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In the present analysis, we study the action of a three-dimensional (3D) modulated electrostatic

wave over a charged particle. Meanwhile, the particle’s velocity is smaller than the phase-velocity

of the carrier, and the particle could be reflected by the potential or could pass through the potential

with no significant change in the longitudinal velocity—and its dynamics could be described by

a ponderomotive approximation. Otherwise, the particle is trapped by the potential and it is acceler-

ated towards the speed of light, independently of the initial particle’s phase—in this case, the

ponderomotive approximation is no longer valid. During the acceleration process, numerical simu-

lations show the particle is focused, simultaneously. These results suggest the accelerator proposed

here is promising. Published by AIP Publishing. https://doi.org/10.1063/1.5020724

I. INTRODUCTION

Charged particle accelerators need some optimum

length to accelerate beams to the desired final velocities. In

the case of the electrostatic accelerators such as the accelera-

tors of the pioneers Cockcroft-Walton1 and Van de Graaff,2

the mentioned length is the distance between electrodes. In

electromagnetic accelerators,3 on the other hand, the opti-

mum length is dictated either by the size of accelerating cells

in radio-frequency (RF)4,5 or by the distance covered by

accelerating particles trapped in the wakefields of plasma

based accelerators, for instance.6

Along the accelerator length, particles need to stay close

to the axis of the device where fields are more intense and

where acceleration is coherently driven, a fact that poses

some issues since space charge or transverse ponderomotive

effects naturally push particles outwards. Magnetic focusing

is commonly used to keep the beam close to the transport

axis in RF systems,7–10 while their own wakefields may trap

particles close to the axis in plasma based accelerators.

We discuss yet an alternative approach that results from

trapping particles in the accelerating wave through a slowly

modulated electrostatic wave, after an initial ponderomotive

phase brings particle up to resonant conditions. The mecha-

nism is basically a three-dimensional extension of the previ-

ous one-dimensional model recently studied.11 Differently of

the beat wave accelerator, for example Refs. 7, 12, and 13,

which could provide high field intensities,14,15 on that one-

dimensional model, the acceleration does not depend on the

initial phase of the particle. The longitudinal modulation of

the electrostatic wave is preserved in comparison with the

previous work,11 and the transverse dynamics of the system

and the transverse profile of the wave are also taken into

account. The ponderomotive approximation16,17 is applied,

eliminating the high frequency terms associated with the lon-

gitudinal coordinate. The approximation reasonably describes

the mean value of the particle’s dynamics when the system is

far from the resonance.

Three different regimes are observed: the reflecting

regime, where the particle is reflected by the electrostatic

wave; the passing regime, in which the particle passes through

the wave and does not experience substantial acceleration;

and, finally, the accelerating regime. In the accelerating

regime, the longitudinal velocity of the particle becomes

greater than the phase-velocity of the carrier. At this moment,

the particle is trapped by the potential and it is accelerated

towards c (speed of light). Simultaneously, under proper con-

ditions, the radial coordinate of the particle decreases. The

accelerating and the focusing behaviours together are highly

interesting from the point of view of particle accelerators and

beam transport.

This paper is organized as follows: in Sec. II, we present

the 3D model and the ponderomotive approximation as well;

in Sec. III, we show the main results, the role of each param-

eter of the model, and the details of each regime; and, finally,

in Sec. IV we draw our conclusions.

II. THE 3D MODEL

A. Full model

The three-dimensional model used in this work is a mul-

tidimensional extension of Ref. 11, where we add transverse

profiles for the field and particle dynamics. In this case,

the electrostatic modulated wave has also a radial profile.

The Lagrangian that describes the interaction of a relativistic

particle with the electrostatic modulated wave is thus

expressed as
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L ¼ �mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _r2 þ r2 _h

2 þ _z2

c2

s
� qu z; r; tð Þ; (1)

where c is the speed of light, u is the electrostatic modulated

wave, and m and q are the mass and the charge of the elec-

tron, respectively.

The electrostatic modulated wave is written as

u z; r; tð Þ ¼ u0 exp � z2

r2
z

� r2

r2
r

 !
cos kz� xtð Þ; (2)

where the amplitude u0 is constant, k and x are the wavevec-

tor and the frequency of a carrier moving along the z axis,

and rz and rr measure the envelope length and the radial pro-

file length of the wave, respectively. We consider rz, rr� 1/

k to enforce the condition of a slowly modulated wave train.

