaxation Formulation

For each gate of the circuit, the Lagrangian relaxation subproblem solver of the

baseline work greedly selects the cell option that locally minimizes the sum of timing

cost and leakage power cost. However, these two quantities are from different natures,

therefore, they must be scaled. A consequence of summing up these two quantities with-

out proper scaling them is the huge increase in the leakage power during the initial LR

iterations. This impacts in the runtime, since part of the iterations will be used to reduce

the leakage peak. Also, the LR slowly adjusts the Lagrange multipliers such that a scaling

factor would not be necessary. However, it is a waste of runtime.
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Initially, the solution has excessive timing violations, therefore, the LR local cost

is highly dominated by the timing cost. By scaling timing and power costs, the importance

of the leakage power is increased, therefore, the LR core tends do be less aggressive in the

initial iterations, reducing the excessive increase in the leakage power. In this work, the

scaling is performed by multiplying the leakage power cost by a library-dependent factor

α called average delay per leakage, whose computation is detailed later in this chapter.

Thus, by defining α as delay/leakage, only quantities with the same unit are summed up

in the cost function, as shown below:

localCost = timingCost+ α× leakage

localCost = ps+ ps/mW ×mW

localCost = ps+ ps

(6.1)

Therefore, the new LR formulation used in this work is defined as:

LRS:

minimize α× leakage +
∑

λi→jdelayi→j
(6.2)

6.3 Updated Flow

Figure 6.1 depicts the overall flow of the sizer with the modifications proposed

in this work. The first two steps of the flow are the same of the first two steps of the

baseline work: first, each gate is assigned to the smallest cell option and, next, load and

slew violations are removed using the algorithm presented in the last chapter.

After the solution is preconditioned, the Lagrangian relaxation phase comes into

play. As in [Sharma et al. 2017], the LR phase is divided into two main stages: tim-

ing recovery Lagrangian relaxation (TR-LR) and power reduction Lagrangian relaxation

(PR-LR). During the TR-LR, the optimization is focused on fixing most of the timing

violations. In order to quickly reduce the number of endpoints with negative slack, the

Lagrange multiplier formula is adjusted to emphasize delay over leakage power. The PR-

LR starts as soon as the TR-LR terminates. This stage is focused on power optimization.

Thus, the Lagrange multiplier formula is adjusted to enable a quickly power reduction

without harming too much the timing of the circuit.

After the LR phase, the remaining timing violations are fixed in the enhanced



76

timing recovery phase. Finally, the leakage power of the solution is further reduced in the

enhanced sensitivity-based power recovery.

Figure 6.1: Sizer flow with the modifications proposed in this work.

Source: from author (2018)

6.3.1 Timing Recovery Lagrangian Relaxation

The LDP solver for the TR-LR is presented in Algorithm 6.2. It starts by setting

each Lagrange multiplier to 1. As stated before, the TR-LR is focused on quickly re-

moving most of the timing violations. Hence, at each iteration, the Lagrange multipliers

are updated such that a rapid convergence is obtained and the leakage power does not

dramatically blow up. The Lagrange multipliers update method is modified as follows:

Algorithm 6.1: Lagrange Multipliers Update Method
1 for each timing arc i→ j do
2

λi→j = λi→j× =


(

1 +
atj−rtj

T

)+k
atj ≥ rtj(

1 +
rtj−atj

T

)−k
atj < rtj

3 end
4 KKT projection
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The values for the exponent k were empirically obtained in several experiments

performed using the benchmarks of the ISPD Contest 2012 on Discrete Gate Sizing [Oz-

dal et al. 2012]. The exponent k was determined to be 3 for critical timing arcs in order

to emphasize the delay over the leakage power. For critical cells that have most of the

critical paths passing through them, referred here as bottleneck cells, k was determined

to be 10. As stated in Chapter 2, the centrality of a pin, which varies from 0 to 1, is an

estimation of how many and how critical are the endpoints affected by this pin. So, the

centrality was used to give an estimation if a cell is bottleneck. Therefore, it was empir-

ically established that a cell is bottleneck if its centrality is equal or greater than 0.9. By

handling bottleneck cells in a special manner, it is expected that several critical paths are

quickly fixed. This exponent distribution, alongside the α scaling factor discussed earlier,

mitigates the leakage power blow up during the TR-LR stage, since the effort of the LR

will be more aggressive on the critical cells, specially on the bottleneck ones. Table 6.1

summarizes the exponent values used during the TR-LR stage.

Table 6.1: Exponent values distribution used to adjust the Lagrange multipliers during the
TR-LR stage.

Arcs Exponent (k) value
Non-Critical Arcs 1
Non-Bottleneck Critical Arcs 3
Bottleneck Critical Arcs 10

Algorithm 6.2: LDP Solver used in TR-LR
1 set initial value of λs to 1
2 update λs
3 update Lambda-Delay Sensitivities
4 γ ← (−(min(0, worstSlack))/T + 1)
5 iter← 0
6 while TNS > 0.1× T and iter < 50 do
7 solveLRS(γ)
8 update timing (incremental STA)
9 γ ← (−(min(0, worstSlack))/T + 1)

10 update λs
11 update Lambda-Delay Sensitivities
12 iter ← iter + 1

13 end
14 store solution
15 update timing (incremental STA)

The Lagrangian relaxation subproblem is solved using the Algorithm 5.5 pre-

sented in the previous chapter. This method was adapted to consider the new LRS for-
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mulation presented in Equation 6.2. Therefore, for each gate, the algorithm evaluates all

its cell options and selects the version which locally minimizes the sum of timing cost

and leakage cost multiplied by the scaling factor. The TR-LR execution finishes when the

TNS is less than 10% of the clock period, such as in [Sharma et al. 2017], or when the

number of iterations exceeds 50.

