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Abstract 

The main agricultural challenge for upcoming decades is to feed the growing 
world population as sustainable as possible. As soybean [Glycine max (L.) Merril] 
is the most important agricultural legume around the world, grown worldwide as 
source of protein and oil, increasing its productivity by reducing possible yield 
gaps instead of increasing the acreage by opening new arable lands should be 
the focus of researchers and producers. Therefore, three studies were performed 
in the Center-south region of Pananá, Southern Brazil, aiming to evaluate 
soybean response to seed inoculation in areas with a history of this practice; 
determining the nitrogen (N) derived from the air (Ndfa) performance and its 
relationship with environmental variables, plant, and BNF traits to find driving 
variables of the crop yield performance; accessing possible N limitations to 
soybeans through full-N fertilization; and evaluating the crop yield response to 
the starter N. Findings of this thesis showed that soybean response to inoculation 
was inconsistent on a regional-scale, regarding the type of inoculant. The Ndfa 
averaged 61%, similar to the worldwide average and lower than the previous 
estimate for Brazil. Mean air temperature, total soil N, available phosphorus and 
exchangeable calcium were the most significant variables related to Ndfa 
performance. Nitrogen limitation was higher in low yield environments likely due 
to issues with N supply (through N2 fixation and/or soil). Furthermore, high seed 
yield was related to greater values of Ndfa and contents of soil organic matter 
(SOM). Hence, improving soil fertility to promote crop growth and BNF process 
and adopting conservation management practices to increase SOM should be 
the focus of farmers to reduce N limitation and increase soybean seed yield. 
Research efforts should be applied to quantify rhizobia persistence in the soil and 
its efficacy at N fixation after continuous cropping without inoculation, as well 
determining N balance for the region. Furthermore, future studies should be given 
to find sustainable ways to reduce soybean yield gap by N limitation. 
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Resumo 
 
O grande desafio da agricultura para as próximas décadas é alimentar a 
população mundial crescente da maneira mais sustentável possível. A soja 
[Glycine max (L.) Merril] é a leguminosa mais importante mundialmente em 
termos agrícolas por ser fonte de proteínas e óleo para a alimentação. Portanto, 
incrementar sua produtividade por meio da redução de possíveis yield gaps ao 
invés de abrir novas áreas agricultáveis deveria ser o foco de pesquisadores e 
produtores. Assim, três estudos foram conduzidos na região Centro-Sul do 
Paraná, Sul do Brasil, com o objetivo de avaliar a resposta da soja a inoculação 
de sementes em áreas com histórico desta prática; determinar a contribuição do 
nitrogênio (N) derivado do ar (Ndfa) e a sua relação com variáveis ambientais, 
de planta e componentes da fixação biológica de N (FBN) para verificar quais as 
variáveis determinantes do rendimento da soja; acessar possíveis limitações de 
N para soja por meio da dose cheia de N (full-N); e avaliar a resposta da soja ao 
nitrogênio de arranque. Os resultados desta tese mostraram que a resposta da 
soja à inoculação foi inconsistente em escala regional, independente do tipo de 
inoculante. A média de Ndfa foi 61%, similar à média mundial e menor do que 
estimativas prévias para o Brasil. Temperatura média do ar, fósforo disponível e 
cálcio trocável foram as variáveis mais significativas em relação ao desempenho 
do Ndfa. A limitação nitrogenada foi mais alta em ambientes de baixo rendimento 
devido a limitações no suprimento de N (através da FBN e/ou do solo). Além 
disso, alta produtividade de soja foi relacionada a maiores valores de Ndfa e de 
matéria orgânica do solo (MOS). Sendo assim, incrementar a fertilidade do solo, 
a fim de promover o crescimento de plantas e os processos da FBN, e adotar 
práticas de manejo conservacionistas para aumentar o teor de MOS deveriam 
ser o foco de produtores para reduzir possíveis limitações de N e incrementar o 
rendimento da soja. Esforços de pesquisa devem ser aplicados para quantificar 
a persistência de rizóbios no solo e sua eficácia na fixação de N após o cultivo 
contínuo sem inoculação, bem como determinar o balanço de N para a região. 
Ainda, futuros estudos devem ser feitos para encontrar formas sustentáveis de 
reduzir o déficit de produtividade da soja por limitação de nitrogênio. 
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CHAPTER 1 – General Introduction 

Soybean [Glycine max (L.) Merril] is the most important agricultural 

legume around the world, grown worldwide as a source of protein and oil. Brazil 

accounts for one-third (119 million metric tons in 2017/2018) of global soybean 

production (341 million metric tons in 2017/2018), making it the world's largest 

producer alongside US (USDA, 2019). The success of soybean production in 

Brazil is, in part, due to efforts that breeding programs have been doing to release 

more productive cultivars, as well the advances in techniques of phytosanitary 

control and soil management. No less important than this, the focus of breeding 

programs on isolating well-adapted rhizobium strains to the Brazilian conditions 

was also essential for the expansion and success of soybean in the country 

(ALVES; BODDEY; URQUIAGA, 2003). Favoring biological nitrogen fixation 

(BNF) process through seed inoculation with rhizobia strains instead of using 

nitrogen (N) fertilization, saving billions of dollars every year (HUNGRIA; 

MENDES, 2015). 

The N required by soybean crops might be obtained from two main 

sources: BNF and mineral N from soil, and the proportion of each source depends 

on many factors, including the effective association between plant and bacteria 

(SINCLAIR; NOGUEIRA, 2018). Protecting the environment by increasing 

agricultural production as sustainably as possible is a concern. Biological N 

fixation by legumes supports sustainability of food production by meeting the high 

demand of N by these crops and reducing the need for nitrogen fertilizers 

(HUNGRIA; MENDES, 2015). Therefore, strategies to increase soybean yields 
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and production in a more sustainable way most focus on adjusting agricultural 

management practices to enhance BNF. 

Achieving efficient symbiotic activity in nodules is a primary condition 

for the plant to have uniform access to a source of N during the growing season, 

then seed inoculation with Bradyrhizobium bacteria strains is the most recognized 

strategy to promote BNF in soybeans (HUNGRIA; MENDES, 2015). 

Nevertheless, inoculation does not guarantee high BNF in soybeans, because 

many environmental factors might affect N2 fixation and plant growth, limiting the 

amount of N supplied by BNF (LIE, 1971). However, there are only a few studies 

about regional characterizations including analysis of factors related to climate, 

soil, and plant that can help understand the complexity of environmental 

conditions affecting N2 fixation, contributing to implementation strategies to 

increase contribution of BNF on N supply to soybeans. 

Due to the high seed protein concentration, soybeans require 80 kg N 

ha-1 per 1000 kg of seed produced (HUNGRIA; MENDES, 2015; HUNGRIA; 

NOGUEIRA; ARAUJO, 2015; SALVAGIOTTI et al., 2008). This great requirement 

associated to the rising N demand by soybeans (BALBOA; SADRAS; CIAMPITTI, 

2018) led researchers to question whether BNF and soil could provide enough 

amounts of N to sustain high seed yields (SALVAGIOTTI et al., 2008, 2009). La 

Menza et al. (2017) and Ortez et al. (2018) found a N limitation to soybeans 

attaining its maximum yield potential, especially in high yield environments, 

confirming the yield gap hypothesis due to N. Also, many studies were carried 

out applying small N rates to soybeans, aiming to avoid limitations to BNF and 

reducing a possible yield gap due to lack of N on the first days of a soybean cycle 

– while nodules are not completely formed and N2 fixation is not active (GAI;

ZHANG; LI, 2017). However, results of those studies are contradictory 

(SALVAGIOTTI et al., 2008), and soybean yield response to small N rates is 

expected only in N-deficient soils (DADSON; ACQUAAH, 1984). 

The Center-south region of Paraná State, Southern Brazil, is 

highlighted in the national scenario of crop production. The regional soybean 

seed yield average is higher than 4000 kg ha-1, and more than 6000 kg ha-1 are 

frequently obtained in many farms linked to the Cooperativa Agrária Industrial. 

This cooperative has its own research foundation (Fundação Agrária de Pesquisa 

Agropecuária – FAPA). Crop management studies (plant breeding, 



3 

phytopatology, entomology, and soil fertility) on a regional scale are performed 

by FAPA season by season aiming to increase crop yields as sustainably as 

possible. The high soybean seed yield in these cooperative sites are attained 

without N fertilization, probably due to high N supply capacity of the soils in this 

region as evidenced by Fontoura and Bayer (2009). However, as farmers were 

targeting to further increase seed yield, this thesis was proposed (in a partnership 

between UFRGS and FAPA) aiming to provide answers to questions related to N 

supply for soybeans. 

For the soil and environmental conditions of the Center-south region 

of Paraná, where there are usually no stresses related to water deficiency and/or 

heat and the predominant soils have more than 40 g kg-1 of organic matter and 

good capacity of N supply, the general hypothesis of this thesis are: i) inoculation 

does not increase soybean seed yield in fields with inoculants applying history; ii) 

the contribution of N derived from air (Ndfa – the proportion of BNF on N supply) 

in the studied region is lower than the 80% established in previous studies for 

Brazil; iii) low, medium, and high Ndfa contribution groups to soybeans are 

determined by climatic and soil variables; iv) starter N fertilization (up to 40 kg ha-

1) does not increase soybean seed yield; v) even in soils with high soil organic

matter content, there is a N limitation because of the high soybean N demand. 

The general objectives of this thesis were: i) evaluating soybean yield 

response to seed inoculation with Bradyrhizobium in areas with a history of 

implementing this practice; ii) determining the Ndfa performance on the studied 

region by extensively characterizing climate, plant, and BNF traits to find 

discriminant variables that will help understand crop performance; iii) quantify 

soybean yield response to external N addition by evaluating application of lower 

fertilizer N rates as starter N fertilization and by providing full-N to the crop in 

order to understand if seed yields were limited by N when grown in Southern 

Brazil. 

Aiming to answer the hypotheses and to meet the objectives of this 

thesis, the following studies were performed: Study 1 – Soybean yield response 

to Bradyrhizobium strains in fields with inoculation history in Southern Brazil; 

Study 2 – Environmental variables controlling biological nitrogen fixation 

soybeans in no-till fields in Southern Brazil; Study 3 – Assessing nitrogen 

limitation in inoculated soybeans grown in Southern Brazil. 



CHAPTER 2 – Literature Review 

1. Biological nitrogen fixation

1.1. Seed inoculation with Bradyrhizobium 

Soybeans might obtain N from two main sources: BNF and mineral N 

from soil, and the proportion of each source depends of many factors, including 

the effective association between plant and bacteria (SINCLAIR; NOGUEIRA, 

2018).  For that, earlier soybean breeding approaches were based to identify 

genotypes able to restrict indigenous Bradyrhizobium serogroups with low 

efficiency to fix N (HUNGRIA; MENDES, 2015). Furthermore, rhizobia strains 

were also isolated aiming to improve the efficiency of the symbiosis. Brazilian 

breeding programs focusing on isolating rhizobia strains to improve N2 fixation 

started in 1950s in Rio Grande do Sul (by  professors João Ruy Jardim Freire 

and Caio Vidor, UFRGS) and later in Rio de Janeiro (by researchers José 

Roberto Peres and Johanna Döbereiner) (ALVES; BODDEY; URQUIAGA, 2003; 

FREIRE; VERNETTI, 1999; HUNGRIA; MENDES, 2015). Since then, 

researchers have been working to improve the BNF process through seed 

inoculation with rhizobia strains instead of using N fertilization, saving billions of 

dollars every year (HUNGRIA; MENDES, 2015). 

Four inoculant strains are currently recommended for soybeans in 

Brazil: SEMIA 587 and SEMIA 5019 – Bradyrhizobium elkanii strains, SEMIA 

5079 – Bradyrhizobium japonicum, and SEMIA 5080 – Bradyrhizobium 

diazoefficiens (FREIRE; VERNETTI, 1999; MENDES et al., 2014). Those plus 

the American (USDA 110) and the Argentinian (E109) strains (all of them 
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identified and selected between 1950s and 1970s) make up around 90% of 

inoculants in the world, showing efficacy with the new released and high 

productive soybean cultivars (HUNGRIA; MENDES, 2015). A bacterium highly 

effective in fixing N might not be able to survive in the soil and establish a 

population for years. Soil is a very hostile and competitive environment, therefore, 

inoculation with exogenous and efficient strains will not necessarily promote 

increasing root nodulation, N2 fixation rates and seed yield response (SINCLAIR; 

NOGUEIRA, 2018). The low competition capacity (with soil endogenous 

microorganisms) of some exogenous rhizobia strains led to the recommendation 

for annual inoculation practice (called reinoculation), aiming to improve BNF in 

soybean (CâMARA, 2014). 

The results of soybean inoculation research are controversial 

regarding seed yield response. Brazilian studies, in Paraná and Mato Grosso do 

Sul States, showed increase in yield with inoculation in fields with a history of 

growing soybeans (BRANDÃO JUNIOR; HUNGRIA, 2000; MERCANTE et al., 

2002, 2011). In the US, Schulz and Thelen (2008) in 14-site/years and Leggett et 

al. (2017) analyzed data from 187 trials and also observed response to 

inoculation and recommended application of this practice annually. On the other 

hand, no yield responses were reported in the same countries (CAMPOS; 

HUNGRIA; TEDESCO, 2001; CAMPOS, 1999; CAMPOS; GNATTA, 2006; DE 

BRUIN et al., 2010; NISHI; HUNGRIA, 1996). Positive soybean yield response to 

inoculation is attributed to: (a) more effective and efficient Bradyrhizobium strains 

than those living in the soil (HUNGRIA; MENDES, 2015), (b) sites with rhizobia 

densities below 10 cells g–1 of soil (THIES; SINGLETON; BOHLOOL, 1991), and 

(c) areas without previous legumes or inoculation history (SCHULZ; THELEN,

2008). However, soybeans grown in sites with a history of inoculation is not a 

guarantee of success on root nodulation, great BNF contribution, and high seed 

yield. For instance, Zilli et al. (2013) found up to 99% decreasing rhizobia 

population soon after the soybean harvest, especially in places with a  prolonged 

dry season, where inoculation might provide great seed yield increases (ZILLI et 

al., 2008). While soil sampling for determining rhizobia population is not normal 

practice, farmers must consider seed inoculation year-by-year, once it is a low-

cost agricultural practice. 
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1.2. Environmental factors affecting BNF 

1.2.1. Soil N content 

Biological N fixation by legumes might be affected by several 

environmental factors, including climate and soil variables. Once numerous 

studies about N fertilization in soybeans have been published (see item 2.2.1), it 

is well documented that an excess of mineral N (especially nitrate – NO3
-) might 

prejudice the BNF process. The cost of N obtained from BNF (eight electrons and 

16 ATP mol-1 N, or 6-7 g C g-1 N) is higher than the requirements for mineral N 

assimilation (12 ATP mol-1 N, or 4 g C g-1 N) by soybeans (CâMARA, 2014; 

KASCHUK et al., 2009). Therefore, there is a preference of obtaining N from the 

soil rather than from the air. Hence, increasing soil N uptake by plants gradually 

reduces the contribution of BNF to soybean nutrition (MAPOPE; DAKORA, 2016; 

SCHIPANSKI; DRINKWATER; RUSSELLE, 2010). However, N-deficient soils 

might not provide the amount of N required on the first days of a soybean cycle 

(DADSON; ACQUAAH, 1984). In those conditions, supplementing small N 

amounts through fertilization to soybeans grown in N-deficient soils might 

increase initial plant growth and also the contribution of BNF (COOPER; 

SCHERER, 2012). The influence of mineral N (soil mineralization + fertilization) 

is represented in the Fig. 1. With this scheme, Cooper and Scherer (2012) 

emphasized that increasing soil mineral N content is important up to a certain 

point, by ensuring enough N amount so the soybean plant can perform its 

physiological processes (such as photosynthesis) and to supply photoassimilates 

required for growth and activity of nodules. On the other hand, in soils with high 

mineral N content, there is a reduction on the contribution of BNF to soybean 

nutrition. 

