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ABSTRACT

The design of digital integrated circuits relies on gradually compiling a circuit specified
by hardware description language into its physical implementation layout. Such a design
flow is strongly dependent of a tool chain known as electronic design automation (EDA)
tools. Currently, the high complexity of system-on-chips and the increasing demand for
hardware accelerators are imposing new challenges on the EDA field. Parallel computing
is a trend to enhance scalability of EDA tools using widely available multicore platforms.
In order to benefit from parallelism, well-known EDA algorithms have to be reformulated
and optimized for massive parallel environments. This work aims to enable parallelism
during logic synthesis and verification phases of EDA flow, in order to significantly im-
prove runtime while handling very large designs. We are rethinking algorithms such as
multi-level logic optimization, technology mapping and combinational equivalence check-
ing (CEC) to achieve extensive parallelism. Such algorithms are strongly correlated to
each other in the design flow and work on directed-acyclic graphs called AIGs (AND-
inverter graphs), which are irregular and sparse structures. The time spent for synthesis
and verification of large design comprising millions of AIG nodes is becoming more critical,
requiring several hour for synthesis and even more than a day for verification. Therefore,
we are proposing a parallel flow based on a fine-grain parallel AIG rewriting method for
multi-level logic optimization and a fine-grain parallel LUT-based technology mapping
that enable fast solutions with competitive quality-of-results (QoR). Moreover, we are
exploiting data sharing and data independence to enable parallelism in a modern CEC
engine for faster verification. Experimental results have demonstrated that the proposed
parallel methods are able to accelerate the design flow when compared to the ABC tool,
which is an industrial-strength academic tool comprising state-of-the-art algorithms for
logic synthesis and verification. When optimizing designs comprising millions of AIG
nodes and running at 40 processor cores, the proposed parallel methods for AIG rewriting
and technology mapping are up to 36x and 25x faster than the respective ABC commands
rewrite and &if , with similar QoR. The proposed parallel CEC is able to significantly
reduce the verification runtime when compared to the ABC CEC engine and to a com-
mercial verification tool. For example, we observed some expressive improvements where
the CEC runtime went down from 19h to only 18min, representing a speedup of 63x.

Keywords: AIG rewriting. tech mapping. equivalence checking. parallel computing.



Algoritmos Paralelos para Síntese Lógica & Verificação Escalável

RESUMO

O projeto de circuitos integrados digitais consiste em gradualmente compilar um circuito
especificado em uma linguagem de descrição de hardware em seu leiaute de implementa-
ção física. Este fluxo de projeto é fortemente dependente de uma cadeia de ferramentas
conhecidas como ferramentas de automação de projetos eletrônicos (do inglês EDA). Atu-
almente, a alta complexidade de sistemas integrados em um chip e a crescente demanda
por aceleradores de hardware estão impondo novos desafios no campo de EDA. Compu-
tação paralela é uma tendência para aumentar a escalabilidade de ferramentas de EDA
usando plataformas multicore. Com o objetivo de usufruir do paralelismo, algoritmos de
EDA bem estabelecidos precisam ser reformulados. O objetivo deste trabalho é viabilizar
o paralelismo durante a fase de síntese lógica e verificação do fluxo de EDA, a fim de
melhor o tempo de execuç ao manipular circuitos grandes. Neste trabalho, algoritmos
para otimização lógica multi-nível, mapeamento tecnológico e checagem de equivalência
combinacional (CEC) estão sendo repensados para viabilizar paralelismo massivo. Tais
algoritmos estão correlacionados e operam sobre grafos acíclicos direcionados chamados
AIGs (AND-inverter graphs), os quais são estruturas irregular e esparsas. O tempo gasto
durante a síntese e verificação de grandes projetos com milhões de nodos e AIG está
se tornando mais crítico, requerendo horas para a síntese e até mesmo mais de um dia
para a verificação. Este trabalho propõe um fluxo paralelo baseado reescrita de AIG e
mapeamento tecnológico baseado em LUTs, ambos com um grão fino de paralelismo, os
quais viabilizam resultados rápidos sem sacrificar a qualidade dos resultados. Além disso,
este trabalho explora compartilhamento de dados e independência de dados para habili-
tar paralelismo em um módulo moderno de CEC, permitindo a verificação mais rápida
de circuitos grandes. Resultados experimentais demonstram que os métodos paralelos
propostos têm potencial para acelerar o fluxo de projeto quando comparado a ferramenta
ABC, a qual é uma ferramenta acadêmica com capacidade industrial para síntese lógica e
verificação. Quando aplicados a circuitos compostos por milhões de nodos de AIG e exe-
cutados em 40 núcleos de processamento, os métodos paralelos propostos para reescrita
de AIG e mapeamento tecnológico são até 36x e 25x mais rápida do que o os respectivos
comandos rewrite e &if da ferramenta ABC, com qualidade de resultados similares. O
método proposto para CEC paralelo é capaz de reduzir significativamente o tempo de veri-



ficação comparado ao método de CEC da ferramenta ABC e a uma ferramenta comercial
de verificação. Por exemplo, foram observados melhorias expressivas onde o tempo de
execução foi reduzido de 19h para apenas 18min, representando uma aceleração de 63x.

Palavras-chave: Reescrita de AIG. mapeamento tecnológico. checagem de equivalência.
computação paralela.
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1 INTRODUCTION

The design of digital integrated circuits (ICs) relies on gradually compiling a cir-
cuit specified by hardware description language (HDL) into its physical implementation
layout. Such a design flow is strongly dependent of a tool chain known as electronic
design automation (EDA) tools (WANG; CHANG; CHENG, 2009). Currently, the high
complexity of system-on-chips (SoCs) and the increasing demand for hardware accelera-
tors are imposing new challenges on the EDA field. Moreover, shorter design cycles are
directly related to productivity and project cost. In this sense, the concept of EDA 3.0
points to a new generation of parallel and distributed computer-aided design (CAD) tools,
which must be able to quickly handle a huge amount of information like in big data and
cloud computing services (STOK, 2018).

The increasing availability of supercomputers has leveraged novel possibilities for
other fields such as EDA. Aiming to exploit massive parallelism, the next generation of
EDA tools need to scale for dozens of processors. Even though part of the current EDA
tools present a reasonable scalability, some of them do not scale beyond 12-16 threads
and others need to be completely replaced (STOK, 2013).

EDA algorithms are responsible for solving complex optimization and decision
problems. Generally speaking, such algorithms can be classified in four main cate-
gories: high-level synthesis, logic synthesis, physical synthesis and verification (HAS-
SOUN; SASAO, 2002). On one side, optimization algorithms aim to improve the quality
of current circuit description in some aspects, targeting to meet the design constraints
and goals in terms of circuit power, performance and area. On the other side, verification
algorithms are applied in several stages on the design flow for checking the circuit correct-
ness. A great part of the problems solved by EDA tools rely on graph-based solutions.
Similarly to other areas of computer science, EDA algorithms are commonly evaluated
by considering their quality-of-results (QoR) and runtime as criteria. In this sense, to ex-
ploit parallelism in such algorithms is promising to decrease runtime and to enable QoR
improvements within a feasible execution time.
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1.1 Problem Definition

It is predicted that future generations of integrated circuits will contain trillions of
logic gates (STOK, 2013; STOK, 2014). Therefore, fast and scalable EDA algorithms are
fundamental in several stages of the design flow for both application specific integrated
circuit (ASIC) and field programmable gate array (FPGA). In this thesis, we are focusing
in three key problems from logic synthesis and verification field defined as follows.
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Figure 1.1: Initial logic network (a), optimized network delivered by the multi-level logic
optimization (b) and mapped network delivered by the technology mapping into 3-input
LUTs (c). A CEC engine verifies the design functionality at each step of the design flow.

Multi-Level Logic Optimization Problem: Given a logic network N , representing
the circuit as a directed acyclic graph (DAG), obtain an equivalent network N ′ mini-
mizing a cost function σ. Conventionally, the cost function σ is based on technology
independent metrics such as the number of nodes and levels in a DAG. These metrics are
used for guiding logic optimizations because they correlate to the circuit area and delay,
respectively.

The overall goal of multi-level logic optimization is to prepare the logic network
to be mapped into a given target technology, i.e., the technology mapping process,
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(MICHELI, 1994). For instance, Fig. 1.1(a) shown a logic network represented as an
AND-iverter graph (AIG), comprising 2-input AND operators and inverters. By apply-
ing logic optimizations on the AIG shown in Fig. 1.1(a), we can obtain a reduced AIG
comprising six nodes and four levels, as illustrated in Fig. 1.1(b).

LUT-Based Technology Mapping Problem: Given a technology independent logic
network N ′, obtain a logically equivalent network N ′′ representing a covering into k-input
lookup tables (LUTs), while minimizing a given cost function α and respecting the given
design constraints φ. A k-input LUT is a programmable cell which is able to implement
any k-variable Boolean function. In a typical scenario, the technology mapping covers
the logic network aiming to minimize the number of used LUTs while meeting the timing
(delay) constraints (CHEN; CONG; PAN, 2006).

Consider the optimized AIG previously delivered by the multi-level optimization
from Fig. 1.1(b). Intuitively, it is more convenient to perform the technology mapping
on top of the optimized graph shown in Fig. 1.1(b) than the original graph shown in Fig.
1.1(a). For the sake of simplicity, in this example, we abstract the details on mapping
goals and constraints. A typical LUT-based technology mapper enumerates many cuts
(subgraphs) representing subcircuits which fit into a k-input LUT and elects the best cut
for each node based on the corresponding cut area and delay costs (MISHCHENKO et
al., 2007). The last task of the mapper is to select a subset of the best cuts which covers
the logic network into k-LUTs, as shown in Fig. 1.1(c).

Combinational Equivalence Checking (CEC) Problem: Given two logic networks
N and N ′, verify whether N is functionally equivalent to N ′. CEC is commonly applied
after multi-level logic optimizations and technology mapping to ensure the right circuit
functionality between the original circuit specification and its optimized/mapped version
(HASSOUN; SASAO, 2002).

Considering our general example depicted in Fig. 1.1, we first need to check and
ensure logic equivalence between the initial logic network presented in Fig. 1.1(a) and
its optimized version presented in 1.1(b). Therefore, the CEC engine is responsible for
proofing the equivalence or non-equivalence of the networks under verification. If the
networks are equivalent, then the optimized version can be carried to technology mapping.
Analogously, the equivalence checked between the generic network used as input to the
technology mapper, shown in Fig. 1.1(b), and the final mapped network, shown in Fig.
1.1(c). Thus, if the networks are equivalent, the mapped network is delivered to the
physical synthesis phase of the design flow, e.g. placement and routing steps.
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1.2 Motivational Examples

This section introduces three motivational examples demonstrating challenges on
runtime, scalability and QoR across the logic synthesis and verification problems previ-
ously defined.

Motivation on Multi-Level Logic Optimization: Local transformations, such as logic
rewriting, play an import role during the multi-level logic optimization in modern design
flows. Typically, rewriting algorithms incrementally replace subgraphs of the logic network
by a better representation which is retrieved from a table of precomputed subgraphs.
Currently, the time spent to synthesize large AIGs with more than ten million nodes has
become considerable, even when fast rewriting methods are applied.

A representative case is the command rewrite in the ABC tool, which is an industrial-
strength academic tool for logic synthesis and formal verification (MISHCHENKO; CHAT-
TERJEE; BRAYTON, 2006; Berkeley Logic Synthesis and Verification Group, ). We have
observed that this command takes approximately 18 minutes on a modern processor to
perform a single iteration of rewriting for a 33-million-node AIG. The command rewrite is
one of the main algorithms executed four times in the well-known ABC scripts resyn2 and
dc2 for delay- and area-oriented synthesis, respectively. Moreover, these scripts are often
applied many times to compensate for the local nature of the transformations. Hence, it
may result in several hours of execution due to dozen incremental passes of algorithms such
as AIG rewriting. These observations and the wide availability of multi-core processors
motivate the investigation on how to enable parallelism for AIG rewriting.

Motivation on LUT-Based Technology Mapping: The multi-level logic optimiza-
tions have direct impact on the technology mapping quality due to the structural bias,
which is the influence of the underlying logic representation on the quality of technology
mapping (CHATTERJEE et al., 2006b). Moreover, there is a weak correlation between
the cost metrics adopted during multi-level logic optimization and LUT-based mapping.

On the one hand, area-oriented logic optimizations aim to minimize as hard as
possible the number of AIG nodes. On the other hand, during the LUT-based technology
mapping, the number of LUTs in the mapped netlist determines the circuit area. In this
context, a recent study demonstrated that, more nodes in the AIG (Gate Count) can
enable LUT count reductions, as shown in Fig 1.2 (LIU; ZHANG, 2017). Therefore, there
is much room for novel algorithms that decrease the gap between the multi-level logic
optimization and technology mapping within a moderate runtime.
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Figure 1.2: Miscorrelation between AIG node count (Gate Count) and LUT count during
technology mapping. Source (LIU; ZHANG, 2017).

Motivation on Combinational Equivalence Checking: CEC is known to be a co-
NP-complete problem which relay on solving several complex decision problems usually
modeled as Boolean satisfiability (SAT). In order to demonstrate the complexity of CEC
when dealing with large designs, we consider one instance of the problem. Two versions
of the design, the original one and the one after the synthesis, containing 14 million and
9 million nodes, respectively, were represented as AIGs and given to command &cec in
ABC (Berkeley Logic Synthesis and Verification Group, ). ABC took more than 24 hours
to prove equivalence, making it clear that verification becomes harder as the design size
increases, reinforcing the need for parallel CEC in order to improve scalability of EDA
tools.

It should be noted that scalable CEC techniques are used as an important building
block in other applications, which depend on efficient computation of equivalence classes
of internal nodes such as: removal of functionally equivalent logic in the design during the
logic synthesis process; computation of structural choices, which enable area and delay
improvements after technology mapping (CHATTERJEE et al., 2006a); sequential equiv-
alence checking based on register/signal correspondence (BJESSE; CLAESSEN, 2000;
MISHCHENKO et al., 2008); bridging circuits for the implementation and the specifica-
tion in engineering change orders (ECOs) (KRISHNASWAMY et al., 2009); and a number
of other utility packages. Therefore, it is desired to enable parallelism on CEC engines to
achieve moderated execution time for all those applications which rely on CEC.
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1.3 Proposal and Contributions

The scientific investigation addressed in this thesis is formulated as the following
research question: how to enable parallelism for logic synthesis and verification algorithms
in order to improve runtime and scalability? In this sense, this work aims to rethink logic
synthesis and verification algorithms to achieve extensive parallelism in multi-level logic
optimization based on AIG rewriting, LUT-based technology mapping and CEC.

The overall objective of this work is a challenging task, since the most part of logic
synthesis comprises algorithms working on irregular data structures like sparse graphs and
verification algorithms rely on SAT solving. Graph partitioning can be applied to enable
the parallelism in such irregular algorithms. On the one hand, the graph partitioning can
introduce a negative bias in the QoR when dealing with optimization problems like AIG
rewriting and technology mapping. It is because the logic synthesis tool loses the global
view of the network and it is hard to efficiently exploit optimizations in the boundaries
among partitions. On the other hand, graph partitioning is more useful for decision
problems like CEC, since it aims only to check functionality correctness regardless the
circuit area and delay aspects. In this sense, we are adopting the most appropriated
strategy of parallelism for each kind of problem.

For the parallel AIG rewriting and LUT-based technology mapping, which are op-
timization algorithms, we adopted the concept of operator formulation and the Galois
system to exploit fine-grain parallelism without graph partitioning. The operator formu-
lation is a data-centric abstraction of algorithms, which are described in terms of atomic
actions on data structures (PINGALI et al., 2011). The Galois system provides a pro-
gramming model in a multi-processor environment with shared memory to speculatively
exploit parallelism on non-overlapping subgraphs (LENHARTH; PINGALI, 2015).

For the parallel CEC, which is a decision algorithm, we adopted a coarse-grain par-
allelism based on graph partitioning and the well established POSIX Threads (Pthreads)
standard for shared-memory computing (BUTENHOF, 1997). Since CEC is a decision
problem, it is not sensitive to degradation in the quality of results due to the graph
partitioning. We revisit this discussion on graph partition effects later on in this work.

In both scenarios, considering the Galois system or Pthreads, the main challenges
towards our objective rely on rethink algorithms and data structures to efficiently work
in a parallel environment. Such algorithms comprise several shared data-structures and
require cleaver solutions to ensure mutual exclusion without inserting runtime bottlenecks.
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The major contributions, uniqueness and impact of this thesis are:

• We start revisiting the multi-level logic optimization by proposing a fine-grain par-
allel AIG rewriting. In this work, we introduce a set of principles that describe how
to unlock the parallelism during AIG rewriting. The proposed method speculatively
discovers non-overlapping subgraphs and rewrite them in parallel. Experimental re-
sults demonstrate that the proposed parallel AIG rewriting is able to speed up the
multi-level logic optimization by scaling to dozens of threads. Our method rewrites
AIGs comprising millions of nodes in few minutes without QoR degradation.

• We are proposing a fine-grain parallel technology mapping for LUT-based FPGAs.
Experimental results have demonstrated that our parallel mapper is able to bring
the mapping runtime form more than one hour to only few minutes with comparable
QoR. By using the same principles of parallelization, the proposed AIG rewriting
and the technology mapper can be integrated into a synergistic way. The proposed
integration enables to perform logic rewriting optimizations driven by technology
mapping cost functions. Our fast parallel mapper can be used to increase the
exploration in the solution space for improving QoR while keeping a low runtime.

• Three novel models are introduced to enable massive parallelism for speeding up two
crucial time-consuming CEC tasks, mitering and SAT sweeping. The proposed par-
allel CEC engine handles large designs comprising millions of AIG nodes, and scales
to many threads unlocking the potential of parallel environments available through
cloud computing. Experimental results showed significant runtime improvement
when comparing to both single-threaded ABC and parallel commercial CEC en-
gines. In some cases, the proposed solution reduces the CEC runtime from more
than one day to only a few minutes/hours.

• The uniqueness of this work is that we are enabling parallelism to solve three im-
portant and complex problems for logic synthesis and verification, proposing ef-
fective parallelization strategies according to the problem characteristics. This is
the first work in the literature to propose fine-grain parallel approaches allowing
logic optimization and mapping of many graph nodes at the same time, rather than
applying a graph partitioning for synthesizing and mapping each partition sequen-
tially. Moreover, the proposed parallel CEC enables parallelism in two key point of
the verification engine, accelerating the most critical components of the algorithm
which rely on SAT solving. The proposed solutions present promising speedups
when compared to state-of-the-art methods to solve these three problems.
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• The impact of this work is related to both ASIC and FPGA design flows that can
be directly benefited from the proposed parallel AIG rewriting and parallel CEC,
since these two algorithms perform technology independent tasks. Moreover, it is
worth to mention that there are common steps in the FPGA and ASIC technology
mapping. In this sense, by efficiently enabling parallelism in FPGA side, we are
on the path for enabling parallelism in ASIC side. Therefore, the contributions
of this work can impact a real design flow as well as leverage novel research and
development in parallel EDA.

1.4 Thesis Structure

We start presenting some background on parallel programming in Chapter 2, since
enabling parallelism in software is in the core of this thesis. We conclude the chapter
summarizing and justifying our choices of parallel programming models according to the
problem characteristics.

The three main contributions of this work are presented in the three subsequent
chapters of this manuscript. Each chapter presents a brief review on the addressed problem
and motivations followed by a background section and a revision on related works. The
proposed approaches and contributions are presented at the end of each chapter, supported
by a section of experimental results.

• In Chapter 3, we introduce our parallel rewriting by presenting the challenges and
the proposed strategies to enable efficient management of memory allocation, shared
data-structures and routine interactions in a parallel environment.

• In Chapter 4, we present our parallel LUT-based technology mapping by manging
data dependency during cut computation as well as introducing insights on how to
integrate AIG rewriting and LUT mapping in a synergistic way.

• In Chapter 5, we define the three advanced models proposed in this work to enable
parallelism for CEC. We discuss and demonstrate how the proposed models can be
applied independently or combined to unlock CEC speedups.

We conclude this work in Chapter 6 by summarizing our contributions on the logic
synthesis and verification field. We highlighting a set o principles for unlocking parallelism
in the proposed algorithms. These principles can be useful for leveraging the parallelism
in other related algorithms. Finally, we discuss future steps to extend this work.



25

2 REVIEW ON PARALLEL PROGRAMMING

In this chapter, we introduce some concepts on parallel computing while discussing
different techniques and technologies for parallel programming. We discuss the lower
level of abstraction and native approaches for parallel programming such as the standard
POSIX Threads (Pthreds), passing for other general approaches up to specific graph ana-
lytic frameworks for implementing parallel graphs algorithms. The main objectives of this
chapter is to provide the necessary background on parallelism for a better understanding
of this work as well as to justify the choices for adopting some models to design parallel
algorithms.

2.1 Background

2.1.1 Processes and Threads

Parallelism can be exploited in several different levels such as instruction-level,
thread-level and others. In this work, we are interested in exploiting parallelism in thread-
level so we are limiting the discussion to this scope. One source of parallelism in software
arises from the decomposition of a program into subproblems which can be solved in-
dependently in parallel while keeping the original semantic of the program. Generally
speaking, a computer process is an instance of a program executed and managed by an
operating system (OS). In the shared-memory model, the parallelism can be exploited
by decomposing and mapping a process to many independent lines of executions called
threads. Threads share memory regions of the main process such as heap, code section,
data section and each thread has its own stack section. In distributed system model,
the parallelism is exploited by decomposing the computation into many process running
in different host machines where the processes communication is usually performed by
message passing. In the following, we refer to parallel tasks in a generic way, which can
be viewed as threads in shared-memory model or processes in distributed systems.
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2.1.2 Static and Dynamic Parallelization

Designing efficient parallel algorithms relies on a set of components and the choices
on how to deal with these components are strongly related to the algorithm characteristics,
data structures and the target parallel architecture (GRAMA; GUPTA; KUMAR, 2003).
Some typical components involved in parallel algorithm design are:

• Identify portions of work that can be processed in parallel;

• Decompose the computation and assign pieces of work to parallel processors;

• Manage shared data structures accessed concurrently;

• Synchronize the parallel tasks;

• Balance the work load among processors.

The identification of available parallelism and the decomposition of computation
into smaller tasks may be defined statically or dynamically. In the static task genera-
tion, the parallelism is discovered and decomposed in smaller tasks before the algorithm
starts its execution. Usually, the static analysis is performed at compile time using task-
dependency graphs for determining the parallelism.

In the dynamic task generation, the identification of parallelism and the com-
putation decomposition are performed during the execution time. Therefore, the task
dependencies are known as the computation is executed and the decomposition strat-
egy is applied. There are several techniques for decomposing a problem in smaller and
independent tasks like recursive decomposition, e.g. merge sort and graph partitioning.

The interaction among tasks can also be classified as static and dynamic. In static
case, the interactions and the respective stages each interaction happens are known in
advance before the program execution. Dynamic interactions happen during the program
execution when it is not possible to determine in advance which tasks need to interact in
a given order.

Mapping tasks onto processes/threads is strongly related to the task generation
and interaction discussed before. The mapping aims to produce an efficient work load
distribution. Therefore, static generated tasks can be mapped either dynamically or
statically whereas dynamic generated tasks can be mapped only dynamically. There are
several techniques for static mapping tasks based on independent computation and the
adopted decomposition scheme. Dynamic mapping is usually more complicated to be
designed, requiring the management of tasks dependencies at the execution time.
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2.1.3 Parallelism Granularity

The granularity of the problem decomposition is related to the size and number of
derived smaller tasks (HWANG; JOTWANI, 2011). In a fine-grain parallelism a problem
is decomposed into many small tasks. On the other hand, coarse-grain parallelism decom-
poses the problem in few larger tasks. A medium-grain parallelism can also be considered,
which lies on the middle of this granularity spectrum. The target problem characteristics
and the number of available physical processors can be used for determining the most
appropriated granularity scheme.