6.3.2 Power Reduction Lagrangian Relaxation

In [Reimann, Sze and Reis 2016], the proposed LR-based sizer for power and

area optimization was inserted after a timing optimization step in an industrial flow. In

a similar way, the TR-LR could be treated in this work as the timing optimization step,

while the PR-LR performs the power optimization. As observed in [Reimann, Sze and

Reis 2016], when an LR-based sizer is used in a pre-optimized design, it is necessary to

provide a set of initial Lagrange multipliers that resemble the timing quality of the input

solution, so that an incremental optimization is enabled. Otherwise, the TNS degrades

during the initial iterations and several iterations are needed to fix it instead of focusing

on power optimization. It was observed in this work that setting all Lagrange multipliers

to the value 1 results in a similar phenomenon. As shown in subsection 4.2.3, this problem

is solved in [Reimann, Sze and Reis 2016] by running several LR iterations in order to

estimate the initial values of the Lagrange multipliers. In this work, however, it is not

necessary, since the TR-LR already provides a set of Lagrange multipliers that reflect the

timing quality of the timing optimized solution.

The LDP solver used in the PR-LR is presented in Algorithm 6.3. As stated in the

last paragraph, the initial values of the Lagrange multipliers are the values computed in

the last iteration of the TR-LR. Thus, in each iteration of the LDP solver, the Lagrange

multipliers are updated using the method 6.1 presented earlier. However, it is used a

different exponent distribution, so that the leakage power is quickly reduced. In order

to achieve a rapid convergence without harming too much the timing of the design, it is

used the values presented in Table 6.2. Like the exponent distribution used in TR-LR, the

exponent values used during PR-LR were found empirically.

As in TR-LR, the Lagrangian relaxation subproblem is solved using the Algorithm

5.5 adapted to consider the new formulation presented in Equation 6.2. However, it is ap-

plied a cell option candidate filtering strategy to reduce the set of cells evaluated for each

gate. Experiments performed in this work showed that it is sufficient to evaluate only the
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Table 6.2: Exponent values distribution used to adjust the Lagrange multipliers during the
PR-LR stage.

Arcs Exponent (k) value
Non-Critical Arcs 5
Non-Bottleneck Critical Arcs 1
Bottleneck Critical Arcs 3

Algorithm 6.3: LDP Solver used in PR-LR
1 bestCost← +∞
2 γ ← (−(min(0, worstSlack))/T + 1)
3 repeat
4 solveLRS(gamma)
5 update timing (incremental STA)
6 γ ← (−(min(0, worstSlack))/T + 1)
7 cost← γ × total_leakage
8 if cost < bestCost and γ < 1.1 then
9 store solution

10 bestCost← cost

11 end
12 update λs
13 update Lambda-Delay Sensitivities
14 until power improvement < 0.1%;
15 restore best solution found
16 update timing (incremental STA)

neighboring options of the current cell option, that is, the next two bigger sizes, the next

smaller sizes, varying the Vth between LVT, SVT and HVT for each size and, also, options

with the same size, but different Vth. This implies that the number of candidates evaluated

depends on the current implementation option. For instance, consider the Figure 6.2. If

the current cell option of a given gate is the darker red cell, the cell option candidates that

will be evaluated are its neighboring cells, that is, the lighter red ones. So, in this case, 14

candidates would be evaluated. But, if the current cell option is the darker green cell, 8

candidates, that correspond to the lighter green cells, would be evaluated.

Figure 6.2: Cell option candidate filtering.

Source: from author (2018)

In each iteration of the LDP solver, the global solution found is considered only if
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it has smaller leakage and its TNS is less than 10% of the clock period. The execution of

the PR-LR finishes when the improvement in the leakage power is less than 0.1%.

6.3.3 Average Delay per Leakage Scaling Factor Calculation

For each logic function available in the cell library, its average delay per leakage

factor is calculated using the method presented in the Algorithm 6.4. For each cell option

of a given logic funtion f , the delay of its timing arcs is computed assuming an output

load four times greater than its input load. Considering a timing transition of a timing arc,

the delay is obtained by varying the input slew until it is approximately equal to the output

slew. When this condition is met, the algorithm accumulates the ratio delay/leakage. After

all cell options were evaluated, the average delay per leakage of f is computed by dividing

the accumulated ratio/delay by the number of delay evaluations performed.