According to Streeter and Wong (1988), the BNF restriction by high 

NO3
- supplies are related to three possible effects: prevention of root infection by 

rhizobium, reduction of nodule growth rates, and inhibition of the enzyme 

nitrogenase activity. The prevention of root infection might occur due to different 

events, which include restriction of root hair deformation, inhibition of signaling 

processes between soybean roots and rhizobia, and increasing the number of 

aborted root infections (STREETER; WONG, 1988). Success or failure on root 

infections could be measured by counting the number of nodules per plant. There 

are two main hypothesis regarding the reduction of nodule growth rates and 
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inhibition of the enzyme nitrogenase: 1 – competition by carbohydrates between 

BNF process and NO3
- assimilation, and 2 – nitrite accumulation (a byproduct of 

NO3
- reduction) in the nodules, leading to an inhibition of nitrogenase and 

leghemoglobin activity (KANAYAMA; WATANABE; YAMAMOTO, 1990; 

STREETER; WONG, 1988). It is possible to identify inhibition of nodule growth 

through measurements of total and average nodule dry weight. Reduction of BNF 

contribution might be observed by analyzing total N in the plant shoot or, with 

high accuracy, using isotopic methods of 15N (UNKOVICH et al., 2008). 

Figure 1. Representation of the proportional contribution of BNF for the total plant 
N as a function of N uptake (soil + fertilizer) by legumes. Solid and dashed lines 
represent the plant total N and the uptake mineral N from the soil, respectively. 
The space between these two lines represents the magnitude of the N obtained 
from BNF. The thickest vertical arrow represents the maximum BNF efficiency as 
a function of mineral N supply. Adapted from Cooper and Scherer (2012). 

The hypothesis of carbohydrate deprivation for nodules by mineral N 

is based on the requirement of reducing energy for NO3
- reduction and 

assimilation, which causes competition with the nodules for the available 

carbohydrates (STREETER; WONG, 1988). Nevertheless, in a preliminary study, 

Streeter (1981) concluded that inhibition of nodule growth and BNF was not 

caused by reduced carbohydrate accumulation in the nodules. On the other hand, 

this same author did not exclude the possibility of interference by NO3
- on 

carbohydrates catabolism, reducing the capacity of nodules using these sugars 

– either by reducing carbohydrate transport to nodules or by their internal
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metabolism. Kanayama et al. (1990) found that carbohydrate deprivation was the 

reason for the reduction of nitrogenase enzyme activity when NO3
- was supplied 

for a long time (three to seven days). They also observed that BNF was inhibited 

in a shorter time by decreasing the function of leghemoglobin by NO3
-. 

 

1.2.2. Other variables related to soil fertility 

Nitrogen-fixing plants require photoassimilates as an energy source 

for growth and activity of nodules (MYLONA; PAWLOWSKI; BISSELING, 1995), 

having a high C cost (6-7 g C g-1 N) to sustain the BNF process (KASCHUK et 

al., 2009). Hence, limiting factors to the plant growth and photosynthesis are 

detrimental to the N2 fixation process (TAMAGNO et al., 2018). For instance, it 

has been documented the role of high soil fertility on root nodulation and BNF 

process in different legume species (DIVITO; SADRAS, 2014; GATES; MÜLLER, 

1979; GATES; WILSON, 1974; OLIVERA et al., 2004; TSAI et al., 1993). Gates 

and Müller (1979) reported that soybean root nodulation responded to 

phosphorus (P) and sulfur (S) supply until pod filling, and also that nodule 

developing continued throughout the whole soybean cycle, except under P 

deprivation. Tsai et al. (1993) found that rising levels of P, potassium (K) and S 

increased the contribution of BNF (from 52 to 65%, from low to high nutrient 

levels) on common bean nutrition. Divito and Sadras (2014) explained that limited 

P, K and S availability might decrease, directly or indirectly, nodule growth, 

leading to lower BNF contribution to legumes. The direct effect of P, K and S 

deprivation is due to the rapid reduction of these nutrients in the plant, while N 

concentration remains constantly increasing N:P, N:K and N:S ratios. These 

changes in nutrient stoichiometry have been proposed to activate an N-feedback 

signaling, regulating development and activity of nodules in the root. The indirect 

effect occurs by reducing the host plant’s growth (COOPER; SCHERER, 2012). 

Phosphorus also has an important role on the plant energy metabolism, then, P 

deprivation causes a negative impact on nodule’s energy status (OLIVERA et al., 

2004). Sulfur deficiency might also reduce BNF by affecting activity of important 

enzymes, as nitrogenase (the main enzyme involved in BNF process), PEP-

carboxylase, malate dehydrogenase and glutamate synthase (COOPER; 

SCHERER, 2012). Furthermore, it was also reported that high levels of P, K and 
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S reduced the deleterious effects of mineral N on the BNF process in soybeans 

(GATES; MÜLLER, 1979) and common beans (TSAI et al., 1993). 

Other important soil variables to the BNF process are related to acidity 

and calcium (Ca) availability. Acidity is detrimental to plant growth, resulting in 

negative effects to nodulation and BNF, however, nodule formation is generally 

more sensitive to soil acidity than other aspects of plant growth (FERGUSON; 

LIN; GRESSHOFF, 2013). The direct effects of soil acidity on BNF are credited 

to high concentrations of H+ and toxic metals, as Al3+ and Mn2+, in acidic soils, 

affecting rhizobium growth and function (FERGUSON; GRESSHOFF, 2016). Low 

pH conditions prejudice signaling processes between plant and rhizobium by 

reducing flavonoid secretion and the expression of nodulation key genes, 

including nodA (FERGUSON; GRESSHOFF, 2016; FERGUSON; LIN; 

GRESSHOFF, 2013). Acidic conditions is also detrimental to root hair formation 

and curling, impairing nodule formation (MIRANSARI et al., 2006). Indirectly 

related to soil acidity, calcium is an essential component of the initial process of 

BNF. The role of Ca on BNF is related to the event called Ca spiking, a nod gene-

dependent host response that triggers a signaling cascade leading to nodule 

development (EHRHARDT; WAIS; LONG, 1996; LÉVY et al., 2004; WAIS; 

KEATING; LONG, 2002). 

1.2.3. Environmental factors 

Environmental factors play a determinant role on plant growth, 

development and metabolism, and unfavorable changes in environmental 

conditions (water availability, temperature, light, salinity, soil fertility) are 

detrimental to vegetal metabolism and development (MOSA; ISMAIL; HELMY, 

2017). All the stages of symbiosis (including pre-infection phase) between 

rhizobium and a host legume are also affected by environmental factors, and the 

symbiotic system is primarily affected by stressful conditions (LIE, 1971). For 

instance, N2 fixation of legumes, like soybeans and cowpeas (Vigna unguiculata), 

are highly sensitive to drought stress (SINCLAIR et al., 2015; SINCLAIR; 

SERRAJ, 1995). The detrimental effect of water-deficit conditions to the BNF 

process is related to decreased phloem flow from the host plant to nodules, 

leading to a limitation of N product removal  from nodules and aninhibition of N2 

fixation (SINCLAIR; NOGUEIRA, 2018). On the other hand, excess water 
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(flooding) is also unfavorable to the host plant due to low-oxygen supply (hypoxia) 

to the root system, impairing the aerobic respiration and reducing plant energy 

status (BAILEY-SERRES; VOESENEK, 2010), which reduces the BNF process 

(SÁNCHEZ et al., 2011). Likewise, N2 fixation is limited under hypoxia due to the 

reduction of oxygen supply to nodules (JAMES; CRAWFORD, 1998). 

Another important environmental variable to BNF is air temperature. 

For instance, George et al. (1988) found that low mean air temperature reduced 

soybean photosynthesis, decreasing N2 fixation indirectly due to low plant energy 

status. However, the most common stress related to the temperature in legumes 

is due to heat conditions (KEERIO; WILSON, 1998; ZAHRAN, 1999). Heat stress 

leads to a decreasing nitrogenase activity and accelerates the nodule 

senescence process, reducing the N2 fixation (HUNGRIA; FRANCO, 1993). 

Collino et al. (2015), studying both soil and weather factors in Argentina, reported 

that air temperature can explain more about BNF when seed yield is below 3700 

kg ha-1, while soil variables are most important when seed yield is above this 

threshold. 

1.3. Contribution of BNF to soybean 

BNF can supply circa 60% of the total N required for soybean 

production around the globe (CIAMPITTI; SALVAGIOTTI, 2018; SALVAGIOTTI 

et al., 2008). Herridge et al. (2008) estimated the amount of N fixed annually by 

soybeans in different countries and concluded that the contribution of BNF to 

soybean nutrition is lower in China (50%) and the US (60%) than in Argentina 

(80%) and Brazil (80%). The main reasons for the differences between these 

countries are soil conditions and management practices. While the areas used 

for soybean production in the US are generally able to provide great amounts of 

N to plants, less N amount is available in Argentina and Brazil. Besides, 

Argentinian and Brazilian farmers commonly use seed inoculation, no-tillage 

system and avoid application of N to soybeans, which can contribute to greater 

N derived from the air (Ndfa – the proportional contribution of BNF) in these 

countries (HERRIDGE; PEOPLES; BODDEY, 2008; HUNGRIA et al., 2005). 

Regional studies developed in Brazil confirm the high contribution of 

BNF (75-92%) to N supply for soybeans (ALVES et al., 2006; HUNGRIA et al., 

2006). The proportional contribution of BNF (in percentage) varies accordingly to 
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many environmental conditions (as reported above), and soil mineral N supply is 

one of the most important factors affecting BNF (MAPOPE; DAKORA, 2016). For 

the present study, performed in the Center-south region of Paraná State, 

Southern Brazil, it is expected that there is a lower contribution of BNF to 

soybeans than the 80% reported in the literature, because soils from this region 

generally have a great potential to supply N for crops (FONTOURA; BAYER, 

2009). 

2. Nitrogen fertilization in soybeans

2.1. Starter nitrogen fertilization 

The main reason for starter N fertilization in soybeans is to supply N in 

the initial period of the crop cycle (14 to 20 days after sowing), while the nodules 

are still in formation and BNF has not yet occured. Aiming evaluate the benefits 

of initial nitrogen fertilization, Gai et al. (2017) applied N rates at soybean sowing 

and observed increasing root activity, plant N content, leaf chlorophyll content 

and photosynthetic rates with starter N up to 50 kg N ha-1, which lead to gains in 

yield components. However, it is important to note that seed inoculation was not 

performed in this study and no information was provided on the number of 

rhizobia cells in the soil or even on soybean cultivation history in the area. 

For the Center-south region of Paraná (Southern Brazil) – where 

soybean average soybean yields are high, reaching a more than 6000 kg ha-1 in 

some areas, the proposal for supplemental N application is supported by the 

estimates of Salvagiotti et al. (2008; 2009), which indicated the need of 450 kg N 

ha-1 to attain seed yields of 5400 kg ha-1. Of these, 250-300 kg N ha-1 should be 

provided by BNF, requiring 150-200 kg N ha-1 from the soil. These authors also 

assume the soil N uptake by soybeans is around 100 kg N ha-1, and is essential 

to the complementation of 50-100 kg N ha-1 through fertilizers to reach the 

maximum productive potential. Aiming to supply N to increase soybean yields but 

avoiding inhibiting BNF processes, studies applying small N rates at sowing have 

been developing. Some of these studies found seed yield increasing due to small 

(up to 40 kg ha-1 – BOROOMANDAN et al., 2009; OSBORNE; RIEDELL, 2006) 

or even to high starter N rates (120-160 kg ha-1 de N – CALISKAN et al., 2008; 

DADSON; ACQUAAH, 1984). On the other hand, many others showed lack of 

response to starter N to soybeans in Brazil (ARATANI et al., 2008; BALBINOT 
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JUNIOR et al., 2016; HUNGRIA et al., 2006; JENDIROBA; CâMARA, 1994; 

MENDES; HUNGRIA; VARGAS, 2003) and other countries around the world 

(HERRIDGE; BROCKWELL, 1988; JANAGARD; EBADI-SEGHERLOO, 2015; 

JOSIPOVIĆ et al., 2011; KAMARA et al., 2012; MRKOVAČKI; MARINKOVIĆ; 

AĆIMOVIĆ, 2008). 

Some studies that reported a lack of soybean response to N 

fertilization also found impairing effects over root nodulation caused by N (lower 

nodule number and dry weight), reducing BNF contribution to soybean nutrition 

(HERRIDGE; BROCKWELL, 1988; HUNGRIA et al., 2006; MENDES; HUNGRIA; 

VARGAS, 2003). Furthermore, among the studies showing increases in seed 

yield due to N fertilization, there is not a consensus about the viability of starter 

N to soybeans. For example, Dadson and Acquaah (1984) reported that BNF is 

probably the most economically advantageous option to supply N to soybeans. 

Nevertheless, the same authors stated that in soils with low N supply capacity, N 

rates up to 40 kg N ha-1 might stimulate nodule formation and initial plant growth. 

This was corroborated by Osborne and Riedell (2006), who also attributed seed 

yield increases to higher initial soybean growth promoted by N fertilization at 

sowing. Other studies demonstrated that increasing yields by starter N 

fertilization might occur in water-deficient cropping seasons, a stressing condition 

to plants that impair the BNF process (KUBOTA; HOSHIBA; BORDON, 2008; 

PURCELL; KING, 1996). Therefore, according to these studies, starter N 

fertilization would only be feasible under the following conditions: (a) BNF is 

impaired by some limiting factor, or (b) in soils that could not supply the small N 

amounts needed by soybeans in early development stages. 

Although the results of research carried out in Brazil indicate that 

nitrogen fertilization in soybeans is not feasible (ARATANI et al., 2008; 

BALBINOT JUNIOR et al., 2016; HUNGRIA et al., 2006; JENDIROBA; CâMARA, 

1994; MENDES; HUNGRIA; VARGAS, 2003), it has been considered as an 

agronomic practice by many soybean farmers in the country. This has been 

occurring due to misused extrapolating results of trials carried out in specific sites 

as a basis for recommending fertilization in sites with different characteristics. 

This also happens either by pressure from the fertilizer industry in order to 

increase sales of nitrogenous fertilizers, or by the N effects (in this case, 

topdressing fertilization) on the visual aspect of the crop (such as the dark green 
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coloration of the plants), but it is not usually reflected in increased productivity. 

Therefore, more research is important, especially in high yielding environments 

(more than 4500 kg ha-1), where research on this subject is scarce and in which 

contribution of BNF to supply the entire soybean demand for N is uncertain 

(SALVAGIOTTI et al., 2008). 

2.2. Nitrogen as a seed yield limiting factor to soybeans 

Seed yield, plant biomass and harvest index have been increasing 

from the 1920s to 2015, leading to a positive time trend for nutrient uptake 

(BALBOA; SADRAS; CIAMPITTI, 2018). During this period, the same author 

reported that N uptake increased at a rate of 1.57 kg N year-1. Some authors 

reported that soybeans require 80 kg N ha-1 per 1000 kg of seed produced 

(HUNGRIA et al., 2005; HUNGRIA; MENDES, 2015; SALVAGIOTTI et al., 2008). 

The rising N demand of soybeans led researchers to question whether BNF and 

soil could provide enough N to sustain high seed yields (SALVAGIOTTI et al., 

2008; 2009). Therefore, it is possible that N supply might be a limiting factor for 

soybeans to attain high yield potential, causing a yield gap (CAFARO LA MENZA 

et al., 2017; ORTEZ et al., 2018). Yield potential is attained when a well-adapted 

cultivar is grown under ideal conditions, without limitation of water and nutrients, 

and in the absence of abiotic (light, salinity, drought) or biotic (diseases, insects, 

weeds) stresses (EVANS, 1993). Aiming to explore possible N limitation to 

soybeans, few studies were carried out using large amounts of N (≥ 300 kg N ha-

1) to supply all the requirements of soybean production (CAFARO LA MENZA et

al., 2017; HERRIDGE; BROCKWELL, 1988; ORTEZ et al., 2018; RAY; 

HEATHERLY; FRITSCHI, 2006; WILSON et al., 2014). 

Seed yield gap caused by N was reported in some of these studies. 

Ortez et al. (2018) and Wilson et al. (2014) reported yield responses to high N 

amounts in modern cultivars (more productive). Their results agree with Cafaro 

La Menza et al. (2017), who associated higher seed yield increments to high yield 

environments, which is a consequence of high N demand of more productive 

cultivars and/or environments. On the other hand, Ray et al. (2006) did not find 

a relationship between yield gaps and yield environments. Therefore, it would be 

interesting to study yield gaps in different yield environment levels, and learn 

which leads to increasing N demands by soybeans. 



