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"Science is a way of thinking
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ABSTRACT

Ranging from traditional video streaming to Virtual Reality (VR) videos, the demand
for video applications to mobile devices is booming. To deal with the massive traffic
produced by video applications, mobile operators rely on offloading technologies such
as Small Cells, Content Delivery Networks and, shortly, Cloud Edge and 5G Device
to Device communications. Although these techniques are fundamental for improving
network efficiency, they produce a multitude of paths through which the user traffic can
be forwarded. Most importantly, such an increased path diversity does not provide any
guarantee regarding user’s Quality of Experience (QoE). Thus, a critical problem arises
about how to handle the increasing video traffic while managing the interplay between
infrastructure optimization and QoE. Solving this issue is remarkably difficult, and recent
investigations do not consider the large-scale context of mobile operator networks. In a
nutshell, the problem of dynamic provisioning of QoE-aware paths can be decomposed
into two fundamental functions: (i) QoE measurement or estimation and (ii) path selec-
tion on a programmable network. To address the problem of QoE estimation, we propose
a model to predict video streaming quality based on the observation of performance
indicators of the underlying IP network. To accomplish this objective, the proposed
model leverages lightweight active measurements and machine learning techniques. In a
further step, we introduce a novel QoE-aware path deployment heuristic for large-scale
SDN-based mobile networks. The scheme relies on both a polynomial-time algorithm
for composing multiple QoS metrics and a scalable QoS to QoE translation strategy.
Obtained results show that the proposed methods for video streaming performance pre-
diction produce accurate estimates. As a consequence, our approach for QoE-aware
path selection outperformed state-of-the-art techniques approaches by reducing impaired
videos in aggregate QoE by at least 37% and lowering accumulated video stall length four
times. Based on the lessons learned with QoE prediction for traditional video streaming,
we finally explore the VR video domain by introducing PERCEIVE and VR-EXP. PER-
CEIVE is a two-stage method for predicting the perceived quality of adaptive VR videos
when streamed through mobile networks. By means of machine learning techniques, our
approach is able to predict the playout performance of adaptive VR video and use this
information to model and estimate QoE. In turn, VR-EXP consists of an experimentation
platform that allows in-depth evaluation of state-of-the-art VR video optimization tech-
niques. VR-EXP relies on software-based emulation to assess the interplay between a set
of VR video optimization techniques and different levels of network performance.

Keywords: Quality of Service. Quality of Experience. Video Streaming. Virtual Reality.
VR Video. Path Selection. Mobile Networks.



Seleção Escalável de Caminhos Sensíveis à QoE em Redes Definidas por Software

RESUMO

Desde o streaming de vídeo tradicional até os vídeos de Realidade Virtual (VR), a de-
manda por aplicativos de vídeo para dispositivos móveis está crescendo rapidamente.
Para lidar com o tráfego massivo produzido por tais aplicativos, as operadoras de tele-
fonia móvel contam com tecnologias de offloading, tais como Small Cells, Content De-
livery Networks e, em breve, Cloud Edge e 5G Device to Device. Embora essas técnicas
sejam fundamentais para melhorar a eficiência da rede, elas produzem uma infinidade de
caminhos pelos quais o tráfego do usuário pode ser encaminhado. No entanto, a expansão
da diversidade de caminhos não fornece nenhuma garantia em relação ao incremento na
Qualidade da Experiência (QoE) do usuário. Assim, surge um problema fundamental que
consiste em como lidar com o crescente tráfego de vídeo enquanto se gerencia a interação
entre otimização de infraestrutura e QoE. Resolver esse problema é notavelmente difícil,
e investigações recentes não consideram o contexto de grande escala característico das
redes de operadoras de telefonia móvel. Em suma, o problema do provisionamento dinâ-
mico de caminhos sensíveis à QoE pode ser decomposto em duas funções fundamentais:
(i) medição ou estimativa de QoE e (ii) provisionamento dinâmico de caminhos em uma
rede programável. Para abordar o problema da estimativa de QoE, propomos um modelo
para prever a qualidade do streaming de vídeo com base na observação dos indicadores de
desempenho da rede IP subjacente. Para atingir esse objetivo, o modelo proposto utiliza
medições ativas leves e técnicas de aprendizado de máquina. Em uma etapa adicional,
introduzimos uma heurística inovadora para provisionamento de caminhos sensíveis à
QoE em redes móveis de larga escala e baseadas em SDN. O método é baseado em dois
componentes principais. O primeiro consiste em um algoritmo de tempo polinomial para
compor múltiplas métricas de QoS. Já o segundo componente implementa uma estratégia
escalável para tradução de QoS para QoE. Os resultados obtidos mostram que os métodos
propostos para previsão de desempenho de streaming de vídeo produzem estimativas pre-
cisas. Como consequência, nossa abordagem para a seleção de caminhos sensíveis à QoE
superou os métodos considerados como estado da arte ao reduzir a quantidade vídeos com
QoE degradado em pelo menos 37 %, bem como diminuir o tempo de congelamento da
reprodução de vídeo em quatro vezes. Com base nas lições aprendidas com a predição de
QoE para streaming de vídeo tradicional, finalmente exploramos o domínio de vídeos VR
introduzindo PERCEIVE e VR-EXP. PERCEIVE consiste em um método de dois está-
gios para predizer a qualidade percebida de vídeos VR adaptativos quando transportados
por redes móveis. Por meio de técnicas de aprendizado de máquina, nossa abordagem é
capaz de prever o desempenho de reprodução de vídeos VR e utilizar essas informações
para modelar e estimar QoE. Por sua vez, VR-EXP consiste em uma plataforma de ex-
perimentação que permite uma avaliação detalhada de técnicas de otimização para vídeos
VR. VR-EXP emprega emulação baseada em software para avaliar a interação entre um
conjunto de técnicas de otimização e diferentes níveis de desempenho de rede.

Palavras-chave: Qualidade de Serviço. Qualidade de Experiência. Streaming de Vídeo.
Realidade Virtual. Redes Móveis..
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1 INTRODUCTION

The future is mobile: wireless networks will account for more than two-thirds of

all IP traffic by 2020 (ITU, 2017). In this context, operators are being challenged by

video traffic, which is pushing their network infrastructure to the limit (MAALLAWI et

al., 2015). According to Cisco, mobile video accounted for 60% of total Internet traffic

in 2016. And there is more to come, since mobile video is expected to increase 9-fold by

2021, reaching 78% of total data traffic (CISCO, 2018). According to the same source,

Virtual Reality (VR) videos will significantly increase this challenge as the traffic gen-

erated by this application is expected to increase 12-fold by 2022 (CISCO, 2018). One

key enabler for supporting such a consistent growth is the diffusion of Head-mounted

Displays (HMDs). HMDs are presenting high penetration rates as they (i) are becoming

effective and affordable (e.g., Google Cardboard/Daydream1, (ii) are already provided at

no cost with certain smartphones (e.g., Google Pixel and Samsung Galaxy S series) and

(iii) are being pushed by industry (e.g., Facebook recently announced a permanent price

drop in Oculus Go headset with the goal of reaching 1 billion VR users2.

VR video streaming applications are challenging due to three main reasons: (i)

they will run mostly over mobile networks, as mobile devices will account for 71% of

the total IP Internet traffic by 2022 (CISCO, 2018); ii) mobile networks are character-

ized by highly variable levels of performance (FILHO et al., 2016); and (iii) VR video

streaming applications demand high levels of network performance to achieve a satisfac-

tory QoE (CISCO, 2018). To provide a notion of how demanding these applications are,

recent studies have shown that, to provide adequate levels of QoE, current VR video appli-

cations require a network delay lower than 9 ms (FILHO et al., 2018), while the bandwidth

needs for the upcoming ultra high definition VR will reach 500 Mbps (CISCO, 2018). At

this level of demand, not only will network operators struggle to provide cost-effective

services, but VR video content providers and developers will also be challenged by such

resource-intensive applications.

To deal with the huge growth in data traffic, mobile operators have to constantly

invest (i.e., CAPEX and OPEX) to increase capacity, to switch technology (e.g., 3G, 4G,

4G+, 5G), as well as to improve outdoor and indoor coverage. In the opposite direction,

the Average Revenue Per User (ARPU) for mobile broadband has fallen from USD 23 in

2013 to USD 13 in 2015 (ITU, 2016). All those elements together place a lot of pressure

1Google VR: https://vr.google.com/
2A billion people in VR: https://goo.gl/2LNuAo
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on operators to manage their infrastructure efficiently (MAALLAWI et al., 2015).

Aiming at increasing efficiency, mobile operators have been relying on offloading

technologies such as Small Cells (Femtocell, Picocell), Wi-Fi offloading, Content De-

livery Networks (CDNs), and, in the near future, 5G Device-to-Device communication

(D2D) and 5G Mobile Edge Computing (HUQ et al., 2017; ANSARI et al., 2018; FRAN-

GOUDIS; YALA; KSENTINI, 2017). These technologies are capable of offloading dif-

ferent segments of the network (i.e., edge, aggregation, core and peering) and therefore

play a fundamental role in network infrastructure optimization. Such approaches have

the ability to shorten the distance between subscriber and content while avoiding network

congestion by spreading the traffic among alternative paths. As an indication of how im-

portant these offloading techniques are, only in 2016, 60% of mobile data was relocated

to alternative paths, just considering Wi-Fi and Femtocell offloading (CISCO, 2018).

1.1 Problem Statement

The adoption of offloading techniques introduces a multitude of possible paths

through which user traffic can be forwarded and, as an immediate consequence, raises

the complexity of the network management (e.g., path selection, configuration and trou-

bleshooting). While very important, such an advanced infrastructure does not directly

translate into improved QoE (SCHLINKER et al., 2017). This is notably true if con-

sidering that some offloading techniques may rely on shared and third-party infrastruc-

ture, which would possibly exacerbate the unpredictability regarding the delivered QoE.

Therefore, a challenging task for mobile operators consists in how to handle the increas-

ing end-user traffic while optimizing infrastructure utilization and managing user’s QoE.

In fact, from the operator’s perspective, addressing this challenge is crucial for improving

competitiveness, since the effective management of the interplay between perceived QoE

and infrastructure investments is the main factor for increasing the return of investment

(NAM; KIM; SCHULZRINNE, 2016; AHMAD; FLORIS; ATZORI, 2016).

Given the context above, the main research challenge we intend to investigate is

how to take advantage of the path diversity introduced by upcoming technologies (e.g.,

5G D2D, Edge Computing, and Fog Computing) to dynamically select paths capable of

delivering cost-effective video applications. In a nutshell, the QoE-aware path selection

task can be decomposed into two challenging problems. The first problem consists of

timely predicting QoE for network paths. In turn, the second problem encompasses the
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large-scale path selection algorithm, which should be able to take constraints (e.g., target

QoE and available network resources) into account and select optimized paths. The first

problem is complex because the information that is closely related to QoE (e.g., subjective

evaluations and objective measurements) are not largely available or feasible to obtain in

a systematic approach for large-scale networks. Regarding the second problem, it can

be easily solved considering small deployments. However, it becomes notably complex

when combined with additional constraints (e.g., resource utilization) and applied to ultra-

dense networks. In the following paragraphs, we provide an overview of the QoE-aware

path selection problems examined in this Thesis.

QoE estimation for video streaming applications. Both the scientific commu-

nity as well as the industry agree that maximizing the user’s QoE regarding video stream-

ing applications represents a central research challenge (KATSARAKIS et al., 2014). An

essential aspect in this direction is to systematically determine the quality of the provided

video services. To this end, service providers require a solution with low intrusion, scal-

ability, and a reasonably accurate way to measure the quality of service delivered. This

task becomes particularly challenging if encompassing cellular networks, in which highly

intrusive measurement techniques would consume the resources available to subscribers.

In an attempt to estimate QoE, most state-of-the-art approaches rely on QoS to QoE map-

ping functions since mobile operators already have tools in place to measure QoS metrics

(JULURI; TAMARAPALLI; MEDHI, 2016).

QoE-aware path selection and resource utilization minimization problem. To

illustrate this problem, let us consider the simplified network topology shown in Figure

1.1. In the example, which is a temporal snapshot of a dynamic scenario, a subscriber

requests a specific video (1080p - 4 Mbps of bitrate), which can be served by any of

the three offloading containers (namely α1, α2 and α3). Consider the paths τ1, τ2 and τ3

have the following characteristics Φ(τ) = {hop count, residual bandwidth3 (Mbps), delay

(ms), loss4 (%)}: Φ(τ1) = (3, 3, 5, 0), Φ(τ2) = (4, 10, 10, 0) and Φ(τ3) = (7, 100, 15, 0).

Let us suppose the existence of an end-to-end QoS to QoE mapping function. In this

case, one would use residual bandwidth, delay and packet loss, so it would be possible to

estimate QoE for the paths τ1, τ2 and τ3. Differently from τ2 and τ3, τ1 does not provide

the QoS performance needed to achieve the maximum QoE score (here we estimate QoE

using the well-known Mean Opinion Score (MOS) ranging from 1 to 5) (ITU-T, 1998).

3In this document we consider residual bandwidth, TCP throughput and Bulk Transfer Capacity (BTC)
as equivalent.

4In this document we consider delay and packet loss as one-way metrics.
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Also, τ2 should be preferred since τ3 does not improve QoE and uses more resources (i.e.,

number of links).

Figure 1.1: Mobile operator network and the increased path diversity introduced by of-
floading techniques

Source: by author (2019).

However, when dealing with large-scale dense networks, such an end-to-end ap-

proach leads to the evaluation of an immense number of paths, which would become

impractical. One possible approach to solve this issue would be to consider paths as a

composition of N links while using QoE estimation as link weight. However, the QoS

metrics used to estimate QoE have different composition rules, which lead to an incon-

clusive aggregation result. In other words, the composition of N links with MOS 5 does

not necessarily result in an MOS 5 path (WANG; CROWCROFT, 1996). Another al-

ternative would be to compose the multiple QoS metrics along the path and then apply

the MOS estimation when the path is finally composed. However, the composition of

one concave, one additive and one multiplicative metric was shown to be NP-Complete

(WANG; CROWCROFT, 1996).

Finally, it would be possible to employ one of the following strategies: (i) use a

single QoS metric composition (e.g., residual bandwidth), since it is the most influential

when predicting QoE (CASAS et al., 2016), or (ii) use delay, which is an excellent metric

for sensing queue occupation (WANG; CROWCROFT, 1996) or, finally, (iii) a combina-

tion of both these metrics used in conjunction with a modified version of Dijkstra, as it

has shown to be a special case of aforementioned NP-Complete problem, which has poly-

nomial solution, named Shortest-Widest Path (SWP) (WANG; CROWCROFT, 1996).

Considering that those approaches are effective in avoiding bottlenecks, they would con-

sequently improve QoE. However, from a mobile operator’s perspective, these path selec-
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tion approaches fail at a critical point: they perform optimal decisions only within a time

frame and do not take the long-term operation (i.e. infrastructure resource utilization) into

consideration.

1.2 Hypothesis

The hypothesis we considered as the fundamental research challenge to guide this

Ph.D. research work is the following:

QoE-aware path selection strategies contribute to cost-effective video streaming.

The objective of this thesis is to verify the hypothesis above by answering the

following research questions.

Research Question 1. Considering that mobile operators already have tools in

place to measure network performance, would it be possible to employ monitored network

indicators to predict playout performance and QoE for both traditional 2D and VR video

streaming applications?

Research Question 2. How to employ QoE prediction to dynamically select and

deploy paths that maximize QoE and minimize infrastructure utilization over time?

1.3 Goals, Contributions and Scope

The Thesis has five main goals: (i) devise a prediction model capable of estimating

video streaming playout performance and QoE based on available network information;

(ii) formalize the QoE-aware path selection problem; (iii) formulate a QoE-aware path

selection heuristic with the ability to operate in dense networks; (iv) propose a QoE pre-

diction model for VR videos; and (v) provide an in-depth evaluation of state-of-the-art VR

video optimization techniques. These goals unfold into five main research contributions,

as enumerated next.

First, we introduce a model which relies on active IP performance measurements

to predict video quality. In a first stage, the model takes as input the observation of perfor-

mance indicators of the underlying IP network (i.e., delay, loss and residual bandwidth)

(FILHO et al., 2016). Next, it explores regression decision trees in order to estimate both

the video playout performance and QoE.
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The second contribution encompasses the formalization of the QoE-aware path

selection problem.

As for the third contribution, we address the QoE-aware path selection problem

by proposing a polynomial time complexity path selection heuristic. This algorithm takes

advantage of the previously proposed QoE prediction model and introduces a novel algo-

rithm for performing efficient QoE-aware path selection, in Software-defined Networks,

based on per-link QoE composition. The proposed method has the ability to perform

dynamic path selection by providing a feasible balance between QoE maximization and

network resource minimization over time.

Bringing the QoE prediction model to the virtual reality arena, as the fourth con-

tribution we introduce PERCEIVE, a two-stage adaptive VR performance assessment

model. It employs regression decision trees to predict VR video playout performance

using network QoS indicators as predictors. Then, it uses the video playout performance

metrics to model and estimate the end-user perceived quality.

When considering both the multitude of approaches to optimize a VR video

streaming and the highly variable mobile network performance, it becomes a difficult

challenge to understand how different (combinations of) optimization techniques per-

form under varying infrastructure conditions. To fill in this gap, as the fifth contribution

we introduce VR-EXP, an adaptive VR video streaming experimentation platform. The

platform is capable of systematically evaluating different combinations of VR video

streaming optimization approaches. Also, VR-EXP allows pinpointing the interplay

between a set of optimization techniques and variable network performance.

In summary, in this thesis we are interested in evaluating the efficiency of a dy-

namic path selection algorithm that benefits from accurate QoE prediction models. Thus,

we focus on elements of the video streaming domain that are affected by the network

performance (e.g., video fetching method, adaptive bitrate heuristic and playout buffer

dimensioning). Aspects such as video CODEC, saliency detection and video rendering

method are outside the scope of this work.

1.4 Organization

The remainder of this document is organized as follows.

• In Chapter 2, we present state-of-the-art approaches regarding QoE estimation and
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QoE-aware path selection.

• In Chapter 3, we introduce LEAP, a model for predicting video playout performance

and QoE based on network performance indicators.

• In Chapter 4, we formally define the path selection problem and propose a scalable

QoE-aware path selection scheme for SDN-enabled mobile networks.

• In Chapter 5, we describe PERCEIVE, a two-stage method for predicting the per-

ceived quality of adaptive VR videos when streamed through mobile networks.

• In Chapter 6, we introduce VR-EXP, a novel experimentation platform for VR video

streaming.

• In Chapter 7, we present our conclusions along with a perspective for future work.
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2 BACKGROUND AND STATE OF THE ART

In this chapter, we explore fundamental concepts as well as the most prominent

investigations related to QoE-aware path selection for video streaming applications. We

start by presenting the main elements of traditional video streaming. Next, we discuss rel-

evant aspects of QoE estimation for traditional video streaming. Then, we examine state-

of-the-art QoE-aware path selection schemes. Next, we explore cutting-edge techniques

for the VR video streaming ecosystem, namely spherical-to-plane projection, CODECS,

viewport-aware rate adaptation heuristics and prediction error for VR video streaming.

We conclude this chapter by reviewing important research work concerning adaptive bi-

trate algorithms and buffer management for VR video streaming.

2.1 Fundamental Concepts for Video Streaming

Apple HTTP Live Streaming (HLS) and MPEG-DASH (SODAGAR, 2011) are

two examples of HTTP Adaptive Streaming (HAS) implementations. MPEG-DASH is

an open standard which has been widely adopted by video clients. Basically, the MPEG-

DASH approach is focused on encoding the video content at multiple quality represen-

tations (i.e., bitrates), while each quality representation is time-segmented into small

parts (i.e., segments). These segments are described in a Media Presentation Descrip-

tion (MPD) file, which contains information such as segment duration, available bitrates,

and timing. Then, during the streaming session, the video client will perform the adap-

tive bitrate streaming. To do so, the video client relies on network bandwidth estimations

to decide, for each video segment, the quality representation that best fits the available

bandwidth. Although the DASH standard provides a comprehensive specification of the

video streaming service, it is agnostic to some important components such as the Adaptive

Bitrate (ABR) logic and the video CODEC.

One critical component of the video client is the adaptive bitrate streaming. ABR

algorithms are complex because they must manage the available bandwidth while maxi-

mizing the quality representation and minimizing the stall probability. Although the ABR

algorithms for traditional 2D video streaming have been extensively studied, recent in-

vestigations (AKHTAR et al., 2018; SPITERI; SITARAMAN; SPARACIO, 2018) have

shown that this is still an open-source research problem. As an example, it has been

demonstrated the possibility to significantly improve the performance of state-of-the-art
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ABR algorithms, namely BOLA (SPITERI; URGAONKAR; SITARAMAN, 2016) and

MPC (YIN et al., 2015a). Akhtar et al. (AKHTAR et al., 2018) found that both BOLA

and MPC algorithms rely on parameters that are sensitive to variable network perfor-

mance, so they may perform poorly under certain conditions. To fill this gap, the authors

introduce VirtualPlayer (AKHTAR et al., 2018), a trace-based simulator that mimics the

behavior of a traditional video streaming player. It allows, for example, to investigate

ABR algorithms when subjected to real-world networks. In the same direction, Spiteri et

al. (SPITERI; SITARAMAN; SPARACIO, 2018) introduce Sabre, an open-source sim-

ulation tool that enables simulating ABR algorithms for 2D videos when subjected to

real-world requirements.

2.2 QoE Estimation

One possible path toward estimating QoE for video applications is to interview

users asking for their opinion. Alternative approaches rely on objective video quality mea-

surements which, under certain circumstances, can approximate the users’ QoE. When

considering the video streaming domain, Mean Opinion Score (MOS) (ITU-T, 1998) is

commonly employed to capture the subjective user opinion regarding a video session.

MOS is expressed on a numerical scale which ranges from 1 to 5, where 1 means a poor

experience and 5 represents an excellent quality of experience. Typically, the score is

assigned by the user after the video streaming session ends. Alternatively, QoE can be

estimated by objective evaluation techniques. Perceptual Evaluation of Video Quality

(PEVQ) (CHIKKERUR et al., 2011), Structural Similarity (SSIM) (WANG et al., 2004)

and Peak Signal-to-Noise Ratio (PSNR) (WINKLER; MOHANDAS, 2008) are examples

of techniques that rely on picture quality models to provide a video quality estimation. At

a high level of abstraction, these methods perform a frame-by-frame comparison between

the original video and the streamed one. As these methods require the original video to

perform the quality assessment, they are referred to as Full Reference (FR) methods.

Traditional mechanisms such as MOS, PSNR, PEVQ and SSIM are not scalable

when applied to systematically evaluate if a network infrastructure provides the required

quality to support video streaming applications. This is especially true when considering

the high costs involved with user interviews and the overhead involved in full reference

techniques. Msakni and Youssef (MSAKNI; YOUSSEF, 2013) analyzed several tech-

niques for QoE prediction which do not rely on video transfer. They concluded that none
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of the considered approaches could be deemed reliable. Essentially, the non-linearity of

human opinion compromises accuracy when using network parameters as direct predic-

tors of QoE, since a given configuration can be graded differently in MOS. An alternative

strategy would be to evaluate video quality by objectively grading the user’s opinion.

However, techniques that allow for such a measurement require the download and anal-

ysis of real video files, entailing a substantial increment in network traffic. In an attempt

to overcome these limitations, recent investigations proposed to estimate quality using

alternative data acquisition procedures, compatible with large-scale scenarios. The most

significative advances in this regard are summarized below.

A first group of investigations is characterized by techniques that estimate QoE

indicators using network-based information. Due to not taking into account application

performance, these techniques do not allow an accurate understanding of the application

behavior (PESSEMIER et al., 2013; XIAO et al., 2015). As a representative example of

research work in this group, De Pessemier et al. (PESSEMIER et al., 2013) evaluated the

influence of network QoS parameters on the quality of user experience when using video

applications with DASH. The authors carried out experiments in which network QoS

indicators, such as delay and throughput, have been degraded in a controlled manner. At

the same time, the user opinion regarding the quality of video playback was measured

using MOS.

In another significant work in this group, Xiao et al. (XIAO et al., 2015) proposed

a model to estimate the user opinion based on scheduling algorithms running at a base

station. In this case, the authors correlated offline trace files in order to capture the re-

lationship between the scheduling algorithm employed by the Node B and the respective

QoE (informed by the end user through an interview process). Despite minimizing the

scalability problem by adopting a prediction model, the proposed method is not appro-

priate for service providers because the same network performance can be mapped into

different MOS scores (due to the subjectivity of the human opinion).

The second group of related work tries to establish the relationship between the

application performance (measured in the video streaming client) and QoE, without con-

sidering network QoS indicators. Balachandran et al. (BALACHANDRAN et al., 2012)

tried to evaluate the impact of those effects on user experience. To measure the perfor-

mance of video playback, three indicators were proposed: startup delay, stall count and

total stall length. Along these lines, Balachandran et al. (BALACHANDRAN et al.,

2013) introduced a QoE prediction approach that takes as input performance indicators
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measured at the application layer. To this end, the authors considered a database of perfor-

mance indicators obtained directly from user’s clients during video sessions. Even though

the resulting predictions are valuable for the provider to estimate QoE, this information

is incomplete since it does not allow the provider to understand the influence of network

performance on user experience. The lack of connection among application layer perfor-

mance, QoE and network performance hinders the service provider’s ability to understand

the network influence on QoE indicators.

2.3 QoE-aware Path Selection

This section is organized around four main groups of investigations. The first

group is characterized by techniques that perform path selection considering, among other

elements, QoE indicators measured at end-user devices. QoE indicators for video stream-

ing such as startup time, amount/duration of stalls and buffer events, when measured at

end-user devices, present high accuracy, since they are obtained as close to the user as

possible (BALACHANDRAN et al., 2013; RAMAKRISHNAN et al., 2015; NAM et al.,

2014). However, these techniques entail lower system scalability, reduced flexibility and

the requirement of end-user collaboration through the installation of measurement soft-

ware on their devices (LIOTOU et al., 2015). Additionally, constraints such as privacy

policies, reduced battery life and the end-users themselves, who are usually unwilling to

install additional software on their device, make this group of solutions less attractive for

mobile operators.

Considering the issues involved in employing end-user data, a second group of

the related work makes use of server-side information, available at the content provider

equipment, to estimate QoE and perform path selection (SCHLINKER et al., 2017; UZA-

KGIDER; CETINKAYA; SAYIT, 2015; GANGWAL et al., 2016). From the mobile op-

erator’s perspective, obtaining server-side data from several video streaming providers

can be a challenging task, hindering the capacity of an operator to provision paths au-

tonomously. Additionally, neither QoE information available at server-side nor at client-

side allows the operator to isolate the influence of each link on the QoE score.

The third group of related work relies on network-side information in order to

estimate the quality of experience and select QoE-aware paths (ECKERT; KNOLL;

SCHLEGEL, 2013; FARSHAD et al., 2015). A representative research work in this

group (ECKERT; KNOLL; SCHLEGEL, 2013) leverages Deep Packet Inspection (DPI)
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to analyze video streaming flows and predict both the video playout performance and user

experience. The drawback of this approach relies on the fact that deep packet inspection

demands a high amount of resources besides being complex to deploy in a large network.

Trying to overcome the limitation of high resource consumption, in another signif-

icant work in this group, Farshad et al. (FARSHAD et al., 2015) proposed a lightweight

approach. The proposed framework takes advantage of SDN to select and replicate spe-

cific segments of video streaming flows. In a second step, this information is forwarded to

an analysis subsystem. One key aspect of this approach consists in analyzing just partial

information, as the manifest files of each video streaming request, instead of the whole

flow stream. Once the analysis is complete, the proposed approach is able to estimate

QoE for individual video sessions considering only network-side information.

The main limitation of methods that rely on observation of video streaming data

traffic, inside the network, is related to the proliferation of the HTTPS protocol. Impor-

tant players such as Netflix and Youtube have adopted HTTPS as the standard protocol

for video streaming delivery. Recent research work has stated that, given the widespread

adoption of HTTPS for video delivery, approaches based on streaming flow analysis be-

came unpractical (CASAS et al., 2016).

Finally, we consider the fourth group of investigations concerning QoS-aware

path selection (ZHANG; HAO; MOUFTAH, 2014; KUIPERS et al., 2002; WANG;

CROWCROFT, 1996). These techniques do not directly consider QoE, which may lead

to an overemphasis on a single (or a couple of) QoS metric. Variations of the Dijkstra

or Bellman-Ford algorithms that consider only QoS either use unnecessarily long paths

(when oriented to maximize residual bandwidth) or do not appropriately consider paths

with impaired quality (when oriented to shortest paths).

2.4 Spherical-to-Plane Projection and CODECS

Figure 2.1 provides an overview of the VR video encoding process. The first step

consists in encoding different quality representations (e.g., high, medium and low quality)

from the original VR video content (RAW file). Next, each quality representation is split

into segments. Each segment contains a temporal fraction of the video (e.g., from 500 ms

to 10 s), according to the HAS scheme. Finally, each segment is spatially split into an

specific tiling scheme (e.g., 8x5 - 8 horizontal by 5 vertical tiles) by using a modern video

encoder (e.g., HEVC/H.265).
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Figure 2.1: Overview of the VR encoding process.
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One effective strategy to reduce the huge bandwidth demands of 360-videos is

delivering only the viewport in high resolution, streaming the remaining area of the

video in low resolution or not streaming it at all. To achieve this spatial segmentation of

the panoramic view, several approaches explore spherical-to-plane projection techniques

(GRAF; TIMMERER; MUELLER, 2017; CHEN; LI; ZHANG, 2018; CORBILLON et

al., 2017; HRISTOVA et al., 2018; HOSSEINI; SWAMINATHAN, 2016; ZHOU et al.,

2018). In a recent investigation, Graf et al. (GRAF; TIMMERER; MUELLER, 2017)

examine the bitrate overhead and bandwidth requirements of distinct tiling schemes

(i.e., 1x1, 3x2, 5x3, 6x4 and 8x5) implemented within modern video codecs (e.g.,

HEVC/H.265 and VP9). By applying Peak Signal-to-Noise Ratio (PSNR) within the

VR video viewport, the authors assessed the video quality and concluded that the 6x4

tiling scheme provides the best trade-off among viewport selection flexibility, bitrate

overhead, and bandwidth requirements. In a similar direction, Zhou et al. (ZHOU et al.,

2018) further examine this field by comparing standard spherical projection approaches

to offset projection techniques. The latter are characterized by distorting the spherical

surface to allow the convergence of the pixels of the VR video in a particular direction.

Offset projections are significantly more complex than traditional projection techniques

because they demand a simultaneous control of bitrate and view orientation adaptations.

By employing PSNR and Structural Similarity (SSIM), the authors concluded that, in

general, offset projections can provide better quality than their non-offset counterparts.

Despite their contributions, the conclusions of these investigations are limited because

they do not consider important variables, such as the effects of variable viewport pre-

diction error and parallel fetching methods (such as HTTP/2) on their approaches. Also,
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the considered approaches were evaluated considering limited or unrealistic network

performance conditions.

In another important investigation, Chen et al. (CHEN; LI; ZHANG, 2018)

analyze recent advances regarding alternative projection methods, including viewport-

dependent and viewport-independent approaches. The central objective of this work is

to assess both the coding efficiency and distortion introduced by each approach. Be-

sides valuable quantitative and qualitative insights regarding a wide range of projection

schemes, the authors conclude that in order to effectively evaluate such a wide range of

projection schemes, a more sophisticated evaluation process is required. The main reason

for this conclusion is that traditional PSNR computes the whole projection map, which

cannot handle viewport-dependent projections. Additionally, due to the unpredictability

of viewport prediction errors, the areas surrounding the viewport should also be consid-

ered in the quality evaluation, but with a reduced weight. In this investigation, the authors

also review alternative metrics for video quality assessment proposed by JVET (BOYCE

et al., 2017). They conclude that although several flaws of conventional PSNR have been

fixed, a more comprehensive method for evaluating video quality for viewport-dependent

VR videos is still missing.

2.5 Viewport-aware VR Video Streaming

In order to provide an immersive user experience, VR videos demand signifi-

cantly higher bandwidths when compared to traditional video streaming. These ultra-high

bandwidths are not always available in wireless networks and are not easy to process by

lightweight mobile devices. In fact, currently, the streaming of VR videos through mobile

networks is far from optimal. A VR video contains a full 360◦ panoramic view, regard-

less of the fact that only a fraction of it, namely the viewport1, is visible at any given

instant. In an attempt to optimize bandwidth usage, a recent research path has proposed

viewport-aware schemes for VR video streaming, based on HAS variants in which quality

representations are not only segmented in time but also spatially split into smaller pieces

(i.e., tiles) (CONCOLATO et al., 2017).

An important aspect to consider in adaptive tile-based VR streaming services is

viewport prediction, which allows optimizing bandwidth usage considerably. Since a full

VR video can easily reach 12K video resolution (CORBILLON et al., 2017), most video

1Also referred to as Field of View (FoV)
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players rely on heuristic algorithms to predict near-future user’s head movements. By

considering next position prediction, the video player is able to request only tiles that are

likely to be inside the viewport, which leads to reduced bandwidth utilization. To provide

this prediction, heuristic algorithms consider variables such as the angular velocity of the

user’s head, movement patterns for previous viewers, video content (e.g., in a football

match users will most likely follow the ball’s movements), among other factors (BAO et

al., 2016). With such predictions, the video player can reduce bandwidth utilization in up

to 72% (HOSSEINI; SWAMINATHAN, 2016).

In practice, the viewport prediction algorithm is responsible for keeping a small

video playout buffer (e.g., 2 seconds) with the tiles that are more likely to belong to the

viewport in the future. To illustrate how the viewport prediction interacts with the playout

buffer, consider the example of a user watching a tile-based VR video using an HMD. As-

sume a given temporal segment Sk and a respective viewport Vk, as depicted in Figure 2.2

(a). At this moment, the video player is requesting high-resolution chunks only for tiles

inside the viewport Vk. Then, based on the near-future viewport prediction for the next

segment (Sk+1), the video player starts requesting high-resolution tiles for the viewport

Vk+1 (delimited by the right dashed square in Figure 2.2 (b)). As predicted, the viewer

slightly moves to the right (see Figure 2.2 (c)). At this point, driven by the viewport pre-

dictor, the VR player starts requesting high-resolution chunks for the predicted viewport

on the segment Sk+2 (Figure 2.2 (d)), and so forth.

Figure 2.2: Working principles of the viewport prediction.

Source: by author (2019).

To perform the viewport prediction, most approaches follow a similar procedure,

which includes processing one or more input information, applying a prediction method,

and then checking the prediction accuracy. As input, prediction algorithms can rely

on past users’ head motion (HOU et al., 2018; QIAN et al., 2016), fixation point ac-
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celeration (NGUYEN; YUN, 2018), fixation point angular velocity (NGUYEN; YUN,

2018; PETRANGELI et al., 2017; FAN et al., 2017), image saliency maps and motion

maps (FAN et al., 2017), or even sound localization information (JEONG et al., 2018).

In turn, to perform the viewport prediction itself, state-of-the-art approaches usually rely

on deep learning (HOU et al., 2018), mathematical modeling (NGUYEN; YUN, 2018;

PETRANGELI et al., 2017; JEONG et al., 2018; QIAN et al., 2016), or neural networks

(FAN et al., 2017). Finally, the prediction accuracy is assessed by subjecting the pre-

diction model to traces containing realistic head-tracking information (i.e., ground truth).

Thus, the residual error can be evaluated. By performing such predictions, the VR video

player can, according to He et al. (HOSSEINI; SWAMINATHAN, 2016), reduce band-

width utilization in up to 72%.

As discussed, viewport prediction is a sensitive task, which might affect the user’s

perception in unexpected ways. Errors on the prediction of the viewport (i.e. the Field

of View (FoV) that the user will look at in the next segment) may lead to partial or full

degradation of the perception, even if the network conditions are enough to guarantee the

user’s QoE. This means that, during the streaming, two different processes (namely the

viewport prediction and the effects of the network on the adaptive streaming performance

metrics) will have a major influence on the user’s QoE.

2.6 Viewport Prediction Error

Prediction errors are very likely to occur due to the randomness of users behav-

ior. Besides, prediction algorithms may considerably decrease their accuracy when the

playout buffer is increased. For example, the prediction accuracy can drop from 90% to

approximately 60% if the prediction window is increased from 1 to 2 seconds (QIAN et

al., 2016). However, an increased playout buffer may be crucial to operate in current mo-

bile networks, which are characterized by highly variable performance conditions, even

in short time frames. Considering these intricacies, an effective assessment of viewport

prediction algorithms should consider (and quantify) how the error rate of a particular

algorithm affects QoE when combined with other optimizations (e.g., buffer management

heuristics and dynamic rate adaptation algorithm) and subjected to realistic network per-

formance conditions.

To illustrate how the viewport prediction error occurs, consider the example of

a user watching a tile-based VR video using a head-mounted display. Consider a given
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temporal segment Sk and a respective viewport Vk, as depicted in Figure 2.3 (a). At this

moment, the video player is requesting high-resolution chunks only for tiles inside the

viewport Vk. Then, based on the viewport prediction for the next segment (Sk+1), the

video player starts requesting high-resolution tiles for the predicted viewport Vk+1 (de-

limited by the blue dashed square in Figure 2.3 (b)). However, rather than moving his/her

head up, consider that the viewer actually slightly moves to the right (see Figure 2.3 (c)).

At this point, due to the viewport predictor error, the VR player requested seven tiles in

high-resolution which will not actually be displayed (upper left red tiles in Figure 2.3

(d)). Likewise, seven low-resolution tiles turned out to belong to the viewport (bottom

right red tiles in Figure 2.3 (d)). As one can observe, viewport prediction is a sensitive

task. Viewport prediction errors may lead to partial or full degradation of the perceived

quality, even if the network performance conditions are enough to guarantee the user’s

QoE.

Figure 2.3: Prediction error.

(a) (b) (c) (d)

sequence of events

Current viewpoint Viewpoint prediction Viewpoint prediction errorActual movement

Source: by author (2019).

2.7 Adaptive Bitrate Algorithms and Buffer Management for VR Video Streaming

Taking viewport prediction information as input, most approaches rely on per tile

rate adaptation algorithms. This method allows reducing the amount of information to be

downloaded by keeping only the viewport’s tiles in high resolution. State-of-the-art ap-

proaches for adaptive bitrate in VR videos differ from each other mainly with respect to

how they manage the balance between video quality and available bandwidth while con-

sidering the spatial segmentation. For example, Petrangeli et al. (PETRANGELI et al.,

2017) consider a multi-zone VR video and propose a per tile quality selection heuristic.
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The algorithm starts by selecting the highest available quality for the inner tiles (close to

the fixation point), and then repeats this procedure for the outer zones until the residual

bandwidth is exhausted. This approach alleviates the edge effect (transition between dif-

ferent quality representations). Thus, it provides superior VR video quality at the cost of

increased bandwidth consumption.

He et al. (HE et al., 2018) propose to simultaneously optimize, among other

parameters, playout bitrate and buffer occupancy. Similarly to Petrangeli et al. (PE-

TRANGELI et al., 2017), they perform bitrate adaptations depending on the position

of each tile concerning the current fixation point. However, they introduce a learning

strategy with the ability to avoid performance degradation for future segments by auto-

matically adapting the buffer reservation. By using a fine-grained bitrate adaptation, these

investigations were able to reduce the bandwidth utilization in 35% and 40%, respectively.

Graf et al. (GRAF; TIMMERER; MUELLER, 2017) advances a step forward in

the state of the art by providing a comprehensive investigation with respect to essential

components of the VR ecosystem. The authors introduce three tile scheme strategies for

ABR, namely Full Delivery Basic, Full Delivery Advanced and Partial Delivery. These

schemes drive the ABR algorithm regarding the bitrate adaptation for both the viewport

and the remaining tiles. For example, in Full Delivery Basic scheme, all the tiles be-

longing to the viewport are requested in the highest available quality, while the remaining

tiles are requested in the lowest quality, regardless of the available bandwidth. The Partial

Delivery scheme employs an aggressive bandwidth saving strategy, requesting only the

tiles within the viewport in high resolution, while the remaining tiles are not requested at

all. The authors evaluated several projection schemes (as discussed in Subsection 2.4),

combined with multiple segment sizes. By assessing the bitrate overhead, bandwidth re-

quirements, and viewport quality, this approach achieved bandwidth savings from 40% to

up to 65% when compared to state-of-the-art techniques.

Closely related to ABR algorithms, the playout buffer management plays a vital

role in the VR video realm. As discussed earlier, an increased playout buffer size con-

sists in an effective way to protect against stalls (i.e., empty buffer) caused by network

performance fluctuations. On the other hand, a small playout buffer is necessary to keep

the accuracy of viewport prediction methods within acceptable levels. Specifically on this

subject, Ma et al. (MA et al., 2018) propose a dynamic buffer size management method

which is guided by a constrained optimization model. This method aims at maximizing
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QoE by adjusting the buffer size based on the viewport prediction error and available

bandwidth. Throughout simulation experiments, the authors claim gains from 2.7% up

to 6.7%, in terms of QoE, when compared to non-dynamic buffer size approaches. In

another relevant investigation, Almquist et al. (ALMQUIST et al., 2018) present a data-

driven study which explores the trade-off between the playout buffer size (i.e., prefetching

aggressiveness) and viewport prediction errors. The prefetching aggressiveness is eval-

uated while considering different VR video categories (i.e., exploration, static, moving,

rides and misc.). The authors provide valuable qualitative and quantitative insights re-

garding how to best address the prefetching aggressiveness trade-off. As a key insight,

they demonstrate that the accuracy of the prediction varies significantly among different

categories. Additionally, in line with previous investigations, they found that adequate

levels of viewport prediction accuracy are observed only within a very small time frame.

The aspects discussed above evidence that the VR video ecosystem is substantially

more complex than traditional video streaming. To the best of our knowledge, neither a

QoE evaluation model nor a QoE prediction method is available in current VR environ-

ments. After concluding the state of the art analysis, in the next section, we present

a model for performance prediction of video streaming applications, which is the first

building block of the proposed QoE-aware path selection scheme.
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3 PERFORMANCE PREDICTION FOR VIDEO STREAMING APPLICATIONS

In this chapter, we introduce a QoE prediction model for video streaming based

on indicators obtained from the underlying IP network1 (FILHO et al., 2016). The pro-

posed model explores decision trees in order to determine the relation between network

QoS indicators2 and objective indicators representative of the video reproduction quality

experienced by the end user, henceforth designated as AppQoS3. Additionally, by means

of AppQoS processing, the model allows the inference of user QoE.