The physics of this purely electrostatic modulated wave pro-

posed here is similar to the physics of a particle submitted to

the combined action of collinear electromagnetic and wig-

gler fields. This kind of arrangement is usually seen in

inverse free-electron lasers devices.18–20

A dimensionless Hamiltonian can be obtained from the

Lagrangian of Eq. (1) by normalizing z by k�1 and t by x�1

H r; pr; ph; z; pz; tð Þ ¼ cþ u0 exp � z2

r2
z

� r2

r2
r

 !
cos z� tð Þ:

(3)

The relativistic factor c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ ðp2

r þ p2
h=r2 þ p2

z Þ=a�
q

is written in terms of the dimensionless momenta pr, p2
h=r2,

and p2
z , with a ¼ v2

/=c2 and v/¼x/k as the phase-velocity of

the carrier. The Hamiltonian H is normalized by the factor

mc2 and u0 is normalized by the factor mc2/q.

Hamiltonian canonical equations for this problem yield

_pz ¼ u0 exp � z2

r2
z

� r2

r2
r

 !
2z

r2
z

cos z� tð Þ þ sin z� tð Þ
� �

;

_pr ¼
p2

h

acr3
þ 2r

r2
r

u0 exp � z2

r2
z

� r2

r2
r

 !
cos z� tð Þ;

_ph ¼ 0;

_z ¼ pz

ca
;

_r ¼ pr

ca
;

_h ¼ ph

r2ca
:

(4)

As can be seen, ph is a constant of motion because the

problem has symmetry in h coordinate. Moreover, _pr may be

negative, which allows decreasing values of r and concomi-

tant particle focusing near the transport axis during the sys-

tem dynamics. For that, the relation cos ðz� tÞ < �ðphrr
2=

2acr4Þ½u0 exp ð�z2=rz
2 � r2=rr

2Þ��1
must be satisfied: as

ðphrr
2=2racr4Þ½u0 exp ð�z2=rz

2 � r2=rr
2Þ��1

is positive, the

term cos ðz� tÞ must be negative and greater in modulus

than that term. The focusing (the decrease in r), as already

written, is a very important and desirable feature for beam

transportation.

In all the cases discussed in this work, we use _rðt
¼ 0Þ ¼ 0 and €rðt ¼ 0Þ ¼ 0, the latter condition obtained by

a convenient choice of ph. Under these conditions, the sys-

tem starts from equilibrium, without initial force and veloc-

ity in radial coordinate.

B. Ponderomotive approximation

Despite the complicated relation between pr, pz, and ph

present in c, if the initial conditions are such that the par-

ticle’s dynamics is far from resonance (i.e., the maximum

longitudinal velocity of the particle is smaller than the

phase-velocity of the carrier), the ponderomotive approxima-

tion describes (through a self-consistent set of time averaged

low-frequency variables21) in a reasonable way the evolution

of the particle, both in the reflecting regime (negative final

longitudinal velocity) or in the passing regime (positive final

longitudinal velocity). Moreover, the accuracy of the approx-

imation is better as we increase the gap of the maximum

value of longitudinal particle’s velocity and the resonance

velocity.

The ponderomotive approximation removes the high-

frequency jitter induced by the oscillatory character of the

carrier and allows to describe the dynamics solely in terms

of time-averaged quantities.

In our case, to build the ponderomotive approximation,

a change in the momentum pz is made: pz¼Pzþ @f/@z
(where Pz is a low frequency variable that describes the

mean value during the evolution of pz—the mean of pz from

the full model is obtained executing a time average over a

moving window). A change in z is also necessary in order to

obtain a canonical transformation (Z¼ zþ @f/@Pz). However,

as u/rz� 1, which is similar to (Z – z)/rz� 1, z and Z are

approximately the same. The generating function f is such

that f absorbs the high-frequency terms, giving to the new

momentum (Pz) a status of a low-frequency variable and it is

written, in first-order, as

f ¼ u0

1� Pz

aC

� � e�z2=rz
2

e�r2=rr
2

sin ðz� tÞ; (5)

where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ðp2

r þ p2
h=r2 þ P2

z Þ=a�
q

.