Algorithm 6.4: Average Delay per Leakage Computation
1 referenceFanout← 4
2 acc← 0
3 counter ← 0
4 maxIterations← 10
5 for each cell option c ∈ versions(f) do
6 leakage← getLeakage(c)
7 for each arc l ∈ c do
8 cin← getInputCapacitance(c)
9 load← cin× referenceFanout

10 for each timing transition t do
11 iSlew ← 0
12 for iter ← 0; iter < 10; iter + + do
13 delay ← arcDelay(l, iSlew, load)
14 oSlew ← arcOSlew(l, iSlew, load)
15 if iSlew ≈ oSlew then
16 stop for loop
17 end
18 iSlew ← oSlew

19 end
20 acc + = delay/leakage
21 counter + +

22 end
23 end
24 end
25 return acc/counter
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6.3.4 Post-LR Optimization Phases Enhancement

Although the objective was to tackle the drawbacks related to the LR core of the

baseline work, the post-LR phases timing recovery and power recovery are also modified

in order to improve the runtime. In this section, it is described the modifications proposed

in this work.

6.3.4.1 Enhanced Timing Recovery

The timing recovery method proposed in the baseline work was modified such that

it is divided into 5 steps. The first one is focused on processing the bottleneck cells. It

is performed by sorting all cells in decreasing order of centrality. This way, the cells that

have most of the critical paths passing through them are processed first. Whenever 4%

of the total numbers of cells are visited, they are sorted again. Hence, it is avoided the

sorting of cells at any time a cell change improves the TNS, which harms the runtime.

The algorithm tries to swap each cell to the option with the next bigger size, keeping the

same Vth, so that the leakage does not increase too much. Also, in order to correctly

evaluate the change in timing, an incremental timing update is performed. The cell option

is accepted only if the TNS is not degraded and slew and load violations are not generated.

Otherwise, the change is undone. When a few endpoints with timing violations are left,

it was observed that sorting the cells in decreasing order of criticality is more effective in

terms of convergence. Thus, the second step starts when at most 10 endpoints must be

fixed to meet timing. In this step, the cells are sorted only once in decreasing order of

criticality. Each visited cell is handled in the same way as before, that is, the algorithm

tries to upsize the cells. The third step comes into play when there is only one endpoint left

with timing violation. For this endpoint, only the cells in its critical path are processed. If

the timing is not met, the algorithm of the second step is called once more. Finally, if this

flow fails, the timing recovery from [Flach et al. 2013] is executed to fix the remaining

timing violations, although in the experiments carried out it never occured. The enhanced

timing recovery is presented in the Algorithm 6.5.
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Algorithm 6.5: Enhanced Timing Recovery
1 bottleneckCellSizer() // Alg. 6.6
2 if getNumCriticalEndpoints() ≤ 10 then
3 criticalCellSizer() // Alg. 6.7
4 end
5 if getNumCriticalEndpoints() == 1 then
6 criticalPathSizer() // Alg. 6.8
7 end
8 if getNumCriticalEndpoints() >= 1 then
9 criticalCellSizer() // Alg. 6.7

10 end
11 if getNumCriticalEndpoints() >= 1 then
12 originalTimingRecovery() // [Flach et al. 2013]
13 end
14

Algorithm 6.6: Bottleneck Cell Sizer
1 sortedGates← sortGatesByCentrality()
2 numGatesToProcess← numGates× 0.04
3 counter ← 0
4 index← 0
5 while index < numCells do
6 if numCriticalEndpoints ≤ 10 then
7 stop while loop
8 end
9 counter + +

10 if counter == numGatesToProcess then
11 index← 0
12 sortedGates← sortGatesByCentrality()
13 counter ← 0

14 end
15 g ← sortedGates[index]
16 if g is not upsizable then
17 continue
18 end
19 tryNextBiggerSizeOption(g)
20 index+ +

21 end
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Algorithm 6.7: Critical Cell Sizer
1 sortedGates← sortGatesByCriticality()
2 for index← 0; index < numCells; index+ + do
3 g = sortedGates[index]
4 tryNextBiggerSizeOption(g)
5 if TNS == 0 then
6 stop for loop
7 end
8 end

Algorithm 6.8: Critical Path Sizer
1 criticalPaths← getCriticalPaths()
2 for each criticalPath in criticalPaths do
3 for each gate in criticalPath do
4 tryNextBiggerSizeOption(g)
5 if TNS == 0 then
6 stop for loop
7 end
8 end
9 end

6.3.4.2 Enhanced Sensitivity-Based Power Recovery

The post-LR power recovery method presented in [Flach et al. 2013] was also

extended. In the new approach, the cells are sorted in increasing order of arrival time sen-

sitivity, a metric that reflects how much a cell is likely to affect the timing given a change

in the arrival time at its output pins. The arrival time sensitivity is a feature provided by

the Rsyn framework [Flach et al. 2017] used in this work.

For each visited cell, the algorithm tries to increase the Vth as much as possible

and, after that, decreases its size in the same way. Every change is accepted only if

slew, load and timing violations are not generated. Algorithm 6.9 presents the new power

recovery method.

The timing cost is defined as the sum of the squares of arrival times at the end-

points: Timing = 1
2

∑
p∈endpoints a

2
p. The sensitivities are computed back-propagating

the partial sensitivities from the endpoints to the start points.

For instance, the timing sensitivity at pin 1 in Figure 6.3 can be expressed using
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Figure 6.3: Timing sensitivity computation.