The remainder of this chapter is organized as follows. Section 3.1 presents the pro-

posed prediction model. Section 3.2 details the experiment configuration and model con-

struction aspects. Section 3.3 reports performance evaluation as well as potential model

applications.

3.1 LEAP: Lightweight AppQoS and QoE Predictor

As just mentioned, we propose a Lightweight AppQoS and QoE Predictor

(LEAP). It is capable of providing a detailed view of how the network performance

affects video streaming applications and, moreover, the corresponding user experience.

Figure 3.1 shows the general model scheme. The model is designed to receive four net-

work performance indicators as input: (i) delay, (ii) jitter, (iii) throughput and (iv) packet

loss. To capture video playback performance, the model predicts three video playout

performance indicators: (i) startup time, (ii) stall count and (iii) total stall length. To

estimate each AppQoS indicator, the four network QoS indicators are analyzed together.

In a second stage, the three AppQoS indicators are used to estimate QoE (using the MOS

score).

1This chapter is based on the following publication:

• Roberto Iraja Tavares da Costa Filho, William Lautenschlager, Nicolas Kagami, Valter Roesler, Lu-
ciano Paschoal Gaspary. Network Fortune Cookie: Using Network Measurements to Predict
Video Streaming Performance and QoE. IEEE Global Communications Conference (GLOBE-
COM 2016).

2The term network QoS indicators refers to performance of IP networks.
3The term AppQoS refers to the last objective barrier capable of being measured in the context of the

end user.
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Figure 3.1: LEAP general scheme
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3.1.1 AppQoS Prediction

LEAP leverages the Regression Decision Tree technique to construct the three Ap-

pQoS prediction models. It was chosen mainly due to its suitability to handle complex

and non-linear relationships between attributes. Additionally, decision trees have three

characteristics that are desirable in the network management realm. First, the resulting

prediction structure is simple to implement and integrate with third-party network man-

agement systems (they require only decision structures). Second, the prediction scheme

presents low time complexity, being suitable for large scale environments. Third, deci-

sion trees provide decent accuracy. Although a more sophisticated approach for machine

learning (e.g., deep learning) might present higher accuracy than decision trees, for this

task, the accuracy provided by decision trees is good enough. More accurate algorithms

would not justify increased complexity for implementation and integration.

During the training stage, the model learns how each attribute X affects the re-

sponse variable Y. In our case, the network QoS indicators are the X attributes and the

video streaming performance indicators (AppQoS), Y. Once the training stage is finished,

LEAP is able to estimate AppQoS indicators by comparing the measured QoS indicators

against the decision trees. The model evaluates each QoS indicator, node by node, until it

reaches a leaf, where the predicted AppQoS is defined. For example, in Figures 3.2 and

3.3 it is possible to observe a portion of the decision trees for total stall length and stall

count for 1080p videos. To improve legibility, we present two partial excerpts from the

resulting decision trees. Their constructive aspects and a performance evaluation will be

presented in Subsection 3.2.3.

Each decision tree is built using a recursive procedure that executes successive

splits, starting from a single node containing all attributes (QoS parameters). This proce-
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Figure 3.2: Decision tree for total stall length of 1080p video playout
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dure defines the tree growth and is controlled by two parameters. The first is the minsplit,

which represents the minimum number of related observations for a new branch to be

created. The second parameter is called cp, which describes the minimum gain, regard-

ing error reduction, that a specific node needs to provide in order to be created. Each

resulting decision tree has a particular cross-validation error (X), which provides an esti-

mated error when testing the prediction structure against independent data (a portion of

the dataset not used during the training stage). Finally, in the pruning stage, each pair of

leaves with a common parent is tested for merge according to the Mean Squared Error

(MSE). If MSE is reduced, then those leaves are removed and their parent becomes a leaf

node. Otherwise, the structure remains the same for those nodes.

MSE =
∑

c∈leaves(T )

∑

i∈c

(yi −mc)
2 (3.1)

Correct parametrization is a key factor when aiming at building an efficient es-

timation mechanism. Figures 3.4, 3.5 and 3.6 illustrate three important parameters to

construct the decision tree for startup time prediction of 1080p videos. In Figures 3.4 and

3.5, it is possible to observe that both the cross-validation error and the R2 stabilize after

five splits. Thus, one can conclude that five branches is the best depth for this structure.

Growing the tree beyond this point will not help to lower the error or increase the data fit.

In Figure 3.6, it is possible to observe the heat map that shows the resulting interpolation

matrix between minsplit and cp, where the darker areas represent lower cross-validation

error values. In this case, the optimal parameterization for the startup time decision tree
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Figure 3.3: Decision tree for stall count of 1080p video playout
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was minsplit=24, cp=10−22 and splits=5.

Figure 3.4: LEAP parameterization: Xerror VS Split
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Finally, it is important to emphasize that LEAP is divided into two distinct phases.

In the first stage, the tasks with high complexity, such as construction and training of the

LEAP model, are performed offline. In particular, the construction of an optimal decision

tree is known to be an NP-Complete problem, so a heuristic algorithm is used to obtain a

near optimal structure. In turn, the second stage occurs as an online procedure. Whenever

QoS indicators are available in the database, a subroutine estimates the AppQoS and QoE

indicators just by comparing them against the decision tree thresholds.

3.1.2 QoE Prediction

Once the AppQoS indicators are estimated, LEAP can use them to predict a cor-

responding expected quality of user experience. To establish the relationship between
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Figure 3.5: LEAP parameterization: R2 VS Split
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Figure 3.6: LEAP parameterization: Heat map
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AppQoS and QoE, LEAP employs an adaptation of recent research work, which, based

on user interviews, derived a mathematical model for mapping AppQoS to a MOS score.

The influence of startup time on MOS is defined by Equation 3.2, where Qini is the re-

sulting MOS score and t0 is the predicted startup time. The values 0.963 and 5.381 were

calculated by solving a nonlinear minimization problem for the mean squared error be-

tween MOS scores in t0 and the functionf(t0) (SEUFERT et al., 2014; HOSSFELD et

al., 2012).

Qini = −0.963× log10(t0 + 5.381) + 5 (3.2)

Additionally, to allow estimation of the effects of stall count and total stall length

on QoE, we first need to define a factor λ. This factor represents the ratio between the

video’s total stall length σ and the total length of the video playback (the sum of σ and

the video duration ρ), as shown in Equation 3.3. According to Casas et al. (CASAS;

SCHATZ; HOSSFELD, 2013), this observation should be done in time slots T with a

typical duration of one minute. This approach allows generalizing the method for videos



39

of any length. Once λ has been calculated, it indicates a degradation level 1 ≤ i ≤ 5,

according to the λ intervals shown in Table 3.1. Finally, MOS Qst is calculated accord-

ing to Equation 3.4, where ai, bi, ci are constants defined ∀i = 1, 2, 3, 4, 5 according to

Table 3.1, and n is the stall count within a specific time slot T . In Equation 3.4 one can

observe that, for a stall count higher than six, the user experience will be fully degraded,

resulting in a MOS score 1. We would like to emphasize that the equations presented

in this subsection rely on the result of previous research work. The reader interested in

their validations may refer to (SEUFERT et al., 2014; HOSSFELD et al., 2012; CASAS;

SCHATZ; HOSSFELD, 2013).

λ =





σ
σ+ρ

, if σ + ρ < T

σ
T
, otherwise

(3.3)

Qst =





1, if n > 6

ai × e−bi×n + ci, if n ≤ 6
(3.4)

Table 3.1: QoE prediction: factor values according to λ for MOS Calculation (Qst)

Factor λ < .05 .05 ≤ λ < .1 .1 ≤ λ < .2 .2 ≤ λ < .5 λ ≥ .5

a 3.01 3.09 3.19 3.24 3.30
b 0.76 0.99 1.52 1.69 1.88
c 1.99 1.90 1.81 1.75 1.69

Source: by author (2019).

3.2 Model Construction

This section presents the practical aspects related to the construction of the pre-

diction model. First, we describe the acquisition of QoS and AppQoS indicators. Right

after, we illustrate details of the training environment. Lastly, we examine the resulting

prediction models.
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3.2.1 Aquisition of QoS and AppQoS Indicators

In order to obtain network performance indicators, we employed an active

measurement-based platform named NetMetric (SANTOS et al., 2007). NetMetric works

with a “Manager” entity, responsible for configuring schedules to be run in the “Agent”

entities. An Agent entity can be used both as the origin of a measurement (source point)

or as the target (reflector point). The platform was configured to run groups of two dif-

ferent packet bursts. The first burst makes use of the UDP protocol and unidirectionally

measures One Way Delay (OWD), jitter and packet loss by injecting 400 packets of 100

bytes at 50ms intervals. The second burst gauges the throughput using the TCP protocol

with 640 packets of 1,488 bytes. Both bursts amount to 992 KB worth of data. Although

NetMetric is capable of deriving bidirectional metrics, we have chosen to confine our

experiment to unidirectional measurements in the downlink.

In order to construct the ground truth, a specific module was developed for Net-

Metric in the form of a plugin for the Chrome browser. This plugin enabled the extrac-

tion of performance indicators (AppQoS) related to the reproduction of video through an

HTML5 native video player. This choice is justified by the migration of big video content

providers to HTML5 technology, such as Youtube and Netflix.

In order to measure within the application layer, a NetMetric source Agent entity

periodically reproduced videos via the Chrome browser, which retrieved its files from a

reflector Agent. Two video files, of one minute each, were used in the algorithm’s training

phase. Both were in the MPEG v4 format and coded in H.264. While the first had a 720p

resolution and 9.2 MB, the second had a 1080p resolution and 14.3 MB. The transfer

of videos of different resolutions is deemed necessary in light of introducing different

bitrates, which demand varying degrees of performance from the underlying network.

Therefore, each of the three AppQoS predictors needed to be trained separately in order

to be acquainted with the network demands of each bitrate.

3.2.2 Training Environment

A possible approach for obtaining a dataset relating QoS and AppQoS parame-

ters would be to run the experiment on a deployed LTE network, measuring both the

network and application layer indicators simultaneously in an effort to guarantee corre-

sponding conditions in both layers. However, considering the invasive nature of these two
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measurement techniques, their concomitant execution would result in mutual interference

stemming from a fierce competition for the shared resources. Another possible approach

would be to serialize the measurements. Yet, due to a considerable variability in the per-

formance of LTE networks, detectable even in short time intervals, we decided against

using such training configuration. The training environment demands stable conditions

between the evaluation of the network and application layers. Otherwise, the learning al-

gorithm could establish inaccurate correlations concerning the influence of each network

parameters towards the target variables.

In consideration of these difficulties, we opted to devise a controlled environment

capable of faithfully emulating the network conditions observed in the deployed setting.

In order to reproduce conditions such as throughput, delay, jitter and packet loss present

in an LTE environment, we made use of WANEM (KALITAY; NAMBIAR, 2011). The

WANEM tool allows us to impose specific constraints on a target network while keeping

the network conditions static between consecutive measurements. Figure 3.7 depicts the

topology used to set our controlled environment up.

Figure 3.7: LEAP training: controlled environment setup
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The selection of parameters used in the WANEM configuration was based on 7,450

measurements taken by NetMetric in an LTE network deployed countrywide4, between

May and October of 2015. Table 3.2 summarizes the four levels chosen for each of the

QoS indicators. The QoS indicators were individually tested as to the normality of their

distributions via the Shapiro-Wilk test to a significance level of α = 0.05. On account

of these normal distributions, the delay, jitter, and throughput indicators have been seg-

mented using quartile analysis. The values associated with the packet loss indicator were

selected through the use of modal analysis for integer levels.
4For confidentiality reasons, we are not allowed to disclose a detailed characterization of the network.



42

Table 3.2: LEAP: LTE indicators used in the model training stage

Indicator Value

Throughput 0.9 Mbps; 8.8 Mbps; 15.5 Mbps; 25.3 Mbps
Delay 22 ms; 56 ms; 64 ms; 98 ms
Loss 0%; 2%; 5%; 13%

Source: by author (2019).

A first round of experiments (via Full Factorial design 2k.r) expressed that the

jitter indicator did not contribute to the regression model proposed in the previous section.

Once the relevant parameters have been determined (throughput, delay, and packet loss),

we performed a subsequent set of experiments, this time with Full Factorial design 4k.r,

thus allowing a greater degree of variation for each parameter without incurring in an

unmanageably large number of experiments. With three input parameters and four levels,

the design resulted in 64 possible combinations. After observing the variation in the

results, we defined the number of ten repetitions for each combination, considering a

significance level of 95%.

3.2.3 Resulting Predictors

At this stage, after acquiring data from the aforementioned controlled environ-

ment, we focused on generating binary decision trees for each of the three AppQoS in-

dicators. These trees were specifically made for the two different resolutions (720p and

1080p). Considering these two details, we had a total of six tree combinations.

The trees represented in Figures 3.2 and 3.3, along with the rest of the trees gener-

ated in the scope of this work, display the optimal pruning for these structures. Figure 3.2

shows the tree for total stall length in 1080p resolution as a function of the three primary

network indicators. The root node, which represents the first decision, makes use of the

throughput as the deciding criterion (represented in bits per second). The value present in

the node, that of 2 Mbps, is associated with the bitrate used in the test videos - around 1.9

Mbps. For higher throughput values, the average stall length (0.15 seconds, according to

the value indicated by the root left child node) is considerably less than the observed for

networks with a lower throughput (75 seconds, as expressed by the node to the right of

the root). This observation implies that a network being capable of supplying the video

bitrate is the most important factor in determining the overall video behavior.
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Another related aspect is the existence of an intermediary range above the bitrate,

in which there is a slight degradation for video playback performance indicators - in the

case of Figure 3.2, between 2 Mbps and 2.5 Mbps. In this range, instantaneous through-

put variations may lead to an empty buffer interruption, which leads to degradation. For

values above 2.5 Mbps, however, the video reproduction develops mostly without inter-

ruptions, independent of any other predictive indicator. It should be noted that a similar

behavior was observed with the 720p resolution, in which the root node was determined

by a throughput threshold identical to the video bitrate of 1.2 Mbps, even though a flaw-

less reproduction was only identified for throughput values above 1.9 Mbps.

The root node of the 1080p stall count indicator tree along with the left portion

of the tree (not shown in Figure 3.3) are analogous to their aforementioned total stall

length counterparts. This means the first decision is taken concerning the throughput in

relation to the bitrate, and that higher throughput values presented degradation up to a

second threshold (2.3 Mbps). However, the branch shown in Figure 3.3, which represents

the portion of the tree immediately connected to the right of the root node, presented

a distinct behavior. For this subtree, throughput values between 677 Kbps and 2 Mbps

(limited by the root node) predicted an average of 12 stalls, a greater amount than observed

for smaller throughput, which averaged 8.4 stalls. An analysis taking total stall length

into consideration shows that, for samples with a throughput below 677 kbps, the videos

are expected to stay halted for an average of 83.76 seconds. The remainder of cases

presented an average of 64.98 seconds. Thus, we can conclude that the video halts for

effectively longer in networks with reduced throughput, even though the stall count is

smaller, representing longer-lasting individual interruptions.

Figure 3.8: Decision tree for startup time of 1080p video playout
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With respect to video startup time, as shown in Figure 3.8, the decision in the root

node is taken by a very degraded condition (with packet loss above 9%). According to

Table 3.3, these predictor’s adjustment factors were low in relation to the measured values,

with R2 = 0.3147 in its best case, for 1080p resolution. This hints at an insufficiency

of the three network QoS indicators to accurately derive the startup time. In an effort

to improve accuracy, we examined which of the involved indicators had the strongest

Pearson correlation with the startup time. We observed that, besides the indicators already

in use by the decision tree (loss and throughput), the next best-correlated indicator was

the total stall length, whose correlation with the startup time has shown to be five times

stronger than the one between this indicator and the one-way delay. Figure 3.9 illustrates

the decision tree generated considering the total stall length as an additional input variable.

The resulting prediction became more accurate to a level of R2 = 0.8085 for 1080p,

accompanied by a decrease in root mean square error, as can be seen in Startup Time 2

column in Table 3.3.

Figure 3.9: Decision tree for startup time considering total stall lenght of 1080p video
playout
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Table 3.3: LEAP: RMSE and R2 for 720p and 1080p predictors

Source: by author (2019).
Total Stall Length Stall Count Startup Time Startup Time 2
RMSE R2 RMSE R2 RMSE R2 RMSE R2

720p 5.7548 s 0.9627 1.4747 0.8222 4.2321 s 0.2169 2.0151 s 0.8774
1080p 9.8849 s 0.9274 1.1847 0.9449 6.5461 s 0.3147 3.9102 s 0.8085

Source: by author (2019).
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3.3 Evaluation

This section presents the performance evaluation of the proposed model. Addi-

tionally, this section addresses the results gathered from applying the model to the mobile

network mentioned in the Section 3.2.2. Essentially, our objective is to answer the follow-

ing questions: (i) How accurately can the model predict video application behavior based

on network performance observations? (ii) To which extent is network intrusion kept

low when the model is applied to a large-scale LTE network? (iii) How can providers

capitalize on prediction of QoE?

3.3.1 Model Accuracy

With the purpose of determining accuracy, the proposed model was subjected to

a test dataset, independent of the training dataset. Each test sample i contains a mea-

surement for each of the three predictor variables (throughput, delay and loss) and three

application indicators (stall length, stall count and startup time). By applying the first

group of variables as input for the decision trees represented in Figures 3.2 and 3.3, we

obtained an estimation for each of the variables in the second group, which then have an

associated observed value xi and a predicted value x̂i. This allowed us to calculate, for

each sample i, the normalized residuals ri, defined by the equation ri = |x̂i − xi|/N . We

use the factor N to normalize the error values. For each of the three application indica-

tors, the value of N is derived from the duration of the videos employed in the controlled

environment (60 seconds in this case), which enables a generalization of the evaluation

method for videos of any duration.

Figures 3.10(a), 3.10(b), 3.10(c) and 3.10(d) depict the variation of ri in the hori-

zontal axis, associating each value in this axis to a portion of the sampling group (in the

vertical axis) in which ri is lesser or equal to the set threshold. Thus, considering the

1080p resolution in Figure 3.10(c) (video startup time), the value of 0.093 in the horizon-

tal axis is related to the 0.9 value in the vertical axis, indicating that 90% of the samples

of the corresponding group have ri ≤ 0.093. In the same figure, 90% of the samples

with 720p resolution have ri ≤ 0.0086. This can be interpreted as an error of 9.3% and

0.86%, respectively. The average of ri in 90% of the samples for all indicators, consider-

ing both 1080p and 720p, has a value of r̄i = 0.0982 (9.8%). We deem this error rate to

be satisfactory and in line with recent research work.
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Based on the predicted and observed values for the application indicators, it is

possible to calculate a MOS value according to the approach presented in Subsection

3.1.2. For this indicator (MOS), the following error rates are depicted in an absolute

scale, which ranges from 1 to 5. According to Figure 3.10(d), MOS prediction presented

an error rate of up to ri = 0.11 for 90% of samples for videos of 1080p. This means that,

for example, if a MOS = 3.5 is calculated using the observed application indicators,

a value of 3.39 ≤ M̂OS ≤ 3.61 is to be predicted 90% of the time. The error rate

was smaller in 720p resolution, with a value of ri = 0.05. Even though the AppQoS

estimation error rate is low, this disturbance did not significantly impact QoE prediction,

which presented an even lower prediction error, as shown in Figure 3.10(d).

Figure 3.10: AppQoS and QoE prediction error for 1080p video playout
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3.3.2 Model Intrusiveness

Figure 3.11 illustrates a comparison of intrusiveness, constructed with traffic vol-

ume parameters described in Subsection 3.2.1, between the proposed model and measure-

ments taken through use of real video transfers. It should be noted that the most intrusive
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LEAP case (500 probes5 with a polling interval of 10 minutes) generates 66.65 GB/-

day. With an equivalent configuration, the real video transfer strategy (required by full

reference quality assessment methods such as SSIM and PSNR) would require 1,574.71

GB/day. Therefore, the adoption of LEAP is on average one order of magnitude less

intrusive.

Complementing the aforementioned analysis, take into account that the unstable

performance of LTE networks, mainly characterized by user mobility and fierce competi-

tion of radio interface resources, demands a reduced monitoring polling interval to achieve

a realistic view of the network environment. In this setting, low intrusion is an essential

requirement to be met. Otherwise, the generated traffic would consume an enormous

amount of resources, undermining the availability of resources for end users.

Figure 3.11: LEAP scalability
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3.3.3 LEAP in Action

After its creation, the model was deployed in one of the largest mobile operators

in Brazil, already mentioned in Subsection 3.2.2. We installed reflector agents as close

as possible to the mobile operator’s main CDN nodes responsible for delivering cached

videos. With this setup, the model was capable of measuring AppQoS and QoE in an

end-to-end approach, from an application server down to the end user premises. In order

to decide where to install the source agents, we examined the operator’s traffic matrix

and concluded that a Pareto’s Principle fit was reasonable, that is, 80% of all mobile data

5The term Probe refers to the packet injected into the network for measurement purposes.
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traffic was generated in less than 20% of eNode Bs (a.k.a. Base Station). Then, the source

agents were deployed close to each selected eNB in decreasing order of traffic volume.

Here we show a real-world application of LEAP. Using the parallel coordinates

visualization technique, Figure 3.12 shows a LEAP graph that illustrates the relationship

between QoS, AppQoS and QoE, for a particular source agent. In this figure it is possible

to observe that both curves share a QoS condition: 77 ms delay, 0% loss and 1.950 Mbps

throughput. However, when LEAP predicts the AppQoS performance and QoE, we verify

a very divergent performance between resolutions. For 720p, the predictor estimates zero

stall count and a startup time of 290ms, incurring in a MOS of almost 5. However, when

predicting 1080p performance for the same network, LEAP predicts a startup time of

910ms, 9.68 stalls with a total length of 32.9 seconds, which implies an MOS score of

1.75. In this particular case (and in other interest points), LEAP provided an integrated,

real-time view of what the network is delivering and the corresponding effects on video

playout performance, i.e., expected user experience. Moreover, through analysis of the

respective decision tree, LEAP was able to provide the notion of how QoS parameters

need to be tuned in order to achieve the desired service quality.

Figure 3.12: Integrated QoS, AppQoS and QoE view
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The results obtained suggest that it is feasible to estimate AppQoS and QoE for

video streaming applications using QoS indicators as predictors. The estimated parame-

ters achieved an average error below 9.92%, and a MOS estimation error below 11% for

over 90% of cases. Furthermore, LEAP requires less than 4% of the traffic volume when

compared to traditional techniques. The low intrusiveness allows the service provider to

configure systematic measurements without an excessive usage of network resources.

To maintain predictor accuracy over time, LEAP needs to be periodically recali-

brated. This event is triggered by a scheduled procedure named Accuracy Check Probe.
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This procedure executes a strategically distributed set of reference measurements using

the LEAP Browser Plugin and compares the measured AppQoS values against the pre-

dicted values. This routine assesses the prediction error and, whenever necessary, triggers

the model recalibration procedure.

Now that the QoE prediction model for video streaming is defined, in the next

chapter, we introduce a novel heuristic that takes the proposed prediction model as input

to provide dynamic QoE-aware path selection.



50

4 DYNAMIC QOE-AWARE PATH SELECTION

In this chapter, we present a novel scheme for network path provisioning that em-

ploys the QoE prediction model LEAP (FILHO et al., 2016) introduced in Chapter 3 to

deploy QoE-aware paths in an SDN-enabled1 mobile network2. The proposed approach

is able to select and deploy QoE-aware paths in networks characterized by high path di-

versity, with high accuracy and low network resource consumption. We present a heuris-

tic algorithm capable of finding optimized QoE-aware paths in polynomial time. The

proposed algorithm runs on top of an SDN architecture and takes advantage of the north-

bound interface to coordinate related mechanisms such as QoS active measurements, QoE

prediction, and network rule management. We carry out a realistic evaluation by consid-

ering real mobile operator topology and video traffic traces, where the proposed heuristic

algorithm was found to outperform state-of-the-art approaches.

The remainder of this chapter is organized as follows. In Section 4.1 we present the

QoE-aware path selection problem. In Section 4.2 we present SQAPE as well as design

aspects regarding path selection in large-scale networks. We conclude this chapter pre-

senting the performance evaluation using realistic topology and workload in Section 4.3.

4.1 Problem Formulation

We start by formally defining the QoE-aware path selection problem. Note that, at

this point, we aim to estimate QoE according to a QoS to QoE mapping function. Then,

we combine it with flexible SDN-based routing mechanisms in order to maximize the

overall MOS. Next, we define the inputs and outputs related to our model.

The physical network infrastructure is represented by a direct graph G = (N,L),

where N is the set of nodes (i.e., SDN-enabled forwarding devices) and L is the set of

links, such that L ⊆ (N × N). Links are asymmetric and, therefore, bidirectional links

are represented as a pair of arcs ((i, j) and (j, i)). We denote the size of sets N and L

1Although this work can be adapted to other underlying technologies, such as BGP and MPLS-TE, the
OpenFlow protocol was chosen due to its ability to orchestrate network resources in a centralized manner,
with a complete view of the network state, and its abstractions to handle packet forwarding.

2This chapter is based on the following publication:

• Roberto Iraja Tavares da Costa Filho, William Lautenschlager, Nicolas Kagami, Marcelo Caggiani
Luizelli, Valter Roesler, Luciano Paschoal Gaspary. Scalable QoE-aware Path Selection in SDN-
based Mobile Networks. IEEE International Conference on Computer Communications (INFO-
COM 2018).
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by |N | and |L|, respectively. Each link (i, j) ∈ L is associated with QoS measurements

(i.e., delay, TCP throughput and packet loss). We assume QoS-related data is gathered

from the network infrastructure periodically so as to ensure the accuracy and freshness of

our model. Therefore, to each link (i, j) ∈ L is associated a set of functions defined as

follows. Function D : (N ×N)→ R+ is used to denote measured delay associated with

a given physical link (i, j) ∈ L. In turn, function T : (N × N) → R+ associates link

(i, j) with its maximum measured TCP throughput. Last, function L : (N ×N)→ [0, 1]

associates observed packet loss between nodes i and j.

C defines a set of available video content. An element c ∈ C represents, for

instance, a specific video content. For each content c, a set of offloading locations are

known in advance. We represent the set of offloading locations for a given content c as

the set P and, therefore, P (c) ⊆ N .

A path between two distinct nodes i and j consists of a finite sequence of nodes

τ = {n0, n1, · · · , nh} such that (ni, ni+1) ∈ L(0 ≤ i ≤ h − 1). A path τ is simple

if all of its nodes are distinct. We denote a valid path between i and j as τ(i, j) and

its corresponding length by |τ |. The set of all simple paths between i and j is denoted

by Ψ(i, j). For ease of presentation, end-to-end QoS measurements of a given path τ

are associated similarly to previous definitions. Then, functions Tp(τ), Dp(τ), and Lp(τ)

represent, respectively, TCP throughput, delay and packet loss. We derive these QoS

indicators similarly to Wang and Crowcroft (WANG; CROWCROFT, 1996). The end-to-

end path TCP throughput (i.e., Tp(τ)) consists of the minimum TCP throughput observed

over all links in τ . Formally, it is defined as:

Tp(τ) = Min(0≤i≤|τ |−1)T
(
τ [i], τ [i+ 1]

)
(4.1)

Next, the end-to-end path delay (i.e., Dp(τ)) comprehends the additive sum of

measured delays (on links) along the path τ . Therefore, the end-to-end path delay is

formalized as:

Dp(τ) =
∑

(0≤i≤|τ |−1)

D
(
τ [i], τ [i+ 1]

)
(4.2)

Lastly, the end-to-end packet loss estimation (i.e., Lp(τ)) follows a similar strategy

to the one proposed by Dobrijevic et al. (DOBRIJEVIC; SANTL; MATIJASEVIC, 2015).

In their work, the authors estimate end-to-end packet loss based on observed losses in for-

warding devices. Here, for higher accuracy, we adopt a strategy that is based on packet
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loss observed on links (i.e., including forwarding devices and the physical medium). Sim-

ilarly to Dobrijevic et al.(DOBRIJEVIC; SANTL; MATIJASEVIC, 2015), we multiply

observed packet loss along the links used on path τ (Equation 4.3).

Lp(τ) = 1−
∏

(0≤i≤|τ |−1)

1− L
(
(τ [i], τ [i+ 1]

)
(4.3)

Given the above definitions of QoS path composition, we consider our previous

work (FILHO et al., 2016) to infer the MOS value for a given path τ . We consider function

Φ(Tp(τ), Dp(τ), Lp(τ)) ∈ N+, which correlates end-to-end QoS indicators of a single

path τ with the predicted MOS. The Φ two-step function employs decision trees to predict

video streaming application performance based on observed network QoS. In a second

step, the same function provides a QoE estimation based on the predicted performance

for the application layer. The interested reader may refer to (FILHO et al., 2016) for

additional information.

Our model considers a set of multimedia connection requests S at a specific time

frame t. A multimedia connection request (i, c) ∈ S represents that a device attached

to the infrastructure node i ∈ N is requesting video content c ∈ C. Notice that content

c ∈ C is potentially available at multiple offloading locations – defined by set P (c). Then,

∀(i, c) ∈ S,∀j ∈ P (c): ∃(i, j) ∈ (N ×N).

Now we can formally define our problem. Given the inputs of the model, that

is, the infrastructure G with its associated metrics and a set S of multimedia connection

requests, the problem consists of finding a valid simple path for each (i, c) ∈ S in given

time slot t so as to maximize observed MOS (Equation 4.4). Therefore, the output of the

model is a set of paths that maximize the overall observed MOS given a set of multimedia

requests S.

Max.
∑

∀(k,l)∈S

∑

j∈P (l)

∑

∀τ∈Ψ(k,j)

Φ
(
Tp
(
τ
)
, Dp

(
τ
)
, Lp
(
τ
))

(4.4)

The model presented in this subsection is used as an important building block of

our proposed approach (Section III). SQAPE provides mechanisms to actively monitor

the network infrastructure and keeps updated QoS link measurements that are used as

input in our model.
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4.2 SQAPE

In this section, we present the main aspects of SQAPE. We begin by introducing

the SQAPE architecture. Right after, we describe the QoS measurement strategy and the

method for QoE estimation. Finally, we present the SQAPE main algorithm and highlight

its most essential characteristics.

4.2.1 SQAPE Architecture

SQAPE takes advantage of the centralized control strategy of the SDN/OpenFlow

architecture to provide fine-grained control for per-user QoE-aware path deployments in

large-scale networks. SQAPE architecture consists of three main components: Path Se-

lection (Decision), QoS Measurement and QoE Predictor (LEAP). These components are

decoupled from the SDN controller, which allows integration of any controller instance

through the northbound interface (NBI). We claim the proposed scheme to be flexible

since it employs loosely coupled microservice-based components and can be orchestrated

orthogonally to SDN deployments. For example, both the QoS Measure and the QoE

Predictor components are coordinated by the Decision one. Considering the above and

in consonance with recent investigations (POULARAKIS et al., 2017; SAHHAF et al.,

2017), SQAPE has the potential to cope with incremental SDN deployment strategies.

For didactic reasons, in Figure 4.1 we show the start-up process, which is a special

case where SQAPE components interact in a sequential order. After the start-up, events

1-4 run on a periodic basis according to the QoS monitoring frequency (e.g., 60 seconds)

and are responsible for determining QoS performance by means of active measurements

(Figure 4.1 (a)). In parallel, events 5-8 will occur according to the incoming video re-

quests (Figure 4.1 (b)). At this stage, SQAPE relies on a QoS composition approach

followed by a QoS-to-QoE mapping function to compute per-path MOS estimation. This

MOS estimation, along with a link utilization heuristic, composes the distance metric

which, ultimately, determines the path to be deployed.
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Figure 4.1: SQAPE sequence diagram

8. SQAPE path deploy

SQAPE QoS
Measurement

SDN
Infrastructure

QoE
Predictor

SDN
Controller

2. QoS
measurement

4. QoS results

5. MOS estimation request

6. MOS estimation response

7. SQAPE path deploy request

3. QoS
results

1. QoS
measurement req.

(b)

(a)
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4.2.2 From QoS Measurement to QoE Prediction

In this work we consider the use of active measurement methods to assess residual

bandwidth, delay and loss. These metrics were selected as the ones most influential to

video Quality of Experience according to previous investigations regarding QoS to QoE

mapping functions (FILHO et al., 2016; PESSEMIER et al., 2013; HSU; LO, 2014).

Active measurement-based methods are particularly interesting as most mobile operators

already have tools in place for measuring network QoS indicators.

As formalized in Section 4.1, we perform measurements in the scope of each link

and later compose them to form an estimation of the complete path. Using the topology

shown in Figure 4.2 as an example, this design choice requires just 94 one-way measure-

ments (i.e., twice the number of links) as opposed to the 22,536 one-way measurements

that would be required if we were to measure every possible path between source and des-

tination. As one can observe, the huge number of measurement operations makes path-

based approaches impractical for supporting routing decisions in large-scale networks.

Also, link-based composition combined with active measurements entails lower network

overhead, which is a crucial requirement for scalable monitoring. In practice, per-link

measurements require the existence of measurement agents at each vertex. They may be

separated by more than a physical link and are represented by the SDN switches, where

routing decisions are enforced.
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4.2.3 SQAPE Algorithm

The SQAPE algorithm focuses on finding a feasible set of paths with maximum

MOS over time. For that, SQAPE attempts to determine a suitable balance between

MOS and resource consumption in the infrastructure. One component of SQAPE focuses

on MOS maximization, which is a specialization of the Widest Path problem (WANG;

CROWCROFT, 1996). Another component targets resource consumption, approaching

the well-known minimum path problem. Therefore, SQAPE is a hybrid combination of

these two algorithms as it considers both metrics simultaneously.

Algorithm 1 consolidates the proposed path selection approach. As one can ob-

serve, the measurement phase collects the results of the latest measurement snapshot and

updates the QoS graph for each of its links (line 2). The path selection algorithm operates

on top of an adaptation of the Dijkstra shortest-path algorithm in which the distance met-

ric is a combination of MOS estimation and a link utilization contribution. The algorithm

starts navigating from node k and determines the path with the best local distance metric

to each node u ∈ N (lines 7-14). For each neighbour v, we estimate MOS based on QoS

measurement to path τ (line 10-11), according to Function Φ detailed in Section 4.1, and

then combine it with an estimation of residual bandwidth (line 12). The objective of this

strategy is to capture the interplay among: (i) path MOS; (ii) path length (hop count);

and (iii) residual bandwidth. Our algorithm simultaneously maximizes MOS and residual

bandwidth while minimizing path length. We achieve this by means of linear combination

(line 12). Parameter α determines the importance of the residual bandwidth in relation

to MOS. At each iteration, the function Extract-Min removes node u from N according

to set χ (line 8). Observe that set χ maintains the best solution found so far, while set

ϕ keeps track of nodes belonging to path τ(k, l) (line 15). After navigating through all

nodes u ∈ N , SQAPE deploys a path for the video request (k, l) such that the χ[j] is

minimum over all j ∈ P (l). In other words, it takes the minimum path between k and an

offloading node j in P (l). Then, we deploy the appropriate SDN forwarding rules (line

16).

Concerning the eventual discrepancy between the frequency of measurements and

the frequency of routing requests, the accuracy of path selection can be impaired. The

impact of newly routed connections on a path would only be acknowledged after the

next measurement iteration, whose frequency may depend on network characteristics.

In light of this, after a path is selected, each of its links’ residual bandwidth value is
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Algorithm 1 SQAPE: QoE-aware path selection algorithm
Input: G = (N,L): network infrastructure
Input: (k, l) ∈ S: video content request
Input: P (l) ⊆ N : set of available network nodes (caches) with content l
Input: α: path selection factor; β: throughput estimation factor
Input: Mmax: maximum MOS value
1: for every link (i, j) ∈ L do
2: gather measured QoS indicator for T (i, j), D(i, j), L(i, j)

3: end for
4: for every node u ∈ N do
5: χ[u] ←∞
6: ϕ[u] ← NILL
7: end for
8: χ[k] ← 0

9: while N 6= ∅ do
10: u← Extract-Min

(
N ,χ

)
11: for each link (u, v) do
12: {Tτ , Dτ , Lτ} ← QoS metrics of path τ(s, v) passing through u according to equations (1), (2), and (3)

13: M ← Φ
(
Tp
(
τ
)
, Dp

(
τ
)
, Lp

(
τ
))

14: χ′ ←M + α ·
((∑

∀(i,j)∈τ(k,u))
1

T (i,j)

)
+ 1
T (u,v)

)
15: χ′ ←Mmax − χ′ iff χ′ ≤Mmax. Otherwise χ′ ← 0

16: if χ[v] > χ′
[u]

then
17: χ[v] ← χ′; ϕ[v] ← u

18: end if
19: end for
20: end while
21: deploy path for req. (k, l) based on {χ, ϕ} such that χ[j] : j ∈ P (l) is minimum
22: QoS update: ∀(i, j) ∈ {χ, ϕ}: estimate T (i, j) according to β
23: return χ, ϕ

updated to reflect the impact of adding a load comparable to a TCP connection with a

given video bitrate (e.g., 1080p, 720p). Considering the video bitrate is determined by

the client implementation, our algorithm relies on a parameter β. In this step, the link’s

residual bandwidth is reduced by a flat amount if there is room for β. If there is no room

to subtract β, the residual bandwidth is decreased multiplicatively at a rate proportional

to the number of videos recently routed. This method allows connections to be more

appropriately distributed when sharing a measurement snapshot.

Note that the problem formulation (Section 4.1) does not explicitly take into ac-

count link capacity. However, capacities are considered implicitly as “soft” constraints

every time MOS values are estimated. It is important to mention that if link capacities

(and demands to (k, l) ∈ S) were explicitly considered in the problem formulation (i.e.,

as “hard” constraints), the SQAPE problem would be NP-hard, as it is a generalization

of the Multi-Commodity Flow problem (LEIGHTON et al., 1995). Last, observe that the

proposed algorithm has polynomial time complexity of O
(
|L| + |N | · log|N |

)
using a

Fibonacci heap to extract minimum values from χ.



57

4.3 Evaluation

This section first presents a description of the evaluation environment and its pa-

rameters in Subsection 4.3.1. Subsections 4.3.2 and 4.3.3 expand on the first research

question: (i) how to accurately predict video QoE for given pairs of source and destina-

tions in large-scale networks? Subsection 4.3.4 addresses the second research question:

(ii) how to use the QoE indicator to dynamically select and deploy QoE-aware paths

which minimize infrastructure utilization?

4.3.1 Experimental Parameters

The experimental setup3 consists of: (i) a Mininet-instantiated SDN topology,

based on a real LTE network deployed countrywide, with four offloading containers mir-

roring video contents, as shown in Figure 4.2; (ii) a realistic video workload comprised of

HTTP Adaptive Streaming (HAS) (360p, 720p and 1080p), which is applied to the topol-

ogy according to each scenario’s criteria over 130-minute long experiment rounds; (iii)

microservice for each of the evaluated algorithms, responsible for selecting and deploying

paths on demand; and (iv) an active measurement procedure to periodically measure the

network state on a per-link basis.

In the performance evaluation, two distinct scenarios were considered. In Scenario

1, SQAPE is compared to a baseline solution, whose path selection is based on adminis-

trative weights, usually attributed by a traffic engineer according to a traffic matrix. This

kind of static traffic engineering (TE) approach is widely employed in current networks.

The weights are adjusted considering an evenly distributed load among the metropoli-

tan layer. The Bellman-Ford algorithm is applied to determine the shortest path by link

weight.

In this context, two video loads are evaluated, both approximating the maximum

topology capacity. The first load conforms perfectly to the homogeneous premise on

which the TE algorithm is based. The second load realistically distributes the videos,

including zones with a higher concentration of demand. These different loads aim to

contrast how SQAPE and TE adjust to dynamic variations of input.

In Scenario 2, SQAPE is compared to four other path selection algorithms that

3The full set of parameters considered in this experiment, including topology and video traces, can be
downloaded from https://github.com/rtcostaf/INFOCOM2018



58

Figure 4.2: SQAPE reference topology

Source: by author (2019).

attempt to minimize one or more network constraints regarding QoS indicators. We con-

sidered a workload composed of 744 videos, which were delimited by three components:

network capacity, video bitrates and frequency of video requests (following a Poisson

fit). The first contender (DKS - Delay) minimizes distance according to the Dijkstra al-

gorithm, using delay as the distance metric (KUIPERS et al., 2002). This technique is

commonly employed by routing mechanisms such as OSPF. The second contender (BF

- BW) minimizes path’s bandwidth bottleneck, using the Bellman-Ford algorithm. This

strategy operates iteratively, finding the widest path with the least hops (GUÉRIN; ORDA,

2002; TOMOVIC; RADUSINOVIC; PRASAD, 2015). The third contender is known as

the Shortest Widest Path (SWP), which optimally solves the problem of maximizing TCP

throughput and minimizing delay in the selected path (WANG; CROWCROFT, 1996).

Finally, the fourth contender is the Constrained Shortest Path First (CSPF), which is an

adaptation of the Dijkstra algorithm that prunes unfeasible links before performing path

calculation (NAM et al., 2014). This algorithm is evaluated differently as it requires an

assumption the other proposals do not share: it relies on the possibility of denying video

delivery. Thus, it is only graphically presented in Figure 4.6, as other representations

depend on the deployment of all videos.
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4.3.2 Video Playout

Video stall represents the most important metric to infer the quality of experience

of a video playout (NAM; KIM; SCHULZRINNE, 2016; CASAS et al., 2016). In the

evaluation procedure, the player was responsible for recording stall count and duration.

A stall is detected if the interval ti − t(i−1) between the conclusion of the download of a

video segment and that of the last segment is higher than the remaining buffer (amount

of time worth of unconsumed video content available to the user) at time t(i−1). As one

can observe in Figure 4.3(a), the static traffic engineering approach, in this case an upper-

bound, performed better than SQAPE in its optimal (most-favorable, yet unrealistic) load

(BF-TE OL). While TE accumulated 103 seconds of stall throughout 150 videos, SQAPE

stalled for 267 seconds. However, in the realistic load (RL), TE behaved considerably

worse, accumulating 4,748 seconds while SQAPE stalled for 1.6 seconds. Similar results

were obtained for the stall count metric (see Figure 4.3(b)). Thus, SQAPE achieved

competitive results considering the load specifically constructed for TE, while SQAPE

outperformed TE when subjected to the realistic load.

Figure 4.3: Scenario 1 - Video playout performance evaluation using distinct workloads
(Bellman-Ford optimal vs realistic)
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Source: by author (2019).

