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ABSTRACT

Woodcuts are a traditional form of engraving, where paint is rolled over the surface of a

carved wood block which will be used as a printing surface over a sheet of paper, so only

the non-carved parts will be printed in the paper. In this work, we present an approach

for computer simulated woodcuts using reaction-diffusion as the underlying mechanism.

First, we preprocess the segmented input image to generate a parameter map, containing

values for each pixel of the image. This parameter map will be used as an input to control

the reaction-diffusion processing, allowing different areas of the image to have distinct

appearances, such as spots or stripes with varied size or direction, or areas with plain

black or white color. Reaction-diffusion is then performed resulting in the raw appear-

ance of the final image. After reaction-diffusion, we apply a thresholding filter to generate

the final woodcut black and white appearance. To better validate our work, we performed

a qualitative evaluation of our results. Our results show that the final images look quali-

tatively similar to some styles of woodcuts, and add yet another possibility of computer

generated artistic expression, which demonstrates the potential of reaction-diffusion to

tasks in the field of non-photorealistic rendering.

Keywords: Reaction-Diffusion. Woodcuts. Expressive Rendering.



Xilogravuras via Reação-Difusão

RESUMO

A xilogravura é uma forma tradicional de arte onde passa-se tinta na superfície de um

bloco de madeira entalhado que será usado como superfície de impressão sobre uma fo-

lha de papel, de modo que apenas as partes que não foram entalhadas serão impressas no

papel. Neste trabalho, nós apresentamos uma nova abordagem para a síntese computacio-

nal de xilogravuras usando reação-difusão como mecanismo fundamental. Primeiro, nós

pré-processamos uma imagem de entrada segmentada para gerar um mapa de parâmetros

contendo valores para cada pixel da imagem. Este mapa de parâmetros será usado para

controlar o processo de reação-difusão, permitindo que diferentes áreas da imagem apre-

sentem um aspecto distinto, como listras e pintas em diferentes tamanhos e direções, ou

áreas monocromáticas pretas e brancas. Executamos então o processo de reação-difusão

resultando em uma prévia da aparência final. Após a reação-difusão, nós aplicamos um

filtro de limiarização para gerar como resultado uma xilogravura em preto e branco. Para

melhor validar o nosso trabalho, nós realizamos uma avaliação qualitativa dos nossos

resultados. Nossos resultados mostram que as imagens finais parecem qualitativamente

similares a alguns estilos de xilogravuras, e adicionam mais uma possibilidade para a ex-

pressão artística gerada por computador, o que demonstra o potencial da reação-difusão

para trabalhos na área de renderização expressiva.

Palavras-chave: Reação-Difusão, Xilogravuras, Renderização Expressiva.
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1 INTRODUCTION

Traditionally, computer graphics (CG) aims to represent real objects and scenes as accu-

rate as possible, or, in other words, to achieve photorealism, the same degree of visual

similarity with the real world a photograph has. However, non-photorealistic rendering

(NPR) (STROTHOTTE; SCHLECHTWEG, 2002), also known as Expressive Rendering,

is a CG area which works not on photorealistic renditions, but with the simulation of

expressive artistic style. NPR always looked for inspiration in the many forms of tradi-

tional artistic expression, trying to simulate the visual results of manual techniques, such

as paintings, comics or animation.

Since the early work of Haeberli (HAEBERLI, 1990), with the computational

simulation of a painting, this area of research has seen major advances, being able to

convincingly simulate natural media effects such as pencil drawing (LU; XU; JIA, 2012),

oil painting in real-time and on mobile devices (STUYCK et al., 2017), watercolors (DI-

VERDI et al., 2013) (WANG et al., 2014), among many others. Hegde, Gatzidis, and Tian

present a review of these artistic inspired results in (HEGDE; GATZIDIS; TIAN, 2013).

Among the many relief printing and artistic techniques, such as etching or engrav-

ing, woodcuts have a distinct look due to their nature. A block of wood is used as the

substrate where the artist draws the scene by carefully carving the wood with specialized

tools. A thin layer of usually black paint is rolled over the wood substrate, so only the

non-carved areas will receive the paint. The image is formed by evenly pressing a usually

white paper over the wood block. The carved areas will pass their paint to the paper,

forming the black contours of the drawing, while the non-carved areas, which do not have

paint, will stay with the same color of the paper. The result is a black-and-white image

where the woodgrain is visible and contributes to the appeal of the result. In Fig. 1.1 we

present a schematic image with the main steps in woodcut making.

In this work, we present an approach to synthesize virtual woodcuts from nat-

ural images. We propose the use of reaction-diffusion (RD) systems as the underlying

mechanism to achieve the “feel and look” of woodcuts. Our main contribution is the in-

troduction of RD addressing an artistic technique not yet explored, with visually pleasing

results. This thesis is organized as follows: Chapter 2 presents related work found in

literature or commercial applications, while in the next chapter we present our methodol-

ogy, i.e., how our system was implemented. Chapter 4 introduces the results we obtained,

followed by the conclusions and future work.

Carla MDS Freitas
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Figure 1.1: Illustrative image showing the pipeline to generate a real woodcut, specifically
a Japanese Ukiyo-e. Adapted from: <https://www.nippon.com/en/views/b02306/>. First,
a block of wood is carved with the desired image lines (a), producing an engraved wood-
block (b). Then paint is rolled on the block (c), in order that only the non-carved areas
will receive the paint. After that, a sheet of paper (d) is pressed over the block (e), so the
regions with paint (i.e., the non-carved ones) will pass the paint to the paper, generating
the final image (f).

.

https://www.nippon.com/en/views/b02306/
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2 RELATED WORK

There has been countless approaches to render 2D input into artistic oriented ren-

derings. The pioneer work in the NPR area was the already mentioned Haeberli’s work

(HAEBERLI, 1990), with a system to semi-automate the generation of a impressionist

painting from a photograph (Fig. 2.1a). In this work, a canvas with the same dimensions

as the base image can be clicked by the user. Each click corresponds to a brush stroke,

in analogy with the brush strokes of a painter in a real canvas, and the image is defined

as a collection of brushes, with the following properties: location, color, size, direction

and shape. The system automates the selection of color, which comes from the equivalent

position of the base image, and direction, calculated with an edge detector over the color

gradients of the base image so the strokes are aligned tangentially to its edges. However,

his system was not fully automated, needing user input to set the location, size and shape

of brushes. This work marked the first NPR technique, the Stroke-Based Rendering or

SBR (a review of these methods can be found in (VANDERHAEGHE; COLLOMOSSE,

2013)).

The first fully automated NPR work was Litwinowicz’s one in 1997 (LITWINOW-

ICZ, 1997), where pixel locations are randomly sampled at regular intervals instead of

placed by the user (Fig. 2.1b). Two additional aspect of his work are to clip strokes

against edges in the image to prevent loss of details, and the usage of interpolation for

the gradient direction in regions with few or no color variations among pixels, to avoid

problematic values for the gradient. A year later, Hertzmann (HERTZMANN, 1998) pro-

posed the use of different brush stroke sizes in accord with the desired detail level of a

region - large strokes for less detailed regions, as the background, and small for the areas

with more detail, to focus the viewer on the latter (Fig. 2.1c). He did this by comparing

successive levels of blur of the original image. Regions where the blurred images did not

differ so much in comparison to less blurred versions or the original one are considered

less detailed, and so the brush strokes have a larger size. On the other hand, areas where

the blur yields a bigger change in the coloration of pixels are more detailed, and receive

the smaller brush strokes to paint the details.

The survey by Kyprianidis and colleagues (KYPRIANIDIS et al., 2013) presents

a taxonomy of Image-Based Artistic Renderings, as they name this class of techniques.

Their focus was on the underlying methods and techniques being used rather than the

artistic effect being simulated. They classified these techniques in four main groups:

Carla MDS Freitas
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Stroke-Based Rendering (as the two techniques described above, and comprising most

NPR works), Region-based Techniques (techniques based on region segmentation), Example-

based Techniques (which use machine learning or other artificial intelligence approaches

to generate textures or colors from example images), and Image Processing and Filter-

ing (the usage of filters as the bilateral or the difference of Gaussians to style the images).

The chapter by Lai and Rosin (LAI; ROSIN, 2013) presents yet another survey with focus

only on techniques working with reduced color palettes, typical of some artistic expres-

sions such as comics, paper-cuts, and woodcuts.

Figure 2.1: Some results from NPR works. (a) Haeberli’s the semi-automated painting
method, which inaugurated the NPR area (HAEBERLI, 1990). (b) Litwinowicz work,
the first fully automated NPR work from (LITWINOWICZ, 1997). (c) Hertzmann’s work
with different brush stroke sizes according to the required detail level (HERTZMANN,
1998).

Virtual woodcuts have not attracted much attention from graphics researchers. Per-

haps because it is a less popular artistic technique than oil and watercolor paintings, or

due to the need of simulate the aspect of woodgrain which usually appear in woodcut final

results, for instance.

In 1998, Mizuno and colleagues implemented a virtual analog of real woodcuts in

a series of works (MIZUNO; OKADA; TORIWAKI, 1998). Their approach is to allow

virtual sculpting in a 3D model representing the woodblock, by the user-commanded

addition or removal of shapes over its surface, as a direct analog of the carving process in

real woodcuts, and later by the application of virtual ink over the woodcut surface (Fig.

2.2a). Their work is perhaps the first to bring the attention to woodcuts in the NPR field.

However, their system is not fully automated, needing user input by the virtual carving

process, consequently requiring artistic abilities to obtain a convincing visual result.

In a later work (MIZUNO et al., 2000), they improved their system to automate

the carving process by using feature extraction over a grayscale image. It is also possible

to partially automate this process by using the “computer aided carving”, which uses the

grayscale image as a basis where the user can select different areas of the image to use

specific carving methods, and then the system automatically carves this area based on the
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user choice. This work also allowed multicolor woodcuts, instead of just grayscale ones.

Later works focused on the generation of Ukiyo-e, a traditional Japanese woodcut

style (MIZUNO et al., 2002) (MIZUNO et al., 2002). In (MIZUNO et al., 2006), with the

use of a pressure sensitive pen and a tablet, their system allowed the user the feeling of

carving real wood which could then be virtually printed (Fig. 2.2b).

A year later, Mello, Jung, and Walter (MELLO; JUNG; WALTER, 2007) intro-

duced the first approach to synthesize woodcuts from natural images (Fig. 2.2c). Their

approach applied a sequence of image processing operations to turn any image into a

woodcut, which can be basically divided in four steps: image segmentation (getting a col-

lection of regions corresponding to separated areas of the image), detection of direction

fields (the calculation of carving orientation inside each region), generation of woodcuts

(distribution of strokes corresponding to the carvings according to the orientation previ-

ously calculated), and rendering of woodcuts (the application of an optional smoothing

filter to the image). Their results showed some similarity with real woodcuts, but there is

few variation on the strokes styles, which resembled short lines.

In 2011 Winnemoller (WINNEMÖLLER, 2011) presented an extension on the

Difference-of-Gaussians operator allowing new results for artistic renderings from images

(Fig. 2.2d). Although his work did not particularly address woodcuts, he present one

result mentioned as similar to woodcuts.

Just recently we have seen new approaches to virtual woodcuts. In 2015 a short

paper (LI; XU, 2015) addressed a particular style of color woodcuts, known as Yunnan

woodcuts. These are color woodcuts that use only a single wood block that is recarved

for each color. A year later the same researchers (LI; XU, 2016) extended their previous

work, paying particular attention to the color mixing intrinsic to the technique (Fig. 2.2e)

and (Fig. 2.2f). In their work, the carving process is simulated by the placement of

textures simulating the scores caused by carving the wood. These textures follow the

orientation calculated in a manner similar to (MELLO; JUNG; WALTER, 2007), and can

have different sizes and orientations.