CHAPTER 3 – Soybean yield response to Bradyrhizobium strains in fields 

with inoculation history in Southern Brazil 

1. Introduction

Soybeans [Glycine max (L.) Merr.] are grown worldwide as a source 

of protein and oil. Due to the high seed protein concentration, crop nitrogen (N) 

requirements usually exceed the amount that soil can provide (Salvagiotti et al., 

2008). Soybeans have developed the ability to fix atmospheric-N through a 

symbiotic relationship with soil rhizobia (Bradyrhizobium spp.) in order to fulfill 

plant N demand. Biological N fixation (BNF) supply averages 50-60% of the plant 

N demand for soybean production around the globe (SALVAGIOTTI et al., 2008). 

Nitrogen provided via BNF is linked to yield increases, thus further improvements 

on N fixation would benefit high-N demanding and high-yielding soybean systems 

(CIAMPITTI; SALVAGIOTTI, 2018).  

Inoculation is recognized as a crucial management practice to 

enhance bacterial infection early in the season and future nodulation activity 

(CHIBEBA et al., 2015). Under no occurrence of abiotic/biotic stresses 

(HUNGRIA; MENDES, 2015), the effect of management on soybeans such as 

tillage, liming (FERGUSON; GRESSHOFF, 2016), and nutrient availability 

(DIVITO; SADRAS, 2014) have been reported to impact the overall nodulation 

efficiency. 

Positive soybean yield responses have been commonly reported in 

areas without previous legumes or inoculation history (SCHULZ; THELEN, 2008) 

and in sites with low rhizobia densities in the soil (THIES; SINGLETON; 
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BOHLOOL, 1991). However, soybean yield response to seed inoculation is not 

consistent for areas with a history of utilizing this practice (inoculation). For 

instance, increases of up to 31% in soybean yield have been reported from 

comprehensive studies in Brazil (BRANDÃO JUNIOR; HUNGRIA, 2000; 

MERCANTE et al., 2002, 2011) and up to 30% in the US (LEGGETT et al., 2017; 

SCHULZ; THELEN, 2008), whereas no yield responses were reported in the 

same countries (CAMPOS; HUNGRIA; TEDESCO, 2001; CAMPOS, 1999; 

CAMPOS; GNATTA, 2006; DE BRUIN et al., 2010; NISHI; HUNGRIA, 1996). 

Positive soybean yield response to inoculation is mainly attributed to more 

effective and efficient Bradyrhizobium strains than those living in the soil 

(HUNGRIA; MENDES, 2015), while negligible or no yield response is expected 

in areas with a history of planting soybeans  and when introduced bacteria are 

successfully established (THIES; SINGLETON; BOHLOOL, 1991). 

Thirty-one field trials were conducted, from 1999 to 2017, aiming to 

evaluate soybean yield response to seed inoculation with Bradyrhizobium in 

areas with a history of implementing this practice in Southern Brazil (Set of trials 

1: 21 trials conducted from 1999/2000 to 2014/2015). Moreover, we aimed to 

explore and identify plant traits and environmental factors responsible for 

changes in key bacteria-plant symbiosis (e.g., nodule number and weight, N 

content) explaining yield response to inoculation (Set of trials II: 10 trials 

conducted in 2015/2016 and 2016/2017). 

2. Material and methods

2.1. Site description 

Field trials were carried out in the Center-south region of Paraná State, 

southern region of Brazil. The regional climate is a humid temperate climate with 

a moderately hot summer (Cfb), according to the Köppen classification 

(APARECIDO et al., 2016), without a dry season. Annual precipitation ranges 

from 1,550 to 1,800 mm, with an occurrence of weekly precipitation during 

spring/summer, and an annual mean temperature ranging from 16.5 to 18.5 °C, 

a 25-year long-term average (APARECIDO et al., 2016). At all locations, soils 

were classified as Hapludox (SOIL SURVEY STAFF, 2014). Soybeans are 

planted in a no-till system, and inoculation is a common farming practice on this 

region, with several years of inoculated field grown soybeans. 
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2.2. Set of trials I: treatment descriptions and experiments 

conducted 

Twenty-one field trials were conducted from 1999/2000 to 2014/2015 

in areas with a history of soybean growth (Table 1). Two or three treatments were 

imposed in each trial: (i) control, without seed inoculation; and (ii-iii) inoculated, 

with solid and/or liquid inoculant (Table 1). Both inoculant formats were applied 

in seven field trials, while solid (nine trials) or liquid inoculant options (five trials) 

were all tested relative to a control (without inoculation) (Table 1). Commercial 

inoculants containing Bradyrhizobium strains were applied on seeds according to 

a Brazilian recommendation (250 g solid inoculant or 100 mL liquid inoculant per 

50 kg of seeds). All field trials were arranged according to a randomized complete 

block design, with three to six replicates. 

Table 1. Growing season, soybean cultivar, fertilizer rate, maturity group, and 
inoculant type (solid, S, and liquid, L) used in 21 field trials conducted in 
Guarapuava (Center-south of Paraná), from 1999/2000 to 2014/2015 growing 
seasons, in Southern Brazil. 

S – only solid inoculant; L – only liquid inoculant; S / L – solid and liquid inoculant. 1 – Fertilizer 
0-20-20 was applied in trial #1, while 0-25-25 was applied in all other trials.

Field trial 
number 

Growing season Cultivar 
Fertilizer 

rate1 
(kg ha-1) 

Maturity group Inoculant 

1 1999/2000 Embrapa 59 
200 

7.1 S 

2 2000/2001 Embrapa 59 100 7.1 S / L 
3 2000/2001 Embrapa 59 100 7.1 S / L 
4 2001/2002 BRS 154 120 7.2 S / L 
5 2001/2002 BRS 154 120 7.2 S / L 
6 2001/2002 BRS 154 120 7.2 S 
7 2001/2002 Embrapa 59 120 7.1 S 
8 2002/2003 BRS 154 100 7.2 S / L 
9 2002/2003 BRS 154 100 7.2 S / L 
10 2002/2003 BRS 154 100 7.2 S 
11 2003/2004 BRS 154 120 7.2 S / L 
12 2003/2004 BRS 154 120 7.2 S 
13 2005/2006 BRS Torena 150 7.0 S 
14 2005/2006 CD 215 150 5.9 S 
15 2006/2007 BRS Torena 150 7.0 S 
16 2006/2007 CD 215 150 5.9 S 
17 2011/2012 AFS 110 250 6.3 L 
18 2013/2014 BMX Ativa 200 5.6 L 
19 2013/2014 AFS 110 200 6.3 L 
20 2014/2015 BMX Ativa 200 5.6 L 
21 2014/2015 BMX Ativa 200 5.6 L 
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Plots had eight rows spaced 40 cm apart and 5 m long. Soybeans 

were sowed between the second half of November and the first half of December, 

as recommended for the region, with a target plant density ranging from 30 to 35 

plants m-2. Fertilization (Table 1), except for N, and phytosanitary control were 

applied according to regional recommendations to control pests and disease. A 

combined harvest was made in 6.4 m2 of the middle rows in each plot between 

the second half of April and the first half of May. Seed yield was adjusted to 130 

g kg-1 moisture content. 

2.3. Set of trials II: Treatment descriptions and experiments 

conducted 

Ten trials were conducted in five different sites (Campina do Simão, 

Taguá, Pinhão, Candói and Guarapuava), in 2015/2016 and 2016/2017 growing 

seasons. The trials were conducted on the same farm in both growing seasons, 

but not in the same field. Thus, each trial was considered an independent site. 

Soil samples from 0-20 cm soil depth were collected before the trial began (Table 

2). Precipitation and temperature data for the evaluated seasons at each location 

is shown in Appendix 1. 

Two treatments were imposed: (i) control, without seed inoculation, 

and (ii) inoculated, with a liquid inoculant, containing Bradyrhizobium elkanii 

(SEMIA 5019) plus Bradyrhizobium japonicum (SEMIA 5079), applied at rate of 

100 mL per 50 kg seeds. Plots had eight rows spaced 40 cm apart and 5 m long. 

Soybean ‘BMX Apolo RR’ (Don Mario 5.8i) variety, undetermined 

growth habit, was sown at 30 seeds m-2. Seeds received the same fungicide and 

insecticide treatments before planting time, occurring between the end of October 

and the first half of November in both growing seasons. Fertilization was applied 

as 250 kg ha-1 of 0-25-25 (N-P2O5-K2O). Phytosanitary treatments were applied 

according to regional recommendations. 
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Table 2. Characterization of 0-20 cm soil layer from field conducted in 2015/2016 and 2016/2017 growing seasons in Southern Brazil. 

Site Mn S P K Ca Mg Al H + Al CECpH 7,0 Clay SOM V pH H2O 

mg dm-3 cmolc dm-3 g kg-1 % 

2015/2016 Growing Season 
C. Simão 1 32 85 1.5 47 4.5 3.8 0.0 4.4 12.8 470 41 66 5.6 
Taguá 1 6 21 5.3 66 5.1 2.8 0.1 3.9 11.9 400 51 68 5.4 
Pinhão 1 3 10 25.0 60 7.1 4.4 0.0 2.8 14.4 340 47 81 6.2 
Candói 1 4 16 8.5 97 6.3 2.6 0.0 4.9 14.0 280 60 65 5.5 
Guarapuava 1 4 12 6.5 194 6.6 2.8 0.0 3.1 13.0 340 46 76 5.8 

2016/2017 Growing Season 
C. Simão 2 20 31 2.6 114 6.1 4.2 0.0 5.5 16.1 470 47 66 5.6 
Taguá 2 7 13 2.1 98 7.1 4.1 0.0 5.5 16.9 400 53 68 5.7 
Pinhão 2 4 16 4.0 288 8.3 5.3 0.0 4.9 19.2 340 52 75 5.8 
Candói 2 3 13 8.4 147 8.1 3.6 0.0 5.5 17.5 280 57 69 5.7 
Guarapuava 2 9 15 7.3 231 6.5 2.8 0.1 8.7 18.6 340 50 53 5.4 

Mn: extracted by HCl 0.1 mol L-1; S: extracted by Ca(H2PO4)2 containing 500 mg P L-1; P, and K: extracted by Mehlich-1; Ca, Mg, and Al: extracted by KCl 1 mol L-

1; clay content: determined by the pipette method; SOM – soil organic matter: determined by wet oxidation-redox titration (Walkley-Black) method; CEC – cation 
exchange capacity; V – base saturation. 
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At the phenological stage R1 (flowering; FEHR; CAVINESS, 1977), 

five plants per plot were collected and fractioned in root, shoot (aboveground 

plant – stem + leaves), and nodules.  Samples were dried at 65 ºC until constant 

weight was achieved and dry weight was obtained for all plant fractions. In the 

first year, nodule number and dry weight were analyzed in all roots, while in the 

second year those variables were obtained only from crown root to enable the 

measurements. Based on nodules on the crown root, data of nodule number and 

dry weight from the whole root in the second year were estimated according to 

equations from Cardoso et al. (2009). Total N content in the shoot was calculated 

by multiplying the dry weight and its N concentration determined by the Thermo 

Fisher Scientific CN Analyzer (Flash 200 model). Seed yield was adjusted to 130 

g kg-1 moisture content. 

 

2.4. Statistical analysis 

All 31 field trials followed a randomized complete block design with 

three to six replicates, depending on the location. For Set of trials I analysis, data 

was divided into two groups. The first group aimed to evaluate if seed yield 

responded differently to solid and liquid inoculants and contained information for 

both inoculants applied within the same trial. Each trial data from group 1 was 

compared by t-test. Data of solid and liquid inoculants applied in the same trial 

were also grouped using the average of both inoculation treatments. This data 

was used as a single inoculation treatment and were included in group 2. This 

group compared a control treatment (without seed inoculation) and a treatment 

with seed inoculation (with solid or liquid inoculant). Data from group 2 was 

compared by t-test within each trial and an average of the 21 trials. Aiming to 

assess if response to inoculation was related to the local yield potential, 

environmental indexes were established. Each index was calculated as the 

average yield of both treatments from each of the 21 field trials.  

For the Set of trials II, the data of seed yield, dry weight, C and N 

content, and nodulation variables was submitted to analysis of variance 

(ANOVA). Inoculation, trials and interaction within trials were considered as fixed 

effects, and blocks were considered as random effects. Means were compared 

with Tukey HSD using the lsmeans function (lsmeans R package; LENTH, 2016) 

at the 0.05 confidence level. Stepwise multiple regression analysis was 
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performed including all soil variables to identify which were responsible for the 

large variability due to environmental effects on nodule number and nodule dry 

weight. Variables used in the model were chosen based on the p-values.   

3. Results and discussion

3.1. Set of trials I: Soybean yield response to seed inoculation at 

regional-scale 

Solid and liquid inoculants were compared in seven out of the 21 trials 

of the first dataset. Seed yield only presented statistically significant differences 

between inoculation sources in one out of seven trials, with liquid inoculant out 

yielding the solid format by 9% (Table 3). Across all field trials, seed yield did not 

statistically differ between inoculant formats: 2919 (solid) and 2883 (liquid) kg ha-

1 (Table 3). Thus, from this point onwards averages of both inoculation treatments 

were used as a single treatment (with inoculation) for the rest of the analysis for 

this dataset. 

Table 3. Seed yield of soybeans inoculated with solid and liquid inoculants in 
seven field trials, in Southern Brazil. 

Field trial 

 Seed yield 
∆ Yield 

p-value (3)Solid inoculant Liquid inoculant 

kg ha-1 kg ha-1 (1) % (2)

2 2802 2513 -288 -10 0.051ns 
3 3199 3483 284 9 0.037* 
4 2761 2894 133 5 0.630ns 
5 2579 2227 -352 -14 0.130ns 
8 2798 2829 31 1 0.733ns 
9 2821 2702 -119 -4 0.384ns 
11 3475 3535 60 2 0.527ns 

Average 2919 2883 -36 -1 0.753ns 

(1) Difference of seed yield between treatments with soybeans inoculated with solid and liquid
inoculant.
(2) Relative difference between soybeans inoculated with solid and liquid inoculant, [(seed yield
with solid inoculant – seed yield with liquid inoculant)/seed yield with solid inoculant] x 100
(3) p-value referent to t-test.
Levels of significance: *p < 0.05; ns: not significant.

Soybean seed yield ranged from 1853 to 5352 kg ha-1 (Table 4) and 

the overall mean was 3292 kg ha-1. Seed yield did not respond to inoculation in 

a regional-scale (p>0.05): control 3298 kg ha-1 and inoculated 3286 kg ha-1. 
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Differences per trial between control and inoculated ranged from -323 to 736 kg 

ha-1 in absolute terms and from -8.6 to 24.7% in relative terms (Table 4). 

Differences were statistically significant in only 3 out of 21 trials, but only in one 

favoring the inoculation effect on yields (Table 4). Seed yield histogram 

distribution for the difference between inoculated and control is portrayed in Fig. 

2. 

Table 4. Comparison of seed yield of inoculated vs. non-inoculated soybeans 
with Bradyrhizobium strains in 21 field trials, conducted from 1999/2000 to 
2014/2015, in Southern Brazil. 

Field Trial 
Seed Yield 

∆ Yield 
p-value2Inoculated Non-inoculated 

kg ha-1 kg ha-1 %1 

1 3841 3105 736 24.7 0.032* 
2 2658 2912 -255 -8.6 0.020* 
3 3341 3429 -88 -2.4 0.406ns 
4 2827 2816 11 0.3 0.956ns 
5 2403 2313 90 9.5 0.793ns 
6 2994 2737 256 9.2 0.301ns 
7 1853 1964 -111 -3.6 0.500ns 
8 2814 2755 59 2.6 0.672ns 
9 2761 2840 -78 -2.4 0.554ns 
10 2616 2602 13 0.9 0.919ns 
11 3505 3500 5 0.2 0.934ns 
12 2270 2180 90 8.0 0.788ns 
13 2847 3055 -208 -5.3 0.359ns 
14 2935 2866 69 7.4 0.791ns 
15 3110 3371 -262 -7.1 0.217ns 
16 3000 3127 -128 -3.8 0.312ns 
17 5352 5302 50 1.0 0.798ns 
18 4465 4379 87 2.1 0.463ns 
19 4065 4253 -187 -4.2 0.242ns 
20 4608 4931 -323 -6.6 0.042* 
21 4745 4813 -68 -1.3 0.801ns 

Average 3286 3298 -12 -0.3 0.269ns 

1 [(inoculated soybean yield – non-inoculated soybean yield)/non-inoculated soybean yield] x 100 
2 p-value referent to t-test. 