The potential of SQAPE (w.r.t. adaptability) is more evident in Figures 4.4(a) and

4.4(b), which present the total stall duration and stall count for Scenario 2. In such con-

figuration, SQAPE led to 238 seconds of stall, distributed among 72 stall events. The

contender solution with the closest performance (SWP) registered 204 stalls, amounting

to 998 seconds of duration. The Dijkstra solution performed the worst, presenting a total

of 3,815 seconds during 609 stalls. A few reasons can be given for this result. Firstly, the

difference in intrinsic delays between the links causes little initial variation of selected
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paths (at this stage, the composition delay is mainly influenced by the propagation delay

and the queue delay is minimal), which can lead to an accumulation of several videos in

a few links since the early stages of the experiment. This difference can be observed in

Figure 4.4(a), where DKS - Delay begins to stall faster than others at around minute 25.

Secondly, even though delay is a good predictor for queue occupation, the DKS - Delay

algorithm does not consider available bandwidth, which is the predominant indicator for

video QoE. The value of considering delay, albeit secondly, is manifested in the differ-

ence of outcome between BF-BW and SWP. Although both take the available bandwidth

as a priority, SWP takes delay into account, while BF-BW minimizes hop count. This

difference can be expressed in BF-BW taking paths with fewer hops but more degraded

traffic queues.

Figure 4.4: Scenario 2 - Video playout performance evaluation using realistic workload
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Considering CSPF separately, even though it routed 10.46% fewer videos than

the other solutions, SQAPE still managed to accumulate less stall length. It should be

noted that denied videos were not accounted into stall and only 7.49% of videos were

responsible for all stall events in SQAPE. In light of this, it can be said that SQAPE made

better use of the network resources in comparison with CSPF.

The shortest-widest path algorithm, despite performing well, did not achieve as

good a result as SQAPE. SWP usually selects decent paths as available bandwidth and de-

lay are the most influential indicators of QoE, respectively. However, the shortest-widest

path is not necessarily the best one. Degradation in indicators other than available band-

width (such as delay and loss rate) may lower QoE in the widest path. Also, an increase

in available bandwidth to levels much higher than the video bitrate does not necessarily

lead to an increase in QoE. Further, such an approach does not consider link utilization

when determining the path. For example, SWP may prefer to select paths going through
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the core, where links are wider, rather than making use of local offloading containers.

This tendency can overburden the network core while leaving peripheral links underused.

In comparison, SQAPE considers how key QoS indicators influence the final QoE, being

aware of paths which may have less available bandwidth but better overall QoE estima-

tion. Finally, since MOS does not increase with available bandwidth indefinitely, SQAPE

does not have a preference for paths wider than the expected video bitrate, which allows

it to make use of the network edge regularly.

4.3.3 Quality of Experience

The estimated MOS of degraded videos in Scenario 1 is shown in Figure 4.5, con-

sidering only impaired videos (i.e., MOS < 5). As expected, the traffic engineered solu-

tion operated well when applied to its optimal load, resulting in only four degraded videos

out of 150, all of which had MOS values considered “good” (MOS ≥ 4). When applied

to the same load, SQAPE degraded ten videos into “good” and one video into “fair”

(3 ≤ MOS < 4). On the other hand, when handling the more realistic load, the traffic

engineered solution degraded more than a third of all videos, while SQAPE degraded only

two. The TE solution also presented videos in the “bad” range (1 ≤ MOS < 2), while

SQAPE’s worst videos were within the “good” range. This result is consistent with the

stall values, confirming SQAPE’s remarkable adaptability in dynamic environments.

Figure 4.5: Impaired videos by MOS - Scenario 1
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Regarding Scenario 2, Figure 4.6 illustrates the different amounts and intensities

of degraded videos observed for each of the path selection algorithms. The number of

videos denied by CSPF is also shown to compare its number of impaired video expe-

riences. In addition to CSPF denying more videos than those impaired by our strategy,
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it still presented impaired videos. The DKS-Delay strategy resulted in the highest ob-

served stall length and most impaired videos, displaying how adopting delay as the sole

arbiter of quality fails to determine the best paths. Furthermore, even though BF-BW pre-

sented approximately 50% more stall length than SWP, both resulted in a similar number

of impaired videos. Instead, this discrepancy was expressed in the degradation inten-

sity experienced by the videos, evidenced by the fact that BF-BW videos reached “poor”

(2 ≤ MOS < 3), differently from SWP. All of these highly impaired videos were ob-

served when retrieved from offloading point 1 (see Figure 4.2), which is the closest con-

tent provider. This is consistent with BF-BW’s preference for minimizing hop count,

which represents a vulnerability depending on the network topology. SWP’s auxiliary use

of delay was found to be an improvement over hop count.

Figure 4.6: Impaired videos by MOS - Scenario 2
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The performance of SQAPE achieved the lowest video degradation, registering

stalls in only 58 of the 774 videos, expressing an improvement of at least 37%. Moreover,

none of the stalls were intense enough to lower video MOS below “good” (MOS ≥ 4). In

summary, despite delay being, by itself, insufficient for path selection, it is fundamental

for an adequate solution. Furthermore, it is reasonable to conclude that one of the reasons

SQAPE outperformed SWP is how it more appropriately incorporates delay as a metric.

Another aspect of Scenario 2 worth discussing is how the HTTP adaptive stream-

ing influences the results. One way to evaluate such effect is to count the number of

segments downloaded in each resolution, as shown in Figure 4.7. Even though SQAPE

had the edge over other algorithms (with more 1080p and 720p segments), the behavior

was comparable throughout the solutions, indicating that no algorithm obtained unfair

advantage in traffic demand by favoring lower resolution segments.
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Figure 4.7: Segments count by resolution
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4.3.4 Network efficiency

According to a realistic demand, videos of up to 40 minutes of duration are re-

quested continuously over a 90-minute window, resulting in 130 minutes of run time.

This produces three different stages. In the initial stage (for the first 40 minutes), the

number of ongoing videos increases gradually, while most of the videos have not had the

time to finish. The stable stage occurs between minutes 40 and 90, when the video intake

is compensated by finishing videos. In the final stage (from minute 90 to 130), no new

videos are requested, slowly decreasing network utilization until the last video ends.

In order to determine the efficiency of a solution with respect to network utiliza-

tion, each link (i, j) ∈ L is given an indicator vij(t) that represents, at an instant t, the

number of active paths the link takes part. An active path is that which has been designated

and deployed for any video running at time t. Considering that the smallest resolution for

Scenario 2 is 360p, there is a theoretical limit Vij of how many videos can be supported

by the link (i, j), defined by Vij = cij/B360p. Where cij is the link capacity and B360p is

the bitrate of 360p video segments, both in bits per second. When vij(t) > Vij , consid-

ering the capacity is divided among the videos being transmitted over a link, it becomes

impossible to transfer a new segment in the time it takes to be consumed. This implies

the buffer is consumed faster than it grows, generating stall if and when it runs out.

Considering a network snapshot is taken at every minute, let t ∈ N, 0 ≤ t ≤ 130.

In this snapshot, value vij(t) is observed for each link (i, j) ∈ L. Occupation rate Rij(t)

is given by Rij(t) = vij(t)/Vij . The maximum link utilization at time t, designated

as ML(t), is defined as the maximum value of Rij(t) observed in all links, given by

ML(t) = max(Rij(t)),∀(i, j) ∈ L. In Figure 4.8(a), the evolution of ML(t) is shown

in the stable stage, for four of the strategies considered in Scenario 2. CSPF cannot be

considered in the utilization plot because it deployed a considerably lower number of
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videos, not exploring the intricacies of accommodating video streams under adversity.

The horizontal line indicates a theoretical limit where vij(t) = Vij for at least one of

the links at the moment t. SQAPE was the only strategy for which the maximum link

utilization remained below this threshold throughout the experiment, demonstrating how

this solution makes better use of network resources. Using the accumulated vij , one can

estimate path length. By consecutively differentiating between routes deployed by each

solution, it is possible to derive an indicator U of utilized links within a snapshot, given

by U =
∑130

t=0

∑
∀(i,j)∈L vij(t).

Figure 4.8: Scenario 2 - Network efficiency using realistic workload

0.6

0.8

1

1.2

1.4

1.6

40 50 60 70 80 90

M
ax

 L
in

k 
U

til
iz

at
io

n

Time (minutes)

SQAPE
SWP

BF-BW
DKS - Delay

(a) Maximum link utilization histogram

76000

78000

80000

82000

84000

86000

88000

90000

 SQAPE BF-BW SWP DKS-Delay

C
u

m
u

la
ti

v
e

 L
in

k
 U

ti
liz

a
ti

o
n

Path Selection Strategy

(b) Cumulative link utilization based on path length

Source: by author (2019).

The value of U for each algorithm gives insight into how long are the selected

paths during the experiment. Keep in mind that the longer the paths, the fewer resources

are available (which could be used to transmit other contents otherwise). As shown in

Figure 4.8(b), SQAPE had the best results in relation to the other algorithms. In a joint

analysis of the plot in Figure 4.8(a), it can be stated that SQAPE did not require longer

paths to avoid network bottlenecks. Also, solutions that made use of delay as a criterion

frequently opted for longer paths. This phenomenon can be explained by congested links

presenting higher delay and paths taking a detour to avoid them, resulting in more link

usage. Such paths may offer less degradation. However, higher link utilization tends to

deplete the network resources more quickly, as can be seen in Figure 4.8(a), where both

SWP e DKS - Delay are also the ones with the worst bottlenecks ML(t).

In this chapter, we combined the QoE prediction model with a polynomial time

heuristic for providing QoE-aware path selection. This approach partially answers Re-

search Questions 1 and 2, because it deals only with traditional video streaming. Next,

we address the context of the VR videos by introducing a QoE prediction model and an

experimentation platform in Chapters 5 and 6, respectively.
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5 PREDICTING THE PERFORMANCE OF VR VIDEO STREAMING

In this chapter, we present PERCEIVE (PERformanCe EstImation for VR vidEos),

a two-stage adaptive VR performance assessment model. Inspired by the model intro-

duced in Chapter 3, it employs machine learning algorithms to first predict VR video

playout performance, using network QoS indicators as predictors1 (FILHO et al., 2018).

Then, along with a novel QoE model for the VR context, it uses the video playout per-

formance metrics to model and estimate the end-user perceived quality. Evaluated in

real-world 4G/LTE network conditions, PERCEIVE not only accurately predicts the VR

videos performance, but also allows us to pinpoint the QoS conditions that affect VR

streaming services the most.

The remainder of this chapter is organized as follows. In Section 5.1, we intro-

duce the approach used for the tile-based adaptive VR video streaming. In Section 5.2,

we describe PERCEIVE, the two-step performance prediction scheme that we propose.

Finally, in Section 5.3, we report the evaluation carried out to prove concept and technical

feasibility of the proposed approach. It includes details on the evaluation methodology,

the generation of the dataset, analysis of the training set and results.

5.1 Adaptive Streaming of VR videos using Tiles and Quality Zones

To cope with 2D adaptive streaming techniques, VR videos must be encoded at

different quality levels, temporally divided in segments and spatially tiled (NIAMUT et

al., 2016). Then, during the streaming session, only the tiles within the viewport are

streamed in high quality, while others are maintained at the lowest levels or not streamed

at all (QIAN et al., 2016). To be effective, these techniques rely on viewport prediction

algorithms, since the player needs to fill in a playout buffer with tiles that are expected to

compose the viewport in the near future (PETRANGELI et al., 2017).

Although the use of viewport-aware techniques leads to the reduction of band-

width consumption, the effects of network performance on VR video streaming still plays

1This chapter is based on the following publication:

• Roberto Iraja Tavares da Costa Filho, Marcelo Caggiani Luizelli, Maria Torres Vega, Jeroen van
der Hooft, Stefano Petrangeli, Tim Wauters, Filip De Turck, Luciano Paschoal Gaspary. Predicting
the Performance of Virtual Reality Video Streaming in Mobile Networks. ACM Multimedia
Systems Conference (MMSys 2018).
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an important role on the user’s perception of the services. Since the full panoramic view

of a VR video usually demands a much higher bitrate, when compared to regular videos

(CORBILLON et al., 2017), even a fraction of it (viewport) may require high bitrates.

Along these lines, recent investigations have emphasized the importance of the network

effects on the perceived quality (Quality of Experience, QoE) of adaptive video stream-

ing applications (MAO; NETRAVALI; ALIZADEH, 2017; JIANG et al., 2016; JIN et

al., 2016; DIMOPOULOS et al., 2016; FILHO et al., 2016). However, state-of-the-art

approaches fall short in predicting the perceived quality for VR videos as they do not

consider the spatial segmentation (e.g., tile-based videos).

QoE has shown to be a critical factor for video applications (NAM; KIM;

SCHULZRINNE, 2016; AHMAD; FLORIS; ATZORI, 2016). As such, both network

operators and VR content providers are required to answer an important question: con-

sidering the wide range of performance levels of IP networks, to which extent are the

currently observable network conditions able to provide users of VR applications with

adequate QoE? Answering this question is remarkably complex due to two constrains.

First, the influence of the network on VR video performance is unknown; and second, the

state-of-the-art on video QoE estimation modeling does not consider the VR context.

In order to reduce the bandwidth required for the streaming, PERCEIVE adopts

a tiling structure, in which the videos are not only divided in temporal segments but are

also spatially split in sections (tiles) (PETRANGELI et al., 2017). In addition, tiles are

grouped in quality zones prior to the streaming. Each of the zones is assigned a quality

level according to the network conditions measured during the previous segment. In the

next two subsections, both the structure and the adaptive streaming technique adopted in

this work are presented.

5.1.1 Adaptive VR streaming structure: Spatial Tiles and Quality Zones

A VR video V can be represented by a set of k spatially divided zones Z =

{Z1, ..., Zk} such that
⋂
∀k Zk = ∅. The same video V is temporally split into a discrete

number of m segments S = {S1, ..., Sm} such that
⋃
∀m Sm = V . Each zone Zk is com-

posed of a set of tiles t ∈ Zk. A tile t is time-divided into m chunks C = {Ct1 , ..., Ctm},
and may assume different bitrates (qualities) R(Ctm) over time. Finally, we refer to a

segment as the set of all chunks for a given time frame such as Sm =
⋃
∀tCtm . In tile-

based approaches, the encoding process defines how the video will be spatially divided



67

(i.e., tiling scheme), which bitrates will be available in the HAS context (i.e., quality

representations), and the segment length (i.e., number of seconds).

An example of this type of structure is shown in Figure 5.1. There are three quality

zones Z = {Z1, Z2, Z3}, each one composed by a set of adjacent tiles. Z1 is a set of

tiles adjacent to the viewport center (t28, t29, t36, t37), Z2 is the border of the viewport

(t43, t44, t45, t46, t38, t30, t22, t21, t20, t19, t27, t35) and Z3 is composed by all tiles outside

the viewport.

Figure 5.1: Example of an adaptive tile-based VR video structure split in 3 quality zones.

Source: by author (2019).

5.1.2 Adaptive streaming heuristic

Algorithm 2 describes the adaptive streaming heuristic procedure adopted for this

work (PETRANGELI et al., 2017). The bitrate in a specific zoneZk is named asR(Ct)|Zk .

The algorithm receives as input (i) a reference to a VR video V , (ii) a set S describing

the video segmentation and (iii) the available zones in video V . The heuristic described

in Algorithm 1 works as follows. Once knowing the available bandwidth in the network,

the VR player downloads tiles with the highest possible bitrates. First, the heuristic tries

to increase the bitrates on the zones inside the viewport. Then, it repeats the procedure to

tiles from the outer zones (observed in line 3). Observe that the heuristic does not increase



68

the bitrate R(Ct)|Zk+1 on a subsequent zone Zk+1 in case the bitrate of zone Zk is strictly

upper-bounded by R(Ct)|Zk+1 . In other words, it ensures that the bitrate of zone Zk+1 is

always lower or equal to that of zone Zk. Furthermore, it ensures that tiles within the same

zone Zk are streamed with the same bitrate R(Ct), that is, R(C0)|Zk = R(C1)|Zk = · · · =
R(Ct)|Zk . If the available bandwidth were insufficient to download all the tiles in a zone

on time (before display), the streaming would stall until the buffers were filled. Hence,

the player ensures that all tiles are synchronized during the playout and that no black tiles

appear. For more information on the working principles of the streaming heuristic, please

refer to (PETRANGELI et al., 2017).

Algorithm 2 PERCEIVE: VR player heuristic (PETRANGELI et al., 2017).
Input: V : VR video
Input: S: discrete number of segments in VR video V
Input: Z = {Z1, ..., Zk}: k spatially divided zones in VR video V

1: for each video segment Si ∈ S from VR video V do
2: for each zone Zk ∈ Z do
3: gather tiles t ∈ Zk with maximum available bitrateR(Ct)|Zk , such that (∀k ≥

2) : R(Ct)|Zk ≤ R(Ct)|Zk−1 and (∀t ∈ Zk) : R(C0)|Zk = R(C1)|Zk = · · · =

R(Ct)|Zk
4: end for
5: end for

5.2 PERCEIVE: Adaptive VR video performance prediction

Figure 5.2 presents the block diagram of the proposed two-stage VR performance

prediction method. The first stage is composed of four predictors, one per VR video ap-

plication performance metric (i.e., startup delay, quality, quality switches count and video

stalls) (YIN et al., 2015b). As input, the predictors consider both the network Quality

of Service (QoS) (i.e., delay, packet loss and TCP throughput) and the tiling scheme.

In the second stage, the user QoE is estimated by submitting the predicted application

layer performance metrics to the proposed QoE model. PERCEIVE can dissect VR video

playout performance by understanding two key processes, namely (i) the influence of the

network performance on VR video player outputs; and (ii) how the user perceives the

resulting video playout performance. However, both the VR video player and the QoE

model are open questions in the sense that there is neither a reference player implemen-

tation nor a QoE model for VR videos. Considering the above, the proposed two-stage
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prediction allows both the playout performance metrics predictors and the QoE model to

be individually updated, without the need to rebuild the entire scheme. The following

two subsections provide details and insights on each of the stages of which PERCEIVE

is composed.

Figure 5.2: PERCEIVE two-stage quality prediction

Source: by author (2019).

5.2.1 Adaptive VR Video Playout Prediction

In the first stage of the method, the four most important playout performance met-

rics associated with the adaptive VR streaming, namely startup delay, quality level (bi-

trate), quality switches and stall time (YIN et al., 2015b), are predicted based on network

QoS inputs and the VR video structure. Each of them is independently predicted using

regression trees as predictors (taking advantage of and adapting the 2D procedure pro-

posed in previous research work (FILHO et al., 2016)). Regression trees are employed

due to three main reasons. First, they have shown to be an accurate machine learning

method in related investigations (SHAFIQ et al., 2014; FILHO et al., 2016). Second,

they permit understanding complex and non-linear relationships between predictors and

response variables in an intuitive and visual manner. This is a very important feature that

allows to pinpoint the most influential inputs, which will be put to the test in the analysis

of Section 5.3.3. Finally, once the prediction structures are generated, they can predict

the response variable in linear time complexity, and can be easily integrated in third-party
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applications, which are fundamental aspects for network operators and content providers.

The selection of the input QoS parameters has been made based on state-of-

the-art research studies on the QoS conditions that affect video streaming services the

most (VEGA; PERRA; LIOTTA, 2018; PAUDYAL; BATTISTI; CARLI, ; FILHO et al.,

2016). These studies also concluded that TCP throughput is one of the most influen-

tial QoS metric when predicting QoE. Also, both network losses and delays have been

demonstrated to be responsible for further degradation, depending on the type of stream-

ing application used. In addition to these three network performance metrics, a fourth

parameter, namely the tiling structure of the VR streaming, was included. The structure

defines the number of tiles that need to be streamed to the client, thus it will heavily in-

fluence the VR playout performance. Once the four VR playout performance indicators

are predicted, they serve as input to the second phase, the QoE model as it is presented in

the next Section.

5.2.2 Adaptive VR QoE Estimation Model

The purpose of this second stage is to estimate the quality perceived by the

end users (their QoE), considering the VR video playout performance metrics obtained

from the previous stage of PERCEIVE (i.e., startup delay, quality level (bitrate), quality

switches and stall time). The model proposed herein considers the state-of-the-art on

QoE modeling for adaptive streaming applications in general and HAS in particular (PE-

TRANGELI et al., 2015; YIN et al., 2015b; MAO; NETRAVALI; ALIZADEH, 2017).

To the best of our knowledge, this is the first model to consider the concept of zones and

tiles in a QoE estimation model for VR videos. These characteristics are crucial, given

the fact that they allow coping with VR video attributes while providing flexibility to

handle different video encoding strategies (e.g., tiling scheme, viewport geometry and

available quality representations).

Given the concepts of quality zones and tiles of the approach used for Adaptive

VR streaming (Section 5.1), the QoE function is defined per zone as a function of the

VR playout characteristics predicted by the previous stage within that quality zone (Sec-

tion 5.2.1). This strategy is aligned with the notion that the influence of VR playout

characteristics on user perception is different depending on the zone where they are ob-

served (e.g., quality switches for tiles outside the viewport are less important than quality

switches inside the viewport). Thus, the per-zone quality function (φ(Zk)) is defined as
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the weighted sum of the four playout characteristics (Equation 5.1).

φ(Zk) =

Quality︷ ︸︸ ︷∑

∀t∈Zk

∑

∀c∈C(t)

q(R(Ctm))−

Stalls︷ ︸︸ ︷
µ ·
∑

∀t∈Zk

∑

∀c∈Ctm

(
dc(Rc)

Cc
−Bc

)

+

− λ ·
∑

∀t∈Zk

∑

∀c∈Ctm

∣∣∣∣ q(R(Ctm+1))− q(R(Ctm)

∣∣∣∣
︸ ︷︷ ︸

Quality switches

−ω · Ts︸ ︷︷ ︸
Startup

(5.1)

In Equation 5.1, R(Ctm) R represents the bitrate (i.e., quality) of a given chunk.

Recall that a tile t is time-divided into m chunks C = {Ct1 , ..., Ctm} (YIN et al., 2015b;

MAO; NETRAVALI; ALIZADEH, 2017). Function q is a mapping function that trans-

lates the bitrate of chunk Ctm belonging to tile t to the quality perceived by the user (i.e.,

in terms of bitrate sensitivity). The second term of the Equation is used to track stall

time. Stalls can be characterized either by tile (i.e., it is possible to have stall in some

tiles and video playout in other, for the same segment) or by segment (i.e., the video

will stall until all the tiles for a given segment have enough buffer). To keep the model

as general as possible, we consider for each chunk c, that a stall event occurs when the

download time dc(Rc)
Cc

is higher than the playout buffer length (Bc) when the chunk down-

load started. Hence, the total stall time is given by
∑C

c=1

(
dc(Rc)
Cc
−Bc

)
+

. In addition,

|q(Rct+1) − q(Rct)| considers the quality switches between consecutive chunks and Ts

tracks the startup delay. Finally, constants µ, λ, ω are the non-negative weights used to

tune the model for different user importance regarding QoE events. For example, a higher

value of µ, with respect to the other weights, means that the user is more susceptive to

video stalls. Consequently, these events should affect the QoE indicator more severely.

Each of the zones within the VR video influences the perception of the user in a

different manner. For example, tiles within the first or second zones (i.e., the closest to the

FoV of the user) will greatly steer the quality perceived by the user, while bad qualities

on tiles of the edge zones will potentially go unnoticed. For this reason, the overall

video QoE (φ(V )) is modelled as a weighted linear sum of the QoE measurement per

zone (Equation 5.2). Each weight (α1, α2, ..., αk) allows defining the relative importance

of each zone when composing the video QoE. For example, the zones belonging to the

viewport should have higher weights compared to the other zones.

The values for each αn parameter should be derived from subjective tests. For
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example, considering a two-zone QoE scheme, values for α1 (viewport) should be close

to one, and values for α2 (outside viewport) should be close to zero. When the QoE model

is configured with more than two zones, it is necessary to determine αn (testing values

within a certain range) for each zone. In this case, subjective tests should systematically

include incremental quality degradation, specifically in the intermediate zones, in order

to measure the user’s sensitiveness regarding quality issues in each zone.

φ(V ) =α1 · φ(Z1) + α2 · φ(Z2) + ...+ αk · φ(Zk)
(5.2)

5.3 Evaluation

In this section, the evaluation of the PERCEIVE method is discussed. We start

by presenting the procedure followed to evaluate the method in Section 5.3.1. Next, in

Section 5.3.2, we introduce the generation of the dataset used for training and testing. In

Section 5.3.3 we discuss and analyze the resulting VR playout predictors. This analysis

provides insights on the dependency and predictability of each of the VR playout per-

formance metrics given the QoS and tiling structure inputs. Finally, in Section 5.3.4 we

present the prediction evaluation results for each of the five outputs of PERCEIVE (i.e.,

the four VR playout performance metrics and the perceived quality).

5.3.1 Evaluation Methodology

In order to evaluate the performance of PERCEIVE, the procedure outlined by

Figure 5.3 is followed. First, the datasets for training and testing have to be generated.

Therefore, a VR video player is required to measure the VR video application playout

performance metrics (i.e., startup delay, average bitrate (quality), bitrate switches and

video stalls) while subjected to real-world inputs, such as a realistic wireless networks

measurements, VR tile-based videos and users’ head track traces.

Next, the resultant datasets are given as input to the machine learning algorithm

(responsible for learning the influence of the network QoS parameters and tiling scheme

onto the VR playout characteristics). After the training phase, the resulting predictors
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Figure 5.3: General evaluation methodology for PERCEIVE

Source: by author (2019).

can estimate the application layer performance only by means of the network parameters,

and the considered tiling scheme. Finally, based on the VR playout performance metrics,

the QoE can be estimated. The performance of PERCEIVE is assessed by means of the

calculation of the normalized residual errors between predicted and measured values (ri,

Equation 5.3). In the equation, x is the ground truth, x̂ is the prediction and N is the

normalization factor (in this case the video duration).

ri = |x̂i − xi|/N (5.3)

5.3.2 VR Dataset Generation

Each sample in the dataset contains the VR video tiling information, the three

network QoS features and the respective video performance measured by the VR video

player. To construct such dataset, the procedure presented in Section 5.3.1 is followed.
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Figure 5.4: TCP throughput histogram of the 4G/LTE dataset of (HOOFT et al., 2016)Histogram for TCP throughput
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Source: by author (2019).

Experiments are set, considering that a VR video player requests and processes tile-based

VR videos from a web server (Apache 2 2.4.18-2). The network conditions are enforced

by the Linux Traffic Control (TC) mechanism according to real-world network perfor-

mance inputs. The experiments are built on top of a Linux Ubuntu 14.04 operating sys-

tem, running on bare metal servers, where each server consists of a quad-core E3-1220v3

(3.1GHz) processor, with 16GB of RAM and two 10-gigabit network interfaces. Con-

sidering this infrastructure setup, we performed 1,524 video execution rounds, which

resulted in more than 5,240 minutes of VR video playout.

Table 5.1 summarizes the input parameters values considered in the experiments.

As network throughput input, the 4G/LTE measurements dataset of van der Hooft et

al. (HOOFT et al., 2016) was selected. This dataset presents TCP throughput ranging

from 0 Kbps to 95 Mbps as shown in Figure 5.4. For network packet loss, values between

0% and 13% were selected, in line with (FILHO et al., 2016). The network delay range

was set from 1 to 130 ms. These values allowed us to assess the application performance

from a very degraded delay performance (130 ms) down to the expected 5G delay (1 ms)

(DAHLMAN et al., 2014).

Table 5.1: PERCEIVE dataset: input parameter configurations.
Metric Short Unit Range

TCP throughput TCPTP Mbps 0-95Mbps ((HOOFT et al., 2016), Figure 5.4)
Packet Loss PLR % 0− 13% (based on (FILHO et al., 2016))

Delay Delay millisecond 1-130ms (based on (FILHO et al., 2016; DAHLMAN et al., 2014))
Tiling scheme Tile categorical 8× 4 or 12× 4 (based on (KOHAVI et al., 1995; QIAN et al., 2016)

Source: by author (2019).

Two VR videos from Wu et al.’s dataset (WU et al., 2017) (namely “Google
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Spotlight-HELP" and “Freestyle Skiing") were used for the streaming under the above

described network conditions. For each video, we considered the available datasets re-

garding the users’ head movements while watching it. As the original videos are not tile-

based, they had to be re-encoded. After extracting the raw YUV files, making use of the

Kvazaar encoder (VIITANEN et al., 2015), the videos were re-encoded in a HEVC/H.265

tile-based version, considering two tiling schemes: 8× 4 and 12× 4 (QIAN et al., 2016;

KOHAVI et al., 1995). In addition, each tiling scheme was encoded to three quality rep-

resentations, namely 720p (1.8Mbps), 1080p (2.7Mbps) and 4K (6Mbps).

Next, we used the MP4Box2 application to pack the re-encoded videos into MP4

containers. Finally, we defined the segment duration of 1 second and used MP4Box to ex-

tract per-tile files and to generate the MPEG Dash Media Presentation Description (MPD)

files considering multiple quality representations (Table 5.2). For the streaming heuris-

tic (Section 5.1.2), there are three defined zones, where Zone 1 is the viewport center

tile, Zone 2 groups the 8 tiles surrounding Zone 1, and all other tiles belong to Zone 3.

Figure 5.5 shows the zone division for the 12× 4 tiling scheme.

Figure 5.5: Viewport detail for the 12x4 tiling scheme

Source: by author (2019).

Table 5.2: PERCEIVE dataset: adaptive streaming configurations.
Videos Qualities (bitrates) Quality zones Segment Tiling

Google Spotlight 720p - 1.8Mbps Zone 1: 1 tile (central FoV) 1 s 12× 8
Freestyle Skiing 1080p - 2.7Mbps Zone 2: 8 tiles (adj. Zone 1) 8× 4

(Wu et al. (WU et al., 2017)) 4K - 6Mbps Zone 3: Rest

Source: by author (2019).

2MP4Box https://gpac.wp.imt.fr/mp4box/
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5.3.3 Resulting Predictors: VR Playout vs Network Conditions

Based on the dataset, the regression trees were trained using a 10-fold cross-

validation approach (KOHAVI et al., 1995). As each zone has independent quality be-

havior (bitrate), both the quality and quality switches need to be learned per-zone. On

the other hand, the startup and stall times are independent from the quality zone un-

der scrutiny. Hence, they can be learned per video segment. Given the fact that there

are three quality zones, eight regression trees were trained: three for Quality, three for

Quality Switches, one for Stall time and one for Start time. All trees are optimally

pruned (MURTHY, 1998), which means pruning until the cross-validation error is mini-

mal and overfitting is avoided.

Before assessing the performance of the two-stage method, a thorough analysis

of the regression trees was performed. This analysis aims at characterizing the relation-

ship between the input parameters (network conditions and VR video structure) and the

VR playout, allowing one to pinpoint to the most influential inputs. Figures 5.6 to 5.13

present the outcome predictors derived from the regression trees. All presented trees share

two structural characteristics. First, although inversions may occur, usually the leftmost

leaf node holds the lowest value for the predicted variable, and the value increases while

moving towards the rightmost leaf node. Second, the closer to the root node, the more

important the prediction feature (i.e., delay, TCP throughput, loss and tile scheme).

Having a first look at the content of the trees, two observations can be made. First,

network packet losses are not included in any of the trees. This means that the level of

packet losses does not have influence on the VR playout performance metrics. Its effect

will only be important as they affect the TCP throughput (higher network packet losses =

lower TCP throughput). Furthermore, network delays turn out to be the most influential

parameter on the VR playout.

Regarding quality (by means of the average bitrate) (Figures 5.6 to 5.8), let us

consider the following aspects. The first decision taken in Zone 1, at the root node and,

therefore, the most influential, is to understand if the network delay is greater than 23 ms

(Figure 5.6). The left branch (Delay ≥ 23ms) is related to predicted quality not higher

than 3.9 Mbps, regardless of any other input value. In other words, even considering that

the evaluated LTE network presents TCP throughput of up to 95 Mbps, it is not enough

to achieve the maximum bitrate (6.0 Mbps - 4K), if the delay is higher than 23 ms. The

reasoning behind this behavior is that each video segment (1 s) demands the download
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of 32 (8x4 tiling) or 48 (12x4) tiles. Despite the reuse of the TCP connection avoids the

TCP slow-start restart (BLANTON; PAXSON; ALLMAN, 2017)), the request/response

overhead limits the throughput.

Figure 5.6: Quality (average bitrate) - Zone 1 (Mbps)
DELAY >= 23

DELAY >= 26

DELAY >= 50

DELAY >= 100

TILE = 12x4

TCPTP < 2.3

TILE = 12x4

TILE = 12x4

DELAY >= 14

TILE = 12x4

DELAY < 18

DELAY >= 9.5

0.19 0.29 0.42 0.51 0.65 1.1 2 3.9 2.6 3.6 4.6 5.5 5.8

yes no

Source: by author (2019).

For Zones 2 and 3 (Figures 5.7 and 5.8), the quality predictors follow a very similar

trend. However, in order to achieve the same level of average quality, they demand higher

network performance than Zone 1. The right-most leaf of Zones 2 and 3 are a clear

example of this behavior. To achieve the same quality (average bitrate of 5.8 Mbps), Zone

2 requires a delay lower than 9 ms, and Zone 3 lower than 7.5 ms. Also, the values of TCP

throughput to achieve intermediate average bitrates are higher for Zones 2 and 3 when

compared with Zone 1. The main reason for such behavior comes from the rate adaptation

heuristic, which prioritizes high bitrates for the tiles that are closest to the viewport’s

center (Section 5.1.2). Thus, intermediate network performance may be enough to keep

Zone 1 at the highest available bitrate, while high levels of network performance allow

increasing the bitrate for all zones.

Quality switches (Figures 5.9 to 5.11) provide valuable information in the con-

text of HAS videos. For example, if no switches occur, the full video playout occurs

in the lowest available resolution, meaning that the video player is unable to switch to

higher bitrates, probably, due to insufficient network performance. In turn, when subject

to excellent network performance conditions, most of HAS rate adaptation heuristics (in-

cluding the one used in this document) will stabilize at the highest available bitrate within

a few switches.

When considering real-world networks, if we have a look at the quality switches
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Figure 5.7: Quality (average bitrate) - Zone 2 (Mbps)
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Source: by author (2019).

Figure 5.8: Quality (average bitrate) - Zone 3 (Mbps)
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Source: by author (2019).

trained trees (Figures 5.9, 5.10 and 5.11), it can be seen that the turning point from zero

switches to maximizing the quality is a network delay of 50ms for Zone 1, and 26ms

for Zones 2 and 3. However, by analyzing the rightmost leaf nodes of the decision trees

for Zones 1, 2 and 3, one can observe that the maximum number of quality switches

increases from Zone 1 towards Zone 3: (30, 38 and 58, respectively). This happens

because, according to the considered heuristic for rate adaptation, the tiles inside Zone 3

will be the first ones to be switched to a lower resolution in case a network performance

degradation is detected, followed by Zone 2 and, if the network performance degradation

is severe, the Zone 1.
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Figure 5.9: Quality switch - Zone 1
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Source: by author (2019).

Figure 5.10: Quality switch - Zone 2
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Figure 5.11: Quality switch - Zone 3
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Source: by author (2019).
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With respect to the cumulative stall time (Figure 5.12), the resulting regression tree

presents a wide range of predicted values (from 0.95 up to 384 seconds). One key aspect

is related to the decision taken at the root node. As one can observe, if the delay is higher

or equal to 18 ms, the minimum expected stall time is equal or higher than 163 seconds,

independent of the tiling scheme or the available bandwidth (TCP throughput). Such high

values would inflict a dramatic degradation on the perceived quality. In turn, for network

delays lower than 9.5 s and TCP throughput equal or higher than 25 Mbps, the expected

stall time is minimal (0.95 seconds). It is worth mentioning that, even if the delay is lower

than 9.5 s, if the TCP throughput is lower than 25 Mbps, the expected stall time is 16

seconds. Also, in line with the aforementioned findings, the 12x4 tiling scheme leads to a

significative higher amount of stall time for intermediate levels of network performance.

Figure 5.12: Cumulative stall time (seconds)
DELAY < 18

DELAY < 9.5
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DELAY < 76 DELAY < 76

DELAY < 128

TILE = 8x4

0.95 16 33 75 84 118 173 163 241 235 265 302 325 330 348 357 369 365 378 384

yes no

Source: by author (2019).

Finally, the regression tree for predicting startup delay is shown in Figure 5.13.

In the considered VR video player, the startup delay is characterized as the elapsed time

between the arrival of the request for the first tile and the completion of the buffer filling

for all tiles for the first two segments. As the segment is relatively small, and considering

the small file size of the tile chunks (on average 23 KB for 4K video resolution), the

startup delay exclusively depends on the network delay. A delay lower than 26 ms is

enough to provide an acceptable startup delay (smaller than 1.7 s). However, the best

performance is achieved when the delay is lower than 14 ms (0.54 s).
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Figure 5.13: Startup delay (seconds)
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Source: by author (2019).

5.3.4 PERCEIVE Results

Aiming at determining the accuracy of the proposed predictors, the trained regres-

sion trees were used on unseen samples of the generated dataset, according to a 10-fold

cross-validation scheme (KOHAVI et al., 1995). We considered as ground truth the perfor-

mance measured by the reference VR video player when subjected to real-world network

performance traces. In light of this, each test sample i contains the predictor variables

(i.e., TCP throughput, delay and tiling scheme), and the respective measured values for

the performance metrics (i.e., average bitrate, stall time, quality switch and startup delay).

Furthermore, based on the predicted VR playout characteristics, the QoE indexes

were estimated by means of Equation 5.2. The parametric constants shown by the model

were set to the values presented in Table 5.3. Based on the results shown by Mao et

al. (MAO; NETRAVALI; ALIZADEH, 2017), the q function was set to linear, where q

is equal to the bitrate. In addition (also according to (MAO; NETRAVALI; ALIZADEH,

2017)), the stall and startup weights (µ and ω) were set to 4.3. The value of the quality

switches constant (λ) was tuned to 1 (YIN et al., 2015b). Finally, the zones weights (α1,

α2 and α3) were empirically set to 0.7, 0.3 and 0, for Zone 1, Zone 2 and Zone 3. The

reason behind setting α3 to zero comes from the perfect prediction scenario considered

in the evaluation. In such cases, the FoV will correspond 100% of tiles of Zones 1 and

2. Thus, there is no influence of the quality of Zone 3 on the user’ s perception. In the

case that perfect prediction would not be possible, the weights would need to be tuned

accordingly.
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Table 5.3: PERCEIVE results: constants and function values assigned to the function to
estimate QoE (refer to Equation 5.2)

Parameter Value Description

q Linear Quality function
µ 4.3 Weight for stall time
ω 4.3 Weight for startup delay
λ 1 Weight for quality switches
α1 0.7 Weight for Zone 1
α2 0.3 Weight for Zone 2
α3 0 Weight for Zone 3

Source: by author (2019).

The performance of the method is assessed by means of the residual error calcu-

lated between real data sample (entry in the training set) and the predicted one (as al-

ready introduced in Section 5.3.1 and Equation 5.3). With the purpose of generalizing the

method for videos of arbitrary duration, the residual error for the metrics average bitrate,

quality switch and startup delay are normalized by the factorN of the residual error equa-

tion, which corresponds to the considered video length (200 seconds). Figures 5.14, 5.15

and 5.16 show the Cumulative Distribution (CDF) of the residual error for the four VR

playout performance metrics and the QoE estimation.

Looking at the quality prediction capacities of PERCEIVE (Figures 5.14(a)

to 5.14(c)), it is possible to observe that the residual errors are very small (224 Kbps

and 220 Kbps for Zones 1 and 2, respectively, for over 90% of the cases). If normalized

by the maximum available quality (6.0 Mbps), it represents only 3.73% and 3.67% of

residual error. This means that in roughly 97% of the cases, the quality levels are correctly

predicted. Even though the residual error for Zone 3 is slightly higher (4.5%), it is still

within the acceptability range.

Figure 5.14: Residual error CDFs for quality (average bitrate)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
D

F

ri (Mbps)

(a) Quality (average bitrate) -
Zone 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
D

F

ri (Mbps)

(b) Quality (average bitrate) -
Zone 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
D

F

ri (Mbps)

(c) Quality (average bitrate) -
Zone 3

Source: by author (2019).

The accuracy of the quality switch prediction (Figures 5.15(a) to 5.15(c)) shows
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Figure 5.15: Residual error CDFs for the quality switch
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even better results. For over 90% of the samples, Zones 1, 2 and 3 present a residual error

of ri1 ≤ 0.00745, ri2 ≤ 0.01604 and ri3 ≤ 0.01877, respectively. In line with the findings

for the average bitrate prediction, Zone 3 presented a higher residual error (1.9%), as

this is the zone with the highest number of quality switches during the video playout. In

Figure 5.15(b) it is possible to observe that on over 80% of samples the residual error is

zero. This is because the quality switch behavior for both extreme cases of the network

performance is predictable: first, when the network performance is sufficiently high, the

rate adaptation will stabilize at the highest representation, and no further quality switches

are expected. Second, when the network performance is degraded, the rate adaptation

will keep the video playout at the lowest available quality representation, and, similarly,

no further switches are expected.

The stalling time (Figure 5.16(a)) shows an error close to 13% for over 90% of the

testing samples. One main reason behind such increased residual error is the wide range

of the predicted variable (as we saw in the regression tree of Figure 5.12). Nevertheless,

several samples in the training dataset presented zero seconds of stall time. We found that

such predictable cases are associated with high levels of network performance. For each

of these samples, a residual error of 0.95 was accounted (as 0.95 is the lowest predicted

value). As the presented regression tree is the optimal prune, further growth would lead

to overfitting, and thus a higher cross-validation error. Due to the relatively high stall

time for intermediate and degraded network performance, the prediction performance is

impaired as the network performance degrades. However, at high levels of stall time,

the QoE is already completely degraded. Thus, the increased error does not impair the

accuracy of the QoE estimation.

The final VR playout parameter, the startup delay (Figure 5.16(b)), is characterized

as the elapsed time between the request of the video and the playout of the first segment.

In the considered context, the startup delay prediction presented a well predictable pattern
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Figure 5.16: Residual error CDFs for stall time, startup delay and QoE estimation
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with ri ≤ 0.00473 for over 90% of the cases. Also, the regression tree presented a stable

prediction performance across all the evaluated samples.