Outside academic works, there are some tools to synthesize woodcuts from im-

ages, mostly commercial ones. Mello (MELLO; JUNG; WALTER, 2007) mentioned

Photoshop plugins in their paper, most notably the Xylograph plugin by AmphiSoft (Am-

phiSoft, 2007), which produces a halftone pattern (Fig. 2.3a). More recently, the Photo-

shop plugin Simplify 3 Preset List by Topaz Labs (Topaz Labs, 2018) has an option for

Wood Carving (Fig. 2.3d). Prisma (Prisma Labs, 2016) is an app for Android and iOS

Carla MDS Freitas
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Figure 2.2: Results from previous woodcut synthesizing works. (a) Mizuno’s work, the
first one to deal with generating of woodcuts (MIZUNO; OKADA; TORIWAKI, 1998).
(b) Another result from Mizuno and colleagues, now with the usage of pressure sensitive
pen and a tablet (MIZUNO et al., 2006). (c) A result from Mello et al., the first work
which automatically synthesize a woodcut from an input image (MELLO; JUNG; WAL-
TER, 2007). (d) Winnemoller woodcut-like result using an extension of Difference-of-
Gaussians (WINNEMÖLLER, 2011). (e) Li et al. simulation of woodcuts from Yunnan
(LI; XU, 2016). (f) Li et al. result with color (LI; XU, 2016).
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which edits input images in several artistic styles. Two of its styles, Light Summer Read-

ing (Fig. 2.3b) and Heisenberg (Fig. 2.3c), bears some similarity with woodcuts. Lastly, a

series of manual operations in the open source software GIMP (WELCH, 2018) promised

to generate a woodcut-like image (Fig. 2.3e). However, the resemblance between actual

woodcuts and the results of these tools is limited, with traces which did not appear like

woodcut strokes. Also for the commercial plugins there is no proper information about

the details of its implementation and internal operation.

Figure 2.3: Results from non-academic tools to generate woodcuts. (a) Xylograph Pho-
toshop plugin by AmphiSoft (AmphiSoft, 2007). (b) Prisma app with the Light Summer
Reading filter (Prisma Labs, 2016). (c) Prisma app with the Heisenberg filter (Prisma
Labs, 2016). (d) Simplify 3 Preset List Photoshop plugin by Topaz Labs (Topaz Labs,
2018). (e) The result of a series of manual operations in GIMP (WELCH, 2018).

Reaction Diffusion was introduced by Alan Turing (TURING, 1952) as a mecha-

nism to explain biological patterns, such as the stripes in a zebra, the spots in a leopard, for

instance. Basically, a set of chemical substances react between them, so these substances

are synthesized or decomposed, and diffuse in a surface, until they reach a stationary

state. Mapping their concentrations to colors can generate patterns of stripes, spots, and

labyrinthines.

RD has been explored by graphics researchers in many ways. One of the first

works in CG with RD was Turk’s one (TURK, 1991), where RD was used to model
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natural markings for mammal coat patterns (Fig. 2.4a). In the same year, Witkin and Kass

(WITKIN; KASS, 1991) used RD as a generic pattern generation mechanism (Fig. 2.4b).

An interesting aspect of their work was the usage of a rotation matrix to direct the RD

stripes. The usage of a rotation matrix was expanded by Sanderson et al (SANDERSON

et al., 2006). Kider, Raja, and Badler (JR.; RAJA; BADLER, 2011) successfully applied

RD to simulate decaying processes in fruits and vegetables. More recently, RD was the

mechanism to simulate skin pigmentation disorders in Sales and Walter work (BARROS;

WALTER, 2017).

Although it has been used in many graphics tasks before, just recently RD has

been explored in NPR approaches. Chi and colleagues (CHI; LIU; HSU, 2016) explored

these patterns for image stylization, achieving many visually interesting results, by the

usage of anisotropic RD with an orientation field to guide the pattern formation and shape

deformation on the spots, turning them into, for example, triangles and water drops (Fig.

2.4c). The orientation field can be obtained from an input image, allowing the final RD

result to retain similarity with the original.

A year later, Jho and Lee (JHO; LEE, 2017) used the RD patterns in a new method

of tonal depiction (Fig. 2.4d). In their work, they mapped a parameter from a RD system

to color intensity, generating patterns visually lighter or darker according to it. They also

added a mask of previously generated RD to allow real-time processing of an image in

order to get its tonal depiction. Their results have an interesting resemblance to other

methods of tonal depiction, such as halftoning and hedcut. Both these two NPR works

using RD have not addressed woodcuts.

In this work, we introduce a new method for synthesizing virtual woodcuts from

natural images adapting a RD system to the needs of rendering woodcut-like results. Our

visual results compare favorably both with previous work and with commercial image

manipulation software.

Carla MDS Freitas
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Figure 2.4: The usage of RD in CG and NPR. (a) Turk’s simulation of zebra stripes
(TURK, 1991). (b) The patterns obtained by Witkin and Kass (WITKIN; KASS, 1991).
(c) Chi and colleagues NPR work with anisotropic RD (CHI; LIU; HSU, 2016). (d) Jho
and Lee tonal depiction method using RD (JHO; LEE, 2017).
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3 METHODOLOGY

In this chapter we present the methodology used to generate our woodcuts. Our

method is subdivided into three steps: preprocessing, processing (RD) and post-processing

(Fig. 3.1), as will be described below.

Briefly speaking, the preprocessing step receives as input an image and returns

a parameter map, where each pixel receives a specific value for several parameters used

in the processing step. The processing step runs the RD mechanism over the parameter

map, setting the overall appearance of the final rendering. Finally, the post-processing

step filters the RD result in order to enhance the similarity with a real woodcut image. We

describe these steps below.

3.1 Preprocessing

The preprocessing step consists in a Python (PYTHON, 1991) script which uses

the OpenCV2 (OPENCV, 2000), Scikit-Image (SCIKIT-IMAGE, 2009) and NumPy (NUMPY,

2006) libraries for image processing functionalities. This script receives a settings file as

input, containing all user-defined parameters and the path for all input image files that will

be needed in this step (Table 3.1). In the end, the preprocessing step yields a parameter

map with specific values for each pixel, to control the RD mechanism. In Table 3.2 we

present the parameters used in the preprocessing step, which will be explained throughout

the text.

Table 3.1: Types of images which can be loaded by the system in the pre-processing step.
First, we have the basic image which will be used as the basis for the final woodcut.
This is the only obligatory image. The second image is the segmentation image, where
each region has a specific color to separate them from each other. While it is possible
to generate a woodcut without segmentation, some options require it, so these will not
be available in this case. The other two images, the black and white regions map and the
orientation map, are optional images to allow manual setting of, respectively, regions with
plain black and white color and the orientation angle of strokes. For more details about
how these two images are used, consult the sections 3.1.1 and 3.1.3, respectively

Image Required
Basic Image Yes

Segmentation No
Black and White regions map No

Orientation Map No

.

Our algorithm receives as input both an image to be used as the basis for our final
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Figure 3.1: Pipeline of our methodology. First, we submit an image and its segmentation
to the preprocessing step, to generate a parameter map. This map is then used as basis
for the RD process, generating a raw woodcut-like image. Last, the RD result is filtered
in a post-processing step in order to improve its appearance, generating the final woodcut
image.
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Table 3.2: User-defined parameters for the preprocessing step. Details about each param-
eter are given in the text.

Parameter Default Value
Border Color 0

ndilate 1
Tlow 25
Thigh 210
Tsize 500 pixels

k {1, 5, 9, 13, 17}
Tdi f f 5.0

sθ 0.5

woodcut, through the reading of a second image where each segmented region is colored

with a different color. This segmented input image will be defined as a collection of

regions. Alternatively, it is possible to use the input image without segmentation. In this

case, some steps will be skipped, as will be detailed later. This section presupposes that

segmentation is used. The input image is converted to gray scale for all calculations used

in our work.

For most of our simulations we used the dataset from ADE20k (ZHOU et al.,

2017). This dataset contains 22,210 images, from landscapes to indoor scenes, being

visually adequate for our purposes. Besides, each image has a semantic segmentation.

To properly compare our work with previous methods for woodcut generation, we ran

simulations using a lighthouse image used in (MELLO; JUNG; WALTER, 2007) and (LI;

XU, 2015) (Fig. 3.2a). In this case, we manually generated the segmentation of this image

(Fig. 3.2b).

Figure 3.2: Lighthouse image used in our tests. (a) Original image from (MELLO; JUNG;
WALTER, 2007). (b) Manual segmentation of this image. (c) Borders and areas without
RD, calculated in the preprocessing step, already painted as white and black. Areas where
RD will occur are marked as gray.
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3.1.1 Black and White Regions

In most real woodcuts, there are many regions without any discernible stroke pat-

tern, being either plain white or plain black. The first step is to discriminate the parts of

the image where no RD pattern will be generated, and instead a plain black or white color

will be applied. First, from observation of real woodcuts, we define the borders of the

segmented regions as black. These borders define the scene and so they should appear in

the final woodcut as black strokes. To generate the borders, we use the mark boundaries

function from the scikit-image library over the segmented image. This function detects

and labels the boundaries between regions, painting these pixels with a specific color to

highlight them. It should be noted that our system allows to set the border color as white

if desired, through the Border Color parameter.

The borders can be thickened to the desired size by a dilate operation (using the

dilate function from the OpenCV library), where, for every pixel in a binarized version of

the image (where borders are black and other pixels are white), a kernel with dimensions

5×5 is used: if any pixel inside this kernel is black, then the pixel in question is marked

as black; otherwise it is white. This operation can be repeated ndilate times. Larger ker-

nels and/or larger values of ndilate result in thicker borders, with smaller regions being

absorbed into them.

After the border operations, we set some regions to be either plain white or plain

black. To simulate this, our system allow two options: automatic or manual setting of

white or black regions. The automatic option follows the logic of (MELLO; JUNG; WAL-

TER, 2007): in real woodcuts the brightest regions are white, while the darkest ones are

black, in both cases without any discernible stroke pattern. To reproduce this appearance,

we use the same mechanism of their work, where two thresholds, Tlow and Thigh, are used.

We then mark as white and black any regions whose average gray-scale color intensity

is, respectively, higher than Thigh and lower than Tlow. The manual option can be used if

the user wants more control to the color of each region. In this option, the system reads

a gray-scale image where each segmented region is coded as black, white, or gray. Black

and white regions will be marked as the respective plain color, while in gray areas RD

is allowed. The colors in this image are manually defined by the user, allowing manual

choice of plain black and white regions.

If the automatic option is being used, the next step is to merge small regions into

the borders, to reduce unnecessary noise. For that, we first need to count the pixels inside
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each region after border dilation, so we can compare the actual size that that region would

have in the final image.

We could have simply counted the number of pixels of each color using the OpenCV

histogram function, but by doing that we would be ignoring the cases when a thickening of

the borders would separate a segmented region into two new regions (Fig. 3.3a and 3.3b).

Thus, we need to detect and label each region, task done by the Algorithm 1, which re-

ceives as input an image map where each border pixel (calculated after dilation in the

previous steps) is white and other pixels are black, and returns another image map where

each region separated from other regions by borders have a specific color, and borders

continue to be color-coded as white.

