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1 Introduction

Heavy long-lived particles (LLPs) on the order of 100 GeV are not present in the standard

model (SM). Therefore, any sign of them would be an indication of new physics. Many

extensions of the SM predict the existence of LLPs [1–8]. At the CERN LHC, the LLPs

will stop inside the detector material if they lose all of their kinetic energy while traversing

the detector, which will typically occur for particles with initial velocities less than about

0.5c [9]. This energy loss can occur via nuclear interactions if they are strongly interacting

and/or through ionization if they are charged. The observation of a stopped particle decay
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signature would not only indicate new physics but also help measure the lifetime of LLPs,

giving insights into various beyond the standard model (BSM) theories.

If these stopped LLPs have lifetimes longer than tens of nanoseconds, most of their

decays would be reconstructed as separate events unrelated to their production [10]. Owing

to the difficulty of differentiating between the LLP decay products and SM particles from

LHC proton-proton (pp) collisions, these subsequent decays are most easily identified when

there are no proton bunches in the detector. The detector is quiet during these out-of-

collision time periods with the exception of rare noncollision backgrounds, such as cosmic

rays, beam halo particles, and detector noise. If LLPs come to a stop in the detector, they

are most likely to do so in the densest detector materials, which in the CMS detector are the

electromagnetic calorimeter (ECAL), the hadron calorimeter (HCAL), and the steel yoke

in the muon system. If the stopped LLPs decay in the calorimeters, relatively large energy

deposits occurring in the intervals between collisions could be observed. Furthermore, if

the stopped LLPs decay into muons, displaced muon tracks out of time with the collisions

could be detected.

In this paper we present two searches for stopped LLPs that decay out of time with

respect to the presence of proton bunches in the detector. One search targets hadronic

decays detected in the calorimeters, and the other looks for decays to muon pairs in the

muon system. These two search channels are analyzed independently using data collected

by the CMS experiment in 2015 and 2016 with separate dedicated triggers. The calori-

meter (muon) search uses
√
s = 13 TeV data corresponding to an integrated luminosity of

38.6 (39.0) fb−1 collected with LHC pp collisions separated by 25 ns during a search interval

totaling 721 (744) hours. The size of the search sample is further reduced by applying a

series of offline selection criteria to decrease the number of events that most likely come

from the primary sources of background.

The calorimeter search presented here improves upon previous searches performed

by the CMS collaboration, the most recent of which used
√
s = 8 TeV pp collision data

corresponding to an integrated luminosity of 18.6 fb−1 collected in 2012 [11]. This search

excluded long-lived gluinos (g̃) with masses below 880 GeV and long-lived top squarks (̃t)

with masses below 470 GeV, for lifetimes between 10 µs and 1000 s. The results of earlier,

similar searches have been reported by the D0 collaboration at the Tevatron [12] and by

the CMS [13, 14] and ATLAS collaborations [15, 16]. The displaced muon search is newly

added to investigate different models with leptonic decays of stopped LLPs, such as those

of gluinos [9] and multiply charged massive particles (MCHAMPs) [17–20]. Searches for

decays of stopped LLPs are complementary to searches for heavy stable charged particles

(HSCPs) that pass through the detector and can be identified by their energy loss and time-

of-flight (TOF) information [21–34]. The searches presented here would allow the study

of the decay of such heavy particles, whereas dedicated HSCP searches typically look for

the particle itself, before it decays. However, both the searches for decays of stopped LLPs

and for HSCPs are sensitive to a similar range of lifetimes.
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2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon

pixel and strip tracker, a lead tungstate crystal ECAL, and a brass and scintillator HCAL,

each composed of a barrel and two endcap sections. Forward calorimeters extend the

pseudorapidity η coverage provided by the barrel and endcap detectors. In the region

|η| < 1.74, the HCAL cells have widths of 0.087 in η and 0.087 radians in azimuth (φ). In

the η-φ plane, and for |η| < 1.48, the HCAL cells map on to 5×5 arrays of ECAL crystals to

form calorimeter towers projecting radially outwards from close to the nominal pp collision

interaction point (IP). For |η| > 1.74, the coverage of the towers increases progressively to

a maximum of 0.174 in ∆η and ∆φ. Within each tower, the energy deposits in ECAL and

HCAL cells are summed to define the calorimeter tower energies, which are subsequently

used to provide the energies and directions of hadronic jets. In the HCAL barrel (HB)

and endcap, scintillation light is detected by hybrid photodiodes (HPDs), and each HPD

collects signals from 18 different HCAL channels. Signals from four HPDs are then digitized

by analog-to-digital converters within a single readout box (RBX).

Muons are measured in gas-ionization chambers embedded in the steel flux-return yoke

outside the solenoid. Muons are measured in the range |η| < 2.4, with detection planes

made using three technologies: drift tubes (DTs) in the barrel, cathode strip chambers

(CSCs) in the endcaps, and resistive plate chambers (RPCs) in both the barrel and the

endcaps. All these technologies provide both position and timing information. Hits within

each DT or CSC chamber are matched to form a reconstructed DT or CSC segment.

The first level (L1) of the CMS trigger system, composed of custom hardware pro-

cessors, uses information from the calorimeters and muon detectors to select the most

interesting events in a fixed time interval of less than 4 µs. The high-level trigger proces-

sor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before

data storage.

A more detailed description of the CMS detector, together with a definition of the

coordinate system used and the relevant kinematic variables, can be found in ref. [35].

3 Data and Monte Carlo simulation

3.1 Data samples

The LHC accelerates two proton beams in opposite directions such that the protons collide

at several points along the LHC ring, including one at the CMS detector. Each LHC beam

consists of a number of proton bunches arranged into an irregular pattern of “trains” [36].

Within a train, the proton bunches are nominally spaced 25 ns apart, with a larger spacing

between trains to account for the needs of the injection process. In an LHC orbit there

are 3564 bunch slots (BXs), which are 25 ns long. Each BX could be filled with proton

bunches, which usually occupy the first 2.5 ns of the BX, or could be empty. The trains

may be spaced such that there could be multiple empty BXs between filled BXs. To search

for LLP decays during these empty BXs, dedicated triggers select events at least two BXs
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away from any proton bunches. Thus these triggers are live only during these specific

time windows. This distance of two BXs is chosen so that we maximize the search time

window while suppressing most of the events from secondary pp interactions and from

“beam halo”, which are mostly muons traveling outside the LHC beam that are produced

by LHC beam-collimator scattering.

The search is performed with
√
s = 13 TeV pp collision run data collected by the CMS

experiment in 2015 and 2016. The 2015 calorimeter (muon) search sample, taken between

August and November 2015, corresponds to an integrated luminosity of 2.7 (2.8) fb−1 and

spans a trigger livetime, which is the amount of time the triggers are live in between colli-

sions, of 135 (155) hours. The 2016 calorimeter (muon) search sample was taken between

May and October 2016, during which a data sample corresponding to an integrated lumi-

nosity of 35.9 (36.2) fb−1 was recorded, spanning a trigger livetime of 586 (589) hours. We

do not consider the possibility of LLPs that were produced in 2015 but decayed in 2016.