Finally, Figure 5.16(c) depicts the residual error for the QoE estimation. By ap-

plying the QoE model defined in Section 5.2.2 to each sample i, it is possible to estimate

QoE for both the predicted playout values and the original ones. Then, the residual error

can be calculated. Through this procedure, the QoE estimation error induced by the pro-

posed prediction scheme can be assessed. As shown in Figure 5.16(c), the QoE estimation

presents ri ≤ 0.03922 for over 90% of the cases.

Once a predictive model for the VR video context has been shown to be feasible,

the next chapter presents VR-EXP, an experimentation platform that allows for in-depth

evaluation of VR video optimization approaches.
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6 DISSECTING THE PERFORMANCE OF STATE-OF-THE-ART VR VIDEO

OPTIMIZATION TECHNIQUES

In this chapter, we introduce VR-EXP, an open-source platform for carrying out

VR video streaming performance evaluation. The platform is capable of systematically

evaluating different combinations of VR video streaming optimization approaches. Also,

VR-EXP allows pinpointing the interplay between a set of optimization techniques and

variable network performance. Furthermore, we consolidate a set of relevant VR video

streaming techniques and evaluate them under variable network conditions, contributing

to an in-depth understanding of what to expect when different combinations are employed.

To the best of our knowledge, this is the first work to propose a systematic approach, ac-

companied by a software toolkit, which allows one to compare different optimization

techniques under the same circumstances1. Extensive evaluations carried out using re-

alistic datasets demonstrate that VR-EXP is instrumental in providing valuable insights

regarding the interplay between network performance and VR video streaming optimiza-

tion techniques.

The remainder of this chapter is organized as follows. In Section 6.1, we introduce

VR-EXP, encompassing its main components and design choices. In Section 6.2, we

outline the evaluation setup including the considered parameters and datasets. Finally, in

Section 6.3, we present and discuss the main results.

6.1 VR-EXP - VR Video Experimentation Platform

In this section, we introduce the VR-EXP platform. We start by presenting the

general scheme, highlighting its inputs, outputs, and main modules. Next, we introduce

the VR video client emulator and its main components. Finally, we propose alternatives

for enforcing network performance conditions.

1This chapter is based on the following paper:

• Roberto Iraja Tavares da Costa Filho, Marcelo Caggiani Luizelli, Maria Torres Vega, Jeroen van
der Hooft, Stefano Petrangeli, Tim Wauters, Filip De Turck, Luciano Paschoal Gaspary. Dissecting
the Performance of VR Video Streaming Throughthe VR-EXP Experimentation Platform.
Submitted to the ACM Transactions on Multimedia Computing, Communications, and Applications.
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6.1.1 VR-EXP General Scheme

In a nutshell, the VR-EXP platform enables evaluating the interplay between a set

of adaptive tile-based VR streaming optimizations and variable network performance con-

ditions. Figure 6.1 depicts the main modules of VR-EXP. The proposed method consists

of systematically fetching VR videos through a controlled network environment. From

a client perspective, the adaptive VR video client emulator coordinates the use of sev-

eral VR video techniques upon requesting VR videos from a content server. During the

streaming session, the Network Performance Enforcement Point enforces realistic net-

work conditions on the network links between the VR Video Client Emulator and the

Content Server. Once the VR video streaming session is finished, VR-EXP reports key

VR video playout performance metrics.

Figure 6.1: VR-EXP general scheme.
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Source: by author (2019).

The most important module is the VR video client emulator, which is responsible

for processing the input parameters, emulating state-of-the-art VR video optimization

approaches, and measuring the playout performance. Except for the rendering process,

the VR video client emulator mimics the behavior of a VR video adaptive streaming

client. Although the rendering task is important for the VR video context, it is mostly

related to the HMD rendering capabilities of each device. Therefore, in this work we are

interested in evaluating the influence of variable network performance on VR adaptive

streaming in an isolated manner, without the interference of HMD particularities. To

emulate a dynamic network topology as well as enforcing real-world conditions, VR-EXP

relies on either an SDN network controller or the Linux Traffic Controller. In the proposed
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platform, adaptive VR videos are delivered by an HTTP server (Apache2), which delivers

tile-based VR videos in multiple quality representations according to the HAS scheme.

The emulation of the entire VR video streaming ecosystem requires the configura-

tion of several parameters and inputs. For flexibility, VR-EXP enables the definition of its

parameters at run time. It allows building scripts for automating complex and extensive

experiments. For example, it is possible to parameterize the VR video client emulator by

defining behavior characteristics such as the tile requesting method, the rate adaptation

heuristic, the expected viewport prediction error, and so forth. In turn, the network mod-

ule is expected to be fed with a dataset containing a set of network performance metrics

(e.g., delay, packet loss rate, TCP throughput). It then enforces these conditions into the

emulated links connecting the VR video client emulator to the content server. Once all the

input datasets and parameters are configured, the VR video client emulator starts fetching

VR videos using the HTTP protocol. After processing the VR video, the emulator writes

an output file containing the processed VR video performance metrics, as well as the raw

performance data, as described in Section 6.1.2. The complete set of source code and

datasets related to the VR-EXP platform are released under GNU General Public License

v3.0 and are publicly-available at GitHub3.

6.1.2 VR Video Client Emulator

We now focus on the high-level overview of the main functional components of

the VR video client emulator4. The VR-EXP video client emulator is an extensible and

fully parameterized headless VR video client emulator. The source code is written in the

C language using the Curl5 library to systematically fetch tile-based VR videos over the

HTTP protocol. The emulator is composed of five main components (Figure 6.1): (i)

sphere-to-plane projection handling, (ii) viewport prediction error injection, (iii) bitrate

adaptation, (iv) tile fetching method, and (v) playout performance measurement. Next,

we describe their functionality.

Sphere-to-Plane Projection Handling. Several state-of-the-art approaches for VR video

streaming optimization rely on tile-based projection schemes (PETRANGELI et al., 2017;

GRAF; TIMMERER; MUELLER, 2017; HOU et al., 2018; FILHO et al., 2018). Addi-

2Apache HTTP Server: https://httpd.apache.org/
3VR-EXP: <https://github.com/rtcostaf/TOMM2019_VR-EXP/>
4For additional details, please refer to the documentation available at VR-EXP (VR-EXP, 2019).
5Curl: <https://curl.haxx.se/libcurl/c/>

https://github.com/rtcostaf/TOMM2019_VR-EXP/
https://curl.haxx.se/libcurl/c/
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tionally, modern QoE estimation models employ tile clustering methods for manipulat-

ing groups of tiles in a coordinated way, depending on their spatial position (FILHO et

al., 2018). To cope with these features, VR-EXP is designed to support different tiling

schemes and tile clusterization into multiple zones. A multi-zone approach is in line with

the notion that the spatial position in which a VR video degradation occurs is vital for

estimating QoE. For example, Figure 6.2 depicts an 8x5 tiling scheme which is divided

into three zones, where Zone 1 is defined as containing only the viewport’s central tile,

Zone 2 encompassing the viewport border tiles (8 tiles), and Zone 3 containing the 31

remaining tiles.

Figure 6.2: Example of an 8x5 tiling scheme organized in three zones.

 

Zone

 

Zone

 

Zone

8 horizontal tiles

5 vertical tiles

Viewport = 

 

Source: by author (2019).

Viewport Error Injection. Once the projection handler is capable of dealing with sev-

eral tiling schemes, the next step towards efficient VR streaming consists of emulating the

viewport prediction. More precisely, in order to provide an accurate simulation of the en-

tire VR context, the most significative information regarding any heuristic is the viewport

prediction error. As discussed in Chapter 2, viewport prediction algorithms present highly

variable accuracy depending on many factors. To allow for an accurate evaluation of er-

ror patterns, VR-EXP provides a controlled viewport error injection during the streaming

session. We designed a flexible viewport error injection component which takes as input

viewport traces (i.e., datasets describing the coordinates where the users have looked at

in a particular time frame). The viewport trace files contain a full record of coordinates

of the VR video, captured at regular intervals (e.g., at each 20ms). In order to provide

a mechanism to evaluate the impact of wrong viewport predictions, VR-EXP enables in-

jecting artificial prediction errors when processing the coordinates specified in the trace

file. The error injection mechanism can be parameterized with a given error rate, as well

as easily extended to support different error models. Using the viewport error injection
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can be very helpful in designing novel viewport prediction algorithms. Using VR-EXP,

the developer can indeed measure the impact of the error on the resulting performance of

the VR sessions. Also, VR-EXP allows understanding what would be the minimum error

to guarantee a target performance. The error injection mechanism can be parameterized

with a given error rate, as well as easily extended to support different error models. In

the current version of VR-EXP, we modeled the viewport prediction error as a random

variable with a uniform distribution.

Dynamic Bitrate Adaptation. Taking advantage of the viewport prediction, ABR algo-

rithms provide significative bandwidth savings by selecting appropriate quality represen-

tations for each spatial zone. In this procedure, each of the zones is assigned with the most

suitable quality level according to both their distance from the center of the viewport and

the available bandwidth. VR-EXP currently implements two alternative adaptive stream-

ing heuristics. The general idea of the first heuristic procedure, named Full Delivery (FD)

(PETRANGELI et al., 2017), is as follows. Once knowing the available bandwidth in

the network (i.e., based on network conditions measured during the download of previous

segments), the emulator downloads tiles with the best fit regarding the available band-

width. For each segment, the heuristic tries to first increase the bitrates on the inner zones

of the viewport (Zone Z1 in Figure 6.2). Then, it repeats the procedure to stream tiles

from the outer zones (Zones 2 and 3, respectively). Thus, when considering networks

with enough available bandwidth, this heuristic will increase the quality representation

for all zones. This approach provides effective protection against viewport prediction

errors, at the cost of high bandwidth consumption. The second heuristic, named Full De-

livery Basic (FDB) (QIAN et al., 2016; FAN et al., 2017), works similarly to the first

one. However, instead of increasing the bitrate whenever possible in outer zones, this

heuristic increases the bitrates only for zones within the viewport. Although FDB re-

duces the amount of consumed bandwidth significantly, it may entail QoE degradation in

case of viewport prediction errors. Regardless of the approach, the downloaded segments

are stored in a playout buffer to be eventually played. Observe that the buffer size plays

a significant role in the VR video client performance – particularly regarding viewport

prediction accuracy – and, therefore, can be adjusted as needed.

Tile Request Method. On the one hand, the combined use of tile-based VR videos,

ABR heuristics, and viewport prediction have proven to be an effective approach to avoid

wasting bandwidth. On the other hand, the adaptive tile-based video encoding leads to an

increased number of files to be fetched from the content server. For example, consider a
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10-minute tile-based VR video, split into 1-second segments, encoded with an 8x5 tiling

scheme, and available on three quality representations (i.e., HD, FHD and 4K). For each

second of video, it would be necessary to download one quality representation for each

tile, which leads to 40 files per second, that is, 24,000 files for a 10-minute streaming

session. Considering the above, for each video segment, there is a set of tiles within

pre-specified zones to be fetched from the server. VR-EXP allows fetching VR tiles

according to two strategies: serial and parallel. On using the serial request method, tiles

are fetched from the server, one by one, using multiple (non-parallel) HTTP requests,

in a single connection. In turn, in the parallel method, tiles within the same zone (e.g.,

tiles belonging to the viewport) are fetched in parallel using a configurable number of

parallel connections. VR-EXP allows specifying the number of simultaneous connections

per zone and splits the set of tiles uniformly among the available connections. It worth

mentioning that VR-EXP employs a regular HTTP server (e.g., Apache, NGINX) for

hosting the tile-based VR videos, so no specific parameterization is required.

VR Video Playout Performance. To bring together the components detailed throughout

this section, along with realistic input datasets, VR-EXP provides a realistic emulation of

the VR video streaming ecosystem. Therefore, the next important step toward building a

comprehensive VR video evaluation platform is to measure the VR video playout perfor-

mance accurately. During the video streaming session, VR-EXP assesses a number of VR

video playout performance metrics capable of objectively characterizing the quality of the

video playout. These metrics include the number of tiles per zone/quality (e.g., number of

tiles within the viewport retrieved in 4K resolution), number of quality switches per zone

(i.e., number of quality switches on a specific zone), stall time and startup time delay. Ta-

ble 6.1 provides an example list regarding the playout performance metrics provided by

VR-EXP (the complete list may vary depending on the parameterization of the VR-EXP).

These metrics were selected because they are the most influential when predicting QoE

based on the video streaming playout performance (FILHO et al., 2018). It is worth men-

tioning that VR video applications rely on TCP/HTTP for providing reliable streaming

services. Thus, network performance degradation events, such as packet loss or increased

delay, will necessarily translate into either or both quality switches and video stall. Along

these lines, VR-EXP focuses on evaluating how multiple VR video optimization tech-

niques interact with variable network performance conditions. Evaluating the distortion

introduced by different projection schemes and codecs is out of the scope of this work.
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Table 6.1: Playout performance metrics for VR video streaming
Field Short description Type/unit

1 Video file name string
2 User ID (viewport trace ID) integer
3 Tiling scheme (8x4, 12x4) string
4 Network trace ID integer
5 Tile request method (serial, mutli-thread) integer
6 Network TCP throughput - downlink Mbps
7 Network delay - RTT ms
8 Network packet loss - downlink %
9 Number of 720p tiles - zone 1 integer
10 Number of 1080p tiles - zone 1 integer
11 Number of 4K tiles - zone 1 integer
12 Number of 720p tiles - zone 2 integer
13 Number of 1080p tiles - zone 2 integer
14 Number of 4K tiles - zone 2 integer
15 Number of 720 tiles - zone 3 integer
16 Number of 1080p tiles - zone 3 integer
17 Number of 4K tiles - zone 3 integer
18 Number of quality switches - zone 1 integer
19 Number of quality switches - zone 2 integer
20 Number of quality switches - zone 3 integer
21 Total video stall time seconds
22 Video startup delay seconds
23 Average bitrate - zone 1 Mbps
24 Average bitrate - zone 1 Mbps
25 Average bitrate - zone 1 Mbps
26 Viewport error rate (0 - 100) %

Source: by author (2019).

6.1.3 Network Performance Enforcement

In order to enforce real-world network performance conditions, it is possible to

employ, at least, three different strategies: (i) network simulation, (ii) network emulation

or (iii) dedicated network infrastructure. The use of network simulation provides great

control over the simulated elements. However, simulating the full VR video components

stack, plus complex network aspects (e.g., routing, fairness between distinct TCP flavors,

operating system features and their limitations) would burden the complexity of imple-

mentation and potentially lead to inaccurate simulation results. On the other extreme,

dedicated infrastructure provides a realistic environment at the cost of reduced flexibil-

ity and complex setup. In light of this, we decided to employ network emulation as we

consider this design choice a suitable balance between flexibility and accuracy.

For emulating network links, VR-EXP provides a customized SDN controller

(based on Ryu6) which, along with Mininet7, enables reproducing sophisticated network

scenarios. The SDN controller is the preferred option for complex network environments

due to its ability to easily handle dynamic network topologies and forwarding rules. Also,

this strategy allows evaluating the VR video streaming ecosystem when subjected to large

6Ryu SDN Controller: <https://osrg.github.io/ryu/>
7Mininet: <https://mininet.org>

https://osrg.github.io/ryu/
https://mininet.org
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topologies and high link competition through many concurrent video sessions. However,

if the network scenario does not require such complexity (e.g., simulating a few links with

static routes), the SDN approach could be replaced with a simpler alternative mechanism

(i.e., Traffic Control8). Both approaches can benefit from simplified scripting to read input

datasets, which describe the network performance (i.e., delay, jitter, residual bandwidth,

packet loss) and enforce these network conditions on a target network.

6.2 Evaluation Setup

Using VR-EXP as basis, we carry out an extensive evaluation of state-of-the-art

heuristics when subjected to variable network performance conditions. In this section,

we present the experimental setup. We start by introducing the 4G/LTE performance

dataset, which provides realistic network conditions to the evaluation process. Next, we

describe the VR video dataset, including head track traces, which enables the evaluation

of viewport-aware approaches. We end this section by outlining the experiment plan and

its main procedures.

6.2.1 4G/LTE Performance Dataset

In this work, along with the VR-EXP method and toolkit, we provide a compre-

hensive dataset for 4G/LTE network performance. The dataset contains the following

IP metrics: Round Trip Time (RTT), delay variation (also referred to as jitter), one-way

packet loss, and one-way TCP throughput (in the scope of this work also referred as to

residual bandwidth). These metrics were gathered by means of IP active measurements,

in conformance with the recommendations issued by the IETF IP Performance Metrics

Working Group (MORTON, 2016). To obtain these indicators we employed a scalable

active measurement-based platform named Netmetric (SANTOS et al., 2007; FILHO et

al., 2016; STANGHERLIN et al., 2011). Table 6.2 describes the dataset fields. Except for

packet loss, all values are averaged over the whole packet burst.

In Figure 6.3 we present a brief statistical analysis of the measurements available

in the dataset regarding the three main metrics. As shown in Figure 6.3(a), the TCP

throughput metric presents a wide range of measured values for the downlink. For ex-

8TC: <http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html>

http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
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Table 6.2: IP performance dataset (Field 1 is the leftmost column
Field Short description Type/unit

1 TCP throughput - uplink b/s
2 TCP throughput - downlink b/s
3 Round-trip time (RTT) seconds
4 Packet loss - downlink %
5 Packet loss - uplink %
6 Delay variation (jitter) - uplink seconds
7 Delay variation (jitter) - downlink seconds

Source: by author (2019).

ample, the downlink presents a throughput varying from a minimum of 31.4 Kbps to a

maximum of 113.2 Mbps, with a median of 16.5 Mbps and a mean of 19.6 Mbps. In turn,

Figure 6.3(b) depicts the RTT metric ranging from 1 ms up to 18.5 seconds (the upper

limit is not shown in the Figure 6.3(b) due to the long tail), with a median of 81 ms and a

mean of 120 ms. Finally, the packet loss (Figure 6.3(c)) for the downlink ranges from 0%

up to 8%.

Figure 6.3: Network performance dataset: histograms for TCP throughput, delay and
packet loss.
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The network dataset comprises over 14,000 measurements taken from 01/06/2017

to 31/07/2017. Each measurement considers the end-to-end path between the source node,

a server located at the premises of the Federal University of Rio Grande do Sul, and a

measurement device (destination). The destination of each measurement session is an

Android (6.0) smartphone running the measurement agent and attached to a 4G/LTE net-

work. Measurement devices were spread countrywide embracing the four major mobile

operators. Together, these operators are responsible for providing mobile services to over

236 million subscribers (TELCO, 2018).

Each measurement session is composed of two bi-directional packet bursts, where

the first uses UDP and the second TCP. The UDP packet burst is employed to measure

RTT, loss and jitter by injecting 400 packets of 100 bytes at 50 ms intervals. As some op-

erators block the Network Time Protocol (NTP), we decided not to measure the One-Way
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Delay (OWD). Instead, the RTT metric was obtained based on a single clock (source).

In turn, the TCP burst gauges the TCP throughput for the considered path by injecting

640 packets of 1,488 bytes each. For privacy reasons, sensitive information regarding the

considered mobile operators (e.g., operator name, provider ID, cell ID) has been removed

from the dataset.

Considering the number of measurements and the wide range of the considered

metrics, the network performance dataset may be useful to support further research in

several areas. Especially in the field of VR video streaming since the available metrics en-

compass the network performance indicators that influence video streaming performance

the most (i.e., delay and residual bandwidth) (YIN et al., 2015b; FILHO et al., 2018). Ad-

ditionally, the metrics’ ranges allow evaluating high-resolution and tile-based VR videos,

including 4K+ resolution. It is worth mentioning that the range for the TCP throughput

metric is in line with similar studies conducted in other regions et al. (HOOFT et al.,

2016).

6.2.2 VR Video Dataset

In this evaluation we use two VR videos from Wu et al.’ s dataset (WU et al.,

2017), namely “Google Spotlight-HELP" and “Freestyle Skiing". Aiming at evaluating

viewport-aware approaches, for each video we also consider the available datasets which

describe users’ head movements while watching the VR videos. However, the original

VR videos are non tile-based, so they needed to be re-encoded. To do so, the first step

consisted of extracting the raw YUV files, making use of the Kvazaar encoder (VIITA-

NEN et al., 2015). The resulting encoding produced two tiling schemes: 8 × 4 and

12 × 4 (QIAN et al., 2016; KOHAVI et al., 1995). Additionally, each tiling scheme was

encoded into three quality representations, namely 720p (1.8Mbps), 1080p (2.7Mbps) and

4K (6Mbps). Next, we employed the MP4Box9 application to pack the encoded videos

into MP4 containers. Then, we sliced each quality representation into 1 second segments.

Finally, we used MP4Box to extract per-tile files and to generate the MPEG Dash Media

Presentation Description (MPD) files considering multiple quality representations. Table

6.3 summarizes the main parameters regarding the VR video dataset.

9MP4Box https://gpac.wp.imt.fr/mp4box/
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Table 6.3: Adaptive streaming configurations.
Videos Qualities (bitrates) Quality zones Segment Tiling

Google Spotlight 720p - 1.8Mbps Zone 1: 1 tile (central FoV) 1 s 12× 8
Freestyle Skiing 1080p - 2.7Mbps Zone 2: 8 tiles (adj. Zone 1) 8× 4

(Wu et al. (WU et al., 2017)) 4K - 6Mbps Zone 3: remaining tiles

Source: by author (2019).

6.2.3 Experiment Plan

VR-EXP was deployed on the imec iLab.t Virtual Wall emulation platform10. The

experiments consisted of employing VR-EXP for measuring VR video performance while

subjected to a broad variety of network conditions and multiple VR video optimization

techniques. To capture the interplay between the considered variables (detailed in Sub-

section 6.1.2), we varied the experiment’s parameters (e.g., network performance, VR

video, tiling scheme, adaptive bitrate heuristic, playout buffer size) in a controlled man-

ner. The experiments were organized around each key VR video optimization technique,

namely the viewport prediction error, per tile rate adaptation heuristics and tile requesting

method. In a first step, we varied the parameters within each heuristic at a time, assuming

default values for the remaining heuristics (according to Table 6.4). In order to capture the

interplay within a set of heuristics, in the second step, we carried out a more sophisticated

evaluation by varying multiple parameters and heuristics within the same experiment.

VR-EXP is designed to work with any QoE model that supports VR video playout

performance indicators as input. Employing a QoE model can be very insightful as it

provides a consolidated view regarding the effect of multiple VR video playout perfor-

mance metrics on QoE. In consonance with state-of-the-art QoE models for traditional

video streaming (PETRANGELI et al., 2015; YIN et al., 2015b; MAO; NETRAVALI;

ALIZADEH, 2017), we employ a QoE model (FILHO et al., 2018) that is able to trans-

late multiple VR video playout performance characteristics into an estimated QoE score

ranging from 1 to 5. To instantiate the QoE model, we consider the three-zone scheme

defined by Da Costa Filho et.al (FILHO et al., 2018), where Zone 1 refers to the viewport

center tile, Zone 2 encompasses the eight tiles surrounding Zone 1, and Zone 3 includes all

remaining tiles. We also consider the same constants and function values proposed by the

authors, which are summarized as follows (refer to Equations 5.1 and 5.2): q = Linear,

µ = 4.3, ω = 4.3, λ = 1, α1 = 0.7, α2 = 0.3, and α3 = 0.

10imec iLab.t: <http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html>

http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html
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Table 6.4: Main VR-EXP input parameters
Parameter Value/Range Details

VR video Google Spotlight-HELP and Freestyle Skiing Both videos are used in all experiments
Head track traces Google Spotlight-HELP and Freestyle Skiing multiple users/head track traces for each video
Video format MP4 - HEVC tile-based and HAS Using MP4Box11

Video encoder Kvazaar Kvazaar encoder (VIITANEN et al., 2015)
HAS 720p (1.8Mbps), 1080p (2.7Mbps) and 4K (6Mbps) Kvazaar encoder (VIITANEN et al., 2015)
Segment size 1 second the same for all experiments
Tiling scheme 8x4 and 12x4 Both tiling schemes are used in all experiments
Considered viewport One central tile and eight border tiles NA
Viewport error rate 0% up to 100% Default 0%
Rate adaptation heuristic FD and BFD Default BFD
Tile request method Single thread, 6 threads and 8 threads Default single thread
Playout buffer 2 sec up to 8 sec Default 2 sec

Source: by author (2019).

6.3 Evaluation

In this section, we present the results regarding the application of VR-EXP along

with the inputs and parameters described in Section 6.2. We start by evaluating the ef-

fects of the Viewport Prediction Error (VPE) on VR video playout performance and QoE.

Next, we extend this analysis to encompass per tile rate adaptation heuristics, and fi-

nally to tile requesting method. We end this section by presenting a more sophisticated

scenario, where multiple parameters, heuristics and the network performance conditions

vary within the same experiment.

6.3.1 Effects of Viewport Prediction Error

When dealing with traditional 2D video streaming, we use the term video bitrate

(e.g., 2 Mbps, 6 Mbps) equivalently with their respective representations of quality (e.g.,

1080p, 4K). Also, we can state that there is a correspondence between the average bitrate

delivered to the user and the average bitrate that effectively traversed the network (i.e.,

bandwidth consumption). However, when it comes to tile-based VR video streaming, this

relationship becomes less trivial. For example, consider the streaming of a tile-based VR

video using a 12x4 tiling scheme and a viewport containing nine tiles. Assume that during

most of the streaming session the viewport is displayed in 4K resolution, while the tiles

outside the viewport are fetched at 720p. It turns out that the bitrate delivered to the user

(visible portion of the VR video) is equivalent to the 4K representation (i.e., 6 Mbps).

However, when considering the FDB heuristic for adaptive bitrate, the overall bitrate of

the video (i.e., equivalent to the average bandwidth demand during the streaming session)
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will be slightly higher than the bitrate of the 720p representation. It happens because most

of the video (not visible by the user) was fetched in low resolution. For didactic reasons,

in this evaluation we use the term Viewport Bitrate to denote the bitrate perceived by the

user, while the term Video Bitrate refers to the total bitrate of the video (averaged over all

tiles), being equivalent to the bitrate effectively demanded from the network.

As discussed in Chapter 2, depending on the viewport prediction algorithm and

the playout buffer size, the viewport prediction accuracy can be quite erratic. In this sec-

tion, we apply VR-EXP to evaluate the impact of the viewport prediction errors on both

video playback performance and QoE. Figure 6.4 shows the performance of the video

playout, regarding viewport bitrate and QoE, when subjected to variable network per-

formance conditions and prediction error. Figure 6.4(a) illustrates the baseline scenario,

characterized by absence of viewport prediction errors. In this scenario, a network delay

below 12 ms is fundamental to provide good levels of viewport bitrate (recall that the

bitrate for the 4K representation is 6 Mbps). In such conditions, it is possible to observe

viewport rates close to 6 Mbps across a wide range of available bandwidth values.

Figures 6.4(b) and 6.4(c) show how the viewport prediction error affects the view-

port average bitrate. When considering a viewport prediction error rate equal to 50%

(Figure 6.4(b)), the maximum bitrate decreases approximately by 1 Mbps, while a 100%

error in the viewport (Figure 6.4(c)) drops the maximum bitrate to near 4 Mbps, even

when considering the most favorable network condition. The viewport error does not af-

fect the playout performance when subjected to significantly degraded levels of network

performance (i.e., delay higher than 50 ms). In such cases, the rate adaptation algorithm

has no room for increasing the quality representation. All tiles are requested at the lowest

available quality representation and, as a direct consequence, a viewport error does not

lead to additional degradation. Figures 6.4(d), 6.4(e) and 6.4(f) demonstrate the impact

of prediction errors on QoE. One can observe that severe prediction errors (Figure 6.4(f))

may lead to a decrease of up to 2 points in the QoE score when compared to the baseline

scenario shown in Figure 6.4(d).

Next, we employed VR-EXP to assess more accurately the effects of the viewport

prediction error. To do so we added the tile scheme information. Moreover, we split

the rates between the bitrate observed for the tiles within the viewport and the bitrate for

the entire video (including the viewport). Figure 6.5(a) shows the baseline case, which

considers a perfect viewport prediction. To improve readability, in all plots of Figure 5 we

show the network variability only in terms of delay, removing the bandwidth dimension
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Figure 6.4: The effects of the viewport prediction error on VR video playout performance
and QoE.
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(a) VPE 0% VS bitrate
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(b) VPE 50% VS bitrate
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from the analysis. The red dots represent the bitrate for the entire VR video (i.e., viewport

+ remaining tiles), which is equal to the network bandwidth required for streaming the

VR video. When it comes to the viewport (blue dots), both tiling schemes are able to

achieve the maximum bitrate when the delay is lower than 12 ms. However, the 8x4

tiling scheme presents significantly better bitrates for intermediate network conditions

(delay between 12 ms and 60 ms). This gain is explained by the fact that the HTTP

request/response overhead is lower for the 8x4 tiling scheme (32 files per segment) against

48 files per segment for the 12x4 tiling scheme. When the delay is higher than 60 ms, the

video playout is totally impaired, and neither the tiling scheme nor the VPE introduces

additional degradation.

Complementing the previous analysis, in Figures 6.5(b) and 6.5(c) it is possible to

observe that the tiling scheme plays an important role in the video playout performance.

The viewport error leads to lower viewport bitrate for intermediate network conditions

when compared to the baseline scenario. Still, for intermediate network delay, the 8x4

tiling scheme presents a viewport bitrate up to 2 Mbps higher when compared to the 12x4
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tiling scheme. The obtained results indicate that the VPE influences, mainly, the average

viewport bitrate and quality switch metrics. The remaining metrics for playout perfor-

mance (i.e., startup delay and stall time) are not affected by prediction errors. Figures

6.4(d), 6.4(e) and 6.4(f) show that, in line with previous findings, the viewport predic-

tion error has the potential to reduce the QoE score significantly. Nevertheless, the tiling

scheme can dramatically influence the QoE score. For example, in Figure 6.5(d) it is

possible to observe that, for a network delay of around 35 ms, the 8x4 tiling scheme

outperforms the 12x4 by more than 2 points in the expected QoE score.

Main insight for viewport prediction error. Increased levels of VPE may result in re-

duced viewport quality and QoE. The VPE does not introduce further degradation when

subjected to low-performance networks. The tiling scheme has the potential to highly

affect QoE when considering intermediate levels of prediction error and network perfor-

mance.

Figure 6.5: The effects of the viewport prediction error and tiling scheme on playout
performance and QoE.
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6.3.2 Per Tile Rate Adaptation Heuristics

As discussed in Chapter 2, the tile-based rate adaptation algorithm is crucial for

achieving a suitable balance between playout performance and network bandwidth con-
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sumption. Although VR-EXP can be extended to encompass several strategies, in this sec-

tion we focus on two distinct approaches, namely the Full Delivery (FD) (PETRANGELI

et al., 2017) and the Full Delivery Basic (FDB) (GRAF; TIMMERER; MUELLER, 2017).

Recall that both approaches request the tiles inside the viewport in the highest possible

quality representation. The main difference between them is that, depending on the avail-

able bandwidth, the FD method attempts to increase the bitrate for all the tiles, including

the ones outside the viewport. Conversely, the FDB approach does not increase the quality

representation for tiles outside the viewport, regardless of the available bandwidth.

Figures 6.6(a) and 6.6(b) show the relationship between the measured viewport

bitrate (blue) and the entire video bitrate (red), when subjected to variable network per-

formance conditions. The difference between FD and FDB is more noticeable when the

delay is lower than 20 ms. In this case, FD benefits from the available network perfor-

mance to maximize the quality representation of the entire video. One key advantage of

the FD approach is its natural protection against viewport prediction errors, at the cost

of increased bandwidth consumption. On the other hand, when considering methods for

viewport prediction with low error rates, the FDB method may represent a better choice

as it will maintain good levels of QoE while avoiding bandwidth waste. For intermedi-

ate network delay (between 20 and 40 ms), both methods perform similarly, because the

network performance is sufficient to accommodate only the viewport in high quality. Fi-

nally, for a network delay higher than 40 ms, there is no room for increasing the quality

representation at all, and both strategies present equivalent performance.

Main insight for rate adaptation heuristics. The FD heuristic provides excellent pro-

tection against viewport prediction errors at the cost of increased bandwidth consumption.

If combined with low-error viewport prediction algorithms, FDB may potentially lead to

reduced bandwidth consumption.

Figure 6.6: Dynamic rate adaptation heuristics: FD and FDB.
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6.3.3 Multithreaded Tile Downloading

As discussed in Section 6.1, the network delay is the QoS metric that affects video

playout performance the most. The reason is that high levels of network delay, when

combined with both short video segments and tiling scheme overhead, limit the download

throughput. Multithreaded tile request methods can improve the VR video playout per-

formance by reducing the stall time. As shown in Figure 6.7(b), when using six threads it

is possible to dramatically reduce the VR video stall time. Basically, when compared to

the single thread approach (Figure 6.7(a)), the use of six threads enables handling twice

as much network delay (from 20 ms to 40 ms) while maintaining the same level of stall

time. When resorting to ten threads for tile downloading (Figure 6.7(c)) it was possible

to slightly reduce the stalling time, especially when considering VR videos using the 8x4

tiling scheme (as discussed next).

Figures 6.7(e) and 6.7(f) depict the effects of the multithreaded approach in the

QoE score. When compared to the single thread (Figure 6.7(d)), the multithreaded ap-

proach is able to increase the QoE score in up to 1.5 points when the delay is higher than

20 ms. However, for network delays higher than 80 ms, the QoE is completely degraded,

regardless of the available bandwidth and the use of multithreaded approaches.

Figure 6.8 shows the effect of the multithreaded approach on distinct tiling

schemes (i.e., 8x4 and 12x4). When considering a network delay of 40 ms, the six

threads approach outperforms the single thread by reducing the stall time from 60 to 5

seconds (approximately) (Figures 6.7(a) and 6.7(b)). The experiment with six threads

resulted in similar results for both tiling schemes, with a slight advantage to the 8x4 one.

In turn, the ten-thread experiment variation (Figure 6.7(c)) led to an additional reduction

of the stall time for the 8x4 scheme, but not for the 12x4, which presented roughly the

same results when compared to the six-thread experiment.

Main insight for multithreaded tile downloading. Multithreaded tile fetching can dra-

matically reduce the stall time and increase the QoE score for intermediate levels of net-

work performance. However, it does not provide noticeable improvements in QoE for

either high or low network performance.
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Figure 6.7: Multi-thread effect on VR video stall time.
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(a) Single thread - stall time
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(b) Six threads - stall time
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(c) Ten threads - stall time
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(d) Single thread - QoE
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(e) Six threads - QoE
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Figure 6.8: Multi-thread: stall time and tiling scheme VS network delay.
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Source: by author (2019).

6.3.4 Buffer Size and Viewport Prediction Error

The evaluation carried out earlier in this section has focused on evaluating the

effects of each VR video optimization technique on VR video playout performance and

QoE. Aiming to further explore the interplay among different VR video optimization tech-
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niques, in this experiment, we evaluate a set of four optimization aspects simultaneously,

namely variable viewport scheme, variable viewport prediction error, variable buffer size,

and the FDB rate adaptation approach. Additionally, instead of evaluating how the opti-

mization techniques perform when subjected to distinct network performance conditions,

in this evaluation we vary the network conditions within the VR video session. Table

6.5 shows ten distinct combinations of network performance indicators that were ran-

domly selected within the range for each QoS metric (as discussed in Section 6.2). A

particular VR video session lasts for 60 seconds, where each network performance con-

figuration lasts for 6 seconds, starting with the configuration ID 1 up to the ID 10. The

main objective of this experiment is to evaluate the interplay between multiple VR video

optimization approaches while subjected to highly variable network performance condi-

tions. To provide a generalized analysis, the results presented in Figure 6.9 represent the

averaged values when considering the entire VR video dataset. Therefore, the error bars,

in this case, represent the min-max range for each histogram bin.

Table 6.5: Network performance indicators within a 60-second-long VR video session
Conf. ID Delay (ms) Bandwidth (Mbps)

1 1 74
2 4 38
3 55 31
4 2 60
5 4 54
6 95 8
7 6 22
8 1 84
9 49 19
10 87 7

Source: by author (2019).

Figure 6.9(a) shows the average quality observed for the viewport when streaming

VR videos subjected to variable buffer size and viewport prediction error rates. As dis-

cussed in Chapter 2, for most state-of-the-art viewport prediction algorithms, the bigger

the buffer size, the higher the prediction error rate. Aiming at evaluating a broad range of

scenarios, in the analysis presented in Figure 6.9(a) used a full factorial experiment design

considering different values for buffer size and error rate. The obtained results indicate

that the viewport prediction error greatly affects the viewport bitrate, while the buffer size

itself does not have noticeable influence on it.

Figure 6.9(b) shows that the increased buffer size was able to dramatically reduce

the stall time. For example, when considering a playout buffer dimensioned for 4 seconds

of video, the stall time drops from 11 seconds to less than 2 seconds (on average). Fur-

thermore, when increasing the buffer to 8 seconds, it was possible to completely eliminate
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the stall time. However, as discussed in Chapter 2, most state-of-the-art viewport predic-

tion algorithms experiment sudden accuracy drop when increasing the playout buffer size.

Hence, the effective analysis of the interplay between buffer size and viewport error must

be done through the evaluation of the QoE indicator, since the QoE score will simultane-

ously consider both playout performance metrics. Figure 6.9(c) shows that, when using 8

seconds of playout buffer, the worst case scenario for the QoE score (i.e., viewport pre-

diction error of 100%) performs on par with the best case scenario of the 2 seconds buffer

(i.e., viewport prediction error of 0%). Furthermore, due to the human randomness, pre-

diction algorithms may present low accuracy even when considering small buffers (e.g., 2

sec). Therefore, using higher values for dimensioning the playout buffer (e.g., 8 sec) will

probably outperform smaller buffers setups in most cases.

Main insight for mixed buffer size and prediction error. When dealing with realistic

performance levels, increasing the playout buffer size may potentially lead to a better QoE

score, even considering the likely increase in the prediction error.

Figure 6.9: The influence of multiple VR video optimization techniques on VR video
streaming playout performance and QoE.
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7 FINAL CONSIDERATIONS

In this chapter, we present the conclusions about the work carried out in the context

of this thesis. Next, we discuss the envisioned future research directions. We conclude

this chapter by presenting the achievements obtained during this research.

7.1 Conclusions

The work conducted throughout this thesis suggests that the hypothesis is correct.

As discussed next, it provided us with satisfactory answers to the research questions,

namely (i) would it be possible to employ monitored network indicators to predict playout

performance and QoE for both traditional 2D and VR video streaming applications? and

(ii) How to employ QoE prediction to dynamically select and deploy paths that maximize

QoE and minimize infrastructure utilization over time?

As the first piece of work toward building an approach for QoE-aware path selec-

tion, we proposed LEAP, a model to predict video streaming playout performance and

QoE based on performance indicators of the underlying IP network. To accomplish this

objective, the model leverages lightweight active measurements and machine learning

techniques (i.e., regression decision trees). The results obtained allowed us to answer the

research question 1, as it suggests that it is feasible to estimate application layer perfor-

mance and QoE for video streaming applications using QoS indicators as predictors. The

estimated parameters achieved an average error below 9.92%, and a MOS estimation error

below 11% for over 90% of the cases considered. Furthermore, LEAP requires less than

4% of the traffic volume when compared to traditional techniques. The low intrusiveness

allows the service provider to configure systematic measurements, with a reduced polling

interval, without excessive use of network resources.

While our previous work resulted in a powerful model for estimating QoE for net-

work paths, the model is not scalable for dense networks with thousands of possible paths

between a given source and destination. In a second iteration to solve the overall problem

of the thesis, we devised a polynomial time complexity QoE-aware path selection algo-

rithm. This building block takes advantage of the previously proposed QoE prediction

model and introduces a novel algorithm for performing efficient QoE-aware path selec-

tion, in Software-defined Networks, based on per-link QoE composition. In a realistic

evaluation involving mobile operator topology and video demand, the proposed approach
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outperformed state-of-the-art solutions by impairing at least 37% fewer videos and result-

ing in four times less stall. Thus, the proposed approach allows answering the research

question 2 since it successfully introduces a large-scale QoE-aware deployment approach.

Next, we applied our prediction model to the VR arena by presenting PERCEIVE,

a novel performance evaluation method to assess the user’s perception of the VR content

when streamed through mobile networks. Using machine learning techniques applied

to the network performance indicators, it predicts the adaptive VR performance both in

terms of playout performance (average viewport bitrate, quality switches, stalling time

and starting time) and perceived QoE. To our knowledge, this is the first VR performance

model. PERCEIVE has been evaluated considering a real-world environment, in which

VR videos are streamed while subjected to an LTE/4G network performance. Then, we

assessed its accuracy by means of the residual error between the predicted and measured

values. PERCEIVE is able to predict the playout performance metrics with an average

prediction error lower than 3.7%, and the perceived quality with a prediction error lower

than 4% for over 90% of all the tested cases. PERCEIVE not only provides very high pre-

diction accuracy but also allows analyzing the influence of networks on the VR streaming

parameters. This feature has helped us pinpoint the network delay as the QoS feature that

affects the transport of VR services the most.

The complex interplay between VR video optimization techniques and variable

network conditions challenges developers of VR video solutions, as this interaction is

neither trivial nor has it been properly investigated. To address this problem, we pro-

posed VR-EXP, an open-source platform for evaluating adaptive VR video streaming that

encompasses various optimization techniques and allows for network performance condi-

tions to be varied. Employing VR-EXP, along with realistic datasets, we have produced

an extensive assessment that examines the performance of several state-of-the-art opti-

mization techniques when subjected to variable network conditions. The results obtained

evidence that the relationship between different optimization techniques for video VR op-

timization is not trivial. By combining an objective assessment of VR video streaming

playout performance and a comprehensive QoE model, VR-EXP allowed pinpointing the

components of the VR video ecosystem that most affect the performance of VR video

playout and, ultimately, QoE. The benefits of this work are twofold. From the VR video

developers’ perspective, we expect to contribute a useful approach to conducting a precise

and realistic performance evaluation of novel optimization techniques. In turn, from the

mobile operator’s perspective, we expect VR-EXP to be a valuable tool for supporting
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investigations aimed at understanding and predicting how variable network conditions

impact VR video performance and QoE delivered to their end-users. Given the above,

both PERCEIVE and VR-EXP allowed us to answer research question 1 in the context of

the VR video streaming applications.