After running Algorithm 1, we have an image map where each region separated

by borders have a specific color (Fig. 3.3c). We now simply apply a color histogram to

get the number of pixels of each region (using the Numpy function bincount (NUMPY,

2006)) and, finally, we merge the smallest regions, whose area (i.e., the number of pixels)

is smaller than a given threshold, Tsize, into the borders, by marking these regions as white

(the same color of borders in these image maps). This image map will now be applied

into the black and white regions calculated from the previous step, so the white pixels in

this map will be marked as the color defined by the Border Color parameter, making the

small regions merge with the border.

After all these calculations, the program saves the image with the black and white

regions color-coded as such, and regions which will receive RD painted as gray. Fig. 3.2c

shows an example of this image. It will be used in the post-processing step.

3.1.2 Detail Level and Size of Strokes

To allow a variation of detail levels for different parts of the image, we compute,

for each pixel, a value for a RD parameter, S, which is related to the size of structures

generated by this mechanism (BARD; LAUDER, 1974) (MESQUITA; WALTER, 2017).

We adapted the method from Hertzmann (HERTZMANN, 1998) for this task. In that

work, different detail levels in a painting are simulated by using distinct brush sizes in

sequential steps, such that regions where fine detail is needed are painted with smaller

brushes than other parts of the image, drawing more attention toward these regions. In

our work, more detailed areas receive a higher value of S, resulting in smaller structures

and thus increased preservation of details.
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Figure 3.3: Behavior of small regions (using Fig. 3.2 as example). (a) Detail of manual
segmentation. (b) Detail after applying border and dilating it. Dilating alone was able
to absorb the small purple region at the bottom of the (a) image. The cyan region was
divided into two regions by the border thickening, marked as cyan and red in (b). (c)
Detail after the operation of small region merge. The regions marked in blue, red and
cyan, at the lower bottom part of the image, were merged into the border.
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Algorithm 1 Merging of Small Regions Into Borders
Input: Image M, defined as a bidimensional array with w×h dimensions, where w is its

width and h its height. In this image, each border pixel is white (Mi, j = 255) and each
non-border pixel is black (Mi, j = 0).

Output: Image I with the same dimensions as M where each region is labeled by a dif-
ferent color, and borders are labeled as white (Ii, j = 255).

1: procedure MERGESMALLREGIONSINTOBORDERS(Mw×h→ Iw×h)
2:
3: I←M . //Copy M as I
4: for i← 0 to h do
5: for j← 0 to w do
6: if Ii, j 6= 255 then . //Ii, j is not a border pixel
7: if i > 0∧ Ii−1, j 6= 255 then . //The top neighbour Ii−1, j is inside

image limits and is not a border pixel
8: Ii, j← Ii−1, j . //Set Ii, j with the same color as its top neighbour
9: if j > 0∧ Ii, j−1 6= 255∧ Ii, j−1 6= Ii, j then . //Left neighbour Ii, j−1

is inside image limits, is not a border pixel, and has a different color code than Ii, j
10: . //Merge the regions with the same color as the pixel (i, j) and its top neighbour

into one
11:
12: for all pinIwherep = Ii, j−1 do
13: p← Ii, j. //Mark all pixels with the same color of the pixel

(i, j−1) as the color of the (i, j) pixel. In other words, all these pixels will have the
same label and so belong to the same region.

14: end for
15: end if
16: else if j > 0∧ Ii, j−1 6= 255 then . //The left neighbour Ii, j−1 is inside

image limits and is not a border pixel
17: Ii, j← Ii, j−1 . //Set Ii, j with the same color as its left neighbour
18: else
19: Ii, j← generateNewColor() . //Set the pixel (i, j) with a color

which is not present in the image
20: end if
21: end if
22: end for
23: end for
24: return I
25: end procedure
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To implement this feature, we defined the following parameters: a list of integers

k, and an error threshold Tdi f f . Due to the form of communication between the prepro-

cessing and the processing parts of our pipeline (the preprocessing yields an image where

data is encoded in the color of pixels, and the processing reads this image and translate

it to parameters usable to control the RD process), and to allow the reuse of the same

preprocessing map to tests with different RD parameters, in this step we only calculate

the relative S between different regions. So 1 correspond to Smax and 0 to Smin, as will be

defined in the processing step, and each pixel will have a value between 0 and 1 which we

denote as s. In other words, for this step we only need to know how each region differs

one from another. In comparison with Hertzmann’s method, we do not need to define the

exact size of each brush size, only the proportions between them.

First, we mark all pixels as 1 (which correspond to Smax). Then, for each integer

ki in the list of integers k, starting from the smallest one, we generate a reference image

by performing a Gaussian blur using a ki×ki kernel over the original input image (noting

that larger values for ki result in more blurred images, and so more different than the origi-

nal). This is done using the OpenCV GaussianBlur function with sigmaX = 0 (OPENCV,

2000). For every pixel, we compute the average pixel-to-pixel difference between the ref-

erence image and the original one for the entire neighborhood of this pixel, in a window

with the same dimensions as the blur kernel. If the area difference is smaller than Tdi f f ,

we consider that the area around this pixel did not change too much between the blurred

image and the original one, being consequently less detailed. We mark this pixel as the

value of s corresponding to this kernel, calculated as:

Si = 1+m∗ (ki−mink)

m =
1

mink−maxk

After computing s for every pixel, we set a unique s for each region by computing the

average s inside that region , if a segmentation image was provided. For that, we use

the NumPy mean function (NUMPY, 2006) over all pixels which share the same label

(color). By doing that, we ensure that inside a region all strokes will have the same size,

improving structure size coherence for the result.

The parameter Tdi f f affects the average level of detail and size of strokes: smaller

values for Tdi f f reduce the chance of every step to set a smaller value for s in the compar-
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ison between the original image and the blurred one, resulting on larger values for s and

consequently smaller strokes, and a more detailed final result.

3.1.3 Orientation of Strokes

After that, we need to calculate the orientation of strokes. In our work, we have

four options: a) orientation by region, b) orientation by pixel, c) adaptive orientation, and

d) orientation by image.

In the orientation by region, every pixel inside a given region will have the same

orientation, so strokes will be parallel to each other inside the same region. As (MELLO;

JUNG; WALTER, 2007) observed, the wood carvings tend to initiate in the brighter parts

of a region, so for every region we will start the strokes from the brighter point near

region borders. First, for each border pixel in the image, we verify the region of each

of its immediate neighbors (the top, bottom, left and right pixels) by their color label in

the segmented image, generating for each region a list of pixels near to the region border.

Then, for each of these pixels, we test the average luminance for a 5×5 window centered

on it (i.e., the average color intensity, from the original input image, among all pixels

inside this window). If this window surpass the image limits, we simply test for all pixels

available, ignoring positions outside the image. For each region, we retrieve the pixel with

the highest average luminance inside its corresponding window. Then, we compute the

center pixel of every region as the average of the horizontal and vertical positions of every

pixel in that region. To find the orientation angle of a region we compute the slope of the

line formed by these two pixels: the border pixel with the largest average luminance in its

surroundings and the central pixel, as follows:

θreg = arctan
dy− cy

dx− cx

where θreg is the orientation of strokes for a given region, d is the boundary pixel and c is

the central pixel of a given region.

When calculating orientation by pixel, it is possible to set different pixel-specific

values for θ, which allows the contour of small details to appear in the resulting image.

Our method for such calculation is based on local orientation of luminance as used by

(MELLO; JUNG; WALTER, 2007) and (LI; XU, 2016). First, for each pixel (i, j) in the
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image, we compute the local average orientation of luminance Θ in a 5× 5 window W

centered in that pixel as follows:

Θi, j =
1
2

tan−1
(

Vx(i, j)
Vy(i, j)

)
where

Vx(i, j) = ∑
(u,v)∈W

2Gx(u,v)Gy(u,v)

Vy(i, j) = ∑
(u,v)∈W

(Gx(u,v)2−Gy(u,v)2)

and Gx and Gy are the image gradients in the x and y directions, calculated using the Sobel

operator (obtained from the Sobel function of the OpenCV library (OPENCV, 2000) with

first order derivatives). If the window surpass the image limits, we only add the available

pixels inside the image, as we did in the orientation by region option.

To orient the strokes preserving the contour details of the original image, their

orientation should be perpendicular to the local average orientation of luminance Θ. This

happens because Θ follows the direction of color gradients, i.e., it goes from black areas

to white areas or vice-versa, being thus perpendicular to any existing line in the image

(since the lines have more or less the same color). So, the stroke orientation θ for a pixel

is given by the following formula:

θi, j =
π

2
+Θi, j

While more complex objects as an human body or decorated buildings would need

a finer level of detail, in background areas such as the sky a single orientation works

better. This way the user would focus on the foreground instead of the background. The

adaptive orientation method allows us to use both methods, orientation by region or by

pixel, for different areas of the image, depending on the detail level required by that

region. This detail level was encoded by the value of S previously calculated for that

region. For a given region with S value equals to Sregion, if Sregion > Sθ (an user-defined

threshold), then that region will use orientation by pixel; otherwise, the region will use

orientation by region. Thus, regions with higher values for S, and consequently more

details in the original image, will have these details preserved in the final woodcut, using
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a pixel-specific orientation. Less detailed regions will have a single orientation, enhancing

their status as background regions.

If the user wants to manually control the orientation of strokes in the image, then

the orientation by image option allows the loading of an image map, where the color

of each pixel corresponds to an orientation angle. This option should be used together

with one of the other three, since the image map allows the setting of parts of image to

use another method, making it possible to have both manual and automatic orientation

calculation in the same image. The image is converted to the HSV color space, which

will be used in our calculations. For each pixel, if saturation is at its maximum value

(1.0), then we read the hue property (which goes from 0 to 1) and translate it to an angle

between 0 and π, using the following linear formula:

θi, j = πhi, j

where hi, j is the hue property for the pixel (i, j). Pixels with saturation lower than 1.0 will

have their orientation calculated through one of the other methods, as defined by the user.

It should be noted that for our system two opposite angles (i.e., θ and θ+π) result in the

same direction for the strokes, so it’s not necessary to consider angles larger than π when

reading the image map.

3.1.4 Stripes versus Spots

Many real woodcuts show, besides lines and flat color areas, dots or other similar

structures. In our RD system, it is possible to control which regions will have stripes or

spots. We simulate this pattern diversity by setting different values of a parameter called

δ for every region. We considered brighter areas to have spots and darker ones to have

stripes, using the average color of each region to compute this parameter, by the following

formula:

δregion = aregion

where aregion is the average gray-scale intensity for that region. Both values vary from 0

to 1. We will describe in the next section how this parameter works, when we will detail

the main engine of our system, the RD process.
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3.1.5 The Parameter Map

At the end of the preprocessing step, we save an image with the same dimensions

of the original to be used as input for the RD process, where different color channels are

used to set the local value of different parameters calculated in this step as follows: red

for s, green for δ, and blue for the orientation angle θ. Also, the value corresponding to

plain white (255 for all channels) is interpreted as absence of RD for that pixel. To encode

these parameters into a RGB image, we translate them to integers inside a given interval

corresponding to a color channel. For red and green, this interval is [100,200], and the

conversion is done by linearly translating the domain of the corresponding values, i.e.,

[0,1], to this interval, which is done by the following formulas:

Ri, j = 100+100si, j

Gi, j = 100+100δi, j

The orientation angle θ will be converted to the blue channel integer B inside the interval

[100,172] by the following formula:

Bi, j = 100+36(
θi, j

π
+1)

In this formula, each increment in B correspond to an increase of 5 degrees in the orienta-

tion angle. This image is saved in the PPM (Portable Pixmap Format) format (POSKANZER,

1988), one of the Netpbm image formats, which stores the image as a text file. PPM al-

lows images with the three RGB channels. The details of how the RD process reads this

parameter map into usable values will be treated in the next session.