Results reported in this study showed no differences in inoculation at 

varying yield levels or environments (Fig. 3). In agreement with our findings, 

previous studies in Brazil and the US have reported a lack of seed yield response 

to inoculation in areas where soybeans have been previously grown (CAMPOS; 
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HUNGRIA; TEDESCO, 2001; CAMPOS, 1999; CAMPOS; GNATTA, 2006; DE 

BRUIN et al., 2010). Among these studies, Campos et al. (2001) evaluated 

nodule occupation by established rhizobia population in the soil, concluding that 

these strains were able to infect the root and fix atmospheric N. Using a similar 

method, Mendes et al. (2000) reported that the introduced strains were able to 

compete with the naturalized strains and establish a great nodule occupation 

(40% or more) in soybean roots up to three years after the inoculation practice. 

Therefore, the overall neutral yield response to the inoculation practice might be 

interpreted as if the rhizobia population established in the soil (naturalized strains) 

were efficient on infecting roots from soybean plants and fixing atmospheric N2. 

Seed yield response to inoculation might be expected when indigenous rhizobia 

populations are below 10 cells g–1 of soil (THIES; SINGLETON; BOHLOOL, 

1991). 

Figure 2. Cumulative frequency for seed yield difference between inoculated and 
non-inoculated seed soybean with Bradyrhizobium strains for 21 field trials, 
conducted from 1999/2000 to 2014/2015 growing seasons, in Southern Brazil. 
Dotted line represents neutral (around zero) seed yield response. 

A main weakness of this regional-scale characterization is related to 

the lack of estimation of the number of rhizobia cells per gram of soil, and overall 

N fixation process (including nodulation, direct BNF measurements, etc.), 

impairing the ability to identify the key factors from the bacteria-plant viewpoint 

affecting seed yield response to the inoculation practice. To overcome this 
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limitation, ten trials were performed (Set of Trials II) to evaluate variables related 

to root nodulation, plant dry weight, C and N content besides seed yield. 

Figure 3. Relationship between seed yield of inoculated (opened circles) and 
non-inoculated (closed circles) soybean and environmental index in a total of 21 
field trials conducted from 1999/2000 to 2014/2015 growing seasons in Southern 
Brazil. Dashed line is the 1:1 relation. Each data point represents a mean 
calculated from three to six replicates. The environmental index was calculated 
as the average yield of both treatments from each trial (Exp. 1). 

3.2. Set of trials II: Plant growth and N components underpinning 

yield formation  

From all ten trials evaluated, overall inoculation did not influence the 

variables analyzed (Table 5). Seed yield response to inoculation presented a 

similar pattern as encountered in the regional-scale analysis: lack of a consistent 

yield response (p>0.05). Overall, the Campina do Simão site, where soybeans 

were preceded by Pinus spp., presented a lower seed yield, averaging 3,628 kg 

ha-1 in 2015/16 and 2016/17 seasons; while the other four trials, with soybeans 

grown in no-tillage systems for more than ten years, yields were above 5,300 kg 

ha-1 (Table 5). Yield components followed the same pattern as seed yield, with 

lower seed number and seed weight in Campina do Simão relative to the rest of 

the trials, and with an overall lack of response to inoculation (p>0.05; Table 5). 

Thus, averaging 2015/16 and 2016/17 seasons, inoculation did not present a 

statistical yield benefit relative to the control across sites.
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Table 5. Seed yield and components, nodule number and weight, shoot C and N content, and shoot and root dry weight of soybeans 
non-inoculated and inoculated with Bradyrhizobium strains in 10 field trials conducted in 2015/2016 and 2016/2017 growing seasons. 

Seed Nodule Shoot Root 

Yield Number Dry weight Number Dry weight C content N content Dry weight Dry weight 

kg ha-1 seeds m-2 mg seed-1 nodules plant-1 mg plant-1 kg ha-1 kg ha-1 kg ha-1 kg ha-1 

C. Simão 1 3278 f 1810 e 181 bcd 65 bcd 149 de 529 c 49 d 1230 c 270 c 
C. Simão 2 3978 e 2366 d 168 e 27 e 140 e 762 bc 68 cd 1830 bc 390 abc 
Taguá 1 5336 cd 2936 bc 182 bc 95 a 246 abc 1105 ab 129 a 2460 ab 390 abc 
Taguá 2 5426 c 3097 ab 175 d 32 e 174 cde 901 abc 85 abcd 2340 ab 450 ab 
Pinhão 1 4952 d 2713 c 183 bc 98 a 333 a 1034 ab 100 abc 2430 ab 330 bc 
Pinhão 2 5901 ab 3201 a 184 bc 49 cde 195 bcde 854 abc 80 bcd 2160 bc 510 a 
Candói 1 5491 bc 3073 ab 179 cd 68 bc 232 bcd 971 ab 97 abc 2340 ab 270 c 
Candói 2 6045 a 3237 a 187 ab 33 e 148 de 1100 ab 111 abc 2760 ab 360 abc 
Guarapuava 1 5289 cd 2861 bc 185 b 85 ab 266 ab 1056 ab 120 ab 2490 ab 360 abc 
Guarapuava 2 6272 a 3277 a 192 a 38 de 192 bcde 1186 a 109 abc 3150 a 420 abc 

Control 5219 2869 182 64 222 975 99 2370 390 
Inoculation 5183 2848 182 59 208 938 93 2280 360 

Inoculation (I) ns ns ns ns ns ns ns ns ns 
Trial (T) *** *** *** *** *** *** *** *** *** 
I × T ns ns ns ns ns ns ns ns ns 

Trials succeed by number 1 and 2 were conducted in 2015/2016 and 2016/2017 growing seasons, respectively. 
Means with different letters within columns differ by the Tukey’s test at p ≤ 0.05. 
Levels of significance: ***p < 0.001; **p < 0.01; *p < 0.05; ns: not significant.
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Brazilian studies, in Paraná and Mato Grosso do Sul States, showed 

increases in yield with inoculation in fields with a history of soybeans cultivation 

(BRANDÃO JUNIOR; HUNGRIA, 2000; MERCANTE et al., 2002, 2011). In the 

US, Schulz and Thelen (2008) in 14-site/years and Leggett et al. (2017) analyzed 

data from 187 trials and also observed response to inoculation and recommended 

application of this practice annually. However, economic success of inoculant 

applied to soybeans is linked to a response to inoculation. Consequently, a high 

economic return is expected to inoculation when soil rhizobia population is low, 

on the other hand when rhizobia population is high, a low or no economic return 

is expected (THIES; SINGLETON; BOHLOOL, 1991). Because of this, De Bruin 

et al. (2010) performed 73 trials in a US Midwest region between 2000 and 2008 

to evaluate soybean yield response to inoculants and concluded the probability 

of economic return with inoculation was less than 50% for that region, and did not 

warrant  annual inoculation. Nonetheless, research efforts should continue to 

investigate the rhizobia residence time and population after several years of 

continuous cropping without inoculation, mainly in no-till systems that promote 

less abiotic stresses to rhizobia in soil due to more suitable moisture and 

temperature conditions (HUNGRIA; VARGAS, 2000). 

Lack of yield response to inoculation could be potentially linked to a 

high number and more efficient naturalized rhizobia strains, lack of severe stress 

conditions (e.g., drought, heat, low pH, and unbalanced nutrition) that could affect 

response to inoculation (HUNGRIA; MENDES, 2015), and high soil capacity to 

provide N (MAPOPE; DAKORA, 2016). As related to the last potential cause, high 

soil N supply could inhibit BNF, as an impediment of root infection by rhizobium, 

lower nodule growth and inhibition of nitrogenase activity (STREETER; WONG, 

1988). 

Variation in nodule number and dry weight were observed among the 

ten sites (p<0.001; Table 5). Stepwise multiple regression analysis for nodule 

number explained 89% (p<0.001) of the variation on this trait related to changes 

in soil cation exchange capacity (CEC), phosphorous (P) and potassium (K) 

supply, while the model adjusted for nodule dry weight explained 34% (p<0.01) 

of the variability due to soil P supply (Table 6). Among these variables, CEC 

negatively influenced nodule number, but this should be carefully examined due 

to the narrow variation observed in CEC, 11.9 to 19.2 cmolc dm-3 (Table 2). 
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Overall, with broader ranges of CEC (<10 to >40 cmolc dm-3) in soils, lower 

inhibition might be expected in soils with high CEC due to the higher potential in 

ammonium adsorption by the soil particles (NOMMIK; VAHTRAS, 1982), slowly 

releasing N and diminishing the negative effect of inorganic N on nodulation and 

BNF processes (SATO et al., 2011). 

Table 6. Linear regression model for number and dry weight of nodules as 
affected by soil variables. 
Explanatory 
variable 

Regression coefficient 
Standard 

error 
p-value R2 (model) 

Nodule number (nodules plant-1) 0.89 
Intercept 192.54 18.69 <0.001 
CEC -11.04 1.43 <0.001 
P 2.07 0.40 <0.001 
K 0.17 0.05   0.003 

Nodule dry weight (mg plant-1) 0.34 
Intercept 160.38 24.14 <0.001 
P 7.68 2.52   0.007 

The positive effect of P on nodule number and dry weight and K on 

nodule number can be explained by the studies from Divito and Sadras (2014) 

on P, K, and sulfur starvation on root nodulation and BNF. Authors suggested 

that P and K deprivation reduced both nutrient concentrations in plants, while N 

concentration remains constant increasing N:P and N:K ratios. These changes in 

nutrient stoichiometry have been proposed to activate an N-feedback signaling, 

regulating nodule development and activity in the root. Thus, this process results 

in less nodulation with lower soil P and K concentrations. 

Despite the differences in nodulation among the environments, good 

root nodulation was detected in both treatments at all locations, without 

presenting significant differences in nodule number per plant, nodule dry weight 

and N content between control and inoculated treatments (p>0.05; Table 5). 

Therefore, the hypothesis that root nodulation and nodule growth reduction or 

BNF inhibition by high N availability or by abiotic stresses can be rejected in this 

study. The main hypothesis to explain these results is still based on the fact that 

indigenous rhizobia strains were able to infect soybean roots and fix atmospheric 

N (CAMPOS; HUNGRIA; TEDESCO, 2001; MENDES; VARGAS; HUNGRIA, 
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2000), reducing the probability of soybean seed yield response to inoculation (DE 

BRUIN et al., 2010).  

The next challenges to researchers are to establish more consistent 

relations between BNF and soil and meteorological variables. Likewise, the 

determination of the residence time without losing the efficiency in native rhizobia 

strains after years of no soybeans grown and/or inoculation will help to identify 

areas with a history of soybean cultivation where this practice will be more 

effective. Lastly, but not least, a better understanding of the Bradyrhizobium 

strains should be pursued, using the same strains Guimarães et al. (2008) used 

when they found differences in their ability to fix N when investigated using the 

same soybean variety (cv. Celeste). Likewise, Pauferro et al. (2010) found that 

the “B value” for soybeans was primarily governed by the rhizobium strain more 

than the effect of the variety. The B value is defined as the difference between 

the 15N natural abundance of the legume plant grown entirely on BNF (OKITO et 

al., 2004). Future studies should consider studying the differential ability of 

rhizobium strains to fix N to find the specific strain-variety combination to optimize 

BNF process and attain maximum soybean seed yields. 

4. Conclusion

Soybean seed yield response to inoculation was inconsistent in 

Oxisols under no-till in 21 field trials at the South-central region of Paraná State 

(Brazil), regardless of the type of seed inoculant tested (solid or liquid). In 

addition, lack of differences in plant growth, nodulation, and N parameters were 

all documented from the second set of 10 field trials. In this study, P was 

beneficial for nodule number and dry weight, while K was positive to nodule 

number. The high number and dry weight of nodules observed even under the 

control treatment indicates that successfully established rhizobia strains 

population in the soil were as efficient as the ones introduced via the inoculation 

practice. Future research should focus on identifying the persistence of rhizobia 

in the soil and its efficacy at N fixation after continuous cropping without 

inoculation. 



CHAPTER 4 – Environmental variables controlling biological nitrogen 

fixation soybeans in no-till fields in Southern Brazil 

1. Introduction

The increasing global demand for food and concerns about 

environmental protection have been pushing forstrategies that increase 

agricultural production as sustainably as possible. Biological nitrogen fixation 

(BNF) by legumes supports sustainability of food production by meeting the high 

demand of N by these crops and reducing the need for nitrogen fertilizers 

(HUNGRIA; MENDES, 2015). Therefore, strategies to raise high soybean 

[Glycine max (L.) Merril] yields and production in a more sustainable way must 

focus in adjusting agricultural management practices to enhance BNF. Nitrogen 

derived from the air (Ndfa, which signifies the proportion of N supplied through 

BNF) represents ca. 60% of the total N required for soybean production 

(CIAMPITTI; SALVAGIOTTI, 2018; SALVAGIOTTI et al., 2008), differing among 

top producing countries (Herridge et al., 2008) mostly due to soil conditions and 

management practices. The soils of soybeans growing areas in US are generally 

able to provide a great amount of N to plants, reducing contribution of Ndfa (ca. 

50%) on supply N (HERRIDGE; PEOPLES; BODDEY, 2008). On the other hand, 

less N amount is usually available in Brazilian soils of productive areas, where 

farmers commonly use seed inoculation, no-tillage systems, and avoid appling N 

fertilizer to soybeans, increasing contribution of Ndfa (ca. 80%) on soybean N 

nutrition (HERRIDGE; PEOPLES; BODDEY, 2008; HUNGRIA et al., 2005). 
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Regional studies developed in Brazil confirm the high contribution of 

Ndfa (69-94%) to supply N for soybeans (ALVES et al., 2006; HUNGRIA et al., 

2005, 2006). However, most soils of those regions usually have a low capacity to 

release mineral N to crops as in other regions with higher soil N or organic matter 

content where Ndfa decreases significantly its importance as a source of N to the 

crop (MAPOPE; DAKORA, 2016). The proportion of N obtained from N2 fixation 

or soil depends on many factors including soil, weather, and their interaction. For 

instance, soil acidity can reduce soil rhizobia population by aluminum toxicity 

(Ferguson and Gresshoff 2016) and also low pH conditions might disrupt the 

signal between plant and rhizobia (FERGUSON; LIN; GRESSHOFF, 2013). 

Limited phosphorus (P), potassium (K) and sulfur (S) availability decreases, 

directly or indirectly, nodule growth (DIVITO; SADRAS, 2014) and high mineral 

N availability reduces Ndfa by inhibiting root infection by rhizobia, reducing nodule 

growth and nitrogenase activity (KANAYAMA; WATANABE; YAMAMOTO, 1990; 

STREETER; WONG, 1988). Other climate factors such as soil water-deficit 

conditions (SINCLAIR; NOGUEIRA, 2018) or lower mean air temperature can 

reduce photosynthesis levels, indirectly decreasing Ndfa (GEORGE; 

SINGLETON; BEN BOHLOOL, 1988). 

Climate change is pushing and changing features of the agricultural 

landscape in many parts of the world and, thus, crop adaptability. Moreover, the 

genetic interplay between the bacteria strain, host, and their interaction mediated 

by the environment makes it challenging to find more effective strategies for plant 

breeding, which has given minor consideration to BNF-associated traits in 

soybeans (SINCLAIR; NOGUEIRA, 2018). A possible breeding strategy would 

be exploit the interactions of BNF and plant traits with the environment by 

clustering geographical regions with similar responses to BNF and potential for 

future crop adaptation. Likewise, regions can be classified in the way it influences 

crop responses to the amount of N fixed. Variations in soil and weather 

conditions, even in the same region, should also be considered. 

The complex interaction between BNF and multiple environmental 

factors is scarce in literature with a small number of studies focused on this 

approach. The goal of this study was to delimitate an important geographical 

region for soybean production in Brazil based on Ndfa performance by 

extensively characterizing climate, plant, and BNF traits to find discriminant 



30 

variables that would help to understand crop performance. Results of this study 

will contribute to implementing strategies to increase contribution of BNF on N 

supply to soybeans and could even encourage studies of plant breeding based 

on environmental factors as selection strategies. 