7.2 Future Research Directions

We envision that this research can be extended in several ways in future investi-

gations. In the context of QoE-aware path selection (for both the traditional 2D and VR

video streaming), we believe that an interesting direction is to improve the integration

between network-side information (e.g., per link network performance and DPI data) and

user’s client feedback. For example, it would be possible to employ MPEG’s Server and

Network Assisted DASH (SAND) (THOMAS, 2015) to provide the network controller

with performance data obtained at the end-user premises. The QoE-aware path selec-

tion mechanism can be enhanced by considering detailed information regarding the user’s

traffic, such as the category of the video and CODEC specific information.

When considering the VR video domain, QoE-aware path selection becomes a

promising research field. This is due to the fact that the QoE prediction is the first step

towards effective QoE-aware path selection. However, most critical components of the

VR video ecosystem are still open research questions, thus challenging to predict. In

addition to the topics investigated in this thesis, we believe that it would be valuable to

examine how advanced aspects of the VR video streaming context, such as eye tracking,

saliency detection, and video rendering performance interact with QoE estimation.

Another relevant research direction consists in further exploring the QoE model

for VR videos. By comparing the predicted QoE against interviews with end-users, it

would be possible to adjust the weights of the prediction model for distinct user sensitiv-

ity levels. For example, a group of users can be more sensitive to stall events, while others

are more influenced by changes in the quality representation. By conducting large-scale

experiments, it would be possible to build users’ profiles for the QoE model. The combi-

nation of this weight profiling, along with a flexible QoE model, potentially allows for a

much finer-grained QoE estimation.

Finally, we intend to investigate approaches aiming at reducing the network over-

head imposed by active network performance measurements. Active measurement tech-

niques are still very suitable for mobile networks because they can accurately measure
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network performance. Additionally, mobile operators already have tools in place for pro-

viding these measurements. However, we deem that emerging developments in data plane

programmability, along with In-band Network Telemetry, can provide accurate network

performance indicators while reducing the measurement traffic overhead.

7.3 Achievements

The work carried out in the context of this thesis led to the publication of the

following peer-reviewed papers:

• Predicting the Performance of Virtual Reality Video Streaming in Mobile Net-

works. (Awarded with the ACM Reproducibility Badge)

Roberto Iraja Tavares da Costa Filho, Marcelo Caggiani Luizelli, Maria Torres

Vega, Jeroen van der Hooft, Stefano Petrangeli, Tim Wauters, Filip De Turck ,

Luciano Paschoal Gaspary.

ACM Multimedia Systems Conference (MMSys 2018).

• Scalable QoE-aware Path Selection in SDN-based Mobile Networks. (Best In-

session Presentation)

Roberto Iraja Tavares da Costa Filho, William Lautenschlager, Nicolas Kagami,

Marcelo Caggiani Luizelli, Valter Roesler, Luciano Paschoal Gaspary.

IEEE International Conference on Computer Communications (INFOCOM 2018).

• Network Fortune Cookie: Using Network Measurements to Predict Video

Streaming Performance and QoE.

Roberto Iraja Tavares da Costa Filho, William Lautenschlager, Nicolas Kagami,

Valter Roesler, Luciano Paschoal Gaspary.

IEEE Global Communications Conference (GLOBECOM 2016).

Additionally, the following paper has been submitted to ACM TOMM and is cur-

rently under review:

• Dissecting the Performance of VR Video Streaming Through the VR-EXP Ex-

perimentation Platform.

Roberto Iraja Tavares da Costa Filho, Marcelo Caggiani Luizelli, Maria Torres

Vega, Jeroen van der Hooft, Stefano Petrangeli, Tim Wauters, Filip De Turck ,

Luciano Paschoal Gaspary.

ACM Transactions on Multimedia Computing, Communications, and Applications.
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APPENDIX A — SUMMARY IN PORTUGUESE

A.1 Contexto e Motivação

As redes móveis serão responsáveis por mais de dois terços de todo o tráfego

IP até 2020 (ITU, 2017). Nesse contexto, as operadoras móveis estão sendo desafiadas

pelo tráfego de vídeo, que está pressionando sua infraestrutura de rede para o limite

(MAALLAWI et al., 2015). Segundo a Cisco, o tráfego proveniente das aplicações de

vídeo foi responsável por 60% do tráfego total da Internet em 2016. E há mais por vir:

o tráfego proveniente das aplicações de vídeo deve aumentar 9 vezes até 2022, contabi-

lizando 78% do tráfego total de dados (CISCO, 2018). De acordo com a mesma fonte,

os vídeos de Realidade Virtual (VR) aumentarão significativamente esse desafio, pois o

tráfego gerado por esse conteúdo deverá aumentar 12 vezes até 2022 (CISCO, 2018).

Um importante habilitador para tal crescimento é a difusão de Head Mounted Displays

(HMDs). Os HMDs estão apresentando altas taxas de penetração, já que eles (i) estão se

tornando eficazes e acessíveis (p. ex., Google Cardboard/Daydream 1, (ii) são fornecidos

gratuitamente juntamente com determinados smartphones (p. ex., Google Pixel e Sam-

sung Galaxy S) e (iii) estão sendo priorizados pela indústria (p. ex., O Facebook anunciou

recentemente uma queda permanente no preço do Oculus Go com o objetivo de atingir 1

bilhão de usuários de VR)2.

As aplicações de streaming de vídeo em realidade virtual são desafiadoras pois:

(i) vídeos VR serão transportados prioritariamente por redes móveis, já que os disposi-

tivos móveis contabilizarão 71% do tráfego total da Internet até 2022 (CISCO, 2018); (ii)

redes móveis são caracterizadas por níveis altamente variáveis de desempenho (FILHO

et al., 2016); e (iii) aplicações de vídeo VR requerem altos níveis de desempenho de

rede para prover uma Qualidade de Experiência (QoE) satisfatória (CISCO, 2018). Para

fornecer uma noção de como essas aplicações são exigentes, estudos recentes mostraram

que, para fornecer níveis adequados de QoE, as aplicações de vídeo de realidade virtual

exigem um atraso de rede menor que 9 ms (FILHO et al., 2018), enquanto a largura de

banda necessária para transportar vídeos VR de alta resolução pode alcançar 500 Mbps

(CISCO, 2018). Nesse nível de demanda, não somente as operadoras terão dificuldades

para fornecer serviços com boa relação custo-benefício, mas também os desenvolvedores

de conteúdo de vídeo VR também serão desafiados por terem que lidar com aplicações

1Google VR: https://vr.google.com/
2Um bilhão de pessoas em VR: https://goo.gl/2LNuAo
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altamente exigentes.

Para lidar com o enorme crescimento do tráfego de dados, as operadoras móveis

necessitam investir constantemente (CAPEX e OPEX) para ampliação de capacidade,

atualização de tecnologia (p. ex., 3G, 4G e 5G), bem como para melhorar a cobertura

externa e interna. Na direção oposta, a receita média por usuário (ARPU) para banda

larga móvel caiu de US$ 23,00 em 2013 para US$ 13,00 em 2015 (ITU, 2016). Todos

esses elementos juntos exercem uma enorme pressão sobre as operadoras de rede para

que essas gerenciem sua infraestrutura da maneira mais eficiente possível (MAALLAWI

et al., 2015).

Com o objetivo de aumentar a eficiência de suas redes, as operadoras móveis con-

tam com tecnologias de descarregamento, tais como Small Cells (Femtocell, Picocell),

descarregamento de Wi-Fi, redes de distribuição de conteúdo (CDNs) e, em um futuro

próximo, comunicação 5G dispositivo a dispositivo (D2D) e Mobile Edge Computing

(HUQ et al., 2017; ANSARI et al., 2018; FRANGOUDIS; YALA; KSENTINI, 2017).

Essas tecnologias são capazes de descarregar diferentes segmentos da rede (ou seja, borda,

agregação, núcleo e peering), desempenhando um papel fundamental na otimização da in-

fraestrutura de rede. Essas tecnologias permitem encurtar a distância entre o assinante e o

conteúdo acessado, evitando o congestionamento da rede, espalhando o tráfego por cam-

inhos alternativos. Como uma indicação da importância dessas tecnologias de descarrega-

mento, somente em 2016, 60% do tráfego de dados móveis foram realocados para camin-

hos alternativos, considerando apenas o descarregamento de Wi-Fi e Femtocell (CISCO,

2018).

A.2 Definição do Problema

A adoção de técnicas de descarregamento introduz uma grande diversidade de

caminhos possíveis pelos quais o tráfego de usuários pode ser escoado e, como conse-

quência imediata, aumenta a complexidade do gerenciamento de rede. Embora muito

importante, esse avançado recurso não se traduz diretamente em melhores níveis de QoE

(SCHLINKER et al., 2017). Isso é notavelmente verdadeiro se considerarmos que algu-

mas técnicas de descarregamento podem contar com infraestrutura compartilhada e de ter-

ceiros, o que possivelmente exacerbaria a imprevisibilidade em relação à QoE fornecida.

Portanto, uma tarefa desafiadora para as operadoras de telefonia móvel consiste em como

lidar com o crescente tráfego do usuário final, otimizando a utilização da sua infraestru-
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tura e gerenciando a QoE do usuário. De fato, do ponto de vista da operadora, enfrentar

esse desafio é crucial para se manter competitiva, uma vez que o gerenciamento efetivo da

interação entre a QoE percebida pelo assinante e os investimentos em infraestrutura é o

principal fator para aumentar o retorno do investimento (NAM; KIM; SCHULZRINNE,

2016; AHMAD; FLORIS; ATZORI, 2016).

Dado o contexto acima, o principal desafio de pesquisa que investigamos ao longo

dessa Tese consiste em como aproveitar a diversidade de caminhos introduzidos pelas

tecnologias de descarregamento atuais, e também as vindouras (p. ex., 5G D2D, Edge

Computing e Fog Computing), para selecionar dinamicamente caminhos capazes de max-

imizar QoE e minimizar os custos de infraestrutura de rede. Em suma, a tarefa de se-

leção de caminhos cientes de QoE pode ser decomposta em dois problemas principais.

O primeiro problema consiste em prever oportunamente a QoE para caminhos de rede

disponíveis. Por sua vez, o segundo problema engloba o algoritmo de seleção de caminho

em larga escala, que deve considerar restrições ao selecionar caminhos de rede otimizados

(p. ex., objetivo de QoE e recursos de rede disponíveis). O primeiro problema é complexo

porque as informações que estão intimamente relacionadas à QoE (p. ex., avaliações sub-

jetivas e medições objetivas) não são amplamente disponíveis ou viáveis para se obter

uma abordagem sistemática para redes de larga escala. Em relação ao segundo problema,

ele pode ser facilmente resolvido quando considerando pequenas instâncias. No entanto,

torna-se notavelmente complexo quando combinado com restrições adicionais (p. ex.,

utilização de recursos) e aplicado a redes ultra-densas.

A.3 Principais Resultados

Como primeira contribuição dessa Tese, no sentido de construir uma abordagem

para seleção de caminhos cientes de QoE, introduzimos LEAP. O modelo proposto é

capaz de prever o desempenho da reprodução de streaming de vídeo, bem como seu re-

spectivo QoE, utilizando como entrada indicadores de desempenho da rede IP subjacente.

Para atingir esse objetivo, o modelo proposto utiliza medições ativas leves e técnicas de

aprendizado de máquina, no caso, árvores de decisão de regressão. Os resultados obti-

dos sugerem que é possível estimar o desempenho da camada de aplicação e QoE para

aplicações de streaming de vídeo usando indicadores de QoS como preditores. Os indi-

cadores estimados alcançaram um erro médio abaixo de 9,92%, e um erro de estimação

MOS abaixo de 11%, para mais de 90% dos casos considerados. Além disso, LEAP re-
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quer menos de 4% do volume de tráfego quando comparado às técnicas tradicionais. A

baixa intrusividade permite que o provedor de serviços configure medições sistemáticas,

com um intervalo de medição reduzido, sem resultar em um uso excessivo de recursos de

rede.

Embora nosso trabalho anterior tenha resultado em um poderoso modelo para

predição de QoE para caminhos de rede, tal modelo não é escalável para redes densas

contendo milhares de caminhos possíveis entre uma determinada origem e destino. Em

uma segunda iteração sobre o problema central da Tese, propusemos SQAPE, um al-

goritmo de tempo polinomial para seleção de caminhos cientes de QoE. A abordagem

proposta tira proveito do modelo de predição de QoE apresentado anteriormente (LEAP)

e introduz uma estratégia inovadora para seleção eficiente de caminhos cientes de QoE em

redes definidas por software. Em uma avaliação realista, envolvendo demandas de serviço

e topologias reais de operadora móvel, SQAPE superou soluções do estado da arte, re-

sultando em um menor número de vídeos degradados (pelo menos 37%) e acumulando

quatro vezes menos congelamentos de imagem.

Aproveitando as lições aprendidas com o modelo de predição de QoE para stream-

ing de vídeo introduzimos PERCEIVE, um modelo para predição de QoE no contexto

de vídeos VR. Utilizando técnicas de aprendizado de máquina, o modelo prevê o de-

sempenho das aplicações de vídeos VR, tanto em termos de desempenho de reprodução

(bitrate, interrupções de reprodução, chaveamentos de qualidade e atraso para início da

reprodução), quanto o seu respectivo QoE. No melhor do nosso conhecimento, este é

o primeiro modelo de predição de QoE para vídeos VR. PERCEIVE foi avaliado con-

siderando um ambiente do mundo real, no qual os vídeos VR são transmitidos através de

links que emulam o desempenho da rede LTE/4G. Nesse contexto, sua acurácia foi avali-

ada por meio do erro residual entre os valores preditos e efetivamente medidos. PER-

CEIVE foi capaz de prever os indicadores de desempenho de reprodução com um erro

médio inferior a 3,7%, enquanto a predição de QoE apresentou um erro menor que 4%,

para mais de 90% dos casos considerados. PERCEIVE não apenas forneceu uma precisão

alta, mas também permitiu analisar a influência dos indicadores de QoS no desempenho

das aplicações de vídeo VR.

Em uma última interação sobre o problema central da Tese propusemos VR-EXP,

uma plataforma de código aberto para avaliação em profundidade de técnicas de otimiza-

ção para aplicações de vídeo VR. Empregando VR-EXP produzimos uma extensa avali-

ação que examina o desempenho de várias técnicas de otimização quando submetidas
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a condições variadas de desempenho de rede. Entendemos que a plataforma VR-EXP

possui potencial para beneficiar dois públicos-alvo distintos. Sob a perspectiva dos de-

senvolvedores de técnicas de otimização para vídeos VR, esperamos contribuir com uma

abordagem útil para conduzir uma avaliação de desempenho precisa e realista quando do

desenvolvimento de novas técnicas. Por sua vez, do ponto de vista da operadora de telefo-

nia móvel, esperamos que VR-EXP seja uma ferramenta valiosa para apoiar investigações

que visam entender e prever como as condições de desempenho da rede de dados afetam

a qualidade da experiência dos assinantes ao utilizar aplicações de vídeo VR.
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Abstract. Due to the fact that video streaming is the current “killer” application

and for competitiveness, telecommunication service providers need to be able to answer

a fundamental question: to which extent is the available network infrastructure able to

successfully provide users with a satisfactory experience when running video streaming

applications? Answering this question is far from trivial because existing techniques are

neither scalable nor accurate enough. To address this issue, we propose a model to predict

video streaming quality based on the observation of performance indicators of the under-

lying IP network. To accomplish this objective, the proposed model — created using LTE

networks as case study — leverages low network consumption active measurements and

machine learning techniques. Obtained results show that the proposed solution produces
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Abstract—Due to the fact that video streaming is the current
“killer” application and for competitiveness, telecommunication
service providers need to be able to answer a fundamental
question: to which extent is the available network infrastructure
able to successfully provide users with a satisfactory experience
when running video streaming applications? Answering this
question is far from trivial because existing techniques are
neither scalable nor accurate enough. To address this issue,
we propose a model to predict video streaming quality based
on the observation of performance indicators of the underlying
IP network. To accomplish this objective, the proposed model
— created using LTE networks as case study — leverages low
network consumption active measurements and machine learning
techniques. Obtained results show that the proposed solution
produces accurate estimates (average error of less than 10%)
while keeping intrusiveness around twenty times lower than
traditional techniques.

I. INTRODUCTION

The mobile-broadband penetration rate for 2015 was
86.7% in developed countries, while the corresponding fixed-
broadband rate reached 29% of the population according to the
ITU [1]. Along with the increase in broadband subscriptions,
the dissemination of video applications has hampered the
management of the quality of provided services. This adversity
has been induced mainly by the fact that video applications
tend to demand a greater amount of network resources when
compared to other applications. Video traffic is projected to
comprise nearly 86% of all Internet traffic before the end of
2016 [2].

In this context, the scientific community as well as the
industry agree that maximizing the user’s Quality of Experi-
ence (QoE) regarding video streaming applications represents
a relevant research challenge [2]. An essential aspect in this
direction is to systematically determine the quality of the
provided video services. To this end, service providers require
a solution with low intrusion, scalability, and a reasonably
accurate way to measure the quality of service delivered. This
task becomes particularly challenging if encompassing cellular
networks (our focus in this paper), in which highly intrusive
measurement techniques have the potential to negatively affect
the quality of provided services.

Msakni and Youssef [3] analyzed some prominent, recently
proposed techniques for QoE prediction which don’t rely on
video transfer. They concluded that none of the considered
approaches could be deemed reliable. Essentially, the non-

linearity of human opinion compromises accuracy when using
network parameters as direct predictors of QoE, since a given
configuration can be graded differently in Mean Opinion Score
(MOS). An alternative strategy would be to evaluate video
quality by objectively grading the user’s opinion. However,
techniques that allow for such a measurement require the
transit and analysis of real video files, entailing a substantial
increment in network traffic.

In this paper we propose a prediction model for performance
indicators of video streaming services based on indicators
from the underlying IP network. The proposed model explores
decision trees in order to determine the relation between net-
work QoS indicators1 and objective indicators representative
of the video reproduction quality experienced by the end user,
henceforth designated as AppQoS2. Additionally, by means of
AppQoS processing, the model allows an inference of user
QoE. This first iteration was focused on LTE networks as a
case study. The results obtained suggest that the proposed
model is an adequate approach to facilitate large-scale yet
accurate prediction of quality of video services with minor
intrusion.

The remainder of this paper is organized as follows. Section
2 describes the related work. Section 3 presents the proposed
prediction model. Section 4 details the experiment config-
uration and model construction aspects. Section 5 reports
performance results as well as possible model applications.
Section 6 shows our conclusions along with our perspective
for future work.

II. RELATED WORK

Traditional mechanisms such as Mean Opinion Score
(MOS), Perceptual Evaluation of Video Quality (PEVQ) and
Peak Signal-to-Noise Ratio (PSNR) are not scalable when
applied to systematically evaluate if a network infrastructure
provides the required quality to support video streaming ap-
plications. This is especially true when considering the high
costs involved with user interviews and video downloads. In
an attempt to overcome these limitations, recent investigations
proposed to estimate quality using alternative data acquisition
procedures, compatible with large-scale scenarios.

1The term network QoS indicators refers to performance of IP networks.
2The term AppQoS refers to the last objective barrier capable of being

measured in the context of the end user.



A first group of investigations is characterized by techniques
that estimate QoE indicators using network-based measure-
ments. Due to not taking into account application performance,
these techniques do not allow an accurate understanding of
the application behavior [4], [5]. This occurs because they
are biased by the non-linearity of human opinion. Conversely,
a second group of related work tries to establish the rela-
tionship between application and QoE, without considering
network QoS indicators [6], [7]. The lack of connection among
AppQoS, QoE and network performance hinders the service
provider’s ability to understand the network influence on QoE
indicators.

In this context, the work proposed in this paper contributes
a step forward in the state of the art since, unlike the related
work, it proposes the use of network performance measure-
ments to estimate intermediate indicators between QoS and
QoE, which we labeled AppQoS. Additionally, once AppQoS
is estimated, it can be used to predict user QoE. Therefore,
the QoE indicator allows a fast identification of network
points suffering quality degradation, while AppQoS indicators
provide a finer-grained view of application behavior, allowing
the provider to understand the root cause of degradation.
Finally, we claim that the proposed model is scalable since
it allows a reliable estimation of application performance
at a fraction of the network intrusion necessary to perform
measurements using real application traffic.

III. LEAP: LIGHTWEIGHT APPQOS AND QOE PREDICTOR

In this paper we propose a Lightweight AppQoS and QoE
Predictor (LEAP). It is capable of providing a detailed view of
how the network performance affects video streaming applica-
tions and, moreover, the corresponding user experience. Figure
1 shows the general model scheme. The model is designed to
receive four network performance indicators as input: (i) delay,
(ii) jitter, (iii) throughput and (iv) packet loss. To capture video
playback performance, the model predicts three video playout
performance indicators: (i) startup time, (ii) stall count and
(iii) total stall length. To estimate each AppQoS indicator, the
four network QoS indicators are analysed together. In a second
stage, the three AppQoS indicators are used to estimate QoE
(using the MOS score).

Delay 

Jitter 

Throughput 

Loss 

Network QoS 

MOS 

QoE

Startup 
Time 

Stall Count 

Total Stall 
Time 

Application QoS
(AppQoS) 

Stall Count 
Predictor 

QoE 
Predictor 

Stall Time 
Predictor 

Startup 
Predictor 

Figure 1. LEAP general scheme

A. AppQoS Prediction
LEAP leverages the Regression Decision Tree technique to

construct the three AppQoS prediction models. It was chosen
mainly due to its suitability to handle complex and non-
linear relationships between attributes. In order to confirm our
choice, we conducted experiments considering the following
algorithms: Multiple Linear Regression, Artificial Neural Net-
works, Gaussian Naive Bayes and Support Vector Regression.

However, those techniques were outperformed by decision
trees when analyzed using the Nested Cross Validation (NCV)
protocol [8].

During the training stage, the model learns how each
attribute X affects the response variable Y. In our case, the
network QoS indicators are the X attributes and the video
streaming performance indicators (AppQoS), Y. Once the
training stage is finished, LEAP is able to estimate AppQoS
indicators by comparing the measured QoS indicators against
the decision trees. The model evaluates each QoS indicator,
node by node, until it reaches a leaf, where the predicted
AppQoS is defined. For example, in Figures 2 and 3 it is
possible to observe a portion of the decision trees for total
stall length and stall count for 1080p videos. Due to space
and legibility constraints, we present two partial excerpts from
the resulting decision trees. Their constructive aspects and a
performance evaluation will be presented in Subsection IV-C.
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Figure 2. Decision tree for total stall length of 1080p video playout
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Figure 3. Decision tree for stall count of 1080p video playout

Each decision tree is built using a recursive procedure that
executes successive splits, starting from a single node con-
taining all attributes (QoS parameters). This procedure defines
the tree growth and is controlled by two parameters. The
first is the minsplit, which represents the minimum number
of related observations for a new branch to be created. The
second parameter is called cp, which describes the minimum
gain, regarding error reduction, that a specific node needs to
provide in order to be created. Each resulting decision tree
has a particular cross-validation error (X), which provides an
estimated error when testing the prediction structure against
independent data (a portion of the dataset not used during
the training stage). Finally, in the pruning stage, each pair of



leaves with a common parent is tested for merge according
to the Mean Squared Error (MSE). If MSE is reduced, then
those leaves are removed and their parent becomes a leaf node.
Otherwise, the structure remains the same for those nodes.

Finally, it is important to emphasize that LEAP is divided
into two distinct phases. In the first stage, the tasks with
high complexity, such as machine learning technique selection,
construction and training of the LEAP model, are performed
offline. In particular, the construction of an optimal decision
tree is known to be an NP-Complete problem, so a heuristic
algorithm is used to obtain a near optimal structure. In turn,
the second stage occurs as an online procedure. Whenever
QoS indicators are available in the database, a subroutine
estimates the AppQoS and QoE indicators just by comparing
them against the decision tree thresholds.

B. QoE Prediction

Once the AppQoS indicators are estimated, LEAP can use
them to predict a corresponding expected quality of user
experience. To establish the relationship between AppQoS and
QoE, LEAP employs an adaptation of recent research work,
which, based on user interviews, derived a mathematical model
for mapping AppQoS to a MOS score. The influence of startup
time on MOS is defined by Equation 1, where Qini is the
resulting MOS score and t0 is the predicted startup time. The
values 0.963 and 5.381 were calculated by solving a nonlinear
minimization problem for the mean squared error between
MOS scores in t0 and the functionf(t0) [9], [10].

Qini = −0.963 × log10(t0 + 5.381) + 5 (1)

Additionally, to allow estimation of the effects of stall count
and total stall length on QoE, we first need to define a factor
λ. This factor represents the ratio between the video’s total
stall length σ and the total length of the video playback (the
sum of σ and the video duration ρ), as shown in Equation 2.
According to Casas et al. [11], this observation should be done
in time slots T with a typical duration of one minute. This
approach allows generalizing the method for videos of any
length. Once λ has been calculated, it indicates a degradation
level 1 ≤ i ≤ 5, according to the λ intervals shown in Table I.
Finally, MOS Qst is calculated according to Equation 3, where
ai, bi, ci are constants defined ∀i = 1, 2, 3, 4, 5 according to
Table I, and n is the stall count within a specific time slot T . In
Equation 3 one can observe that, for a stall count higher than
six, the user experience will be fully degraded, resulting in a
MOS score 1. We would like to emphasize that the equations
presented in this subsection rely on the result of previous
research work. The reader interested in their validations may
refer to [9], [10], [11].

λ =

{
σ

σ+ρ , if σ + ρ < T
σ
T , otherwise

(2)

Qst =

{
1, if n > 6

ai × e−bi×n + ci, if n ≤ 6
(3)

Table I
FACTOR VALUES ACCORDING TO λ FOR MOS CALCULATION (Qst)

Factor λ < .05 .05 ≤ λ < .1 .1 ≤ λ < .2 .2 ≤ λ < .5 λ ≥ .5

a 3.01 3.09 3.19 3.24 3.30
b 0.76 0.99 1.52 1.69 1.88
c 1.99 1.90 1.81 1.75 1.69

IV. MODEL CONSTRUCTION

This section presents the practical aspects related to the
construction of the prediction model. First, we describe the
acquisition of QoS and AppQoS indicators. Right after, we il-
lustrate details of the training environment. Lastly, we examine
the resulting prediction models.

A. Aquisition of QoS and AppQoS Indicators

In order to obtain network performance indicators, we
employed an active measurement-based platform named Net-
Metric [12]. NetMetric works with a “Manager” entity, re-
sponsible for configuring schedules to be run in the “Agent”
entities. An Agent entity can be used both as the origin of a
measurement (source point) or as the target (reflector point).
The platform was configured to run groups of two different
packet bursts. The first burst makes use of the UDP protocol
and unidirectionally measures One Way Delay (OWD), jitter
and packet loss by injecting 400 packets of 100 bytes at 50ms
intervals. The second burst gauges the throughput using the
TCP protocol with 640 packets of 1,488 bytes. Both bursts
amount to 992 KB worth of data. Although NetMetric is
capable of deriving bidirectional metrics, we have chosen
to confine our experiment to unidirectional measurements in
correspondence with our case study, the LTE downlink.

For the purpose of obtaining AppQoS indicators, a specific
module was developed for NetMetric in the form of a plugin
for the Chrome browser. This plugin enabled the extraction
of performance indicators related to the reproduction of video
through an HTML5 native video player. This choice is justified
by the migration of big video content providers to HTML5
technology, such as Youtube and Netflix.

In order to measure within the application layer, a NetMetric
source Agent entity periodically reproduced videos via the
Chrome browser, which retrieved its files from a reflector
Agent. Two video files, of one minute each, were used in the
algorithm’s training phase. Both were in the MPEG v4 format
and coded in H.264. While the first had a 720p resolution
and 9.2 MB, the second had a 1080p resolution and 14.3
MB. The transfer of videos of different resolutions is deemed
necessary in light of introducing different bitrates, which
demand varying degrees of performance from the underlying
network. Therefore, each of the three AppQoS predictors
needed to be trained separately in order to be acquainted with
the network demands of each bitrate.

B. Training Environment

A possible approach for obtaining a dataset relating QoS
and AppQoS parameters would be to run the experiment on a
deployed LTE network, measuring both the network and appli-
cation layer indicators simultaneously in an effort to guarantee
corresponding conditions in both layers. However, considering
the invasive nature of these two measurement techniques, their



concomitant execution would result in mutual interference
stemming from a fierce competition for the shared resources.
Another possible approach would be to serialize the measure-
ments. Yet, due to a considerable variability in the performance
of LTE networks, detectable even in short time intervals, we
decided against using such training configuration. The training
environment demands stable conditions between the evaluation
of the network and application layers. Otherwise, the learning
algorithm could establish inaccurate correlations concerning
the influence of each network parameters towards the target
variables.

In consideration of these difficulties, we opted to devise
a controlled environment capable of faithfully emulating the
network conditions observed in the deployed setting. In order
to reproduce conditions such as throughput, delay, jitter and
packet loss present in an LTE environment, we made use of
WANEM [13]. The WANEM tool allows us to impose specific
constraints on a target network while keeping the network
conditions static between consecutive measurements. Figure
4 depicts the topology used to set our controlled environment
up.
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Figure 4. Controlled environment setup

The selection of parameters used in the WANEM configu-
ration was based on 7,450 measurements taken by NetMetric
in an LTE network deployed countrywide3, between May and
October of 2015. Table II summarizes the four levels chosen
for each of the QoS indicators. The QoS indicators were
individually tested as to the normality of their distributions
via the Shapiro-Wilk test to a significance level of α = 0.05.
On account of these normal distributions, the delay, jitter,
and throughput indicators have been segmented using quartile
analysis. The values associated with the packet loss indicator
were selected through the use of modal analysis for integer
levels.

A first round of experiments (via Full Factorial design
2k.r) expressed that the jitter indicator did not contribute to
the regression model proposed in the previous section. Once
the relevant parameters have been determined (throughput,
delay, and packet loss), we performed a subsequent set of
experiments, this time with Full Factorial design 4k.r, thus al-
lowing a greater degree of variation for each parameter without
incurring in an unmanageably large number of experiments.
With three input parameters and four levels, the design resulted
in 64 possible combinations. After observing the variation in

3For confidentiality reasons, we are not allowed to disclose a detailed
characterization of the deployed network.

the results, we defined the number of ten repetitions for each
combination, considering a significance level of 95%.

Table II
LTE INDICATORS USED IN THE MODEL TRAINING STAGE

Indicator Value
Throughput 0.9 Mbps; 8.8 Mbps; 15.5 Mbps; 25.3 Mbps

Delay 22 ms; 56 ms; 64 ms; 98 ms
Loss 0%; 2%; 5%; 13%

C. Resulting Predictors
At this stage, after acquiring data from the aforementioned

controlled environment, we focused on generating binary
decision trees for each of the three AppQoS indicators. These
trees were specifically made for the two different resolutions
(720p and 1080p). Considering these two details, we had a
total of six tree combinations.

The trees represented in Figures 2 and 3, along with the
rest of the trees generated in the scope of this work, display
the optimal pruning for these structures. Figure 2 shows the
tree for total stall length in 1080p resolution as a function
of the three primary network indicators. The root node, which
represents the first decision, makes use of the throughput as the
deciding criterion (represented in bits per second). The value
present in the node, that of 2 Mbps, is associated with the
bitrate used in the test videos - around 1.9 Mbps. For higher
throughput values, the average stall length (0.15 seconds,
according to the value indicated by the root left child node) is
considerably less than the observed for networks with a lower
throughput (75 seconds, as expressed by the node to the right
of the root). This observation implies that a network being
capable of supplying the video bitrate is the most important
factor in determining the overall video behavior.

Another related aspect is the existence of an intermediary
range above the bitrate, in which there is a slight degradation
for video playback performance indicators - in the case of
Figure 2, between 2 Mbps and 2.5 Mbps. In this range,
instantaneous throughput variations may lead to an empty
buffer interruption, which leads to degradation. For values
above 2.5 Mbps, however, the video reproduction develops
mostly without interruptions, independent of any other predic-
tive indicator. It should be noted that a similar behavior was
observed with the 720p resolution, in which the root node was
determined by a throughput threshold identical to the video
bitrate of 1.2 Mbps, even though a flawless reproduction was
only identified for throughput values above 1.9 Mbps.

The root node of the 1080p stall count indicator tree along
with the left portion of the tree (not shown in Figure 3) are
analogous to their aforementioned total stall length counter-
parts. This means the first decision is taken concerning the
throughput in relation to the bitrate, and that higher through-
put values presented degradation up to a second threshold
(2.3 Mbps). However, the branch shown in Figure 3, which
represents the portion of the tree immediately connected to
the right of the root node, presented a distinct behavior. For
this subtree, throughput values between 677 Kbps and 2 Mbps
(limited by the root node) predicted an average of 12 stalls, a
greater amount than observed for smaller throughputs, which
averaged 8.4 stalls. An analysis taking total stall length into
consideration shows that, for samples with a throughput below



677 kbps, the videos are expected to stay halted for an average
of 83.76 seconds. The remainder of cases presented an average
of 64.98 seconds. Thus, we can conclude that the video halts
for effectively longer in networks with reduced throughput,
even though the stall count is smaller, representing longer-
lasting individual interruptions.

V. PERFORMANCE EVALUATION

This section presents a performance evaluation of the pro-
posed model. Additionally, this section addresses the results
gathered from applying the model to the mobile network
mentioned in the Subsection IV-B. Essentially, our objective is
to answer the following questions: (i) How accurately can the
model predict video application behavior based on network
performance observations? (ii) To which extent is network
intrusion kept low when the model is applied to a large scale
LTE network? (iii) How can providers capitalize on prediction
of video quality and QoE?

A. Model Accuracy

With the purpose of determining accuracy, the proposed
model was subjected to a test dataset, independent of the
training dataset. Each test sample i contains a measurement
for each of the three predictor variables (throughput, delay and
loss) and three application indicators (stall length, stall count
and startup time). By applying the first group of variables as
input for the decision trees represented in Figures 2 and 3, we
obtained an estimation for each of the variables in the second
group, which then have an associated observed value xi and
a predicted value x̂i. This allowed us to calculate, for each
sample i, the normalized residuals ri, defined by the equation
ri = |x̂i − xi|/N . We use the factor N to normalize the error
values. For each of the three application indicators, the value
of N is derived from the duration of the videos employed in
the controlled environment (60 seconds in this case), which
enables a generalization of the evaluation method for videos
of any duration.

Figures 5(a), 5(b), 5(c) and 5(d) depict the variation of ri

in the horizontal axis, associating each value in this axis to a
portion of the sampling group (in the vertical axis) in which
ri is lesser or equal to the set threshold. Thus, considering
the 1080p resolution in Figure 5(c) (video startup time), the
value of 0.093 in the horizontal axis is related to the 0.9 value
in the vertical axis, indicating that 90% of the samples of the
corresponding group have ri ≤ 0.093. In the same figure, 90%
of the samples with 720p resolution have ri ≤ 0.0086. This
can be interpreted as an error of 9.3% and 0.86%, respectively.
The average of ri in 90% of the samples for all indicators,
considering both 1080p and 720p, has a value of r̄i = 0.0982
(9.8%). We deem this error rate to be satisfactory and in line
with recent research work.

Based on the predicted and observed values for the appli-
cation indicators, it is possible to calculate a MOS value ac-
cording to the approach presented in Subsection III-B. For this
indicator (MOS), the following error rates are depicted in an
absolute scale, which ranges from 1 to 5. According to Figure
5(d), MOS prediction presented an error rate of up to ri = 0.11
for 90% of samples for videos of 1080p. This means that, for
example, if a MOS = 3.5 is calculated using the observed

application indicators, a value of 3.39 ≤ M̂OS ≤ 3.61 is to
be predicted 90% of the time. The error rate was smaller in
720p resolution, with a value of ri = 0.05. Even though the
AppQoS estimation error rate is low, this disturbance did not
significantly impact QoE prediction, which presented an even
lower prediction error, as shown in Figure 5(d).
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Figure 5. AppQoS and QoE prediction error for 1080p video playout

B. Model Intrusiveness
Figure 6 illustrates a comparison of intrusiveness, con-

structed with traffic volume parameters described in Subsec-
tion IV-A, between the proposed model and measurements
taken through use of real video transfers. It should be noted
that the most intrusive LEAP case (500 probes with a polling
interval of 10 minutes) generates 66.65 GB/day. With an
equivalent configuration, the real video transfer strategy would
require 1,574.71 GB/day. Therefore, the adoption of LEAP is
on average one order of magnitude less intrusive.

Complementing the aforementioned analysis, take into ac-
count that the unstable performance of LTE networks, mainly
characterized by user mobility and fierce competition of radio
interface resources, demands a reduced monitoring polling
interval to achieve a realistic view of the network environment.
In this setting, low intrusion is an essential requirement to
be met. Otherwise, the generated traffic would consume an
enormous amount of resources, undermining the availability
of resources for end users.
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Figure 6. LEAP scalability

C. LEAP in Action
After its creation, the model was deployed in one of

the largest mobile operators in Brazil, already mentioned in



Subsection IV-B. We installed reflector agents as close as
possible to the mobile operator’s main CDN nodes responsible
for delivering cached videos. With this setup, the model was
capable of measuring AppQoS and QoE in an end-to-end
approach, from an application server down to the end user
premises. In order to decide where to install the source agents,
we examined the operator’s traffic matrix and concluded that a
Pareto’s Principle fit was reasonable, that is, 80% of all mobile
data traffic was generated in less than 20% of eNode Bs (a.k.a.
Base Station). Then, the source agents were deployed close to
each selected eNB in decreasing order of traffic volume.

Due to space constraints, we show just a single real
world application of LEAP. Using the parallel coordinates
visualization technique, Figure 7 shows a LEAP graph that
illustrates the relationship between QoS, AppQoS and QoE,
for a particular source agent. In this figure it is possible
to observe that both curves share a QoS condition: 77 ms
delay, 0% loss and 1.950 Mbps throughput. However, when
LEAP predicts the AppQoS performance and QoE, we verify
a very divergent performance between resolutions. For 720p,
the predictor estimates zero stall count and a startup time
of 290ms, incurring in a MOS of almost 5. However, when
predicting 1080p performance for the same network, LEAP
predicts a startup time of 910ms, 9.68 stalls with a total length
of 32.9 seconds, which implies an MOS score of 1.75. In this
particular case (and in other interest points), LEAP provided
an integrated, real-time view of what the network is delivering
and the corresponding effects on video playout performance,
i.e., expected user experience. Moreover, through analysis of
the respective decision tree, LEAP was able to provide the
notion of how QoS parameters need to be tuned in order to
achieve the desired service quality.

3.5

720p

60

70

80

0

2

3

4

5

6

1.0

2.0 

2.5

3.0 

20

80

2

4

6

1.2 

2.0

3.0

2.5

5.0

10

12
1080p

Startup 

Time (s)

4.5

8

00

40

60

Stall 

Count (#) 

Stall 

Length (s) MOS Resolution 

Throughput 

(Mbps) Loss (%) Delay (ms) 

720p 1080p

1

1.0 

0.8 

0.6 

0.4 

0.2 

4.0

1.5

Figure 7. Integrated QoS, AppQoS and QoE view

VI. CONCLUSION AND FUTURE WORK

The results obtained suggest that it is feasible to estimate
AppQoS and QoE for video streaming applications using QoS
indicators as predictors. The estimated parameters achieved an
average error below 9.92%, and a MOS estimation error below
11% for over 90% of cases. Furthermore, LEAP requires less
than 4% of the traffic volume when compared to traditional
techniques. The low intrusiveness allows the service provider
to configure systematic measurements, with reduced polling
interval, without an excessive usage of network resources.

To maintain predictor accuracy over time, LEAP needs
to be periodically recalibrated. This event is triggered by
a scheduled procedure named Accuracy Check Probe. This
procedure executes a strategically distributed set of reference
measurements using the LEAP Browser Plugin and compares
the measured AppQoS values against the predicted values.

This routine assesses the prediction error and, whenever nec-
essary, triggers the model recalibration procedure.

The LEAP model was shown to be an efficient tool to
aid network operators in tuning and troubleshooting routines.
LEAP provides an indication of which video resolution will
fit into a given network segment. For this reason, and to keep
focus on network performance, we decided to operate under
fixed bitrates. As future work, we intend to evolve the model
to provide a complementary prediction considering adaptive
video streaming mechanisms like DASH. Additionally, we
intend to assess LEAP’s generality by applying it to other
applications such as VoIP and online games. Finally, we plan
to specify a methodology and conduct extensive interview-
based tests aiming at advancing the state of the art towards
more accurate mapping strategies of AppQos to QoE.
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Abstract—To deal with the massive traffic produced by video
applications, mobile operators rely on offloading technologies
such as Small Cells, Content Delivery Networks and, shortly,
Cloud Edge and 5G Device to Device communications. Although
these techniques are fundamental for improving network effi-
ciency, they produce a multitude of paths onto which the user
traffic can be forwarded. Thus, a critical problem arises about
how to handle the increasing video traffic while managing the
interplay between infrastructure optimization and the user’s
Quality of Experience (QoE). Solving this problem is remarkably
difficult, and recent investigations do not consider the large-scale
context of mobile operator networks. To address this issue, we
present a novel QoE-aware path deployment scheme for large-
scale SDN-based mobile networks. The scheme relies on both a
polynomial-time algorithm for composing multiple QoS metrics
and a scalable QoS to QoE translation strategy. Considering real
mobile operator network and video traffic traces, we show that
the proposed algorithm outperformed state-of-the-art approaches
by reducing impaired videos in aggregate MOS by at least 37%
and lowering accumulated video stall length four times.

I. INTRODUCTION

Context and Motivation. The future is mobile: wireless
networks will account for two-thirds of all IP traffic by 2020
[1]. In this context, operators are being challenged by video
traffic, which is pushing their network infrastructure to the
limit [2]. According to Cisco, mobile video accounted for
60% of total Internet traffic in 2016. And there is more to
come: since mobile video is expected to increase 9-fold by
2021, reaching 78% of total data traffic [3]. One key enabler
to support such amount of video traffic is the improvement
in connection speed. The average downlink speed grew more
than 3-fold, from 2.0 Mbps in 2015 to 8.3 Mbps in 2016
[1], allowing the network to successfully deliver high quality
videos (e.g., 720p and 1080p).

To deal with the massive growth in data traffic, mobile
operators have to constantly invest (i.e., CAPEX and OPEX)
to increase capacity, to switch technology (e.g., 3G, 4G, 4G+,
5G), as well as to improve outdoor and indoor coverage. In the
opposite direction, the Average Revenue Per User (ARPU) for
mobile broadband has fallen from USD 23 in 2013 to USD 13
in 2015 [1]. All those elements together place a lot of pressure
on operators to manage their infrastructure efficiently [2].