Alternatively, it is possible to use an image without segmentation, for cases where

a segmentation is not available. In this case, there will be no borders or regions without

RD, θ will necessarily be defined by pixel or by image map reading (orientation by region

or adaptive are not available), and each pixel will have a different value for S, since there

will be no region to compute the average value for this parameter. Also, δ will be defined

by the pixel color, and not by the region average color.
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3.2 Processing

In the processing step we generate the pattern of strokes using RD. Our RD sim-

ulator was developed by expanding a previously simulator developed in Prof. Marcelo

Walter’s laboratory, the Simple Reaction-Diffusion, which was modified to suit the needs

of this work. This simulator was developed in C (C, 2018) with the following libraries:

(OPENGL, 1992) for the rendering of the results, and (ANTTWEAKBAR, 2005) to add

a graphical interface with options to manage our system (Fig. 3.4).

Figure 3.4: Graphical interface of the RD processing program (without the preprocessing
and post-processing steps). To the left, there is a menu where the user can set the value
for the processing parameters and options. This menu also contains options to operate the
system (these options are also accessible by keyboard buttons). To the right is the area to
visualize the RD results.

The RD system used in our work is the non-linear system defined by (TURING,

1952) and later used by (BARD, 1981) (BARD; LAUDER, 1974). In Table 3.3 we present

the parameters defined in the processing step. All of these parameters can be set by the

user using the interface during execution. This system is expressed by the set of partial

differential equations below:

∂a
∂t

= S(16.0−ab)+Da∇
2a

∂b
∂t

= S(ab−b−β)+Db∇
2b

Here, a and b represent the concentration of morphogens (the substances responsible for

generate patterns in Turing’s theory), ∂a/∂t and ∂b/∂t the respective rates of variation in

time, ∇2a and ∇2b the Laplacian representing the spatial variation of the morphogens (so
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they can diffuse from areas of higher concentration to areas of lower concentration). Da

and Db the diffusion coefficients (i.e., the speed at which diffusion takes place), and S a

constant representing the speed of chemical reactions (and, as already mentioned, related

to the size of structures generated by the RD process). β is added to generate the initial

spatial heterogeneity in order to start the pattern formation process, as we will explain

below.

Table 3.3: User-defined parameters for the processing step. Details about each parameter
are given in the text

Parameter Default Value
Dah 0.125
Dav 0.125
Dbh 0.030
Dbv 0.025

t 16,000
a0 4.0
b0 4.0

Smin 0.005
Smax 0.015
δmin 0.5
δmax 1.5

Mwhite 8.0
Mblack 0.0

To solve this system numerically, we discretized it spatially using a grid of pixels,

and temporally with discrete steps. The changes of a and b for a specific pixel in a single

step are given by the following equations:

∆ai, j = S(16.0−ai, jbi, j)+Daγa

∆bi, j = S(ai, jbi, j−bi, j−βi, j)+Dbγb

γa = ai−1, j +ai+1, j +ai, j−1 +ai, j+1−4ai, j

γb = bi−1, j +bi+1, j +bi, j−1 +bi, j+1−4bi, j

a≥ 0,b≥ 0

where i and j represent respectively the vertical and the horizontal position of the pixel in

question. γa and γb represent the diffusion component, already discretized, and the other

terms of the equations represent the reaction component.

Each pixel has a different value for β, generated randomly during initialization by
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a uniform distribution which vary between 11.95 and 12.05. This uniform deviate receives

a seed to the random number generation, so we can reproduce a given pattern obtained.

The value of β doesn’t suffer any alteration during the processing.

The total number of steps can be defined by the user as the parameter t. In the

initialization, all pixels receive the same values for the morphogens a and b, a0 and b0

respectively. The diffusion component for a morphogen can be written as a kernel. In this

case, the matrix corresponding to this kernel is the following:

D =


0 1 0

1 −4 1

0 1 0



As we described before, a parameter map, computed in the preprocessing step, is

loaded into the RD system to allow different behaviors for each part of the image, partic-

ularly regarding the size of stripes and spots (S), distinction between spots and stripes (δ),

orientation of stripes (θ), and absence of RD (morphogens will not be generated neither

travel from or to a given pixel).

To load the parameter map, our program reads the PPM file generated in the previ-

ous step, and interprets the color of each pixel to parameters used in our system. Since we

defined the minimum and maximum ranges for S and δ as 100 and 200, we translate these

numbers by using the corresponding minimum and maximum parameters, as defined by

the user (Table 3.3), through the following formulas:

Si, j = Smin +
(Smax−Smin)(Ri, j100)

100

δi, j = δmin +
(δmax−δmin)(Gi, j100)

100

where Si, j and δi, j are the values of S for the pixel (i, j), and Ri, j and Gi, j the RGB values

for the red and green channel for this pixel. So δ will vary between δmin and δmax, and S

between Smin and Smax.

As it was stated in Sec. 3.1, the orientation angle θ was converted to the interval

between 100 and 172, in intervals of 5 degrees. So, to retrieve its value, we use the

following formula:

θi, j = 5(Bi, j−100)
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where θi, j is the orientation angle in degrees for the pixel (i, j) and Bi, j the RGB value for

the blue channel for this pixel.

By setting a specific value of S for each pixel, we can have areas with different

sizes for the patterns. So when computing a step of the RD simulation for a given pixel

(i, j), we consider the value of S as equal to Si, j, i.e., the specific value for that pixel.

The RD system described above is isotropic regarding the diffusion (diffusion oc-

curs in all directions with the same intensity). To properly control the direction of stripes

and thus orient the resulting pattern, we modified the diffusion term as in (WITKIN;

KASS, 1991), using the parameter map for θ.

In that work, anisotropy is added by first setting two different diffusion coefficients

for each axis in the bidimensional space, which allows the pattern to be elongated in the

vertical or horizontal direction. So we have Dah and Dav, respectively the horizontal and

the vertical diffusion coefficient for a, and Dbh and Dbv, the horizontal and the vertical

diffusion coefficient for b. Particularly, if the diffusion coefficient for the morphogen b is

sufficiently larger in an axis than in another, parallel stripes are formed, a pattern common

in many wood carving images. These stripes are parallel to the axis where the diffusion

coefficient is larger, so if Dbh > Dbv, we get horizontal stripes, otherwise we get vertical

stripes.

To allow this stretching in any direction, the diffusion directions are rotated by an

angle. If we set Dbh to be higher than Dbv, then stripes will be parallel to the horizontal

axis. Rotating this system by an angle will also rotate the stripes by the same angle, so it

is possible to control the orientation of stripes.

For the morphogen a in a given pixel with coordinates (i, j), the rotated diffusion

matrix to be used as the diffusion kernel is the following:

Di j =


− f12 2 f22 f12

2 f11 −4 f11−4 f22 2 f11

f12 2 f22 − f12


f11 = Dah cos2

θi, j +Dav sin2
θi, j

f12 = (Dav−Dah)cosθi, j sinθi, j

f22 = Dav cos2
θi, j +Dah sin2

θi, j

Dah and Dav are the diffusion coefficients of a in the horizontal and vertical direction,
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respectively, and θi, j is the orientation angle for the pixel (i, j), provided by the parameter

map calculated in the preprocessing step. An analog matrix is used for the morphogen b.

For more details regarding the mathematical formulation of this anisotropic RD system,

consult (WITKIN; KASS, 1991).

To form both spots and stripes in the same image, we use the parameter map of δ.

If the difference between the diffusion coefficients of b in a given direction is not so large,

the stripes are broken after an interval. Reducing even more this difference can result in

spots slightly stretched in the direction of the larger diffusion coefficient. Consequently,

by allowing different areas of the image to have a relatively larger or smaller value for this

difference, it is possible to change the pattern obtained for each area. For each pixel, this

information is encoded in the input image as the parameter δ, which is interpreted by the

system as a floating point number, varying between δmin and δmax, to be multiplied by Dbv

(the vertical diffusion coefficient of b) for that pixel. Since in our simulations we always

have Dbh > Dbv (so the stripes are parallel to the orientation angle), values larger than 1

for δ tend to form spots or broken stripes, while values smaller than 1 result in continuous,

parallel lines. An increase in the difference between δmin and δmax allows the regions to

show more varied types of patterns, while a small difference makes all regions to have the

same kind of structure. It should be taken into account that if δDbv > Dbh the direction

of patterns will be inverted (so horizontally-aligned spots and stripes became vertically-

aligned and vice-versa). To avoid that, we limit δDbv > Dbh to have a maximum value

equal to Dbh.

After these alterations, the equations 3.1 which govern the variation of a and b for

each step in a given pixel (i, j), became the following:

∆ai, j =

Si, j(16.0−ai, jbi, j)+ γa if ni, j 6= 0

0 if ni, j = 0

∆bi, j =

Si, j(ai, jbi, j−bi, j−βi, j)+ γb if ni, j 6= 0

0 if ni, j = 0

where ni, j is equal to 1 for pixels with RD, and 0 to pixels without it, and γa and γb

represent the diffusion component, which is calculated through the following equations:
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γa =
3

∑
k=1

3

∑
l=1

di+k−2, j+l−2
ak,l ai+k−2, j+l−2−di, j

a2,2ai, j if ni+k−2, j+l−2 6= 0

0 if ni+k−2, j+l−2 = 0

γb =
3

∑
k=1

3

∑
l=1

di+k−2, j+l−2
bk,l

bi+k−2, j+l−2−di, j
b2,2

bi, j if ni+k−2, j+l−2 6= 0

0 if ni+k−2, j+l−2 = 0

where, for a given pixel (i∗, j∗), di∗, j∗
ak,l is the element in the k-th row and the l-th column

of the following matrix:

Di∗, j∗
a =


− fa12 2 fa22 fa12

2 fa11 −4 fa11−4 fa22 2 fa11

fa12 2 fa22 − fa12



Di∗, j∗
b =


− fb12 2 fb22 fb12

2 fb11 −4 fb11−4 fb22 2 fb11

fb12 2 fb22 − fb12


with the following values:

fa11 = Dah cos2
θi∗, j∗+Dav sin2

θi∗, j∗

fa12 = (Dav−Dah)cosθi∗, j∗ sinθi∗, j∗

fa22 = Dav cos2
θi∗, j∗+Dah sin2

θi∗, j∗

fb11 = Dbh cos2
θi∗, j∗+δi, jDbv sin2

θi∗, j∗

fb12 = (δi, jDbv−Dbh)cosθi∗, j∗ sinθi∗, j∗

fb22 = δi, jDbv cos2
θi∗, j∗+Dbh sin2

θi∗, j∗

and the following restrictions, which are applied to the values of a and b for all pixels in

our image:

a≥ 0

b≥ 0
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δi, jDbv ≤ Dbh

These equations are a summary of the alterations described in the text. First, there

is no variation of a and b in pixels without RD (i.e., pixels where ni, j = 0). Note that in

the altered equations each pixel (i, j) has its own value for S, denoted by Si, j .

γa and γb, which represent the diffusion, are a sum of the individual diffusion

between the pixel (i, j) and all of its neighbors (i+ k− 2, j+ l− 2), including diagonal

ones. Since k and l go from 1 to 3, the neighbors are the pixels inside the intervals

[i−1, i+1] and [ j−1, j+1], forming a 3x3 kernel centered in the pixel (i, j). Diffusion

to diagonal neighbors occurs due to the rotation of the horizontal and vertical axes. There

is also no diffusion from or to pixels (i∗, j∗) with ni∗, j∗ , so neighbouring pixels with RD

just ignore these during their calculation of the diffusion term. If these positions are

outside the image limits, they are ignored too (there is no diffusion outside the image or

circular boundary condition in our system).