Source: from author (2018)

the chain rule as in Equation 6.3.

∂T iming

∂a1
=
∂a3
∂a1

∂a6
∂a3
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+
∂a4
∂a1

∂a7
∂a4

∂a9
∂a7

∂a11
∂a9

∂a212
∂a11

(6.3)

Algorithm 6.9: Enhanced Sensitivity-Based Power Recovery
1 sortedGates← sortGatesByArrivalTimeSensitivity()
2 for each gate g in sortedGates do
3 while Vth of g is increasable do
4 increase Vth of g
5 if TNS < 0 or load/slew violations are generated then
6 undo change
7 stop while loop
8 end
9 end

10 while g is downsizable do
11 downsize g
12 if TNS < 0 or load/slew violations are generated then
13 undo change
14 stop while loop
15 end
16 end
17 end

6.4 Experimental Results

The discrete gate sizing flow was implemented in C++ 11 on the Rsyn infrastruc-

ture [Flach et al. 2017] and was evaluated using the ISPD 2012 Discrete Gate Sizing

Contest benchmark suite [Ozdal et al. 2012]. As shown in Table 6.3, the number of

combinational gates in these benchamarks ranges from 23K to 861K. The experiments

were carried out in a machine with four Intel(R) Core(TM) i7-6700 @ 3.4GHz CPUs and
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32GB memory.

As mentioned in Chapter 2, the wire model used in the ISPD 2012 benchmarks is

the lumped capacitance. This implies that the arrival times and the slew at the driver pin

of the net is the same on the sink pins. According to [Flach et al. 2014], this simplified

model is reasonable in early stages of the design flow. Also, the sizer developed in this

work can be easily extended to handle more complex wire models.

In all tables presented in this chapter, the gate sizer implemented in this work is

referred as new sizer, whereas the baseline work [Flach et al. 2013] and the sizer proposed

in [Sharma et al. 2017] are referred as Flach and Sharma, respectively.

The leakage power results obtained are shown in Table 6.3. The results are com-

pared with the the baseline work [Flach et al. 2013] and they are also compared with

the RGS [Sharma et al. 2017], since it is the fastest gate sizing tool that can be found

in literature. The results show that the new gate sizer performs only 1.1% worse in leak-

age power, on average, than the baseline sizer, while it performs 0.4% better, on average,

than [Sharma et al. 2017]. Also, by analyzing the leakage power obtained for the net-

card_fast circuit, which is the largest circuit of the benchmark suite, the sizer developed in

this work marginally outperforms the results obtained in [Flach et al. 2013] and [Sharma

et al. 2017] with a leakage power savings of 0.27% and 0.54%, respectively.

Table 6.3: Leakage power (W ) results on ISPD 2012 benchmarks suite.

Benchmark
# of Leakage Power (W )Comb.

Gates Flach Sharma New New/Flach New/Sharma
DMA_slow 23K 0.132 0.135 0.132 1.000 0.977
DMA_fast 23K 0.238 0.245 0.243 1.021 0.991
pci_bridge32_slow 30K 0.096 0.098 0.098 1.020 1.000
pci_bridge32_fast 30K 0.136 0.141 0.143 1.051 1.014
des_perf_slow 102K 0.570 0.583 0.582 1.021 0.998
des_perf_fast 102K 1.395 1.436 1.433 1.027 0.997
vga_lcd_slow 148K 0.328 0.329 0.331 1.009 1.006
vga_lcd_fast 148K 0.413 0.417 0.420 1.016 1.007
b19_slow 213K 0.564 0.569 0.565 1.001 0.992
b19_fast 213K 0.717 0.729 0.716 0.998 0.982
leon3mp_slow 540K 1.334 1.335 1.334 1.000 0.999
leon3mp_fast 540K 1.443 1.449 1.438 0.996 0.992
netcard_slow 861K 1.763 1.763 1.754 0.994 0.994
netcard_fast 861K 1.841 1.846 1.836 0.997 0.994
Avg. - - - - 1.011 0.996

As presented in Table 6.4, the new gate sizing tool requires 4.28× fewer LR iter-

ations, on average, than the baseline work. Also, during the LR phase, it evaluates 9.11×

fewer cell option candidates, on average, than the baseline sizer. It is also achieved a sig-

nificant reduction in leakage power blow up during the LR phase. Compared to the final

leakage power values presented in Table 6.3, the baseline gate sizing tool increases the
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leakage power 9.65×, on average, while the new improved tool only increases the leakage

power 2.74×, on average.

Table 6.4: # LR iterations, # evaluated cell candidates in LR and leakage power increase
during LR for ISPD 2012 benchmarks suite.