Aiming at increasing efficiency, mobile operators have been
relying on offloading technologies such as Small Cells (Fem-
tocell, Picocell, Microcell), Wi-Fi offloading, Content Delivery
Networks (CDNs), and, in the near future, 5G Device-to-

Fig. 1. Mobile operator network and the path diversity increased by the
offloading techniques

Device communication (D2D) and 5G Mobile Edge Comput-
ing [2], [4], [5]. As shown in Fig. 1, these technologies are
capable of offloading different segments of the network (i.e.,
edge, aggregation, core and peering) and play a fundamental
role in network infrastructure optimization, as they shorten
the distance between subscriber and content while avoiding
network congestion by spreading the traffic among alternative
paths. As an indication of how important these offloading
technologies are, in 2016 60% of mobile data was relocated
to alternative paths, just considering Wi-Fi and Femtocell
offloading [3].

Problem. The adoption of offloading techniques introduces
a multitude of possible paths onto which user traffic can
be forwarded and, as an immediate consequence, raises the
complexity of the network management (e.g., path selection,
configuration, troubleshooting). While very important, such
an advanced infrastructure does not directly translate into
improved Quality of Experience (QoE) [6]. This is notably
true if considering that some offloading techniques may rely on
shared and/or third-party infrastructure, which would possibly
exacerbate the unpredictability regarding the delivered quality
of experience. Given the above, the fundamental problem lies
in how to handle the increasing end-user traffic while opti-
mizing infrastructure utilization and managing user’s quality
of experience. In fact, from the operator’s perspective, solving
this problem is crucial for improving competitiveness, since
the effective management of the interplay between perceived
QoE and infrastructure investments is the main factor for
increasing return of investment [7], [8]. In a recent investi-
gation [6], the authors proposed an approach for addressing



the QoE-aware path selection problem at the content provider
premises. They proposed an inter-AS path selection scheme
based on performance indicators measured at the server side
(i.e., Facebook server logs) built on top of an SDN-based
infrastructure. Aiming at addressing the QoE-aware problem at
the operator side, in this paper we propose SQAPE - Scalable
QoE-aware Path Selection scheme to be used in large-scale
SDN-based mobile networks.

Research Challenges. To illustrate the aforementioned
QoE-aware path selection problem, let us consider the simpli-
fied network topology shown in Fig. 1. In this example, which
is a temporal snapshot of a dynamic scenario, a subscriber
requests a specific video (1080p and 4 Mbps of bitrate) that
can be served by any of the three offloading containers (namely
↵1, ↵2 and ↵3). Consider the paths ⌧1, ⌧2 and ⌧3 have the
following characteristics �(⌧) = {hop count, residual band-
width1 (Mbps), delay (ms), loss2 (%)}: �(⌧1) = (3, 3, 5, 0),
�(⌧2) = (4, 10, 10, 0) and �(⌧3) = (7, 100, 15, 0). In light of
this scenario, mobile operators have to address the following
two questions: (i) how to accurately predict video QoE for
given pairs of source and destination in large-scale networks?
(ii) How to use such a QoE indicator to dynamically select
and deploy QoE-aware paths that minimize infrastructure uti-
lization over time? Despite some very important investigations
into this field (please refer to Section V for details), these two
questions remain unanswered and are briefly discussed next.

QoE Estimation. In order to answer Question (i) it is crucial
to define how to estimate QoE for a video if delivered through
a given network path. Several research investigations proposed
strategies based on QoE estimation for path selection. How-
ever, those approaches are not suitable for mobile operators
because they rely on QoE information which is not known
by the operator (e.g., server-side or client-side indicators).
Additionally, even if those indicators were available, such
information only allows predicting end-to-end QoE, which is
not appropriated for supporting path selection decisions, since
it does not provide indications regarding impaired links.

The first group of studies makes use of QoE information
derived from end-user devices [6], [9], [10], [11], which
entails lower system scalability, reduced flexibility and the
requirement of end-user collaboration through the installation
of measurement software on their devices [12]. A second
group relies on server-side information [13], [14], which is
usually owned by the content provider and is not available
for the operator even when the CDN node is deployed on the
operator premises. Finally, a third group employs observation
of video streaming data traffic inside the network [15], [16].
Yet, considering the widespread adoption of HTTPS for video
streaming delivery, approaches based on video streaming flow
analysis inside the network become unpractical [17].

Indeed, there is no fast track to estimate QoE for video
streaming service. One promising strategy makes use of in-
network QoS measurements to predict QoE, since most net-

1In this paper we consider residual bandwidth, TCP throughput and Bulk
Transfer Capacity (BTC) as equivalent.

2In this paper we consider delay and packet loss as one-way metrics.

work providers already have tools to measure those indicators.
However, those techniques need additional effort as they still
represent a challenge from the provider’s perspective. [18].

Path Selection. With regard to Question (ii) – namely how to
coordinate QoE-aware path selection and resource utilization
minimization – let us consider the adoption of the end-to-end
QoS to QoE mapping function we proposed in a previous work
[19]. In this case, one would use residual bandwidth, delay and
packet loss, so it would be possible to estimate MOS for the
paths ⌧1, ⌧2 and ⌧3 shown in Fig. 1. In this case, differently
from ⌧2 and ⌧3, ⌧1 does not provide the QoS performance
needed to achieve MOS 5. Also, ⌧2 should be preferred since
⌧3 does not improve QoE and uses more resources. However,
when considering real-world networks, such an end-to-end
approach leads to the evaluation of an immense number of
paths, which is impractical. One possible approach to solve
this issue would be to consider paths as a composition of N
links while using MOS estimation as link weight. However, the
QoS metrics used to estimate QoE have different composition
rules, which lead to an inconclusive aggregation result. In
other words, the composition of N links with MOS 5 does
not necessarily result in an MOS 5 path [20].

Another alternative would be to compose the multiple QoS
metrics along the path and then apply the MOS estimation
when the path is finally composed. However, the composition
of one concave, one additive and one multiplicative metric was
shown to be NP-Complete [20].

Finally, it would be possible to employ one of the following
strategies: (i) use a single QoS metric composition (e.g.,
residual bandwidth), since it is the most influential when
predicting QoE [17], or (ii) use delay, which is an excellent
metric for sensing queue occupation [20] or, finally, (iii) a
combination of both these metrics used in conjunction with a
modified version of Dijkstra, which has shown to be a special
case of aforementioned NP-Complete problem, which has
polynomial solution, named Shortest-Widest Path (SWP) [20].
Considering that those approaches are effective in avoiding
bottlenecks, they consequently improve video QoE. However,
from a mobile operator’s perspective, they fail at a critical
point: they perform optimal decisions only within a time frame
and do not take the long-term operation or the infrastructure
resource utilization into consideration.

Proposed Approach and Contributions. In this paper we
propose a novel scheme for network path provisioning that
employs active QoS measurements to predict video streaming
performance and QoE, which will be used for deployment of
QoE-aware paths in an SDN-enabled3 mobile network. The
work proposed in this paper contributes significantly to the
state of the art since, unlike the related work, it does not
rely on third-party information. Our approach considers neither
video streaming flow data nor client/server-side information.
The proposal is able to provide QoE-aware paths, in networks

3Although this work can be adapted to other underlying technologies, such
as BGP and MPLS-TE, the OpenFlow protocol was chosen due to its ability
to orchestrate network resources in a centralized manner, with a complete
view of the network state, and its abstractions to handle packet forwarding.



characterized by high path diversity, with high accuracy and
low network resource consumption. The contributions of this
work are summarized as follows.

• MOS-based link composition. We propose an innova-
tive approach to combine QoS measurements and MOS
estimation in a link composition scheme. The proposed
strategy allows predicting MOS in end-to-end paths by
composing multiple QoS metrics.

• Large-scale path selection algorithm. We present a
heuristic algorithm capable of finding optimized QoE-
aware paths in polynomial time. The proposed algorithm
runs on top of an SDN architecture and takes advantage
of the northbound interface to coordinate related mecha-
nisms such as QoS active measurements, QoE prediction
and network rule management.

• Realistic evaluation. We present an evaluation consider-
ing real mobile operator topology and video traffic traces,
where the proposed heuristic algorithm was found to
outperform state-of-the-art approaches.

The remainder of this paper is organized as follows. In
Section II we present the QoE-aware path selection problem.
In Section III we present SQAPE as well as design aspects
regarding path selection in large-scale networks. In Section IV
we present the performance evaluation using realistic topology
and workload. Section V presents an overview of relevant
research work with respect to QoE-aware path selection. We
conclude this paper summarizing our findings in Section VI.

II. PROBLEM FORMULATION

We start by formally defining the QoE-aware path selection
problem. Note that, at this point, we aim to estimate QoE
according to a QoS to QoE mapping function. Then, we
combine it with flexible SDN-based routing mechanisms in
order to maximize the overall MOS. Next, we define the inputs
and outputs related to our model.

The physical network infrastructure is represented by a
direct graph G = (N, L), where N is the set of nodes
(i.e., SDN-enabled forwarding devices) and L is the set of
links, such that L ✓ (N ⇥ N). Links are asymmetric and,
therefore, bidirectional links are represented as a pair of arcs
((i, j) and (j, i)). We denote the size of sets N and L by
|N | and |L|, respectively. Each link (i, j) 2 L is associated
with QoS measurements (i.e., delay, TCP throughput and
packet loss). We assume QoS-related data is gathered from
the network infrastructure periodically so as to ensure the
accuracy and freshness of our model. Therefore, to each link
(i, j) 2 L is associated a set of functions defined as follows.
Function D : (N ⇥ N) ! R+ is used to denote measured
delay associated with a given physical link (i, j) 2 L. In
turn, function T : (N ⇥ N) ! R+ associates link (i, j)
with its maximum measured TCP throughput. Last, function
L : (N ⇥N) ! [0, 1] associates observed packet loss between
nodes i and j.

C defines a set of available video content. An element c 2
C represents, for instance, a specific video content. For each
content c, a set of offloading locations are known in advance.

We represent the set of offloading locations for a given content
c as the set P and, therefore, P (c) ✓ N .

A path between two distinct nodes i and j consists of
a finite sequence of nodes ⌧ = {n0, n1, · · · , nh} such that
(ni, ni+1) 2 L(0  i  h � 1). A path ⌧ is simple if all of
its nodes are distinct. We denote a valid path between i and
j as ⌧(i, j) and its corresponding length by |⌧ |. The set of
all simple paths between i and j is denoted by  (i, j). For
ease of presentation, end-to-end QoS measurements of a given
path ⌧ are associated similarly to previous definitions. Then,
functions Tp(⌧), Dp(⌧), and Lp(⌧) represent, respectively,
TCP throughput, delay and packet loss. We derive these QoS
indicators similarly to Wang and Crowcroft [20]. The end-to-
end path TCP throughput (i.e., Tp(⌧)) consists of the minimum
TCP throughput observed over all links in ⌧ . Formally, it is
defined as:

Tp(⌧) = Min(0i|⌧ |�1)T
�
⌧ [i], ⌧ [i + 1]

�
(1)

Next, the end-to-end path delay (i.e., Dp(⌧)) comprehends
the additive sum of measured delays (on links) along the path
⌧ . Therefore, the end-to-end path delay is formalized as:

Dp(⌧) =
X

(0i|⌧ |�1)

D
�
⌧ [i], ⌧ [i + 1]

�
(2)

Lastly, the end-to-end packet loss estimation (i.e., Lp(⌧))
follows a similar strategy to the one proposed by Dobrijevic et
al. [21]. In their work, the authors estimate end-to-end packet
loss based on observed losses in forwarding devices. Here, for
higher accuracy, we adopt a strategy that is based on packet
loss observed on links (i.e., including forwarding devices and
the physical medium). Similarly to Dobrijevic et al.[21], we
multiply observed packet loss along the links used on path ⌧
(Equation 3).

Lp(⌧) = 1 �
Y

(0i|⌧ |�1)

1 � L
�
(⌧ [i], ⌧ [i + 1]

�
(3)

Given the above definitions of QoS path composition, we
consider our previous work [19] to infer the MOS value for a
given path ⌧ . We consider function �(Tp(⌧), Dp(⌧), Lp(⌧)) 2
N+, which correlates end-to-end QoS indicators of a single
path ⌧ with the predicted MOS. The � two-step function
employs decision trees to predict video streaming application
performance based on observed network QoS. In a second
step, the same function provides a QoE estimation based on the
predicted performance for the application layer. The interested
reader may refer to [19] for additional information.

Our model considers a set of multimedia connection re-
quests S at a specific time frame t. A multimedia connec-
tion request (i, c) 2 S represents that a device attached to
the infrastructure node i 2 N is requesting video content
c 2 C. Notice that content c 2 C is potentially available
at multiple offloading locations – defined by set P (c). Then,
8(i, c) 2 S, 8j 2 P (c): 9(i, j) 2 (N ⇥ N).

Now we can formally define our problem. Given the inputs



of the model, that is, the infrastructure G with its associated
metrics and a set S of multimedia connection requests, the
problem consists of finding a valid simple path for each
(i, c) 2 S in given time slot t so as to maximize observed
MOS (Equation 4). Therefore, the output of the model is a set
of paths that maximize the overall observed MOS given a set
of multimedia requests S.

Max.
X

8(k,l)2S

X

j2P (l)

X

8⌧2 (k,j)

�
⇣
Tp

�
⌧
�
, Dp

�
⌧
�
, Lp

�
⌧
�⌘

(4)

The model presented in this subsection is used as an im-
portant building block of our proposed approach (Section III).
SQAPE provides mechanisms to actively monitor the network
infrastructure and keeps updated QoS link measurements that
are used as input in our model.

III. SQAPE
In this section, we present the main aspects of SQAPE.

We begin by introducing the SQAPE architecture. Right after,
we describe the QoS measurement strategy and the method
for QoE estimation. Finally, we present the SQAPE main
algorithm and highlight its most essential characteristics.

A. SQAPE Architecture

SQAPE takes advantage of the centralized control strategy
of the SDN/OpenFlow architecture to provide fine-grained
control for per-user QoE-aware path deployments across the
network. SQAPE architecture consists of three main com-
ponents: Decision, QoS Measure and QoE Predictor. These
components are decoupled from the SDN controller, which
allows integration of any controller instance through the north-
bound interface (NBI). We claim the proposed scheme to be
flexible since it employs loosely coupled microservice-based
components and can be orchestrated orthogonally to SDN
deployments. For example, both the QoS Measure and the
QoE Predictor components are coordinated by the Decision
one. Considering the above and in consonance with recent
investigations [22], [23], SQAPE has the potential to cope
with incremental SDN deployment strategies.

For didactic reasons, in Fig. 2 we show the start-up process,
which is a special case where SQAPE components interact
in a sequential order. After the start-up, events 1-4 run on
a periodic basis according to the QoS monitoring frequency
(e.g., 60 seconds) and are responsible for determining QoS
performance by means of active measurements (Fig. 2 (a)). In
parallel, events 5-8 will occur according to the incoming video
requests (Fig. 2 (b)). At this stage, SQAPE relies on a QoS
composition approach followed by a QoS-to-QoE mapping
function to compute per-path MOS estimation. This MOS
estimation, along with a link utilization heuristic, composes
the distance metric which, ultimately, determines the path to
be deployed.

B. From QoS Measurement to QoE Prediction

In this work we consider the use of active measurement
methods to assess residual bandwidth, delay and loss. These

8. SQAPE path deploy

SQAPE QoS
Measurement

SDN
Infrastructure

QoE
Predictor

SDN
Controller

2. QoS
measurement

4. QoS results

5. MOS estimation request

6. MOS estimation response

7. SQAPE path deploy request

3. QoS
results

1. QoS
measurement req.

(b)

(a)

Fig. 2. SQAPE sequence diagram

metrics were selected as the ones most influential to video
Quality of Experience according to previous investigations
regarding QoS to QoE mapping functions [19], [24], [25].
Active measurement-based methods are particularly interesting
as most mobile operators already have tools in place for
measuring network QoS indicators.

As discussed in the Introduction and formalized in Section
II, we perform measurements in the scope of each link and
later compose them to form an estimation of the complete
path. Using the topology shown in Fig. 3 as an example,
this design choice requires just 94 one-way measurements
(i.e., twice the number of links) as opposed to the 22,536
one-way measurements that would be required if we were to
measure every possible path between source and destination.
As one can observe, the huge number of measurement opera-
tions makes path-based approaches impractical for supporting
routing decisions in large-scale networks. Also, link-based
composition combined with active measurements entails lower
network overhead, which is a crucial requirement for scalable
monitoring. In practice, per-link measurements require the
existence of measurement agents at each vertex. They may
be separated by more than a physical link and are represented
by the SDN switches, where routing decisions are enforced.

C. SQAPE Algorithm

The SQAPE algorithm focuses on finding a feasible set
of paths with maximum MOS over time. For that, SQAPE
attempts to determine a suitable balance between MOS and
resource consumption in the infrastructure. One component of
SQAPE focuses on MOS maximization, which is a special-
ization of the Widest Path problem [20]. Another component
targets resource consumption, approaching the well-known
minimum path problem. Therefore, SQAPE is a hybrid com-
bination of these two algorithms as it considers both metrics
simultaneously.

Algorithm 1 consolidates the proposed path selection ap-
proach. As one can observe, the measurement phase collects
the results of the latest measurement snapshot and updates the
QoS graph for each of its links (line 2). The path selection
algorithm operates on top of an adaptation of the Dijkstra
shortest-path algorithm in which the distance metric is a com-
bination of MOS estimation and a link utilization contribution.
The algorithm starts navigating from node k and determines



Algorithm 1 SQAPE - QoE-aware path selection
Input: G = (N, L): network infrastructure
Input: (k, l) 2 S: video content request
Input: P (l) ✓ N : set of available network nodes (caches) with content l

Input: ↵: path selection factor; �: throughput estimation factor
Input: Mmax: maximum MOS value
1: for every link (i, j) 2 L do
2: gather measured QoS indicator for T (i, j), D(i, j), L(i, j)

3: for every node u 2 N do
4: �[u]  1
5: '[u]  NILL

6: �[k]  0

7: while N 6= ; do
8: u Extract-Min

�
N ,�

�

9: for each link (u, v) do
10: {T⌧ , D⌧ , L⌧}  QoS metrics of path ⌧(s, v) passing through u

according to equations (1), (2), and (3)

11: M  �
⇣

Tp

�
⌧
�
, Dp

�
⌧
�
, Lp

�
⌧
�⌘

12: �0  M + ↵ ·
⇣�P

8(i,j)2⌧(k,u))
1

T (i,j)

�
+ 1

T (u,v)

⌘

13: �0  Mmax � �0 iff �0 Mmax. Otherwise �0  0

14: if �[v] > �0
[u] then

15: �[v]  �0; '[v]  u

16: deploy path for req. (k, l) based on {�, '} such that �[j] : j 2 P (l) is minimum
17: QoS update: 8(i, j) 2 {�, '}: estimate T (i, j) according to �

18: return �, '

the path with the best local distance metric to each node u 2 N
(lines 7-14). For each neighbour v, we estimate MOS based
on QoS measurement to path ⌧ (line 10-11), according to
Function � detailed in Section II, and then combine it with an
estimation of residual bandwidth (line 12). The objective of
this strategy is to capture the interplay among: (i) path MOS;
(ii) path length (hop count); and (iii) residual bandwidth.
Our algorithm simultaneously maximizes MOS and residual
bandwidth while minimizing path length. We achieve this by
means of linear combination (line 12). Parameter ↵ determines
the importance of the residual bandwidth in relation to MOS.
At each iteration, the function Extract-Min removes node
u from N according to set � (line 8). Observe that set �
maintains the best solution found so far, while set ' keeps
track of nodes belonging to path ⌧(k, l) (line 15). After
navigating through all nodes u 2 N , SQAPE deploys a path
for the video request (k, l) such that the �[j] is minimum
over all j 2 P (l). In other words, it takes the minimum path
between k and an offloading node j in P (l). Then, we deploy
the appropriate SDN forwarding rules (line 16).

Concerning the eventual discrepancy between the frequency
of measurements and the frequency of routing requests, the
accuracy of path selection can be impaired. The impact of
newly routed connections on a path would only be acknowl-
edged after the next measurement iteration, whose frequency
may depend on network characteristics. In light of this, after
a path is selected, each of its links’ residual bandwidth value
is updated to reflect the impact of adding a load comparable
to a TCP connection with a given video bitrate (e.g., 1080p,
720p). Considering the video bitrate is determined by the client
implementation, our algorithm relies on a parameter �. In
this step, the link’s residual bandwidth is reduced by a flat
amount if there is room for �. If there is no room to subtract
�, the residual bandwidth is decreased multiplicatively at a

rate proportional to the number of videos recently routed.
This method allows connections to be more appropriately
distributed when sharing a measurement snapshot.

Note that the problem formulation (Section II) does not
explicitly take into account link capacity. However, capacities
are considered implicitly as “soft” constraints every time MOS
values are estimated. It is important to mention that if link ca-
pacities (and demands to (k, l) 2 S) were explicitly considered
in the problem formulation (i.e., as “hard” constraints), the
SQAPE problem would be NP-hard, as it is a generalization
of the Multi-Commodity Flow problem [26]. Last, observe
that the proposed algorithm has polynomial time complexity
of O

�
|L| + |N | · log|N |

�
using a Fibonacci heap to extract

minimum values from �.

IV. EVALUATION

This section first presents a description of the evaluation
environment and its parameters in Subsection IV-A. Subsec-
tions IV-B and IV-C expand on the first research question:
(i) how to accurately predict video QoE for given pairs of
source and destinations in large-scale networks? Subsection
IV-D addresses to the second research question: (ii) how to
use the QoE indicator to dynamically select and deploy QoE-
aware paths which minimize infrastructure utilization?

A. Experimental Parameters

The experimental setup4 consists of: (i) a Mininet-
instantiated SDN topology, based on a real LTE network de-
ployed countrywide, with four offloading containers mirroring
video contents, as shown in Fig. 3; (ii) a realistic video work-
load comprised of HTTP Adaptive Streaming (HAS) (360p,
720p and 1080p), which is applied to the topology according
to each scenario’s criteria over 130-minute long experiment
rounds; (iii) microservice for each of the evaluated algorithms,
responsible for selecting and deploying paths on demand; and
(iv) an active measurement procedure to periodically measure
the network state on a per-link basis.

In the performance evaluation, two distinct scenarios were
considered. In Scenario 1, SQAPE is compared to a baseline
solution, whose path selection is based on administrative
weights, usually attributed by a traffic engineer according to
a traffic matrix. This kind of static traffic engineering (TE)
approach is widely employed in current networks. The weights
are adjusted considering an evenly distributed load among the
metropolitan layer. The Bellman-Ford algorithm is applied to
determine the shortest path by link weight.

In this context, two video loads are evaluated, both ap-
proximating the maximum topology capacity. The first load
conforms perfectly to the homogeneous premise on which the
TE algorithm is based. The second load realistically distributes
the videos, including zones with a higher concentration of
demand. These different loads aim to contrast how SQAPE
and TE adjust to dynamic variations of input.

4The full set of parameters considered in this experiment,
including topology and video traces, can be downloaded from
https://github.com/rtcostaf/INFOCOM2018



Fig. 3. Topology of the physical network considered

In Scenario 2, SQAPE is compared to four other path
selection algorithms that attempt to minimize one or more
network constraints regarding QoS indicators. We considered
a workload composed of 744 videos, which were delimited
by three components: network capacity, video bitrates and
frequency of video requests (following a Poisson fit). The first
contender (DKS - Delay) minimizes distance according to the
Dijkstra algorithm, using delay as the distance metric [27].
This technique is commonly employed by routing mechanisms
such as OSPF. The second contender (BF - BW) minimizes
path’s bandwidth bottleneck, using the Bellman-Ford algo-
rithm. This strategy operates iteratively, finding the widest path
with the least hops [28], [29]. The third contender is known as
the Shortest Widest Path (SWP), which optimally solves the
problem of maximizing TCP throughput and minimizing delay
in the selected path [20]. Finally, the fourth contender is the
Constrained Shortest Path First (CSPF), which is an adaptation
of the Dijkstra algorithm that prunes unfeasible links before
performing path calculation [11]. This algorithm is evaluated
differently as it requires an assumption the other proposals do
not share: it relies on the possibility of denying video delivery.
Thus, it is only graphically presented in Fig. 5(c), as other
representations depend on the deployment of all videos.

B. Video Playout

Video stall represents the most important metric to infer
the quality of experience of a video playout [7], [17]. In the
evaluation procedure, the player was responsible for recording
stall count and duration. A stall is detected if the interval
ti � t(i�1) between the conclusion of the download of a
video segment and that of the last segment is higher than the
remaining buffer (amount of time worth of unconsumed video
content available to the user) at time t(i�1). As one can observe
in Fig. 4(a), the static traffic engineering approach, in this case
an upper-bound, performed better than SQAPE in its optimal
(most-favorable, yet unrealistic) load (BF-TE OL). While TE
accumulated 103 seconds of stall throughout 150 videos,
SQAPE stalled for 267 seconds. However, in the realistic load
(RL), TE behaved considerably worse, accumulating 4,748
seconds while SQAPE stalled for 1.6 seconds. Similar results

were obtained for the stall count metric (see Fig. 4(b)). Thus,
SQAPE achieved competitive results considering the load
specifically constructed for TE, while SQAPE outperformed
TE when subjected to the realistic load.

The potential of SQAPE (w.r.t. adaptability) is more evident
in Fig. 5(a) and Fig. 5(b), which present the total stall duration
and stall count for Scenario 2. In such configuration, SQAPE
led to 238 seconds of stall, distributed among 72 stall events.
The contender solution with the closest performance (SWP)
registered 204 stalls, amounting to 998 seconds of duration.
The Dijkstra solution performed the worst, presenting a total
of 3,815 seconds during 609 stalls. A few reasons can be
given for this result. Firstly, the difference in intrinsic delays
between the links causes little initial variation of selected
paths (at this stage, the composition delay is mainly influenced
by the propagation delay and the queue delay is minimal),
which can lead to an accumulation of several videos in a few
links since the early stages of the experiment. This difference
can be observed in Fig. 5(a), where DKS - Delay begins to
stall faster than others at around minute 25. Secondly, even
though delay is a good predictor for queue occupation, the
DKS - Delay algorithm does not consider available bandwidth,
which is the predominant indicator for video QoE. The value
of considering delay, albeit secondly, is manifested in the
difference of outcome between BF-BW and SWP. Although
both take the available bandwidth as a priority, SWP takes
delay into account, while BF-BW minimizes hop count. This
difference can be expressed in BF-BW taking paths with fewer
hops but more degraded traffic queues.

Considering CSPF separately, even though it routed 10.46%
fewer videos than the other solutions, SQAPE still managed
to accumulate less stall length. It should be noted that denied
videos were not accounted into stall and only 7.49% of videos
were responsible for all stall events in SQAPE. In light of this,
it can be said that SQAPE made better use of the network
resources in comparison with CSPF.

The shortest-widest path algorithm, despite performing well,
did not achieve as good a result as SQAPE. SWP usually
selects decent paths as available bandwidth and delay are the
most influential indicators of QoE, respectively. However, the
shortest-widest path is not necessarily the best one. Degra-
dation in indicators other than available bandwidth (such as
delay and loss rate) may lower QoE in the widest path. Also,
an increase in available bandwidth to levels much higher than
the video bitrate does not necessarily lead to an increase
in QoE. Further, such an approach does not consider link
utilization when determining the path. For example, SWP may
prefer to select paths going through the core, where links are
wider, rather than making use of local offloading containers.
This tendency can overburden the network core while leaving
peripheral links underused. In comparison, SQAPE considers
how key QoS indicators influence the final QoE, being aware
of paths which may have less available bandwidth but better
overall QoE estimation. Finally, since MOS does not increase
with available bandwidth indefinitely, SQAPE does not have
a preference for paths wider than the expected video bitrate,
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Fig. 6. Scenario 2 - HTTP adaptive streaming performance and network efficiency using realistic workload

which allows it to make use of the network edge regularly.

C. Quality of Experience

The estimated MOS of degraded videos in Scenario 1 is
shown in Fig. 4(c), considering only videos which presented
some degradation (MOS < 5). As expected, the traffic
engineered solution operated well when applied to its optimal
load, resulting in only four degraded videos out of 150, all
of which had MOS values considered “good” (MOS � 4).
When applied to the same load, SQAPE degraded ten videos
into “good” and one video into “fair” (3  MOS < 4). On
the other hand, when handling the more realistic load, the
traffic engineered solution degraded more than a third of all
videos, while SQAPE degraded only two. The TE solution also
presented videos in the “bad” range (1  MOS < 2), while
SQAPE’s worst videos were within the “good” range. This
result is consistent with the stall values, confirming SQAPE’s
remarkable adaptability in dynamic environments.

Regarding Scenario 2, Fig. 5(c) illustrates the different
amounts and intensities of degraded videos observed for each
of the path selection algorithms. The number of videos denied
by CSPF is also shown to compare its number of impaired

video experiences. In addition to CSPF denying more videos
than those impaired by our strategy, it still presented im-
paired videos. The DKS-Delay strategy resulted in the highest
observed stall length and most impaired videos, displaying
how adopting delay as the sole arbiter of quality fails to
determine the best paths. Furthermore, even though BF-BW
presented approximately 50% more stall length than SWP,
both resulted in a similar number of impaired videos. Instead,
this discrepancy was expressed in the degradation intensity
experienced by the videos, evidenced by the fact that BF-
BW videos reached “poor” (2  MOS < 3), differently
from SWP. All of these highly impaired videos were observed
when retrieved from offloading point 1 (see Fig. 3), which
is the closest content provider. This is consistent with BF-
BW’s preference for minimizing hop count, which represents
a vulnerability depending on the network topology. SWP’s
auxiliary use of delay was found to be an improvement over
hop count.

The performance of SQAPE achieved the lowest video
degradation, registering stalls in only 58 of the 774 videos,
expressing an improvement of at least 37%. Moreover, none
of the stalls were intense enough to lower video MOS below



“good” (MOS � 4). In summary, despite delay being, by
itself, insufficient for path selection, it is fundamental for an
adequate solution. Furthermore, it is reasonable to conclude
that one of the reasons SQAPE outperformed SWP is how it
more appropriately incorporates delay as a metric.

Another aspect of Scenario 2 worth discussing is how the
HTTP adaptive streaming influences the results. One way
to evaluate such effect is to count the number of segments
downloaded in each resolution, as shown in Fig. 6(a). Even
though SQAPE had the edge over other algorithms (with
more 1080p and 720p segments), the behavior was comparable
throughout the solutions, indicating that no algorithm obtained
unfair advantage in traffic demand by favoring lower resolution
segments.

D. Network efficiency

According to a realistic demand, videos of up to 40 min-
utes of duration are requested continuously over a 90-minute
window, resulting in 130 minutes of runtime. This produces
three different stages. In the initial stage (for the first 40
minutes), the number of ongoing videos increases gradually,
while most of the videos have not had the time to finish. The
stable stage occurs between minutes 40 and 90, when the video
intake is compensated by finishing videos. In the final stage
(from minute 90 to 130), no new videos are requested, slowly
decreasing network utilization until the last video ends.

In order to determine the efficiency of a solution with
respect to network utilization, each link (i, j) 2 L is given an
indicator vij(t) that represents, at an instant t, the number of
active paths the link takes part. An active path is that which
has been designated and deployed for any video running at
time t. Considering that the smallest resolution for Scenario 2
is 360p, there is a theoretical limit Vij of how many videos can
be supported by the link (i, j), defined by Vij = cij/B360p.
Where cij is the link capacity and B360p is the bitrate of 360p
video segments, both in bits per second. When vij(t) > Vij ,
considering the capacity is divided among the videos being
transmitted over a link, it becomes impossible to transfer a
new segment in the time it takes to be consumed. This implies
the buffer is consumed faster than it grows, generating stall if
and when it runs out.

Considering a network snapshot is taken at every minute,
let t 2 N, 0  t  130. In this snapshot, value vij(t) is
observed for each link (i, j) 2 L. Occupation rate Rij(t) is
given by Rij(t) = vij(t)/Vij . The maximum link utilization
at time t, designated as ML(t), is defined as the maximum
value of Rij(t) observed in all links, given by ML(t) =
max(Rij(t)), 8(i, j) 2 L.

In Fig 6(b), the evolution of ML(t) is shown in the stable
stage, for four of the strategies considered in Scenario 2. CSPF
cannot be considered in the utilization plot because it deployed
a considerably lower number of videos, not exploring the intri-
cacies of accommodating video streams under adversity. The
horizontal line indicates a theoretical limit where vij(t) = Vij

for at least one of the links at the moment t. SQAPE was the
only strategy for which the maximum link utilization remained

below this threshold throughout the experiment, demonstrating
how this solution makes better use of network resources.

Using the accumulated vij , one can estimate path length.
By consecutively differentiating between routes deployed by
each solution, it is possible to derive an indicator U of utilized
links within a snapshot, given by U =

P130
t=0

P
8(i,j)2L vij(t).

The value of U for each algorithm gives insight into how
long are the selected paths during the experiment. Keep
in mind that the longer the paths, the fewer resources are
available (which could be used to transmit other contents
otherwise). As shown in Fig 6(c), SQAPE had the best results
in relation to the other algorithms. In a joint analysis of the plot
in Fig 6(b), it can be stated that SQAPE did not require longer
paths to avoid network bottlenecks. Also, solutions that made
use of delay as a criterion (SWP and DKS - Delay) frequently
opted for longer paths. This phenomenon can be explained
by congested links presenting higher delay and paths taking a
detour to avoid them, resulting in more link usage. Such paths
may offer less degradation. However, higher link utilization
tends to deplete the network resources more quickly, as can
be seen in Fig. 6(b), where both SWP e DKS - Delay are also
the ones with the worst bottlenecks ML(t).

V. RELATED WORK

The related work is organized around four main groups of
investigations. The first group is characterized by techniques
that perform path selection considering, among other elements,
QoE indicators measured at end-user devices. QoE indicators
for video streaming such as startup time, amount/duration of
stalls and buffer events, when measured at end-user devices,
present high accuracy, since they are obtained as close to the
user as possible [9], [10], [11]. However, these techniques
lead to lower system scalability, reduced flexibility and the
requirement of end-user collaboration through the installation
of measurement software on their devices [12]. Additionally,
constraints such as privacy policies, reduced battery life and
the end-users themselves, who are usually unwilling to install
additional software on their device, make this group of solu-
tions less attractive for mobile operators.

Considering the issues involved in employing end-user data,
a second group of the related work makes use of server-side
information, available at the content provider equipment, to
estimate QoE and perform path selection [6], [13], [14]. From
the mobile operator’s perspective, obtaining server-side data
from several video streaming providers can be a challenging
task, hindering the capacity of an operator to provision paths
autonomously. Additionally, neither QoE information available
at server-side nor at client-side allows the operator to isolate
the influence of each link on the QoE score.

The third group of related work relies on network-side
information in order to estimate quality of experience and
select QoE-aware paths [15], [16]. The main limitation of
methods that rely on observation of video streaming data
traffic, inside the network, is related to the proliferation of
the HTTPS protocol. Important players such as Netflix and
Youtube have adopted HTTPS as the standard protocol for



video streaming delivery. Recent research work has stated
that, given the widespread adoption of HTTPS for video
delivery, approaches based on streaming flow analysis became
unpractical [17].

Finally, we consider the fourth group of investigations which
deal with QoS-aware path selection [30], [27], [20]. These
techniques do not directly consider QoE, eventually leading
to an excessive emphasis on a single (or couple of) QoS
metric. Variations of the Dijkstra or Bellman-Ford algorithms
that consider only QoS either use unnecessarily long paths
(when oriented to maximize residual bandwidth) or do not
appropriately consider paths with impaired quality (when
oriented to shortest paths).

VI. CONCLUSION

Today’s decreasing ARPU and increasing video traffic chal-
lenge mobile operators to efficiently manage the interplay
between infrastructure investments and user QoE. To address
this issue, we proposed a novel approach comprised of QoS
composition and QoS to QoE translation, which was shown
to be a scalable solution for estimating video QoE in mobile
networks. On top of that, we also presented a polynomial-
time algorithm capable of selecting QoE-aware paths while
efficiently utilizing the infrastructure resources. In a realistic
evaluation comprehending mobile operator topology and video
demand, SQAPE outperformed state-of-the-art solutions by
impairing at least 37% fewer videos and accumulating four
times less stall.
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ABSTRACT
The demand of Virtual Reality (VR) video streaming to mobile de-
vices is booming, as VR becomes accessible to the general public.
However, the variability of conditions of mobile networks affects
the perception of this type of high-bandwidth-demanding services
in unexpected ways. In this situation, there is a need for novel per-
formance assessment models fit to the new VR applications. In this
paper, we present PERCEIVE, a two-stage method for predicting
the perceived quality of adaptive VR videos when streamed through
mobile networks. By means of machine learning techniques, our
approach is able to first predict adaptive VR video playout per-
formance, using network Quality of Service (QoS) indicators as
predictors. In a second stage, it employs the predicted VR video
playout performance metrics to model and estimate end-user per-
ceived quality. The evaluation of PERCEIVE has been performed
considering a real-world environment, in which VR videos are
streamed while subjected to LTE/4G network condition. The accu-
racy of PERCEIVE has been assessed by means of the residual error
between predicted and measured values. Our approach predicts the
different performance metrics of the VR playout with an average
prediction error lower than 3.7% and estimates the perceived quality
with a prediction error lower than 4% for over 90% of all the tested
cases. Moreover, it allows us to pinpoint the QoS conditions that
affect adaptive VR streaming services the most.
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1 INTRODUCTION
The number and variety of Internet-based video applications do not
cease to increase. In fact, IP video traffic is envisioned to experience
a 9-fold growth between 2016 and 2021, accounting for 78% of the
total mobile traffic by 2021 [5]. According to the same source, the
traffic generated by Virtual Reality (VR) is expected to increase 11-
fold by 2021 [5]. One key enabler for supporting such a consistent
growth is the diffusion of Head Mounted Devices (HMD). HMDs
are presenting high penetration rates as they (i) are becoming
effective and affordable (e.g., Google’s Cardboard1), (ii) are already
provided at no cost with certain smartphones (such as Samsung
Gear VR2) and (iii) are being pushed by industry (e.g., Facebook
recently announced a permanent price drop in Oculus Go headset
with the goal of reaching 1 billion VR users [3]).

In order to provide an immersive user experience, VR videos
demand significantly higher bandwidths when compared to tra-
ditional video applications. These ultra-high bandwidths are not
1Google Cardboard https://goo.gl/DSquZf
2Gear VR https://goo.gl/7JdQm7
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always available in wireless networks and are not easy to process
by lightweight mobile devices. In fact, currently, the streaming of
VR videos through mobile networks is far from optimal. A VR video
contains a full 360◦ panoramic view, regardless of the fact that only
a fraction of it, namely the viewport3, is visible at any given instant.
In an attempt to optimize bandwidth usage, a recent research path
has proposed viewport-aware schemes for VR video streaming,
based on the HAS (HTTP Adaptive Streaming) paradigm [10, 27].
HAS approach is focused on encoding the source content at multiple
quality representations (bitrates), while each quality representa-
tion is time-segmented into small parts (i.e., segments). To further
optimize bandwidth usage, recent research investigations have pro-
posed HAS variants in which quality representations are not only
segmented in time but also spatially split into smaller pieces (i.e.,
tiles) [6].

Bringing the 2D adaptive streaming techniques to the VR arena
requires the VR videos to be encoded at different quality levels,
temporally divided in segments and spatially tiled [19]. Then, dur-
ing the streaming session, only the tiles within the viewport are
streamed in high quality, while others are maintained at the lowest
levels or not streamed at all [24]. To be effective, these techniques
rely on viewport prediction algorithms, since the player needs to
fill in a playout buffer with tiles that are expected to compose the
viewport in the near future [23].

Although the use of viewport-aware techniques leads to the
reduction of bandwidth consumption, the effects of network per-
formance on VR video streaming still plays an important role on
the user’s perception of the services. Since the full panoramic view
of a VR video usually demands a much higher bitrate, when com-
pared to regular videos [7], even a fraction of it (viewport) may
require high bitrates. Along these lines, recent investigations have
emphasized the importance of the network effects on the perceived
quality (Quality of Experience, QoE) of adaptive video streaming
applications [8, 10, 13, 14, 16]. However, state-of-the-art approaches
fall short in predicting the perceived quality for VR videos as they
do not consider the spatial segmentation.

QoE has shown to be a critical factor for video applications [1, 18].
As such, both network operators and VR content providers are re-
quired to answer an important question: considering the wide range
of performance levels of IP networks, to which extent are the currently
observable network conditions able to provide users of VR applications
with adequate QoE? Answering this question is remarkably complex
due to two constrains. First, the influence of the network on VR
video performance is unknown; and second, the state-of-the-art on
video QoE estimation modeling does not consider the VR context.

In this paper, we present PERCEIVE (PERformanCe EstImation
for VR vidEos), a method that aims to provide answer to both
aspects. PERCEIVE is a two-stage adaptive VR performance as-
sessment model that employs machine learning algorithms to first
predict VR video playout performance, using network QoS indi-
cators as predictors. Then, it uses the video playout performance
metrics to model and estimate the end-user perceived quality. Eval-
uated in real-world 4G/LTE network conditions, PERCEIVE not
only accurately predicts the VR videos performance over networks,

3Also referred to as Field of View (FoV)

but also allows us to pinpoint the QoS conditions that affect VR
streaming services the most.

The remainder of this paper is organized as follows. In Section 2,
we discuss the related work. In Section 3, we introduce the approach
used for the tile-based adaptive VR video streaming. In Section 4, we
describe PERCEIVE, the two-step performance prediction scheme
that we propose. In Section 5, we report the evaluation carried out
to prove concept and technical feasibility of the proposed approach.
It includes details on the evaluation methodology, the generation
of the dataset, analysis of the training set and results. Finally, our
conclusions and key findings are presented in Section 6.

2 RELATED WORK
In this section, we provide a thorough description of the state-of-
the-art. In Section 2.1, we present a brief introduction to adaptive
streaming applied to the VR context and review the state-of-the-art
approaches. In Section 2.2, we highlight the most significant QoE
estimation models in literature.

2.1 Adaptive Tile-based and Viewport-aware
Video Streaming

An aspect to consider in adaptive tile-based VR streaming ser-
vices is viewport prediction, which allows to considerably optimize
bandwidth usage. Since a full VR video can easily reach 8K video
resolution [7], most video players rely on heuristic algorithms to
predict near-future user’s head movements. By considering next
position prediction, the video player is able to request only tiles that
are likely to be inside the viewport, which leads to reduced band-
width utilization. To provide this prediction, heuristic algorithms
consider variables such as the angular velocity of the user’s head,
movement patterns for previous viewers, video content (e.g., in a
football match users will most likely follow the ball’s movements),
among other factors [2]. By performing such prediction, the video
player can reduce in up to 72% in bandwidth utilization [12].