2. Material and Methods

2.1. Sites description 

Twenty-four sites were selected to determine Ndfa and N-fixed 

(representing the proportion and the amount, in kg ha-1, of N supplied through the 

BNF, respectively) in the Center-south region of Paraná State, Southern Brazil 

(Fig. 4). Regional climate is a humid temperate climate with a moderately hot 

summer (Cfb), according to the Köppen classification (APARECIDO et al., 2016), 

without a dry season. Cumulative rainfall, mean relative humidity, mean air 

temperature and thermal time varied from 628 to 1711 mm, 79 to 88%, 19.2 to 

22.7 °C and 1616 to 2248 °Cd during the soybean growth cycle, in 2017/2018, 

respectively (Table 7). Sites altitude ranged from 499 and 1120 m above sea level 

(Table 8). Soils in all fields were classified as Hapludox (SOIL SURVEY STAFF, 

2014) and were conducted in a no-till system. Soil fertilization, except for N, was 

made at soybean sowing (FONTOURA et al., 2015). Values of pH, clay content, 

soil organic carbon, soil total N, available P, exchangeable Ca, and available 

manganese (Mn) in the soil layer 0-20 cm determined at R5 development stage 

(beginning seed – FEHR; CAVINESS, 1977) are presented in Table 8. The entire 

set of variables is in Appendix 2. 

Individual experimental plots at each site had six rows spaced at 0.40 

m and 10 m long. Sowing dates ranged from September 26th to November 12th 

and plots were harvested from February 28th to April 15th to determine final seed 

yield (130 g kg-1 moisture content). 

Soybean growth cycle varied from 131 to 177 days. Different soybean 

varieties and maturity groups were used among the sites (Table 8). Plant 

population (determined at R5 development stage) ranged from 23 to 41 plants m-

2. Each plot followed recommended phytosanitary treatments. Commercial

inoculants containing Bradyrhizobium elkanii (SEMIA 5019) and B. japonicum 

(SEMIA 5079) strains were applied on seeds according to the Brazilian 

recommendation (100 mL liquid inoculant per 50 kg of seeds). 
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Figure 4. Position of Paraná State (in black) on Brazil map (inset), and 
distribution of the 24 sites used to determine biological nitrogen fixation in the 
Center-south region of Paraná, Southern Brazil (main figure). 
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Table 7. Meteorological variables during soybean growth cycle in the Center-south region of Paraná, Southern Brazil. 

Variable 
Period 

S – R1 R1 – HV S – R5 R5 – HV R1 – R5 S – HV 

Cumulative rainfall (mm) 585 (244–1227) 463 (202–776) 819 (395–1403) 229 (79–377) 234 (51–400) 1048 (628–1711) 
Mean relative humidity (%) 79 (74–83) 86 (81–95) 81 (77–84) 86 (79–99) 88 (71–94) 83 (79–88) 
Mean air temperature (°C) 20.1 (18.7–22.1) 20.9 (19.6–23.0) 20.3 (19.0–22.6) 20.8 (16.5–22.8) 20.6 (19.3–23.2) 20.5 (19.2–22.7) 
Thermal time (°Cd) 827 (636–983) 1043 (804–1480) 1239 (1040–1440) 631 (355–938) 425 (178–664) 1858 (1616–2248) 

Numbers outside and inside the parentheses correspond to average and minimum–maximum values of the variables in each period, respectively. 
S: sowing; R1: beginning flowering; R5: beginning seed filling; HV: harvest. 
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Table 8. Soybean varieties and maturity groups, altitude, mean air temperature from R1 to R5, and soil variables in the upper 20 cm 
layer in the 24 sites of the Center-south region of Paraná, Southern Brazil. 

Site 
Soybean variety 
(maturity group) 

Altitude 
Mean air 

temperature 
(R1 – R5) 

Soil 

pH Clay Org. C Total N Available P Exchangeable Ca Available Mn 

m °C g kg-1 g kg-1 mg dm-3 cmolc dm-3 mg dm-3 

1 BMX Apolo RR (5.5) 1029 19.3 5.8 340 46.2 3.5 9.4 8.5 19 
2 BMX Ativa RR (5.6) 944 20.7 5.9 340 38.4 2.5 7.6 7.5 4 
3 K5616 (5.6) 958 20.5 5.7 340 43.0 2.6 5.0 7.2 5 
4 M5917 IPRO (5.9) 917 20.2 6.8 280 41.1 2.4 7.2 10.8 1 
5 BMX Apolo RR (5.5) 991 19.5 6.5 220 42.9 2.9 6.1 9.8 4 
6 BMX Apolo RR (5.5) 889 21.1 5.8 540 32.5 2.3 3.3 8.1 8 
7 BMX Elite IPRO (5.5) 833 20.0 5.2 340 50.2 3.3 2.5 4.5 17 
8 BS 2606 IPRO (6.0) 961 20.8 5.7 280 43.6 2.8 11.0 7.4 9 
9 BMX Apolo RR (5.5) 989 20.7 5.7 400 36.1 2.5 12.0 6.3 10 
10 K5616 (5.6) 981 19.8 6.3 340 35.5 2.2 7.9 9.8 4 
11 K6221 (6.2) 1069 20.4 5.6 280 43.1 2.9 13.0 6.6 16 
12 BMX Apolo RR (5.5) 1120 19.5 6.1 340 37.3 2.5 11.0 7.9 4 
13 K5616 (5.6) 827 21.0 5.6 540 36.1 2.7 6.7 6.8 19 
14 DM 54i52 RSF IPRO (5.4) 813 21.5 6.1 470 29.7 2.3 6.6 8.5 8 
15 BMX Vanguarda IPRO (6.0) 499 23.2 5.0 470 21.1 1.8 16.0 4.7 34 
16 Roos Camino RR (5.3) 874 20.8 5.6 470 32.3 2.2 10.0 8.3 24 
17 K5616 (5.6) 876 20.7 5.8 470 42.1 2.6 6.9 7.7 7 
18 BMX Elite IPRO (5.5) 930 20.7 6.2 220 35.4 2.4 8.0 8.3 6 
19 BMX Lança IPRO (5.8) 1045 19.9 6.1 470 37.5 2.7 16.0 8.7 8 
20 BMX Apolo RR (5.5) 957 20.5 6.0 400 39.6 2.6 7.5 10.1 6 
21 BMX Ativa RR (5.6) 1012 20.6 5.6 360 38.1 2.3 8.5 7.7 10 
22 Roos Camino RR (5.3) 725 22.4 5.6 >600 33.6 2.5 6.1 6.9 40 
23 BMX Ativa RR (5.6) 817 21.2 6.0 >600 35.1 2.8 10.0 7.9 46 
24 K5616 (5.6) 1048 20.4 7.3 340 48.4 2.7 11.0 13.8 2 
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2.2. Determination of biological nitrogen fixation 

At R5 growth stage, soybean plants of three subsamples measuring 

one linear meter each were cut at ground level (stem + leaves) in all the plots. At 

the same time, three different non-N2-fixing species were sampled close to the 

plots to be used as reference plants to determine Ndfa and N-fixed (Table 9). 

Biomass samples were dried at 65 °C in a forced air oven until they reached a 

constant weight to determine shoot dry weight and N concentration in the shoot 

(Thermo Fisher Scientific CN Analyzer – Flash 200 model). Total N content in the 

shoot was calculated by multiplying the dry weight and N concentration. 

Biological nitrogen fixation was determined by 15N natural abundance 

method (SHEARER; KOHL, 1986). For this, soybean and reference plants 

samples were used in determining 15N abundance using an automated 

continuous-flow isotope-ratio mass spectrometer (Delta V Advantage coupled to 

a Flash 2000 total C and N analyzer - Thermo Fisher Scientific, Waltham, USA). 

The percentage of N derived from the air (Ndfa) was calculated as: 

Ndfa (%) = [(δ 15Nref - δ 15Nsoy) / (δ 15Nref - B value)] x 100   Eq. (1) 

where: δ 15Nref is the average shoot 15N natural abundance of three non-N2-fixing 

reference plants, δ 15Nsoy is the soybean shoot 15N natural abundance at R5, and 

B value is the 15N natural abundance in the soybean that relies only on BNF. δ 

15Nreference and δ 15Nsoybean are in Table 9. B value used was -2.62 ‰, the average 

of B values obtained by Guimarães et al. (2008) and Pauferro et al. (2010) for 

different Brazilian soybeans varieties and inoculants, composed of 

Bradyrhizobium elkanii and B. japonicum strains. Total aboveground N-fixed (kg 

ha-1) was calculated by multiplying soybean shoot N content (kg ha-1) and Ndfa 

(%)/100. The N derived from the soil was calculated as a difference between total 

shoot N and N-fixed. 
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Table 9. Species of reference plants and δ15N values of reference and soybean plants used to determine biological nitrogen fixation 
in the 24 sites of the Center-south region of Paraná, Southern Brazil. 

Site 

Reference plants δ 15N values (‰) 

Species 1 Species 2 Species 3 Ref. 1 Ref. 2 Ref. 3 
Ref. 

average(1) 
Soybean 

1 Eleusine indica (L.) Gaertn Avena sativa L. Bidens pilosa L. 5.367 3.988 2.734 4.030 -0.063
2 Eleusine indica (L.) Gaertn Conyza bonariensis (L.) Cronquist Euphorbia heterophylla L. 8.284 3.398 3.154 4.945 0.605
3 Eleusine indica (L.) Gaertn Brachiaria plantaginea (Link) Hitchc. Sonchus oleraceus L. 8.103 8.560 6.977 7.880 -0.183
4 Sida rhombifolia L. Brachiaria plantaginea (Link) Hitchc. Euphorbia heterophylla L. 8.693 7.431 8.095 8.073 0.769
5 Eleusine indica (L.) Gaertn Ipomoea sp. - 6.742 3.601 - 5.172 0.439
6 Eleusine indica (L.) Gaertn Brachiaria plantaginea (Link) Hitchc. Spermacoce latifolia Aubl. 3.172 3.478 2.811 3.154 -0.022
7 Eleusine indica (L.) Gaertn Brachiaria plantaginea (Link) Hitchc. Ipomoea sp. 3.369 3.569 4.414 3.784 1.935
8 Bidens pilosa L. Brachiaria plantaginea (Link) Hitchc. Euphorbia heterophylla L. 3.607 3.450 2.975 3.344 1.080
9 Eleusine indica (L.) Gaertn Brachiaria plantaginea (Link) Hitchc. Zea mays L. 6.718 5.454 5.554 5.909 0.035
10 Eleusine indica (L.) Gaertn Brachiaria plantaginea (Link) Hitchc. Euphorbia heterophylla L. 14.132 16.599 12.471 14.401 -0.157
11 Euphorbia heterophylla L. Brachiaria plantaginea (Link) Hitchc. Digitaria horizontalis Willd. 5.348 6.614 6.614 6.192 0.268
12 Eleusine indica (L.) Gaertn Avena sativa L. Spermacoce latifolia Aubl. 3.923 2.991 2.896 3.270 -0.364
13 Sida rhombifolia L. Avena strigosa Schreb. Digitaria horizontalis Willd. 3.699 6.355 4.884 4.979 0.438
14 Eleusine indica (L.) Gaertn Brachiaria plantaginea (Link) Hitchc. Commelina benghalensis L. 2.209 4.398 3.336 3.314 0.663
15 Eleusine indica (L.) Gaertn Conyza bonariensis (L.) Cronquist Digitaria horizontalis Willd. 5.949 5.006 6.543 5.833 0.969
16 Eleusine indica (L.) Gaertn Bidens pilosa L. Euphorbia heterophylla L. 7.524 4.396 6.597 6.172 0.287
17 Eleusine indica (L.) Gaertn Brachiaria plantaginea (Link) Hitchc. Euphorbia heterophylla L. 5.515 4.324 4.409 4.749 0.709
18 Eleusine indica (L.) Gaertn Brachiaria plantaginea (Link) Hitchc. Euphorbia heterophylla L. 3.447 3.011 2.574 3.011 0.298
19 Eleusine indica (L.) Gaertn Avena strigosa Schreb. Ipomoea sp. 13.748 11.559 12.674 12.660 0.921
20 Eleusine indica (L.) Gaertn Brachiaria plantaginea (Link) Hitchc. Bidens pilosa L. 5.740 5.975 6.018 5.911 1.234
21 Eleusine indica (L.) Gaertn Conyza bonariensis (L.) Cronquist Digitaria horizontalis Willd. 5.105 2.829 4.481 4.138 0.257
22 Eleusine indica (L.) Gaertn Brachiaria plantaginea (Link) Hitchc. Euphorbia heterophylla L. 4.747 4.448 3.018 4.071 0.327
23 Eleusine indica (L.) Gaertn Conyza bonariensis (L.) Cronquist Digitaria horizontalis Willd. 6.359 3.913 5.788 5.353 0.564
24 Eleusine indica (L.) Gaertn Sida rhombifolia L. Digitaria horizontalis Willd. 6.803 7.147 7.491 7.147 0.014

(1)Average of the three non-N2-fixing plant species.
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2.3. Statistical analysis 

Data from 24 plots were analyzed by descriptive statistics as each plot 

represented one repetition. Mean, standard deviation, amplitude (maximum and 

minimum values) and interquartile range (IQR; 25 – 75% percentiles) were used 

to summarize the following variables: seed yield, shoot dry weight, N content in 

shoot, Ndfa, N-fixed and N derived from soil. The 24 sites were categorized 

according to Ndfa contribution (Table 4), as low (<44%, three sites), medium (44 

– 72%, 16 sites) and high (>72%, five sites) Ndfa, according to the classification

proposed by Ciampitti and Salvagiotti (2018). Then, a discriminant multivariate 

analysis was performed to categorize groups of low, medium and high Ndfa 

according to environments. Similarly, a permutational analysis of variance 

(PERMANOVA) was performed aiming to validate the groups separation 

according to the variables related to soil and weather conditions. 

Discriminant multivariate analysis (DA) was used in an attempt to 

summarize the environmental differentiation between pre-defined groups, while 

overlooking within-group variation. To avoid autocorrelation between variables 

we used a multivariate analysis that relies on data transformation using principal 

component analysis (PCA) as a prior step to DA. This procedure is known as 

discriminant analysis of the principal components (DAPC) and is recommended 

when we have more columns (variables) than rows (observations) on the data. 

Set (JOMBART; AHMED, 2011). The DAPC does not necessary imply loss of 

information and it was conducted with the R “ade4” package (CHESSEL; 

DUFOUR; THIOULOUSE, 2004). The high number of predictors presented on 

the model (20 variables) makes its interpretation harder and increase the 

likelihood of autocorrelation issues. For that reason we run the analysis in two 

steps. The first step was aimed to select the most important variables explaining 

differences of Ndfa. On this step, we include the entire set variables (Appendix 

2) in the analysis. The contribution of each variable when running the analysis

with all the 20 predictors is documented in Appendix 3.  The second step was 

aimed to explore the relationship between the selected variables and the 

contribution of each one of them on separating the pre-defined Ndfa groups. For 

the second step we select the first ten variables (~45% of the variables) that 

contributed the most on the canonical variables. 
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3. Results

3.1. Contribution of N2 fixation to supply soybean N demand 

Soybean seed yields averaged 4014 kg ha-1 and ranged from 3597 to 

4825 kg ha-1 (IQR50, 3828 to 4189 kg ha-1) for the 24 sites (Table 10). Mean 

shoot dry weight averaged 8.5 Mg ha-1 (ranging from 6.1 to 10.8 Mg ha-1; IQR50, 

7.4 to 9.3 Mg ha-1). Mean shoot N content was 272 kg ha-1 across sites, ranging 

from 211 to 359 kg ha-1 (IQR50, 255 to 282 kg ha-1). Contribution of N-fixed 

(measured at R5 growth stage) averaged 167 kg ha-1 and ranged from 62 to 274 

kg ha-1 (IQR50, 141 to 190 kg ha-1), while mean contribution as a proportion of 

total plant N uptake (Ndfa) was 61% but ranged from 24 to 85%. Mean soil N 

contribution was 106 kg ha-1, ranging from 41 to 244 kg ha-1 (Table 10). 