In both the 2015 and 2016 searches, we use cosmic run data collected by dedicated triggers

as a control sample. These dedicated cosmic run data were recorded during LHC machine

technical stops, several days after collision runs. A negligible amount of long-lived signal

produced during collisions could have decayed during these cosmic runs for the lifetimes

considered in this analysis. The instrumental noise background estimate is extrapolated

from the instrumental noise measured in these control samples. Most of the other sources

of background are estimated from sideband regions of the main data sample, except for

the cosmic ray muon background in the calorimeter search, which is estimated from MC

simulation.

3.2 Benchmark models

Several simplified models are considered in this search, and samples are generated for each

using Monte Carlo (MC) simulation.

In the calorimeter search, we interpret the results in the context of two-body (g̃ →
gχ̃0) and three-body (g̃ → qqχ̃0) decays of a gluino into the lightest supersymmetric

(SUSY) particle (LSP), the neutralino (χ̃0). Long-lived gluinos are predicted by “split

SUSY” [37, 38], in which gauginos have relatively small masses with respect to sfermions,

which could be massive, since SUSY is broken at a scale much higher than the weak scale.

This large mass splitting causes the long lifetime of the gluinos, since gluinos can only decay

via a virtual squark. We also consider the decay of a long-lived top squark (t̃→ tχ̃0) that

can be the next-to-LSP particle (NLSP) in various dark matter scenarios [39–41]. Here the

LSP should be loosely interpreted as any new, neutral, non-interacting fermion, and not

necessarily as a SUSY neutralino.

In the muon search, we consider a different model for a three-body decay of the gluino

(g̃ → qqχ̃0
2, χ̃

0
2 → µ+µ−χ̃0), which is complementary to the calorimeter search. In this

model, the mass of the LSP neutralino (χ̃0) is chosen to be 0.25 times the gluino mass,

and the mass of the NLSP neutralino (χ̃0
2) is chosen to be 2.5 times the LSP neutralino

mass. A second simplified model used in the muon search predicts exotic particles called

MCHAMPs, whose charges are multiples of the elementary charge e and which are predicted
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by several BSM theories [20]. We assume an MCHAMP with charge |Q| = 2e decays into

two same-sign muons (MCHAMP→ µ±µ±).

3.3 Signal generation

The signal generation process is divided into three major stages. In Stage 1, the LLPs for

each signal process are generated from pp collisions with pythia [42, 43] and propagated

through the detector with Geant4 v9.2 [44, 45]. For the MCHAMP signal, pythia v6.4

is used, while for the gluino and top squark signals, pythia v8.205 is used. If the LLPs

are strongly interacting, as in the case of the gluinos and top squarks, they hadronize

into R-hadrons [46–48] upon production, whose interaction with the CMS detector in the

simulation is described by the cloud model [49, 50]. In this model, R-hadrons are treated as

SUSY particles surrounded by a cloud of loosely bound quarks and gluons. The fraction of

produced R-hadrons that contain a gluino and a valence gluon is set to 10%, a convention

used in previous analyses [11, 21]. However, because the R-hadrons interact an average of

ten times in the calorimeter, their flavor is effectively randomized. Some fraction of these

R-hadrons are sufficiently slow moving to come to a stop in the detector material. Because

they are doubly charged, MCHAMPs ionize heavily and thus a significant number also stop

in the detector.

In Stage 2, the parent LLP or R-hadron is constrained to decay at the stopping position

defined in Stage 1. The LLP decay is simulated by a second Geant4 step, and the decay

products are propagated through the detector.

Finally, in Stage 3, a pseudo-experiment MC simulation is conducted to estimate the

probability for stopped particle decays to occur in the time window between collisions when

data is being collected. The Stage 3 MC simulation determines an effective integrated lu-

minosity by using the good data-taking periods and the LHC filling scheme to calculate the

fraction of stopped particle decays that occur when the trigger is live. For a given particle

lifetime, the effective integrated luminosity is defined as the total integrated luminosity

multiplied by the probability that the particle decays at a time when the trigger is live in

between collisions. In other words, Stages 1 and 2 determine how the signal will look in the

detector, and Stage 3 determines when it will occur. More details on the signal generation

process are given in refs. [11, 13, 14].

4 Event selection

The calorimeter search and the muon search employ different search strategies and thus

different selection criteria, which are described in turn below.

4.1 Calorimeter search

In the calorimeter search, we look for hadronic decays of LLPs in the calorimeter that

produce energy deposits that could be reconstructed as at least one high-energy jet. We

trigger on calorimeter jets with energy greater than 50 GeV and |η| < 3 that are at least

two BXs away from pp collisions.
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The major background sources are cosmic rays, beam halo, and HCAL noise. Cosmic

ray and beam halo muons can emit a shower of photons via bremsstrahlung, which could be

reconstructed as a jet and mistaken for signal. HCAL noise [51] can give rise to spurious

signals, which in the barrel could appear in one or several HPDs within a single RBX,

and thus be incorrectly reconstructed as a jet. We observe that the rate of each of these

background sources drops exponentially as a function of the jet energy. We thus require

the events to have a leading (highest energy) calorimeter-based jet with energy greater

than 70 GeV. The calorimeter-based jets are reconstructed using an anti-kT clustering

algorithm [52, 53] with a distance parameter of 0.4. To increase the sensitivity of the search,

we require that the leading jet in each event is located within |η| < 1.0, where R-hadrons

are more likely to stop and where there is relatively less background from beam halo.

Secondary background sources include out-of-time collisions from remnant protons

between bunches, and beam-gas interactions in the detector. The rate of these secondary

background events becomes negligible after we require that there are no reconstructed

collision vertices in the events.

Cosmic ray muon events usually feature a large number of reconstructed DT segments

and RPC hits, whereas signal events in the calorimeter search would not. We exploit this

difference to distinguish signal events from cosmic ray muons. While it is possible for the

hadronic shower of an R-hadron decay to pass through the first layers of the iron yoke and

induce reconstructed DT segments, these DT segments are located only in the inner layers

of the muon chambers (r < 560 cm, where r is the transverse distance to the IP) and cluster

near the leading jet. On the other hand, cosmic ray muons are equally likely to leave DT

segments in all layers in both the upper and lower hemispheres of the muon system, and the

angle between the jet and DT segments in φ is more evenly distributed. As a result, we are

able to substantially reduce the cosmic ray muon background contamination in the signal

region by rejecting events that have at least two DT segments in the outermost barrel

layer of the muon system, events that have any DT segments in the second outermost

barrel layer, events that have two DT segments with a large separation in φ (|∆φ| > π/2),

events that have DT segments in the three innermost layers that are separated in φ from

the leading jet by at least 1.0 radian, and events that have close-by RPC hits in different

layers (∆R =
√

(∆φ)2 + (∆η)2 < 0.2 and ∆r > 0.5 m). We make looser DT segment

requirements in the outermost than in the second outermost layer because signals are very

likely to coincide with standalone DT segments that are not from cosmic ray muons but

particles from the pp collision. Most of these standalone DT segments from the pp collision

are located in the outermost muon barrel layer. With these selection criteria, we are able

to avoid incorrectly rejecting signal events, thus increasing the signal efficiency, while still

rejecting most of the cosmic ray muon events.