2.1.4 Mutual Exclusion

In a parallel environment several different threads may need to access a shared
resource simultaneously, requiring a policy for ensuring the program consistence. There-
fore, mutual exclusion is used for coordinating the access of a given resource in a serial
way. Conventionally, a mutex can be used for implementing mutual exclusion, acting as
a virtual lock in shared resources. Firstly, a thread need to acquire the lock of a given
shared resource and then to perform the read/write operation on that. When the opera-
tion is finished, the lock must be released in order to enable that other threads access such
resource. The interval between acquiring and releasing the lock is called critical section
(GRAMA; GUPTA; KUMAR, 2003).

One possible drawback related to the mutex is the possibility of introducing dead-
lock and livelock in the program execution. A deadlock happens when two or more threads
need to access shared resources and the locks are never available due to a cyclic dependence
of locks or due to a thread stop its execution before releasing a given lock (COFFMAN;
ELPHICK; SHOSHANI, 1971). A livelock may occurs when threads are trying to recover
from a deadlock by releasing successively their already acquired locks without making
any progress. These issues can also occur in distributed systems which need concurrency
control or transactions.

Alternatively, one can consider to use atomic operations instead of mutex. How-
ever, atomic operations are not portable since they are strongly dependent on the proces-
sor instruction set and the adopted compiler specifications. Overall, programs and data
structures which ensure mutual exclusion through a given technique are usually called
tread-safe.
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2.1.5 Performance Metrics

The speedup is a well established metric for evaluating how fast a parallel program
executes when compared to the reference sequential program. Considering that a given
problem is solved sequentially with runtime T1 and it is solved in parallel using p proces-
sors with runtime Tp, the speedup is defined as T1/Tp (EIJKHOUT, 2014). The Amdahl’s
Law is commonly used to predict the maximum speedup of a program running in mul-
tiple processors. This law is based on the observation that the theoretical speedup of a
program is limited by the sequential segments of a program which cannot be parallelized,
independently of how many processors are being used (AMDAHL, 1967).

The scalability of a parallel program is related to how the program runtime behaves
as the number of processors and/or the problem size increases. The strong scaling is
measured by increasing the number of processors while keeping the problem size constant.
In practice, the strong scaling is the same as speedup presented above (EIJKHOUT,
2014). The weak scaling is measure by increasing both the number of processors and the
problem size. In weak scaling, larger problems are being solved but the amount of work
per processor is roughly invariant, since the number of processors and the problem size
tend to grow according to each other.

2.1.6 Regular and Irregular Algorithms

Generally speaking, algorithms can be classified as regular and irregular. Regular
algorithms operate on regular data structures such as dense array and matrix. In irregular
algorithms, the computation is performed on sparse graph and trees organized on irregular
pointer-oriented data structures without any particular organization. Therefore, exploit-
ing parallelism on irregular algorithms is more complicated than in regular ones. Pingali
et al. define the parallelism on such irregular structures as amorphous data-parallelism
(PINGALI et al., 2009; PINGALI et al., 2011).

In general, it is hard to determine parallelism in irregular algorithms at compile
time by statically performing a computation-centric analysis of the code. In several irreg-
ular applications the task dependencies and localities can be discovered only during the
execution time. In this cases, the parallelism is strongly related to the input data and
actions the algorithms perform on that. Therefore, a dynamic data-centric analysis tends
to be more appropriated for exploiting parallelism in irregular algorithms (PINGALI et
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al., 2011).
The logic synthesis and verification techniques investigated in this work rely on ir-

regular graph-based data structures. Although graph partitioning can be applied to enable
parallelism in some cases such as decision problems arising in combinational equivalence
checking, it is not the best alternative for enabling parallelism in optimization problems
such as AIG rewriting and technology mapping.
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2.2 General Programming Models

Considering this scenario on regular and irregular algorithms, in the remaining of
this chapter, we introduce different approaches for parallel programming while discussing
the potential of each one to deal with the challenges of the irregular algorithms we are
interested in this work.

2.2.1 POSIX Threads

Pthreads is a standard API for managing thread in shared-memory programming
model, which is widely supported in several systems and multicore platforms (BUTEN-
HOF, 1997). Through the Pthreads API the programmer can define sections of the code
to be parallelized by creating threads and specifying the data and the operation each
thread must execute. The API also provides interfaces to join thread back to the initial
process as well as mutex-based functions which help the programmer to deal with mutual
exclusion in critical sections.

One of the main advantages of Pthreads is that the programmer has freedom to
manage threads in a low level without abstraction overheads. On the other hand, such
a management comes at the cost of a high level of difficulty to design parallel programs.
For instance, implementing parallel irregular algorithms using Pthreads requires the de-
velopment of all necessary thread-safe data structures and strategies to figure out the
parallelism dynamically. In this context, Pthreads does not provide abstractions for im-
proving the development productivity and making the development easier.

However, in those cases where the massive data being handled by the program can
be divided into independent partitions, Pthreads provides an efficient and simple way to
distribute the computing among the processor cores. In this scenario, Pthreads help to
fully exploit the processing resources of the target machine without to insert overheads
due to the abstractions of a given programming model. Therefore, it is wise to adopt
Pthreads for those applications in which data partitioning is feasible and it does not lead
to QoR degradation. We revisit this discussion in Chapter 5, demonstrating how we apply
graph partitioning and Pthreads to build the proposed engine for parallel CEC.



31

2.2.2 Other Approaches

There exist other general programming models to exploit parallel computing in
shared-memory architectures. It is worth to mention theOpen Multi-Processing (OpenMP)
and the Intel Threading Building Blocks (TBB) approaches. OpenMP is an alternative to
Pthreads by increasing the level of abstraction to programmers which only need to specify
code sections and loops which can be parallelized in a shared-memory model (OpenMP,
1997; DAGUM; MENON, 1998). Basically, in this model, the parallelism is exploited
at compile time by translating parallel loops determined by the programmer into data-
parallel code. Intel TBB is a C++ library designed by Intel and can be viewed as a
complement to other techniques (REINDERS, 2007). The library provides parallel execu-
tor such as parallel_for, parallel_while and a set of concurrent (thread-safe) containers
such as queue, vector and hash_map, among others. The Intel TBB manages thread
executions by creating and evaluating task-dependency graphs dynamically, being more
appropriate for implementing irregular algorithms.

When thinking on distributed computing, the Message Passing Interface (MPI)
is an interesting and generic alternative. MPI is a system which enables distributed
and parallel computing by coordinating process communications through message pass-
ing (GROPP; LUSK; SKJELLUM, 1999). In distributed computing, many autonomous
machines, also known as nodes, receive tasks and data from the initial MPI executor node.
The MPI provides a standard for communicating and synchronizing processes based on
protocols. MPI can be used together with shared-memory approaches such as Pthreads
and OpenMP to exploit parallelism by distributing many tasks to a set of nodes which
use mutithreading for processing those tasks. In this work, MPI can be viewed as a com-
plementary solution to the shared-memory parallel algorithms proposed herein. In this
sense, one can use MPI for distributing tasks among several processing hosts and applying
the proposed parallel solutions for exploiting the power of multi-core architectures at each
processing host.



32

2.3 Parallel Graph Analytic Tools

As previous discussed, many EDA tools are strongly based on a set of graph-based
algorithms. Therefore, in (STOK, 2014), Stok suggests that it is time to learn how EDA
can benefit from massive parallel frameworks used in graph analytics field. Therefore, we
start presenting a detailed view of the Galois System followed by a brief overview of other
graph analytics frameworks.

2.3.1 Galois System

Considering the motivations of this work as well as the demands and complexity
involved in the development of parallel logic synthesis methods, currently, we consider the
Galois programming model the most appropriate approach for accomplishing this task. In
the following we present the main reasons for considering this programming model and, in
the sequence, we present the organization and the features of Galois system (ISS Group,
The University of Texas at Austin, ).

• It is a model natively designed to exploit parallelism on irregular graph algorithms.

• It provides thread-safe data structures, supporting graph topology modifications.

• It enables fine-grain parallelism without the need of graph partitioning.

• It manages threads efficiently with low overheads due to abstractions.

• It is a programmer friendly model for write the code.

Galois is a shared-memory system that provides a data-centric programming model
to exploit amorphous data parallelism in irregular graph algorithms (PINGALI et al.,
2011). It is based on an abstraction of algorithms called the operator formulation. In this
abstraction, there is a local view and a global view of algorithms.

• The local view is described by an operator, which specifies an action that modifies the
state of the graph atomically. Each application of the operator is called an activity,
and the region of the graph modified by an activity is called its neighborhood, as
shown in Fig. 2.1.

• In general, there may be many places in a graph where an operator can be applied.
If there is an order in which these operator applications must be performed, that
is specified by the schedule, which provides a global view of the algorithm. For the
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algorithms of interest in this work, operator applications may be performed in any
order, so these are called unordered algorithms.

• Usually, each activity modifies only a small portion of the overall graph. Therefore,
for unordered algorithms, activities that modify non-overlapping regions of the graph
can be performed in parallel without changing the semantics of the program. A pair
of activities with overlapping neighborhoods can be performed in either order but
not concurrently.
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node. In Dijkstra’s algorithm, the oper-
ator, called the “relaxation” operator, 
uses the label of the active node to up-
date the labels of its neighbors. Figure 
1 shows active nodes as filled dots and 
neighborhoods as clouds surrounding 
active nodes for a generic algorithm. 
An active node becomes inactive when 
the activity is completed. 

In general, operators can modify the 
graph structure of the neighborhood 
by adding and removing nodes and 
edges; they are called “morph” opera-
tors. In most graph analytics applica-
tions, operators update only labels on 
nodes and edges without changing the 
graph structure. These operators are 
called “local computation” operators; a 
“pull-style” operator reads the labels of 
nodes in its neighborhood and writes 
to the label of its active node, while a 
“push-style” operator reads the label 
of the active node and writes the labels 
of other nodes in its neighborhood. 
Dijkstra’s algorithm uses a push-style 
operator. In algorithms that operate 
on several data structures, some data 
structures may be read-only, in which 
case the operator is a “reader” for those 
data structures. 

Neighborhoods can be distinct 
from the set of immediate neighbors 
of an active node, and can, in principle, 
encompass the entire graph, although 
usually they are small regions of the 
graph surrounding the active node. 
Neighborhoods of different activities 
can overlap; in Figure 1, node n is con-
tained in the neighborhoods of both 
activities A and B. In a parallel imple-
mentation, the semantics of reads and 
writes to such overlapping regions, or 
the “memory model,” must be speci-
fied carefully. 

The global view of the algorithm is 
described by the locations of active 
nodes in the graph and the order in 
which they must appear to have been 
ved by the implementation. 

In “topology-driven” algorithms, 
the locations of active nodes are deter-
mined by the graph structure. These 
algorithms make a number of sweeps 
over the graph; in each such sweep, 
all nodes are initially active,b and the 

b In some algorithms, a subset of nodes (such as 
interior nodes in a mesh) are initially active in 
each sweep, but this subset is determined by 
the graph topology.

For many analytics problems, differ-
ent algorithms must be used for uni-
form-degree, random, and power-law 
graphs to obtain good parallel perfor-
mance, as we show here. 

Need for new parallel abstractions. 
Most existing abstractions and imple-
mentations for parallel computing 
were developed for computational sci-
ence applications in which the main 
parallelism pattern is data parallelism; 
an example of a data-parallel operation 
is “map,” which applies a function to 
each element of a set, producing a new 
set. Systems like Hadoop enable pro-
grammers to express and exploit data 
parallelism without having to write 
low-level parallel code. 

Some graph analytics algorithms 
have data parallelism, but others ex-
hibit a more complex parallelism 
pattern called “amorphous” data-par-
allelism,29 described later in this arti-
cle. Unlike in data-parallel programs, 
tasks in amorphous data-parallel pro-
grams may or may not be able to run 

in parallel, depending on the graph 
structure and values known only at 
runtime. To exploit this parallelism 
pattern, systems need to find oppor-
tunities for parallel execution while 
executing the program in parallel. As 
a consequence, abstractions and im-
plementations for data-parallelism 
are not adequate for many parallel 
graph analytics algorithms. 

Landscape of Graph  
Analytics Algorithms 
To understand the patterns of paral-
lelism in graph analytics algorithms, it 
is convenient to use concepts from the 
“operator formulation of algorithms,”29 
a data-centric abstraction of algo-
rithms shown pictorially in Figure 1. 
To illustrate these concepts, we use the 
Dijkstra and Bellman-Ford algorithms 
for the single-source shortest-path 
problem (SSSP).5 Given a weighted, un-
directed graph G = (V,E,w), where V is 
the set of nodes, E is the set of edges, 
and w is a map from edges to posi-
tive edge weights, the SSSP problem 
is to compute the length of the short-
est path from a given source node s to 
every other node. Both algorithms are 
described in detail in the next section. 

The operator formulation has a local 
view and a global view of algorithms, as 
summarized in Figure 2. 

The local view is described by an 
operator, which is a graph update rule 
applied to an active node in the graph; 
some algorithms have active edges, 
but, here, we refer only to active nodes. 
Each operator application, called an 
“activity,” reads and writes a small re-
gion of the graph, called the “neighbor-
hood” of that activity, around the active 

Figure 1. Operator formulation. 
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(LENHARTH; NGUYEN; PINGALI, 2016)

From the programmer point of view, the Galois system provides C++ thread-safe
data structures such as graphs and sets as well as parallel executors such as for_each,
do_all (LENHARTH; PINGALI, 2015). The thread-safe graphs provided in Galois pack-
age supports different types of operations such as read-only, read-write and also topology
modifications in the graph structure. Thread-safe sets are used to implement worklists to
store active nodes. The parallel executor consumes nodes from the worklist and dynam-
ically assigns them to threads. Operator execution is speculative and optimistic in the
sense that the activities are assumed to be non-conflicting but Galois system dynamically
treats and reschedules activities if conflicts happen. Galois scheduling is non-deterministic
although it can be modified to work deterministically with some runtime cost. The dy-
namic management of thread conflicts is needed in irregular algorithms, unlike in regular
algorithms in which non-conflicting activities can be found and scheduled statically.

Optimistic scheduling of activities is implemented as follows. Graph elements
have exclusive locks to ensure mutual exclusion when threads are changing the graph.
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Therefore, Galois system manages thread conflicts in the owners of locks from graph
elements. Threads hold the abstract locks until the end of an activity or until a conflict
is detected. For instance, consider two threads t1 and t2 that are processing the active
nodes n1 and n2, respectively, and n3 is a shared neighbor of n1 and n2. If t1 acquires
the lock of n3, then t2 will not be able to proceed the execution of its operator until the
lock of n3 is released. In these cases, Galois detects the conflict and aborts the execution
of the operator at the active node n2 by releasing its already acquired locks. Then, the
active node n2 is rescheduled to be processed later. Fig. 2.1 shows an example where the
neighborhoods A and B share the node n, potentially leading to a thread conflict.

Intuitively, activities are processed atomically in an all-or-nothing approach in
terms of the acquisition of the necessary locks. When the execution of the operator in a
given active node is aborted due to conflicts, all computation performed at this point is
lost. In this sense, it is desirable to design cautious operators, which first try to acquire all
necessary locks in the neighborhood of the active node and only then perform the graph
modifications. This way, after acquiring necessary locks, it is possible to ensure that the
operator will be successfully executed without wasting time in the complex computation
before all locks are available.

Although Galois offers a high level of abstraction for programmers, recent studies
have compared Galois to a native thread implementation such as pthreads and have shown
that the abstraction penalty is small. In (MOCTAR; BRISK, 2014), Moctar and Brisk
proposed an efficient parallel FPGA router using the Galois system and they state to
believe that the Galois model is the right solution for parallel CAD. This statement is
based on the wide number of irregular graph-based algorithms used to solve problems in
EDA. Compared to other graph analytics frameworks, we consider the Galois system the
most promising approach according to the characteristics of the logic synthesis method
we are concerned to parallelize.

2.3.2 Other Approaches

Among several other tools for parallel graph analytics, it is worth to mention
Pregel, Giraph and GraphX. Pregel is a distributed system designed by Google in 2010
which introduced the concept of vertex programs in graph applications (MALEWICZ
et al., 2010). Pregel is based on the bulk-synchronous parallel (BSP) model, which is
based on supersteps of computation, communication and synchronization. In this model,
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the program is expressed as a sequence of iterations where the vertices receive messages
from previous iterations and send messages to the next iterations. At each iteration
vertices can update their own values or the values of their outgoing edges. Giraph is
also based on BSP model and designed on top of Apache Hadoop, which provides fault
tolerant software infrastructure for distributed processing and managing of large sets of
data (Apache Giraph, ). GraphX, in turn, is a scalable framework which unifies data-
parallel and graph-parallel computation in a distributed fashion. In this framework, the
data can be viewed and manipulated by applying graph operations such as the vertex
program proposed in Pregel or by applying relational algebra (XIN et al., 2013; Apache
Spark GraphX, ). The main limitation of these tools for the context of this work is related
to poor operations to change the graph topology. In general, such operations include only
reverse graph edges, subgraph extraction and other simple variations.
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2.4 Summary

In this chapter, we introduced a background on parallel programming and pre-
sented an overview on a set of programming models. Overall, the most appropriate way
to take advantage of the general programming models for exploiting parallelism in the
irregular graph-based algorithms we are interested on is by applying graph partitioning
to get data independence. For several graph-based problems the partition does not affect
the final quality of results and it is an interesting strategy to enable parallelism. Since the
CEC is a decision problem which can be decomposed into subproblems without penalties
in the final solution, we adopted graph partitioning and Pthreads to unlock parallelism in
this task. A detailed view of the CEC problem and the proposed solution are presented
in Chapter 5.

Although OpenMP and Intel TBB provide friendly models for parallel program-
ming, we consider that these models do not attend all the necessary demands to en-
able parallelism in the decision and optimization algorithms we are interested in this
work. OpenMP is not so efficient for designing parallel irregular algorithms where data-
independence and computing-independence cannot be easily discovered through static
code analysis and loop decomposition. Intel TBB does not provide thread-safe data struc-
tures for graph representations in such a library. These models could be an alternative
to implement the proposed parallel CEC engine based on graph partitioning. However,
for this task, we consider that Pthreads provides better performance with a reasonable
programming effort compared to OpenMP and Intel TBB.

The main concern in applying graph partitioning during logic synthesis based on
AIGs is that many opportunities of logic optimization can be lost due to the boundaries
among the partitions. Therefore, successive iterations of graph (re)partitioning are needed
for enabling logic optimizations on the partition boundaries. Although graph partitioning
is an alternative for coarse-grain parallelism, in this work, we are motivated to exploit a
fine-grain parallelism which fits well with logic optimization based on AIG rewriting and
technology mapping. Therefore, the Galois system was considered the most appropriated
model to enable parallelism in these two optimization algorithms.

In the context of other graph analytics tools, although such tools have interesting
infrastructures based on fault-tolerant distributed data and computing, the most part of
them do not fit in our application demands. For instance, the great part of graph analytics
tools do not provide the level of freedom for changing the graph topology as we need for
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rewriting AIGs efficiently. The main reason is that usual graph analytics applications aims
to analyze the data represented as a graph and perform simple read/write operations
with limited graph modifications. On the one hand, current graph analytics tools are
concerned to extract useful information from the data. On the other hand, AIG rewriting
and functional technology mappers aim to change relative large subgraphs to optimize
the DAG representation in some aspects. The Galois system supplies all the necessary
demands to implement logic synthesis algorithms. Future improvements in the features
for graph topology modifications can make tools such as Spark GraphX more suitable for
applications like parallel logic synthesis and EDA in general.
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3 MULTI-LEVEL LOGIC OPTIMIZATION

In this chapter, we revisit the multi-level logic optimization problem. The logic
synthesis phase starts from a general representation, usually called logic network, which
describes the logic behavior of a given circuit regardless technology and physical aspects.
Logic networks are commonly represented as directed cyclic graphs (DAGs). Typically,
multi-level logic optimizations aim to minimize the number of nodes (size) and lev-
els (depth) in the given logic network. These cost functions are well-established since
they are correlated to the circuit area and delay, respectively (BRAYTON; HACHTEL;
SANGIOVANNI-VINCENTELLI, 1990; MICHELI, 1994). Multi-level logic optimization
is an important and time-consuming task during logic synthesis because the underlying
logic representation has direct impact on the QoR in the next of the design flow i.e.,
the technology mapping (CHATTERJEE et al., 2006b; LIU; ZHANG, 2017) as well as
placement and routing (WANG; CHANG; CHENG, 2009).

Local transformations, such as logic rewriting, play an import role in modern logic
synthesis due to its interesting balance between runtime and quality-of-results (QoR).
However, as we have discussed in the motivational examples in the introduction of this
work, the time spent for multi-level logic optimization may represent several hours due
to incremental passes of logic rewriting on large networks. In this sense, logic rewriting is
the central optimization technique discussed in this chapter, where we are introducing a
fine-grain parallel AIG rewriting. Experimental results show that the proposed approach
is able to speed up the multi-level logic optimization of designs comprising millions of
AIG nodes with similar QoR when compared to the reference serial method. Several
other method based on the same rewriting technique can be accelerated by employing the
principles we are introducing in this work.

The chapter starts proving a background on the necessary logic synthesis terms
and concepts. In the sequence, we review well-established data structures and algorithms
addressing multi-level logic optimization based on logic rewriting that gradually leveraged
this field of research to its state-of-the-art. Finally, we introduce the parallel AIG rewriting
which is the first contribution of this work.
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3.1 Background

3.1.1 Combinational and Sequential Digital Circuits

A combinational digital circuit depends only on the current state of its input signal
to determine the values of its outputs. A sequential digital circuit depends on the current
and the previous input information to determine the values of its outputs. Usually, com-
binational circuits are the basis for arithmetic and control operations whereas sequential
circuits are used for circuit synchronizations such as pipeline barriers and also for control
based on finite-state machines (MICHELI, 1994). This work focuses on algorithms that
are used to optimize the combinational part present in digital circuit, such as micropro-
cessors or microcontrollers (DA ROSA JR et al., 2003). Besides that, this work is in
the scope of digital synchronous circuits as opposed to asynchronous ones (MOREIRA et
al., 2014). Optimizing combinational circuits can potentially reduce the area and power
consumption (BUTZEN et al., 2010; WILTGEN et al., 2013) of the final circuit.

3.1.2 Boolean Function

A single-output and completely-specified Boolean function f is a mapping from a
n-dimensional space Bn to a 1-dimensional space B, i.e. f : Bn → B, where n is the
number of input variables of f(x1, x2, ..., xn) and B = {0, 1}. The support of f refers
to the subset of input variables that influence the function output value. A literal is an
instance of a variable than can appears in the direct or complemented polarity, e.g. x1

and !x1, respectively. A conjunction of literals is a product, e.g. x1.!x2.x3, also referred
as cube. A disjunction of literals is a sum, e.g. x1+!x2 + x3.

3.1.3 AND-Inverter Graphs

There are several ways for representing Boolean functions such as truth tables,
sum-of-products (SOP), product-of-sums (POS), factored forms, binary-decision diagrams
(BDDs), AND-inverter graphs (AIGs), and others (BRYANT, 1986; MICHELI, 1994). For
the sake of simplicity, we are giving focus to the AIG representation, since the algorithms
proposed in this work are based on that.