The entire data set (24 sites) was classified in three groups according 

to their Ndfa values: low (<44%), medium (44–72%) and high (>72%). The low 

Ndfa group presented lower average seed yield (3784 kg ha-1) and N-fixed (95 

kg ha-1) than the medium (seed yield = 3975 kg ha-1; N-fixed = 164 kg ha-1) and 

high (seed yield = 4273 kg ha-1; N-fixed = 218 kg ha-1) Ndfa groups (Table 10). 

Consequently, soil contribution on total shoot N content was greater for the low 

Ndfa group (200 kg ha-1) relative to the medium (101 kg ha-1) and high (65 kg ha-

1) groups. Shoot dry weight and N content did not follow any trends according to

the Ndfa groups (Table 10). 

3.2. Environmental variables contributing to Ndfa variation 

Likewise the above classification originally proposed by Ciampitti and 

Salvagiotti (2018), similar trends were obtained (separation in low, medium and 

high Ndfa groups) by executing a linear discriminant analysis (LDA) utilizing ten 

variables (seed yield, shoot N content, altitude, mean air temperature from R1 to 

R5, clay content, exchangeable Ca, available Mn and P, soil organic C and soil 

total N) (Fig. 5A). Ellipses obtained within each group in the LDA represent 

confidence regions regarding the means of canonical scores at a 95% confidence 

level. Seed yield, temperature from R1 to R5, soil total N, clay content and 

available P loaded the most on first discriminant axis (data not shown) and related 

specially to discrimination of low to high Ndfa groups. Shoot N content, altitude 

and exchangeable Ca, loaded the most on second discriminant axis (data not 
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shown), and associated particularly to the categorization of low to medium Ndfa 

groups (Fig. 5A). However, low and medium groups of Ndfa overlapped on the 

first discriminant axis, and high Ndfa group overlapped on the second 

discriminant axis, especially with the medium Ndfa group (Fig. 5A), making the 

separation in three groups not so clear. Therefore, performing a PERMANOVA, 

another approach to separate the groups based in the same ten variables, a clear 

separation was found between the high group of Ndfa and the other two (Table 

11). 

Table 10. Descriptive statistics related to seed yield, shoot dry weight, N content 
in shoot, amount of N obtained from BNF (N-fixed), N derived from the air (Ndfa) 
and from soil (Ndfs) measured at R5 in soybean grown in 24 sites of Southern 
Brazil. 
Variable Mean Std. Dev. Maximum 75% 25% Minimum 

All data 
Seed yield (kg ha-1) 4014 296 4825 4189 3828 3597 
Shoot dry weight at R5 (Mg ha-1) 8.5 1.4 10.8 9.3 7.4 6.1 
N content in shoot at R5 (kg ha-1) 272 35 359 282 255 211 
N-fixed at R5 (kg ha-1) 167 43 274 190 141 62 
Ndfa at R5 (%) 61 14 85 71 54 24 
N derived from soil at R5 (kg ha-1) 106 46 244 123 78 41 
Ndfs at R5 (%) 39 14 76 46 29 15 

Low Ndfa (<44%) 
Seed yield (kg ha-1) 3784 218 4033 4033 3626 3626 
Shoot dry weight at R5 (Mg ha-1) 9.9 0.8 10.8 10.8 9.1 9.1 
N content in shoot at R5 (kg ha-1) 296 55 359 359 260 260 
N-fixed at R5 (kg ha-1) 95 29 115 115 62 62 
Ndfa at R5 (%) 32 8 41 41 24 24 
N derived from soil at R5 (kg ha-1) 200 43 244 244 159 159 
Ndfs at R5 (%) 68 8 76 76 59 59 

Medium Ndfa (44-72%) 
Seed yield (kg ha-1) 3975 251 4491 4141 3825 3597 
Shoot dry weight at R5 (Mg ha-1) 8.2 1.3 10.7 9.0 7.0 6.1 
N content in shoot at R5 (kg ha-1) 265 27 329 282 252 211 
N-fixed at R5 (kg ha-1) 164 20 199 178 153 127 
Ndfa at R5 (%) 62 7 71 68 56 52 
N derived from soil at R5 (kg ha-1) 101 24 158 117 81 71 
Ndfs at R5 (%) 38 7 48 44 32 29 

High Ndfa (>72%) 
Seed yield (kg ha-1) 4273 338 4825 4576 4005 3983 
Shoot dry weight at R5 (Mg ha-1) 8.4 1.5 10.7 9.5 7.2 6.6 
N content in shoot at R5 (kg ha-1) 283 43 350 316 251 228 
N-fixed at R5 (kg ha-1) 218 41 274 257 183 163 
Ndfa at R5 (%) 77 6 85 82 72 72 
N derived from soil at R5 (kg ha-1) 65 15 79 77 52 41 
Ndfs at R5 (%) 23 6 28 28 18 15 
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Figure 5. Canonical scores from linear discriminant analysis (LDA; A); and 
correlations between variables and canonical scores (B). Orange, blue and green 
ellipses represent low, medium and high Ndfa categories, respectively. 

Table 11. Comparison between groups of nitrogen derived from the air (Ndfa) as 
affected by environmental variables using the PERMANOVA. 

Comparison between groups of Ndfa R2 p-value

High vs. medium 0.45 0.048 
High vs. low 0.18 0.049 
Medium vs. low 0.07 0.306 



40 

The Ndfa groups were correlated to environmental variables 

presented in the canonical scores and discriminant analysis (Fig. 5B). The high 

Ndfa cluster was related in a similar direction to seed yield, altitude, 

exchangeable Ca, and available P; while the low Ndfa cluster was directly related 

to soil total N (Fig. 5). Less clear, but still important, for the medium Ndfa cluster, 

soil variables such as clay content and in a lower proportion available Mn, with a 

negative correlation for increases in soil total N – reducing contribution of the N 

fixation process as soil N supply increases. This analysis identified soil, plant and 

weather variables related to the Ndfa levels. 

4. Discussion

4.1. Contribution of N2 fixation to supply soybean N demand 

Across all sites, average contribution of Ndfa to soybean N demand 

was 61%, similar to the mean value reported by Ciampitti and Salvagiotti (2018), 

but lower than the Ndfa value documented for Brazil, country-level (80%), by 

Herridge et al. (2008) and the Ndfa range recorded by researchers from 69 to 

94% (ALVES et al., 2006; HUNGRIA et al., 2005, 2006). The reduced Ndfa 

proportion presented in this region is probably related to the high soil N availability 

documented by Fontoura and Bayer (2009). In addition, other factors such as no-

till system (HUNGRIA; VARGAS, 2000), high soil fertility (DIVITO; SADRAS, 

2014; FERGUSON; GRESSHOFF, 2016), absence of excess water (PURCELL; 

KING, 1996; SINCLAIR; SERRAJ, 1995) and/or heat stress (MUNÉVAR; 

WOLLUM II, 1981) may have contributed to an adequate growth and improve 

overall yields. 

4.2. Environmental variables contributing to Ndfa variation 

Environmental factors such as water supply, air temperature, light, 

salinity, and soil fertility are relevant for the symbiotic system in legumes (LIE, 

1971). Impact of these factors (nutrient availability, soil acidity, water supply, and 

temperature) on N2 fixation have been investigated as the individual effect 

(DIVITO; SADRAS, 2014; FERGUSON; GRESSHOFF, 2016; GATES; MÜLLER, 

1979; MAPOPE; DAKORA, 2016; SCHIPANSKI; DRINKWATER; RUSSELLE, 

2010; SINCLAIR et al., 2015; SINCLAIR; SERRAJ, 1995). Nonetheless, the 

analysis of the effect of multiple factors on N2 fixation needs further investigation. 
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Thus, this research characterized 30 soil, plant, and weather variables (Appendix 

2) in a regional approach (24 sites) for identifying factors related to Ndfa levels. 

Among the environmental factors, soil total N was the most detrimental 

variable to Ndfa (Fig. 5B). High mineral N availability has a negative effect on the 

BNF process during nodule formation, by an impediment of root infection by 

rhizobium and by reducing nodule growth, and after nodule formation by inhibiting 

nitrogenase activity (KANAYAMA; WATANABE; YAMAMOTO, 1990; 

STREETER; WONG, 1988). Therefore, increasing N supply by soil reduces the 

contribution of N2 fixation for legume nutrition (MAPOPE; DAKORA, 2016; 

SCHIPANSKI; DRINKWATER; RUSSELLE, 2010). 

Detrimental effects to BNF are usually more pronounced in legumes 

under unbalanced nutritional conditions (DIVITO; SADRAS, 2014; GATES; 

MÜLLER, 1979; GATES; WILSON, 1974; LYND; ANSMAN, 1989), but increasing 

nutrient levels minimizes the negative impact of mineral N to N2 fixation (TSAI et 

al., 1993). That might explain why exchangeable Ca and available P were related 

to the high Ndfa group and were opposed to the low group of Ndfa (Fig. 5B). 

Divito and Sadras (2014) observed that P deprivation reduced its concentrations 

in plants, while N concentration remains constant increasing N:P ratios. These 

changes in nutrient stoichiometry have been proposed to activate an N-feedback 

signaling, regulating nodule development and activity in the root. Thus, this 

process results in less nodulation with lower soil P concentrations. Phosphorus 

also has an important role on the plant energy metabolism, then, P deprivation 

has a negative impact on nodules energy status (OLIVERA et al., 2004). 

Regarding to Ca, its role in BNF is related the event called Ca spiking, a nod 

gene-dependent host response that triggers a signaling cascade leading to 

nodule development  (EHRHARDT; WAIS; LONG, 1996; LÉVY et al., 2004; 

WAIS; KEATING; LONG, 2002). Thus, increasing the soil exchangeable Ca 

content (e.g. through liming) to the critical level is essential for obtaining a 

satisfactory root nodulation and high Ndfa contribution. 

Altitude and mean air temperature from R1 to R5 were also related to 

the separation of Ndfa groups (Fig. 5). As altitude and air temperature are 

variables inversely proportional, higher altitudes were related to the high group of 

Ndfa and seed yield, mean air temperature was negatively correlated to those 

variables (Fig. 5B). Altitude ranged from 499 to 1120 m, leading to approximately 
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4 ºC of difference in mean air temperature from R1 to R5 between the coldest 

(19.3 ºC) and warmer (23.2 ºC) sites (Table 7 and 8). Therefore, it could be an 

unexpected relation between Ndfa and mean air temperature due to its small 

range. Small differences in mean air temperature (ca. 5 ºC) affecting Ndfa and 

seed yield were also reported by George et al. (1988), but with an opposite result 

to the found in this study. One may consider the increasing temperature effect on 

soil N mineralization (ELLERT; BETTANY, 1992; STANFORD; FRERE; 

SCHWANINGER, 1973), which could lead to a synergic effect with soil total N, 

increasing mineral N availability to soybean and reducing Ndfa. Nonetheless, the 

small range of mean air temperature from R1 to R5 (4 ºC) should not have great 

impact in the N mineralization. Therefore, it is more prudent to say that sites 

located in high altitudes also have low mean air temperature and high soil total 

N, which reduced Ndfa contribution. 

As the soils of the studied region usually have a great capacity to 

supply N for crops due to predominance of soils with medium to high SOM 

content and soil total N (FONTOURA; BAYER, 2009), a low contribution of Ndfa 

and of N-fixed for soybean should be expected in this study (MAPOPE; DAKORA, 

2016). However, the amount of N-fixed was higher in Center-south region of 

Paraná (167 kg ha-1 – Table 10) than the global average (136 kg ha-1; CIAMPITTI; 

SALVAGIOTTI 2018). As worldwide N2 fixation was determined in R6.5–R7, the 

difference between the results of this study and the worldwide average of N-fixed 

should be higher, considering we determined N-fixed in R5. Furthermore, high 

seed yields were related to high Ndfa (Fig. 5B; Appendix 4). 

The main agricultural challenge for next decades is to feed the growing 

world population, hence, strategies are required to intensify crop production as 

sustainably as possible (FISCHER; CONNOR, 2018). These concerns about 

food security associated to the great correlation between Ndfa and seed yield 

found in this study (Fig. 5) and around the world (CIAMPITTI; SALVAGIOTTI, 

2018) lead us to think that the right way to improve soybean seed yield as 

sustainably as possible is strategizing improvements to BNF. 
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5. Conclusion

The average proportion of N derived from the air (Ndfa) is 61% of the 

N supplied for soybean grown in Center-south region of Paraná State, Southern 

Brazil. This contribution is similar to the worldwide average and lower than the 

previous estimative for Brazil. In the studied region, among the set of 20 

environmental variables, the variation in Ndfa is attributed mainly to the 

interaction of a few variables, especially the following related to soil fertility: soil 

total N (impacting negatively the Ndfa), and exchangeable Ca and available P 

(affecting Ndfa positively). Furthermore, seed yield and Ndfa are positively 

correlated, then, promoting BNF is a good strategy to improve soybean seed yield 

as sustainably as possible. 



CHAPTER 5 – Assessing nitrogen limitation in inoculated soybeans grown 

in Southern Brazil 

1. Introduction

Soybean [Glycine max (L.) Merril] is one of the most globally relevant 

field crop legume with a production of 341 million metric tons in 2017/2018 

(USDA, 2019). Brazil accounts for one-third (119 million metric tons in 2017/2018) 

of the global soybean production, being the largest producer alongside of the 

United States (USDA, 2019). As a source of protein and oil for humans and 

animals, soybeans are a critical element for food security challenges. Increasing 

soybean seed yield within the existing acreage is a key to fill global food demands 

(FISCHER; CONNOR, 2018). Therefore, strategies to improve crop productivity 

at the farmer-scale should be further explored. Soybean yield potential is attained 

when a well-adapted variety is grown under ideal conditions, without water and 

nutrient limitations, and in absence of abiotic (light, salinity, heat, drought) or 

biotic (diseases, insects, weeds) stresses (EVANS, 1993). 

Nitrogen (N) is one of the most important nutrients for soybeans, 

primarily acquired via two sources: biological nitrogen fixation (BNF) and mineral 

N derived from soil organic matter (SOM) mineralization. As the carbon 

requirements for mineral N assimilation (4 g C g-1 N) is lower than BNF (6-7 g C 

g-1 N) (KASCHUK et al., 2009), higher amounts of mineral N provided to

soybeans decreases the BNF contribution (DADSON; ACQUAAH, 1984). Then, 

reducing a plausible yield-limitation caused by N in high yield environments (>6-

7 Mg ha-1) (SALVAGIOTTI et al., 2009) is a challenge, because increasing BNF 
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might raise the energetic cost and could potentially penalize seed yield 

(TAMAGNO et al., 2018). On the other hand, applying N via fertilization might 

reduce soybean root nodulation and BNF process (KANAYAMA; WATANABE; 

YAMAMOTO, 1990; STREETER; WONG, 1988). 

There is no consensus about N limitation in soybean and its 

relationship under different yield levels. For instance, Ray et al. (2006) found lack 

of yield response to the addition of external N at varying yield levels, whereas 

Cafaro La Menza et al. (2017) and Ortez et al. (2018) observed a response (but 

not consistent for the latter authors) to soybeans with an improved yield.. Lack of 

consistency on the yield response with the addition of external N to soybeans is 

clear from the recent investigations, and the evaluation of soil and N fixation 

parameters are critical not only to complement future research on this topic, but 

to better understand the factors affecting a potential yield response and exposing 

soybean to N limitations. 

Connecting to N limitations, many studies investigated adding lower 

amounts of N fertilizer to soybeans early in the season via utilization of starter 

fertilizers (usually up to 40 kg N ha-1). The rationale behind this practice is to 

supply low amounts of N early in the season – while nodules are not completely 

formed and N2 fixation is not active (ABENDROTH; ELMORE; FERGUSON, 

2006) and when N derived from mineralization can be scarce under low 

temperatures and/or low levels of soil organic matter (SOM) – N-deficient soils 

(DADSON; ACQUAAH, 1984). Results of those studies are contradictory, 

showing yield increases (e.g., OSBORNE; RIEDELL, 2006; BOROOMANDAN et 

al., 2009; GAI et al., 2017), and lack of yield response to N (e.g., HUNGRIA et 

al., 2006; MRKOVACKI et al., 2008; JOSIPOVIĆ et al., 2011; KAMARA et al., 

2012; BALBINOT JUNIOR et al., 2016).  