Benchmark

# LR # Evaluated Cells Max Leakage/
Iterations in LR (×106) Final Leakage

Flach New New New Flach/ Flach New Flach/ Flach New
TR-LR PR-LR Total New New

DMA_slow 100 3 25 28 3.57 67.01 8.34 8.03 9.21 3.35
DMA_fast 100 5 28 33 3.03 67.01 10.79 6.21 6.66 3.4
pci_bridge32_slow 100 5 19 24 4.16 86.54 9.57 9.04 10.04 2.61
pci_bridge32_fast 100 13 35 48 2.08 86.54 20.92 4.13 7.72 2.29
des_perf_slow 100 5 17 22 4.54 297.03 36.78 8.07 4.58 2.0
des_perf_fast 100 7 25 32 3.12 297.03 55.46 5.35 3.17 2.0
vga_lcd_slow 100 7 13 20 5 428.65 47.34 9.05 15.35 2.66
vga_lcd_fast 100 9 14 23 4.34 428.65 58.28 7.35 13.23 3.22
b19_slow 100 5 23 28 3.57 616.75 73.38 8.40 5.20 1.53
b19_fast 100 7 30 37 2.70 616.75 100.08 6.16 5.19 1.98
leon3mp_slow 100 4 15 19 5.26 1567.02 132.08 11.86 15.27 3.74
leon3mp_fast 100 4 26 30 3.33 1567.02 183.22 8.55 15.83 4.46
netcard_slow 100 2 8 10 10 2496.75 110.16 22.66 10.46 1.76
netcard_fast 100 3 16 19 5.26 2496.75 195.72 12.75 13.26 3.46
Avg. - - - - 4.28 - - 9.11 9.65 2.74

It was obtained an expressive reduction in the number of LR iterations for the

netcard_slow benchmark. While the baseline work requires 100 iterations during the LR,

this work required only 10 iterations. Thus, in terms of iterations, the speedup obtained

was 10×. As a consequence, the new sizer evaluated 22.66× less cell option candidates

than the baseline sizer, which is a significantly reduction.

Considering the vga_lcd_slow benchmark, the leakage power peak during the LR

phase of the baseline sizer reaches 15.35× the final leakage power value, while the leak-

age power peak of the new sizer is 2.66× the final value. This result shows the effective-

ness of the strategies adopted to reduce the leakage power blow up during the initial LR

iterations.

By comparing the leakage power results from Table 6.3 and the improvements

presented in Table 6.4, it is possible to notice that the sizer tool developed in this work was

able to tackle the drawbacks presented in the beginning of this chapter without harming

too much the leakage power, since it is only 1.1% worse on average than the results

obtained by [Flach et al. 2013].

The runtime and runtime breakdown are shown in Table 6.5. For some fast bench-

marks, the new gate sizer spends most of the runtime in the timing recovery step. It is

expected, since the slow benchmarks do not require a hard effort to remove the timing

violations.
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Table 6.5: Runtime breakdown (%).

Benchmark Runtime Runtime breakdown (%)
(min) Initialization TR-LR PR-LR TR PR

DMA_slow 2.30 0.50 13.45 50.79 9.00 26.26
DMA_fast 2.72 0.43 18.10 45.72 8.22 27.53
pci_bridge32_slow 1.90 0.60 31.65 48.37 2.45 16.93
pci_bridge32_fast 3.90 0.30 39.86 45.82 3.91 10.11
des_perf_slow 20.58 0.27 7.59 13.39 22.43 56.32
des_perf_fast 58.18 0.11 3.93 8.01 51.88 36.07
vga_lcd_slow 19.42 0.42 25.63 20.13 6.15 47.67
vga_lcd_fast 163.25 0.07 4.07 2.70 84.15 9.01
b19_slow 26.91 0.56 21.50 44.73 5.07 28.14
b19_fast 46.05 0.33 18.81 34.26 20.21 26.39
leon3mp_slow 123.98 0.30 14.92 21.72 3.56 59.50
leon3mp_fast 249.10 0.17 7.51 18.81 10.71 62.80
netcard_slow 87.30 0.68 12.83 21.57 0.42 64.50
netcard_fast 208.32 0.26 8.60 18.45 7.37 65.32
Avg. - 0.35 16.31 23.68 16.82 50.78

By comparing the Table 6.5 and the Table 6.6 presented below, it is possible to

notice that, in general, the power recovery step does not improve the leakage power sig-

nificantly, although it requires an expressive runtime. This behavior is due to the slow

incremental STA performed each time a cell option is evaluated. Yet, since the number of

LR iterations were significantly reduced and since the number of cell option candidates

evaluated were also considerably reduced, the enhanced power recovery phase is the most

timing consuming of the flow, on average.

Table 6.6: Leakage power after each step.

Benchmark Leakage Power (W) - After
LR TR PR

DMA_slow 0.133 +0.23% -0.57%
DMA_fast 0.245 +0.30% -1.24%
pci_bridge32_slow 0.099 +0.08% -1.31%
pci_bridge32_fast 0.143 +2.66% -2.29%
des_perf_slow 0.592 +0.22% -1.90%
des_perf_fast 1.476 +0.37% -3.28%
vga_lcd_slow 0.335 +0.10% -1.38%
vga_lcd_fast 0.427 +1.24% -3.01%
b19_slow 0.569 +0.02% -0.71%
b19_fast 0.737 +0.15% -3.00%
leon3mp_slow 1.342 +0.00% -0.58%
leon3mp_fast 1.643 +0.05% -12.54%
netcard_slow 1.758 +0.00% -0.18%
netcard_fast 1.845 +0.03% -0.52%
Avg. - +0.38% -2.32%