40

An AIG is a directed acyclic graph containing four type of nodes: the constant, pri-
mary inputs (PI), primary outputs (PO), and 2-input AND (AND2) operators. Sequential
elements such as latches and flip-flops can be viewed as special nodes or pseudo-PI/PO.
A graph edge can present an optional attribute depending on whether the corresponding
signal is complemented. The AIG is a homogeneous and universal circuit representation.
It is homogeneous in the sense that all internal nodes represent the same operator (AND2).
It is universal in the sense that any arbitrary Boolean function can be represented in the
AIG format by applying the De Morgan’s law. Fig. 3.1 illustrates an example of AIG
where dashed edges represent inverters. A majority-inverter graph (MIG) is defined sim-
ilarly. However, instead of AND2 gates, a MIG comprises three-input majority (MAJ3)
gates (AMARÚ; GAILLARDON; MICHELI, 2014).

3.1.4 Fanin and Fanout

The set of nodes connected to the inputs of a given AIG node n is called the fanins
of n. Analogously, the set of nodes connected to the outputs of n is called the fanouts of
n. If there is a path from node n to n′, then n is in the transitive fanin (TFI) of n′ and
n′ is in the transitive fanout (TFO) of n. The TFI cone of a given node n includes n and
all those nodes in the transitive fanin of n towards the primary inputs of the AIG. The
TFO cone of n is analogous, including n and all those nodes in the transitive fanout of n
towards the primary outputs of the AIG (MISHCHENKO; BRAYTON, 2006).

3.1.5 Maximum Fanout Free Cone

A maximum fanout free cone (MFFC) of a given AIG node n is a subset S of the
predecessors of n such that every path from any node in S to a PO passes through n. In
other words, the MFFC of a given node n contains all nodes that are, exclusively, used to
define the logic function of n. For instance, the MFFC of node 15 in the AIG illustrated
in Fig. 3.1(a) contains all the nodes inside the shaded region. It means that, if the node
15 is removed, all nodes in its MFFC can also be removed (MISHCHENKO; BRAYTON,
2006).
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Figure 3.1: AIG example: (a) MFFC of node 15 and (b) k-cut enumeration with k = 3.

3.1.6 K-Feasible Cuts

A cut c rooted in a given AIG node n is a set of nodes, also called leaves, such that
every path from the PIs to the root n contains at least one leaf ∈ c. A cut c1 is dominated
by another cut c2 if c2 ⊆ c1, i.e., c1 is a redundant cut. A cut is k-feasible if it contains k
nodes or less; such a cut is known as a k-cut. We review the standard k-cut enumeration
defined in previous works (PAN; LIN, 1998; CONG; WU; DING, 1999; MISHCHENKO;
CHATTERJEE; BRAYTON, 2007). Let A and B be two sets of cuts and the auxiliary
operation � be defined as follows:

A �B = {u ∪ v|u ∈ A, v ∈ B, |u ∪ v| ≤ k} (3.1)

The set of k-cuts of a given node n is defined recursively according to the following function
Φ (n):

Φ (n) =


{{n}} : n ∈ PI

{{n}} ∪ [Φ (n1) � Φ (n2)] : otherwise
(3.2)

When n is an AND2 node its two fanins are represented as n1 and n2. Conventionally, all
k-cuts are computed by a single pass from the PIs to the POs of the AIG. The k-cuts of
an AND2 node are computed by performing the Cartesian product (merging) between the
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cut sets of its two fanin nodes. Moreover, each node has its trivial cut, which is defined
by the node itself denoted as {n} in the function Φ presented in Equation 2.2. Fig. 3.1(b)
illustrates an example of the 3-input cut enumeration from the PIs to the POs.

A k-cut is associated to a local Boolean function, which is defined by the logic cone
of the root node n and expressed in terms of the cut leaves. Boolean functions of cuts up
to 16 inputs can be efficiently represented by truth tables, implemented using bit-strings,
and manipulated using bitwise operations.

3.1.7 Structural Hashing

In the context of AIGs, structural hashing is a technique adopted to ensure that
there is no AND2 gates with the same pair of fanins, even up to input permutation
(MISHCHENKO; BRAYTON, 2006). Conventionally, the AIG manager stores each
AND2 node in a global hash table by building a key in terms of its two fanin edges
and nodes. Before creating a new node, the AIG manager performs a lookup in the hash
table to check whether an equivalent node with the same fanin exists. If such a node
exists, it is reused in a logic sharing way. Otherwise, a new node is created and inserted
into the hash table that represents the structural hashing.

For instance, consider the AIG implementing an AND2 node (a∗!b), as shown in
Fig. 3.2(a). Suppose that, due to a given logic optimization in the AIG, a new AND2
node (a∗!b) need to be created. Therefore, instead the AIG manager directly creates the
new (redundant) node as shown in Fig. 3.2(b), the manager first lookup the hash table
using a key generate as key = hashFunction(a, !b). In this case, as such an equivalent
node already exists in the AIG, then the node is shared by creating a new edge in node
fanout, as illustrated in Fig. 3.2(c). An efficient structural hashing implementation is
fundamental during AIG rewriting and other multi-level logic optimizations.
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Figure 3.2: (a) AND2 node already in the AIG, (b) creation of an equivalent (redundant)
AND2 node and (c) the logic sharing figured out by using structural hashing.
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3.1.8 NPN Classification

A Boolean function f is NPN-equivalent to another f ′ if one of them can be
obtained from the other by applying negations/permutations of its inputs/output. In
the context of logic rewriting, NPN classification is commonly used to find out logically
equivalent but structurally different implementations used for rewriting a cut in the logic
network (MISHCHENKO; BRAYTON, 2006). Moreover, NPN classification is a conven-
tional technique employed for Boolean matching (cell binding) in standard cell technology
mapping (CHATTERJEE et al., 2006b; TOGNI et al., 2002).
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3.2 Related Works on Logic Optimization

Since the early days of logic synthesis, different data structures have been adopted
to represent logic networks and, consequently, several algorithms have been developed for
optimizing and mapping such networks. Therefore, the representation and the manipu-
lation of logic networks have evolved together in the last decades. For instance, Boolean
expressions such as sum-of-products (SOP) were widely used for logic representation and
optimization in the past. The nature of SOPs defines a two-level representation comprising
a first level of AND operations and a second level of OR operations. Algorithms such as
Quine (JQUINE, 1955), McCluskey (MCCLUSKEY, 1956) and ESPRESSO (BRAYTON
P.C. MCGEER, 1993; SANGIOVANNI-VINCENTELLI, 1993) were proposed targeting
two-level optimizations by minimizing the number of literals and cubes in a given SOP
(RUDELL; SANGIOVANNI-VINCENTELLI, 1987). However, such logic representation
and algorithms do not present scalability as the complexity of digital IC designs increases.

Directed-acyclic graphs (DAGs) were adopted as a multi-level representation of
larger networks, where each graph node can represents an arbitrary Boolean function and
graph edges define the relationship among such intermediary functions. For instance,
in algebraic methods, each DAG node represents Boolean function in the SOP form
and then algebraic optimizations are performed on the network by applying elimination,
decomposition, extraction and substitution (BRAYTON; HACHTEL; SANGIOVANNI-
VINCENTELLI, 1990). Other Boolean optimizations on DAGs are based on more com-
plex and powerful techniques such as kernel-based Boolean division (MICHELI, 1994).
Similar techniques applied for optimizing multi-level logic networks can be applied for
transistor-level logic optimization as well (DA ROSA JR et al., 2007; POSSANI et al.,
2016; POSSANI et al., 2017).

In the aforementioned DAG-based networks, the data structure is an heterogeneous
representation in the sense that each node can represent a distinct Boolean function,
making the graph manipulation complex. Therefore, homogeneous representation such as
AIGs, were gradually becoming a standard structure for logic synthesis and verification,
commonly used nowadays. Two motivations to adopt the AIG representation are related
to its moderate space complexity in terms of memory footprint and its easiness to be
manipulated by logic synthesis and verification algorithms.

In the last two decades, several AIG-based optimizations were introduced, present-
ing good design quality and scalability. Commonly techniques used in recent multi-level



45

logic optimization are refactoring, balancing, rewriting, proposed respectively in (BRAY-
TON; MCMULLEN, 1982), (CORTADELLA, 2003) and (MISHCHENKO; CHATTER-
JEE; BRAYTON, 2006). Several other approaches, such as Boolean decomposition, can
be used to manipulate Boolean functions and to derive optimized AIGs (BERTACCO;
DAMIANI, 1997; MARTINS; RIBAS; REIS, 2012). Even though Boolean function de-
composition and factorization are general solutions, logic rewriting are often more suitable
for multi-level optimization of large designs. Nowadays, AIG rewriting becomes a stan-
dard in both academic and industrial logic synthesis tools (AMARÚ et al., 2017).

Recently, majority-inverter graphs (MIGs) has becoming popular as an alternative
data structure for multi-level logic optimization. A MIG is an homogeneous and uni-
versal representation analogous to an AIG. Amarú et al. proposed a set of axioms and
native operations to efficiently manipulate and optimize MIGs (AMARÚ; GAILLARDON;
MICHELI, 2014; AMARÚ; GAILLARDON; MICHELI, 2016). Moreover, several stan-
dard techniques applied to AIGs are being reformulated targeting to exploit interesting
properties of MAJ operator for logic optimization in MIGs.

In the next subsection, we revisit the DAG-aware AIG rewriting proposed by
Mishchenko et al. (MISHCHENKO; CHATTERJEE; BRAYTON, 2006) that has be-
come a standard technique in modern logic synthesis. In the sequence, we show that such
a rewriting technique has been used as reference for designing other recent AIG and MIG
rewriting methods. We briefly highlight the main innovation that each work introduced.

3.2.1 DAG-Aware AIG Rewriting

In (MISHCHENKO; CHATTERJEE; BRAYTON, 2006), Mishchenko et al. pro-
posed an AIG rewriting algorithm that extends the prior work (BJESSE; BORALV, 2004)
and is implement in ABC command rewrite as follows.

A hash table of precomputed structures serves as a database to represent 4-input
AIGs used for subgraph replacements. The set of all 4-input Boolean functions can
be grouped in 222 NPN classes. The authors have empirically observed that many of
these classes appear rarely in practical designs and therefore only about one hundred
of the NPN classes are used in logic optimization. A hash table containing optimized
AIG implementations for this useful subset is precomputed in advance and loaded into
the rewriting manager. During the rewriting process, the hash table is used to retrieve
subgraphs that are candidates to replace part of the original AIG.
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The overall procedure for AIG rewriting works as follows. For each AIG node
n, in the topological order, the algorithm computes 4-input cuts and their respective
truth tables for selecting parts of the graph to be rewritten. The Boolean functions
of each 4-input cut is mapped into its NPN class and it is used to looking up a new
cut implementation in the hash table of precomputed structures. The gain obtained by
rewriting a given cut, rooted in the node n, is calculated in terms of the number of nodes
that will be deleted and added into the AIG. Thus, the cut/implementation that leads
to the best local improvement is greedily selected to replace the old structure of the cut.
The number of deleted nodes is related to the MFFC of n. The number of added nodes is
related to the amount of nodes already in the AIG that can be reused (shared) to express
the new implementation of the cut. The structural hashing technique is usually applied
for detecting such a logic sharing.

For instance, let us consider a didactic example of how this rewriting algorithm
works. Given a possible AIG cut as shown in Fig. 3.3(a), the Boolean function related
to this cut is computed and canonized using NPN classification, as illustrated in Fig.
3.3(b). Thus, the canonized function is used for looking up the hash table of precomputed
subgraphs and retrieving different implementations for the function fi = a.b.c, see Fig.
3.3(c). These three sugbraphs are tried and the subgraph that leads to the best node
count reduction is selected to replace the original cut. In this example, the subgraph 1
was selected, since the structural hashing enabled to reuse (share) other nodes already in
the AIG to express the logic of the subgraph 1, as presented in Fig. 3.3(d).

In the last decade, this AIG rewriting method has been demonstrated an interesting
balance between QoR and runtime. In general, the method does not require much hand-
tuning to produce good results and it is orders of magnitude faster than traditional flow in
MVSIS (MVSIS Group, UC Berkeley, ) with comparable or better quality. Although the
rewriting is local, it is faster than on-the-fly synthesis methods and can be applied many
times to explore the solution space. In ABC scripts, this rewrite command is usually
interleaved with two other techniques such as refactoring and balancing.
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Figure 3.3: AIG rewriting example: (a) cut extraction; (b) cut function classification into
NPN classes; (c) precomputed subgraph lookup; (d) cut replacement reducing one AIG
node. Figure redesigned from (MISHCHENKO; CHATTERJEE; BRAYTON, 2006).

3.2.2 Other Recent Methods on Logic Rewriting

The local scope of 4-input cuts and the reduced set of 4-input Boolean functions,
used in the previous method (MISHCHENKO; CHATTERJEE; BRAYTON, 2006), mo-
tivated Li et al. to extend this approach to 5-input cuts as presented in (LI; DUBROVA,
2011). The authors introduced a technique to build a library of precomputed subgraphs
that can implement 1,185 NPN classes of 5-input Boolean functions. The 5-input cut
enumeration and subgraph replacement is analogous to the previous work.

Another work presents an alternative to increase the size of k-cuts and explore
larger databases with more complex Boolean functions, as introduced by Yang et al. in
(YANG; WANG; MISHCHENKO, 2012). The paper presents an approach to extract
several optimized subnetworks from designs already optimized with different techniques.
Similarly to the previous methods, the extracted subneworks are stored and viewed as a
library of structures to be used for logic rewriting.

Soeken et al., in (SOEKEN et al., 2016), proposed an approach for MIG rewriting
in three different graph traversals, top-down, bottom-up and based on fanout-free regions.
Moreover, the authors proposed an exact MIG synthesis method, which was used to build
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a hash table of precomputed structures to be used during rewriting.
Recently, a new method for XOR Majority Graphs (XMG) rewriting was proposed

by Haaswijk et al. in (HAASWIJK et al., 2017). This approach uses a LUT-based
technology mapper to mine useful Boolean functions to be considered during the rewriting
process. Then, the exact MIG synthesis proposed in (SOEKEN et al., 2016) is used to
compute MIG implementations for the collected functions. The MIG implementations
are stored in a database and used for logic rewriting, similarly to the previous works.

The most recent approach, proposed by Amarú et al. in (AMARÚ et al., 2017),
is based on DAG-aware AIG rewriting. However, instead of replacing k-cuts by improved
AIG structures, the method replaces k-cuts by combinations of standard cells from a
precomputed database. The work introduces the concept of equioptimizable arrival times
that is used together with the cut Boolean function to retrieve the combination of cells
that minimizes the delay at the cut output.

We argue that, by understand how to unlock the parallelism in the reference DAG-
aware AIG rewriting method, we can exploit parallelism in those state-of-art logic synthe-
sis methods based on that. In other words, it is possible to extend the parallel rewriting
proposed in this work to incorporate the best characteristics of previous AIG- and MIG-
based methods as well as investigate novel solutions in this direction. Moreover, parallel
logic synthesis enables intensive and iterative optimizations while keeping a moderated
computation time (ELBAYOUMI et al., 2014; LIU; ZHANG, 2017). Therefore, it rein-
forces our motivations on keeping rewriting methods running fast to optimize current and
upcoming generations of large digital IC designs.
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3.3 Proposed Fine-Grain Parallel AIG Rewriting

In this work we are introducing a set of principles to unlock fine-grain parallelism
for rewriting multiple nodes of the graph at the same time, rather than to apply graph
partitioning and rewriting each partition sequentially. The proposed approach is based on
the AIG rewriting introduced in (MISHCHENKO; CHATTERJEE; BRAYTON, 2006).
Therefore, our method employs 4-input cuts, NPN-equivalence, and the same set of pre-
computed subgraphs used in the ABC command rewrite. All shared data structures were
rethought in a novel proposal based on the operator formulation and the Galois system
(PINGALI et al., 2011), in a multicore environment with shared memory.

Initially, a package for AIG representation and manipulation was implemented
using the Galois graph representation FirstGraph, which has abstract locks for graph
elements and supports changes in the graph topology. The top-level view of the parallel
AIG rewriting is presented in Algorithm 1. This routine receives as input the AIG and
other parameters such as the number of cuts stored per AIG node, the maximum number
of precomputed subgraphs tried per cut and other optional flags.

The rewriting manager and all the other necessary modules are instantiated in line 3
of Algorithm 1. We follow the Galois formulation based on active nodes and neighborhoods
to exploit parallelism. The initial set of active nodes is defined by all the primary inputs
in the AIG, as shown in lines 6-7 of Algorithm 1. When the AIG comprises sequential
elements, all latches can also start as active nodes, similarly to the primary inputs. This
way, the threads are directly launched to rewrite all combinational logic clouds between
barriers of sequential elements.

Active nodes are stored in a Galois thread-safe worklist PerSocketChunkBag<500>,
maintaining distributed chunks of the worklist in the multi-core processor sockets (ISS
Group, The University of Texas at Austin, ). The items in this worklist are distributed
along the machine cores to local worklists comprising chunks of 500 items each one. The
chunk size of 500 items was determined based on some empirical experiments. In cases
that threads need to push new items into the worklist, they can push it directly in its
local worklist. When a local worklist becomes empty a new chunk of 500 items is picked
up from the global worklist. In line 9 of Algorithm 1, the parallel for_each dynamically
assigns active nodes to available threads as the computation proceeds. The activities are
performed by executing the operator implemented in the rewrite manager.



50

Algorithm 3.1: Parallel AIG Rewriting
1 Function parallelAIGRewriting()

Input : AIG, nCuts, nStr, useZero, nThreads
Output: a rewritten AIG or the original one

2 GaloisSetThreads( nThreads);
3 // Instantiate all necessary components
4 RewritingManager rwMan( AIG, nStr, useZero, cutMan(4, nCuts),

npnMan(), strMan() );

5 // All primary inputs and latches are the initial active nodes
6 galois_for_each( AIG.PIs, rwMan ); // Parallel for
7 return AIG;

3.3.1 Rewriting Manager

Algorithm 2 presents an overview of the rewriting manager, which implements the
operator executed at each active node. Essentially, the rewriting operator works just
like the reference method in the sequential code. However, its main internal routines
were rethought to support concurrent operations. Notice that the rewriting manager is
constructed based on references to other shared-memory objects, e.g. AIG, cutMan,
npnMan and strMan. These auxiliary managers are discussed in the next subsection.

The operator receives as argument an active node and the GaloisCtx, which pro-
vides access to the Galois context such as worklists and customized memory allocators.
In order to minimize the computation lost due to thread conflicts, all logical locks in the
neighborhood of an active node must be acquired in advance. In the proposed approach,
such a neighborhood is defined by a window containing the fanouts of the active node
and the logic cones rooted into the active node and expressed in terms of its k-cut leaves.
The operations performed in lines 4-7 of Algorithm 2 make the operator cautious. In case
of conflict, the operator is aborted as soon as possible and does not lose any logic opti-
mizations already done. This way, only the k-cuts of the active node are discarded (lost)
because another thread can change the graph structure and make such cuts inconsistent.

In the sequence, all 4-input cuts are evaluated in order to figure out the best
cut/structure to be used for rewriting. The number of precomputed structures tried
per cut can be limited by using the nStr parameter, shown in line 15 of Algorithm 2.
When the operator reaches line 22, it means that all necessary locks were acquired and
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the subgraph replacement can be committed safely. In other words, the operator cannot
make the AIG inconsistent by aborting during the subgraph replacement.

Finally, the last task of the operator is to evaluate the fanouts of the active node
and determine the ones that may become active. We adopted other two auxiliary labels,
beyond the label active, to define the state of each AIG node. Therefore, a node can
be unprocessed (inactive), under processing (active) or already processed (done). As the
k-cut enumeration is based on the cuts of previous levels, an AND node can become
active and pushed into the worklist only when its two fanin nodes were already processed
(done). Such constraint is required to avoid inconsistencies in k-cuts, which may be
introduced when the operator aborts its execution due to thread conflicts. The routine
pushFanoutNodes called in line 24 of Algorithm 2, is responsible for evaluating and
pushing the fanout nodes that are ready to become active.

Since the hash table of precomputed structures does not change according to AIG
being rewritten, the time complexity of the AIG rewriting method is bounded by the time
complexity of enumerating all k-cuts. Considering an AIG with n nodes, in the worst case,
the number of k-cuts is O(nk) (MISHCHENKO; CHATTERJEE; BRAYTON, 2007). Let
C be the maximum number of k-cuts stored per AIG node, which can be defined by
an user parameter. The time complexity for computing the k-cuts for a single node is
O(k.C2) due to the Cartesian Product applied for merging two sets of k-cuts from the
fanin nodes. However, as the rewriting method computes only 4-input cuts, i.e., k = 4,
each AIG node stores only few and small cuts. Since the rewriting visits each AIG node
once, enumerating 4-feasible cuts, its overall time complexity is bounded by O(n.k.C2),
which can be simplified to O(n.4.C2) = O(n.C2). In practice, the AIG rewriting method
has a runtime behavior almost linear in the number of AIG nodes.

The main challenges to enable a fine-grain parallel AIG rewriting are related to
efficiently manage the access to shared-data structures without creating bottlenecks when
threads are competing for a shared resource. Therefore, in the following subsections, we
present how we designed necessary data structures to work efficiently in a multi-threaded
environment. Figure 3.4 shows how the data structures are organized and how threads
communicate.
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Algorithm 3.2: Rewriting Manager Operator
1 RewritingManager begin
2 constructor( AIG, nStr, useZero, cutMan, npnMan, strMan);
3 Function operator( node,GaloisCtx)

4 C = cutMan.computeKCuts( node);
5 lockFanoutNodes( node);
6 for each 4-input cut c in C do
7 lockFaninCone( node, c);

8 bestS = null;
9 bestG = -1;

10 for each 4-input cut c in C do
11 nSaved = computeMFFC( node, c);
12 f = cutMan.getCutFunction( node, c);
13 fnpn = npnMan.getRepresentative( f);
14 S = strMan.lookupStructures( fnpn);
15 for each structure s in S up to nStr do
16 nAdded = countAddedNodes( s, c);
17 gain = nSaved− nAdded;
18 if ( (gain > 0) || ( (gain == 0) && (useZero) ) ) then
19 if ( (bestS == null) || (bestG < gain) ) then
20 bestS = s;
21 bestG = gain;

22 if (bestS 6= null) then
23 updateAIG( node, bestS);

24 pushFanoutNodes( node, GaloisCtx);

3.3.2 Cut Manager

Cut Manager is responsible for providing all necessary routines and data structures
for k-cut computation and storage. When it comes to high-performance computing, it is
important to handle memory allocation efficiently. As the k-cut enumeration creates a
large set of cuts, it is wise to use pre-allocated memory for cut storage. In this sense, we
designed the cut manager so that each thread has its own memory pool. When a thread
needs to compute k-cuts, a thread-local pointer is used to get access to its own memory
pool, as shown in Fig. 3.4. This way, we unlock the parallelism by avoiding dependencies
among threads and avoiding call to the operating system for memory allocation.
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Figure 3.4: Relationship among rewriting operator, thread-local, and shared-memory data
structures.