Beam halo muons travel closely along the beam pipe, typically traversing both sides of

the muon endcap systems and resulting in a few reconstructed CSC segments. Therefore,

we veto events with any CSC segments having at least five reconstructed hits. As will be

discussed in section 5, since signal events may include some CSC segments, requiring a

minimum number of CSC hits in the veto avoids a loss of signal efficiency.

Random electronic noise in the HCAL gives rise to events in which the time response of

the HCAL readout is very different from the well-defined response from particles showering
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in the calorimeter. This HCAL noise creates spurious clustered energy deposits that can be

reconstructed as a jet, which would contaminate the signal region and therefore should be

removed. Analog signal pulses produced by the HCAL electronics are read out over ten BXs

centered around the pulse maximum. The pulse shape from showering particles consists

of a peak at the collision BX and an exponential decay over the subsequent BXs. Particle

showers create clustered energy deposits spread over several neighboring calorimeter towers

in z and φ, while noise produces deposits in just one or two towers, or several towers in a

single HPD or RBX. In addition to the standard HCAL noise filter [51], we use a series of

offline selection criteria that exploit these timing and topological characteristics to remove

the HCAL noise events. These criteria are described in detail in ref. [14].

4.2 Muon search

In the muon search, we look for LLPs where the decay products include two muons. We

expect the signal to look like a pair of muons originating anywhere in the detector material,

but displaced from the IP. The muons would be back-to-back in the two-body MCHAMP

decay, but not for the three-body gluino decay.

The primary background sources in the muon search include cosmic ray muons, beam

halo, and muon detector noise. The latter two background sources are negligible after we

apply the full selection.

The trigger used in the muon search selects events at least two BXs away from the pp

collision time with at least one muon reconstructed in the muon system, whose transverse

momentum pT is at least 40 GeV. As in the calorimeter search, we select events offline that

have no reconstructed collision vertices.

Tracks that are reconstructed using only hits in the muon system are called standalone

muon tracks [54]. However, the standard standalone track reconstruction assumes that

muons originate from the IP, which is inappropriate for displaced muon searches. As

a result, a new muon reconstruction algorithm was developed for this analysis, which

produces displaced standalone (DSA) muon tracks [55]. The DSA tracks are reconstructed

using only hits in the muon detector, and they have no constraints to the IP. Thus, DSA

tracks are truly using only the muon system.

We require events to have exactly one good DSA track in the upper hemisphere of the

detector and exactly one good DSA track in the lower hemisphere. Both DSA tracks must

have pT > 50 GeV, at least three DT chambers with valid hits, and at least three valid

RPC hits. To reduce the background from beam halo, the DSA tracks must also have zero

valid CSC hits.

Timing information in the DTs and RPCs, indicating whether the muon is incoming

toward the detector center or outgoing away from the detector center, is used to distinguish

muons from a signal event from the cosmic ray muon background. Cosmic ray muons

are predominantly incoming when traversing the upper hemisphere and outgoing when

traversing the lower hemisphere, as they come in from above the detector and continue to

move downwards. Muons from a signal event, on the other hand, would be outgoing in

both hemispheres.
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We place selection criteria on both the upper and lower hemisphere DSA tracks in

order to obtain a good time measurement. We require at least eight independent time

measurements for the TOF computation. We require that the uncertainty in the time

measured at the IP for DSA tracks, assuming the muon is outgoing, is less than 5.0 ns.

Next, we ask for the time measurement to be signal-like. We require that the direction

of the lower hemisphere DSA track, as determined by a least-squares fit to the timing in

each DT layer where the fit is not constrained to the IP, is consistent with being in the

downward direction. We define tDT as the time at the point of closest approach to the

IP as measured by the DTs, assuming the muon is outgoing. Since cosmic ray muons

are incoming in the upper hemisphere and outgoing in the lower hemisphere, the tDT of

the upper hemisphere track is expected to be 40 to 50 ns earlier than that of the lower

hemisphere track. As for the signal, since both muons are outgoing, they are reconstructed

to have similar times as measured at the IP. Thus, we require that ∆tDT, which is defined

as ∆tDT = tDT(upper) − tDT(lower), is greater than −20 ns, which greatly reduces the

cosmic ray muon background.

In addition to these DT timing variables, we use a timing measurement from the RPCs

that assigns a BX to each hit. For each of the six layers of the RPCs, the hit is given a

BX assignment. A typical prompt muon created at the IP has a BX assignment of 0 for

each of its RPC hits. The BX assignments of cosmic ray muons are especially useful in the

lower hemisphere of the detector, as the incoming cosmic ray muons will typically trigger

the event and thus be assigned BX values of 0 in each RPC layer, but the outgoing cosmic

ray muons are often assigned positive BX values. For example, a lower hemisphere cosmic

ray muon typically has a BX assignment of 2 for each of its good RPC hits. For the signal,

each RPC BX assignment for each muon is typically 0.

Given the BX assignments in each RPC layer for a muon, we can compute the average

RPC hit BX assignment multiplied by 25 ns as the RPC time for a track (tRPC) and use

this as a discriminating variable. A typical muon from the benchmark decays has a tRPC

of 0 ns for both upper and lower hemisphere DSA muon tracks. On the other hand, the

tRPC of a cosmic ray muon is typically 25 or 50 ns in the lower hemisphere and 0 ns in

the upper hemisphere. We define ∆tRPC = tRPC(upper) − tRPC(lower), and we require

∆tRPC > −7.5 ns to further select signal-like events.

Figure 1 shows ∆tDT (left) and ∆tRPC (right) for data and MC simulation. The

events shown here contain good-quality DSA muon tracks, but they are dominated by the

cosmic muon background; they are selected with a subset of the criteria described above.