In practice, the viewport prediction algorithm is responsible for
keeping a small video playout buffer (e.g., 2 seconds) with the tiles
that are more likely to belong to the viewport in the near-future. To
illustrate how the viewport prediction interacts with the playout
buffer, consider the example of a user watching a tile-based VR
video using a head-mounted display. Consider a given temporal
segment Sk and a respective viewport Vk , as depicted in Figure 1
(a). At this moment, the video player is requesting high-resolution
chunks only for tiles inside the viewport Vk . Then, based on the
near-future viewport prediction for the next segment (Sk+1), the
video player starts requesting high-resolution tiles for the viewport
Vk+1 (delimited by the right dashed square in Figure 1 (b)). As
predicted, the viewer slightly moves to the right (see Figure 1 (c)).
At this point, driven by the viewport predictor, the VR player starts
requesting high-resolution chunks for the predicted viewport on
the segment Sk+2 (Figure 1 (d)), and so forth.

Several recent investigations [11, 23, 24] have focused on a com-
monmain objective: devising bandwidth-efficient adaptive VR video
players while keeping QoE at acceptable levels. Taking viewport
prediction information as input, most approaches rely on per-tile
rate adaptation algorithms to reduce the amount of information to
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be downloaded by keeping only the viewport’s tiles in high reso-
lution. Qian et al. [24] present a viewport prediction scheme that
considers users’ head movements (traces) and relies on Weighted
Linear Regression to predict users’ head position for the next sec-
ond. The same study indicates that the estimation accuracy can drop
from 90% to approximately 60% when increasing the prediction win-
dow to 2 seconds. Fan et al. [11] consider HMD sensor information
and content-related features (i.e., image saliency maps and motion
maps) to train two neural networks for prediction of viewport posi-
tion. In turn, Hosseini et al. [23] propose an efficient 3D geometry
mesh to represent tiled VR video in the 3D space, which is capable
of reducing bandwidth consumption in up to 30% when compared
to non-tiled videos. The work also relies on MPEG-DASH Spatial
Representation Descriptor (SRD) to describe the spatial relationship
of tiles in the 360-degree space, prioritizing tiles inside the viewport
to be downloaded in high quality. Petrangeli et al. [23] propose an
approach with the ability to reduce bandwidth consumption in up
to 35% by relying on both an HTTP/2-based push mechanism and
a viewport prediction scheme based on viewport speed.

As discussed, viewport prediction is a sensitive task, whichmight
affect the user’s perception in unexpected ways. Errors on the
prediction of the viewport (i.e. the FoV that the user will look at
in the next segment) may lead to partial or full degradation of the
perception, even if the network conditions are enough to guarantee
the user’s QoE. This means that, during the streaming, two different
processes (namely the viewport prediction and the effects of the
network on the adaptive streaming performance metrics) will have
a major influence on the user’s QoE. In this work, we are interested
on predicting the effects of networks on VR adaptive streaming in
an isolated manner, without the influence of errors derived from
wrong viewport prediction. Thus, for the analysis presented herein,
we have assumed perfect prediction, i.e., the adaptive streaming
player knows exactly where the user is looking at every point in
time.

2.2 Adaptive Video Streaming QoE Estimation
One of the biggest challenges of adaptive video streaming (2D,
3D or VR) applications is the accurate and real-time estimation of
quality perceived by the users. And, based on it, the provision of
a feedback loop to dynamically influence the quality adaptation.
In state-of-the-art adaptive streaming approaches, the modeling of
QoE has to rely on objective information obtained at the client, the
server or the network-side.

Mao et al. [16] present a model to estimate QoE considering
both network and application performance indicators measured
at client’s video player (e.g., average bitrate, video stall events and
bitrate changes) as inputs. Similarly, Jiang et al. [13] propose a
Content Delivery Network (CDN) node selection approach that em-
ploys a Critical Feature Analytics (CFA) design to provide accurate
QoE estimation. In this work, the authors also rely on information
provided by client video players as input. Conversely, Xianshu et
al. [14] propose a network path selection scheme that considers
the bitrate measured at the server-side to produce simplified QoE
estimation for adaptive video streaming applications.

Dimopoulos et al. [10] introduce a methodology for estimating
QoE based on the analysis of encrypted HTTPS video streaming

traffic observed in the network. Da Costa Filho et al. [8] propose
an approach for QoE estimation based on network QoS indicators
obtained through active measurements. Both investigations [8, 10]
demonstrate it is possible to estimate video streaming QoE based
on network-side information. Although these approaches may not
be as accurate as the ones based on client- or server-side measure-
ments, they have shown to result in a satisfactory level of accuracy
with a crucial advantage: in addition to end-to-end QoE estimation,
they allow for fast identification and isolation of network segments
responsible for QoE impairments. In spite of the recent fundamen-
tal contributions for the video streaming evolution, the work on
QoE modeling for adaptive video streaming has basically focused
on 2D videos. Unlike 2D video content, VR presents significantly
more complex elements to consider (e.g., spatially segmentation,
viewport prediction, and per-tile rate adaptation). Thus, the current
QoE models are not suitable to estimate QoE for VR videos.

3 ADAPTIVE STREAMING OF VR VIDEOS
USING TILES AND QUALITY ZONES

This section introduces the adaptive VR streaming approach for
which PERCEIVE is envisioned. In order to reduce the bandwidth
required for the streaming, it adopts a tiling structure, in which
the videos are not only divided in temporal segments but are also
spatially split in sections (tiles) [23]. In addition, tiles are grouped in
quality zones prior to the streaming. Each of the zones is assigned a
quality level according to the network conditions measured during
the previous segment. In the next two subsections, both the struc-
ture and the adaptive streaming technique adopted in this work are
presented.

3.1 Adaptive VR streaming structure: Spatial
Tiles and Quality Zones

A VR video V can be represented by a set of k spatially divided
zones Z = {Z1, ...,Zk } such that

⋂
∀k Zk = ∅. The same video

V is temporally split into a discrete number of m segments S =
{S1, ..., Sm } such that

⋃
∀m Sm = V . Each zone Zk is composed

of a set of tiles t ∈ Zk . A tile t is time-divided into m chunks
C = {Ct1 , ...,Ctm }, and may assume different bitrates (qualities)
R(Ctm ) over time. Finally, we refer to a segment as the set of all
chunks for a given time frame such as Sm =

⋃
∀t Ctm . In tile-based

approaches, the encoding process defines how the video will be
spatially divided (i.e., tiling scheme), which bitrates will be available
in the HAS context (i.e., quality representations), and the segment
length (i.e., number of seconds).

An example of this type of structure is shown in Figure 2.
There are three quality zones Z = {Z1,Z2,Z3}, each one com-
posed by a set of adjacent tiles. Z1 is a set of tiles adjacent to the
viewport center (t28, t29, t36, t37), Z2 is the border of the viewport
(t43, t44, t45, t46, t38, t30, t22, t21, t20, t19, t27, t35) and Z3 is composed
by all tiles outside the viewport.

3.2 Adaptive streaming heuristic
Algorithm 1 describes the adaptive streaming heuristic procedure
adopted for this paper (adapted from [23]). The bitrate in a specific
zone Zk is named as R(Ct )|Zk . The algorithm receives as input (i)
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Figure 1: Example of the working principles of the viewport prediction.

Figure 2: Example of an adaptive tile-based VR video struc-
ture split in 3 quality zones.

a reference to a VR video V , (ii) a set S describing the video seg-
mentation and (iii) the available zones in video V . The heuristic
described in Algorithm 1 works as follows. Once knowing the avail-
able bandwidth in the network, the VR player downloads tiles with
the highest possible bitrates. First, the heuristic tries to increase the
bitrates on the zones inside the viewport. Then, it repeats the pro-
cedure to stream tiles from the outer zones (observed in line 3). Ob-
serve that the heuristic does not increase the bitrate R(Ct )|Zk+1 on a
subsequent zoneZk+1 in case the bitrate of zoneZk is strictly upper-
bounded by R(Ct )|Zk+1 . In other words, it ensures that the bitrate of
zone Zk+1 is always lower or equal to that of zone Zk . Furthermore,
it ensures that tiles within the same zone Zk are streamed with the
same bitrate R(Ct ), that is, R(C0)|Zk = R(C1)|Zk = · · · = R(Ct )|Zk .
If the available bandwidth were insufficient to download all the
tiles in a zone on time (before display), the streaming would stall

until the buffers were filled. Hence, the player ensures that all tiles
are synchronized during the playout and that no black tiles appear.
For more information on the working principles of the streaming
heuristic, please refer to [23].

Algorithm 1 VR player heuristic adapted from [23].
Input: V : VR video
Input: S : discrete number of segments in VR video V
Input: Z = {Z1, ...,Zk }: k spatially divided zones in VR video V
1: for each video segment Si ∈ S from VR video V do
2: for each zone Zk ∈ Z do
3: gather tiles t ∈ Zk with maximum available bitrate

R(Ct )|Zk , such that (∀k ≥ 2) : R(Ct )|Zk ≤ R(Ct )|Zk−1 and
(∀t ∈ Zk ) : R(C0)|Zk = R(C1)|Zk = · · · = R(Ct )|Zk

4 PERCEIVE: ADAPTIVE VR VIDEO
PERFORMANCE PREDICTION

Figure 3 presents the block diagram of the proposed two-stage VR
performance prediction method. The first stage is composed of four
predictors, one per VR video application performance metric (i.e.,
startup delay, quality, quality switches count and video stalls) [32].
As input, the predictors consider both the network Quality of Ser-
vice (QoS) (i.e., delay, packet loss and TCP throughput) and the
tiling scheme. In the second stage, the user QoE is estimated by
submitting the predicted application layer performance metrics to
the proposed QoE model. PERCEIVE can dissect VR video playout
performance by understanding two key processes, namely (i) the
influence of the network performance on VR video player outputs;
and (ii) how the user perceives the resulting video playout perfor-
mance. However, both the VR video player and the QoE model are
open questions in the sense that there is neither a reference player
implementation nor a QoE model for VR videos. Considering the
above, the proposed two-stage prediction allows both the playout

273



Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

performance metrics predictors and the QoE model to be individu-
ally updated, without the need to rebuild the entire scheme. The
following two subsections provide details and insights on each of
the stages of which PERCEIVE is composed.

Figure 3: PERCEIVE two-stage quality prediction

4.1 Adaptive VR Video Playout Prediction
In the first stage of the method, the four most important playout
performance metrics associated with the adaptive VR streaming,
namely startup delay, quality level (bitrate), quality switches and
stall time [32], are predicted based on network QoS inputs and the
VR video structure. Each of them is independently predicted using
regression trees as predictors (taking advantage of and adapting
the 2D procedure proposed in previous research work [8]). Regres-
sion trees are employed due to three main reasons. First, they have
shown to be an accurate machine learning method in related inves-
tigations [8, 26]. Second, they permit understanding complex and
non-linear relationships between predictors and response variables
in an intuitive and visual manner. This is a very important feature
that allows to pinpoint the most influential inputs, which will be put
to the test in the analysis of Section 5.3. Finally, once the prediction
structures are generated, they can predict the response variable in
linear time complexity, and can be easily integrated in third-party
applications, which are fundamental aspects for network operators
and content providers.

The selection of the input QoS parameters has been made based
on state-of-the-art research studies on the QoS conditions that affect
video streaming services the most [8, 20, 28]. These studies also
concluded that TCP throughput is one of the most influential QoS
metric when prediction QoE. Also, both network losses and delays
have been demonstrated to be responsible for further degradation,
depending on the type of streaming application used. In addition
to these three network performance metrics, a fourth parameter,
namely the tiling structure of the VR streaming, was included. The
structure defines the number of tiles that need to be streamed to the
client, thus it will heavily influence the VR playout performance.
Once the four VR playout performance indicators are predicted,
they serve as input to the second phase, the QoE model as it is
presented in the next Section.

4.2 Adaptive VR QoE Estimation Model
The purpose of this second stage is to estimate the quality perceived
by the end users (their QoE), considering the VR video playout
performancemetrics obtained from the previous stage of PERCEIVE
(i.e., startup delay, quality level (bitrate), quality switches and stall
time).

The model proposed herein considers the state-of-the-art on QoE
modeling for adaptive streaming applications in general and HAS in
particular [16, 22, 32]. To the best of our knowledge, this is the first
model to consider the concept of zones and tiles in a QoE estimation
model for VR videos. These characteristics are crucial, given the fact
that they allow coping with VR video attributes while providing
flexibility to handle different video encoding strategies (e.g., tiling
scheme, viewport geometry and available quality representations).

Given the concepts of quality zones and tiles of the approach used
for Adaptive VR streaming (Section 3), the QoE function is defined
per zone as a function of the VR playout characteristics predicted
by the previous stage within that quality zone (Section 4.1). This
strategy is aligned with the notion that the influence of VR playout
characteristics on user perception is different depending on the
zone where they are observed (e.g., quality switches for tiles outside
the viewport are less important than quality switches inside the
viewport). Thus, the per-zone quality function (ϕ(Zk )) is defined as
the weighted sum of the four playout characteristics (Equation 1).

ϕ(Zk ) =

Quality︷                         ︸︸                         ︷∑
∀t ∈Zk

∑
∀c ∈C(t )

q(R(Ctm )) −

Stalls︷                                      ︸︸                                      ︷
µ ·

∑
∀t ∈Zk

∑
∀c ∈Ctm

(
dc (Rc )
Cc

− Bc

)
+

− λ ·
∑

∀t ∈Zk

∑
∀c ∈Ctm

���� q(R(Ctm+1)) − q(R(Ctm )
����

︸                                                    ︷︷                                                    ︸
Quality switches

− ω ·Ts︸︷︷︸
Startup

(1)

In Equation 1, R(Ctm ) R represents the bitrate (i.e., quality) of
a given chunk. Recall that a tile t is time-divided intom chunks
C = {Ct1 , ...,Ctm }, (adapted from [16, 32]). Function q is a map-
ping function that translates the bitrate of chunk Ctm belonging to
tile t to the quality perceived by the user (i.e., in terms of bitrate
sensitivity). The second term of the Equation is used to track stall
time. Stalls can be characterized either by tile (i.e., it is possible to
have stall in some tiles and video playout in other, for the same
segment) or by segment (i.e., the video will stall until all the tiles
for a given segment have enough buffer). To keep the model as
general as possible, we consider for each chunk c , that a stall event
occurs when the download time dc (Rc )

Cc is higher than the play-
out buffer length (Bc ) when the chunk download started. Hence,
the total stall time is given by

∑C
c=1

(
dc (Rc )
Cc − Bc

)
+
. In addition,

|q(Rct+1)−q(Rct )| considers the quality switches between consecu-
tive chunks andTs tracks the startup delay. Finally, constants µ, λ,ω
are the non-negative weights used to tune the model for different
user importance regarding QoE events. For example, a higher value
of µ, with respect to the other weights, means that the user is more
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susceptive to video stalls. Consequently, these events should affect
the QoE indicator more severely.

Each of the zones within the VR video influences the perception
of the user in a different manner. For example, tiles within the
first or second zones (i.e., the closest to the FoV of the user) will
greatly steer the quality perceived by the user, while bad qualities
on tiles of the edge zones will potentially go unnoticed. For this
reason, the overall video QoE (ϕ(V )) is modelled as a weighted
linear sum of the QoE measurement per zone (Equation 2). Each
weight (α1,α2, ...,αk ) allows defining the relative importance of
each zone when composing the video QoE. For example, the zones
belonging to the viewport should have higher weights compared
to the other zones.

The values for each αn parameter should be derived from sub-
jective tests. For example, considering a two-zone QoE scheme,
values for α1 (viewport) should be close to one, and values for α2
(outside viewport) should be close to zero. When the QoE model is
configured with more than two zones, it is necessary to determine
αn (testing values within a certain range) for each zone. In this
case, subjective tests should systematically include incremental
quality degradation, specifically in the intermediate zones, in order
to measure the user’s sensitiveness regarding quality issues in each
zone.

ϕ(V ) =α1 · ϕ(Z1) + α2 · ϕ(Z2) + ... + αk · ϕ(Zk ) (2)

5 EVALUATION
In this section, the evaluation of the PERCEIVE method is dis-
cussed. We start by presenting the procedure followed to evaluate
the method in Section 5.1. Next, in Section 5.2, we introduce the
generation of the dataset used for training and testing. In Section 5.3
we discuss and analyze the resulting VR playout predictors. This
analysis provides insights on the dependency and predictability of
each of the VR playout performance metrics given the QoS and
tiling structure inputs. Finally, in Section 5.4 we present the predic-
tion evaluation results for each of the five outputs of PERCEIVE
(i.e., the four VR playout performance metrics and the perceived
quality).

5.1 Evaluation Methodology
In order to evaluate the performance of PERCEIVE, the procedure
outlined by Figure 4 is followed. First, the datasets for training
and testing have to be generated. Therefore, a VR video player is
required to measure the VR video application playout performance
metrics (i.e., startup delay, average bitrate (quality), bitrate switches
and video stalls) while subjected to real-world inputs, such as a
realistic wireless networks measurements, VR tile-based videos and
users’ head track traces.

Next, the resultant datasets are given as input to the machine
learning algorithm (responsible for learning the influence of the
network QoS parameters and tiling scheme onto the VR playout
characteristics). After the training phase, the resulting predictors
can estimate the application layer performance only by means of
the network parameters, and the considered tiling scheme. Finally,
based on the VR playout performance metrics, the QoE can be

Figure 4: General evaluation methodology for PERCEIVE

estimated. The performance of PERCEIVE is assessed by means of
the calculation of the normalized residual errors between predicted
and measured values (ri , Equation 3). In the equation, x is the
ground truth, x̂ is the prediction and N is the normalization factor
(in this case the video duration).

ri = |x̂i − xi |/N (3)

5.2 VR Dataset Generation
Each sample in the dataset contains the VR video tiling information,
the three network QoS features and the respective video perfor-
mance measured by the VR video player. To construct such dataset,
the procedure presented in Section 5.1 is followed. Experiments
are set, considering that a VR video player requests and processes
tile-based VR videos from a web server (Apache 2 2.4.18-2). The
network conditions are enforced by the Linux Traffic Control (TC)
mechanism according to real-world network performance inputs.
The experiments are built on top of a Linux Ubuntu 14.04 oper-
ating system, running on bare metal servers, where each server
consists of a quad-core E3-1220v3 (3.1GHz) processor, with 16GB
of RAM and two 10-gigabit network interfaces. Considering this
infrastructure setup, we performed 1,524 video execution rounds,
which resulted in more than 5,240 minutes of VR video playout.

Table 1 summarizes the input parameters values considered in
the experiments. As network throughput input, the 4G/LTE mea-
surements dataset of van der Hooft et al. [29] was selected. This
dataset presents TCP throughput ranging from 0 Kb/s to 95 Mb/s
as shown in Figure 5. For network packet loss, values between 0%
and 13% were selected, in line with [8]. The network delay range
was set from 1 to 130 ms. These values allowed us to assess the
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Figure 5: TCP throughput histogram of the 4G/LTE dataset
of [29]

application performance from a very degraded delay performance
(130 ms) down to the expected 5G delay (1 ms) [9].

Table 1: Input parameter configurations.

Metric Short Unit Range

TCP throughput TCPTP Mb/s 0-95Mb/s ([29], Figure 5)
Packet Loss PLR % 0 − 13% (based on [8])

Delay Delay millisecond 1-130ms (based on [8, 9])
Tiling scheme Tile categorical 8 × 4 or 12 × 4 (based on [15, 24]

Two VR videos from Wu et al.’ s dataset [31] (namely “Google
Spotlight-HELP" and “Freestyle Skiing") were used for the stream-
ing under the above described network conditions. For each video,
we considered the available datasets regarding the users’ headmove-
ments while watching it. As the original videos are not tile-based,
they had to be re-encoded. After extracting the raw YUV files, mak-
ing use of the Kvazaar encoder [30], the videos were re-encoded in a
HEVC tile-based version, considering two tiling schemes: 8 × 4 and
12× 4 [15, 24]. In addition, each tiling scheme was encoded to three
quality representations, namely 720p (1.8Mb/s), 1080p (2.7Mb/s)
and 4K (6Mb/s). Next, we used the MP4Box4 application to pack the
re-encoded videos into MP4 containers. Finally, we defined the seg-
ment duration of 1 second and used MP4Box to extract per-tile files
and to generate the MPEG Dash Media Presentation Description
(MPD) files considering multiple quality representations (Table 2).
For the streaming heuristic (Section 3.2), there are three defined
zones, where Zone 1 is the viewport center tile, Zone 2 groups the
8 tiles surrounding Zone 1, and all other tiles belong to Zone 3.
Figure 6 shows the zone division for the 12 × 4 tiling scheme.

Table 2: Adaptive streaming configurations.

Videos Qualities (bitrates) Quality zones Segment Tiling

Google Spotlight 720p - 1.8Mb/s Zone 1: 1 tile (central FoV) 1 s 12 × 8
Freestyle Skiing 1080p - 2.7Mb/s Zone 2: 8 tiles (adj. Zone 1) 8 × 4
(Wu et al. [31]) 4K - 6Mb/s Zone 3: Rest

4MP4Box https://gpac.wp.imt.fr/mp4box/

Figure 6: Viewport detail for the 12x4 tiling scheme

5.3 Resulting Predictors: VR Playout vs
Network Conditions

Based on the dataset, the regression trees were trained using a 10-
fold cross-validation approach [15]. As each zone has independent
quality behavior, both the quality and quality switches need to be
learned per-zone. On the other hand, the startup and stall times are
independent from the quality zone under scrutiny. Hence, they can
be learned per video segment. Given the fact that there are three
quality zones, eight regression trees were trained: three for Quality,
three for Quality Switches, one for Stall time and one for Start time.
All trees are optimally pruned [17], which means pruning until the
cross-validation error is minimal and overfitting is avoided.

Before assessing the performance of the two-stage method, a
thorough analysis of the regression trees was performed. This anal-
ysis aims at characterizing the relationship between the input pa-
rameters (network conditions and VR video structure) and the VR
playout, allowing one to pinpoint to the most influential inputs.

Figures 7 to 9 present the outcome predictors derived from the
regression trees. All presented trees share two structural charac-
teristics. First, although inversions may occur, usually the leftmost
leaf node holds the lowest value for the predicted variable, and the
value increases while moving towards the rightmost leaf node. Sec-
ond, the closer to the root node, the more important the prediction
feature (i.e., delay, TCP throughput, loss and tile scheme).

Having a first look at the content of the trees, two observations
can be made. First, network packet losses are not included in any
of the trees. This means that the level of packet losses does not
have influence on the VR playout performance metrics. Its effect
will only be important as they affect the TCP throughput (higher
network packet losses = lower TCP throughput). Furthermore, net-
work delays turn out to be the most influential parameter on the
VR playout.

Regarding quality (by means of the average bitrate) (Figures 7(a)
to 7(c)), let us consider the following aspects. The first decision taken
in Zone 1, at the root node and, therefore, the most influential, is to
understand if the network delay is greater than 23 ms (Figure 7(a)).
The left branch (Delay ≥ 23ms) is related to predicted quality not
higher than 3.9 Mb/s, regardless of any other input value. In other
words, even considering that the evaluated LTE network presents
TCP throughput of up to 95 Mb/s, it is not enough to achieve the
maximum bitrate (6.0 Mb/s - 4K), if the delay is higher than 23 ms.
The reasoning behind this behavior is that each video segment (1 s)
demands the download of 32 (8x4 tiling) or 48 (12x4) tiles. Despite
the reuse of the TCP connection avoids the TCP slow-start restart
[4]), the request/response overhead limits the throughput.
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Figure 7: Regression tree representation for the predictors
of the VR playout performance metric: quality. Leaf node
colors go from dark green (for the lowest value for the pre-
dicted variable) to dark blue (the highest predicted value).
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Figure 8: Regression tree representation for the predictors of
the VR playout performance metrics: quality switches. Leaf
node colors go from dark green (for the lowest value for
the predicted variable) to dark blue (the highest predicted
value).
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For Zones 2 and 3 (Figures 7(b) and 7(c)), the quality predictors
follow a very similar trend. However, in order to achieve the same
level of average quality, they demand higher network performance
than Zone 1. The right-most leaf of Zones 2 and 3 are a clear example
of this behavior. To achieve the same quality (average bitrate of
5.8 Mb/s), Zone 2 requires a delay lower than 9 ms, and Zone 3
lower than 7.5 ms. Also, the values of TCP throughput to achieve
intermediate average bitrates are higher for Zones 2 and 3 when
compared with Zone 1. The main reason for such behavior comes
from the rate adaptation heuristic, which prioritizes high bitrates
for the tiles that are closest to the viewport’s center (Section 3.2).
Thus, intermediate network performance may be enough to keep
Zone 1 at the highest available bitrate, while high levels of network
performance allow increasing the bitrate for all zones.

Quality switches (Figures 8(a) to 8(c)) provide valuable infor-
mation in the context of HAS videos. For example, if no switches
occur, the full video playout occurs in the lowest available resolu-
tion, meaning that the video player is unable to switch to higher
bitrates, probably, due to insufficient network performance. In turn,
when subject to excellent network performance conditions, most
of HAS rate adaptation heuristics (including the one used in this
paper) will stabilize at the highest available bitrate within a few
switches. When considering real-world networks, if we have a look
at the quality switches trained trees (Figures 8(a), 8(b) and 8(c)),
it can be seen that the turning point from zero switches to max-
imizing the quality is a network delay of 50ms for Zone 1, and
26ms for Zones 2 and 3. However, by analyzing the rightmost leaf
nodes of the decision trees for Zones 1, 2 and 3, one can observe
that the maximum number of quality switches increases from Zone
1 towards Zone 3: (30, 38 and 58, respectively). This happens be-
cause, according to the considered heuristic for rate adaptation, the
tiles inside Zone 3 will be the first ones to be switched to a lower
resolution in case a network performance degradation is detected,
followed by Zone 2 and, if the network performance degradation is
severe, the Zone 1.

With respect to the cumulative stall time (Figure 9(a)), the result-
ing regression tree presents a wide range of predicted values (from
0.95 up to 384 seconds). One key aspect is related to the decision
taken at the root node. As one can observe, if the delay is higher or
equal to 18 ms, the minimum expected stall time is equal or higher
than 163 seconds, independent of the tiling scheme or the available
bandwidth (TCP throughput). Such high values would inflict a dra-
matic degradation on the perceived quality. In turn, for network
delays lower than 9.5 s and TCP throughput equal or higher than 25
Mb/s, the expected stall time is minimal (0.95 seconds). It is worth
mentioning that, even if the delay is lower than 9.5 s, if the TCP
throughput is lower than 25 Mb/s, the expected stall time is 16
seconds. Also, in line with the aforementioned findings, the 12x4
tiling scheme leads to a significative higher amount of stall time
for intermediate levels of network performance.

Finally, the regression tree for predicting startup delay is shown
in Figure 9(b). In the considered VR video player, the startup delay is
characterized as the elapsed time between the arrival of the request
for the first tile and the completion of the buffer filling for all tiles
for the first two segments. As the segment is relatively small, and
considering the small file size of the tile chunks (on average 23 KB
for 4K video resolution), the startup delay exclusively depends on
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Figure 9: Regression tree representation for the predictors of
the VR playout performance metrics: stall time and startup
delay. Leaf node colors go from dark green (for the lowest
value for the predicted variable) to dark blue (the highest
predicted value).

the network delay. A delay lower than 26 ms is enough to provide
an acceptable startup delay (smaller than 1.7 s). However, the best
performance is achieved when the delay is lower than 14 ms (0.54
s).

5.4 PERCEIVE Results
Aiming at determining the accuracy of the proposed predictors, the
trained regression trees were used on unseen samples of the gener-
ated dataset, according to a 10-fold cross-validation scheme [15].
We considered as ground truth the performance measured by the
reference VR video player when subjected to real-world network
performance traces. In light of this, each test sample i contains the
predictor variables (i.e., TCP throughput, delay and tiling scheme),
and the respective measured values for the performance metrics
(i.e., average bitrate, stall time, quality switch and startup delay).

Furthermore, based on the predicted VR playout characteris-
tics, the QoE indexes were estimated by means of Equation 2. The
parametric constants shown by the model were set to the values

278



MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
D

F

ri (Mbps)

(a) Quality (average bitrate) - Zone 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
D

F

ri (Mbps)

(b) Quality (average bitrate) - Zone 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
D

F

ri (Mbps)

(c) Quality (average bitrate) - Zone 3

Figure 10: Residual error CDFs for quality (average bitrate)
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Figure 11: Residual error CDFs for the quality switch
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Figure 12: Residual error CDFs for stall time, startup delay and QoE estimation

presented in Table 3. Based on the results shown by Mao et al. [16],
the q function was set to linear, where q is equal to the bitrate. In
addition (also according to [16]), the stall and startup weights (µ
and ω) were set to 4.3. The value of the quality switches constant
(λ) was tuned to 1 [32]. Finally, the zones weights (α1, α2 and α3)
were empirically set to 0.7, 0.3 and 0, for Zone 1, Zone 2 and Zone
3. The reason behind setting α3 to zero comes from the perfect
prediction scenario considered in the evaluation. In such cases, the
FoV will correspond 100% of tiles of Zones 1 and 2. Thus, there is
no influence of the quality of Zone 3 on the user’ s perception. In
the case that perfect prediction would not be possible, the weights
would need to be tuned accordingly.

The performance of the method is assessed by means of the resid-
ual error calculated between real data sample (entry in the training
set) and the predicted one (as already introduced in Section 5.1
and Equation 3). With the purpose of generalizing the method for

Table 3: Constants and function values assigned to the func-
tion to estimate QoE (refer to Equation 2)

Param. Value
q Linear
µ 4.3
ω 4.3
λ 1
α1 0.7
α2 0.3
α3 0

videos of arbitrary duration, the residual error for the metrics aver-
age bitrate, quality switch and startup delay are normalized by the
factor N of the residual error equation, which corresponds to the
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considered video length (200 seconds). Figures 10, 11 and 12 show
the Cumulative Distribution (CDF) of the residual error for the four
VR playout performance metrics and the QoE estimation.

Looking at the quality prediction capacities of PERCEIVE (Fig-
ures 10(a) to 10(c)), it is possible to observe that the residual errors
are very small (224 Kb/s and 220 Kb/s for Zones 1 and 2, respectively,
for over 90% of the cases). If normalized by the maximum available
quality (6.0 Mb/s), it represents only 3.73% and 3.67% of residual
error. This means that in roughly 97% of the cases, the quality levels
are correctly predicted. Even though the residual error for Zone 3
is slightly higher (4.5%), it is still within the acceptability range.

The accuracy of the quality switch prediction (Figures 11(a) to
11(c)) shows even better results. For over 90% of the samples, Zones
1, 2 and 3 present a residual error of ri1 ≤ 0.00745, ri2 ≤ 0.01604
and ri3 ≤ 0.01877, respectively. In line with the findings for the
average bitrate prediction, Zone 3 presented a higher residual er-
ror (1.9%), as this is the zone with the highest number of quality
switches during the video playout. In Figure 11(b) it is possible to
observe that on over 80% of samples the residual error is zero. This
is because the quality switch behavior for both extreme cases of
the network performance is predictable: first, when the network
performance is sufficiently high, the rate adaptation will stabilize
at the highest representation, and no further quality switches are
expected. Second, when the network performance is degraded, the
rate adaptation will keep the video playout at the lowest avail-
able quality representation, and, similarly, no further switches are
expected.

The stalling time (Figure 12(a)) shows an error close to 13% for
over 90% of the testing samples. One main reason behind such in-
creased residual error is the wide range of the predicted variable (as
we saw in the regression tree of Figure 9(a)). Nevertheless, several
samples in the training dataset presented zero seconds of stall time.
We found that such predictable cases are associated with high levels
of network performance. For each of these samples, a residual error
of 0.95 was accounted (as 0.95 is the lowest predicted value). As
the presented regression tree is the optimal prune, further growth
would lead to overfitting, and thus a higher cross-validation error.
Due to the relatively high stall time for intermediate and degraded
network performance, the prediction performance is impaired as
the network performance degrades. However, at high levels of stall
time, the QoE is already completely degraded. Thus, the increased
error does not impair the accuracy of the QoE estimation.

The final VR playout parameter, the startup delay (Figure 12(b)),
is characterized as the elapsed time between the request of the video
and the playout of the first segment. In the considered context, the
startup delay prediction presented a well predictable pattern with
ri ≤ 0.00473 for over 90% of the cases. Also, the regression tree
presented a stable prediction performance across all the evaluated
samples.

Finally, Figure 12(c) depicts the residual error for the QoE es-
timation. By applying the QoE model defined in Section 4.2 to
each sample i , it is possible to estimate QoE for both the predicted
playout values and the original ones. Then, the residual error can
be calculated. Through this procedure, the QoE estimation error
induced by the proposed prediction scheme can be assessed. As
shown in Figure 12(c), the QoE estimation presents ri ≤ 0.03922
for over 90% of the cases.

6 CONCLUSION
Virtual Reality applications based on adaptive tile-based video
streaming are booming, as VR content becomes available to the
general public. To be able to cope with their ultra-high bandwidth
and low latency requirements, network and services providers are
required to assess the end-client perceived performance of such
services.

In this paper we presented PERCEIVE, a novel VR performance
evaluation method to assess the user’s perception of the VR con-
tent when streamed through the network. By means of machine
learning techniques applied to the network performance indica-
tors, it predicts the adaptive VR performance both in terms of VR
main playout parameters (quality, quality switches, stalling time
and starting time) and the perceived QoE. To our knowledge, this
is the first VR performance model.

PERCEIVE has been evaluated considering a real-world envi-
ronment, in which VR videos are streamed while subjected to an
LTE/4G network performance. Then, we assessed its accuracy by
means of the residual error between the predicted andmeasured val-
ues. PERCEIVE is able to predict the playout performance metrics
with an average prediction error lower than 3.7% and, the perceived
quality with a prediction error lower than 4% for over 90% of all
the tested cases. PERCEIVE not only provides very high prediction
accuracy, but also allows analyzing the influence of networks on
the VR streaming parameters. This feature has helped us pinpoint
the network delay as the QoS feature that affects the transport of
VR services the most.

We believe our work is one step forward in the assessment of
VR applications performance, which is an open subject in the state-
of-the-art on multimedia network management. Although the pro-
posed QoE model has not been validated through subjective tests,
we believe it is an acceptable approach considering the scope of this
work. As we are evaluating the predictability of the QoE indicator
based on the performance of the application layer, possible adjust-
ments in the weights of Equation 1 will not affect the prediction
error of the QoE indicator. Aiming at providing realistic weights for
Equation 1, as future work, we intend to perform subjective tests
of the proposed QoE model. We also intend to explore and improve
the estimation capabilities of our approach, focusing on viewport
prediction and on adaptive streaming heuristics.
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APPENDIX
This appendix provides a detailed description of the procedure to
be followed in order to allow reproducibility of the experiments
performed in this work. All the employed datasets and source code
are available at the PERCEIVE repository [21].

In Section 1.1 we present an overview of the experimental design
and its general setup. Next, the re-encoding procedure required to
generate tile-based VR-videos is explained in Section 1.2 Then, in
Section 1.3, the VR video player considered in this work is examined.
Subsequently, both the network and the VR video playout datasets
are thoroughly discussed in Section 1.4. Finally, in Section 1.5, we
give an overview of the R scripts responsible for performing the
machine learning task.

1.1 Experimental Procedure Overview and
Specifications

The experimental procedure is split into three steps, as explained in
Section 5.1 (Figure 4). First, the VR video player requests tile-based
videos, from a web server, while subjected to controlled network
conditions. The VR video player is responsible for measuring and
recording the VR video playout performance, while the network
conditions are enforced by Linux Traffic Control (TC) mechanism.
Second, the VR video playout performance indicators are given as
input to the machine learning process. At this stage, machine learn-
ing is responsible for characterizing how each network condition
impacts the video playout performance. Finally, in the third step, an
estimation of QoE is provided by giving the VR video performance
as input to the QoE model.

To perform the first step, we employ three dedicated virtual
machines deployed on the imec iLab.t Virtual Wall emulation plat-
form5. The first machine was used to run the VR video player, while
the second was used to host tile-based VR videos using a regular
Apache web server. Through traditional IP routing and Linux Traf-
fic Control (TC), the third machine was configured as a gateway
between the other two, acting as a network condition enforcement
point. Each virtual machine was configured with a quad-core Intel
5imec iLab.t: http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html
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Xeon E3-1220 v3 CPU running at 3.10GHz, 15GB RAM, 16GB of
storage and running Linux Ubuntu 14.04 (3.13.0-33). The full list
of packages and its respective versions is available at PERCEIVE’s
repository [21] (Setup/packages.txt).

Steps two and three do not require any specific hardware or
software specification. Step two was performed using R (1.0.143)
[25], and for the third step we employed a simple electronic spread-
sheet to compute the QoE model (Section 4.2) over the VR video
playout performance indicators. After this overview, the remainder
of this section will cover practical details of the main elements of
the experiment.

1.2 Tile-based HAS VR-video Re-encoding
In order to generate tile-based HAS VR-videos, it was necessary
to re-encode the original VR videos from Wu et al.’ s dataset [31]
(namely “Google Spotlight-HELP" and “Freestyle Skiing"). Herein,
the re-encoding procedure is explained step-by-step.
After downloading the original VR-videos “Google Spotlight-
HELP"6 and “Freestyle Skiing"7, the raw videos must be first ex-
tracted using the following command of FFMPEG8:

$ f fmpeg − i i nV ideo . mkv −c : v rawvideo
outVideo . yuv

Next, the HEVC tile-based version of the videos is generated using
Kvazaar9. Kvazaar splits the videos based on the generated YUV
file, the desired tiling scheme, resolution and frames per second
(FPS), as shown in the following example. This command is to be
executed per video quality.

$ kvazaa r − i ou tVideo . yuv −− input − r e s
3840 x2160 −o outV ideo12x4 . hevc −− t i l e s
12 x4 −− s l i c e s t i l e s −−mv− c o n s t r a i n t
f r ame t i l ema r g i n −q 30 −−pe r i o d 30
−− input − f p s 30

Subsequently, each of the tiles of the VR-video is packed into an
mp4 container employing the MP4Box software 10.

$ MP4Box −add outV ideo12x4 . hevc : s p l i t _ t i l e s
− f p s 30 −new v i d e o _ t i l e d _ 4K_1 2 x 4 . mp4

Finally, based on the desired length of the HAS segment, the per-tile
per segment files of the VR-video are extracted. For example, the
following command defines one second for the segment length,
12x4 tiling scheme and three video resolutions (720p, 1080p and 4K).
This procedure also generates MPD files by using multiple quality
representations.

$ MP4Box −dash 1000 −rap − f r ag −rap
− p r o f i l e l i v e −out h a s _ t i l e d _ 1 2 x 4 . mpd
. . / SOURCE/ v i d e o _ t i l e d _ 7 2 0 _ 1 2 x 4 . mp4
. . / SOURCE/ v i d e o _ t i l e d _ 1 0 8 0 _ 1 2 x 4 . mp4
. . / SOURCE/ v i d e o _ t i l e d _ 4K_1 2 x 4 . mp4

6https://youtu.be/G-XZhKqQAHU
7https://youtu.be/0wC3x_bnnps
8FFMPEG: https://www.ffmpeg.org/
9Kvazaar: https://github.com/ultravideo/kvazaar
10MP4box: https://gpac.wp.imt.fr/mp4box/

1.3 VR Video Player
Both the source code and binary for the VR video player are avail-
able at the PERCEIVE repository [21] (VR-player/Source and VR-
player/bin respectively). The player provides support to variable
tiling scheme and can be adapted to several QoE zone schemes
(Section 3.1). Additionally, the player supports viewport traces (a
previously recorded log regarding the user’s head track) as input.
The player is written in C language and employs Curl library to
perform HTTP requests. The player also allows parameters to be
passed through command line arguments. It is particularly useful
when running large experiments, so that the player parameteriza-
tion can be done dynamically by an external script. The full set of
parameters is shown in Table 5. For example, the following player
call is used for requesting the first 60 segments of the video named
“video2”, available at the IP “10.0.0.251”, using the viewport trace
stored in the file “user1/video2.txt”, using 100 seconds timeout and
a 12x4 tiling scheme. In this case, the resultant VR-video playout
performance will be written in the file named “video2playout”.
$ VR−p l a y e r 1 0 . 0 . 0 . 2 5 1 v ideo2 60
v i d e o 2p l a you t u s e r 1 / v i deo2 . t x t 100 4 12

Table 4: VR-video player command line arguments.

Sequence Description

1 IP address of the video server
2 Video filename
3 Number of segments to download
4 Output filename (to write playout performance results)
5 Viewport trace filename (head track logs)
6 Session timeout (max number of seconds)
7 Number of vertical tiles (tiling scheme)
8 Number of horizontal tiles (tiling scheme)

1.4 Video Playout and Network Datasets
The file “Sample.csv" (directory “Network dataset" [21]) provides
the 48 network conditions considered in our experiments. The
conditions were extracted from [29] and adapted according the
procedure described in Section 5.2. The range for each input param-
eter is summarized in Table 1. The configuration ID is the leftmost
field in the file “Sample.csv", followed by the fields throughput TCP
(Mb/s), delay (msec) and packet loss rate (%). After parsed, these
values are given as input to the Linux TC, which act as a network
condition enforcement point.

In turn, the file “playoutPerformance.txt" (directory “Playout
performance dataset" [21]) provides the resultant output of the
first step of the experimental procedure (described in Section 1.1).
Furthermore, this is the same file given as input to the machine
learning process (step two). Along with the network dataset, Table
5 summarizes the input parameters for generating the playout
performance dataset.

Table 6 shows the set of fields of the resultant VR-video playout
performance. Fields 1 - 5 are related to the video input parameters,
listed in Table 5. Fields 6 - 8 are related to the network conditions.
Fields 9 - 22 corresponds to the VR-video playout performance
measured by the VR-video player. Finally, fields 23 - 25 are calcu-
lated as the number of per-zone tiles times the average bitrate for
each video resolution. In the PERCEIVE repository, we provide a
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Table 5: PERCEIVE video input parameters.