Executing the adequate substitutions, the ponderomotive

Hamiltonian, H, obtained is expressed as

H ¼ Cþ 1

4aC
u0

2e�2Z2=rz
2

e�2r2=rr
2

Pz=aC� 1ð Þ2
1� Pz

2

aC2

� �
; (6)

where the capital Z represent the change position variable.

That can be understood as the position of the particle’s oscil-

lation center and obtained through the generating function f
as Z¼ zþ @f/@Pz. Through the ponderomotive Hamiltonian,

the mean value of pz could be calculated by the relation

pz¼Pz. As one has pz, vz¼ pz/ac(pz). Equation (6) could pro-

vide the envelope of vz: vzmin=max
¼ pzmin=max

=ac, where pzmin

¼ Pz þ minð@f=@zÞ and pzmax
¼ Pz þ maxð@f=@zÞ.
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III. RESULTS

As commented earlier, the present system has some sim-

ilarities with the one dimensional model proposed in Ref. 11,

so we use the techniques employed in this previous work. In

order to find an accelerating regime, we expressed the final

longitudinal velocities of the particles as a colour graded

map: variables u0, rr, rz, and a were maintained fixed, while

r0¼ r(t¼ 0) and vz0¼ vz(t¼ 0) were varied. The result is

shown in Fig. 1. The map was built for a1=2¼ 0.90, u0¼ 1,

rr¼ 50, and rz¼ 100. Additionally, _rðt ¼ 0Þ ¼ €rðt ¼ 0Þ
¼ 0. As can be seen, there are three distinct regions (exactly

as in Ref. 11): The blue color represents negative final veloc-

ities; the white, gray, and black colors indicate positive

velocities without significant acceleration; and, finally, the

red and yellow colors show the region where the particle is

accelerated (up to 0.997c) by the electrostatic field. The

points labelled in the map are explored in details later on.

In general, if r0 increases, the initial longitudinal veloc-

ity needed to achieve the same final velocity also increases.

This is explained when one looks at Eq. (2): The transverse

profile of the wave is such that the intensity decays with r.

Then, to increase r0 is similar to reduce u0. As in Ref. 11,

there is a periodic array of less-than-effective curves inside

the accelerating region. The meaning of these singular

curves is the same: Their vertices correspond to the fixed

points of the dynamics where injecting and exiting velocities

are identical.

The point 2 of Fig. 1 represents the reflecting regime of

this system and is shown in details in Fig. 2. Panel (a) depicts

the time evolution of the longitudinal velocity, vz (in a�1=2

units, which is equal to the velocity normalized to the speed

of light), denoted by the red solid line and the time evolution

of the radial velocity, vr (in a�1=2 units), described by the

blue solid line. The resonant velocity is given by the green

solid line, while the mean values of vr and vz given by the

ponderomotive approximation are expressed by the black

dashed lines (the gray solid line is from the integration of

Eq. (4) and express the mean of vz evaluated through a

moving window). The ponderomotive approximation well

describes the evolution of the mean of the velocities, offering

a good estimative of the final vz and vr. The particle begins

its dynamics with _rðt ¼ 0Þ ¼ 0 and _vzðt ¼ 0Þ � 0, but as the

effect of the electrostatic field becomes relevant, the radial

velocity grows, in a way that the final radial velocity is about

0.36c. On the other hand, the longitudinal velocity oscillates

when the effect of the electrostatic field becomes relevant

and then the particle is reflected by the field. The final longi-

tudinal velocity of the particle is vz½a�1=2� � �0:18. In panel

(b), a phase-space vr vs. r is shown. Initially, _rðt ¼ 0Þ
¼ €rðt ¼ 0Þ ¼ 0 and r(t¼ 0)¼ 5, then, as we see in panel (a),

the radius and the radial velocity grow. Due to the longitudi-

nal modulation of the electrostatic field, when jzj � rz, the

action of the field is negligible and the system acquires its

final velocities. Finally, in panel (c) is plotted the phase-

space vz vs. z. The particle oscillates while getting closer of

the center of the longitudinal electrostatic field shape and

then it is reflected.