The initial size of each memory pool is defined according to the initial AIG size and
each memory pool is resized as necessary. In several cases, k-cuts need to be recomputed
for a second passing of rewriting, technology mapping or due to a thread conflict. An
interesting feature is that our memory management allows a given thread to reuse the
memory of old cuts without any logical locks, even when such cuts are allocated in the
memory pool of another thread. When a thread is recomputing k-cuts at a node with
an old set of cuts, the new cuts are stored by overwriting the memory region of the old
ones. If extra memory is need, then such a thread uses its own memory pool to store the
remaining cuts. It is worth to mention that, even though we are using 4-input cuts for
rewriting, the proposed parallel k-cuts were designed to compute cuts for any k.
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3.3.3 NPN Manager

NPN Manager provides a fast NPN classification tailored to work with 4-input
Boolean functions. It provides NPN classification in constant time as all of the 65,536
4-input Boolean functions and their respective 222 classes are stored in a hash table,
including the inputs/output phase assignments and permutations of each function. This
manager is strongly based on the ABC code (Berkeley Logic Synthesis and Verification
Group, ). The only modification is that the hash table must be read-only, designed in such
way that all threads can access the data without any kind of locks or synchronization.

3.3.4 Parallel-aware structural hashing

Parallel-aware structural hashing is a reformulation of the conventional AIG struc-
tural hashing, making it more suitable to work in a parallel environment. Conventionally,
structural hashing is performed using a global hash table. Each AIG node is added to
this table using its fanins as a hash key. This hash table is built when the AIG is parsed
and used during the operations that change the AIG structure. For instance, when a
synthesis method is about to add an AND node to the AIG, the hash table is used to
ensure that there is no replicated AND nodes with exactly the same fanins. Therefore,
if an equivalent node is found in the table, it can be reused (shared). Otherwise, a new
AND is created and added to the table. However, notice that handling a global hash table
in a multi-threaded environment may lead to a bottleneck.

Structural hashing plays an important role in AIG rewriting, allowing the identi-
fication and sharing of equivalent AND nodes during subgraphs replacement. In line 14
of Algorithm 2, the structural hashing lookup is intensively called as an internal routine
to determine how many nodes can be reused if the current structure is used for rewriting
the AIG. In this context, we propose to use a decentralized scheme of hash tables, which
works efficiently for performing parallel lookup, insertion and deletion of AIG nodes. The
proposed approach is based on the observation that structural hashing relies on:

Given a pair of nodes (n1, n2) and a pair of edge polarities (e1, e2), check if there
exists a two-input AND node n3, which is connected to the fanout of n1 and n2 through
the polarities e1 and e2, respectively.

Therefore, this task can be solved by searching for node n3 directly in the fanout
of nodes n1 and n2, avoiding the use of a global hash table. However, a linear search in
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the fanout of n1 and n2 may be a time consuming task due to high fanout nodes. In this
sense, we are using a local hash table at each AIG node in order to lookup its fanout
nodes as fast as in conventional structural hashing. Concerning the memory usage, we
have adopted a rule to ensure that each two-input AND node is stored exactly once, only
in the hash table of its fanin node with the smallest identifier (id). For instance, assume
that node n3 has fanins n1 and n2 and assume that n1.id < n2.id. In this case, n3 is stored
only in the hash table of node n1. This rule saves memory without losing the property of
conventional structural hashing.

In the context of the algorithm, it is only needed to perform a simple comparison
of node IDs to access the right hash table and then to apply the conventional operations
for node lookup, insertion and deletion. Moreover, if a given thread owns the locks for
the pair of nodes n1 and n2, it means that such thread has exclusive access to the hash
tables of these nodes, ensuring mutual exclusion. In other words, this approach fits well
with the Galois strategy to handle logical locks.

o0

8

o1

10

7

5

9

6

2 134

Figure 3.5: Proposed approach for decentralized structural hashing. Assuming h as a hash
function applied on the pair of edges/nodes, where complemented edges are represented
as apostrophes (’) added to node ids.

Figure 3.5 illustrates an example of the decentralized approach for structural hash-
ing. In this case, the structural hashing for the AIG presented in the left side of Fig. 3.5
leads to the set of non-empty hash tables of nodes 1, 2, 3, 5 and 7. In this case, nodes
4, 6, 8, 9 and 10 have empty tables because their respective fanouts are already regis-
tered in the hash table of some node with smaller identifier. Notice that, such AIG has
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six AND nodes and the hash tables, altogether, also store only six nodes. This way, we
efficiently manage memory usage, compared to the conventional structural hashing. The
benefits of the proposed approach become more evident because logic sharing increases
when rewriting is applied to large AIGs.

3.3.5 Structure Manager

Structure Manager stores a set of precomputed structures containing efficient im-
plementations for a subset of 134 useful NPN classes selected out of all 222 NPN classes.
In (MISHCHENKO; CHATTERJEE; BRAYTON, 2006), the authors defined as useful
all 4-input Boolean functions appearing as functions of 4-input cuts selected during AIG
rewriting on a set of benchmarks. We consider the same set of structures as used in the
ABC command rewrite but change the method used to try a structure for a given cut.

Generally speaking, the precomputed structures act as templates to guide the con-
struction of improved and logically equivalent arrangements of AIG nodes. In this sense,
when a given structure is tried as a candidate for replacement, it is needed to keep a tem-
porary one-to-one assignment between each node of the precomputed subgraph (template
nodes) and its corresponding AIG node (real nodes). This one-to-one assignment is used
to figure out how many AIG nodes can be reused or must to be created for implementing
the new subgraph. The structural hashing technique presented before is used for detecting
the equivalent nodes between the AIG and the precomputed subgraphs.

In the reference method, such an one-to-one assignment is done using pointers from
the nodes of precomputed subgraphs to their corresponding nodes in the AIG, as shown
in Fig. 3.6(a). In other words, when a precomputed subgraph is tried, it is necessary
to write information in such a structure. Therefore, the main challenge in this step is
that many threads can try to use the same set of precomputed subgraphs simultaneously,
requiring an strategy to ensure mutual exclusion.

We solved this issue by making the table of precomputed subgraphs read-only and
using a thread-local data structure for tracking the one-to-one assignment of nodes. The
IDs of nodes from precomputed subgraphs are used to index a thread-local map, which
contains pointers to temporary copies of the corresponding AIG nodes, as shown in Fig.
3.6(b). This approach enables parallelism in AIG rewriting, since many threads can use
the same precomputed subgraphs simultaneously without using locks.
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Figure 3.6: In (a), original tracking between AIG nodes and subgraph nodes and in (b) the
proposed lock-free solution for tracking nodes. Figure redesigned from (MISHCHENKO;
CHATTERJEE; BRAYTON, 2006).

3.3.6 Fine Tuning in Galois Graph Structure

Galois system provides a set of thread-safe graph representations which can be
chosen according to the target application demands. However, all these graph structures
are generic and can represent any information through user specified data stored into the
graph vertices and edges. Moreover, the graphs can represent directed edges or not and
are generic in terms of the number of incoming and outgoing edges connected at each
vertex.

It is expected some performance degradation due to these general abstractions.
In this sense, we have reviewed the code and executed performance profiling in order
to improve the Galois graph structure used for representing AIGs. Since an AIG has a
particular topology in which the most part of the graph nodes represent AND2 operators
and edges represent a Boolean value (true or false), it is wise to perform a fine tuning in
the graph implementation to get better performance. We performed a code refactoring in
the Galois First-Graph class, which implements the graph structure supporting topology
modifications. Our modifications improved the access to incoming and outgoing edges of
each graph vertex and also enabled the use of efficient bit masks to represent Boolean
values of graph edges.
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3.4 Experimental Results

In the following experiments we compare the proposed parallel AIG rewriting to the
rewriting methods implemented in the ABC commands rewrite and drw. The comparison
is based on the method runtimes and QoR in terms of number of nodes and levels in the
rewritten AIGs.

The parallel AIG rewriting was implemented in C++ 11 using Galois system (PIN-
GALI et al., 2011; LENHARTH; NGUYEN; PINGALI, 2016). Both the proposed method
and ABC were compiled using GNU g++ version 6.1.0 and executed in a 64-bit Linux
distribution. The results were collected on a server with 128GB of shared RAM and 4
processors Intel R©Xeon R©CPU E7- 4860 at 2.27GHz, where each processor has 10 physical
cores. We have ran the command &cec in ABC to check the correctness of our parallel
rewriting on a large set of MCNC, ISCAS and EPFL benchmark circuits.

In all of the experiments, we ran ABC and the parallel rewriting five times for each
design and for each number of threads in order to minimize the effects of external noise
on the runtime. Therefore, the results under comparison were obtained by computing the
average among five executions. The runtime of both ABC and the proposed parallel AIG
rewriting were measured considering the exclusive time elapse of the rewriting methods,
discarding the parser runtime. We have observed negligible variations in runtime among
several executions of the methods. Since the Galois scheduling for handling thread con-
flicts is non-deterministic, we compute the average size and depth of the AIGs optimized
by the parallel rewriting.

3.4.1 Benchmarks

The parallel rewriting is designed to target large AIGs. The largest designs avail-
able in public benchmarks suites are three AIGs with more than ten million (MtM) nodes
from the EPFL benchmark suite (AMARÚ; GAILLARDON; MICHELI, 2015). The MtM
node circuits comprise AIGs with sixteen, twenty and twenty three million nodes, repre-
senting random Boolean functions with complex implementation cost. These synthetic
circuits contain structures that are quite different from those found in practical designs.
Therefore, we considered the three MtM circuits and selected ten additional designs with
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Table 3.1: The set of ten circuits obtained by applying 10x (8x) the ABC command double
and the three MtM AIG nodes circuits from the EPFL benchmark suite.

Circuit # PI # PO # AND2 # Levels

sin_10xd 24,576 25,600 5,545,984 225
arbiter_10xd 262,144 132,096 12,123,136 87
voter_10xd 1,025,024 1,024 14,088,192 70
square_10xd 65,536 131,072 18,927,616 250
sqrt_10xd 131,072 65,536 25,208,832 5,058
mult_10xd 131,072 131,072 27,711,488 274
log2_10xd 32,768 32,768 32,829,440 444
mem_10xd 1,232,896 1,260,544 47,960,064 114
hyp_8xd 65,536 32,768 54,869,760 24,801
div_10xd 131,072 131,072 58,620,928 4,372
sixteen 117 50 16,216,836 140
twenty 137 60 20,732,893 162
twentythree 153 68 23,339,737 176

more realist structures: seven largest AIGs among the arithmetic and three largest control
circuits from EPFL benchmark (AMARÚ; GAILLARDON; MICHELI, 2015).

In order to derive larger AIGs from these ten arithmetic and random control cir-
cuits, we applied the ABC command double 10 times for each design. For the largest
design “hyp”, we applied the command double 8 times. This command doubles the size of
a given AIG by creating a copy of the original design. The test cases generated using the
double command are still synthetic but they are arguably more realistic than the MtM
designs. In the real designs, synthesis tools are usually applied to a combinational logic
cloud located between flip-flops in multiple design blocks. Since design blocks are often
unrelated to each other, the resulting logic cloud may look somewhat similar to a set of
copies of the same design used in the adopted benchmarks. Table 3.1 presents the circuits
derived by applying the double command and the three MtM circuits from the EPFL
benchmark suite.

3.4.2 Parallel k-Cut Computation Scalability

The cut enumeration is in the core of several novel logic synthesis algorithms.
Therefore, we present an evaluation of the standalone parallel k-cut computation. In
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Table 3.2: Runtimes, in seconds, of the k-cut methods under comparison.

-K 4 -M unbounded -K 6 -M 20

Circuit
ABC
cut

Parallel
40 threads

ABC
cut

Parallel
40 threads

sin_10xd 24.59 1.50 41.11 1.38
arbiter_10xd 31.79 1.78 54.47 2.87
voter_10xd 50.54 2.03 88.64 3.92
square_10xd 81.40 3.94 143.13 5.88
sqrt_10xd 81.77 3.63 122.50 3.63
mult_10xd 124.84 5.00 207.94 5.79
log2_10xd 151.46 8.88 246.68 12.37
mem_10xd 126.63 7.39 220.29 8.98
hyp_8xd 228.32 10.20 516.25 21.04
div_10xd 193.06 7.94 301.31 13.85
sixteen 49.08 5.17 72.87 10.30
twenty 63.81 5.28 93.23 11.64
twentythree 71.60 5.09 105.51 7.18

order to perform a fair comparison, we compared the performance of the parallel k-cut
enumeration with the command cut in ABC, using 4-input and 6-input cuts. The number
of cuts per AIG node is limited to 20 for 6-input cuts and unbounded for 4-input cuts,
i.e., ABC commands: "cut -K 6 -M 20 -a -t -x" and "cut -K 4 -a -t -x". The remaining
flags are used to disable some extra computations in order to perform a fair comparison
between the methods. It is worth to mention that the parallel k-cut enumeration produces
exactly the same set of k-cuts delivered by the ABC command cut. Therefore, the parallel
and the sequential methods are equivalent in terms of QoR.

The parallel k-cut computation is executed using a given number of threads, going
from 1 to 40. Fig. 3.7 and Fig. 3.8 present the scalability of the 4-input and 6-input cut
enumeration, respectively. The parallel k-cut enumeration is up to 25x and 36x faster than
the sequential version when using k = 4 and k = 6, respectively. It can be observed that
the parallel k-cut enumeration scales reasonably well, which demonstrates a trend that our
parallel technology mapping will scale too. Table 3.2 presents the absolute runtimes, in
seconds, of the ABC command cut and the proposed parallel k-cut enumeration running
with 40 threads.
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Figure 3.7: Speedups and scalability of parallel 4-input cut enumeration compared to the
ABC command cut -K 4.
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Figure 3.8: Speedups and scalability of parallel 6-input cut enumeration compared to the
ABC command cut -K 6.
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3.4.3 Parallel AIG Rewriting Scalability

In the following experiments, we compare the proposed parallel AIG rewriting to
the rewrite and drw commands in ABC. In most of the practical applications, rewriting is
applied to the same AIG several times. However, we are concerned to compare the parallel
rewriting against the sequential one and measure its scalability. Therefore, a single AIG
rewriting pass is used for each circuit and a given number of threads.

By default, the rewrite command does not limit the number of cuts per node
and the number of precomputed structures tried per cut. Therefore, we have ran the
parallel rewriting with these two parameters unbounded. Moreover, preserving logic level
during rewriting was disabled using the switch -l, i.e., rewrite -l. To measure the parallel
rewriting scalability as the number of threads increases, we ran the parallel method with
1 to 40 threads. Fig. 3.9 shows the parallel rewriting scalability. Overall, rewriting with
one thread is approximately 2x faster than the rewrite command whereas rewriting with
40 threads is up to 36x faster. We have observed a poor scalability for the the three
MtM designs due to their syntactical structures. The best speedup observed for the MtM
circuits was 5.8x faster than the ABC command rewrite -l. In the next subsection,s we
present a structural analysis of such benchmarks, justifying the poor scalability. Table 3.3
presents the runtimes for rewrite -l and for parallel rewriting with 40 threads unbounded.

The drw command is an improved version of the rewrite command. One of the main
differences is the larger set of precomputed structures used during rewriting. Moreover,
drw accepts some parameters to trade off QoR and runtime, making it possible to limit
the number of cuts per node and the number of precomputed structures per cut. In this
experiment, both methods under comparison were limited (bounded) to eight cuts per
node and five precomputed structures per cut, which are the default values in drw. We
have also ran both methods without preserving logic level and increasing the number
of threads from 1 to 40. Fig. 3.10 presents the speedups of parallel rewriting bounded
compared to the drw command.

Overall, the parallel rewriting bounded running with one thread is approximately
2.5x faster than the sequential command drw whereas rewriting with 40 threads is up to
50x faster. However, notice that the scaling curve for the "sqrt_10xd" circuit presents a
particular behavior shown in Fig. 3.10. In this test case, the rewriting with one thread
is approximately 6x faster than drw, reaching a speedup peak of 68x with 28 threads.
As drw uses a more complete table of precomputed structures containing 222 Boolean



63

functions, it is expected to have variations in both runtime and QoR when comparing
the parallel method to drw. The runtimes of drw command and parallel method with
40 threads bounded are presented in Table 3.3. The largest runtime of drw was observed
when rewriting the "sqrt_10xd" circuit, meaning that drw performed many more attempts
to replace subgraphs in the AIG. The parallel rewriting still presenting poor scalability
for the MtM benchmarks, reaching an maximum speedup of 3.7x faster than the drw
command.

Table 3.3: Runtimes, in seconds, of the rewriting methods under comparison.

Circuit
ABC

rewrite -l
Parallel unbounded

40 threads
ABC
drw

Parallel bounded
40 threads

sin_10xd 155.96 6.54 99.13 2.86
arbiter_10xd 227.73 8.17 177.90 6.89
voter_10xd 425.49 13.86 238.05 10.29
square_10xd 492.96 14.09 302.75 6.49
sqrt_10xd 784.64 32.82 1,368.16 22.18
mult_10xd 770.70 21.38 460.28 11.39
log2_10xd 1,077.12 34.37 602.86 17.31
mem_10xd 623.16 23.41 611.56 19.91
hyp_8xd 1,451.22 40.93 988.28 19.74
div_10xd 1,575.80 81.15 1,223.83 58.39
sixteen 819.97 225.01 362.91 138.06
twenty 1,155.85 288.41 476.80 177.54
twentythree 1,394.55 324.91 573.41 200.26
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Figure 3.9: Speedups and scalability behavior of parallel rewriting unbounded compared
to ABC command rewrite -l.
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Figure 3.10: Speedups and scalability behavior of parallel rewriting bounded compared to
ABC command drw.
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3.4.4 Discussion About MtM Benchmark and Scalability

In order to get a better understanding about the weak scalability of the parallel
rewriting when optimizing the MtM nodes AIGs from EPFL benchmark suite, we per-
formed a profiling of such AIGs and observed a kind of structural bottleneck in all of
them. For instance, the "sixteen" circuit has 117 primary inputs, 50 primary outputs and
16 million AND2 nodes. From these 16 million nodes, more than 7 million of nodes are in
the first five levels of the graph, as show in Fig. 3.11. Moreover, primary inputs in these
designs present a large fanout count. In the "sixteen" circuit, a single PI has 86,286 fanout
edges and the number is even larger for other circuits as "twenty" and "twentythree". In
other words, there are millions of nodes connected to only 117 PIs.

In this scenario, when threads are processing active nodes in the first five levels of
the AIG, the transitive fanin cones defined by 4-input cuts have to be locked, potentially
converging to the 117 PIs. Thus, the number of conflicts grows up due to many threads
competing for node locks closer to each other. When considering MtM nodes designs, the
parallel rewriting stops scaling closer to 4-6 threads due to the structural bottleneck in
such circuits. The maximum speedups observed in such cases were 5.8x faster than the
rewrite -l command and 3.7x faster than the drw command.

As discussed in the beginning of Section 3.3, the proposed parallel AIG rewriting
uses a worklist to store active nodes in chunks of 500 nodes per processor socket, i.e.,
PerSocketChunkBag<500>. However, we have observed that, by increasing the chunk
size from 500 to 5,000 it is possible to spread the threads and minimize conflicts when
processing the MtM circuits. This way, we have enabled speedups up to 9x faster than the
rewrite -l command and 6x faster than the drw command. It is worth to highlight that,
even when optimizing these very large designs where it is hard to exploit parallelism,
the proposed parallel rewriting has been able to deliver solutions almost one order of
magnitude faster than the state-of-the-art method.
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Figure 3.11: Structural bottleneck in the first five levels of the "sixteen" circuit from EPFL
benchmark suite.

3.4.5 Parallel AIG Rewriting QoR

We also report the number of AIG nodes (size) and levels (depth) obtained at each
execution, allowing the comparison of the parallel rewriting to rewrite and drw commands
in terms of AIG size and depth. We consider the size and depth of the rewriting with 40
threads as the baseline because it produced the largest speedup. Table 3.4 shows that the
parallel rewriting presents a small variation in the AIG size and depth when compared to
command rewrite (reference method). As shown in Table 3.5, the drw command was able
to reduce the AIG size and depth probably due to its more complete set of precomputed
structures. It is expected that, using the same set of precomputed structures, the parallel
rewriting and the drw command present the same quality in both the AIG size and depth.
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Table 3.4: QoR ratio of rewriting with 40 threads unbounded over ABC command rewrite.
ABC

rewrite -l
Parallel unbounded

40 threads
Circuit size depth size depth

sin_10xd 5,465,088 223 1.00 1.00
arbiter_10xd 12,123,136 87 1.00 1.00
voter_10xd 11,553,792 63 0.99 1.06
square_10xd 18,803,712 250 1.00 1.00
sqrt_10xd 18,923,520 6,048 1.00 1.00
mult_10xd 27,551,744 274 1.00 1.00
log2_10xd 32,304,128 443 1.00 1.00
mem_10xd 47,885,312 114 1.00 1.00
hyp_8xd 54,854,144 24,801 1.00 1.00
div_10xd 42,138,624 4,406 1.00 1.00
sixteen 12,177,639 109 1.00 1.00
twenty 15,511,594 111 1.00 1.01
twentythree 17,373,362 129 1.00 1.00

Table 3.5: QoR ratio of rewriting with 40 threads bounded over ABC command drw.
ABC
drw

Parallel bounded
40 threads

Circuit size depth size depth

sin_10xd 5,313,053 223 1.04 1.01
arbiter_10xd 12,123,136 87 1.00 1.00
voter_10xd 10,640,603 68 1.12 1.07
square_10xd 18,184,830 250 1.04 1.00
sqrt_10xd 18,924,544 6,048 1.00 1.00
mult_10xd 25,355,760 273 1.08 1.00
log2_10xd 30,475,035 423 1.05 1.05
mem_10xd 47,401,984 115 1.01 0.99
hyp_8xd 54,566,159 24,801 1.01 1.00
div_10xd 42,186,609 4,406 1.00 1.00
sixteen 12,279,623 103 1.00 1.06
twenty 15,652,199 107 1.00 1.06
twentythree 17,568,563 111 1.00 1.16
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Since the proposed parallel AIG rewriting is non-deterministic due to the Galois
scheduling to deal with thread conflicts, we are presenting an analysis on QoR variation.
We have performed previous experiments considering 13 different circuits, 12 different
thread counts and 5 executions of the same circuit for each thread count. This way,
we produced 780 samples of runtime, AIG size and depth, i.e., 60 samples per design.
For each circuit, we considered as the baseline the minimum size and depth observed
among the 60 samples. Thus, we calculated the maximum percentage of variation from
the minimum values.

Table 3.6 presents a comparison of QoR variation for many executions of parallel
rewriting, demonstrating that the variations in AIG size have been negligible. Besides,
variations in terms of AIG depth were zero for all the executions on top of the first eleven
designs under optimization. Some small variations in the circuit depth were observed
for the MtM designs. Overall, even when different thread counts are used, the proposed
approach produces similar solutions in terms of AIG size and depth.

Table 3.6: QoR variation considering 780 executions of the parallel AIG rewriting un-
bounded.

size depth
Circuit min max var. min max var.

sin_10xd 5,460,989 0.0001% 223 0.0%
arbiter_10xd 12,123,136 0.0000% 87 0.0%
voter_10xd 11,387,187 0.0124% 67 0.0%
square_10xd 18,775,062 0.0005% 250 0.0%
sqrt_10xd 18,923,520 0.0000% 6,048 0.0%
mult_10xd 27,520,256 0.0011% 274 0.0%
log2_10xd 32,302,022 0.0001% 443 0.0%
mem_10xd 47,884,313 0.0005% 114 0.0%
hyp_8xd 54,859,255 0.0000% 24,801 0.0%
div_10xd 42,154,768 0.0009% 4,407 0.0%
sixteen 12,189,609 0.0527% 109 0.0%
twenty 15,525,965 0.0403% 111 2.6%
twentythree 17,389,858 0.0418% 129 0.7%
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3.5 Summary

In this chapter we introduced a set of principles to unlock the parallelism for AIG
rewriting. We have rethought both algorithms and shared data structures to work in a
massive parallel environment. Several techniques such as k-cut enumeration, structural
hashing and AIG subgraph replacement were designed in a lock-free fashion to fit into the
Galois programming model without inserting extra logical locks and overheads.