The objectives of this study were to quantify soybean yield response 

to external N addition by evaluating application of lower fertilizer N rates as starter 

N fertilization and by providing full-N to the crop in order to understand if seed 

yields were limited by N when grown in Southern Brazil. 
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2. Material and Methods

2.1. Field trials 

Ten field trials were performed in five locations (Campina do Simão, 

Taguá, Pinhão, Candói and Guarapuava) in Center-south region of Paraná State, 

Brazil, during 2015/2016 and 2016/2017 cropping seasons (Table 12). All trials 

were conducted under no-till system, varying the time adoption from short-term 

(two years) in Campina do Simão site, to long-term, more than 10 years  in Taguá 

and Pinhão sites, and 30 years in Candói and Guarapuava sites. All sites, with 

the exception of Campina do Simão, have a long history of soybean cultivation 

(more than 15 years). Regional climate is Cfb (humid temperate climate with 

moderately hot summer), according to Köppen classification, without a dry 

season (APARECIDO et al., 2016). Annual precipitation ranges from 1550 to 

1800 mm, with occurrence of weekly rainfall during spring/summer, and annual 

mean temperature ranges  from 16.5 to 18.5 °C, in average of 25 years 

(APARECIDO et al., 2016). Precipitation and temperature data for each site-year 

is shown in Appendix 1. Soils of the trials were classified as Hapludox (SOIL 

SURVEY STAFF, 2014). Across the years, the trials were conducted in the same 

farm at each site, but different locations within the farm; thus, each site-year were 

considered independent sites. 

Six treatments were evaluated: a control (without N fertilization), four 

starter N fertilization rates (10, 20, 30, and 40 kg N ha-1 applied as urea (46% N) 

at sowing), and full-N fertilization (300 kg N ha-1 applied as urea in twice: 50% at 

sowing and 50% at R1 growth stage). Experiments were performed in completely 

randomized block design and factorial arrangement (N rate × location), with three 

or four repetitions. Plots consisted of eight planting rows spaced 40 cm apart and 

5 m long. 
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Table 12. Geographical coordinates and characterization of 0-20 cm soil layer from field trials conducted in 2015/2016 and 2016/2017 
growing seasons in Southern Brazil. 

Sites Latitude Longitude Mn S P K Ca Mg Al H + Al CECpH 7,0 Clay SOM V pH H2O 

mg dm-3 cmolc dm-3 g kg-1 % 

2015/2016 Growing Season 

C. Simão 1 25°03'57.83"S 51°50'01.98"W 32 85 1.5 47 4.5 3.8 0.0 4.4 12.8 470 41 66 5.6 

Taguá 1 25°34'26.97"S 51°37'00.40"W 6 21 5.3 66 5.1 2.8 0.1 3.9 11.9 400 51 68 5.4 

Pinhão 1 25°43'10.94"S 51°39'30.23"W 3 10 25.0 60 7.1 4.4 0.0 2.8 14.4 340 47 81 6.2 

Candói 1 25°36'22.39"S 51°59'12.58"W 4 16 8.5 97 6.3 2.6 0.0 4.9 14.0 280 60 65 5.5 

Guarapuava 1 25°32'51.07"S 51°29'50.83"W 4 12 6.5 194 6.6 2.8 0.0 3.1 13.0 340 46 76 5.8 

2016/2017 Growing Season 

C. Simão 2 25°03'47.64"S 51°50'07.55"W 20 31 2.6 114 6.1 4.2 0.0 5.5 16.1 470 47 66 5.6 

Taguá 2 25°34'17.16"S 51°37'05.82"W 7 13 2.1 98 7.1 4.1 0.0 5.5 16.9 400 53 68 5.7 

Pinhão 2 25°39'59.69"S 51°42'51.09"W 4 16 4.0 288 8.3 5.3 0.0 4.9 19.2 340 52 75 5.8 

Candói 2 25°26'38.70"S 51°54'32.81"W 3 13 8.4 147 8.1 3.6 0.0 5.5 17.5 280 57 69 5.7 

Guarapuava 2 25°32'43.68"S 51°30'01.18"W 9 15 7.3 231 6.5 2.8 0.1 8.7 18.6 340 50 53 5.4 

Mn: extracted by HCl 0.1 mol L-1; S: extracted by Ca(H2PO4)2 containing 500 mg P L-1; P, and K: extracted by Mehlich-1; Ca, Mg, and Al: extracted by KCl 1 mol L-

1; clay content: determined by the pipette method; SOM – soil organic matter: determined by wet oxidation-redox titration (Walkley-Black) method; CEC – cation 
exchange capacity; V – base saturation. 
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For all trials, soybean ‘BMX Apolo RR’ (Don Mario 5.8i), indeterminant 

growth habit, was sown at 30 seeds m-2. Liquid inoculant containing 

Bradyrhizobium elkanii (SEMIA 5019) + B. japonicum (SEMIA 5079) strains was 

applied at a rate of 100 mL per 50 kg seeds at all plots, except for the full-N 

treatment. Seeds received fungicide and insecticide treatments before sowing, 

which occurred between the end of October and mid-November. Soil samples 

were collected at sowing and their characterization (0-20 cm layer) is in Table 12. 

For all treatments, fertilization was managed as 250 kg ha-1 of 00-25-25 (N-P2O5-

K2O). Phytosanitary treatments were applied according to regional 

recommendations. 

In the zero-N and starter N treatments, five plants per plot were 

collected at flowering (R1, FEHR; CAVINESS, 1977) growth stage and separated 

into root, shoot, and nodules. Roots were sampled using a shovel (inserted 15 

cm from the main stem) to assess the 0-30 cm soil layer below the five plants 

collected. Samples were dried at 65 ºC until constant weight had been reached. 

In the first cropping season (2015/2016), nodule number and dry weight (DW) 

were analyzed in the entire root, while in second cropping season (2016/2017) 

those variables were obtained only from the crown root to facilitate the 

measurements. Nodule number and weight from the whole root in the second 

cropping season were estimated based on the data collected from the crown root 

according to equations fitted by Cardoso et al. (2009). Nitrogen concentration in 

the shoot was determined by the Thermo Fisher Scientific CN Analyzer (Flash 

200 model), and N content in the shoot was calculated by considering the shoot 

DW. At harvesting, seed yield was determined and expressed as 130 g kg-1 

moisture content. 

2.2. Statistical analysis 

Based on the objectives, data of each trial was divided in two data 

sets. On the first one, for starter N evaluation, the control treatment (zero-N) and 

the starter N rates treatments were analyzed. On the second, for N limitation 

study, zero-N and full-N were used. Data for both tests (starter N and N limitation) 

were submitted to analysis of variance. For starter N topic, blocks within site, and 

the interaction between site and treatment were considered as random factors. 

Means were compared by Tukey HSD using the lsmeans function (lsmeans R 
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package; LENTH, 2016) at the 0.05 confidence level. For the N limitation test, a 

linear regression model was fitted between full-N and zero-N. In addition, the 

dataset was divided into terciles categorizing the sites in three yield levels 

according to the mean yield per site. Low (< 5000 kg ha-1), medium (5000-6000 

kg ha-1), and high (> 6000 kg ha-1) yield levels included three (Campina do Simão 

1 and 2, and Pinhão 1), four (Taguá 1 and 2, Candói 1, and Guarapuava 1) and 

three (Pinhão 2, Candói 2, and Guarapuava 2) sites, respectively. 

Complementing the linear regression, the proportion of yield difference for full-N 

relative to zero-N was calculated for each yield level. 

Regression models were developed between average yield (zero-N 

treatment) in each site and N derived from the air (Ndfa) and soil organic matter 

(SOM) aiming to understand if yield variations were related to the BNF and/or 

mineral N derived from SOM mineralization. The Ndfa measurements were 

obtained from studies conducted in the same sites during the 2017/18 season 

(Chapter 4). As soil type and weather characteristics were similar between years, 

and minor variation in Ndfa within a site across years is reported in the literature 

(ALVES et al., 2006), we think the Ndfa values can provide useful information in 

this analysis. 

3. Results

3.1. Starter N fertilization 

Soybean seed yields ranged from 3421 to 6137 kg ha-1 in average of 

all the ten sites, and with Guarapuava 2, Candói 2, and Pinhão 2 presented the 

highest seed yield and seed number (Table 13). Overall, Guarapuava 2 also had 

higher values of seed DW and shoot DW related to the other sites (Table 13). All 

the plant variables were generally lower in Campina do Simão 1 and 2 (Table 13). 

Regardless of potential trends in several factors, fertilizer N rates (10 to 40 kg N 

ha-1) applied at sowing did not influence any of the variables analyzed (p>0.05; 

Table 13) relative to the control (no N added). Interaction effects (site × N rate) 

were observed for seed number, nodule number and shoot:root ratio (Table 13). 

However, the interaction effects were due to site differences, and not because of 

the N fertilization (treatment). 
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3.2. N limitation 

Overall, full-N treatment increased seed yield in 236 kg ha-1 (from 5183 

to 5419 kg ha-1) related to zero-N (p<0.0001), which represents a yield increase 

of 4.6% across sites. Soybean yield for full-N versus zero-N relationships 

presented similar slopes (p=0.12) at varying yield levels (Fig. 6A), but differed 

only on the intercepts (p=0.012) of the adjusted model. When yields were 

evaluated in levels (low, medium, and high), a trend was observed for greater 

yield under full-N relative to the zero-N (Fig. 6B), with a larger separation on yield 

under low levels (7.2% yield difference for full-N vs. zero-N). Yield components 

were not affected by full-N fertilization in any of the yield environments (p>0.05; 

Table 14). 

Seed yield in non-N-fertilized (zero-N) soybeans averaged 4068, 

5384, and 6110 kg ha-1 in low, medium, and high yield levels. High yield levels 

were achieved through a combination of both high N fixation and a potential 

greater N contribution derived from N mineralization (Fig. 7). For N fixation, after 

65% of Ndfa, seed yield tended to plateau, potentially emphasizing that N 

demand is not limited by this factor beyond that point (Fig. 7A). Above 5000 kg 

ha-1 for soybean seed yield, contribution of N derived from mineralization process 

seems to be a larger component of increasing yields and sustaining plant N 

demand (Fig. 7B). 

In summary, starter N fertilization with small fertilizer N rates was not a 

useful practice aiming to increase soybean yields, potentially highlighting the 

absence of a N limitation early in the crop-growing season. For the full-N study, 

N limitation tended to be greater in low yields compared to medium-high yield 

levels, potentially connected with co-limitations on N demand coming from both 

N fixation and N mineralization processes. 
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Table 13. Seed yield and its components, root nodulation, N content, shoot and root growth at R1 stage of soybean fertilized with 
starter N in ten field trials conducted in 2015/2016 and 2016/2017 growing seasons, in Southern Brazil. 

Treatment 
Seed Nodule Shoot Root Shoot:root 

ratio Yield Number Dry weight Number Dry weight N content Dry weight Dry weight 

kg ha-1 seeds m-2 mg seed-1 nodules plant-1 mg plant-1 kg ha-1 kg ha-1 

C. Simão 1 3421 e 1842 h 186 b 55 b 151 de 53 d 1200 d 270 d 4.8 fg 
C. Simão 2 4004 d 2320 g 171 d 23 d 120 e 70 cd 1800 c 360 cd 5.3 efg 
Taguá 1 5454 b 2939 d 186 b 81 a 206 bc 127 a 2520 ab 420 bc 6.2 cde 
Taguá 2 5482 b 3106 b 176 cd 39 c 233 b 109 ab 3030 a 540 a 5.8 def 
Pinhão 1 4853 c 2659 f 183 b 90 a 280 a 99 abc 2220 bc 330 cd 6.8 bc 
Pinhão 2 5921 a 3201 a 185 b 44 bc 179 cd 76 bcd 2070 bc 450 ab 4.7 g 
Candói 1 5491 b 3038 c 181 bc 79 a 227 b 101 abc 2280 bc 300 d 8.0 a 
Candói 2 6044 a 3295 a 184 b 31 cd 115 e 109 ab 2610 ab 360 cd 7.5 ab 
Guarapuava 1 5308 b 2876 e 185 b 88 a 239 ab 117 a 2520 ab 390 bc 6.4 cd 
Guarapuava 2 6137 a 3182 a 193 a 30 cd 140 de 102 abc 3090 a 450 ab 6.8 bc 

0 kg N ha-1 5206 2846 181 57 202 93 2250 360 6.3 
10 kg N ha-1 5197 2822 184 53 188 86 2100 360 6.2 
20 kg N ha-1 5195 2821 184 56 191 98 2370 390 6.2 
30 kg N ha-1 5269 2876 183 58 191 104 2550 420 6.2 
40 kg N ha-1 5192 2863 182 56 173 101 2400 390 6.2 

Site (S) *** *** *** *** *** *** *** *** *** 
N rate (N) ns ns ns ns ns ns ns ns ns 
S × N ns ** ns * ns ns ns ns * 

Means with different letters within columns differ by the Tukey’s test at p ≤ 0.05. 
Levels of significance: ***p < 0.001; **p < 0.01; *p < 0.05; ns: not significant.
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Figure 6. Seed yield in full-N vs. zero-N (A), and percentage of seed yield 
difference between both treatments for low (< 5000 kg ha-1), medium (5000-6000 
kg ha-1), and high (> 6000 kg ha-1) yield environments (B). In A, each data point 
represents a repetition of both treatments at all sites, and the diagonal solid line 
is a 1:1 line. In B, each bar represents the average of all sites for each yield 
environment. The absence of a letter means there was no significant difference 
by ANOVA (p < 0.05), and vertical lines are the standard error. 
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Table 14. Seed dry weight and number in full-N vs. zero-N for low, medium and 
high yield environment. 

Yield environment N rate 
Seed number Seed dry weight 

seeds m-2 mg seed-1 

Low Zero-N 2288 ns 178 ns 
Full-N 2394 182 

Medium Zero-N 2973 ns 181 ns 
Full-N 3097 182 

High Zero-N 3275 ns 187 ns 
Full-N 3370 187 

ns: not significant by ANOVA (p < 0.05). 

Figure 7. Relationship between seed yield in zero-N and nitrogen derived from 
the air (A) and soil organic matter (B). In both figures, each data point represents 
the average of every single site.
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4. Discussion

4.1. Starter N fertilization 

Soybean yield response to small N amounts should be expected only 

in N-deficient soils (DADSON; ACQUAAH, 1984), which is not the case of soils 

from the Center-south region of Paraná, Southern Brazil with high SOM (SOM > 

41 g kg-1; Table 12) (FONTOURA; BAYER, 2009). Lack of yield response to 

starter N is consistent with previous studies in Brazil (ARATANI et al., 2008; 

BALBINOT JUNIOR et al., 2016; HUNGRIA et al., 2006; JENDIROBA; CâMARA, 

1994; MENDES; HUNGRIA; VARGAS, 2003) and around the world (HERRIDGE; 

BROCKWELL, 1988; JANAGARD; EBADI-SEGHERLOO, 2015; JOSIPOVIĆ et 

al., 2011; KAMARA et al., 2012; MRKOVAČKI; MARINKOVIĆ; AĆIMOVIĆ, 2008) 

with diverse soil and weather conditions. 

4.2. N limitation 

Interestingly, soybean yield response to full-N fertilization tended to be 

greater in low than medium-high yield environments (Fig. 6A, B), while based on 

previous studies, greater differences were expected in yield environments above 

4500 kg ha-1 (SALVAGIOTTI et al., 2008). However, great N demand to sustain 

high seed yield is not the only issue driving N limitations in soybeans. For 

instance, our results showed that potential problems related to N supply via BNF 

(RAY; HEATHERLY; FRITSCHI, 2006) and/or soil mineral N availability 

(DADSON; ACQUAAH, 1984; SCHIPANSKI; DRINKWATER; RUSSELLE, 2010) 

are even more relevant and were not taken into consideration in previous 

investigations (CAFARO LA MENZA et al., 2017; ORTEZ et al., 2018).  