Particle could also pass through the field in a way that it

does not experience any appreciable change between its ini-

tial and its final velocities—this is the passing regime. To

describe the evolution of the passing regime, we explore in

details the point 3 of Fig. 1. Figure 3 was built for u0¼ 1.0,

rz¼ 100, rr¼ 50, r(t¼ 0)¼ 50, and vz(t¼ 0)[a�1=2]¼ 0.4.

Panel (a) of Fig. 3 shows the evolution of the longitudinal

and radial velocities. The longitudinal velocity starts from

vz(t¼ 0)[a�1=2]¼ 0.4, then it oscillates due to the electro-

static field and reaches its final value (vz[a
�1=2]� 0.32). The

radial velocity, which is initially zero, grows to vr[a
�1=2]

� 0.24. The dashed lines represent the mean values of the

velocities vz and vr, integrated from the ponderomotive

approximation and the gray solid line is from Eq. (4). As the

system is far from the resonance, the approximation works

well, except in the region near z¼ 0. The phase-space vr vs. r

FIG. 1. Color graded map of the longitudinal exiting velocities for a1=2

¼ 0.90, u0¼ 1, rr¼ 50, and rz¼ 100. In the horizontal axis is represented

the initial longitudinal velocity of the particle, vz0, while in the vertical axis

is expressed the initial radial coordinate of the particle, r0. The points

labeled in the map are discussed later on.

FIG. 2. Respective time evolutions for vz and vr are shown in panel (a)

(dashed line is from the ponderomotive approximation). Panel (b) is for

the phase-space in r-coordinate, while panel (c) is for the phase-space in z-

coordinate. The results were plotted for
ffiffiffi
a
p
¼ 0:9; u0 ¼ 1:0; rz ¼ 100; rr

¼ 50; rðt ¼ 0Þ ¼ 5, and vzðt ¼ 0Þ½a�1=2� ¼ 0:4. This set of parameters is

represented by the label 2 in Fig. 1.

023110-3 Russman et al. Phys. Plasmas 25, 023110 (2018)



is plotted in panel (b). The radial velocity grows along the

system dynamics, which implies that the radius also grows:

There is no focusing of the beam. In panel (c), the phase-

space vz vs. z is presented. As the maximum velocity of the

particle is under the resonant velocity, the particle is not

trapped by the electrostatic field and is not accelerated. The

final longitudinal velocity of the particle is slightly smaller

than the initial longitudinal velocity. It may be explained due

the change in the radial velocity—kinetic energy of the parti-

cle was transferred from the longitudinal to the radial coordi-

nates during the dynamics.

So far as acceleration is concerned, the most efficient

regime in the present model, which is denoted by the point 4

in Fig. 1, is shown in detail in Fig. 4 for r(t¼ 0)¼ 5 and

vz(t¼ 0)[a�1=2]¼ 0.57. The evolution of the longitudinal

(red solid line) and the radial (blue solid line) velocities is

depicted in panel (a). As can be seen, the red solid line inter-

cepts the green line (resonant velocity) and then the particle

is accelerated towards c around the maximum of the poten-

tial well. Exactly as in Ref. 11, the particle is accelerated and

it is not pushed back by the next potential maximum because

the value of the amplitude of the potential well decays as jzj
is increased. It can be seen that when the particle is trapped

and accelerated by the potential well, the relation _r < 0 is

satisfied (cosðz� tÞ<�ðphrr
2=2acr4Þ½u0 expð�z2=rz

2� r2=
rr

2Þ��1
). It could be understood as an effect of focusing,

where the radial coordinate of the particle decreases, as seen

in the phase-space vr vs. r on panel (b) of Fig. 4. But not

always the particle goes to r�0 while it is accelerated.

There are some cases where _r > 0 just before the trapping

that even _r assuming negative values during the trapping,

and it is not enough to reduce r(t) to smaller values than r0.

The phase-space vz against z is denoted in panel (c): The

particle is accelerated near the center (around z¼0) of the

longitudinal modulation of the electrostatic wave.