Experimental results have demonstrated the scalability of the proposed fine-grain
parallel AIG rewriting to optimize designs comprising millions of nodes. Usually, AIG
rewriting techniques are applied many times on top of the same design. Therefore, our
fast and scalable rewriting has demonstrated potential for speeding up the multi-level
optimization as well as improving its quality within a moderated runtime. In other words,
one can use the saved time provided by our parallel solution to perform extra iterations
of intensive optimizations.

It is worth to mention that, we can also exploit the hierarchy modularization of
very large designs to combine our shared-memory approach with distributed computing.
Therefore, with some additional work, the proposed approach can be deployed in a cloud
computing platform to fully exploit the computing power of such massive parallel envi-
ronments. This is an interesting features since EDA vendors are gradually migrating the
tools to cloud computing services and opening new challenges on the research side.
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4 LUT-BASED TECHNOLOGY MAPPING

In this chapter, we are revisiting the problem of technology mapping into k-input
LUTs for FPGA-based digital designs. Nowadays, FPGAs are extensively used for hard-
ware acceleration in data centers dealing with a wide range of applications such as artificial
intelligence, data analytics and financial (PUTNAM et al., 2014). Therefore, there is an
increasing demand for efficient design automation tools to improve QoR and time to
market of FPGAs applications.

In the context of QoR, it is known that the initial topology of the logic network
dictates and restricts the mapping possibilities, i.e. structural bias (CHATTERJEE et al.,
2006b; MISHCHENKO; CHATTERJEE; BRAYTON, 2007). Moreover, a recent study
demonstrated a miscorrelation between the cost metrics adopted during multi-level logic
optimization and technology mapping (LIU; ZHANG, 2017). Therefore, advanced tech-
niques for optimizing the logic network topology during technology mapping are applied
to minimize the structural bias and miscorrelation effects. However, such advanced tech-
niques have a direct impact in the synthesis runtime due to complex Boolean optimizations
or iterative try and error ad-hoc optmizations.

This work brings two main contributions to deal with QoR and runtime issues
during LUT-based technology mapping. Firstly, we propose a fine-grain parallel mapper
based on the priority cuts techniques that scales for many threads. In the sequence, we in-
troduce a set of principles for extending our fast parallel mapper to make tech-independent
optimizations driven by tech-dependent costs. Our novel approach synergistically inte-
grates logic rewriting and LUT-based mapping in a parallel environment.

The background section introduces some definitions for a better understating of
this work, comprising a detailed view of the standard cost functions used in LUT-based
technology mapping. In the sequence, we revisit the state-of-the art methods on LUT-
based mapping. Finally, we introduce our parallel mappers followed by the section of
experimental results.
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4.1 Background

4.1.1 Structural and Functional Mappers

Technology mappers can be divided in structural mappers and functional mappers
(MISHCHENKO; CHATTERJEE; BRAYTON, 2007). Structural mappers perform the
mapping without changing the structure of the underlying logic network received as input,
usually called subject graph. Functional mappers are allowed to change the subject graph
structure targeting to improve the mapping quality. Typically, functional mappers trade
off runtime for better QoR, since they apply Boolean decomposition and multi-level logic
optimization during the mapping.

4.1.2 K-input LUT and K-feasible Cuts

A k-input look up table (LUT) is a programmable cell which is able to implement
any k-variable Boolean function. LUTs are commonly used as the elementary devices to
implement the combinational logic in Field-Programmable Gate Arrays (FPGAs).

In the context of LUT-based mapping, it is not efficient to apply pattern matching
from the subject graph against to k-input LUTs because the number of possible patterns
increases according to the number of existing k-variable Boolean functions, which is 22k .
In this sense, instead of using graph pattern matching, LUT-based mappers are based on
k-feasible cut computation to decompose the given logic network into a set of k-bounded
sugbraphs. Since the Boolean function associate to each k-feasible cut comprises at most
k-input variables, such a function can be directly implement into a k-input LUT (PAN;
LIN, 1998; CONG; WU; DING, 1999).

In this chapter, we assume that the reader is familiarized with the k-cut computa-
tion procedure since it is defined and employed in our rewriting method proposed in the
Chapter 3. Therefore, for a detailed definition and review on k-cut computation, we refer
the reader to the Background Subsection 3.1.6 in Chapter 3. In the sequence, we present
the main criteria used for guiding the k-cut computation during depth- and are-oriented
mapping.
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4.1.3 Depth-Oriented Cost Function

In 1994, Cong and Ding demonstrated that depth-optimal technology mapping in
k-LUTs can be solved in polynomial time on a DAG (CONG; DING, 1994a). Modern
depth-oriented mapping enumerates and sorts k-cuts according to their potential for re-
ducing logic depth (delay) of the LUT network (MISHCHENKO et al., 2007). Usually,
it is considered that each k-cut can be implemented into a LUT which has a unit cost in
the depth of the mapped network. Therefore, the depth cost of a given k-cut rooted in
a node n and expressed in terms of its set of leaves L = {l1, l2, ..., lm}, being k the LUT
size and m ≤ k, is the following:

depth(n) =


0 : n ∈ PI

1 +max(depth(l1), depth(l2), ..., depth(lm)) : otherwise
. (4.1)

The depth cost given by Equation 4.1 is considered for sorting k-cuts of each AIG
node during the cut enumeration performed in topological order (MISHCHENKO et al.,
2007). For each AIG node n, the k-cut that leads to the smallest logic depth is marked
as the best cut of n. The arrival time of node n is given by the logic depth of its best cut.

4.1.4 Area-Oriented Cost Functions

Area-oriented mapping performs the k-cut enumeration using heuristics for sort-
ing the cuts according to their potential for reducing area of the final LUT network.
Mishchenko et al. demonstrated that it is convenient to apply two different heuristics,
global view and local view for area recovering after depth-oriented mapping (MISHCHENKO;
CHATTERJEE; BRAYTON, 2007).

For a better understanding of the area cost functions, we first introduce the defi-
nition of reference counters. The reference counter of a given AIG node n represents how
many times such node is referred as a leaf in the best cuts of other nodes. In other words,
the reference counters determine how many times each node is used in the current map-
ping. If the reference counter of node n becomes zero, it means that the best cut of n is
no longer used in the current mapping. For instance, considering the mapping illustrated
in Fig. 4.1, the best cut of node 10 is referred two times because it appears as a leaf in
the best cuts of node 11 and node 14. The other nodes used in the current mapping are
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referred once, comprising reference counters equal to 1. The remaining nodes, internal
to the cut cones (LUTs), have reference counters zero which are omitted for the sake of
simplicity. Both the global view and the local view heuristics for area recovering are based
on such reference counters.

The global view heuristic is based on the area flow (MANOHARARAJAH; BROWN;
VRANESIC, 2006) or effective area (CONG; WU; DING, 1999) concept. Basically, the
area flow aims to provide an estimated notion of the area of each k-cut considering the
logic sharing in terms of its root node n and leaves L = {l1, l2, ..., lm}, with m ≤ k.
Therefore, the area flow (AF) is defined as follows:

AF (n) =


0 : n ∈ PI

[Area(n) +
m∑

i=1
AF (li)]/ReferenceCounter(n) : otherwise

. (4.2)

The Area(n) is the number of LUTs needed to implement the best cut rooted
in n and the AF (li) is the area flow cost of the ith leaf of such a best cut. The
ReferenceCounter(n) can be viewed as the number of fanout nodes of node n in the
current mapped solution, which is used for dividing the area cost according to the node
logic sharing. The standard approach is to apply area flow during the k-cut computation
in the topological order.

The local view heuristic is based on the area added or deleted to the mapped
network if a given node n is selected or discarded in the graph covering, also called exact
area of a cut. The exact area of a given k-cut c rooted at node n is defined by summing
up the number of LUTs needed to implement the MFFC of node n in terms of the cut
c. A local depth-first search (DFS) starts at node n, decreases the reference counters of
the leaves in the best cut of n and expands recursively through the leaves whose reference
counters become zero (MISHCHENKO; CHATTERJEE; BRAYTON, 2007). The number
of LUTs in the current mapping that are exclusively used by the node n are summed up
to the exact local area of n in terms of cut c.

For example, when computing the exact area for the best cut of node 14 in Fig. 4.1,
the DFS starts at node 14 and the reference counters of nodes 10 and 12 are decreased,
becoming one and zero, respectively. Since the reference counter of the node 12 becomes
zero, it means that the LUT represented by the node 12 is exclusively used by the best
cut of the node 14. Therefore, this LUT is summed up to the exact area of the node 14,
leading to a local area of two LUTs.
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Figure 4.1: Illustration of node reference counters and the exact area computation when
considering k-cuts with k = 3.

4.1.5 Computing Required Times

The concept of required times is a standard technique applied to enable area op-
timization without losing the depth-optimal mapping produced based on the Equation
4.1. To compute the required times, the primary output with the critical (worst) delay is
detected. Such worst case delay is propagated in the reverse topological order to adjust
the required time for each AIG node as presented in Algorithm 4.1 (MISHCHENKO et
al., 2007). Therefore, during the area-oriented mapping, the best cut of a given node n
is replaced by a new cut that minimizes area only if such a new cut respects the required
time of node n.

4.1.6 Computing Graph Covering

The process of determining (selecting) a subset of the best cuts to compose the
final solution is also known as the subject graph covering. The covering is computed in the
reverse topological order and it can be done recursively or iteratively (MISHCHENKO et
al., 2007). Algorithm 4.2 describes how the covering is computed starting from the circuit
POs towards the circuit PIs. Each node n added into the covering corresponds to a LUT
in the final network, where n represents the LUT output and the best cut best cut Bcutn

of n represents the LUT inputs.
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Algorithm 4.1: Computing Required Times
1 Function computeRequiredTimes()

Input : AIG, CutMan
Output: Updated required times

2 // find the global required times
3 Tmax = findLatestPoArrivalTime( AIG);
4 // initialize the required times
5 for each AIG.node n do
6 setRequiredTime( n, ∞);

7 for each AIG.PO po do
8 setRequiredTime( po, Tmax);

9 // propagate the required times
10 for each AIG.node n in reverse topological order do
11 Treq_new = getRequiredTime( n) – 1;
12 c = CutMan.getBestCut( n);
13 for ( each leaf l ∈ c ) do
14 Treq_old = getRequiredTime( l);
15 setRequiredTime( l, MIN( Treq_old, Treq_new));

Algorithm 4.2: Computing Graph Covering
1 Function computeCovering()

Input : AIG, CutMan
Output: A set of nodes representing the Covering

2 S = AIG.POs; // Set of nodes to expand the covering
3 Covering = ∅; // Set of nodes in the covering
4 while ( S 6= ∅ ) do
5 n = S.extract();
6 c = CutMan.getBestCut( n);
7 Covering.insert( n);
8 for ( each leaf l ∈ c ) do
9 if ( ( l /∈ Covering ) and ( l /∈ AIG.PIs ) ) then

10 S = S ∪ l;

11 return Covering;
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4.2 Related Works on LUT-Based Technology Mapping

The LUT mapping problem has been addressed in several previous works (CONG;
DING, 1994a; PAN; LIN, 1998; CONG; DING, 1994b; CONG; WU; DING, 1999), which
contributed to the state-of-the-art solutions employed in modern mappers. Since it is not
practical to present a detailed view of all of them, we are focusing on the most recent
techniques which are related to this work. In the next subsection, we pass through two
important techniques from the literature, the priority cuts (MISHCHENKO et al., 2007)
and the lossless synthesis (MISHCHENKO; CHATTERJEE; BRAYTON, 2007). We are
giving attention to these techniques because they are the basis to other recent LUT-based
mappers as well as to the parallel mappers proposed in this thesis.

4.2.1 Mapping with Priority Cuts and Choices

The concept of priority cuts was introduced in (MISHCHENKO et al., 2007). A
structural mapper based on priority cuts stores a list S comprising a subset with up to
C cuts and elects the best cut for each AIG node. The exact logic depth and heuristics
for area minimization are commonly used for sorting and updating the list of cuts S,
iteratively. Typically, only 8-10 cuts are stored per AIG node, contributing for reducing
runtime and memory during technology mapping with competitive QoR when compared
to exhaustive cut enumeration. For instance, the default configuration of the mapper
implemented in ABC command &if works by computing priority cuts according to the
following steps:

• Depth-optimum mapping with cut edges as tie-break;

• Depth-optimum mapping with area flow as tie-break;

• Area recovering based on area flow (2x);

• Area recovering based on exact area (2x);

• Graph covering for generating the final LUT network.

The list of cuts S is updated at each mapping pass, according to the current cost
function. The first mapping pass aims to compute a depth-optimum solution according
to the Eq. 4.1, which is related to the LUT network timing (delay). In the next, a second
depth-oriented mapping pass is performed considering the area flow as tie-brake to sort
cuts. The subsequent passes aim to optimized (recovery) area without losing the depth-
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optimal solution. At each pass, in topological order, the mapper updates the best cut for
each AIG node according to the current cost function, i.e., area flow or exact area, if the
best cut does not increases the logic depth. The final LUT network is obtained in the
reverse topological order by applying the standard technique described in the Algorithm
4.2.

The concept of lossless synthesis was introduced in (CHATTERJEE et al., 2006a)
and in (MISHCHENKO; CHATTERJEE; BRAYTON, 2007) to reduce the structural bias
during the technology mapping. This approach is based on the concept of choice nodes
introduced in (LEHMAN et al., 1997). The lossless synthesis aims to combine many
different logic networks produced during the multi-level logic optimization into a single
network, since a given intermediary network can enable better mapping quality. The
lossless synthesis can be divided into two main steps:

• Creating choices;

• Mapping with choices.

The process for creating choices relies on detecting functionally equivalent subgraph
in a set of networks by using equivalence checking techniques and combining them into
a single network with choices. The set of nodes proved to be equivalent are collected in
equivalent classes comprising choice nodes. Let N be an equivalence class of choice nodes,
and let nr be the representative node of this class. The representative node nr ∈ N is
an AIG node comprising a linked list pointing to the other nodes (subgraphs) belonging
to N . These subgraphs are structurally different but functionally equivalent to nr. In
a network with choices, only the representative nodes of each class have fanouts. For
example, consider the Fig. 4.2, where the Network 1 and the Network 2 were combined
into a network with choices represented by the nodes x1 and x2. In this example, the
node x1 is the representative of the class comprising a pointer to the next choice of the
list x2.

The process for mapping with choices requires modifications only in the k-cut
computation to consider the cuts related to the choice subgraphs during the mapping. The
k-cut computation is still the same for all the AIG nodes, except for those representative
nodes of each equivalence class. For each choice node n ∈ N , compute the k-cut set Φ (n)
of n and then merge all the cut sets into a single cut set of the class Φ (N), as follows:

Φ (N) =
⋃

n∈N

Φ(n) (4.3)
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Figure 4.2: Creating a network with choices. Source: (CHATTERJEE et al., 2006a;
MISHCHENKO; CHATTERJEE; BRAYTON, 2007).

Therefore, the resulting cut set Φ (N) is used to define the cut set of the repre-
sentative node Φ (nr), i.e., Φ (nr) = Φ (N). This way, when evaluating the node nr, the
mapper can consider all available choices for implementing such a node. Moreover, all
the cuts derived from choices are considered when computing the k-cuts of the nodes
connected in the fanout of nr.

Mapping with choices and priority cuts can be easily integrated to work in a coop-
erative way for improving the mapping quality. The main limitation of this approach is
the high runtime during the k-cut computation when the AIG has many choices. These
techniques are employed in ABC tool as the &dch command for creating choices and
the &if command for LUT-based mapping. The default configuration of the &if com-
mand does not use choices, it needs to be explicitly enabled by running firstly the &dch
command. It is worth mentioning that these mapping techniques are flexible and can
reformulated to work with emerging technologies as proposed in (NEUTZLING et al.,
2013; NEUTZLING et al., 2015).

4.2.2 Other Recent Approaches on LUT-Based Mapping

When considering parallel approaches for LUT-based technology mapping, a paral-
lel LUT-based mapper was proposed by Kenning and Ravishankar, using the Intel Thread
Build Block (TBB) (KENNINGS; RAVISHANKAR, 2011). In this work, the authors ex-
ploit the data parallelism existing during k-cut enumeration. Since k-cuts are gradually
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computed in topological order throughout the AIG levels, the cuts for all the nodes at
the same level can be computed in parallel. Although the authors present a parallel
mapper which is up to 3.2x faster than their reference method, such an approach does
not support logic optimization by changing the subject graph during the mapping. Par-
allel operations for improving the mapping quality require graph partitioning or a more
sophisticated parallelization strategy.

Recently, in (LIU; ZHANG, 2017), Liu and Zhang proposed a parallel and iterative
method for performing multi-level logic optimization together with LUT-based technology
mapping. In order to enable parallelism, the initial logic network is partitioned, where
sub-networks are distributed and synthesized in different machines. The method applies
logic transformations, e.g. rewriting, balancing and refactoring, as stochastic moves to
change the sub-networks during technology mapping. However, the graph partitioning
tends to introduce negative effects during the logic optimization process, since the logic
represented in the partition boundaries cannot be optimized. Therefore, in this method,
the partitions are recomputed at each iteration in order to mitigate such a negative effect.
This approach leads to improvements due to the ability to escape from the local minima
and minimize structural bias effects. Although the method has presented interesting QoR,
its runtime is high to synthesize large designs due to several iterations of partitioning and
trial and error optimization in an ad hoc process.

Remapping techniques are commonly applied for improving mapped networks
(MACHADO et al., 2012). In (SCHMITT; MISHCHENKO; BRAYTON, 2018), the
authors proposed a structural SAT-based area recovery technique for improving LUT
mapping. Given a mapped network, the method iterates over LUTs to incrementally
compute and remap windows, which are relatively small subcircuits extracted from the
mapped network. Each window is remapped by computing k-cuts and formulating the
covering (cut selection) problem as a SAT instance. Thus, incremental SAT solving is
used for determining whether there exist a covering which improves the mapping in terms
of LUT count or logic depth. If such better covering exists, then the best cuts of the nodes
inside the window are updated and the algorithm repeats this process iteratively. This
method has demonstrated potential as a post-processing for refining the solution delivered
by a conventional technology mapper, such as those based on priority cuts. However, since
this method is structural, it is limited to the initial mapping network topology. Moreover,
the number of LUTs considered in each window must to be carefully controlled due to
expensive runtime of SAT solving. Therefore, there is room for improvements in both
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QoR and runtime when considering this remapping approach.
In (MACHADO; CORTADELLA, 2018), the authors introduced a Boolean func-

tion decomposition based on support reduction and employ it in a functional mapper
trying to minimize the structural bias effect. The proposed decomposition is considered
during a recursive remapping method that processes the logic cone of each PO inde-
pendently by applying collapsing, decomposition and remapping. The partial solutions
obtained independently for each PO are combined back into a single network by using
structural hashing. Finally, a similar remapping process is applied by extracting and
remapping shared sub-networks. This approach has presented promising results since it
is able to create an initial subject graph for LUT-based mapping with better structural
characteristic that minimizes the structural bias effect. However, the main limitation of
this method is the runtime and memory costs related to the network collapsing, which is
unfeasible for complex designs. Therefore, there is much room for integrating synthesis
and mapping techniques based on more complex Boolean optimizations like this as well
as based on lightweight optimizations such as logic rewriting approaches.
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4.3 Proposed Parallel Technology Mapping

In this section, we propose a novel solution which enables fine-grain parallelism
for both structural and functional technology mapping. We start designing a priority cut
manager for parallel cut computation, which is in the core of both the structural and the
functional technology mappers. Thus, we propose a parallel structural mapping flow which
employs only the priority cut technique. In the sequence, we introduce an alternative
to extend our mapper to a parallel functional mapper by synergistically integrating AIG
rewriting, priority cuts and choice nodes in a parallel environment. The proposed mapping
approaches are based on the Galois system and the concept of active nodes. The mappers
rely on the same AIG package implemented using the Galois FirtGraph that we developed
for the AIG rewriting proposed in the Chapter 3.

4.3.1 Parallel-Aware Priority Cut Manager

The priority cut manager was designed to efficiently deal with memory allocation
and to consider the depth- and area-oriented cost functions while computing k-cuts in
parallel. Algorithm 4.3 presents the priority cut manager and its operator. Each thread
executes the operator on top of a given active node and its neighborhood. In this case,
neighbors of an active node are only its immediate fanin and fanout nodes. Therefore,
the first task of the operator is to acquire the locks of neighbors as shown in lines 4-5 of
Algorithm 4.3. The nested loops of lines 7-8 perform the combination (Cartesian product)
between the cut sets from the two fanin nodes.

In the core of the algorithm, auxiliary routines merge pairs of cuts to produce new
ones and to compute the depth/area costs associated to each k-cut. Each non-redundant
cut that does not exceed k is inserted and sorted in the cut set S. The cut set S stores
only the C best cuts sorted according to the current mapping goal. The first cut of the
sorted set S is the best cut of the node. Since many cuts are created and discarded during
the enumeration, each thread has its own memory pool with preallocated memory for cuts
storage, similarly to the cut manager designed for the parallel AIG rewriting proposed in
Chapter 3. Auxiliary functions help in this memory management for cut storage.

Since our parallel algorithms target to synthesize design with millions of AIG nodes,
it is important to keep a moderate memory usage. Therefore, when all the fanouts of a
given node n were already processed, the memory corresponding to the k-cuts of n are
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returned back to the cut pool. The function deleteFaninCuts in line 26 of Algorithm
4.3 evaluates fanin nodes and returns their memory back to the pool when such cuts
are no longer needed. The last task of the operator is to schedule the fanout nodes to
be processed. A fanout node becomes active and is pushed into the worklist only if its
two fanin nodes were already processed. The function pushFanoutNodes evaluates the
fanouts of the active node and schedules those nodes that become active.

Parallel-Aware Area Heuristics: k-cut computation presents intrinsic data inde-
pendence, since the cut set of each AIG node is produced by reading cuts from its fanin
nodes and combining them. However, data dependencies are introduced when comput-
ing the exact local area of k-cuts and updating node reference counter. As presented in
Subsection 4.1.4, the exact area heuristic is based on a local DFS to determine how many
LUTs will be added to the network if a given cut c is selected as the best one. Such a
DFS is guided by reading and writing into the reference counters of visited AIG nodes.

For instance, consider that multiple threads are performing such a DFS on over-
lapping subgraphs simultaneously. In this scenario, threads will compete for logical locks
of AIG nodes, leading to potential conflicts. Moreover, it can lead to inconsistencies if a
thread changes the reference counter of a given node and aborts its execution due to a
conflict. This issue was also reported in a related work on parallel LUT-based mapping
(KENNINGS; RAVISHANKAR, 2011).

We are proposing the following solution to deal with the data dependence when
manipulating reference counters of AIG nodes:

• Making reference counters read-only during each mapping pass.

• Employing thread-local maps for tracking and changing reference counters during
the DFS performed to compute the exact local area of a k-cut.

• Resetting and updating the reference counters based on the graph covering that
express the current mapping, before to start the next mapping pass.