The diffusion involving the pixel (i, j) and each of its neighbors comes from

Witkin and Kass diffusion kernel (Eq. 3.2), with one alteration: we multiply Dbv by δi, j

to change the relative diffusion rate between the horizontal and vertical axes, to obtain

stripes or spots in different points, as we explained before when explaining the parameter

δ.

To save the result of the RD simulation into an image, we need to translate the

morphogen concentrations into a color intensity. Our system allows two options for that:

dynamic and static. In the dynamic option, the maximum concentration for the entire grid

is treated as plain white (255 in RGB), while the minimum concentration is considered as

plain black (0 in RGB). Intermediate values are linearly interpolated from these extremes,

generating shades of gray. The static option introduces two limits, Mwhite and Mblack,

so any pixel with a morphogen concentration above Mwhite will be translated as white,

while the ones with a concentration below Mblack will be painted as black, and values

between will be linearly interpolated. This option is useful in certain simulations where

some points have a very high morphogen concentration, leading most of the image to be

saved as dark gray, reducing the contrast and disallowing the formation of a pattern during

post-processing binarization (see Sec. 3.3 below).

It is also possible to choose which morphogen will be converted to the color inten-

sities, or even a mathematical combination of their values. Our program has the following

options: a, b, |b−a| and a+b. By default, our system translates the value of b to color.
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The resulting image will be saved as a PNG image file, which will be submitted to the

post-processing operations.

3.3 Post-Processing

To enhance the similarity with real woodcuts, we post-process the resulting im-

age from the processing step. As preprocessing, post-processing is done by a Python

(PYTHON, 1991) script which uses functions from the OpenCV (OPENCV, 2000) and

NumPy (NUMPY, 2006) libraries. It receives as input a PNG image from the processing

step. The list of parameters for the post-processing step is given in the Table 3.4.

Table 3.4: User-defined parameters for the post-processing step. Details about each pa-
rameter are given in the text

Parameter Default Value
σGauss 50
σPoisson 6
λPoisson 5
NContoli 3,000

ColorContoli 40
lContolimin 2
lContolimax 8

First, we recover from the preprocessing step the information about plain black

and plain white regions, where RD did not occur, painting these areas accordingly. This

is done by reading the image with black and white regions generated after calculation

borders, plain color regions and merging of small regions (Fig. 3.2c), and, for each pixel

in this image, if the pixel is black or white, its corresponding pixel will be painted as black

or white. Gray pixels in the black and white image map will maintain its color from the

RD processing.

To reduce noise, we apply a median filter with a 3×3 kernel over the image. For

each pixel in the image, we retrieve all of its neighbors, including the diagonal ones, form-

ing a 3× 3 kernel centered on it. We then apply the NumPy median function (NUMPY,

2006)to get the median value among the colors of all pixels in this kernel, which is applied

to the pixel. Pixels in the image limit (and so unable to have a complete 3×3 kernel) are

instead painted as black, similar to a picture frame.

After that, to get the aspect of an actual woodcut with white background and

black strokes, the median filter result is submitted to thresholding using Otsu’s technique

(OTSU, 1979), resulting in a black and white binary image. OpenCV threshold method

Carla MDS Freitas
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(OPENCV, 2000) is used with the THRESH OTSU option.

To generate a white-line woodcut, with a dark background and white strokes, we

simply invert the black and white pixels generated by the Otsu binarization (i.e. the neg-

ative of the image), using the OpenCV bitwise not function (OPENCV, 2000). which

inverts every bit in the image.

After these last steps, our woodcut is done. However, we have some optional filters

which can improve similarity with real woodcuts for certain cases.

According to Mello et al. (MELLO; JUNG; WALTER, 2007), real woodcuts are

not a binary, black and white image, but contain some tones of gray, particularly in the

borders of strokes, due to imperfections occurred in the carving and the printing process.

To simulate this, an optional filter to smooth the resulting image, as introduced in Mello’s

et al. work (MELLO; JUNG; WALTER, 2007), can be applied to the result of Otsu bina-

rization. This filter was implemented by using the OpenCV filter2D function (OPENCV,

2000). The kernel used is the weight average kernel:

M =


1 2 1

2 10 2

1 2 1



To better simulate the aspect of wood, noise can be applied to the Otsu binarization

result. Our system allows three types of Noise: Gaussian, Poisson, and Contoli. Gaus-

sian and Poisson noise yields a noise with the appearance of points, while Contoli noise

generates noise in the format of lines.

We consider in our work that the paper is white and the paint is black (both for the

standard woodcut and the white-line one), and this noise corresponds to imperfections in

the wood which appear in the woodcut result as points where the paint is not transferred

to the paper. So we apply noise only to the black pixels, leaving the white ones without

noise.

Gaussian and Poisson noise are generated using a similar method. First, we assign

to each black pixel a sample from the corresponding distribution (Gaussian or Poisson).

The Gaussian distribution is centered at its mean or expected value µ (in our simulations,

µ = 0) and has a standard deviation equals to σGauss, while the Poisson distribution has

standard deviation equals to σPoisson and an expected number of occurrences equals to

λPoisson. For the Gaussian case, which generates a real number, we convert the sample to
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an integer (Poisson distributions already yield an integer value). The sample obtained for

each pixel will be applied as its color. To avoid any overflow problem, values above 255

and below 0 are treated as 255 and 0, respectively.

Contoli noise uses a method adapted from (CONTOLI, 2015). Briefly speaking,

Contoli noise corresponds to add to random positions in the image an object with a high

transparency level, such as a rectangle or a line. If this is done for a large amount of times,

a noisy texture will be formed. In our method, we added NContoli times an horizontal

line with a width of 1 pixel and a random length 2l + 1 varying from 2lContolimax + 1 to

2lContolimin + 1, where l is the length of each “arm” of the line. This line has a color

equals to ColorContoli, which is added to the already existing color of the pixels where

it is placed. The placement is done by randomly choosing NContoli positions inside the

image and putting the central pixel of the line on it, and growing the line pixel-by-pixel

to the left and to the right until each side reaches l pixels (so the total length of the line is

2l + 1). As with the Gaussian and Poisson noise, we do not change the color of already

white pixels in our woodcut, and any values above 255 are converted to 255.

CDSFreitas
Sticky Note
Confesso que não ficou claro para mim, se eu posso ter pintas pequenas e grandes na mesma região,  assim como listas de espessuras diferentes. Teria que dividir em regiões para ter isso?  



40

4 RESULTS

In this chapter we present our synthesized woodcuts using the defined methodol-

ogy, together with the validation of our work and discussion.

4.1 Experimental Results

In this section we show the results of our work. All images were made with the de-

fault values for the parameters, with θ calculated by region, using the static visualization

option over the morphogen b and without the optional post-processing features (smooth-

ing filter and noise), unless stated otherwise. Some of our user-defined parameters did not

yield interesting results, so we keep them fixed for all our simulations, such as Tlow, Thigh,

t, a0, b0, Mwhite and Mblack.

For our simulations, we used an Ubuntu PC with 4 GB of RAM memory and an

Intel Core 2 Duo processor (2.80 GHz x2). Our results are not realtime. For Fig. 4.1e, for

instance, our system took a total of 223 seconds, being 19s for the preprocessing (mainly

for the computation of S values), 199s for the RD simulation, and 5s for post-processing.

It should be taken into account that this work is a proof of concept, so our focus was not

on code optimization. Also, for many cases, the pattern was settled before t = 16,000

iterations. To better analyze the process, our prototype shows the image being generated

in real time, which increases the computation burden.

Fig. 4.1 illustrates the flexibility of our system. For the same input image, many

woodcut variations are possible by adjusting the parameters. Different regions can present

distinct patterns, which eases the identification of image parts (Figs. 4.1e and 4.3). Figs.

4.1f and 4.1g show homogeneous patterns (stripes and spots, respectively) due to setting

an unique value for δ in the entire image. By setting a smaller difference between δmin and

δmax the pattern difference is more nuanced, although still present, as some regions show

longer stripes than others (Fig. 4.1h). Reducing the values for S makes the stripes and

spots bigger (Fig. 4.1i), while increasing the difference between Smin and Smax allows finer

strokes for more detailed regions and a simpler appearance for background areas (Fig.

4.4). When allowing each pixel to have their own stroke orientation θ, it is possible to

preserve details of the original image from inside the regions (Figs. 4.1c, 4.1d, 4.5, 4.7 and

4.8). Adaptive orientation can only be used on specific parts of the image, allowing detail

preservation for the most detailed regions while other regions have a more consistent
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Figure 4.1: A series of results over the same oil platform image showing the effect of
parameter variation. (a) Original image from the ADE20k dataset (ZHOU et al., 2017).
(b) Segmentation of the image from the ADE20k dataset. (c) Result for θ calculated by
pixel (Dbh = 0.040, Dbv = 0.020). (d) Result for θ calculated by pixel (Dbh = 0.040, Dbv
= 0.020, Smin = 0.002, Smax = 0.005). (e) Result using the default value for parameters.
(f) Result for δmax = 0.5. (g) Result for δmin = 1.2 and δmax = 1.2. (h) Result for δmin =
0.8 and δmax = 1.2. (i) Result for Smin = 0.002 and Smax = 0.005. (j) Result for adaptive
orientation. (k) Result for adaptive orientation (Dbh = 0.040 and Dbv = 0.020). (l) Result
for adaptive orientation (Dbh = 0.040, Dbv = 0.020 and δmax = 0.5).
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single pattern (Figs. 4.1j, 4.1k, 4.1l, 4.2b and 4.6). The effect of a plain color background

can be seen in Figs. 4.7 and 4.8.

Fig. 4.2 shows the result for different border widths, calculated in the start of the

preprocessing step. The orientation angle for regions where θ was calculated by region

suffered some alterations among these results, due to the dilating process changing which

is the brightest pixel from the region limit.

Figure 4.2: Comparison between different border widths, obtained by varying the value
of ndilate (for Fig. 3.2a with k = {1,11,21}, Tdi f f = 10.0, Dbh = 0.040, Dbv = 0.020 and
adaptive orientation). (a) Result for ndilate = 0. (b) Result for ndilate = 1. (c) Result for
ndilate = 2.

Figure 4.3: Results for a channel image from the ADE20K dataset, presenting regions
with different styles and orientation for the strokes, as the sky with spots and the river and
hills with stripes whose orientation reinforce their status as different regions. (a) Original
image (ZHOU et al., 2017). (b) Resulting woodcut.

We tested the effect of variations in the coefficient diffusion of a, i.e., Da, by set-

ting non-default values for Dah and Dav (Fig. 4.9). The images in the first row use a
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Figure 4.4: Results for a desert road image from the ADE20K dataset, showing the effect
of larger difference between Smin and Smax which allows finer details in the hills and a
more simplified appearance for background regions as the sky and the road. (a) Original
image (ZHOU et al., 2017). (b) Resulting woodcut (with Smin = 0.002 and Smax = 0.018).

Figure 4.5: Results using Lenna, demonstrating how details and traces from the original
image can be transmitted to the final woodcut even without segmentation. (a) Original
image. (b) Resulting woodcut (without segmentation, and with S and θ calculated by
pixel).