Inside the accelerating regime, there is a series of curves

that resemble half moons. The vertices of these curves are

similar to “fixed points” of the dynamics of the particles:

The injecting and the exiting longitudinal velocities of the

particles at these vertices are almost identical. As we move

inside the curves, from the vertices, the exiting velocity

becomes different from the injecting velocity. Panels (a)–(d)

of Fig. 5, respectively, show the time evolution of the radial

FIG. 3. Respective time evolutions for vz and vr are shown in panel (a)

(dashed line is from the ponderomotive approximation). Panel (b) is for

the phase-space in r-coordinate, while panel (c) is for the phase-space in z-

coordinate. The results were plotted for
ffiffiffi
a
p
¼ 0:9; u0 ¼ 1:0; rz ¼ 100; rr

¼ 50; rðt ¼ 0Þ ¼ 50, and vzðt ¼ 0Þ½a�1=2� ¼ 0:4. This set of parameters is

represented by the label 3 in Fig. 1.

FIG. 4. Respective time evolutions for vz and vr are shown in panel (a).

Panel (b) is for the phase-space in r-coordinate, while panel (c) is for the

phase-space in z-coordinate. The results were plotted for
ffiffiffi
a
p
¼ 0:9; u0

¼ 1:0; rz ¼ 100; rr ¼ 50; rðt ¼ 0Þ ¼ 5, and vzðt ¼ 0Þ½a�1=2� ¼ 0:57. This

set of parameters is represented by the label 4 in Fig. 1.

FIG. 5. Panels (a)–(d) show the time evolution of the longitudinal velocity

(red solid line) and the radial velocity (blue solid line) of the particle forffiffiffi
a
p
¼ 0:9; u0 ¼ 1:0; rz ¼ 100, and rr¼ 50: r(t¼ 0)¼ 76.59 and vzðt

¼ 0Þ½a�1=2� ¼ 0:791 for panel (a), r(t¼ 0)¼ 68.86 and vzðt ¼ 0Þ½a�1=2�
¼ 0:7824 for panel (b), r(t¼ 0)¼ 57.98 and vzðt ¼ 0Þ½a�1=2� ¼ 0:7738 for

panel (c), and r(t¼ 0)¼ 8.8 and vzðt ¼ 0Þ½a�1=2� ¼ 0:7544 for panel (d).

This set of parameters is represented by the label 5a, 5b, 5c, and 5d in Fig. 1.

023110-4 Russman et al. Phys. Plasmas 25, 023110 (2018)



and longitudinal velocities of the particles for the points 5a,

5b, 5c, and 5d of Fig. 1. In the panels, we see that if we

move downwards and leftwards along a imaginary line that

passes through the vertices, the number of oscillations

around the resonant line increases by one unit for each half

moon passed [one oscillation for panel (a), two for (b), four

for (c) and seven for (d)]. The presence of the curves must be

related with some resonance that does not let the particle to

sustain its peak velocity. This half moon structure is also

seen when we plot a colour graded map of the final radial

velocity. These curves must be avoided, if we are interested

in accelerating and focusing the particle.

In Fig. 6, a color graded map is plotted, where the colors

represent the minimum value of the r-coordinate of the parti-

cle, normalized by the initial r-coordinate of the particle

–rmin/r0. The vertical axis is for r0 and the horizontal one

is for vz0[a�1=2]. This map, as Fig. 1, was built using

a1=2¼ 0.90, u0¼ 1, rr¼ 50, and rz¼ 100. The blue color is

for minimum values of rmin/r0� 1, while the black color rep-

resents the focusing dynamics and it is for rmin/r0� 0. When

Fig. 6 is compared to Fig. 1 (the white dashed line is the tran-

sition between the acceleration regime and the passing and

the reflecting regimes), it can be seen that in the accelerating

regime, the particle is also focused, except for a narrow

region near the white line.

In this small region, during the trapping of the particle

(it occurs while z is near 0), the mean value of cos ðz� tÞ is

negative, which implies that the mean of @pr/@t is also nega-

tive. But as vr(t) and r(t) are considerably big before the trap-

ping, the negative mean value of the radial acceleration

along the time is not enough to focus the particle. If r0

decreases, then the particle is accelerated and focused as

well, as can be seen in the black color region inside the

acceleration region of Fig. 6.