This selection is defined by the same trigger and reconstructed vertices requirements as

above. Additionally, exactly one DSA track in the upper hemisphere and exactly one DSA

track in the lower hemisphere are required. Looser requirements than in the full selection

are placed on the DSA track pT (>10 GeV), the number of DT chambers with valid hits

(greater than one), and the number of valid RPC hits (greater than one). We require the

same number of DT hits with good timing measurements per DSA track and number of

valid CSC hits as above for this selection. None of the remaining criteria from the main

selection criteria described above are used to select the events in figure 1. As can be seen

in figure 1, the number of cosmic ray muon background events is greatly reduced when the
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Figure 1. The ∆tDT (left) and ∆tRPC (right) distributions for 2016 data, MC simulated cosmic

ray muon, 1000 GeV gluino signal, and 600 GeV MCHAMP signal events, for the muon search. The

events plotted pass a subset of the full analysis selection that is designed to select good-quality

DSA muon tracks but does not reject the cosmic ray muon background. The number of cosmic

ray muon background events is greatly reduced when the full selection is applied, as we require

∆tDT > −20 ns and ∆tRPC > −7.5 ns. The gray bands indicate the statistical uncertainty in the

simulation. The histograms are normalized to unit area.

full selection is applied, as we require ∆tDT > −20 ns and ∆tRPC > −7.5 ns. Since ∆tDT

and ∆tRPC correspond to independent measurements of essentially the same quantity, a

mismeasured cosmic ray muon is much less likely to pass both selections than just one;

adding the second requirement improves the rejection of simulated cosmic ray muons by a

factor of approximately 350.

5 Signal efficiency

In this section, we describe the calculation of the signal efficiency εsignal, which is the

product of several efficiencies. In the calorimeter search, the stopping efficiency εstopping is

the probability that the R-hadron stops in the HB or ECAL barrel (EB), while in the muon

search, εstopping is the probability of each LLP to stop in any region of the detector. The

Stage 1 simulation determines εstopping. The reconstruction efficiency εreco is the efficiency

of an event to pass all of the selection criteria, including the trigger, and it is computed

independently of εstopping. In addition, εreco is calculated assuming that the LLP decay

occurs when the trigger is live in between collisions, and assuming a branching fraction

(B) of 100% to the decays in the signal models described above. The Stage 2 simulation

determines εreco. The efficiency εsignal is defined as the product of εstopping and εreco for

the muon search. For the calorimeter search, εsignal is the product of εstopping, εreco, and

two additional factors, εCSCveto and εDTveto, which are defined in the next subsection.

5.1 Calorimeter search

For the calorimeter search, εstopping is constant at about 0.054 for gluinos and 0.045 for

top squarks, for the range of masses considered. The εstopping value is larger for gluinos
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g̃→ gχ̃0 g̃→ qqχ̃0 t̃→ tχ̃0

εstopping 0.054 0.054 0.045

εreco 0.533 0.566 0.399

εCSCveto 0.944 0.944 0.944

εDTveto 0.877 0.877 0.877

εsignal 0.023 0.025 0.014

Table 1. Summary of the values of εstopping, εCSCveto, εDTveto, and the plateau value of εreco for

different signals, for the calorimeter search. The efficiency εstopping is constant for the range of

signal masses considered. The efficiency εreco is given on the Eg or Et plateau for each signal.

than for top squarks of the same mass because gluinos are more likely to produce doubly

charged R-hadrons.

The value of εreco depends primarily on the energy of the visible daughter particle(s) of

the R-hadron decay, denoted by Eg (Et) if the daughter is a gluon (top quark). When Eg >

130 GeV (Et > 170 GeV), εreco becomes approximately constant, as shown in figure 2. For

the three-body gluino decay, εreco depends approximately on the mass difference between

g̃ and χ̃0, becoming constant when mg̃ −mχ̃0 & 160 GeV.

Some physical effects that are not modeled in simulation can cause reconstructed CSC

or DT segments that are out of time with respect to a collision. For example, thermal

neutrons can take up to a tenth of a second after being produced in pp collisions before

they arrive at the muon detectors and induce a signal in the CSCs or DTs. Since these

segments can occur when the trigger is live, it is possible that some of the events in the

search sample could contain such segments. These events would be rejected by the selection

criteria, thus decreasing the probability for a signal to be observed. The terms εCSCveto

and εDTveto measure this decrease in efficiency due to these sources.

We define εCSCveto (εDTveto) as the conditional probability that a signal passes the beam

halo (cosmic ray muon) rejection criteria assuming the potential occurrence of coincident

CSC (DT) segments, given that the signal itself passes the full selection criteria. HCAL

noise events that are collected by the trigger are used to estimate these two efficiencies

from data, since this noise is independent of any muon detector activities and should pass

both beam halo rejection and cosmic ray muon rejection criteria. These events are selected

by inverting some of the noise rejection criteria. Then εCSCveto (εDTveto) is simply the

percentage of noise events that survive the beam halo (cosmic ray muon) vetoes among all

selected noise events.

Table 1 summarizes the values of εstopping, εCSCveto, εDTveto, and the plateau value

of εreco.

5.2 Muon search

Tables 2 and 3 show εstopping and εreco for each assumed signal mass in the muon search.

The εsignal value is the product of these two efficiencies. The εstopping value is larger for

MCHAMPs than for gluinos because the MCHAMPs considered have |Q| = 2e and the
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Figure 2. The εreco values as a function of Eg or Et (left), and mg̃ − mχ̃0 (right), for g̃ and t̃

R-hadrons that stop in the EB or HB, in the MC simulation, for the calorimeter search. The εreco
values are plotted for the two-body gluino and top squark decays (left) and for the three-body gluino

decay (right). The shaded bands correspond to the systematic uncertainties, which are described

in section 7.

mg̃ [GeV] εstopping εreco Expected events

400 0.19 0.0015 400

600 0.17 0.0024 50

800 0.17 0.0037 10

1000 0.17 0.0029 2

1200 0.18 0.0025 0.5

1400 0.20 0.0031 0.2

1600 0.21 0.0029 0.1

Table 2. Gluino εstopping and εreco, as well as the number of expected gluino events with lifetimes

between 10µs and 1000 s, assuming B(g̃ → qqχ̃0
2)B(χ̃0

2 → µ+µ−χ̃0) = 100%, for each mass point

considered for the 2016 muon search. The efficiencies are constant for this range of lifetimes.

gluinos sometimes produce singly charged R-hadrons. We lose signal efficiency because the

L1 muon trigger is designed to identify muons coming from the IP, although the muons

from the signal can be very displaced. A further loss in signal efficiency is due to the very

strict requirements on the quality of the DSA muon track. Similarly, the requirement to

have exactly one DSA track traversing the upper hemisphere and exactly one DSA track

traversing the lower hemisphere further reduces the geometrical acceptance, particularly

for the gluino decay, which does not produce back-to-back muons, unlike the MCHAMP

decay. The numbers in tables 2 and 3 represent the maximum number of signal events that

can be measured before applying the different search windows depending on the lifetime

of the stopped particle.

6 Background estimation

Since the background sources in both the calorimeter and the muon searches are not well

modeled in simulation, we use control samples in data to estimate their contributions after

the full event selection is applied.
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mMCHAMP [GeV] εstopping εreco Expected events

100 0.33 0.0059 100

200 0.29 0.041 50

400 0.28 0.045 4

600 0.25 0.042 0.5

800 0.30 0.038 0.1

Table 3. MCHAMP εstopping and εreco, as well as the number of expected MCHAMP events with

lifetimes between 10µs and 1000 s, assuming B(MCHAMP→ µ±µ±) = 100%, for each mass point

considered for the 2016 muon search. The efficiencies are constant for this range of lifetimes.