We have empirically observed that to make the nodes reference counters read-
only during each mapping pass does not have a significant impact in the mapping quality.
Moreover, it is also observed that it is convenient to compute the current mapping covering
and to update the reference counters based on those values that express the current
covering. In the next subsection, we present a detailed view on how to update the reference
counters.
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Algorithm 4.3: Parallel-Aware Priority Cut Manager Operator
1 PriorityCutManager begin
2 constructor( AIG, k, C);
3 Function operator( node,GaloisCtx)
4 lockFanoutNodes( node);
5 lockFaninNodes( node);
6 S = ∅; // S is the sorted list of cuts
7 for each cut c1 in node.fanin1 do
8 for each cut c2 in node.fanin2 do
9 newCut = getMemoryFromPool();

10 mergeCuts( newCut, c1, c2);
11 if ( |newCut| > k ) then
12 returnMemoryToPool( newCut);
13 continue;

14 if ( cutFilter( newCut) ) then
15 returnMemoryToPool( newCut);
16 continue;

17 mappingGoal = getMappingGoal();
18 computeCutCost( newCut,mappingGoal);
19 sortedInsertion ( S, newCut );
20 if ( |S| > C ) then
21 lastCut = pruneLastCut( S);
22 returnMemoryToPool( lastCut);

23 Cbest = getFirstCut( S);
24 if ( Cbest.delay <= node.reqT ime ) then
25 setBestCut( Cbest);

26 deleteFaninCuts( node);
27 pushFanoutNodes( node, GaloisCtx);
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The proposed parallel cut manager supports the computation of k-cuts in AIGs
with choices. Therefore, both the proposed parallel structural and functional mappers
can be benefited from choices during technology mapping. The support to choices is an
interesting feature of the proposed approach, since the runtime of k-cut computation tends
to increase significantly when many choices are available in the AIG (MISHCHENKO;
CHATTERJEE; BRAYTON, 2007). Therefore, our parallel methods can provide an
moderated runtime in this task.

This section is closed presenting the time complexity of the k-cut computation.
Considering an AIG with n nodes, k-input cuts and C cuts stored per AIG node, the
worst case time complexity for one pass of priority cuts computation is O(n.k.C2). Our
parallel k-cut enumeration does not change this time complexity, but it enables practical
speedups during the technology mapping by processing many nodes in parallel.
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4.3.2 Parallel Structural Mapper

Algorithm 4.4 presents a top-level view of the proposed parallel structural mapper.
The method receives as input an AIG, the LUT size k, the number of cuts C stored per
AIG node, the desired number of threads and the number of area recovering iterations.
The proposed parallel-aware priority cut manager is instantiated and the initial set of
active nodes is defined by the AIG PIs and latches. During the parallel processing, active
nodes are stored into a worklist PerSocketChunkBag<1000>, which distributes chunks of
1000 nodes to the multi-core processor sockets. The Galois parallel for_each consumes
and produces new active nodes while executing the operator specified by the cut manager.

Before starting the next mapping pass, the required times of AIG nodes are com-
puted in order to preserve the depth-optimal solution obtained in the first mapping pass.
This is a standard technique in timing-driven technology mapping. However, to deal with
challenges introduced by the parallel k-cut computation, we are proposing a top-level
mapping flow that fits better to a parallel environment. The main differences of our
top-level flow compared to the ABC mapper &if are:

• Interleaving mapping passes based on exact area and area flow in order to escape
from local minimum during area recovering;

• Computing the current covering after each mapping pass to use the covering infor-
mation to guide the area recovering heuristics;

• Updating the node reference counters only after each mapping pass by using the
reference counting that express the current covering.

By handling the node reference counters according to the proposed approach, we
ensure that the parallel structural mapper has a deterministic behavior independent of
the number of threads used when running the mapper. Experimental results have demon-
strated that, besides the runtime improvements, the proposed solution avoids significant
QoR degradation as well as enables better area results in some cases, when compared to
the state-of-the-art method implemented in ABC command &if .

For a better understanding, we are explicitly presenting the pseudocode responsible
for updating the reference counter in lines 22-27 of Algorithm 4.4. However, in practice,
reference counters are reset to zero during the required time computation (Algorithm 4.1)
and then they are directly incremented during the covering computation (Algorithm 4.2).
This way, we are avoiding several iterations over the cuts in the current covering.
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Algorithm 4.4: Parallel Structural LUT-Based Mapping
1 Function parallelStructuralMapping()

Input : AIG, k, C, nThreads, nRecovery
Output: a network mapped into k-LUTs

2 PriotityCutManager CutMan(AIG, k, C);
3 GaloisSetThreads( nThreads);

4 // All primary inputs and latches are the initial active nodes at each pass
5 setMappingGoal( depthEdge); // Cut edge as tie-break
6 galois_for_each( AIG.PIs, CutMan ); // Parallel for
7 prepareNextPass( AIG, CutMan);
8 setMappingGoal( depthFlow); // Cut area flow as tie-break
9 galois_for_each( AIG.PIs, CutMan ); // Parallel for

10 //Two iterations of area recovering by default
11 for ( i = 0 ; i < nRecovery ; i+ + ) do
12 prepareNextPass( AIG, CutMan);
13 setMappingGoal( exactArea);
14 galois_for_each( AIG.PIs, CutMan ); // Parallel for
15 prepareNextPass( AIG, CutMan);
16 setMappingGoal( areaFlow);
17 galois_for_each( AIG.PIs, CutMan ); // Parallel for

18 return computeCovering();

19 Function prepareNextPass()
Input : AIG, CutMan
Output: updated data structures

20 coputeRequiredTimes( AIG, CutMan);
21 Covering = computeCovering( AIG, CutMan);
22 for each AIG.node n do
23 n.refCounter = 0;

24 for ( each node n ∈ Covering ) do
25 c = CutMan.getBestCut( n);
26 for ( each leaf l ∈ c ) do
27 l.refCounter + +;
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4.3.3 Parallel Functional Mapper

In this work, we are introducing a novel approach for synergistically integrating
logic rewriting and LUT-based mapping. In this section, we are presenting our contribu-
tions from a theoretical and conceptual standpoint whereas a practical implementation of
the proposed approach is under development.

Before introducing the proposed approach, we revisit the discussion on the moti-
vational example presented in the introduction of this work. It is known that the AIG
structure has a strong influence in the quality of the technology mapping (CHATTERJEE
et al., 2006b). Moreover, it is hard to deal with this challenge since there is a gap between
multi-level logic optimization and technology mapping due to the different QoR metrics
considered during these synthesis steps (LIU; ZHANG, 2017).

For instance, in conventional area-oriented multi-level logic optimization, algo-
rithms aim to minimize logic node count and logic levels without any information on LUT
count and delay (MISHCHENKO; CHATTERJEE; BRAYTON, 2006), (LI; DUBROVA,
2011), (YANG; WANG; MISHCHENKO, 2012), (SOEKEN et al., 2016), (HAASWIJK
et al., 2017) and (POSSANI et al., 2018). However, in many practical cases, an AIG with
larger number of nodes enables a mapping with fewer LUTs. Therefore, we need more
sophisticated metrics for guiding multi-level logic optimizations.

A recent attempt to decrease the gap between multi-level logic optimization and
LUT mapping is the method proposed in (LIU; ZHANG, 2017). However, this method still
performes logic optimization guided by AIG node count expecting to minimize the LUT
count in an iterative process of try-and-error stochastic optimization. Therefore, to the
best of our knowledge, there is not an effective method in the literature to compute logic
optimization possibilities and to make the best decisions based on technology dependent
costs such as LUT count and mapped network delay.

We are proposing a rewriting-aware functional mapper where many threads rewrite
and remap different subgraphs, simultaneously. The main novelties are established on:

• Expanding the solution space exploration by using rewriting subgraphs;

• Transferring the rewriting decisions to the technology mapper;

• Making the logic optimization decisions based on technology dependent costs.

The proposed approach relies on combining the parallel AIG rewriting introduced in Chap-
ter 3 with the structural mapper based on priority cuts introduced in the previous section.
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This solution is promising to minimize the structural bias of the initial AIG structure as
well as to minimize the miscorrelation between tech-independent and tech-dependent cost
metrics. The rewriting and mapping integration creates more opportunities for improving
QoR whereas the multi-threading provides a moderate execution time. A top-level view
of the proposed parallel functional mapper is presented in Algorithm 4.5.

Constructing Initial Solution: Firstly, the method produces an initial mapping
solution by simple executing the proposed parallel structural mapper, as shown in line 4
of Algorithm 4.5. This initial mapping provides a good start point for applying successive
mapping refinements. Moreover, the next steps of the proposed algorithm work on an
AIG with a virtual LUT network annotation to enable more accurate decisions during the
rewriting-aware tech mapping. In practice, this initial solution is represented by the AIG
plus the subset of the best cuts selected in the mapping covering. Typically, each AIG
node n has a pointer to its best cut Bcutn . Therefore, if a given node n has a non-null
pointer to its best cut, it means that n and Bcutn are representing the output and the
inputs of a LUT in the current mapping, respectively. Otherwise, it means that n is an
internal node to a given LUT in the current mapping. This way, it is possible to track
the current mapping during the multi-level logic optimization and to compute how many
LUTs are deleted/added in the network at each rewriting attempt.

Algorithm 4.5: Parallel Functional LUT-Based Mapping
1 Function parallelFunctionalMapping()

Input : AIG, k, C, S, nThreads, nRecovery, nRefinement
Output: a network mapped into k-LUTs

2 GaloisSetThreads( nThreads);

3 //Produce and initial mapping solution
4 parallelStructuralMapping( AIG, k, C, nThreads, nRecovery);

5 //The AIG with mapping annotation is passed to the RWMap manager
6 RWMapManager RWMapMan(AIG, k, C, S, nRecovery);

7 //Iterative rewriting and mapping refinement
8 for ( i = 0 ; i < nRefinement ; i+ + ) do
9 galois_for_each( AIG.PIs, RWMapMan ); // Parallel for

10 return computeCovering();
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RWMap Manager : The functional mapper core is defined by the manager operator
presented in Algorithm 4.6. This operator specifies the task executed by each thread on
top of a given active node. The RWMap manager is instantiated in line 6 of Algorithm
4.5 and it is constructed based on the given AIG, LUT size k, number of cuts per AIG
node C, window size S and other parameters. Internally, the manager has instances of all
those auxiliary managers previously introduced in this work for enabling parallel rewriting
and mapping, i.e., Parallel-Aware Structural hashing, CutManager, NPNManager, Struc-
tureManager and PriorityCutManager. The Galois parallel loop is executed in line 9 of
Algorithm 4.5 to launch the parallel execution of the RWMap manager operator.

Window Computation: The first task of the operator in Algorithm 4.6 is to compute
a window W around of the given active node. A window can be viewed as multi-output
subcircuit used to delimit a perimeter of optimization in the logic network. Typically, the
window computation starts from a given node n in the network and collects some nodes
in the l levels of the transitive fanin and fanout cones of n. The window complexity can
be controlled in terms of the number of visited levels l, AIG nodes or LUTs inside the
window. This complexity can be easily controlled by input parameters and it is directly
related to the desired logic synthesis effort. Windowing is a well-established technique
with several variations to fit in its target application (MISHCHENKO; BRAYTON, 2006;
SCHMITT; MISHCHENKO; BRAYTON, 2018). In the proposed approach, the threads
try to acquire the necessary logical lock of AIG nodes during the window computation.
If all necessary locks are successfully acquired, it means that the operator can proceed to
rewrite and remap the window safely. Otherwise, the thread aborts its execution and the
active node being processed is rescheduled to be processed latter on.

Exploring the Solution Space: After computing the window W , the operator exe-
cutes a modified version of AIG rewriting procedure, shown in lines 8-16 in Algorithm 4.6.
Firstly, 4-input cuts are computed inside the window in order to explore the possibilities
for rewriting W . The algorithm iterates on the set of 4-input cuts computing the cut
Boolean function, applying NPN classification and looking up the table of pre-computed
subgraphs. However, instead of making a decision to select the pair of cut/subgraph that
leads to the best AIG node reduction, the algorithm accumulates all the rewriting possi-
bilities as choices inside the window. In other words, we are postponing the decision on
what cuts/sugraphs will be select for rewriting. This way, we are transferring the rewrit-
ing decisions to the technology mapper, which is able to perform more accurate decisions
by considering the LUT counting and delay instead of considering AIG nodes and levels.
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Algorithm 4.6: Rewriting-Aware Mapping Operator
1 RWMapManager begin
2 constructor( AIG, k, C, S, nRecovery);
3 Function operator( node,GaloisCtx)

4 //All necessary logical locks are acquired when computing the window
5 W = computeWindow( node, S);
6 for each node n in W do
7 //4-input cuts for rewriting
8 Cuts = cutMan.computeKCuts( n);

9 //Adding all the rewriting possibilities as choices
10 for each 4-input cut c in Cuts do
11 f = cutMan.getCutFunction( n, c);
12 fnpn = npnMan.getRepresentative( f);
13 S = strMan.lookupStructures( fnpn);
14 for each structure s in S up to nStr do
15 //Transferring rewriting decisions to tech mapper
16 appendStructureAsChoice( n, c, s);

17 //Making rewriting decisions based on technology costs (LUTs & delay)
18 M = structuralMapping( W , k, C, nRecovery);
19 if ( W.cost > M.cost ) then
20 commitRewritingAndMapping( W , M);

21 cleanupUselessChoices( W);
22 pushFanoutNodes( node, GaloisCtx);

Rewriting-Aware Tech Mapping: The next step is to execute a structural map-
ping with choices on the window in order to evaluate the potential improvement of all
the rewriting possibilities at the same time. This task can be solved by a simple vari-
ation of the proposed structural mapper introduced in previous section. The mapper is
responsible for executing multiple passes of depth-optimal mapping and area recovering
considering all available choices inside the window. Finally, the area and delay costs of
the resulting mapping M are compared to the initial costs of the window W . If there is
improvement, then the window is updated to express the new mapping in terms of the
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rewriting subgraphs represented as choices. The choices that are needed to express the
new mapping are committed by properly reconnecting fanout edges in the AIG whereas
the useless choices are removed from the graph. The last step of the operator is to schedule
the fanouts of the active node to be processed in the next iterations.

Discussion on Flexibility: Notice that we are proposing a novel and flexible concept
for synergistically integrating logic rewriting algorithms to LUT-based mapping ones.
Therefore, the proposed approach for parallel functional mapping is not limited to the
combination of the parallel AIG rewriting and the parallel structural mapper previously
proposed in this work. The proposed approach presented in Algorithm 4.6 is generic and
can employ any logic rewriting method such as those proposed in (LI; DUBROVA, 2011),
(YANG; WANG; MISHCHENKO, 2012), (SOEKEN et al., 2016) and (HAASWIJK et
al., 2017). Analogously, different LUT-based mappers can be applied to solve the task
presented in line 18 of Algorithm 4.6. For instance, we consider that the SAT LUT
mapping proposed in (SCHMITT; MISHCHENKO; BRAYTON, 2018) is a promising
approach for evaluating all the rewriting possibilities represented as choices and making
an accurate decision. We intend to adapt SAT LUT method to handle choice nodes during
the SAT-based covering computation and integrate it in our functional mapper.

Discussion on Related Works: Our parallel functional mapper relies on a set of
techniques previously introduced in the literature, and it is important to highlight the
differences of the proposed approach to previous works considering mapping with choices
(LEHMAN et al., 1997; STOK; IYER; SULLIVAN, 1999; CHATTERJEE et al., 2006b;
MISHCHENKO; CHATTERJEE; BRAYTON, 2007).

The methods presented in (LEHMAN et al., 1997) and (STOK; IYER; SULLIVAN,
1999) apply some algebraic transformations based on associative and distributive rules in
order to produce different structures for the subject graph. These local transformations
are applied for creating choices during standard-cell design methodology. However, this
approach is limited to such a primitive transformation which are strongly dependent on
the initial structure of the subject graph. Notice that our proposal for integrating rewrit-
ing and mapping is flexible, allowing to take advantage of large data bases of precom-
puted structures. Moreover, powerful synthesis techniques can be applied for computing
optimized structures in advance whereas the proposed approach can choose the most
appropriate structures based on tech-dependent costs during the mapping process.

Regarding the traditional mapping flow based on lossless synthesis (CHATTER-
JEE et al., 2006b; MISHCHENKO; CHATTERJEE; BRAYTON, 2007), this method
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aims to execute scripts for multi-level logic optimization in a conventional way and to
collect some intermediary solutions to created choices. Therefore, notice that in such an
approach the logic optimizations are applied totally independent of the technology map-
ping and still guided by the AIG node and level counting. On the other hand, we are
proposing a novel alternative to effective combining such a techniques in a fine-grain level
of integration that enables multi-level logic optimization driven by technology mapping
cost functions. This way, every local step of logic optimization is made based on the
target technology costs.

We are not arguing that the proposed approach substitutes the original lossless
synthesis proposed in (CHATTERJEE et al., 2006b; MISHCHENKO; CHATTERJEE;
BRAYTON, 2007). We are suggesting that both techniques are complementary and there
is much room for applying both of them in different steps of logic synthesis. For instance,
a promising synthesis scenario to improve both QoR and runtime is:

• Applying the proposed parallel AIG rewriting and other logic optimization methods
based on the original lossless synthesis approach to accumulate choices.

• Applying the proposed parallel structural mapper to produce a good initial solution
quickly, benefiting from choices created by the original lossless synthesis;

• Applying the proposed parallel functional mapper to refine the initial solution based
on the synergistic integration of rewriting and mapping.
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4.4 Experimental Results

In the following experiments, we compare the proposed parallel structural mapper
to the state-of-the-art LUT-based mapper implemented in the ABC command &if . The
parallel technology mapper was implemented in C++ 11 using Galois system (PINGALI
et al., 2011; LENHARTH; NGUYEN; PINGALI, 2016). Both the proposed method and
ABC tool (Berkeley Logic Synthesis and Verification Group, ) were compiled using GNU
g++ version 6.1.0 and executed in a 64-bit Linux distribution. The results were collected
on a server with 128GB of shared RAM and 4 processors Intel R©Xeon R©CPU E7- 4860
operating at 2.27GHz, where each processor has 10 physical cores. We ran command &cec
in ABC to check the correctness of the solutions provided by the parallel mapper on a
large set of MCNC, ISCAS and EPFL benchmarks.

4.4.1 Benchmarks

To evaluate our parallel mapper, we have adopted the same set of circuits compris-
ing millions of AIG nodes used to evaluate the proposed parallel AIG rewriting method
in the previous chapter of this work. Table 4.1 provides a fresh view about the adopted
benchmark circuits. The LUT mapping methods under comparison were executed directly
on the circuits presented in Table 4.1 without any previous optimization. This comparison
considers as criteria the runtime and QoR provided by each method in terms of number
of LUTs and logic depth of the mapped networks. We are considering the runtime used
exclusively in the technology mapping task, discarding the parsing runtime of both ABC
command &if and the proposed method. Moreover, the runtime comparison is based
on a single execution for each circuit and thread configuration, since multiple executions
could take some weeks.

4.4.2 Parallel Structural Mapper Scalability

We start evaluating the scalability of the proposed parallel structural mapper by
running it at 1 thread up to 40 threads. The mapper was evaluated under two different
scenarios by mapping the circuits into 6-input and 8-input LUTs, storing 20 cuts per AIG
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Table 4.1: The set of ten circuits obtained by applying 10x (8x) the ABC command double
and the three MtM AIG nodes circuits from the EPFL benchmark suite.

Circuit # PI # PO # AND2 # Levels

sin_10xd 24,576 25,600 5,545,984 225
arbiter_10xd 262,144 132,096 12,123,136 87
voter_10xd 1,025,024 1,024 14,088,192 70
square_10xd 65,536 131,072 18,927,616 250
sqrt_10xd 131,072 65,536 25,208,832 5,058
mult_10xd 131,072 131,072 27,711,488 274
log2_10xd 32,768 32,768 32,829,440 444
mem_10xd 1,232,896 1,260,544 47,960,064 114
hyp_8xd 65,536 32,768 54,869,760 24,801
div_10xd 131,072 131,072 58,620,928 4,372
sixteen 117 50 16,216,836 140
twenty 137 60 20,732,893 162
twentythree 153 68 23,339,737 176

node. The ABC mapper was executed in an equivalent mode by using the commands
"&if -K 6 -C 20" and "&if -K 8 -C 20". Both methods were executed considering the
same number of mapping passes, two passes for depth-optimal mapping followed by four
passes of area recovering (two of area flow and two of exact area).

Table 4.2 presents the absolute runtimes for each mapping scenario when executing
the single-threaded &if mapper and the proposed parallel structural mapper running at
40 threads. The proposed approach has enabled significant runtime reductions, bringing
the runtime down from more than 1h to only few minutes in several cases. The runtime of
the ABC mapper was taken as reference to compute the speedups. Our parallel mapper
presents a promising scalability as shown in Fig. 4.3 and in Fig. 4.4. We have observed
speedups up to 21x and 25x when mapping into 6-input and 8-input LUTs, respectively.

In most cases, the parallel mapper keep scaling as the thread count increases, except
for the three MtM circuits in which our mapper has presented a similar scalability behavior
to the parallel AIG rewriting. This weak scalability is due to many thread conflicts
generated by the structural bottleneck present in these circuits, as previously discussed in
Subsection 3.4.4 of this work. However, even for these hard cases, the proposed approach
was able to accelerate the mapping process up to 5x, bringing the runtime down from
30min to only 7.7min.
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Table 4.2: Runtimes of the technology mapping methods under comparison, in seconds.

-K 6 -C 20 -K 8 -C 20

Circuit
ABC
&if

Parallel
40 threads

ABC
&if

Parallel
40 threads

sin_10xd 647.47 38.69 1,004.18 54.80
arbiter_10xd 489.63 53.79 782.74 68.60
voter_10xd 1,232.35 84.41 2,187.62 127.10
square_10xd 2,326.20 111.15 3,690.48 149.70
sqrt_10xd 2,447.40 181.26 4,781.64 277.52
mult_10xd 2,922.03 180.06 5,387.81 251.77
log2_10xd 3,754.37 218.44 7,522.44 335.28
mem_10xd 3,109.24 232.84 5,256.27 304.80
hyp_8xd 6,609.16 387.17 10,576.95 544.14
div_10xd 6,378.03 376.79 10,974.52 548.74
sixteen 1,307.07 414.31 1,565.11 581.02
twenty 1,850.07 463.44 2,180.85 827.02
twentythree 2,251.62 478.95 2,748.72 957.21

It is challenge to get speedups when compared to the &if command due to the
different AIG representations used by each method. On the one hand, the proposed
mapper works on the AIG package we designed based on the generic data structure
provided by Galois FirstGraph. This AIG representation has some overheads to support
concurrent operations and graph topology modifications. On the other hand, the &if
mapper works on a very compact and tuned AIG representation called GIA. The GIA
package represents the graph as a single array where each position stores the data related
to a given AIG node. The nodes are natively stored in a topological order and the fanout
edges of each node are not represented. Therefore, the mapper can traverse the graph in
the topological order quickly by executing a for iterator on the array. This data structure
is very efficient to implement structural mappers, since the graph topology is not modified
during the mapping process.

However, we highlight that the proposed parallel mapper has prensented promising
speedups and is more flexible by supporting parallel modifications into the graph topol-
ogy towards our parallel functional mapper. Besides that, runtime improvement can be
achieved by fine tuning the generic Galois FirstGraph to fit better into logic synthesis
tasks.
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Figure 4.3: Speedups and scalability behavior of parallel structural mapper compared to
ABC command &if -K 6 -C 20.
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Figure 4.4: Speedups and scalability behavior of parallel structural mapper compared to
ABC command &if -K 8 -C 20.
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4.4.3 Parallel Structural Mapper QoR

The experimental results have demonstrated that the proposed parallel mapper
delivers solutions with similar quality when compared to the &if mapper. A comparative
analysis in terms of LUT count and logic depth is presented in Table 4.3 and in Table 4.4.
The absolute values of the solutions delivered by &if mapper were taken as reference to
compute the quality ratio provided by our parallel mapper.