As for the soybean yield limitations, the Center-south region of Paraná, 

Southern Brazil, usually does not have problems with water deficiencies and/or 

heat stresses (Appendix 1). Therefore, the main challenge for low-yielding 

soybean producers is adopting conservation management practices to increase 

SOM, such as no-till and crop rotation (BAYER et al., 2009; DIECKOW et al., 

2005), providing adequate conditions for the BNF process (DIVITO; SADRAS, 

2014; FERGUSON; GRESSHOFF, 2016). For high-yielding soybean producers, 

applying N fertilizers will impair BNF (KANAYAMA; WATANABE; YAMAMOTO, 

1990; STREETER; WONG, 1988) and increasing N2 fixation might come together 
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with a rise on the energetic cost, which might penalize seed yield (TAMAGNO et 

al., 2018). 

Feeding the growing world population is one of the greatest challenges 

for the next decades. Increasing crop productivity per unit area instead of opening 

new arable lands is one of agriculture’s main challenges for the near future 

(FISCHER; CONNOR, 2018). However, applying high N amounts to attain the 

maximum yield potential is not environmentally profitable, hence, finding ways to 

increase BNF should be the main thought of soybean researchers in the next 

years. It is not our intention to recommend N fertilization to farmers.  

5. Conclusion

The main key outcomes of this research were: i) starter N fertilization 

did not increase yields, potentially highlighting the absence of an early-season N 

limitation, and ii) N limitation tended to be greater in low-yield levels compared to 

medium-high yield levels, potentially connected with co-limitations on both N 

sources (N fixation and mineralization) to maintain soybean N demand. 

Producing soybeans in a sustainable manner will require focusing on production 

practices to conserve and, potentially, to increase in a long-term basis SOM and 

promote enhancing the BNF process for maintaining the large N demand required 

to achieve superior soybean yields. Future investigations should focus on 

obtaining a more complete characterization of soil, weather, and plant-related 

traits critical to improving the understanding of both N mineralization and N 

fixation processes. 
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CHAPTER 6 – Final discussion 

The main agricultural challenge for the next decades is to feed the 

growing world population, and strategies are required to intensify crop production 

as sustainably as possible. Therefore, the target is raising crop yield by getting 

closer to the maximum yield potential instead of increasing acreage by opening 

new arable lands, but more than that it is desirable to use efficiently all the inputs 

in cropping to avoid environmental  impacts (FISCHER; CONNOR, 2018). 

Thinking in this way, soybean has an advantage over other crops due to BNF, 

which allows its cultivation without applying N fertilizers. Despite that, there are 

still important questions about the nutritional N management of soybeans. For 

instance, although it is a low-cost agricultural practice, annual inoculation 

increases the operational time of soybean sowing management, leading many 

farmers to question whether this practice is even needed to ensure the 

establishment of root nodulation by rhizobium and, consequently, supplying the 

N required to obtain a satisfactory soybean seed yield. Results of Study 1 of this 

thesis showed inconsistent seed yield response to inoculation in 31 trials in the 

Center-south region of Paraná State (Brazil), regardless of the type of seed 

inoculant tested (solid or liquid). It was also found high number and dry weight of 

nodules even in non-inoculated soybeans, indicating that successfully 

established rhizobium strain populations in the soil were as efficient as the ones 

introduced via the inoculation practice. These results confirmed the hypothesis of 

lack of soybean response to inoculation in fields with inoculant application history. 

Although re-inoculation did not increase soybean seed yield in the 

studied region, eventually stressing conditions (e.g., drought, hypoxia, heat) 
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might reduce rhizobium population in the soil (HUNGRIA; MENDES, 2015; ZILLI 

et al., 2013), increasing the probability of soybean yield response to inoculation 

as a consequence of an insufficient symbiosis establishment (DE BRUIN et al., 

2010; THIES; SINGLETON; BOHLOOL, 1991). However, the analysis of 

rhizobium population in the soil is not an agricultural practice; as well, it is 

unknown the rhizobium residence time in the soil after several years of 

continuous cropping without inoculation. Therefore, notwithstanding an 

inconsistent yield response to inoculation, as this practice does not represent a 

substantial increase in production costs, farmers should consider this input as an 

insurance, for potentially avoiding reduction of rhizobium soil population and thus 

ensuring adequate N supply for via BNF for attaining site-specific maximum 

soybean seed yields. Future research should consider studying the residence 

time without the efficiency loss in native rhizobium strains after years without 

soybeans grown and/or inoculated, helping to identify areas with a history of 

soybean cultivation in which this practice will be more effective. Likewise, looking 

at the differential ability of rhizobium strains to fix N and to find the specific strain-

variety combination to optimize BNF process and attain maximum soybean seed 

yields would be helpful. 

Furthermore, understanding how the complex interaction among 

environmental factors affect the contribution of N derived from the air (Ndfa – the 

proportion of N supplied through BNF) to soybean N nutrition might be helpful for 

the best use of resources in its cultivation. Factors related to climate conditions, 

such as water availability and temperature, are well documented in the literature 

as influencing BNF due to problems related to drought (PURCELL; KING, 1996; 

RAY; HEATHERLY; FRITSCHI, 2006; SINCLAIR; SERRAJ, 1995) and/or heat 

stresses (HUNGRIA; FRANCO, 1993; KEERIO; WILSON, 1998) in legumes 

grown in tropical and subtropical conditions. However, in the Center-south region 

of Paraná, Southern Brazil, that is not an issue due to mild temperatures and 

abundant rainfall frequently observed during the cropping season (Appendix 1 

and 2). Consequently, findings from Study 2 showed that interaction among 

factors related to soil fertility were more important for Ndfa than variables related 

to climate conditions. For instance, soil total N was the most detrimental variable 

to Ndfa. However, increasing available P and exchangeable Ca minimized the 

negative impact of soil total N to N2 fixation. Furthermore, seed yield was related 
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to Ndfa. Therefore, improving soil fertility to benefit the BNF process is a key 

factor for increasing soybean yield in regions not affected by stresses related to 

climate conditions, like water deficiencies and high temperatures. 

The average contribution of Ndfa to soybean N was 61%, lower than 

the previously country-level (80%) documented for Brazil (HERRIDGE; 

PEOPLES; BODDEY, 2008) and the Ndfa range recorded by researchers from 

69 to 94% (ALVES et al., 2006; HUNGRIA et al., 2005, 2006), but similar to the 

worldwide mean value reported by Ciampitti and Salvagiotti (2018). The minor 

Ndfa found in this region compared to the whole country is probably related to 

the high soil N availability documented by Fontoura and Bayer (2009), while most 

soils cultivated with soybeans in Brazil have a low capacity to N supply for crops 

(HERRIDGE; PEOPLES; BODDEY, 2008). However, the contribution of N-fixed 

(measured at R5 growth stage) averaged 167 kg ha-1 and ranged from 62 to 274 

kg ha-1 (IQR50, 141 to 190 kg ha-1), which is higher than the worldwide average 

(CIAMPITTI; SALVAGIOTTI, 2018). Even the proportional contribution (Ndfa) of 

BNF in Center-south region of Paraná is lower than the Brazilian average; it was 

found that a great amount of N supplied (N-fixed, in kg ha-1) to soybeans, allows 

this region to attain one of the highest average soybean seed yields of the 

country. The next step about this subject for the studied region is to determine 

the soybean N balance, calculated by the difference between the N amount 

exported by seeds and incorporated in the system through FBN. That will help us 

understand if soybeans grown in the edaphoclimatic conditions found in the 

Center-south of Paraná is depleting or incorporating N from the soil. Then, it will 

be possible to think about sustainable management strategies aimed at N 

reposition to the system in case of N depletion by soybeans. 

Findings of Study 3 also showed an average yield gap due to N 

limitation of 4.6% for soybeans in Center-south of Paraná, which was lower for 

high yield environments (3.4%), with seed yield higher than 6000 kg ha-1, and 

higher for low yield environments (7.2%), with seed yield lower than 5000 kg ha-

1. Small N amounts (up to 40 kg ha-1) were also performed to evaluate if starter

N fertilization could be a profitable way to improve soybean seed yield and reduce 

the yield gap. However, a lack of response was found and showed that starter N 

is not the preferential management practice to increase seed yield and reduce 

the yield by N limitation. This differs  from previous reports that showed great 
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yield gaps related to high yield environments (CAFARO LA MENZA et al., 2017; 

ORTEZ et al., 2018), our results showed higher yield gaps in low yield 

environments due to detriment over N supply (through N2 fixation or soil). 

Furthermore, high seed yield was related to greater values of Ndfa and SOM. 

This result and others in this thesis led us to conclude that improving soil fertility 

to promote crop growth and BNF process and adopting conservation 

management practices to increase SOM should be the focus of farmers to reduce 

N limitation and increase soybean seed yield. 
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APPENDICES 

Figure 1. Precipitation and temperature (minimum, mean and maximum) of all 
the sites in 2015/2016 and 2016/2017 growing seasons. 
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Table 1. Entire set of variables determined in the 24 sites of Center-south region of Paraná, Southern Brazil. 

Site 
Soybean variety 
(maturity group) 

Sowing 
date 

Population Seed yield Shoot dry weight Shoot N content N-fixed Ndfa Org. C Total N Soil pH Clay 
plants m-2 kg ha-1 Mg ha-1 kg ha-1 kg ha-1 % g kg-1  % 

1 BMX Apolo RR (5.5) Oct. 18 33 3839 6.7 250 170 68 46.2 3.5 5.8 34 
2 BMX Ativa RR (5.6) Oct. 13 36 4491 6.9 238 168 70 38.4 2.5 5.9 34 
3 K5616 (5.6) Oct. 15 31 4202 8.4 273 211 77 43.0 2.6 5.7 34 
4 M5917 IPRO (5.9) Nov. 05 30 3825 9.4 258 181 70 41.1 2.4 6.8 28 
5 BMX Apolo RR (5.5) Nov. 11 31 3777 8.6 285 192 67 42.9 2.9 6.5 22 
6 BMX Apolo RR (5.5) Oct. 13 37 3877 8.8 290 160 55 32.5 2.3 5.8 54 
7 BMX Elite IPRO (5.5) Oct. 13 30 3626 9.9 260   62 24 50.2 3.3 5.2 34 
8 BS 2606 IPRO (6.0) Nov. 06 28 4033 9.1 268 109 41 43.6 2.8 5.7 28 
9 BMX Apolo RR (5.5) Oct. 18 37 4825 6.6 228 163 72 36.1 2.5 5.7 40 
10 K5616 (5.6) Oct. 16 32 4326 8.4 280 239 85 35.5 2.2 6.3 34 
11 K6221 (6.2) Nov. 11 36 3842 7.9 262 167 64 43.1 2.9 5.6 28 
12 BMX Apolo RR (5.5) Nov. 05 35 3881 9.1 282 185 66 37.3 2.5 6.1 34 
13 K5616 (5.6) Oct. 18 31 4149 7.6 258 133 52 36.1 2.7 5.6 54 
14 DM 54i52 RSF IPRO (5.4) Sep. 26 36 3694 10.8 359 115 32 29.7 2.3 6.1 47 
15 BMX Vanguarda IPRO (6.0) Oct. 10 33 4268 8.8 268 156 58 21.1 1.8 5.0 47 
16 Roos Camino RR (5.3) Oct. 15 34 3851 7.7 278 199 71 32.3 2.2 5.6 47 
17 K5616 (5.6) Oct. 16 35 3814 10.4 278 164 59 42.1 2.6 5.8 47 
18 BMX Elite IPRO (5.5) Oct. 23 23 4456 10.7 329 171 52 35.4 2.4 6.2 22 
19 BMX Lança IPRO (5.8) Oct. 23 31 4028 10.7 350 274 78 37.5 2.7 6.1 47 
20 BMX Apolo RR (5.5) Nov. 05 30 3597 7.3 255 137 54 39.6 2.6 6.0 40 
21 BMX Ativa RR (5.6) Oct. 16 37 3866 8.3 258 162 63 38.1 2.3 5.6 36 
22 Roos Camino RR (5.3) Oct. 12 36 4116 6.1 211 127 60 33.6 2.5 5.6 >60
23 BMX Ativa RR (5.6) Nov. 12 41 3959 6.9 236 152 65 35.1 2.8 6.0 >60
24 K5616 (5.6) Nov. 03 30 3983 7.9 282 203 72 48.4 2.7 7.3 34
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Table 1. (continuation) 

Site 
Available P Exchang. K Exchang. Ca Exchang. Mg Available S 

Base 
saturation 

Available Mn Altitude Cum. rainfall Mean air temperature 

mg dm-3 cmolc dm-3 mg dm-3 % mg dm-3 m Until R1 R1 – R5 Until R1 R1 – R5 

1 9.4 186 8.5 4.1 9.7 70 19 1029 734.6 96.6 20.0 19.3 
2 7.6 131 7.5 3.8 13.0 71 4 944 463.2 351.2 19.7 20.7 
3 5.0 155 7.2 2.0 8.3 64 5 958 652.4 180.8 19.5 20.5 
4 7.2 83 10.8 7.3 8.8 92 1 917 447.4 161.0 20.2 20.2 
5 6.1 196 9.8 3.6 8.1 82 4 991 498.8 247.8 20.3 19.5 
6 3.3 58 8.1 3.5 6.4 73 8 889 615.8 199.4 20.6 21.1 
7 2.5 210 4.5 1.7 16.0 41 17 833 528.8 399.6 21.2 20.0 
8 11.0 241 7.4 2.7 10.0 63 9 961 571.6 308.8 20.6 20.8 
9 12.0 213 6.3 2.6 8.7 66 10 989 630.8 167.4 19.4 20.7 
10 7.9 173 9.8 4.7 19.0 83 4 981 1226.6 176.4 18.7 19.8 
11 13.0 202 6.6 1.9 14.0 57 16 1069 453.0 256.8 20.3 20.4 
12 11.0 101 7.9 4.3 9.5 76 4 1120 1010.4 202.2 19.4 19.5 
13 6.7 215 6.8 3.4 9.6 66 19 827 740.8 110.4 20.1 21.0 
14 6.6 115 8.5 3.1 13.0 79 8 813 660.8 364.8 19.0 21.5 
15 16.0 106 4.7 1.3 8.8 45 34 499 243.6 313.6 22.1 23.2 
16 10.0 72 8.3 2.9 8.4 65 24 874 483.4 364.2 19.6 20.8 
17 6.9 204 7.7 2.1 12.0 65 7 876 538.4 343.8 19.7 20.7 
18 8.0 203 8.3 4.6 8.5 81 6 930 689.4 219.8 19.9 20.7 
19 16.0 214 8.7 4.3 8.9 78 8 1045 447.0 321.2 19.3 19.9 
20 7.5 153 10.1 5.3 11.0 78 6 957 442.6 170.8 20.5 20.5 
21 8.5 249 7.7 2.9 6.8 62 10 1012 766.4 164.0 19.6 20.6 
22 6.1 154 6.9 3.8 9.9 69 40 725 377.0 344.8 21.4 22.4 
23 10.0 255 7.9 3.8 22.0 78 46 817 298.0 96.6 21.6 21.2 
24 11.0 154 13.8 7.8 8.6 95 2 1048 518.4 50.6 19.6 20.4 
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Table 2. Canonical weights for the variables of entire dataset. 

Variable Discriminant 1 Discriminant 2 

Seed yield 0.86235782 -0.38233919
Shoot N content 0.22207919 -0.80690504
Plant population -0.08478264 -0.27010763
Maturity group 0.07485637 0.28131840
Clay content 0.66146377 -0.10069244
Soil oganic C 0.92943322 -1.67839320
Soil total N -0.95794375 -0.06617305
Soil pH -0.10460094 0.30795677
Available P 0.13298249 -0.57793787
Available K -0.14707610 0.09338417
Exchangeable Ca 0.66511387 -0.03124065
Exchangeable Mg -0.42742497 -0.01483469
Available S -0.10103043 -0.37172804
Available Mn 0.45707566 0.57920359
Base saturation -0.10325702 -0.12106329
Altitude -0.10302681 0.58000952
Cumulative rainfall (until R1) -0.19758004 -0.56004031
Cumulative rainfall (R1 - R5) -0.31747007 -0.15522101
Mean air temperature (until R1) -0.01001821 -0.12536575
Mean air temperature (R1 - R5) -1.01469196 -0.86951776
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Figure 2. Boxplots comparison of altitude (A), air temperature (B), clay (C), 
organic carbon (D), total nitrogen (E), phosphorus (F), calcium (G), manganese 
(H), shoot N content (I) and seed yield (J) for low (<44%), medium (44-72%) 
and high (>72%) Ndfa groups. 