6.1 Calorimeter search

After applying the selection criteria in the calorimeter search, some background sources

from cosmic ray muons, beam halo, and calorimeter noise remain in the data. We quan-

tify the probability of background events escaping the background vetoes and thus being

observed by this search. These inefficiencies are calculated as follows.

We generate a sample of cosmic ray muon events to estimate the rate of such events

escaping the cosmic ray muon rejection criteria. The events are generated using cmsc-

gen [56], a generator based on the air shower program corsika [57] and validated in a

CMS analysis [58]. We require that the events pass the preselection criteria, namely that

they are required to have substantial energy deposits in the calorimeter and no CSC seg-

ments in the muon endcap system. The cosmic ray muon veto inefficiency is defined as

the fraction of preselected simulated cosmic ray muon events that are not rejected by the

cosmic ray muon rejection criteria. It is found to be 1×10−3. To account for the small dif-

ference in occupancy between the cosmic ray muon events in data and MC simulation, we

first bin the simulated events in the number of DT and outer barrel RPC hits and calculate

the inefficiency bin by bin. Then, we apply the halo veto and the noise veto to a sample

of events in data, and bin these data events in the same way as the simulated events. For

each bin, we multiply the inefficiency by the number of events in data, giving the binned

cosmic ray muon prediction. The nominal cosmic ray muon background prediction is then

the sum of the events in each bin.

The uncertainty in the cosmic ray muon background is due to the uncertainty in

the estimate of muons that escape detection by passing through uninstrumented regions

of the CMS detector, which is necessarily estimated from simulation. Since data in the

uninstrumented regions are ipso facto not available to compare to simulation, we define

equivalent fiducial volumes of instrumented regions of the muon system. Using these as

a proxy for the uninstrumented regions, we assess the reliability of the simulation by

comparing data and simulation. We find the average discrepancy between cosmic ray

muon data and simulation in the number of detected muons traveling through various

fiducial regions in the detector to be about 32%, and we assign this to be the systematic

uncertainty in the cosmic ray muon background estimate. Thus, we estimate the cosmic

ray muon background to be 2.6± 0.9 (8.8± 3.1) events in 2015 (2016) data.
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Because there was a high rate of beam halo production in 2015 and 2016 data, and

because it is possible for halo muons to escape the acceptance of the endcap muon system,

the halo background is nonnegligible. We estimate the halo veto inefficiency using a tag-

and-probe method [59] that analyzes a high-purity sample of halo events by selecting events

having one calorimeter jet with |η| < 1.0 and CSC segments in at least two endcap layers of

the muon system. Since the rates of beam halo in each beam are not the same, the events

are first classified according to whether they originated in the clockwise (−z direction) or

the counterclockwise (+z direction) beam. Then for each class, depending on whether these

events have CSC segments in only one endcap or both endcaps of the muon system, they

are categorized into events that have only the incoming portion of a halo muon track, events

that have only the outgoing portion, and events that have both portions. The number of

events that escape detection is NIncomingOnlyNOutgoingOnly/NBoth. We define NIncomingOnly

(NOutgoingOnly) as the number of events that have only an incoming (outgoing) portion of a

halo muon track. The number of events that have both an incoming and an outgoing halo

muon track is NBoth. After binning halo events in their x and y coordinates and performing

the classification and calculation discussed above, we estimate the halo veto inefficiency to

be 1× 10−4. We then multiply this inefficiency by the number of halo events vetoed in the

search region.

To account for the possibility that the x-y binning does not reproduce the actual shape

of the inactive or uninstrumented regions of the detector, thus biasing the estimate, we

repeat the calculation above, but binning events in φ and r instead. The systematic uncer-

tainty is then defined as the difference between the results from the two binning schemes.

We find a halo background estimate of 1.1± 0.1 (2.6± 0.2) events in 2015 (2016) data.

Finally, the background estimation of instrumental noise is performed using control

data in dedicated cosmic runs with no beams in the LHC, which include only cosmic ray

muon and noise events. We select cosmic runs taken several days after pp collision runs

so that there would be little chance for the signal to appear. After applying all selection

criteria on the control data, we observe 2 events in each of the 2015 and 2016 control data.

We then subtract the expected cosmic ray muon background from the total event yield,

obtaining a noise background estimate of 0.3+2.4
−0.3 (0.0+2.2

−0.0) events in 2015 (2016) control

data. Based on the number of noise events in the control sample, we expect the noise veto

inefficiency to be ≤ 1 × 10−4. These noise estimates are then scaled to the search data,

assuming that the noise veto inefficiency remains the same. The resulting noise background

estimate is 0.4+2.9
−0.4 (0.0+9.8

−0.0) events in 2015 (2016). The uncertainty in the 2016 prediction

is large because the trigger livetime of the cosmic runs in 2016 was about 60% shorter than

that of the collision runs, and also because the 2016 trigger livetime in collision runs is larger

than the 2015 trigger livetime. Therefore, the uncertainty is scaled by a larger factor.

The total background estimate for the calorimeter search is 4.1+3.0
−1.0 (11.4+10.3

−3.1 ) events

in 2015 (2016), as summarized in table 4.

6.2 Muon search

In the muon search, a small number of cosmic ray muon background events remains after

applying the full event selection to the data. The cosmic ray muon background is estimated

– 13 –



J
H
E
P
0
5
(
2
0
1
8
)
1
2
7

LHC Trigger HCAL Cosmic ray Beam Total
period livetime [hrs] noise muons halo background

2015 135 0.4+2.9
−0.4 2.6± 0.9 1.1± 0.1 4.1+3.0

−1.0 (6.2)

2016 586 0.0+9.8
−0.0 8.8± 3.1 2.6± 0.2 11.4+10.3

−3.1 (17.4)

Table 4. The background prediction for the calorimeter search. The total background median

value is listed in parentheses; this value corresponds directly to the median expected limits shown

below.

by extrapolating the data from a background-dominated region into the signal region. We

apply the full event selection to the data except the ∆tDT criterion and invert the ∆tRPC

criterion. We then fit the ∆tDT distribution with the sum of two Gaussian distributions and

a Crystal Ball function [60], since ∆tDT is relatively Gaussian with a long asymmetrical tail.

Next, we compute the integral of the fit function, for ∆tDT > −20 ns. Then, we compute

the same integral after having tightened the selection criteria on ∆tRPC to −50 < ∆tRPC <

−7.5 ns, then −45 < ∆tRPC < −7.5 ns, etc. in steps of 5 ns up to −10 < ∆tRPC < −7.5 ns.