Table 6.7 presents the runtime comparison between the new sizer and the sizers

proposed in [Flach et al. 2013] and [Sharma et al. 2017] just to show how much the used

infrastructure can impact the runtime. The results show that the new sizer is 4.41× slower

than [Flach et al. 2013], on average, and 66.33× slower than [Sharma et al. 2017], on
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average. It is important to highlight that the baseline sizer was implemented over an in-

frastructure designed specifically to address the discrete gate sizing problem, whereas this

work was implemented using Rsyn, which is a generic framework designed for physical

synthesis research and development, and so is not tuned for sizing algorithms. Therefore,

it is expected a speedup if this work was implemented using the same infrastructure used

in the baseline work. [Sharma et al. 2017] did not give details about the infrastructure

used, but the sizing algorithm relies on parallelism. Besides the parallelism, the flow does

not contain a post-LR power recovery like algorithm, which is, as previously demon-

strated, very timing consuming. Instead, the leakage power is further reduced during the

LR phase by a refinement step. Also, during the LR phase, the TNS of the circuit is

kept under control, so that it does not exceed 10% of the clock period. It means that the

greedy timing recovery phase, that can be very timing consuming, has to fix only some

small remaining timing violations. As reported in their work, the greedy timing recovery

corresponds to only 3%, on average, of the total runtime.

Table 6.7: Runtime comparison.

Benchmark
Runtime (min)

Flach Sharma New New/ New/
Flach Sharma

DMA_slow 0.79 0.07 2.30 2.91 32.85
DMA_fast 0.92 0.08 2.72 2.95 34.00
pci_bridge32_slow 0.87 0.09 1.90 2.18 21.11
pci_bridge32_fast 0.92 0.10 3.90 4.23 39.00
des_perf_slow 25.31 0.32 20.58 0.81 64.31
des_perf_fast 16.37 0.40 58.18 3.55 145.45
vga_lcd_slow 5.67 0.44 19.42 3.42 44.13
vga_lcd_fast 8.37 0.56 163.25 19.50 291.51
b19_slow 9.15 0.83 26.91 2.94 32.42
b19_fast 11.75 1.13 46.05 3.91 40.75
leon3mp_slow 38.98 2.52 123.98 3.18 49.19
leon3mp_fast 46.62 3.13 249.10 5.34 79.58
netcard_slow 34.39 2.35 87.30 2.53 37.14
netcard_fast 47.41 3.33 208.32 4.39 62.55
Avg. - - - 4.41 66.33

It can be noticed that for the vga_lcd_fast benchmark, the new sizer is way slower

than the other works, being 19.50× slower than [Flach et al. 2013] and 291.51× slower

than [Sharma et al. 2017]. This could be explained by analyzing the runtime breakdown,

Table 6.5, which shows that, for this benchmark, the timing recovery phase corresponds

to 84.15% of the total runtime. Thus, the benefit of reducing the number of LR iterations

and cell option candidates evaluated during the LR was lost due to the excessive timing

recovery runtime, which was not able to quickly fix the timing violations.

Since the RGS does not rely on a post-LR power recovery phase, it is compared in
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Table 6.8 the new gate sizer without the enhanced power recovey step and the RGS. The

results show that, in general, the new sizer produces very close leakage power results,

being only 2% worse, on average. However, for the largest benchmarks, the new sizer

produces pratically the same result, since the power saved is only 0.1%. The RGS per-

forms 13.4% better for the leon3mp_fast benchmark, since the post-LR power recovery

phase of the new gate sizer improves the leakage power significantly for this benchmark.

Also, without the power recovery phase, the new sizer is still slower than the RGS, but,

as shown in the table below, it is now 34.94× slower, on average, while with the power

recovery phase it is 66.33× slower, on average. So, a speedup of 47.32% is obtained by

removing the power recovery.

Table 6.8: Comparison between the new gate sizer without PR and [Sharma et al. 2017].

Benchmark
Leakage power (W) Runtime (min)

New sizer Sharma New/ New sizer Sharma New/
without PR Sharma without PR Sharma

DMA_slow 0.133 0.135 0.985 1.69 0.07 24.14
DMA_fast 0.246 0.245 1.004 1.97 0.08 24.62
pci_bridge32_slow 0.099 0.098 1.010 1.57 0.09 17.44
pci_bridge32_fast 0.146 0.141 1.035 3.50 0.10 35
des_perf_slow 0.593 0.583 1.017 8.98 0.32 28.06
des_perf_fast 1.482 1.436 1.032 37.19 0.40 92.97
vga_lcd_slow 0.335 0.329 1.018 10.16 0.44 23.09
vga_lcd_fast 0.433 0.417 1.038 148.54 0.56 265.25
b19_slow 0.569 0.569 1.000 19.33 0.83 23.28
b19_fast 0.738 0.729 1.012 33.89 1.13 29.99
leon3mp_slow 1.342 1.335 1.005 50.21 2.52 19.92
leon3mp_fast 1.644 1.449 1.134 92.66 3.13 29.60
netcard_slow 1.758 1.763 0.997 30.99 2.35 13.18
netcard_fast 1.845 1.846 0.999 72.24 3.33 21.69
Avg. - - 1.020 - - 34.94