Until this point, u0 was considered fixed and equal to 1,

but this parameter should be in fact explored to give a com-

plete overview of the problem. In Fig. 7, built for
ffiffiffi
a
p
¼ 0:9;

rz ¼ 100; rr ¼ 50, and r0¼ 5, the color graded map indicate

in the horizontal axis the initial longitudinal velocity of the

particle, in the vertical axis the amplitude of the electrostatic

wave (u0), while the colors represent the exiting velocity of

the particle. Three regions may be also identified: the reflect-

ing regime (blue color); the passing regime (gray color); and

the accelerating regime (yellow and red colors). The half

moon structures are seen as well. The particle’s dynamics in

each of these regimes are similar in comparison with what is

already shown in this work. For very small values of u0, the

initial longitudinal velocity needed to accelerate the particle

is nearest of the resonant velocity than for higher values of

u0. For values of u0> 0.4, the minimum initial longitudinal

velocity required to accelerate the particle is about 0.58 and

does not depend on u0. This kind of structured was observed

in Ref. 11.

Finally, a was kept fixed (
ffiffiffi
a
p
¼ 0:9) during this work.

As seen in Ref. 11, if we increase the value of the phase-

velocity of the carrier, the minimum value of vz0 needed to

be in the accelerating regime also increases (as well the final

velocity). Although the limits of the regions should be modi-

fied by changing a, the physics behind the whole process is

the same. This way, a, as rr and rz, could be treated as a

scale factor.

IV. CONCLUSION

In this work, a three-dimensional model of an alternative

particle accelerator was proposed. The accelerating process

is due to a slowly modulated high frequency carrier wave.

The field analyzed here has a smoothly varying transverse

profile and is slowly modulated along the longitudinal coor-

dinate z. Both the transverse profile and the longitudinal

modulation are given by Gaussian functions. Three main

regimes were identified with the help of a map of parame-

ters: the reflecting regime, where the particle is reflected by

the electrostatic wave; the passing regime, in which the parti-

cle passes through the electrostatic wave without significant

acceleration/deceleration; and, finally, the accelerating

FIG. 6. Color graded map of the minimum value of r(t)/r0 for a1=2¼ 0.90,

u0¼ 1, rr¼ 50, and rz¼ 100. In the horizontal axis is represented the initial

speed of the particle, vz0, while in the vertical axis is expressed r0. Black

(blue) color is for focusing (non-focusing) dynamics. The white dashed line

is the transition line seen in Fig. 1 between the acceleration regime and the

passing and the reflecting regimes.

FIG. 7. Color graded map of the longitudinal exiting velocities for a1=2

¼ 0.90, r0¼ 5, rr¼ 50, and rz¼ 100. In the horizontal axis is represented

the initial speed of the particle, vz0, while in the vertical axis is expressed the

amplitude of the electrostatic field u0. Yellow and red are for velocities

greater than 0.90c.
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regime, whose high efficiency is helped by a self-adjusted

optimal wave-particle relative phasing.

A ponderomotive approximation (which suppresses the

high frequency associated with the longitudinal coordinate)

was developed, giving good predictions for the mean value

of the radial and longitudinal velocities of the particle. The

validity of the approximation is limited to regions far from

the accelerating regime. As in Ref. 11, the approximation

fails when the maximum of the particle’s longitudinal veloc-

ity along the particle’s dynamics closes to the phase-velocity

of the carrier.

The mechanism of acceleration is basically the same as

in Ref. 11: when the longitudinal velocity of the particle

touches the resonance line, the particle is captured by the

electrostatic field and the particle is accelerated towards c.

However, one important additional feature of this accelerator

is that, under proper conditions, while the particle is acceler-

ated, it is also focused by the field.

Some effects must be added to the model in order to pro-

vide more realistic results. Space-charge effects may be rele-

vant if we consider a relatively dense particle beam: The

focusing effect seen in the accelerating regime competes

against the Coulombian repulsion between the particles.

Moreover, a dense particle beam could modify significantly

the field intensity: A self-consistent dynamics of the field

should be considered then. Furthermore, due to the accelera-

tion gradients of the particles, the problem of radiation reac-

tion must be taken into account.

Owing to its simplicity, the present particle model pro-

vides relatively clear directions indicating how to explore

this subject of particle acceleration and focusing resulting

from the breakdown of the ponderomotive regimes. Further

results shall be reported as progress is made.
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