Both methods are able to deliver the depth-optimal solution considering a fixed
topology of the AIG received as input. Even though we have introduced different heuristics
to update node reference counters when computing k-cut area, the proposed approach has
presented competitive quality when compared to the state-of-the-art mapper &if . Since
the area recovering techniques are based on heuristics, there is much room for delivering
solutions with different area cost. For the mapping into 6-input LUTs, we have achieved
improvements in LUT count up to 14% and degradation up to 11%. Whereas, for the
mapping into 8-input LUTs, we have achieved improvements in LUT count up to 18%
and degradation up to 22%.

Table 4.3: QoR ratio of the parallel mapping over ABC command &if -K 6 -C 20.

ABC &if Parallel
Circuit LUTs depth LUTs depth

sin_10xd 1,482,752 42 0.98 1.00
arbiter_10xd 2,787,328 18 1.00 1.00
voter_10xd 2,306,048 16 1.07 1.00
square_10xd 4,072,448 50 0.92 1.00
sqrt_10xd 6,529,024 1,024 0.86 1.00
mult_10xd 6,014,976 53 0.98 1.00
log2_10xd 8,015,872 76 1.01 1.00
mem_10xd 12,057,600 25 1.02 1.00
hyp_8xd 11,405,568 4,195 1.02 1.00
div_10xd 22,825,984 864 0.93 1.00
sixteen 4,065,972 29 1.08 1.00
twenty 5,034,882 33 1.08 1.00
twentythree 5,641,898 36 1.11 1.00
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Table 4.4: QoR ratio of the parallel mapping over ABC command &if -K 8 -C 20.

ABC &if Parallel
Circuit LUTs depth LUTs depth

sin_10xd 1,257,472 30 0.96 1.00
arbiter_10xd 2,118,656 13 1.00 1.00
voter_10xd 2,166,784 12 0.99 1.00
square_10xd 3,445,760 36 0.96 1.00
sqrt_10xd 5,234,688 692 0.82 1.00
mult_10xd 4,162,560 40 0.97 1.00
log2_10xd 4,533,248 48 0.89 1.00
mem_10xd 8,468,480 19 1.05 1.00
hyp_8xd 10,920,704 2,818 0.94 1.00
div_10xd 19,206,144 617 1.02 1.00
sixteen 2,950,996 22 1.16 1.00
twenty 4,046,997 24 1.19 1.00
twentythree 4,485,663 27 1.22 1.00

4.4.4 Parallel Functional Mapper Case Study

Since the proposed parallel functional mapper is under development, we are pre-
senting a case study in order to present evidence that the proposed approach can bring
practical benefits in QoR. We selected the i2 circuit, from the MCNC benchmark (YANG,
1991), that is a small combinational circuit with similar size of a window extracted from
a larger circuit. Therefore, in this case study, this circuit play the role of a given window
under optimization. We are presenting four different scenarios for optimizing and map-
ping the i2 considering three alternative flows in ABC tool as well as a partial version of
the proposed RWMap. These four scenarios are illustrated in Fig. 4.5 and defined as:

• ABC 1: applies just the LUT mapping on the original AIG, commands "&if -k 6".

• ABC 2: applies a single pass of AIG rewriting without level preservation followed
by LUT mapping, commands "rewriting -l ; &if -k 6".

• ABC 3: applies compress and compress2 scripts for multi-level logic optimization
and collects choices followed by LUT mapping, commands "&dch ; &if -k 6".

• RWMap: applies the two main steps presented in Algorithm 4.6, explore by adding
the rewriting structures as choices and decide based on technology mapping costs.
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Figure 4.5: Case study on the i2 circuit from MCNC benchmark: QoR analysis by in-
tegrating rewriting (explore) and mapping (decide) as proposed in RWMap manager of
Algorithm 4.6.

All the flows under comparison were executed in a single-thread version, since the
main objective is to evaluate the QoR. The runtime of each flow was around of 1 second or
less, due to the small instance of the problem. In Fig. 4.5, we present the initial and the
intermediary solutions in terms of AIG node and level counting whereas the final solutions
are presented in number of LUTs and logic depth. The three ABC flows significantly
increase the synthesis effort from ABC 1 to ABC 3. However, there is a small difference
in the practical benefit attained in the final solutions when comparing these three ABC
flows. In turn, the proposed approach was able to go further by performing multi-level
logic optimizations driven by tech-dependent costs. Therefore, we conjecture that in a real
synthesis scenario, the proposed approach can make better decisions when resynthesizing
circuit windows in an incremental and iterative process.

One can argue that the proposed flow presented in Fig. 4.5 produced better results
by employing more complex and intensive optimizations than the other three ABC flows.
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However, the proposed flow has a computing cost as small as the cost of the flow described
in ABC 2. Our approach only executes a single pass adding rewriting choices and makes
decision based on the proposed structural mapper which works similarly to the ABC &if .
When compared to ABC 2 flow, the proposed approach has an extra cost to consider
choices during mapping. This extra cost is not a bottleneck because our approach can
ensure scalability by controlling the windows size and computing k-cuts in parallel.

ABC 3 represents the most complex flow among the four evaluated scenarios. This
flow employs the &dch command that internally executes the script compress followed by
the script compress2. These two scripts are based on sequences of algorithms for multi-
level logic optimization like rewriting (rw and rwz), balancing (b) and refactoring (rf
and rfz). The switch -l is used for disabling level preservation since these scripts perform
area-oriented optimizations as follows:

• compress: "b -l ; rw -l ; rwz -l ; b -l ; rwz -l ; b -l"

• compress2: "b -l ; rw -l ; rf -l ; b -l ; rw -l ; rwz -l ; b -l ; rfz -l ; rwz -l ; b -l"

Notice that the &dch command applies rewriting 7x, balancing 7x and refactoring
2x by internally executing the scripts compress and compress2. Moreover, after executing
these scripts, &dch executes SAT solving to prove equivalences between intermediary
networks in order to create choices. Therefore, the &dch command is significantly more
expensive where thousands of optimization attempts are tried and rejected during there
16x optimization passes guided by AIG node and level counting.

Although, the &dch command is well established and has presented good results,
we argue that there is room for improvement in both runtime and QoR by considering a
more effective integration for creating and making choices in the technology mapping. Our
intuition is that the proposed RWMap will be able to leverage the quality of conventional
rewriting methods to another level just by considering more accurate decisions. However,
since we do not have experimental results to support this claim yet, such an improvement
remains hypothetical.
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4.5 Summary

In this chapter, we discussed the main challenges on LUT-based technology map-
ping and proposed two complementary methods for accelerating and improve the mapping
process. The proposed parallel structural mapper has presented promising speedups as
well as competitive QoR when compared to the state-of-the-art structural mapper imple-
mented in ABC command &if . Experimental results have demonstrated speedups of up
to 25x, representing practical runtime reductions from more than one hour to few minutes.

Besides that, we introduced a set of principles for integrating logic rewriting and
technology mapping in a flexible way, leading to a parallel functional mapper. The main
novelty of the proposed approach is to explore the solution space based on rewriting sub-
graphs while making optimization decisions totally based on the tech-dependent costs.
We are introducing a novel concept for a fine-grain integration of multi-level logic opti-
mization and mapping. Therefore, several other optimization and mapping algorithms
from the literature can be employed to work based on the proposed concept.
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5 COMBINATIONAL EQUIVALENCE CHECKING

Fast and scalable techniques for combinational equivalence checking (CEC) are
essential in modern electronic design automation (EDA) environments. In a typical sce-
nario, the logic function implemented by an optimized digital integrated circuit (IC)
is checked for equivalence to the original specification after multi-level logic synthesis
(BRAYTON; HACHTEL; SANGIOVANNI-VINCENTELLI, 1990). Moreover, scalable
CEC techniques are quite useful in several key logic synthesis processes, which depend on
efficient computation of equivalence classes of internal circuit nodes. A non-exhaustive
list of these tasks is the following:

• Removal of functionally equivalent logic in the design during logic synthesis and
optimization;

• A number of utility packages, e.g. node name transfer across netlists before and
after synthesis;

• Sequential equivalence checking based on register and signal correspondence (BJESSE;
CLAESSEN, 2000; MISHCHENKO et al., 2008);

• Bridging circuits for the implementation and the specification in engineering change
orders (ECOs) (KRISHNASWAMY et al., 2009);

• Computation of structural choices, enabling circuit area and signal delay improve-
ment after technology mapping step (CHATTERJEE et al., 2006a).

In recent years, equivalence checking has become more critical due to the increasing
in complexity of current and upcoming system-on-chip (SoC) and VLSI designs. In the
introduction of this thesis, we highlighted the complexity of CEC when dealing with large
designs by presenting and instance where the modern CEC engine from ABC tool took
more than 24 hours to prove logic equivalences. In order to enable the next rounds of
technology innovation, there is a demand for massively parallel EDA tools running on the
cloud (STOK, 2013; STOK, 2014). Considering this scenario, traditional EDA algorithms
and data structures, in particular, those dealing with CEC, need to be rethought to benefit
from parallel computing platforms.

In typical EDA environment, algorithms work on a sparse graph representing the
circuit. We reinforce that it is often challenging to exploit parallelism of graph-based
algorithms due to irregular nature of the graphs implemented using pointer-based data-
structures. Moreover, the parallelization challenge increases when the graph-based algo-
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rithm relay on logic simulation and Boolean satisfiability (SAT) (MISHCHENKO et al.,
2006)

In this chapter, we are unlocking massive parallelism for CEC by applying graph
(miter) partitioning in order to balance data sharing and data independence during SAT
solving. Three complementary models for enabling parallelism in CEC are proposed,
addressing different design and verification scenarios. Experimental results have demon-
strated speedups up to 63x when compared to a single-threaded implementation of similar
CEC engine. The practical impact of such a speedup represents a runtime reduction from
19 hours to only 18 minutes. Therefore, the proposed solution presents great potential
for improving current EDA environments.

We start providing a background on the main concepts and techniques used in
modern CEC engines, before to review recent related works and to introduce the proposed
parallel CEC approach.

5.1 Background

5.1.1 Boolean Satisfiability

Boolean satisfiability is the decision problem to determine whether there exist an
assignment to the input variables that makes the output of a given Boolean formula
evaluates to true. If such an assignment exists, then the formula is satisfiable (sat).
Otherwise, the formula is unsatisfiable (unsat). Conventionally, SAT problem instances
are represented by a formula in the conjunctive normal form (CNF). SAT solvers are
tools implementing advanced techniques for deciding whether a given SAT instance is sat
or unsat (EéN; SöRENSSON, 2004). Several techniques are used for speeding up SAT
solving such as the cube-and-conquer method (HEULE et al., 2018), the dual SAT solving
(AMARù et al., 2015), and others. Many practical problems can be modeled using SAT
and efficiently solved by modern SAT solvers.

5.1.2 Mitering

A typical CEC engine transforms two circuits under verification into a single circuit
called miter (BRAND, 1993). The miter is constructed by pair-wise connecting the inputs
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with the same name and by pair-wise comparing the outputs with the same name using
exclusive-OR (EXOR) operator. At the top of the miter, an OR operator connects all the
outputs of EXORs, representing the output of the comparator for the primary outputs,
as shown in Fig. 5.1(a).

In practice, a miter can be represented by a single AIG, where each output is a
separate decision problem. The AIG is viewed as an instance of a multi-output SAT
problem that can be easily converter to CNF form by using the Tseitin transformation
(TSEITIN, 1983), and then given to the SAT solver. If the SAT solver returns unsat, all
pairs of outputs under comparison are equivalent. Otherwise, the solver returns sat, i.e.,
at least one pair of outputs is different. This process for proving equivalence using miter
and SAT solving is also referred as mitering.

Circuit 1 Circuit 2

O1 O2 O1 O2

A B C C B A

MITER

(a)

Circuit 1 Circuit 2

O1 O2 O1 O2

A B C C B A

MITER

ni nj

n2n1

(b)

Figure 5.1: Miter structure (a) with reduced logic (b) by merging equivalent internal
nodes.

5.1.3 BDD and SAT Sweeping

The techniques known as BDD sweeping (KUEHLMANN et al., 2002) and SAT
sweeping (KUEHLMANN, 2004) are used to detect functionally equivalent nodes inter-
nally in AIG or miter. In this approach, pairs of internal nodes are checked for equivalence
in a topological order. If the equivalence is proved, the corresponding nodes can be merged
to simplify the miter, as shown int Fig. 5.1(b). BDD and SAT sweeping are useful since to
prove equivalence by directly constructing a BDD of a miter for the entire circuits under
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verification is often not practical (BRYANT, 1986). In many cases, BDD construction
and SAT solving for all the outputs require a lot of memory and computation resources.

5.1.4 Logic Simulation

Logic simulation is a common technique used to quickly detect non-equivalent
nodes, helping to reduce the number of SAT calls during SAT sweeping. Typically, random
vectors and counter-examples returned by SAT solvers are used as input patterns for
simulation (KUEHLMANN, 2004; LU et al., 2003). A counter-example is an assignment
of input variables of the Boolean formula representing the SAT problem instance, proving
that a pair of nodes is not equivalent. This way, simulation is used to group potential-
equivalent nodes into classes whereas SAT solving is used for checking equivalences among
nodes belonging to the same class.
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5.2 Related Works on CEC

In the last decades, several works addressed the CEC problem by proposing solu-
tions based on BDDs (MATSUNAGA, 1996; MOONDANOS et al., 2001; MOON; PIX-
LEY, 2004) or hybrid BDD/SAT-based engines (KUEHLMANN et al., 2002). Most part
of earlier CEC engines prove logic equivalence based ROBBDs (BRYANT, 1986). In many
cases, the construction of ROBDDs is not practical due to the increasing size and com-
plexity of current and upcoming designs. Such approaches are less scalable when running
on a single thread and harder to parallelize than those based on simulation and SAT (LU
et al., 2003; MISHCHENKO et al., 2006).

In the following, we revisit previous works that are most related to the proposed
approach or that are complementary to it somehow. We start revisiting the state-of-the-
art CEC engine available in ABC tool, which is based on simulation and SAT solving.
Besides that, we revisit other recent approaches introduced to accelerate CEC or to ac-
celerate SAT solving that has directly impact on the performance of CEC engines.

5.2.1 CEC Engine in ABC Tool

Typically, modern CEC engines alternate between miter solving to prove equiva-
lences for outputs and miter simplification to prove equivalence for internal nodes. Simula-
tion and SAT sweeping are used for gradually simplifying the miter complexity. Therefore,
for the sake of simplicity, we have adopted the terms main miter and internal miter when
referring to the data being processed in different steps of the CEC engine core.

• The main miter refers to the miter created once at the beginning of the verification
process. This miter comprises all the logic of the two circuits under comparison.
During the CEC, the main miter is gradually simplified by merging internal equiv-
alent nodes from both circuits.

• The internal miter refers to the miter created temporarily at each integration of SAT
sweeping in the CEC core. This miter comprises subgraphs from the main miter
that represent a set of CEC subproblems for determining those internal equivalent
nodes.

Fig. 5.2 presents a scheme of the CEC core implemented in the ABC command
&cec (Berkeley Logic Synthesis and Verification Group, ). This command implements
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Figure 5.2: CEC engine of ABC command &cec.

an improved version of the method proposed in (MISHCHENKO et al., 2006). This
engine is based on the SAT solverMiniSat (EéN; SöRENSSON, 2004) and employs several
techniques introduced in previous work such as intelligent simulation and functionally
reduced AIGs (FRAIGs) (MISHCHENKO et al., 2005) .

Initially, intelligent simulation is used to group nodes that appear to be equiva-
lent into classes. The input patterns used for simulation are computed based on SAT
counter-examples that contribute to distinguish non-equivalent nodes belonging to candi-
date equivalence classes. An extended set of distance-1 simulation vectors are produced
by flipping one bit at a time from the counter-example (MISHCHENKO et al., 2006).

While simplifying the main miter in the &cec command, pairs of nodes from each
class are represented in the temporary internal miter and checked by the SAT solver. All
those nodes proved equivalent are merged in order to simplify the main miter under veri-
fication and the counter-examples are used to disprove equivalences in further iterations.
This iterative process of miter refinement and checking is executed until: (i) the miter
is fully solved (proved unsat); (ii) a counter-example is detected (proved sat); or (iii) a
resource limit is reached.

By carefully investigating the ABC CEC engine, we have observed that the most
advantageous strategy to accelerate &cec is to apply main miter and internal miter par-
titioning for enabling parallel SAT solving. The parallel CEC we are proposing in this
work is based on this observation and exploits trade-offs between data sharing and data
independence to solve SAT problems in multiple solver instances.
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5.2.2 Other Recent Related Works

In (CHATTERJEE; BERTACCO, 2010), a different method called EQUIPE was
proposed for parallelizing CEC based on a hybrid solution that combines CPU and GPU.
The authors exploit parallelism in GPU to perform signature-based analysis and structural
matching in order to minimize the number of SAT calls. The method evaluates the circuits
under verification trying to prove speculatively the equivalence between internal nodes.
When the equivalence cannot be proved by the GPU-based solution, a SAT solver is then
executed in the host processor (CPU) to check equivalence of individual nodes. However,
even when using 14 GPU-cores and 4 CPU-cores, the speedup provided by EQUIPE is
limited to a factor of three compared to the non-parallel CEC engine available in ABC
tool.

In (AMARù et al., 2015), the authors exploit properties related to Boolean function
duality to speed up SAT solving. In several practical SAT application, problems are solved
by proving the input CNF is a tautology (constant one) or a contradiction (constant zero).
Therefore, the authors exploit the duality between the tautology and contradiction by
switching logic operators in the circuit representation in order to produce two equivalent-
solvable versions of the same problem. This way, the two dual instances of the problem
are solved in parallel by two processor cores and the one which is solved first is used as
the final solution whereas the other one is stopped.

This strategy is able to accelerate the SAT solving since one of the instances can
be solved much faster than its dual version. Experiments have demonstrated an average
runtime reduction of 25% by using both the regular and the dual instance of a given
problem compared to use only the regular instance. The solution proposed in (AMARù
et al., 2015) and the parallel approach we are proposing in this work are complementary
and both solutions can be combined for creating more opportunities to speed up SAT
solving and, consequently, CEC engines.
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5.3 Proposed Parallel CEC

In this section, we propose three strategies to enable parallelism during equiva-
lence checking. Our parallel CEC is based on the state-of-the-art CEC engine available
in ABC command &cec, which exploits the synergy between logic simulation and SAT
(MISHCHENKO et al., 2006). As discussed before, &cec solves many SAT problems ap-
pearing in the main miter and in the internal miter derived during SAT sweeping. The
proposed approach relies on graph partitioning to exploit data independence during miter
simplification and solving. Therefore, we start defining the proposed strategy for graph
partitioning. In the sequence, we introduce two models to employ graph partitioning
for enabling parallelism during main minter and internal miter processing. Finally, we
present how both models can be combined in a third hybrid model that allows to fully
exploit the power of parallel computing.

5.3.1 Graph Partitioning

The SAT problem arising in the proof of equivalence between pairs of POs or in-
ternal nodes are intrinsically independent of each other. These problems are encoded
together in the same graph due to the natural logic sharing introduced during logic syn-
thesis and optimization. We can exploit such an intrinsic independence of the problems
to solve them in separate batches. Since each AIG output represents a SAT problem,
we have three main motivations for performing the graph partitioning based on POs, as
follows:

• The SAT problems for checking pairs of POs or internal nodes are independent from
each other.

• We have empirically observed that adjacent POs tend to present more shared logic
than randomly selected groups of POs because RTL elaborators, which translate
word-level design description into bit-level circuit, place bit-level flops next to each
other.

• The set of SAT problems formulated for checking equivalent classes during SAT
sweeping are encoded as subsequent POs in the internal miter.

Miter partitioning provides a trade-off between data sharing and data independence
during equivalence checking. On one extreme side, we have several SAT problems encoded
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into a single miter, which can be incrementally solved at the same SAT solver by exploiting
shared clauses (all together). On the other extreme side, we can apply graph partitioning
to extract the TFI cones related to the pairs of outputs under comparison and check
each pair using independent SAT calls (all separated). In order to achieve an equilibrium
between data sharing and data independence, we are proposing to create relatively large
partitions comprising a subset of SAT problems. The partitioning enables to solve the
subset of SAT problems in parallel by independent SAT solver instances. Algorithm 5.1
presents a top-level view of the graph partitioning procedure.

Algorithm 5.1: Top-level View of Graph Partitioning
1 Function GraphPartitioning()
2 input: N (number of partitions), miter ( AIG )
3 output: P ( partitions )
4 int S; // partition size
5 int R; // division reminder
6 if ( miter.nPO ≥ N ) then
7 S = miter.nPO / N ;
8 R = miter.nPO % N ;
9 else

10 S = 1;
11 R = 0;
12 N = miter.nPO ;

13 if ( R > 0 ) then
14 S + +; // to treat remaining POs

15 AIG ∗ P [ N ]; // partitions as an array of AIGs
16 int i = 0, j = 0;
17 for each po in miter do
18 appendTFICone( po, miter, P[ i ]);
19 j + +;
20 if ( j == S) then
21 i+ +; // move to the next partition
22 j = 0; // reset the counter
23 // if all remaining POs were processed
24 if ( −−R == 0 ) then
25 S −−; // go back to the original size

26 return P ;
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Initially, Algorithm 5.1 checks whether it is feasible to decompose the given miter
(AIG) into the desired number of partitions N, as shown in lines 6-12. This checking
ensures that the graph partitioning will be consistent by assigning feasible values to the
number of partitions N and partition size S. When the division of miter.nPO by N

produces a remainder R, the algorithm distributes the set of remaining POs by placing
one more PO to the first R partitions. This distribution contributes to produce a workload
balance among partitions.

In line 15 of Algorithm 5.1, all partitions start empty and the transitive fanin cones
of subsequent POs are gradually appended to the current partition until the partition size
is reached, as shown in the loop of lines 17-25. The routine appendTFICone collects
all the logic that a given PO depends on towards the PIs, recursively. The proposed
graph partitioning uses structural hashing and preserves logic sharing inside the partitions
with some logic duplication among the partitions. However, since the CEC is a decision
problem, logic duplication does not affect the solution quality. In other words, the CEC
engine is not sensitive to logic duplication unlike other optimization problems, such as
multi-level logic optimization and technology mapping.

The proposed graph partitioning guarantees the soundness and completeness by
ensuring that, for each output pair to be checked for equivalence in a given partition, the
partition also contains all the logic needed to prove or disprove equivalence (soundness)
and each output pair belongs to some partition (completeness). The same graph partition
can be applied for both the main miter and the internal miter partitioning processes.
The soundness and completeness properties hold for both cases since the internal miter
comprises smaller instances of the same problem represented in the main miter.

5.3.2 Main Miter Partitioning

We are introducing the Model P, depicted in Fig. 5.3, to decompose the main miter
into a set of P independent sub-problems (partitions) and to verify them in parallel.
This model receives the pair of circuits under verification and pre-processes them by
applying mitering construction and the graph partitioning introduced in Algorithm 5.1.
The graph partitioning delivers a list of AIGs representing the miter partitions, which
are mapped to threads by using the POSIX Threads standard (Pthreads). Each thread
receives a miter partition as argument and checks this miter by executing the CEC core
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Figure 5.3: Scheme of parallel CEC by main miter partitioning.

illustrated in Fig. 5.2. By applying the proposed graph partitioning, the Model P is
able to explore massive parallelism where each thread solves part of the problem without
any dependencies and conflicts to other threads. Finally, all threads are joined to the
main thread and the intermediate solutions are combined to deliver the final solution.
If all the threads return the answer equivalent, then it means that the whole circuits
under verification are equivalent. However, when at least one pair of outputs is proved
non-equivalent, the Model P enables earlier termination to the verification process by
exploring the solution space quickly. For instance, if a given thread proves that at least
one pair of POs is non-equivalent, then that thread can report the input/output patterns
and broadcast a stop signal to other threads.