Figure 4.6: Results for a delicatessen image from the ADE20K dataset using adaptive
orientation, which preserves the details of foreground regions as the table and reducing
focus on background regions as the wall in the upper left corner. (a) Original image
(ZHOU et al., 2017). (b) Resulting woodcut (with Tsize = 300, adaptive orientation, Tdi f f
= 10.0, stheta = 0.2, Dbh = 0.040 and Dbv = 0.020).
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Figure 4.7: Results for a church image from the ADE20K dataset, showing preservation
of details inside the regions due to the orientation by pixel mode and the effect of plain
color background. (a) Original image (ZHOU et al., 2017). (b) Resulting woodcut (with
θ by pixel, Dbh = 0.040 and Dbv = 0.020).

Figure 4.8: Results for a church image from the ADE20K dataset, showing preservation
of details inside the regions due to the orientation by pixel mode and the effect of plain
color background. (a) Original image (ZHOU et al., 2017). (b) Resulting woodcut (with
θ by pixel, Dbh = 0.040, Dbv = 0.020 and inverted colors).
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larger difference between Dbh and Dbv, producing longer, straight stripes. In this situ-

ation, enlarging Da does not produce a huge effect, although bifurcations become more

common. In the second row variations of Da are performed for a smaller difference be-

tween Dbh and Dbv. In this case, the effect of Da variations is more noticeable: broken

stripes in the background and spots in the lighthouse top, shown when Da = 0.100, turn

into labyrinthine stripes when Da increases. Setting Da = 0.075 results in lack of pattern

for the background.

Figure 4.9: Tests with variation in the coefficient diffusion of the morphogen a. All the
tests used the same parameters as Fig. 4.14i unless stated as another value. (a) Dah =
Dav = 0.100. (b) Dah = Dav = 0.125. (c) Dah = Dav = 0.150. (d) Dah = Dav = 0.175.
(e) Dah = Dav = 0.100, Dbh = 0.030, Dbv = 0.025. (f) Dah = Dav = 0.125, Dbh = 0.030,
Dbv = 0.025. (g) Dah = Dav = 0.150, Dbh = 0.030, Dbv = 0.025. (h) Dah = Dav = 0.175,
Dbh = 0.030, Dbv = 0.025.

The different options to translate the concentrations of a and b into color are shown

in Fig. 4.10. The first row shows the raw RD result, before the post-processing step. It is

interesting to note that a and b seems almost complementary: a pixel with a high value for

a has a low value for b and vice-versa. Fig. 4.10d (where color is obtained from |b−a|)

shows an interesting pattern of empty line contours. However, after Otsu the results for

morphogen combinations did not resulted in an interesting pattern, due to being either too

bright (Figs. 4.10c and 4.10g) or too dark (Figs. 4.10d and 4.10h). On other hand, using

a produced a slightly darker woodcut (Fig. 4.10f), with black and white stripes having

approximately the same width.
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Figure 4.10: Translating into color different combinations of a and b concentrations. All
these simulations have the same parameters as Fig. 4.14i except for dynamic visualiza-
tion. (a) Result before post-processing for b. (b) Result before post-processing for a. (c)
Result before post-processing for a+b. (d) Result before post-processing for |b−a|. (e)
Final result for b. (f) Final result for a. (g) Final result for a+ b. (h) Final result for
|b−a|.
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In most of our tests, the difference between static and dynamic visualization was

either almost none or only one of these option was able to generate a final pattern after

Otsu’s method. Fig. 4.11 shows one of the few results where both options generated

images with valid patterns and a certain degree of difference between them.

Figure 4.11: Comparison of static and dynamic visualization. Both simulations have the
same parameters as Fig. 4.1f. (a) Static visualization. (b) Dynamic visualization.

Fig. 4.12 compares the result with and without the optional smoothing filter. On

one hand, smoothing filter reduces the aliasing, but the image seems a bit blurred.

Figure 4.12: Example of the post-processing smoothing optional step (with k =
{1,11,21} and Tdi f f = 10.0). In the top left, a close-up of the result. (a) Result with-
out smoothing. (b) Result with smoothing.

The second optional feature from the post-processing step, addition of noise, can

be seen in Fig. 4.13. Contoli noise was able to generate noise resembling short hori-

zontal cuts in the wood (Fig. 4.13a to 4.13d). In fig. 4.13 the noise seems somewhat
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artificial, with few color variation and a clear difference between a noise element and

the black background. Figs. 4.13b and 4.13c, with an increase in NContoli (the amount

of noise elements added) but a reduction on the color intensity of the noise elements,

represented by ColorContoli, show a more distributed noise. Raising NContoli even more

while reducing ColorContoli yields a picture where noise is just a small alteration in the

black background color (Fig. 4.13d). Both Gaussian and Poisson noise resulted in similar

point-like noise which resembles the traditional appearance of noise in TV transmissions,

instead of the kind of irregularities we would expect to see in wood. Figs. 4.13e and 4.13f

show Gaussian noise, while Figs. 4.13g and 4.13h have Poisson noise. We noted that

our implementation of Poisson noise is not able to produces noise elements with a large

intensity difference as the background color (i.e., white points in the black background),

as Gaussian noise did. Anyway, both line-like Contoli noise and point-like Gaussian and

Poisson noises produced some similarity with the irregularities in some real woodcuts

(Fig. 4.17).

Figure 4.13: Addition of noise in the post-processing step. Besides the post-processing
parameters and inverted colors in post-processing, all simulations have the same ones
as Fig. 4.14i. (a) Contoli Noise with NContoli = 1000, lContolimin = 1, lContolimax = 5 and
ColorContoli = 80. (b) Contoli Noise with NContoli = 1000, lContolimin = 2, lContolimax = 15
and ColorContoli = 30. (c) Contoli Noise with NContoli = 3000, lContolimin = 2, lContolimax = 8
and ColorContoli = 40. (d) Contoli Noise with NContoli = 30000, lContolimin = 2, lContolimax =
8 and ColorContoli = 4. (e) Gaussian Noise with σGauss = 50. (f) Gaussian Noise with
σGauss = 75. (g) Poisson Noise with σPoisson = 6, λPoisson = 5. (h) Poisson Noise with
σPoisson = 12, λPoisson = 2.



49

4.2 Validation

Validation is a difficult task in the general area of NPR (ISENBERG, 2013). A

quantitative evaluation is hard since there are no specific attributes that can be measured

and compared. We perform a qualitative comparison against the previous results address-

ing woodcuts known in the literature, using a lighthouse image used in (MELLO; JUNG;

WALTER, 2007) and (LI; XU, 2015) (Fig. 3.2a). To test this image, we did a manual

segmentation over it (Fig. 3.2b). Comparing with Mello’s work (Fig. 4.14a), our results

(Fig. 4.14g, 4.14h and 4.14i) have a different appearance, with directional stripes resem-

bling actual strokes, expanding the range of styles which can be generated. On the other

hand, Li’s work (LI; XU, 2016) is also aesthetically appealing (Fig. 4.14b), representing

a different woodcut style than ours (since it intends to simulate the Yunnan Out-of-Print

woodcut, a tradition Chinese style). We also tested some image processing tools such as

an Adobe Photoshop plugin (Fig. 4.14d), GIMP (Fig. 4.14e) and Prisma (Fig. 4.14f),

which did not yield images resembling actual wood carvings. Mello et al. (MELLO;

JUNG; WALTER, 2007) also compared another Adobe Photoshop plugin, which was not

able to produce a woodcut-like result.

To assess the ability of our system to replicate actual woodcuts, we asked an artist,

Guilherme León Berno de Jesus, to make a real woodcut based on the lighthouse image

(Fig. 4.15a), in order to try to generate a similar image (JESUS, 2018). We did not

specified the details of our system neither showed any previous results to avoid bias, but

we informed him about the general kinds of patterns RD generates, i.e., stripes and spots,

so the woodcut could be in a style that our system is able to replicate. We manually set the

black and white regions and the orientation angle through the image loading option for

these parameters (Fig. 4.15b). The final result for this simulation is shown in Fig. 4.15c.

Finally, we performed a qualitative validation through an online form, asking users

to assess images presented in random order. Before presenting the images, we described

the woodcut process, as illustrated in Fig. 1.1. For each image we asked the participants

if they consider plausible that the image was produced by this process. They answered

by rating the images with a number from “1” (totally disagree) to “5” (totally agree). We

show a series of 23 images, containing our results (7 images), results from other woodcut

synthesizing methods (3 images), other NPR results using RD (2 images), other general

black-and-white NPR results (2 images), real woodcuts in general styles (3 images), real

woodcuts from Brazilian Northeast (3 images), and other real black-and-white artworks
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Figure 4.14: Comparison between different methods for generating woodcuts (for Fig.
3.2a). (a) Mello’s result (MELLO; JUNG; WALTER, 2007). (b) Li’s result (LI; XU,
2016). (c) Xylograph plugin (AmphiSoft, 2007) (source: (MELLO; JUNG; WALTER,
2007)). (d) Simplify 3 Preset List (Photoshop plugin) result for the Wood Carving option
(Topaz Labs, 2018). (e) Result of a GIMP pipeline to generate a woodcut-like image
(WELCH, 2018). (f) Prisma app, Light Summer Reading filter with sharpen +100, con-
trast +100 and gamma -100 (Prisma Labs, 2016). (g) Our result (with k = {1,11,21},
Tdi f f = 10.0 and inverted colors). (h) Our result for θ calculated by pixel (with k =
{1,11,21}, Tdi f f = 10.0, Dbh = 0.040, Dbv = 0.020, and inverted colors). (i) Our result
for adaptive orientation (with k = {1,11,21}, Tdi f f = 10.0, Dbh = 0.040, Dbv = 0.020, and
inverted colors).
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Figure 4.15: Comparison of our work with an actual woodcut work over the lighthouse
image. (a) Real woodcut artwork by Guilherme León Berno de Jesus (JESUS, 2018).
(b) Our segmentation of black and white parts. (c) Our results using manual setting of
black and white parts, manual orientation, Border Color = 255 (i.e., white border color),
Tsize = 600, k = {1,11,21}, Tdi f f = 10.0, Dbh = 0.040, Dbv = 0.020 and inverted colors.

(3 images). After assessing the images, we allowed the participant to write reasons why

they gave low ratings for the images they did not considered plausible to be generated by

the woodcut process.

A total of 72 people answered the questionnaire, being 58 males and 14 females.

From these people, only 2 had worked before with woodcuts, while 51 have not worked

but already had heard about it, and 19 had never heard about woodcuts. About NPR, we

had 3 people who had worked with it, 25 who had heard about the subject, and 44 who

did not know about NPR.

On average, images were rated as 3.67 in our scale. Our results were rated a

bit higher, at 3.86, while other computer generated woodcuts received a grade of 3.55.

However, real woodcuts were rated as 3.64, slightly below the total average and below

the grade for other real artworks (3.74), which could reflect the lack of familiarity with

woodcuts from the participants. The two participants who have previous experience with

woodcuts rated our images with a lower grade, 2.93, but they did not gave a good rating

for actual woodcuts (only 3.00) or other woodcut generating methods (2.17). Due to the

small number of participants in this category, it is hard to reach a conclusion about it.

Among the participants who had heard about woodcuts but not worked with it, average

grade for all images is 3.63, and our results a grade of 3.82, while the results of other

woodcut methods were rated as 3.53. These participants gave actual woodcuts a rate of

only 3.67. The grades in this category are not so different than the total results. Lastly,

the three participants who have experience in NPR gave to our results a grade of 2.90
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but a grade of 3.78 to other woodcut synthesis methods. They also were able to detect

properly the actual woodcuts, giving them a grade of 4.17. The three participants with

NPR experience gave as reasons for low ratings the presence of details difficult to make

by hand, too much photorealistic images which appear to be digitally treated, and the

presence of aliasing which denotes an artificial image.