Finally, we plot each integral as a function of the lower selection on ∆tRPC, and fit this

with an error function to extrapolate to the ∆tRPC > −7.5 ns region (see figure 3). We

use an error function fit in order to make a conservative background estimate. Given this

extrapolation, we predict 0.04 background events in 2015 data, with a negligible statistical

uncertainty, and 0.50±0.02 background events in 2016 data, where the uncertainty given is

statistical only. The statistical uncertainty in the background prediction derives from the

uncertainty in the error function fit parameters. We checked the background prediction

method by repeating the procedure with nonoverlapping ∆tRPC regions and found that the

numbers of background events predicted are consistent with the nominal values.

The systematic uncertainty in the background prediction is evaluated by repeating the

steps above, except changing the fit of the ∆tDT distribution to the sum of two Gaus-

sian distributions and a Landau function [61]. Using the error function fits to extrapolate

to ∆tRPC > −7.5 ns gives a prediction of 0.07 ± 0.06 (0.10 ± 0.01) background events in

2015 (2016), where the uncertainty given is statistical only. Thus, the background pre-

diction is: 0.04 ± 0.03 (syst) background events in 2015 data, with a negligible statistical

uncertainty, and 0.50± 0.02 (stat)± 0.40 (syst) background events in 2016 data.

Despite the fact that we require exactly one upper hemisphere DSA track and exactly

one lower hemisphere DSA track, there could still be some background from two coincident

cosmic ray muons. This background from two coincident cosmic ray muons could occur if

the upper hemisphere DSA track of one cosmic ray muon is reconstructed and if the lower

hemisphere DSA track of the other is also reconstructed. We estimate this contribution

from data by finding the rate of events with exactly one reconstructed DSA track in one

hemisphere satisfying all of the selection criteria except for the ∆tDT and ∆tRPC criteria,

and no tracks in the other hemisphere. Then, making simple assumptions about when

the two coincident cosmic ray muons could occur and about the DSA track reconstruction

efficiency as a function of BX, we calculate the number of accidentally coincident cosmic

ray muons and find it to be negligible.
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Figure 3. The background extrapolation for the muon search. The integral of the fit function to

∆tDT with the sum of two Gaussian distributions and a Crystal Ball function, for ∆tDT > −20 ns,

is plotted as a function of the lower ∆tRPC selection, for 2015 (red squares) and 2016 (black circles)

data. The points are fitted with an error function and used to extrapolate to the signal region,

which is defined as ∆tRPC > −7.5 ns.

7 Systematic uncertainties in the signal efficiency

While the Geant4 simulation used to derive the stopping probability accurately models

both the electromagnetic and nuclear interaction energy loss mechanisms, the relative con-

tributions of these energy loss mechanisms to the stopping probability depend significantly

on unknown R-hadron spectroscopy. We do not consider this dependence to be a source

of uncertainty for either the calorimeter or the muon search, however, since for any given

model the resultant uncertainty in the stopping probability is small. Nevertheless, there

are several sources of uncertainty in the signal efficiency measurement.

7.1 Calorimeter search

In the calorimeter search, the systematic uncertainty due to the trigger efficiency is negligi-

ble since the offline jet energy criterion ensures the data analyzed are well above the turn-on

region, so εreco is constant. We consider possible systematic uncertainties in εCSCveto and

εDTveto by varying the criteria used to select HCAL noise events that were described in

section 5.1. We compare the efficiency of data events to pass these new HCAL noise criteria

with that of the nominal HCAL noise selection criteria, and we find that the relative change

in the efficiencies is less than 0.2% for both εCSCveto and εDTveto, and therefore negligible.

The uncertainty in the integrated luminosity is estimated as 2.3 (2.5)% for 2015 (2016)

data [62, 63]. The relative uncertainty in εreco is estimated to be 7.7 (5.2)% for g̃ (̃t) in

the 2015 analysis, and 7.5 (5.2)% for g̃ (̃t) in the 2016 analysis. This uncertainty, which is

shown by the shaded bands in figure 2, is determined by computing the maximal relative

difference among points on the plateau.
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Systematic uncertainty 2015 2016

Reconstruction efficiency 7.7% 7.5%

Integrated luminosity 2.3% 2.5%

Jet energy scale 2.0% 2.0%

Table 5. Systematic uncertainties in the signal efficiency in the 2015 and 2016 calorimeter searches.

Jets in this analysis are not formed by particles originating from the center of the

detector, so the standard uncertainty in the jet energy scale does not apply. Instead, we

refer to a study performed on the HCAL during cosmic data taking in 2008 [64]. This

study compares the energy of the reconstructed jets in simulated cosmic ray muon events

and cosmic ray muon events in data, concluding that the uncertainty in the jet energy in

the simulation is about 2%. Moreover, a study conducted with 2012 data [65] compares the

data and simulation for dijets originating from the interaction point. The comparison leads

to an estimate of <2% for jets striking the HCAL barrel with angles of incidence from 0 to

π/3. After rescaling the jet energy by 2%, the signal efficiency varies by 2%. This estimate

is conservative since only the yield of signals with jet energy near the offline threshold is

affected by the variation of the jet energy, and as a result the uncertainty decreases rapidly

as Eg (Et) increases.

We have also considered the uncertainty associated with the jet energy resolution.

Studies have shown that the signal yield is insensitive to variations in this uncertainty, and

thus that the systematic uncertainty associated with the jet energy resolution is negligible.

The total systematic uncertainty in the signal yield is 8.3 (8.2)% in the 2015 (2016)

search. The systematic uncertainties are summarized in table 5.

7.2 Muon search

The muon search also has several sources of systematic uncertainties. We consider the

systematic uncertainty associated with the MC simulation modeling of the charge divided

by the pT (Q/pT) resolution by comparing this resolution in cosmic ray muon data and

cosmic ray muon MC simulation. The resolution compares Q/pT of the upper and lower

hemisphere tracks:

R(Q/pT) =
(Q/pT)upper − (Q/pT)lower√

2(Q/pT)lower
.

We plot the standard deviation of Gaussian fits of the resolution, as a function of the

lower hemisphere track pT, for both cosmic ray muon data and MC simulation. A fit of the

ratio between data and MC simulation in this plot for muon tracks in the lower hemisphere

with pT > 50 GeV gives a difference between cosmic ray muon data and simulation of

9.0 (5.3)% in the 2015 (2016) analysis. We propagate this resolution uncertainty to an

uncertainty in the signal efficiency by smearing the momentum distribution of muons in

the signal and observing the corresponding variation in the signal yields. We take the

largest variation in the signal yield, namely, 13 (7.0)% in the 2015 (2016) analysis, as the

systematic uncertainty in the modeling of the Q/pT resolution.
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Systematic uncertainty 2015 2016

Q/pT resolution mismodeling 13% 7.0%

Trigger acceptance 13% 2.8%

Integrated luminosity 2.3% 2.5%

Table 6. Systematic uncertainties in the signal efficiency for the 2015 and 2016 muon searches.