Table 6.9 presents the true speedup obtained in this work. In this table, the new

sizer is compared with an implementation of the baseline sizer implemented on Rsyn,

which is refered in the table as Baseline Rsyn. In order to make a fair comparison, it has

been chosen some benchmarks such that the leakage power results obtained by Baseline

Rsyn match or are very close to the results reported in [Flach et al. 2013]. The results

show that the new sizer is 9.77× faster, on average, than the baseline sizer implemented

on Rsyn. For the benchmark leon3mp_slow, the new sizer is 11.48× faster. Therefore,

as aforementioned, it is expected that if the new sizer was implemented on the same

infrastructure of [Flach et al. 2013], its runtime results would be better than the runtimes

reported by the authors of the baseline work.
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Table 6.9: Comparison between the new gate sizer and an implementation of [Flach et al.
2013] on Rsyn.

Benchmark
Runtime (min)

New Sizer Baseline Baseline Rsyn/
Rsyn New Sizer

DMA_slow 24.06 2.30 10.46
pci_bridge32_slow 18.12 1.90 9.53
pci_bridge32_fast 18.89 3.90 4.84
vga_lcd_slow 213.11 19.42 10.97
b19_slow 296.71 26.91 11.02
b19_fast 435.35 46.05 9.45
leon3mp_slow 1424.25 123.98 11.48
netcard_slow 912.74 87.30 10.45
Avg. - - 9.77×

6.4.1 Runtime Reduction in LR Phase Using Cell Option Candidates Filter

In order to demonstrate the benefits of the cell option candidate filtering strategy,

it is presented below the tables 6.10 and 6.11 obtained by running the sizer flow for the

netcard_slow benchamrk. The first one shows the runtime of each LR iteration of the TR-

LR, which does not rely on cell option candidate filtering, while the second table shows

the runtime of each iteration of the PR-LR, which uses the cell option candidate filtering

strategy explained in this chapter. By comparing both tables, it can be noticed that the

runtime of an iteration of PR-LR is about 58% lower, on average, than an iteration of the

TR-LR.

Table 6.10: Runtime (s) of TR-LR iterations for the netcard_slow benchmark.
Timing Recovery Lagrangian Relaxation

Iteration Runtime (s)
1 348.28
2 318.35

Avg. 333.31

Table 6.11: Runtime (s) of PR-LR iterations for the netcard_slow benchmark.
Power Reduction Lagrangian Relaxation

Iteration Runtime (s)
1 157.35
2 154.74
3 143.70
4 130.67
5 131.17
6 130.38
7 133.05
8 130.22

Avg. 138.91

In Table 6.12, it is provided the leakage power results obtained in the LR phase

without the use of the cell option candidates filter and with the use of the filter. Compared
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to the LR phase without filter, the LR phase with filter produced, in general, very similar

leakage power results, being, on average, 66.7% faster.

Table 6.12: Comparison between the LR phase without cell option candidate filter and the
LR phase with cell option candidate filter.

Benchmark
Leakage power (W) after LR Runtime (min) of LR phase

Without filter With filter With filter/ Without filter With filter Without filter/
Without filter With filter

DMA_slow 0.133 0.133 1.000 2.31 1.47 1.571
DMA_fast 0.246 0.245 0.995 2.83 1.73 1.635
pci_bridge32_slow 0.099 0.099 1.000 2.43 1.52 1.598
pci_bridge32_fast 0.142 0.143 1.007 5.02 3.34 1.502
des_perf_slow 0.591 0.592 1.001 7.08 4.31 1.642
des_perf_fast 1.484 1.476 0.994 10.17 6.94 1.465
vga_lcd_slow 0.332 0.335 1.009 17.35 8.88 1.953
vga_lcd_fast 0.428 0.427 0.997 16.69 11.05 1.510
b19_slow 0.569 0.569 1.000 33.79 17.82 1.896
b19_fast 0.743 0.737 0.991 44.94 24.43 1.839
leon3mp_slow 1.338 1.342 1.002 77.18 45.42 1.699
leon3mp_fast 1.452 1.643 1.131 99.23 65.56 1.513
netcard_slow 1.754 1.758 1.002 54.89 30.03 1.827
netcard_fast 1.837 1.845 1.004 95.43 56.35 1.693
Avg. - - 1.009 - - 1.667

The biggest discrepancy occured for the leon3mp_fast benchmark. So, for this

benchmark, the cell option filtering strategy adopted was not as effective as it was for

the other benchmarks. Probably, it should consider more cell option candidates. The

consequence of saving less power for this benchmark is that the power recovery will have

to reduce more leakage power, which is a drawback, since, as previously demonstrated,

the power recovery phase can be very timing consuming.

6.4.2 Slack Histogram Compression

As demonstrated in [Flach 2015], the baseline work compress the slacks around

the zero slack. This is desirable, since a slack distribution around the zero slack indicates

that the sizer tool uses the positive slacks on non-critical paths to save power. In order to

demonstrate that the sizer developed in this work keeps this property, it is presented below

the slack histogram for the benchmarks DMA_fast and netcard_fast. The fast bechnmarks

have been chosen since they have a tighter clock period, hence they are more difficult to

optimize. These histograms show that most of the endpoints are in the zero slack bucket.