The list of images and the complete result tables are in appendixes A and B.

4.3 Discussion

In this section, we analyze some aspects from our results as its similarity with

certain styles of woodcuts, and the limitations of our technique.

During the development of this work, we noticed that many of our woodcuts have

an appearance similar to typical Brazilian Northeast woodcuts (as in Fig. 4.8, for exam-

ple), which are characterized by an abstract form, a black-and-white coloration (including

areas with flat black and white color), and the usage of lines and points to express different

textures (Fig. 4.16, for example). As we mentioned before, some styles of irregularities

encountered in these woodcuts are similar to the noise we implemented (Fig. 4.17).

In Fig. 4.15 we produced an image similar to an actual woodcut. On one hand,

our method is able to simulate the overall aspect of the real artwork, but on the other hand

some fine details such as the specific contour or the lighthouse top.

A limitation of our work is that, due to the nature of RD processes as the distribu-

tion of chemical substances forming waves of larger or smaller concentration, white and

black stripes have more or less the same relative width proportion, so it is not possible to

vary the spacing of strokes. However, by setting a as the morphogen to translate to color

we obtained an image where black and white stripes have similar width, so theoretically

it is possible to overcome this limitation. Another limitation is the inability to have lines

crossing each others (as in the walls of the house in Fig. 4.16b). In actual woodcuts,

strokes are usually more regular than our wave-like stripes, and tend to be longer, without

breaking in the middle as sometimes the reaction-diffusion stripes do.

Our validation study shows that most viewers considered plausible that our results

could be generated by the woodcut making process, but viewers with more experience

with woodcut or NPR on overall disagreed with this opinion. Given the small sample

of more experienced users and the fact they rated actual woodcuts with low grades, this

result should be taken with caution, but they indicated the need of more improvement in
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order to increase similarity with the real artworks.
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Figure 4.16: Actual woodcuts from the Brazilian Northeast Region, digitally treated to
pure black and white. Original woodcuts with green-stained paper are shown as a minia-
ture in the upper left corner of the image. (a) (FRANCORLI, 2018), (b) (GONZAGA,
2018).
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Figure 4.17: Actual woodcuts from the Brazilian Northeast Region showing noise-like
irregularities in the wood, digitally treated to pure black and white. Original woodcuts
with green-stained paper are shown as a miniature in the upper left corner of the image.
(a) (FERNANDES, 2018) showing line-like irregularities similar to our Contoli noise,
(b) detail of (SILVA, 2018) showing point-like irregularities like our Gaussian or Poisson
noise.
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5 CONCLUSIONS

We presented a method to synthesize a woodcut image by using Reaction-Diffusion

(RD). Our method first applies a preprocessing step on the input image where we compute

information regarding regions with pure black and white coloration, the detail level and

correspondent size of strokes, the tendency to form stripes or spots, and the orientation

of strokes, generating a parameter map. Then, we run a RD system over this parameter

map, generating the raw image with the pattern of strokes. Last, a post-processing step

is done in order to remove noise and binarize the image, resulting into a black and white

woodcut.

Our main contribution is the creation of another tool to synthesize woodcuts, an

artwork style with few previous attempts to generate, by the unprecedented usage of RD

for this task, a mechanism which was previously used in other NPR works. Our method

yields woodcuts with a different style than the existing tools. Our results hold similarity

to some styles of actual woodcuts. Qualitative validation shows that most participants

agreed that our results could plausibly be generated by the woodcut process. However,

since the few participants with experience in woodcutting gave a lower rating to both our

images and actual woodcuts than the ones without experience, and we had only 2 of these

participants, validation should be taken with caution.

Finally, we can conclude that our method is able to generate images which re-

semble woodcuts through the usage of an adapted RD system. This shows that RD has

a good potential for artistic ends, adding the possibility of generating woodcuts with a

different aspect than other tools with the same goal, increasing the range of styles NPR

mechanisms can simulate.

5.1 Future Work

To improve our woodcut generating system, we intend to allow more than one type

of noise in the same image, such as using Gaussian point-like noise together with line-

like Contoli noise. Computational efficiency can be improved by setting a stabilization

condition for the RD system, so the system will not need to run the entire t steps after

being stabilized into a pattern.

We also intend to improve the user interface to make its usage easier for artists and

users without programming abilities. For that, all the steps - preprocessing, processing
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and post-processing - would be united in the same program, and an option to preset the

value of parameters to simulate specific styles.

Finally, to enlarge the range of woodcuts our system can generate, we intend to

explore more values for parameters, as for instance to run more simulations using a in-

stead of b as the morphogen whose concentration will be translated into color, since our

preliminary tests showed that this option allows black and white stripes with the same

width in the final result.
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APPENDIX A — IMAGES USED IN VALIDATION

Figure A.1: Images used in validation which are generated by our methodology. Unless
stated otherwise, all these images are from the Ade20k dataset (ZHOU et al., 2017) and
have default values for the parameters, θ calculated by region, static visualization over
the morphogen b and no optional post-processing features (smoothing filter and noise).
(a) Desert road image (with Smin = 0.002, Smax = 0.018 and smoothing filter). (b) Church
image (with θ by pixel, Dbh = 0.040, Dbv = 0.020 and Contoli Noise with NContoli = 2,500
and ColorContoli = 30). (c) Church image (with θ by pixel, Dbh = 0.040, Dbv = 0.020,
inverted colors and Gaussian Noise with σContoli = 20). (d) Oilrig image (with δmax =
0.5 and Gaussian Noise with σContoli = 20). (e) Store image (with Tsize = 300, adaptive
orientation, Tdi f f = 10.0, stheta = 0.2, Dbh = 0.040 and Dbv = 0.020). (f) River channel
image. (g) Boat deck original image from the Ade20k dataset. (h) Boat deck image (with
θ by pixel, Dbh = 0.040, Dbv = 0.020, inverted colors smoothing filter).
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Figure A.2: Images used in validation which are generated by other woodcut synthesis
methods. (a) Image from Mello et al. work (MELLO; JUNG; WALTER, 2007). (b) Image
from Winnemoller’s work (WINNEMÖLLER, 2011). (c) Image from Li et al. work (LI;
XU, 2016).

Figure A.3: Images used in validation which are generated by other NPR works with RD.
(a) Image from Chi et al. (CHI; LIU; HSU, 2016). (b) Image from Chi et al. (CHI; LIU;
HSU, 2016).

Figure A.4: Images used in validation which are generated by other NPR works with
black-and-white renderings. (a) Image from Xu and Kaplan method (XU; KAPLAN,
2008) (source: (LAI; ROSIN, 2013)). (b) Imagem from Mould’s method (MOULD, 2003)
(source: (LAI; ROSIN, 2013)).



64

Figure A.5: Real woodcut images used in validation. Brazilian Northeast woodcuts were
treated to pure black and white to be in the same color palette as other images. (a)
Medieval-like woodcut of a Viking (KROGH, 1890). (b) Contemporaneous woodcut
of musical instruments (detail) (BRAZELTON, 1975). (c) Modern woodcut for book
illustrations of a crab (KIPLING, 2006). (d) Brazilian Northeast woodcut Meninos Cam-
biteiros (GONZAGA, 2018). (e) Brazilian Northeast woodcut São Sebastião (FRAN-
CORLI, 2018). (f) Brazilian Northeast woodcut A Rendeira (FERNANDES, 2018).
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Figure A.6: Other real black-and-white artwork images used in validation. (a) Line draw-
ing of a girl (FORESMAN, 2008). (b) Stippled drawing of Jorge Luis Borges (BHU-
MIYA, 2006). (c) Treated photography to black-and-white (DEAK, 2011).
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APPENDIX B — RESULTS OF THE VALIDATION PROCESS

Table B.1: Age ranges of participants in the validation step.
Age Number of Participants
1-19 10
20-29 51
30-39 6
40-49 1
50-59 1
60+ 3

Table B.2: Gender of participants in the validation step.
Gender Number of Participants

Feminine 14
Masculine 58

Table B.3: Educational Background of participants in the validation step. Since the partic-
ipants are Brazilian, the categories relate to the levels in the Brazilian educational system.

Educational Background Number of Participants
Elementary school (Ensino Fundamental) 1

High school (Ensino Médio) 19
Technical education (without University Degree) 8

Graduation 36
Master’s Degree 6
Doctor’s Degree 2

Table B.4: Experience with Woodcuts.
Experience with Woodcuts Number of Participants

Worked with it 2
Heard about it, but never worked with it 51

Never heard about it 19

Table B.5: Experience with NPR.
Experience with NPR Number of Participants

Worked with it 3
Heard about it, but never worked with it 25

Never heard about it 44
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Table B.6: Results for Fig. A.1a. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 5
2 10
3 9
4 17
5 31

Mean by Category Grade
Mean 3.8194

Mean (Experience with woodcuts) 3.0000
Mean (Only heard about woodcuts) 3.7843

Mean (Did not know about woodcuts) 4.0000
Mean (Experience with NPR) 3.3333
Mean (Only heard about NPR) 3.4800

Mean (Did not know about NPR) 4.0455

Table B.7: Results for Fig. A.1b. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 3
2 10
3 11
4 17
5 31

Mean by Category Grade
Mean 3.8750

Mean (Experience with woodcuts) 3.5000
Mean (Only heard about woodcuts) 3.7843

Mean (Did not know about woodcuts) 4.1579
Mean (Experience with NPR) 3.3333
Mean (Only heard about NPR) 3.7600

Mean (Did not know about NPR) 3.9773
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Table B.8: Results for Fig. A.1c. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 4
2 9
3 13
4 15
5 31

Mean by Category Grade
Mean 3.8333

Mean (Experience with woodcuts) 4.0000
Mean (Only heard about woodcuts) 3.8039

Mean (Did not know about woodcuts) 3.8947
Mean (Experience with NPR) 3.0000
Mean (Only heard about NPR) 3.5200

Mean (Did not know about NPR) 4.0682

Table B.9: Results for Fig. A.1d. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 6
2 10
3 8
4 17
5 31

Mean by Category Grade
Mean 3.7917

Mean (Experience with woodcuts) 1.0000
Mean (Only heard about woodcuts) 3.7647

Mean (Did not know about woodcuts) 4.1579
Mean (Experience with NPR) 2.0000
Mean (Only heard about NPR) 3.7200

Mean (Did not know about NPR) 3.9545
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Table B.10: Results for Fig. A.1e. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 5
2 6
3 8
4 20
5 33

Mean by Category Grade
Mean 3.9722

Mean (Experience with woodcuts) 2.0000
Mean (Only heard about woodcuts) 3.9608

Mean (Did not know about woodcuts) 4.2105
Mean (Experience with NPR) 2.6667
Mean (Only heard about NPR) 3.7600

Mean (Did not know about NPR) 4.1818

Table B.11: Results for Fig. A.1f. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 4
2 8
3 11
4 21
5 28

Mean by Category Grade
Mean 3.8472

Mean (Experience with woodcuts) 3.5000
Mean (Only heard about woodcuts) 3.8235

Mean (Did not know about woodcuts) 3.9474
Mean (Experience with NPR) 3.0000
Mean (Only heard about NPR) 3.6400

Mean (Did not know about NPR) 4.0227
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Table B.12: Results for Fig. A.1h. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 3
2 12
3 6
4 22
5 29