The proposed approach lies closer to the middle of the spectrum between data
sharing and data independence, enabling faster equivalence checking. This solution works
like a divide-and-conquer approach to decompose a problem into smaller ones, enabling
efficient parallel processing on multi-core platforms with shared memory. Moreover, since
miters are completely independent to each other, the proposed approach can be easily
extended to exploit the advantages of distributed computing in cloud.
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Figure 5.4: Scheme of parallel CEC by internal miter partitioning.

5.3.3 Internal Miter Partitioning

We are introducing the Model S, depicted in Fig. 5.4, to speed up SAT sweeping
while checking equivalences of internal nodes in the CEC core. The same principle of
graph partitioning presented in Algorithm 5.1 can be applied to decompose the internal
miter constructed during SAT sweeping. After applying internal miter partitioning, the
Pthreads interface is used to launch S SAT solver calls for checking equivalences of internal
nodes in parallel, as illustrated in Fig. 5.4. In this approach, each thread receives a
partition of the internal miter and executes an independent instance of the Minisat (EéN;
SöRENSSON, 2004) for checking the miter.

Notice that the proposed approach interleaves serial and parallel sections of the
code at each iteration, as shown in Fig. 5.4. Therefore, before starting the next iteration
of the CEC core loop, all threads must finish and return partial results. For each iteration,
a set of SAT counter-examples is collected from several SAT calls to produce simulation
vectors for the next iteration. Moreover, the pairs of nodes proved to be equivalent are
collected to refine the main miter. Therefore, auxiliary routines are used for reducing
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back all these partial results representing counter-examples and equivalent nodes. This
way, the runtime of the latest thread defines the delay before moving to the next iteration
of CEC core.

The amount of SAT problems encoded in the internal miter and the complexity
of these problems are strongly dependent on the circuit structure. Typically, the main
miter comprises several complex SAT problems whereas the internal miter comprises a
lot of small and easy SAT subproblems. Considering this scenario, it is a challenge to
find a good trade-off between data sharing and data independence of the internal miter
to perform a partitioning that leads to a good workload balance among the threads.

It is worth to mention that several other applications of SAT sweeping can be
benefited from the proposed Model S. In optimization problems based on SAT sweeping,
such as redundancy removal and signal correspondence (MISHCHENKO et al., 2011), it
is not wise to partition the input graph because optimization opportunities tend to be
lost due to the negative bias of partition boundaries. Therefore, in such optimization
problems, the proposed Model P is less useful. On the other hand, the proposed Model S
can enable parallelism to solve internal problems encoded in the temporary miter, without
adversely impacting the quality of results of such optimization problems.

5.3.4 Combined Miter Partitioning

We have introduced the models P and S for speeding up equivalence checking
by exploiting parallelism on different levels of the CEC engine. A strong feature of our
approach is that both models can work together, cooperating to improve the CEC runtime.
It means that each thread created in Model P can create a set of subthreads in Model
S to speedup the computation. The amount of threads working at each model can be
specified by the parameters P and S. This way, based on the circuit characteristics, one
can fine tune the engine to get the best thread workload balance.

Since the amount of parallelism available in the main miter and the internal miter
partitioning processes is strongly related to the circuit structure, the ability to run Model
P and Model S together helps to deal with a wide range of design characteristics. It
has been confirmed in our experiments where the combined execution of models P and
S achieves higher speedups, leading to the best results for some benchmarks. Moreover,
when considering massively parallel environments used in cloud computing, both models
allow for a synergistic integration to fully exploit the power of distributed and shared
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memory computing. For instance, Model P can be used to partition the initial problem
and distribute tasks to many nodes in the cloud whereas Model S can exploit the potential
of multi-core architectures at each computing node.
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5.4 Experimental Results

The proposed methods have been implemented in C programming language using
Pthreads and incorporated in the ABC command &cec (Berkeley Logic Synthesis and
Verification Group, ). The three ways of parallelizing CEC proposed in Section III can
be enabled in the &cec command using the switches −P and −S, together or separately,
followed by the desired number of threads applied in each model. In the following experi-
ment, the proposed parallel CEC has been compared to a commercial verification tool. In
the sequence, we present a scaling analysis of the proposed models in a massive parallel
environment when comparing to the reference single-threaded method available through
the ABC command &cec.

5.4.1 Benchmarks

Since this work is focusing on speeding up CEC for large circuits, we have selected
the MtM AIG node circuits from EPFL suite (AMARÚ; GAILLARDON; MICHELI,
2015) and a subset of six out of ten circuits obtained by applying the ABC command
double 10x, as presented in the previous chapters of this work. The four largest circuits
used in the experiments of the previous chapters were not considered herein due to the
extreme high runtime needed for several verification runs on such large circuits. However,
all the circuits considered in our experiments comprise AIGs with millions of nodes being
large enough to present challenges for CEC engines. Table 5.1 presents a refresh on
characteristics of the MtM node AIGs from EPFL benchmark suite as well as the circuits
derived by applying double command.

In a typical scenario, CEC is used to check equivalence between original and op-
timized versions of the same circuit after logic synthesis and/or technology-dependent
optimization. To reproduce this scenario, we have first applied the script dc2 avail-
able in ABC to the circuits shown in Table 5.1. The script performs area-driven, delay-
constrained, multi-level optimization process using rewriting, balancing and refactoring
algorithms. In the following experiments, we have checked the equivalence between the
original circuit and the dc2 -optimized ones using a commercial verification tool, the orig-
inal single-threaded version of the ABC command &cec and the proposed models for
parallel CEC.
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Table 5.1: The set of six circuits obtained by applying the ABC command double 10x and
the three MtM AIG nodes circuits from the EPFL benchmark suite.

Circuit # PI # PO # AND2 # Levels

sin_10xd 24,576 25,600 5,545,984 225
arbiter_10xd 262,144 132,096 12,123,136 87
voter_10xd 1,025,024 1,024 14,088,192 70
square_10xd 65,536 131,072 18,927,616 250
sqrt_10xd 131,072 65,536 25,208,832 5,058
mult_10xd 131,072 131,072 27,711,488 274
sixteen 117 50 16,216,836 140
twenty 137 60 20,732,893 162
twentythree 153 68 23,339,737 176

5.4.2 Comparing to Commercial Verification Tool

In this experiment we are comparing the proposed models for parallel CEC to a
commercial verification tool. The results were collected in a server with 64GB of shared
RAM and a processor Intel R©Core R©i7-7700K CPU at 4.20GHz, where the processor has
four physical cores. The tools under comparison were executed in a 64-bit Linux distri-
bution and the runtimes were measured using the Linux bash command time (real).

Both the commercial tool and the proposed models were executed using four
threads to exploit the potential of the four physical cores available on the server. We
have executed Model P and Model S separately and combined. Table 5.2 presents the
absolute runtimes for each method in the format (hours : minutes : seconds). The ex-
perimental results have demonstrated that the proposed models for parallel CEC present
significant smaller runtimes than the commercial verification tool when running at the
same number of threads. Notice that, for several cases, the commercial tool took more
than a day for verifying the circuits, whereas the proposed approach took only few min-
utes/hours. The last column of the Table 5.2 presents the best speedups provided by the
proposed approach when comparing to the commercial tool. Moreover, a detailed view
on the speedups provided by each configuration of the proposed approach is presented in
Fig. 5.5. The "voter_10xd" circuit was remove from this plot since it does not presented
speedups.
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Table 5.2: Runtime comparison among the commercial tool and the proposed models
running at four threads, in (h:m:s).

Circuit
Commercial
(4 threads)

-P 4 -S 4 -P 2 -S 2 Speedup

sin_10xd 1:02:09 0:07:09 0:11:15 0:08:29 8.68x
arbiter_10xd 0:51:53 0:00:51 0:01:36 0:01:06 60.56x
voter_10xd 1:19:37 4:19:08 4:54:53 4:09:05 0.32x
square_10xd 2:57:02 0:03:28 0:07:45 0:04:52 51.13x
sqrt_10xd 69:03:25 3:31:50 6:47:06 6:38:47 19.56x
mult_10xd 5:20:41 0:09:04 0:20:15 0:12:46 35.34x
sixteen 21:21:26 4:22:54 3:34:31 1:45:06 12.19x
twenty 38:08:40 3:35:22 6:27:38 2:19:40 16.39x
twentythree 49:46:06 3:56:46 8:11:20 2:52:52 17.27x
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Figure 5.5: Speedups of the proposed models when compared to a commercial verification
tool.
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5.4.3 Parallel CEC Scalability

In order to asses the scalability of the proposed parallel models to many threads,
a set of experiments has been carried out using a server with 128GB of shared RAM and
four processors Intel R©Xeon R©CPU E7- 4860 operating at 2.27GHz, where each processor
has 10 physical cores, corresponding to the total of 40 cores. ABC tool was compiled
using GNU g++ version 6.1.0 and executed in a 64-bit Linux distribution. The runtimes
were measured using the Linux bash command time (real). Unfortunately, we do not
have a commercial tool available on this server with greater computing power. Therefore,
in the following experiments, we are comparing the proposed parallel CEC approach to
the state-of-the-art serial CEC implemented in ABC Command &cec.

In the first experiment, we compare the proposed models P and S separately. The
goal of this experiment is to measure the speedup and the scalability that each model
can bring to the verification process as the thread count increases. Table 5.3 presents the
runtime for the original single-thread CEC and for parallel models P and S running at 4
up to 40 threads. The speedup introduced by each model according to the thread count
is shown in Fig. 5.6 and in Fig. 5.7.

Regarding the benefits of the proposed approaches, Model P leads to more sig-
nificant improvement than Model S. For most circuits, Model P works 30x faster than
the single-thread CEC. Moreover, for the circuits "twenty" and "twentythree", we have
observed super-linear speedups of 60.73x and 63.08x, respectively. In these cases, graph
partitioning enabled a good balance between data sharing and data independence. Be-
sides that, the CEC engine is based on incremental SAT solving by sharing clauses among
successive SAT calls (MISHCHENKO et al., 2006; EéN; SöRENSSON, 2004). There-
fore, the miter partitioning can lead to a better incremental behavior in the SAT solving
heuristics, since each thread is applied to a smaller set of problems using separate SAT
solvers.

It is harder to get high speedups in Model S because many smaller SAT problems
are created in the interleaved sections of sequential and parallel codes in the CEC core.
Actually, the SAT problem size and complexity depends on the characteristics of the
circuits under verification. Therefore, one should not discard Model S since it can be
advantageous for certain designs, and it can also be combined to work together with
Model P.
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Table 5.3: Runtime comparison among the original ABC command &cec and the proposed models P and S running separately, in (h:m:s).

Circuit
ABC
&cec

-P 4 -S 4 -P 10 -S 10 -P 20 -S 20 -P 30 -S 30 -P 40 -S 40

sin_10xd 1:04:52 0:15:33 0:23:56 0:06:28 0:16:27 0:03:09 0:12:55 0:02:12 0:11:48 0:02:05 0:12:14
arbiter_10xd 0:05:17 0:01:35 0:03:36 0:01:18 0:03:18 0:01:38 0:03:16 0:02:08 0:03:22 0:02:41 0:03:28
voter_10xd 24:13:00 5:56:16 7:34:12 2:51:05 3:25:12 1:17:48 1:46:06 0:50:16 1:12:14 0:39:12 1:02:42
square_10xd 0:33:53 0:07:58 0:17:28 0:03:23 0:14:23 0:01:56 0:13:02 0:01:28 0:12:41 0:01:16 0:12:56
sqrt_10xd 21:34:04 7:45:45 14:17:51 4:05:54 12:57:21 2:18:04 12:19:09 1:34:57 12:09:34 1:21:22 12:10:35
mult_10xd 1:21:10 0:19:37 0:43:36 0:08:27 0:36:30 0:04:35 0:33:28 0:03:25 0:32:42 0:03:03 0:33:26
sixteen 8:27:33 7:07:47 7:17:48 1:43:48 7:49:08 0:29:03 7:08:11 0:15:21 7:10:25 0:13:28 7:24:37
twenty 14:35:59 4:14:36 14:53:13 3:48:59 13:39:38 0:27:43 14:32:43 0:15:27 13:55:20 0:14:25 13:50:52
twentythree 18:51:30 5:08:32 17:50:37 2:01:59 17:09:33 0:50:28 18:41:32 0:33:01 18:46:43 0:17:56 17:03:48
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Figure 5.6: Speedups by the main miter partitioning (Model P).
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Figure 5.7: Speedups by the internal miter partitioning (Model S).
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By combining models P and S, we enable extra opportunities to trade-off data
sharing and data independence in the CEC engine. In this experiment, we consider three
different thread configurations for combining both models using the total of 40 threads.
In the first configuration (−P 4 −S 10), we are considering fewer partitions of the main
miter and more partitions of the internal miter. In the second configuration (−P 10 −S
4), we have swapped the thread count between the main miter and the internal miter
partitionings. In the last configuration (−P 20 −S 2), we have increased the thread
count for the main miter partitioning since it has presented the best results in previous
experiments. The absolute runtime values of each configuration are presented in Table
5.4 and the respective speedups are shown in Fig. 5.8.

To demonstrate the advantages of combining both models, consider the results for
circuits "voter_10xd" and "arbiter_10xd" shown in Fig. 5.8. The configuration (−P 10
−S 4) resulted in extra speedups for both circuits when comparing to the models P and
S running independently. For "arbiter_10xd", we observed the speedup of 6.7x whereas
in the previous experiments the speedups were 4x for Model P and 1.5x for Model S.
Moreover, for "voter_10xd" circuit, we observed the speedup of 39x which is practically
linear (optimal) in the number of threads. In the previous experiments, the speedups for
"voter_10xd" were 37x and 23x for models P and S, respectively.

Table 5.4: Runtime comparison between original ABC command &cec and the combined
models P and S running at 40 threads, in (h:m:s).

Circuit
ABC
&cec

-P 4 -S 10 -P 10 -S 4 -P 20 -S 2

sin_10xd 1:04:52 0:03:55 0:02:32 0:02:04
arbiter_10xd 0:05:17 0:01:03 0:00:47 0:01:20
voter_10xd 24:13:00 0:39:45 0:37:05 0:37:26
square_10xd 0:33:53 0:03:21 0:01:54 0:01:27
sqrt_10xd 21:34:04 5:33:28 2:38:45 1:44:48
mult_10xd 1:21:10 0:09:09 0:04:51 0:03:36
sixteen 8:27:33 1:54:34 1:14:02 0:28:07
twenty 14:35:59 2:17:06 1:42:43 0:27:01
twentythree 18:51:30 2:21:32 2:22:09 1:06:56
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Figure 5.8: Speedups by combining models P and S at 40 threads.

5.4.4 Discussion

Table 5.5 presents a summary of the best results and the respective thread config-
uration. In general, the configurations −P 40 and −P 10 −S 4 lead to the best results.
Notice that the proposed approach can significantly reduce the runtime of CEC when
comparing to the single-thread method. One great improvement has taken place when
the CEC runtime went down from 24h13min to only 37min and from 18h51min to only
18min. Overall, the proposed solutions have the potential to improve existing EDA envi-
ronments.

Proposed models are based on simple principles making them easy to reproduce
and deploy in a standard EDA flow. Therefore, several other important tasks that depend
on CEC, can be benefited from the speedup enabled by the proposed scalable solution.
Moreover, with additional customization to perform proper handling of fanout nodes dur-
ing equivalence checking the proposed CEC is also applicable in: (i) SAT sweeping under
observability don’t-cares (ZHU et al., 2006); (ii) node minimization with satisfiability, ob-
servability and external don’t-cares (MISHCHENKO; BRAYTON, 2005); (iii) high-effort
resynthesis for circuit delay, area, power dissipation and wiring congestion reduction using
Boolean resubstitution (MISHCHENKO et al., 2011); (iv) various traversal-based compu-
tations comparing functions of the nodes in terms of primary inputs under observability
conditions (ATPG, redundancy removal, false path detection and removal), and others.
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Table 5.5: Summary of the best results and configurations for each circuit, in (h:m:s).

Circuit ABC &cec Parallel Speedup Config.

sin_10xd 1:04:52 0:02:04 31.33x -P 20 -S 2
arbiter_10xd 0:05:17 0:00:47 6.76x -P 10 -S 4
voter_10xd 24:13:00 0:37:05 39.17x -P 10 -S 4
square_10xd 0:33:53 0:01:16 26.72x -P 40
sqrt_10xd 21:34:04 1:21:22 15.90x -P 40
mult_10xd 1:21:10 0:03:03 26.59x -P 40
sixteen 8:27:33 0:13:28 37.67x -P 40
twenty 14:35:59 0:14:25 60.73x -P 40
twentythree 18:51:30 0:17:56 63.08x -P 40

Regarding the previous parallel CEC method EQUIPE, it is quite difficult to per-
form a direct comparison to such a method (CHATTERJEE; BERTACCO, 2010). At
first, the methods are running on different platforms with the technology gap of almost
a decade. Besides, it is not clear whether the authors are comparing against cec or &cec
command, being that &cec is significantly faster than cec. Moreover, it is hard to ensure
that we are using exactly the same pairs of original and optimized circuits as input to
CEC. Therefore, in order to avoid an unfair comparison, we are presenting an analysis
based on our solution and on the general information presented in the EQUIPE paper.

The results produced by the EQUIPE method were collected on a platform con-
taining a CUDA-enabled 8800GT GPU with 14 multiprocessors operating at 600 MHz and
a CPU Intel Core 2 Quad operating at 2.4 GHz. The authors reported average speedups
of one order of magnitude when comparing to a commercial tool and only up to 3.22x
speedup when comparing to ABC tool. In the latter case, even using the 4 CPU cores and
the 14 auxiliary GPU cores, the method was not able to speedup CEC beyond 3.22x. It
is worth to notice that the CPU and GPU cores work at different frequencies and there is
an additional cost related to the communication between CPU and GPU. Moreover, the
authors mention that in some cases the internal miters need to be reconstructed, leading
to runtime degradation, as shown in (CHATTERJEE; BERTACCO, 2010). On the other
hand, the parallel models P and S proposed in this work are able to verify circuits with
millions of AIG nodes. It scales to many cores and achieves significant improvement when
comparing to &cec command, the latest CEC engine in ABC tool. Therefore, the pro-
posed approach is more promising than the EQUIPE method when it comes for improving
CEC for large designs.
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5.5 Summary

In this chapter we proposed a novel approach comprising three different models
to enable parallelism and to speedup modern CEC engine. The models trade off data
sharing and data independence by applying graph partitioning during mitering and SAT
sweeping. Experiments lead to promising results in speeding up the verification task for
large designs. In several cases, where the ABC or the commercial verification tool took
more than one day for checking circuits, the proposed approach has finished this task in
a few minutes/hours. It is an interesting contribution since CEC is known to be a co-NP-
complete problem and even the advance techniques used in modern CEC engines have an
exponential time complexity, being sensitive to break down for large designs. Moreover,
the proposed models can be easily adapted to exploit massively parallel environments of
cloud computing.

The proposed solution has additional practical benefits, in particular, the potential
to improve the runtime and scalability of other applications in current EDA environments.
It should be noted that scalable CEC techniques are used as an important building block
in other applications, which depend on efficient computation of equivalence classes of
internal nodes. Given so many uses of the scalable CEC, parallelizing it as proposed in
this work will help to improve a number of other important applications in a typical EDA
flow.
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6 CONCLUSIONS

This thesis addressed three challenging problems from the logic synthesis and ver-
ification fields. This work presents investigations and contributions across the multi-
level logic optimization, LUT-based technology mapping and combinational equivalence
checking problems. The problems addressed in this work are not trivially parallelizable,
since advanced algorithms rely on complex graph-based data structures and SAT solving.
Therefore, we adopted the most promising parallelization strategy to get speedups and
scalability according to the problem/solution characteristics.

We carefully dissected these problems and rethought related algorithms and data
structures by introducing novel techniques to unlock the parallelism in the core of logic
synthesis and verification algorithms. The main challenge in this direction is to rethink
shared-data structures and routines to fit and to work in a parallel environment. We
conclude that, it is wise to consider the following list of principles for enabling scalability
to parallel algorithms, always it is possible:

• Avoiding to insert extra synchronization based on logical locks;

• Rethinking parallel algorithms and data structures to work in a lock-free way;

• Making shared data structure read-only and writing into thread-local structures;

• Managing memory allocation to avoid bottlenecks and thread conflicts;

• Exploring data sharing and data independence trade-offs;

• Choosing the parallelization strategy based on intrinsic properties of the problem.

All the parallel-aware algorithms and data structures proposed in this work employed
these principles to achieve the significant speedups supported by experimental results.

6.1 Summary of Contributions

The main contributions and impact of this thesis are summarized in the following:

• A scalable parallel AIG rewriting which is able to optimize AIGs with millions
of nodes in few seconds. It is the first work in the literature exploiting fine-gain
parallelism for AIG rewriting, which is a standard technique for both academy and
industry. This work introduced techniques to unlock parallelism in well established
logic synthesis algorithms with potential to impact in novel parallel algorithms.
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We have demonstrated significant runtime improvements without QoR degradation
when compared to the stated-of-the-art method.

• A parallel LUT-based structural mapper that scales to many threads and has po-
tential for a deep integration to our parallel AIG rewriting as well as to other logic
synthesis algorithms. We conjecture that the fully integration of this parallel meth-
ods can mitigate the gap between multi-level and technology mapping by making
rewriting decisions based on mapping costs in a.

• A parallel CEC engine which provides three different levels for exploiting parallelism
during design verification. The proposed approach improves the scalability of the
state-of-the-art CEC engine from ABC tool, making the verification of designs with
millions of AIG nodes expressively faster. The proposed parallel CEC is able to
reduce the verification time from more than one day to few minutes, demonstrating
potential for improving productivity in a real design flow. There are several appli-
cations which can be benefited from the proposed parallel and scalable CEC, since
checking for logic equivalence is an often problem in different domains.

• The majority contributions of this work can be directly applied to both ASIC and
FPGA design flows. The proposed parallel AIG rewriting and parallel CEC rely
on technology independent optimizations and verification, respectively. Therefore,
these two methods can be directly applied to both design flows.

• It is worth to mention that all the proposed solutions are suitable to be deployed
in a cloud computing service with some reformulations to exploit the benefits from
the cloud technology and infrastructure. Since there is an increasing migration of
EDA software to the cloud, the solutions proposed in this thesis can bring insights
and directions on how to parallelize logic synthesis and verification algorithms in
the cloud.

• We are bringing contributions to the logic synthesis and verification field by col-
laborating with two important opensource projects, the ABC tool and the Galois
system. We have improved the CEC engine in ABC, which is an important compo-
nent in this tool. Moreover, we designed an initial parallel logic synthesis package
in Galois system. All the contributions proposed in this works will be integrated
and distributed as part of ABC tool and Galois system in GitHub, allowing others
to use and improve the proposed methods.
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6.2 Open Problems and Future Work

The algorithms proposed in this work can be extended and improved by:

• Concluding the implementation of the proposed parallel functional mapper.

• Rethinking the proposed parallel technology mappers to a standard-cell design flow.

• Designing a deterministic version of proposed parallel AIG rewriting.

• Improving the algorithms performance by fine tuning the Galois data structures.

• Increasing the CEC speedups by exploiting duality for solving each partition.

• Adding one more level of parallelism to CEC by employing a parallel SAT solver.
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