Therefore, the sizer tool developed in this work is keeping the property of consuming the

slacks on non-critical paths.
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Figure 6.4: Slack histogram for the DMA_fast benchamrk.

Source: from author (2018)

Figure 6.5: Slack histogram for the netcard_fast benchamrk.

Source: from author (2018)

6.4.3 Cell Options Usage

To conclude this chapter, Figure 6.6 and Figure 6.7 show the cell option usage

for the pci_bridge32_slow and pci_bridge32_fast benchmarks, respectively. It can be

observed that for the pci_bridge32_fast benchmark, the sizing flow selected more cell

options with greater drive strength and lower Vth, since the clock period is tighter than the
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slower version of the same benchmark. Therefore, by comparing this figure with Table

6.3, it can be noticed how much the used faster cell options impacted the leakage power

consumption for the fast benchmark. Regarding the extra effort needed to make the fast

circuit meet timing, it can also be noticed that X80 cells, that are the largest available

in the library used, were used in the fast benchmark, while for the slow benchmark the

largest size used was X40.

Figure 6.6: Cell options usage by Vth and sizes for the pci_bridge32_slow benchmark.

Source: from author (2018)

Figure 6.7: Cell options usage by Vth and sizes for the pci_bridge32_fast benchmark.

Source: from author (2018)
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7 CONCLUSION

Discrete gate sizing is an effective technique that is employed in the design flow of

integrated circuits to peform optimizations, e.g. area and/or leakage power minimization.

Due to its relevance, the ISPD 2012 and ISPD 2013 contests addressed this topic, aiming

the minimization of leakage power.

State-of-the-art discrete gate sizing algorithms rely on Lagrangian relaxation due

to its effectiveness to produce good quality solutions. The discrete gate sizing tool pro-

posed in [Flach et al. 2013] has the best results in terms of leakage power, however it

suffers from some drawbacks such as leakage power blow up during the LR optimization

step, many LR iterations and lack of cell option candidate filtering.

Therefore, it was presented in this work a set of strategies to cope with some

drawbacks of the LR based algorithm proposed in [Flach et al. 2013], which was used as

the baseline work. Compared to [Flach et al. 2013], the new approach produced similar

leakage power results, performing 4.28× fewer LR iterations, on average, and 9.11×

fewer cell option candidate evaluations during LR, on average. Also, it was possible to

reduce the leakage power blow up in the LR phase from 9.65× the final value, on average,

to 2.74× the final value, on average. Furthermore, the new gate sizer without the post-LR

power recovery phase still produces similar leakage power results if compared to [Sharma

et al. 2017], performing slightly better for some benchmarks. In addition, it was modified

the timing recovery method to improve the runtime. Finally, the post-LR power recovery

phase was modified such that it uses the arrival time sensitivity metric to identify gates

that have potential to be processed first so that the leakage power is reduced while meeting

timing.

The drawback of the sizer developed in this work is the enhanced power recov-

ery phase, which is, in general, very timing consuming and does not improve too much

the leakage power. Other weakness that can be pointed is that a good amount of the to-

tal runtime is spent, in general, in the enhanced timing recovery phase, which fixes the

remaining timing violations left by the LR phase. Therefore, although the LR phase is

properly optimizing the leakage power of the circuits provided, it could perform a bet-

ter control of the timing violations, such that the enhanced timing recovery can quickly

makes the circuit meet timing.
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7.1 Future Works

In this work, it was proposed a strategy to filter cell option candidates. Although

this strategy enabled this work to achive good results, it is still simplistic. Thus, a next

step is to investigate a better strategy such that less candidates are evaluated, keeping the

overall quality.

It was observed that the post-LR enhanced timing recovery can be very timing

consuming. Hence, in a future work, a better strategy could be developed, such that the

benefit brought by reducing the number of iterations and cell options validated during the

LR-core is not wasted. Or, during the LR phase, the timing violations could be kept under

control, as in [Sharma et al. 2017]. Thus, the post-LR timing recovery could quickly fix

small remaining timing violations. Other strategy that could be investigated is to modify

the Lagrange multipliers update method, as in [Reimann, Sze and Reis 2016], such that

the PR-LR stage keeps the timing quality obtained during the TR-LR.

Other point that could be explored in a futere work is a better usage of the arrival

time sensitivity metric. In this work, it was only used in the post-LR power recovery to

sort the cells, such that cells that do not harm too much the timing are processed first.

Therefore, it could be investigated a post-LR power recovey algorithm that does not at-

tempt to size all cells of the design, while saving a good amount of power. As demon-

strated in the results section, the post-LR power recovery is, in general, very timing con-

suming. So, another alternative would be to remove this phase and add inside the LR

phase a leakage power refinement step, like in the multi-gate sizing proposed in [Sharma

et al. 2017].

Finally, this present work does not use multithreaded algorithms. In a future work,

the Lagrangian subproblem solver could be parallelized, like in [Sharma et al. 2017].

Thus, by using a parallelized LR-core together with the future improvements proposed

above, the sizer implemented in this work could be more competitive in terms of runtime.
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