Mean by Category Grade
Mean 3.8611

Mean (Experience with woodcuts) 3.5000
Mean (Only heard about woodcuts) 3.7843

Mean (Did not know about woodcuts) 4.1053
Mean (Experience with NPR) 3.0000
Mean (Only heard about NPR) 3.6400

Mean (Did not know about NPR) 4.0455

Table B.13: Results for Fig. A.2a. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 5
2 12
3 11
4 23
5 21

Mean by Category Grade
Mean 3.5972

Mean (Experience with woodcuts) 2.5000
Mean (Only heard about woodcuts) 3.5686

Mean (Did not know about woodcuts) 3.7895
Mean (Experience with NPR) 3.3333
Mean (Only heard about NPR) 3.8800

Mean (Did not know about NPR) 3.4545
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Table B.14: Results for Fig. A.2b. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 12
2 19
3 19
4 12
5 10

Mean by Category Grade
Mean 2.8472

Mean (Experience with woodcuts) 2.0000
Mean (Only heard about woodcuts) 2.8039

Mean (Did not know about woodcuts) 3.0526
Mean (Experience with NPR) 4.0000
Mean (Only heard about NPR) 2.5200

Mean (Did not know about NPR) 2.9545

Table B.15: Results for Fig. A.2c. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 0
2 7
3 9
4 19
5 37

Mean by Category Grade
Mean 4.1944

Mean (Experience with woodcuts) 2.0000
Mean (Only heard about woodcuts) 4.2157

Mean (Did not know about woodcuts) 4.3684
Mean (Experience with NPR) 4.0000
Mean (Only heard about NPR) 4.1200

Mean (Did not know about NPR) 4.2500
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Table B.16: Results for Fig. A.3a. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 4
2 12
3 15
4 25
5 16

Mean by Category Grade
Mean 3.5139

Mean (Experience with woodcuts) 3.0000
Mean (Only heard about woodcuts) 3.4902

Mean (Did not know about woodcuts) 3.6316
Mean (Experience with NPR) 3.6667
Mean (Only heard about NPR) 3.6000

Mean (Did not know about NPR) 3.4545

Table B.17: Results for Fig. A.3b. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 14
2 19
3 13
4 15
5 11

Mean by Category Grade
Mean 2.8611

Mean (Experience with woodcuts) 4.5000
Mean (Only heard about woodcuts) 2.7647

Mean (Did not know about woodcuts) 2.9474
Mean (Experience with NPR) 3.6667
Mean (Only heard about NPR) 2.9200

Mean (Did not know about NPR) 2.7727
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Table B.18: Results for Fig. A.4a. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 4
2 16
3 12
4 16
5 24

Mean by Category Grade
Mean 3.5556

Mean (Experience with woodcuts) 3.5000
Mean (Only heard about woodcuts) 3.4902

Mean (Did not know about woodcuts) 3.7368
Mean (Experience with NPR) 3.6667
Mean (Only heard about NPR) 3.5600

Mean (Did not know about NPR) 3.5455

Table B.19: Results for Fig. A.4b. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 3
2 13
3 10
4 22
5 24

Mean by Category Grade
Mean 3.7083

Mean (Experience with woodcuts) 3.5000
Mean (Only heard about woodcuts) 3.5294

Mean (Did not know about woodcuts) 4.2105
Mean (Experience with NPR) 3.6667
Mean (Only heard about NPR) 3.4800

Mean (Did not know about NPR) 3.8409
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Table B.20: Results for Fig. A.5a. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 4
2 9
3 8
4 19
5 32

Mean by Category Grade
Mean 3.9167

Mean (Experience with woodcuts) 2.5000
Mean (Only heard about woodcuts) 4.0196

Mean (Did not know about woodcuts) 3.7895
Mean (Experience with NPR) 4.0000
Mean (Only heard about NPR) 4.3200

Mean (Did not know about NPR) 3.6818

Table B.21: Results for Fig. A.5b. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 1
2 6
3 12
4 22
5 31

Mean by Category Grade
Mean 4.0556

Mean (Experience with woodcuts) 3.0000
Mean (Only heard about woodcuts) 4.0000

Mean (Did not know about woodcuts) 4.3158
Mean (Experience with NPR) 4.6667
Mean (Only heard about NPR) 3.8800

Mean (Did not know about NPR) 4.1136
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Table B.22: Results for Fig. A.5c. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 18
2 16
3 10
4 17
5 11

Mean by Category Grade
Mean 2.8194

Mean (Experience with woodcuts) 4.0000
Mean (Only heard about woodcuts) 2.8824

Mean (Did not know about woodcuts) 2.5263
Mean (Experience with NPR) 4.0000
Mean (Only heard about NPR) 3.0000

Mean (Did not know about NPR) 2.6364

Table B.23: Results for Fig. A.5d. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 7
2 11
3 11
4 17
5 26

Mean by Category Grade
Mean 3.6111

Mean (Experience with woodcuts) 2.5000
Mean (Only heard about woodcuts) 3.7059

Mean (Did not know about woodcuts) 3.4737
Mean (Experience with NPR) 3.3333
Mean (Only heard about NPR) 4.0000

Mean (Did not know about NPR) 3.4091
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Table B.24: Results for Fig. A.5e. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 6
2 11
3 8
4 18
5 29

Mean by Category Grade
Mean 3.7361

Mean (Experience with woodcuts) 3.0000
Mean (Only heard about woodcuts) 3.7451

Mean (Did not know about woodcuts) 3.7895
Mean (Experience with NPR) 4.3333
Mean (Only heard about NPR) 3.9200

Mean (Did not know about NPR) 3.5909

Table B.25: Results for Fig. A.5f. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 11
2 4
3 11
4 17
5 29

Mean by Category Grade
Mean 3.6806

Mean (Experience with woodcuts) 3.0000
Mean (Only heard about woodcuts) 3.6667

Mean (Did not know about woodcuts) 3.7895
Mean (Experience with NPR) 4.6667
Mean (Only heard about NPR) 3.8800

Mean (Did not know about NPR) 3.5000
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Table B.26: Results for Fig. A.6a. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 1
2 6
3 3
4 29
5 33

Mean by Category Grade
Mean 4.2083

Mean (Experience with woodcuts) 3.0000
Mean (Only heard about woodcuts) 4.2157

Mean (Did not know about woodcuts) 4.3158
Mean (Experience with NPR) 4.6667
Mean (Only heard about NPR) 4.0400

Mean (Did not know about NPR) 4.2727

Table B.27: Results for Fig. A.6b. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 15
2 14
3 16
4 14
5 13

Mean by Category Grade
Mean 2.9444

Mean (Experience with woodcuts) 3.5000
Mean (Only heard about woodcuts) 2.8824

Mean (Did not know about woodcuts) 3.0526
Mean (Experience with NPR) 4.0000
Mean (Only heard about NPR) 2.6800

Mean (Did not know about NPR) 3.0227
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Table B.28: Results for Fig. A.6c. The first rows show, for each grade (first column),
the number of participants who gave that grade for the image (second column). The last
columns show, in the second column, the mean grade of that image and the mean grade
given by each category of participants regarding their level of experience in woodcuts or
NPR.

Grade Number of Participants
1 4
2 8
3 6
4 16
5 38

Mean by Category Grade
Mean 4.0556

Mean (Experience with woodcuts) 4.0000
Mean (Only heard about woodcuts) 3.8627

Mean (Did not know about woodcuts) 4.5789
Mean (Experience with NPR) 4.0000
Mean (Only heard about NPR) 3.6000

Mean (Did not know about NPR) 4.3182

Table B.29: Mean grade by category of participant regarding their level of experience in
woodcuts or NPR for all images used in the qualitative validation.

Mean by Category Grade
Mean 3.6655

Mean (Experience with woodcuts) 3.0435
Mean (Only heard about woodcuts) 3.6326

Mean (Did not know about woodcuts) 3.8192
Mean (Experience with NPR) 3.6522
Mean (Only heard about NPR) 3.6052

Mean (Did not know about NPR) 3.7006

Table B.30: Mean grade by category of participant regarding their level of experience in
woodcuts or NPR for all images produced by our methodology.

Mean by Category Grade
Mean 3.8571

Mean (Experience with woodcuts) 2.9286
Mean (Only heard about woodcuts) 3.8151

Mean (Did not know about woodcuts) 4.0677
Mean (Experience with NPR) 2.9048
Mean (Only heard about NPR) 3.6457

Mean (Did not know about NPR) 4.0422
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Table B.31: Mean grade by category of participant regarding their level of experience in
woodcuts or NPR for all images produced by other computational methods to synthesize
woodcuts.

Mean by Category Grade
Mean 3.5463

Mean (Experience with woodcuts) 2.1667
Mean (Only heard about woodcuts) 3.5294

Mean (Did not know about woodcuts) 3.7368
Mean (Experience with NPR) 3.7778
Mean (Only heard about NPR) 3.5067

Mean (Did not know about NPR) 3.5530

Table B.32: Mean grade by category of participant regarding their level of experience in
woodcuts or NPR for other NPR works using RD.

Mean by Category Grade
Mean 3.1875

Mean (Experience with woodcuts) 3.7500
Mean (Only heard about woodcuts) 3.1275

Mean (Did not know about woodcuts) 3.2895
Mean (Experience with NPR) 3.6667
Mean (Only heard about NPR) 3.2600

Mean (Did not know about NPR) 3.1136

Table B.33: Mean grade by category of participant regarding their level of experience in
woodcuts or NPR for other NPR works with black-and-white renderings.

Mean by Category Grade
Mean 3.6319

Mean (Experience with woodcuts) 3.5000
Mean (Only heard about woodcuts) 3.5098

Mean (Did not know about woodcuts) 3.9737
Mean (Experience with NPR) 3.6667
Mean (Only heard about NPR) 3.5200

Mean (Did not know about NPR) 3.6932

Table B.34: Mean grade by category of participant regarding their level of experience in
woodcuts or NPR for real woodcuts which are not from Brazilian Northeast.

Mean by Category Grade
Mean 3.5972

Mean (Experience with woodcuts) 3.1667
Mean (Only heard about woodcuts) 3.6340

Mean (Did not know about woodcuts) 3.5439
Mean (Experience with NPR) 4.2222
Mean (Only heard about NPR) 3.7333

Mean (Did not know about NPR) 3.4773



80

Table B.35: Mean grade by category of participant regarding their level of experience in
woodcuts or NPR for real woodcuts which are from Brazilian Northeast.

Mean by Category Grade
Mean 3.6759

Mean (Experience with woodcuts) 2.8333
Mean (Only heard about woodcuts) 3.7059

Mean (Did not know about woodcuts) 3.6842
Mean (Experience with NPR) 4.1111
Mean (Only heard about NPR) 3.9333

Mean (Did not know about NPR) 3.5000

Table B.36: Mean grade by category of participant regarding their level of experience in
woodcuts or NPR for all real woodcuts images.

Mean by Category Grade
Mean 3.6366

Mean (Experience with woodcuts) 3.0000
Mean (Only heard about woodcuts) 3.6699

Mean (Did not know about woodcuts) 3.6140
Mean (Experience with NPR) 4.1667
Mean (Only heard about NPR) 3.8333

Mean (Did not know about NPR) 3.4886

Table B.37: Mean grade by category of participant regarding their level of experience in
woodcuts or NPR for other real black-and-white artworks.

Mean by Category Grade
Mean 3.7361

Mean (Experience with woodcuts) 3.5000
Mean (Only heard about woodcuts) 3.6536

Mean (Did not know about woodcuts) 3.9825
Mean (Experience with NPR) 4.2222
Mean (Only heard about NPR) 3.4400

Mean (Did not know about NPR) 3.8712
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