There is also a systematic uncertainty associated with the trigger acceptance. Since

the largest difference between data and MC simulation in the plateau of the trigger turn-

on curves is 13 (2.8)% in the 2015 (2016) analysis, we take these values as the systematic

uncertainty in the trigger acceptance.

The total systematic uncertainty in the signal yield is 19 (7.9)% in the 2015 (2016)

search. The systematic uncertainties are summarized in table 6.

8 Results

In the calorimeter search, we predict 4.1+3.0
−1.0 (11.4+10.3

−3.1 ) background events in the 2015

(2016) data. Four events that pass all of the selection criteria are observed in 2015 data,

while 13 events are observed in 2016 data. Both observed numbers of events are consistent

with the predicted backgrounds. The observed events are most likely cosmic ray muon or

beam halo events, as they each consist of a single reconstructed jet.

In the muon search, we predict 0.04 ± 0.03 (0.50 ± 0.40) background events in 2015

(2016). There are zero observed events in both 2015 and 2016 data that pass all of the

selection criteria.

In both the calorimeter and muon searches, we count the number of observed events

in equally spaced log10 (time) bins of signal lifetime hypotheses from 10−7 to 106 s. For

lifetime hypotheses shorter than one LHC orbit of 89 µs, we search within a sensitivity-

optimized time window of 1.3 times the stopped particle’s lifetime, where the window starts

after each pp collision, to avoid the addition of backgrounds for time intervals during which

a signal with a given lifetime has a large probability to have already decayed. We assume

that the cosmic ray muon background (and noise background in the calorimeter search) is

uniformly distributed in time. In the calorimeter search, we estimate the halo background

for each lifetime hypothesis by finding the ratio of halo events in the search time window

to the total number of halo events, then multiplying this ratio by the halo background

estimate for the full trigger livetime. We select the halo events by requiring events to

pass all of the selection criteria except the CSC segment veto described above, and then

requiring the events to have at least one CSC segment. Then, we determine if these halo

events are within the search window by observing how long after the most recent filled BX

they occurred.

For lifetimes longer than one orbit, the trigger livetime, the expected background, and

the number of observed events are independent of the lifetime. The effective integrated

luminosity decreases with lifetime for lifetimes longer than one LHC orbit, and the analysis
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Lifetime [s] Effective integrated Trigger Expected Observed

luminosity [fb−1] livetime [hrs] background events

5× 10-8 0.27 17 0.4+0.3
−0.1 0

8× 10-8 0.65 34 0.8+0.6
−0.2 0

10−7 1.27 67 1.4+1.2
−0.4 0

10−6 9.98 417 8.4+7.5
−2.3 8

10−5 13.37 583 11.3+10.2
−3.1 13

10−4 13.70 583 11.4+10.3
−3.1 13

103 13.57 583 11.4+10.3
−3.1 13

104 11.78 583 11.4+10.3
−3.1 13

105 8.27 583 11.4+10.3
−3.1 13

106 5.61 583 11.4+10.3
−3.1 13

Table 7. Counting experiment results for different lifetimes in the calorimeter search with

2016 data.

sensitivity degrades with lifetimes longer than one LHC fill because any signal that decays

between fills will have few chances to be observed.

For lifetime hypotheses shorter than one orbit, both the number of observed events

and the expected background depend on the time window considered, which is a fraction of

the total trigger livetime. Similarly, the effective integrated luminosity is reduced for short

lifetimes. As we gradually increase the lifetime in the hypothesis from the minimal value,

we include more observed events in the search window. When the lifetime is shorter than

one orbit, to explicitly show the discontinuous changes of the upper limits whenever the

expanding search window covers a new observed event, we test two lifetime hypotheses in

addition to the equally spaced log10 (time) ones, for each observed event in these counting

experiments. These two additional lifetime hypotheses are the largest lifetime hypothesis

for which the event lies outside the time window, and the smallest lifetime hypothesis for

which the event is contained within the time window.

Tables 7 and 8 show the results of the counting experiment for the 2016 data. The

data show no excess over background, and we set upper limits on the signal production

cross section (σ) using a hybrid method with the CLs criterion [66, 67] to incorporate the

systematic uncertainties [68], in both the calorimeter and muon searches. By combining

the likelihoods of the search results from the 2015 and 2016 analyses, we set combined

upper limits on Bσ for the benchmark signal models.

In the calorimeter search, the 95% confidence level (CL) upper limits on Bσ for g̃ (̃t)

pair production for combined 2015 and 2016 data as a function of the particle’s lifetime τ

are shown in figure 4, assuming Eg > 130 GeV (mg̃ −mχ̃0 ' 160 GeV or Et > 170 GeV).

In figure 5, the gluino and top squark mass limits are shown, assuming B(g̃ → gχ̃0) =

B(g̃ → qqχ̃0) = B(̃t → tχ̃0) = 100%. We exclude gluinos with mg̃ < 1385 (1393) GeV

that decay via g̃ → gχ̃0 (g̃ → qqχ̃0) and top squarks with mt̃ < 744 GeV at 95% CL for

10µs < τ < 1000 s.
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Lifetime [s] Effective integrated Trigger Expected Observed

luminosity [fb−1] livetime [hrs] background events

5× 10-8 0.27 11 0.01± 0.01 0

8× 10-8 0.64 34 0.03± 0.02 0

10−7 1.27 68 0.06± 0.05 0

10−6 9.95 422 0.36± 0.29 0

10−5 13.34 581 0.49± 0.39 0

10−4 13.67 589 0.50± 0.40 0

1 13.67 589 0.50± 0.40 0

103 13.55 589 0.50± 0.40 0

104 11.75 589 0.50± 0.40 0

105 8.26 589 0.50± 0.40 0

106 5.61 589 0.50± 0.40 0

Table 8. Counting experiment results for different lifetimes in the muon search with 2016 data.
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Figure 4. The 95% CL upper limits on Bσ for gluino and top squark pair production, using

the cloud model of R-hadron interactions, as a function of lifetime, for combined 2015 and 2016

data for the calorimeter search. We show gluinos that undergo a two-body decay (upper left), top

squarks that undergo a two-body decay (upper right), and gluinos that undergo a three-body decay

(lower). The discontinuous structure observed between 10−7 and 10−5 s is due to the increase of

the number of observed events in the search window as the lifetime increases. The theory lines

assume B = 100%.
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Figure 5. The 95% CL upper limits on the gluino and top squark mass, using the cloud model of

R-hadron interactions, as a function of lifetime, for combined 2015 and 2016 data for the calorimeter

search. We show gluinos and top squarks that undergo a two-body decay (left) and gluinos that

undergo a three-body decay (right). The discontinuous structure observed between 10−7 and 10−5

s is due to the increase of the number of observed events in the search window as the lifetime

increases.

Figure 6 shows the regions of the gluino (top squark) mass vs. neutralino mass plane

excluded by the calorimeter search, for lifetimes between 10 µs and 1000 s. The borders

of the regions are determined by the edge of the plateau in figure 2 and the gluino (top

squark) mass limits.

For the muon search, the 95% CL upper limits on Bσ as a function of lifetime for

1000 GeV gluinos and 400 GeV MCHAMPs are shown in figure 7 for combined 2015 and

2016 data. The combined 2015 and 2016 95% CL upper limits on Bσ of gluino and

MCHAMP pair production as a function of mass are shown in figure 8, for lifetimes between

10µs and 1000 s. Gluinos with masses between 400 and 980 GeV are excluded for lifetimes

between 10µs and 1000 s, assuming B(g̃→ qqχ̃0
2)B(χ̃0

2 → µ+µ−χ̃0) = 100%, mχ̃0 = 0.25mg̃

and mχ̃0
2

= 2.5mχ̃0 . MCHAMPs with masses between 100 and 440 GeV and |Q| = 2e are

excluded for lifetimes between 10 µs and 1000 s, assuming B(MCHAMP→ µ±µ±) = 100%.

9 Summary

A search has been presented for long-lived particles that stopped in the CMS detector

after being produced in proton-proton collisions at a center-of-mass energy of 13 TeV at the

CERN LHC. The subsequent decays of these particles to produce calorimeter deposits or

muon pairs were looked for during gaps between proton bunches in the LHC beams. In the

calorimeter (muon) search, with collision data corresponding to an integrated luminosity of

2.7 (2.8) fb−1 in a period of sensitivity corresponding to 135 (155) hours of trigger livetime

in 2015 and to an integrated luminosity of 35.9 (36.2) fb−1 in a period of sensitivity of

586 (589) hours of trigger livetime in 2016, no excess above the estimated background has

been observed. Cross section (σ) and mass limits have been presented at 95% confidence

level (CL) on gluino (g̃), top squark (̃t), and multiply charged massive particle (MCHAMP)

production over 13 orders of magnitude in the mean proper lifetime of the stopped particle.
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Figure 6. The 95% CL upper limits in the neutralino mass vs. gluino (top squark) mass plane,

for lifetimes between 10µs and 1000 s, for combined 2015 and 2016 data for the calorimeter search.

The color map indicates the 95% CL upper limits on Bσ. The mostly triangular region defined by

the black solid (dashed) line shows the excluded observed (expected) region. We show gluinos that

undergo a two-body decay (upper left), top squarks that undergo a two-body decay (upper right),

and gluinos that undergo a three-body decay (lower).
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Figure 7. The 95% CL upper limits on Bσ for 1000 GeV gluino (left) and 400 GeV MCHAMP

(right) pair production as a function of lifetime, for combined 2015 and 2016 data for the muon

search. The theory lines assume B = 100%.
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Figure 8. 95% CL upper limits on Bσ for gluino (left) and MCHAMP (right) pair production as

a function of mass, for lifetimes between 10 µs and 1000 s, for combined 2015 and 2016 data for the

muon search. The theory curves assume B = 100%.

In the calorimeter search, combining the results from the 2015 and 2016 analyses and

assuming a branching fraction (B) of 100% for g̃→ gχ̃0 (g̃→ qqχ̃0), where χ̃0 is the lightest

neutralino, gluinos with lifetimes from 10 µs to 1000 s and mg̃ < 1385 (1393) GeV have been

excluded, for a cloud model of R-hadron interactions and for the daughter gluon energy

Eg > 130 GeV (mg̃ −mχ̃0 ' 160 GeV). Under similar assumptions, for the daughter top

quark energy Et > 170 GeV and B(̃t→ tχ̃0) = 100%, long-lived top squarks with lifetimes

from 10µs to 1000 s and mt̃ < 744 GeV have been excluded. These are the first limits on

stopped long-lived particles at 13 TeV and the strongest limits to date.

In the muon search, 95% CL upper limits on Bσ were set for combined 2015 and 2016

data. For lifetimes between 10µs and 1000 s, limits were set between 1 and 0.01 pb for

gluinos with masses between 400 and 1600 GeV and for MCHAMPs with masses between

100 and 800 GeV and charge |Q| = 2e. For lifetimes between 10µs and 1000 s, gluinos

with masses between 400 and 980 GeV have been excluded, assuming B(g̃→ qqχ̃0
2)B(χ̃0

2 →
µ+µ−χ̃0) = 100%, mχ̃0 = 0.25mg̃, and mχ̃0

2
= 2.5mχ̃0 , where χ̃0

2 is the next-to-lightest

neutralino. Under the same lifetime hypothesis, MCHAMPs with masses between 100 and

440 GeV and |Q| = 2e have been excluded, assuming B(MCHAMP → µ±µ±) = 100%.

These are the first limits obtained at the LHC for stopped particles that decay to muons.
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L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, C. Cecchia,b, D. Ciangottinia,b, L. Fanòa,b,
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A. Morelos Pineda

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand

P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib,

M. Waqas

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki,
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49: Also at Universität Zürich, Zurich, Switzerland

50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria

51: Also at Adiyaman University, Adiyaman, Turkey

52: Also at Istanbul Aydin University, Istanbul, Turkey

53: Also at Mersin University, Mersin, Turkey

54: Also at Piri Reis University, Istanbul, Turkey

55: Also at Izmir Institute of Technology, Izmir, Turkey

56: Also at Necmettin Erbakan University, Konya, Turkey

57: Also at Marmara University, Istanbul, Turkey

58: Also at Kafkas University, Kars, Turkey

59: Also at Istanbul Bilgi University, Istanbul, Turkey

60: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom

61: Also at School of Physics and Astronomy, University of Southampton, Southampton, United

Kingdom

62: Also at Monash University, Faculty of Science, Clayton, Australia

63: Also at Instituto de Astrof́ısica de Canarias, La Laguna, Spain

64: Also at Bethel University, ST. PAUL, U.S.A.

65: Also at Utah Valley University, Orem, U.S.A.

66: Also at Purdue University, West Lafayette, U.S.A.

67: Also at Beykent University, Istanbul, Turkey

68: Also at Bingol University, Bingol, Turkey

69: Also at Erzincan University, Erzincan, Turkey

70: Also at Sinop University, Sinop, Turkey

71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey

72: Also at Texas A&M University at Qatar, Doha, Qatar

73: Also at Kyungpook National University, Daegu, Korea

– 46 –


	Introduction
	The CMS detector
	Data and Monte Carlo simulation
	Data samples
	Benchmark models
	Signal generation

	Event selection
	Calorimeter search
	Muon search

	Signal efficiency
	Calorimeter search
	Muon search

	Background estimation
	Calorimeter search
	Muon search

	Systematic uncertainties in the signal efficiency
	Calorimeter search
	Muon search

	Results
	Summary
	The CMS collaboration