Parameter Value/Range Details

VR video Google Spotlight-HELP and Freestyle Skiing V1 and V2 (from [31])
Head track traces Google Spotlight-HELP and Freestyle Skiing V1 and V2 (from [31])
Video format MP4 - HEVC tile-based and HAS Using MP4Box
Video encoder Kvazaar Kvazaar encoder [30]
HAS 720p (1.8Mb/s), 1080p (2.7Mb/s) and 4K (6Mb/s) Kvazaar encoder [30]
Segment size 1 second From [11]
Tiling scheme 8x4 and 12x4 From [24]
Considered viewport One central tile and eight border tiles Section 3.1

bash script “addQuality.sh" (directory Scripts) which can be used
to perform this computation.

Table 6: Fields sequence of the file “playoutPerformance.txt"
(Field 1 is the leftmost value in the file).

Field Description Type/unit

1 Video ID string
2 User ID string
3 Tile format horizontal X vertical
4 Network trace ID string
5 Experiment round integer
6 TCP throughput Mb/s
7 Delay msec
8 Packet loss %
9 Number of tiles 720p for Zone 1 integer
10 Number of tiles 1080p for Zone 1 integer
11 Number of tiles 4K for Zone 1 integer
12 Number of tiles 720p for Zone 2 integer
13 Number of tiles 1080p for Zone 2 integer
14 Number of tiles 4K for Zone 2 integer
15 Number of tiles 720p for Zone 3 integer
16 Number of tiles 1080p for Zone 3 integer
17 Number of tiles 4K for Zone 3 integer
18 Number of quality switches for Zone 1 integer
19 Number of quality switches for Zone 2 integer
20 Number of quality switches for Zone 3 integer
21 Stall time seconds
22 Startup delay seconds
23 Average bitrate for Zone 1 Mb/s
24 Average bitrate for Zone 2 Mb/s
25 Average bitrate for Zone 3 Mb/s

1.5 Machine Learning
The directory “R Scripts" [21] provides all the source code used to
generate the regression decision trees shown in Section 5.3. Each
of the eight decision trees has its own source code (R script). In
addition to the R tool [25], we employed the following packages:
stargazer 11, gdata 12, rpart 13, tree 14 and rpart.plot 15. Finally, it is
worth mentioning that the trees shown in this work were obtained
through their optimal prune. Which means that during the prune
stage, we selected the complexity parameter (CP) associated with
the minimum cross-validation error (xerror).

11https://cran.r-project.org/web/packages/stargazer/index.html
12https://cran.r-project.org/web/packages/gdata/index.html
13https://cran.r-project.org/web/packages/rpart/index.html
14https://cran.r-project.org/web/packages/tree/index.html
15https://cran.r-project.org/web/packages/rpart.plot/index.html
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1 INTRODUCTION
Virtual Reality (VR) video streaming applications are becoming increasingly popular. VR Head-
Mounted Displays (HMDs) are expected to grow from 18 million in 2017 to nearly 100 million by
2022, while the associated network traffic is expected to increase 12-fold [5]. The same study points
out VR video streaming as a key application, which has the potential to significantly increase the
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IP Internet traffic by 2022 [5]; ii) mobile networks are characterized by highly variable levels
of performance [7]; and (iii) VR video streaming applications demand high levels of network
performance to achieve a satisfactory Quality of Experience (QoE) [5]. To provide a notion of
how demanding these applications are, recent studies have shown that, to provide adequate levels
of QoE, current VR video applications require a network delay lower than 9 ms [8], while the
bandwidth needs for the upcoming ultra high definition VR will reach 500 Mbps [5]. At this level of
demand, not only will network operators struggle to provide cost-effective services, but VR video
content providers and developers will also be challenged by such resource-intensive applications.
To overcome the aforementioned challenges, both the academy and industry are investigating

novel approaches for improving the efficiency of the VR video streaming ecosystem. In this direction,
efficient spherical-to-plane projection schemes, which include tile-based VR video streaming,
are prominent strategies for reducing the bandwidth requirements imposed by VR videos [4, 6,
12, 14, 16, 38]. These investigations extend well-established approaches to 2D video streaming,
such as HTTP Adaptive Streaming (HAS) and Dynamic Adaptive Streaming over HTTP MPEG-
DASH paradigms [9, 27]. In the first step, VR videos are encoded at different quality levels and
representations (e.g., 720p, 1080p, 4K, 8K). Subsequently, they are split into both spatial tiles and
temporal segments. During the streaming session, the client will only request tiles corresponding to
its viewport (i.e., the visible portion of the full 360-degree panoramic view). To perform selective tile
requests, these schemes rely on viewport prediction heuristics [11, 15, 17, 22, 25, 26]. Other crucial
building blocks in this ecosystem are Adaptive Bitrate (ABR) streaming and Buffer Management
heuristics. ABR streaming benefits from both the temporal/spatial segmentation and predicted
viewport to manage the playout buffer. To do so, it requests for each segment the tiles that are
estimated to belong to the viewport in high quality, while the remaining tiles will either be requested
at lower quality variants or not fetched at all [2, 12, 13, 19, 25].

Optimization schemes, such as the ones just mentioned, contribute to minimizing the use of net-
work resources (mainly in terms of bandwidth). For example, when prioritizing high-resolution rep-
resentations only for tiles in the viewport, a bandwidth reduction of up to 72% can be achieved [14].
However, optimization approaches can impair the performance of the VR video streaming severely,
thus, degrading the user’s perception of the service (i.e., QoE). For example, consider the case where
the predicted viewport tiles are downloaded in advance. Errors in the viewport prediction for the
user’s field of view will lead to QoE degradation even though the bandwidth is high enough for the
application requirements. Furthermore, the video encoding and streaming decisions (such as the
spherical-to-plane projection strategy, tiling scheme, available quality representations, frame rate)
and the client-side implementation aspects (e.g., playout buffer size, rate adaptation heuristics, and
tile fetching method) play an essential role in shaping the resulting VR video playout performance
and, ultimately, QoE. Finally, it is worth noting that these parameters and heuristics may perform
quite differently when subjected to variable network performance conditions. We deem that dis-
tinct groups can benefit from a solution to this problem: (i) both the research community and VR
solutions designers can carry out far-reaching evaluation of their approaches when subjected to
complex and realistic scenarios; and (ii) considering that network operators already have tools in
place for measuring network performance, they can estimate VR video application performance
and QoE experienced by their subscribers.
When considering both the multitude of approaches to optimize a VR video streaming and the

highly variable mobile network performance, it becomes a difficult challenge to understand how
different (combinations of) optimization techniques perform under varying infrastructure condi-
tions. The lack of a publicly-available method and tools for systematic and reproducible evaluation
exacerbate this challenge. To fill in this gap, in this paper, we propose VR-EXP, an adaptive VR video
streaming experimentation platform. The platform is capable of systematically evaluating different

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 12. Publication date: January 2019.
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combinations of VR video streaming optimization approaches. Also, VR-EXP allows pinpointing the
interplay between a set of optimization techniques and variable network performance. Comprised
of an evaluation method and software components, VR-EXP assumes as input tile-based VR videos,
network datasets, and parameters (e.g., network performance conditions, users’ head-tracking
information, ABR heuristics, and tile fetching methods). Then, it emulates essential components of
the VR video streaming ecosystem, measuring key VR video playout performance indicators. Finally,
our platform produces, as output, detailed VR video playout performance and QoE estimation
reports. Using VR-EXP, we carry out an in-depth analysis of (combinations of) state-of-the-art VR
video optimization approaches under varying network conditions.

We summarize the contributions of this work as follows:

• We provide a platform to carry out systematic evaluations that can be executed across realistic
scenarios.

• Throughout an extensive evaluation, we provide an in-depth analysis of the performance of
cutting-edge optimization approaches for VR video streaming.

The remainder of this paper is organized as follows. In Section 2, we present an overview of
background concepts and state-of-the-art optimization approaches for the VR video ecosystem.
In Section 3, we introduce VR-EXP, encompassing its main components and design choices. In
Section 4, we outline the evaluation setup including the considered parameters and datasets. Then,
in Section 5 we present and discuss the main results. Finally, our conclusions along with perspectives
for future work are presented in Section 6.

2 BACKGROUND AND STATE OF THE ART
In this section, we provide a thorough description of state-of-the-art optimization techniques
for VR video streaming. We organize these investigations into three research groups. We start
by reviewing relevant projection schemes for VR video encoding. Next, we evaluate prominent
investigations regarding viewport prediction. Finally, we evaluate adaptive bitrate streaming and
buffer management approaches for VR videos.

2.1 Spherical-to-Plane Projection
One effective strategy to reduce the huge bandwidth demands of 360-videos is delivering only the
viewport in high resolution, streaming the remaining area of the video in low resolution or not at all.
To achieve this spatial segmentation of the panoramic view, several approaches explore spherical-
to-plane projection techniques [4, 6, 12, 14, 16, 38]. For example, Graf et al. [12] examine the bitrate
overhead and bandwidth requirements of distinct tiling schemes (i.e., 1x1, 3x2, 5x3, 6x4 and 8x5)
implemented using modern video codecs (e.g., HEVC/H.265 and VP9). By applying Peak Signal-to-
Noise Ratio (PSNR) within the VR video viewport, the authors assess the video quality and conclude
that the 6x4 tiling scheme provides the best trade-off among viewport selection flexibility, bitrate
overhead, and bandwidth requirements. In a similar direction, Zhou et al. [38] further examine this
field by comparing standard spherical projection approaches to offset projection techniques. The
latter are characterized by distorting the spherical surface to allow the convergence of the pixels
of the VR video in a particular direction. Offset projections are significantly more complex than
traditional projection techniques because they demand a simultaneous control of bitrate and view
orientation adaptations. By employing PSNR and Structural Similarity (SSIM), the authors conclude
that, in general, offset projections can provide better quality than their non-offset counterparts.
Despite their contributions, the conclusions of these investigations are limited because they do
not consider important variables, such as the effects of variable viewport prediction error and
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parallel fetching methods (such as HTTP/2) on their approaches. Also, the mentioned approaches
are evaluated considering limited network performance conditions.

In another important investigation, Chen et al. [4] analyze recent advancements regarding alter-
native projection methods, including viewport-dependent and viewport-independent approaches.
The central objective of this work is to assess both the coding efficiency and distortion introduced
by each approach. Besides valuable quantitative and qualitative insights regarding a wide range of
projection schemes, the authors conclude that in order to effectively evaluate such a wide range
of projection schemes, a more sophisticated evaluation process is required. The main reason for
this conclusion is that traditional PSNR computes the whole projection map, which cannot handle
viewport-dependent projections. Additionally, due to the unpredictability of viewport prediction
errors, the areas surrounding the viewport should also be considered in the quality evaluation,
but with a reduced weight. In this investigation, the authors also review alternative metrics for
video quality assessment proposed by JVET [3]. They conclude that although several flaws of
conventional PSNR have been fixed, a more comprehensive method for evaluating video quality
for viewport-dependent VR videos is still missing.

2.2 Viewport Prediction Algorithms
Viewport prediction heuristics benefit from the tile-based structures of the VR video to enable
differentiated handling of group of tiles. Since a full VR video can easily reach 12K video res-
olution [6], most video players rely on heuristic algorithms to predict near-future user’s head
movements. Considering the next position prediction, the VR video emulator is able to keep a small
playout buffer (e.g., 2 seconds) requesting only tiles that are likely to belong to the viewport, which
ultimately leads to reduced bandwidth utilization. In this direction, several recent investigations
propose viewport prediction algorithms [11, 15, 17, 22, 25, 26].
To illustrate how the viewport prediction works, consider the example of a user watching a

tile-based VR video using a head-mounted display. Assume a given temporal segment Sk and a
respective viewport Vk , as depicted in Figure 1 (a). At this moment, the video player is requesting
high-resolution chunks only for tiles inside the viewportVk . Then, based on the viewport prediction
for the next segment (Sk+1), the video player starts requesting high-resolution tiles for the predicted
viewport Vk+1 (delimited by the blue dashed square in Figure 1 (b)). However, rather than moving
his/her head up, consider that the viewer actually slightly moves to the right (see Figure 1 (c)).
At this point, due to the viewport predictor error, the VR player requested seven tiles in high-
resolution which will not actually be displayed (upper left red tiles in Figure 1 (d)). Likewise, seven
low-resolution tiles end up belonging to the viewport (bottom right red tiles in Figure 1 (d)). As
one can observe, viewport prediction is a sensitive task. Viewport prediction errors may lead to
partial or full degradation of the perceived quality, even if the network performance conditions are
enough to guarantee the user’s QoE.

To perform the viewport prediction, most approaches follow a similar procedure, which includes
processing one or more input information, applying a prediction method, and then checking the
prediction accuracy. As input, prediction algorithms can rely on past users’ head motion [15, 24,
26], fixation point acceleration [22], fixation point angular velocity [11, 22, 25], image saliency
maps and motion maps [11], or even sound localization information [17]. In turn, to perform the
viewport prediction itself, state-of-the-art approaches rely on deep learning [15], mathematical
modeling [17, 22, 24–26], or neural networks [11]. Finally, the prediction accuracy is assessed by
subjecting the prediction model to traces containing realistic head-tracking information (i.e., ground
truth). Thus, the residual error can be evaluated. By performing such predictions, the VR video
player can, according to He et al. [14], reduce bandwidth utilization in up to 72%.
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(a) (b) (d)

sequence of events

Current viewport Viewport prediction Viewport prediction errorActual movement

(c)

Fig. 1. Working principles of the viewport prediction and the viewport error.

As discussed, although prediction algorithms may present acceptable accuracy under certain
circumstances, prediction errors are very likely to occur due to the randomness of users behavior.
Besides, prediction algorithmsmay considerably decrease their accuracywhen the size of the playout
buffer is increased. For example, the prediction accuracy can drop from 90% to approximately 60% if
the prediction window is increased from 1 to 2 seconds [26]. However, an increased playout buffer
may be crucial to operate in current mobile networks, which are characterized by highly variable
performance conditions, even in short time frames. Considering these intricacies, an effective
assessment of viewport prediction algorithms should consider (and quantify) how the error rate of a
particular algorithm affects QoE when combined with other optimizations (e.g., buffer management
heuristics and dynamic rate adaptation algorithm) and subjected to realistic network performance.

2.3 Adaptive Bitrate Algorithms and Buffer Management
Taking viewport prediction information as input, most approaches rely on per tile rate adaptation
algorithms. This method allows reducing the amount of information to be downloaded by keeping
only the viewport’s tiles in high resolution. However, this task is far from trivial, even for traditional
video streaming. ABR algorithms are complex because they must manage the available bandwidth
while maximizing the quality representation and minimizing the stall probability. Although ABR
algorithms for traditional 2D video streaming have been extensively explored, recent investiga-
tions [1, 28] show that it is still an open research problem. As an example, it is demonstrated the
possibility to significantly improve the performance of state-of-the-art ABR algorithms, namely
BOLA [29] and MPC [36]. Akhtar et al. [1] demonstrate that both BOLA and MPC algorithms rely
on parameters that are sensitive to variable network performance, so they may perform poorly
under certain conditions. To fill this gap, the authors introduce VirtualPlayer [1], a trace-based
simulator that mimics the behavior of a traditional video streaming player. It allows, for example, to
investigate ABR algorithms when subjected to real-world networks. In the same direction, Spiteri
et al. [28] introduce Sabre, an open-source simulation tool that enables simulating ABR algorithms
for 2D videos when subjected to realistic requirements.
When it comes to VR video, ABR becomes a much more challenging task. State-of-the-art

approaches for adaptive bitrate in VR videos differ from each other mainly with respect to how they
manage the balance between video quality and available bandwidth while considering the spatial
segmentation. For example, Petrangeli et al. [25] consider a multi-zone VR video and propose a
per tile quality selection heuristic. The algorithm starts by selecting the highest available quality
for the inner tiles (close to the fixation point), and then repeats this procedure for the outer zones
until the residual bandwidth is exhausted. This approach alleviates the edge effect (transition
between different quality representations). Thus, it provides superior VR video quality at the cost
of increased bandwidth consumption.
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He et al. [13] propose to simultaneously optimize, among other parameters, playout bitrate and
buffer occupancy. Similarly to Petrangeli et al. [25], they perform bitrate adaptations depending on
the position of each tile concerning the current fixation point. However, they introduce a learning
strategy with the ability to avoid performance degradation for future segments by automatically
adapting the buffer reservation. By using a fine-grained bitrate adaptation, these investigations
were able to reduce the bandwidth utilization in 35% and 40%, respectively.

Graf et al. [12] advance a step forward in the state of the art by providing a comprehensive
investigation with respect to essential components of the VR ecosystem. The authors introduce
three tile scheme strategies for ABR, namely Full Delivery Basic, Full Delivery Advanced and
Partial Delivery. These schemes drive the ABR algorithm regarding the bitrate adaptation for both
the viewport and the remaining tiles. For example, in Full Delivery Basic scheme, all the tiles
belonging to the viewport are requested in the highest available quality, while the remaining tiles
are requested in the lowest quality, regardless of the available bandwidth. The Partial Delivery
scheme employs an aggressive bandwidth saving strategy, requesting only the tiles within the
viewport in high resolution, while the remaining tiles are not requested at all. The authors evaluate
several projection schemes (as discussed in Subsection 2.1), combined with multiple segment sizes.
By assessing the bitrate overhead, bandwidth requirements, and viewport quality, this approach
achieve bandwidth savings from 40% to up to 65% when compared to state-of-the-art techniques.
Closely related to ABR algorithms, the playout buffer management plays a vital role in the

VR video realm. As discussed earlier, an increased playout buffer size consists in an effective
way to protect against stalls (i.e., empty buffer) caused by network performance fluctuations. On
the other hand, a small playout buffer is necessary to keep the accuracy of viewport prediction
methods within acceptable levels. Specifically on this subject, Ma et al. [19] propose a dynamic
buffer size management method which is guided by a constrained optimization model. This method
aims at maximizing QoE by adjusting the buffer size based on the viewport prediction error and
available bandwidth. Throughout simulation experiments, the authors claim gains from 2.7% up
to 6.7%, in terms of QoE, when compared to non-dynamic buffer size approaches. In another
relevant investigation, Almquist et al. [2] present a data-driven study which explores the trade-
off between the playout buffer size (i.e., prefetching aggressiveness) and viewport prediction
errors. The prefetching aggressiveness is evaluated while considering different VR video categories
(i.e., exploration, static, moving, rides and misc.). The authors provide valuable qualitative and
quantitative insights regarding how to best address the prefetching aggressiveness trade-off. As
a key insight, they demonstrate that the accuracy of the prediction varies significantly among
different categories. Additionally, in line with previous investigations, they emphasize that adequate
levels of viewport prediction accuracy are observed only within a very small time frame.

In summary, during a streaming session, several components (e.g., projection scheme, viewport
prediction error, buffer management approach, dynamic rate adaptation algorithm, and network
performance) will have a major influence on the user’s QoE. Despite several research efforts,
little is known about the interplay between a set of VR video components and variable network
performance conditions. Also, a solution to provide an in-depth and reproducible evaluation of the
VR video streaming ecosystem is still missing. In this paper, we introduce VR-EXP, an open-source
publicly-available platform for evaluating adaptive VR video streaming performance and QoE when
subjected both to multiple VR video optimization techniques and variable network performance
conditions. Different from the related work, instead of evaluating each optimization technique
independently (or within a reduced set), our approach provides an extensible VR video emulator
that allows for the simultaneous evaluation of multiple state-of-the-art optimization techniques.
Combined with the provided network controller and realistic network performance dataset, VR-
EXP contributes a step forward to the VR field by providing a reproducible method for evaluating
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adaptive VR video streaming optimization approaches. To the best of our knowledge, this is the
first open-source method and toolkit for a comprehensive evaluation of the VR video ecosystem.

3 METHODOLOGY
In this section, we introduce the VR-EXP platform. We start by presenting the general scheme,
highlighting its inputs, outputs, and main modules. Then, we introduce the VR video client emula-
tor and its main components. Next, we discuss alternatives for enforcing network performance
conditions. Finally, we present the considered QoE model, which allows evaluating the effects of
multiple VR video optimization techniques on QoE.

3.1 VR-EXP General Scheme
In a nutshell, the VR-EXP platform enables evaluating the interplay between a set of adaptive
tile-based VR streaming optimizations and variable network performance conditions. Figure 2
depicts the main modules of VR-EXP. The proposed method consists of systematically fetching VR
videos through a controlled network environment. From a client perspective, the adaptive VR video
client emulator coordinates the use of several VR video techniques upon requesting VR videos
from a content server. During the streaming session, the Network Performance Enforcement Point
enforces realistic network conditions on the network links between the VR Video Client Emulator
and the Content Server. Once the VR video streaming session is finished, VR-EXP reports key VR
video playout performance metrics.

The most important module is the VR video client emulator, which is responsible for processing
the input parameters, emulating state-of-the-art VR video optimization approaches, and measuring
the playout performance. Except for the rendering process, the VR video client emulator mimics the
behavior of a VR video adaptive streaming client. Although the rendering task is important for the
VR video context, it is mostly related to the HMD rendering capabilities of each device. Therefore,
in this work we are interested in evaluating the influence of variable network performance on
VR adaptive streaming in an isolated manner, without the interference of HMD particularities. To
emulate a dynamic network topology as well as enforcing real-world conditions, VR-EXP relies
on either an SDN network controller or the Linux Traffic Controller. In the proposed platform,
adaptive VR videos are delivered by an HTTP server (Apache1), which delivers tile-based VR videos
in multiple quality representations according to the HAS scheme.

Output 
(playout performance) 
- Stall time 
- Startup delay 
- Per-zone quality switch 
- Per-zone bitrate

 
Network Performance

Enforcement Point
 

Content ServerVR Video Emulator

VR Video Emulator
Main Components
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Response

Sphere-to-Plane 
Projection Handler 

Input 
- Multi-rate HAS 
- Tile requesting method 
- Viewport trace 
- Viewport error rate

Input 
(Network dataset) 
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- TCP throughput 
- Packet loss

......

Adaptive Bitrate 
Adaptation 

Viewport Prediction 
Error Injection

Tile Fetching 
Method 

Playout Performance 
Measurement 

Input 
- Tile-based VR videos 
- Multiple quality
representations

Fig. 2. VR-EXP general scheme.

The emulation of the entire VR video streaming ecosystem requires the configuration of several
parameters and inputs. For flexibility, VR-EXP enables the definition of its parameters at run time.
1Apache HTTP Server: https://httpd.apache.org/
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It allows building scripts for automating complex and extensive experiments. For example, it is
possible to parameterize the VR video client emulator by defining behavior characteristics such as
the tile requesting method, the rate adaptation heuristic, the expected viewport prediction error,
and so forth. In turn, the network module is expected to be fed with a dataset containing a set of
network performance metrics (e.g., delay, packet loss rate, TCP throughput). It then enforces these
conditions into the emulated links connecting the VR video client emulator to the content server.
Once all the input datasets and parameters are configured, the VR video client emulator starts
fetching VR videos using the HTTP protocol. After processing the VR video, the emulator writes an
output file containing the processed VR video performance metrics, as well as the raw performance
data, as described in Section 3.2. The complete set of source code and datasets related to the VR-EXP
platform are released under GNU General Public License v3.0 and are publicly-available at GitHub2.

3.2 VR Video Client Emulator
We now focus on the high-level overview of the main functional components of the VR video client
emulator3. The VR-EXP video client emulator is an extensible and fully parameterized headless
VR video client emulator. The source code is written in the C language using the Curl4 library to
systematically fetch tile-based VR videos over the HTTP protocol. The emulator is composed of five
main components (Figure 2): (i) sphere-to-plane projection handling, (ii) viewport prediction error
injection, (iii) adaptive bitrate adaptation, (iv) tile fetching method, and (v) playout performance
measurement. Next, we describe their functionality.

Sphere-to-Plane Projection Handling. Several state-of-the-art approaches for VR video streaming
optimization rely on tile-based projection schemes [8, 12, 15, 25]. Additionally, modern QoE esti-
mation models employ tile clustering methods for manipulating groups of tiles in a coordinated
way, depending on their spatial position [8]. To cope with these features, VR-EXP is designed to
support different tiling schemes and tile clusterization into multiple zones. A multi-zone approach
is in line with the notion that the spatial position in which a VR video degradation occurs is vital
for estimating QoE. For example, Figure 3 depicts an 8x5 tiling scheme which is divided into three
zones, where Zone 1 is defined as containing only the viewport’s central tile, Zone 2 encompassing
the viewport border tiles (8 tiles), and Zone 3 containing the 31 remaining tiles.

 

Zone

 

Zone

 

Zone

8 horizontal tiles

5 vertical tiles

Viewport = 

 

Fig. 3. Example of an 8x5 tiling scheme organized in three zones.

Viewport Error Injection. Once the projection handler is capable of dealing with several tiling
schemes, the next step towards efficient VR streaming consists of emulating the viewport prediction.
More precisely, in order to provide an accurate simulation of the entire VR context, the most
2VR-EXP: https://github.com/rtcostaf/TOMM2019_VR-EXP/
3For additional details, please refer to the documentation available at VR-EXP [34].
4Curl: https://curl.haxx.se/libcurl/c/
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significative information regarding any heuristic is the viewport prediction error. As discussed
in Subsection 2.2, viewport prediction algorithms present highly variable accuracy depending on
many factors. To allow for an accurate evaluation of error patterns, VR-EXP provides a controlled
viewport error injection during the streaming session. We designed a flexible viewport error
injection component which takes as input viewport traces (i.e., datasets describing the coordinates
where the users have looked at in a particular time frame). The viewport trace files contain a full
record of coordinates of the VR video, captured at regular intervals (e.g., at each 20ms). In order
to provide a mechanism to evaluate the impact of wrong viewport predictions, VR-EXP enables
injecting artificial prediction errors when processing the coordinates specified in the trace file.
The error injection mechanism can be parameterized with a given error rate, as well as easily
extended to support different error models. Using the viewport error injection can be very helpful in
designing novel viewport prediction algorithms. Using VR-EXP, the developer can indeed measure
the impact of the error on the resulting performance of the VR sessions. Also, VR-EXP allows
understanding what would be the minimum error to guarantee a target performance. The error
injection mechanism can be parameterized with a given error rate, as well as easily extended
to support different error models. In the current version of VR-EXP, we modeled the viewport
prediction error as a random variable with a uniform distribution.

Dynamic Bitrate Adaptation. Taking advantage of the viewport prediction, ABR algorithms
provide significative bandwidth savings by selecting appropriate quality representations for each
spatial zone. In this procedure, each of the zones is assigned with the most suitable quality level
according to both their distance from the center of the viewport and the available bandwidth. VR-
EXP currently implements two alternative adaptive streaming heuristics. The general idea of the
first heuristic procedure, named Full Delivery (FD) [25], is as follows. Once knowing the available
bandwidth in the network (i.e., based on network conditions measured during the download of
previous segments), the emulator downloads tiles with the best fit regarding the available bandwidth.
For each segment, the heuristic tries to first increase the bitrates on the inner zones of the viewport
(Zone Z1 in Figure 3). Then, it repeats the procedure to stream tiles from the outer zones (Zones 2 and
3, respectively). Thus, when considering networks with enough available bandwidth, this heuristic
will increase the quality representation for all zones. This approach provides effective protection
against viewport prediction errors, at the cost of high bandwidth consumption. The second heuristic,
named Full Delivery Basic (FDB) [11, 26], works similarly to the first one. However, instead of
increasing the bitrate whenever possible in outer zones, this heuristic increases the bitrates only for
zones within the viewport. Although FDB reduces the amount of consumed bandwidth significantly,
it may entail QoE degradation in case of viewport prediction errors. Regardless of the approach,
the downloaded segments are stored in a playout buffer to be eventually played. Observe that the
buffer size plays a significant role in the VR video client performance – particularly regarding
viewport prediction accuracy – and, therefore, can be adjusted as needed.

Tile Request Method. On the one hand, the combined use of tile-based VR videos, ABR heuristics,
and viewport prediction have proven to be an effective approach to avoid wasting bandwidth.
On the other hand, the adaptive tile-based video encoding leads to an increased number of files
to be fetched from the content server. For example, consider a 10-minute tile-based VR video,
split into 1-second segments, encoded with an 8x5 tiling scheme, and available on three quality
representations (i.e., HD, FHD and 4K). For each second of video, it would be necessary to download
one quality representation for each tile, which leads to 40 files per second, that is, 24,000 files for
a 10-minute streaming session. Considering the above, for each video segment, there is a set of
tiles within pre-specified zones to be fetched from the server. VR-EXP allows fetching VR tiles
according to two strategies: serial and parallel. On using the serial request method, tiles are fetched
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from the server, one by one, using multiple (non-parallel) HTTP requests, in a single connection.
In turn, in the parallel method, tiles within the same zone (e.g., tiles belonging to the viewport) are
fetched in parallel using a configurable number of parallel connections. VR-EXP allows specifying
the number of simultaneous connections per zone and splits the set of tiles uniformly among the
available connections. It worth mentioning that VR-EXP employs a regular HTTP server (e.g.,
Apache, NGINX) for hosting the tile-based VR videos, so no specific parameterization is required.

VR Video Playout Performance. To bring together the components detailed throughout this section,
along with realistic input datasets, VR-EXP provides a realistic emulation of the VR video streaming
ecosystem. Therefore, the next important step toward building a comprehensive VR video evaluation
platform is to measure the VR video playout performance accurately. During the video streaming
session, VR-EXP assesses a number of VR video playout performance metrics capable of objectively
characterizing the quality of the video playout. These metrics include the number of tiles per
zone/quality (e.g., number of tiles within the viewport retrieved in 4K resolution), number of quality
switches per zone (i.e., number of quality switches on a specific zone), stall time and startup time
delay. Table 1 provides an example list regarding the playout performance metrics provided by
VR-EXP (the complete list may vary depending on the parameterization of the VR-EXP). These
metrics were selected because they are the most influential when predicting QoE based on the
video streaming playout performance [8]. It is worth mentioning that VR video applications rely
on TCP/HTTP for providing reliable streaming services. Thus, network performance degradation
events, such as packet loss or increased delay, will necessarily translate into either or both quality
switches and video stall. Along these lines, VR-EXP focuses on evaluating how multiple VR video
optimization techniques interact with variable network performance conditions. Evaluating the
distortion introduced by different projection schemes and codecs is out of the scope of this work.

Table 1. Playout performance metrics for VR video streaming

Field Short description Type/unit

1 Video file name string
2 User ID (viewport trace ID) integer
3 Tiling scheme (8x4, 12x4) string
4 Network trace ID integer
5 Tile request method (serial, mutli-thread) integer
6 Network TCP throughput - downlink Mbps
7 Network delay - RTT ms
8 Network packet loss - downlink %
9 Number of 720p tiles - zone 1 integer
10 Number of 1080p tiles - zone 1 integer
11 Number of 4K tiles - zone 1 integer
12 Number of 720p tiles - zone 2 integer
13 Number of 1080p tiles - zone 2 integer
14 Number of 4K tiles - zone 2 integer
15 Number of 720 tiles - zone 3 integer
16 Number of 1080p tiles - zone 3 integer
17 Number of 4K tiles - zone 3 integer
18 Number of quality switches - zone 1 integer
19 Number of quality switches - zone 2 integer
20 Number of quality switches - zone 3 integer
21 Total video stall time seconds
22 Video startup delay seconds
23 Average bitrate - zone 1 Mbps
24 Average bitrate - zone 1 Mbps
25 Average bitrate - zone 1 Mbps
26 Viewport error rate (0 - 100) %
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3.3 Network Performance Enforcing
In order to enforce real-world network performance conditions, it is possible to employ, at least,
three different strategies: (i) network simulation, (ii) network emulation or (iii) dedicated network
infrastructure. The use of network simulation provides great control over the simulated elements.
However, simulating the full VR video components stack, plus complex network aspects (e.g.,
routing, fairness between distinct TCP flavors, operating system features and their limitations)
would burden the complexity of implementation and potentially lead to inaccurate simulation
results. On the other extreme, dedicated infrastructure provides a realistic environment at the cost
of reduced flexibility and complex setup. In light of this, we decided to employ network emulation
as we consider this design choice a suitable balance between flexibility and accuracy.
For emulating network links, VR-EXP provides a customized SDN controller (based on Ryu5)

which, along with Mininet6, enables reproducing sophisticated network scenarios. The SDN con-
troller is the preferred option for complex network environments due to its ability to easily handle
dynamic network topologies and forwarding rules. Also, this strategy allows evaluating the VR
video streaming ecosystem when subjected to large topologies and high link competition through
many concurrent video sessions. However, if the network scenario does not require such complex-
ity (e.g., simulating a few links with static routes), the SDN approach could be replaced with a
simpler alternative mechanism (i.e., Traffic Control7). Both approaches can benefit from simplified
scripting to read input datasets, which describe the network performance (i.e., delay, jitter, residual
bandwidth, packet loss) and enforce these network conditions on a target network.

3.4 QoE Model
VR-EXP is designed to work with any QoE model that supports VR video playout performance
indicators as input. Employing a QoE model can be very insightful as it provides a consolidated
view regarding the effect of multiple VR video playout performance metrics on QoE. In consonance
with state-of-the-art QoE models for traditional video streaming [20, 23, 37], we employ a QoE
model [8] that is able to translate multiple VR video playout performance characteristics into an
estimated QoE score.

ϕ(Zk ) =

Quality︷                       ︸︸                       ︷∑
∀t ∈Zk

∑
∀c ∈C(t )
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∑
∀t ∈Zk

∑
∀c ∈Ctm

(
dc (Rc )
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)
+

− λ ·
∑
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∑
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���� q(R(Ctm+1)) − q(R(Ctm )
����

︸                                                 ︷︷                                                 ︸
Quality switches

−ω ·Ts︸︷︷︸
Startup

(1)

The QoE model is comprised of four main terms, as shown in Equation 1. The first term uses
a function q which translates the measured bitrate of the chunk tm (function R) into the quality
perceived by the user. Function q is in line with the notion that different users may have a different
perception regarding the bitrate of the VR video. For example, some users may have a linear
perception, which means that an increase of 50% in the video bitrate will be perceived as an increase
5Ryu SDN Controller: https://osrg.github.io/ryu/
6Mininet: https://mininet.org
7TC: http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
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of 50% in quality. In turn, other users may have a sub-linear quality perception, where the same
increment in terms of bitrate is perceived as a marginal increment of quality. The second term
is used to keep track of the stall time. It considers, for each chunk c , that a stall event occurs
when the download time dc (Rc )

Cc
is higher than the playout buffer (Bc ) when the chunk download

started. Therefore, the total stall time is given by
∑C
c=1

(
dc (Rc )
Cc

− Bc
)
+
. In addition, |q(Rct+1)−q(Rct )|

considers the quality switches between consecutive chunks and Ts tracks the startup delay. Finally,
constants µ, λ,ω are the non-negative weights used to adapt the model to different user sensitivities
regarding degradation in VR video playout. For example, a higher value of µ with respect to the
other weights means that the user is more susceptive to video stalls. Consequently, these events
should affect the QoE indicator more severely.

Aiming to provide a more realistic assessment, the considered QoE model resorts to the concept
of zones. The main idea of this approach relies on the notion that the QoE estimation must consider
the spatial segmentation aspect of the VR videos. For example, tiles near to the center of the
viewport will greatly steer the quality perceived by the user, while bad qualities on tiles of the edge
zones, or even outside the viewport, will potentially go unnoticed. For this reason, the overall video
QoE (ϕ(V )) is modeled as a weighted linear sum of the QoE measurement per zone (Equation 2).
Each weight (α1,α2, ...,αk ) determines the relative importance of each zone.

ϕ(V ) =α1 · ϕ(Z1) + α2 · ϕ(Z2) + ... + αk · ϕ(Zk )
(2)

4 EVALUATION SETUP
Using VR-EXP as basis, we carry out an extensive evaluation of state-of-the-art heuristics when
subjected to variable network performance conditions. In this section, we present the experimental
setup. We start by introducing the 4G/LTE performance dataset, which provides realistic network
conditions to the evaluation process. Next, we describe the VR video dataset, including head track
traces, which enables the evaluation of viewport-aware approaches. We end this section by outlining
the experiment plan and its main procedures.

4.1 4G/LTE Performance Dataset
In this work, along with the VR-EXP method and toolkit, we provide a comprehensive dataset for
4G/LTE network performance. The dataset contains the following IP metrics: Round Trip Time
(RTT), delay variation (also referred to as jitter), one-way packet loss, and one-way TCP throughput
(in the scope of this work also referred as to residual bandwidth). These metrics were gathered by
means of IP active measurements, in conformance with the recommendations issued by the IETF
IP Performance Metrics Working Group [21]. To obtain these indicators we employed a scalable
active measurement-based platform named Netmetric [7, 10, 30]. Table 2 describes the dataset fields.
Except for packet loss, all values are averaged over the whole packet burst.

Table 2. IP performance dataset (Field 1 is the leftmost column

Field Short description Type/unit
1 TCP throughput - uplink b/s
2 TCP throughput - downlink b/s
3 Round-trip time (RTT) seconds
4 Packet loss - downlink %
5 Packet loss - uplink %
6 Delay variation (jitter) - uplink seconds
7 Delay variation (jitter) - downlink seconds
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In Figure 4 we present a brief statistical analysis of the measurements available in the dataset
regarding the three main metrics. As shown in Figure 4a, the TCP throughput metric presents a
wide range of measured values for the downlink. For example, the downlink presents a throughput
varying from a minimum of 31.4 Kbps to a maximum of 113.2 Mbps, with a median of 16.5 Mbps
and a mean of 19.6 Mbps. In turn, Figure 4b depicts the RTT metric ranging from 1 ms up to 18.5
seconds (the upper limit is not shown in the Figure 4b due to the long tail), with a median of 81 ms
and a mean of 120 ms. Finally, the packet loss (Figure 4c) for the downlink ranges from 0% up to 8%.
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Fig. 4. Network performance dataset: histograms for TCP throughput, delay and packet loss.

The network dataset comprises over 14,000 measurements taken from 01/06/2017 to 31/07/2017.
Each measurement considers the end-to-end path between the source node, a server located at the
premises of the Federal University of Rio Grande do Sul, and ameasurement device (destination). The
destination of each measurement session is an Android (6.0) smartphone running the measurement
agent and attached to a 4G/LTE network. Measurement devices were spread countrywide embracing
the four major mobile operators. Together, these operators are responsible for providing mobile
services to over 236 million subscribers [31].

Each measurement session is composed of two bi-directional packet bursts, where the first uses
UDP and the second TCP. The UDP packet burst is employed to measure RTT, loss and jitter by
injecting 400 packets of 100 bytes at 50 ms intervals. As some operators block the Network Time
Protocol (NTP), we decided not to measure the One-Way Delay (OWD). Instead, the RTT metric
was obtained based on a single clock (source). In turn, the TCP burst gauges the TCP throughput
for the considered path by injecting 640 packets of 1,488 bytes each. For privacy reasons, sensitive
information regarding the considered mobile operators (e.g., operator name, provider ID, cell ID)
has been removed from the dataset.
Considering the number of measurements and the wide range of the considered metrics, the

network performance dataset may be useful to support further research in several areas. Especially
in the field of VR video streaming since the available metrics encompass the network performance
indicators that influence video streaming performance the most (i.e., delay and residual band-
width) [8, 37]. Additionally, the metrics’ ranges allow evaluating high-resolution and tile-based VR
videos, including 4K+ resolution. It is worth mentioning that the range for the TCP throughput
metric is in line with similar studies conducted in other regions et al. [32].

4.2 VR Video Dataset
In this evaluation we use two VR videos from Wu et al.’ s dataset [35], namely “Google Spotlight-
HELP" and “Freestyle Skiing". Aiming at evaluating viewport-aware approaches, for each video we
also consider the available datasets which describe users’ head movements while watching the VR
videos. However, the original VR videos are non tile-based, so they needed to be re-encoded. To
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do so, the first step consisted of extracting the raw YUV files, making use of the Kvazaar encoder
[33]. The resulting encoding produced two tiling schemes: 8 × 4 and 12 × 4 [18, 26]. Additionally,
each tiling scheme was encoded into three quality representations, namely 720p (1.8Mbps), 1080p
(2.7Mbps) and 4K (6Mbps). Next, we employed the MP4Box8 application to pack the encoded videos
into MP4 containers. Then, we sliced each quality representation into 1 second segments. Finally,
we used MP4Box to extract per-tile files and to generate the MPEG Dash Media Presentation
Description (MPD) files considering multiple quality representations. Table 3 summarizes the main
parameters regarding the VR video dataset.

Table 3. Adaptive streaming configurations.

Videos Qualities (bitrates) Quality zones Segment Tiling

Google Spotlight 720p - 1.8Mbps Zone 1: 1 tile (central FoV) 1 s 12 × 8
Freestyle Skiing 1080p - 2.7Mbps Zone 2: 8 tiles (adj. Zone 1) 8 × 4
(Wu et al. [35]) 4K - 6Mbps Zone 3: remaining tiles

4.3 Experiment Plan
VR-EXP was deployed on the imec iLab.t Virtual Wall emulation platform9. The experiments
consisted of employing VR-EXP for measuring VR video performance while subjected to a broad
variety of network conditions and multiple VR video optimization techniques. To capture the
interplay between the considered variables (detailed in Subsection 3.2), we varied the experiment’s
parameters (e.g., network performance, VR video, tiling scheme, adaptive bitrate heuristic, playout
buffer size) in a controlled manner. The experiments were organized around each key VR video
optimization technique, namely the viewport prediction error, per tile rate adaptation heuristics
and tile requesting method. In a first step, we varied the parameters within each heuristic at a time,
assuming default values for the remaining heuristics (according to Table 4). In order to capture the
interplay within a set of heuristics, in the second step, we carried out a more sophisticated evaluation
by varying multiple parameters and heuristics within the same experiment. To instantiate the QoE
model, we consider the three-zone scheme defined by Da Costa Filho et.al [8], where Zone 1 refers
to the viewport center tile, Zone 2 encompasses the eight tiles surrounding Zone 1, and Zone 3
includes all remaining tiles. We also consider the same constants and function values proposed
by the authors, which are summarized as follows (refer to Equations 1 and 2): q = Linear , µ = 4.3,
ω = 4.3, λ = 1, α1 = 0.7, α2 = 0.3, and α3 = 0.

5 RESULTS
In this section, we present the results regarding the application of VR-EXP along with the inputs
and parameters described in Section 4. We start by evaluating the effects of the Viewport Prediction
Error (VPE) on VR video playout performance and QoE. Next, we extend this analysis to encompass
per tile rate adaptation heuristics, and finally to tile requesting method. We end this section by
presenting a more sophisticated scenario, where multiple parameters, heuristics and the network
performance conditions vary within the same experiment.

5.1 Effects of Viewport Prediction Error
When dealing with traditional 2D video streaming, we use the term video bitrate (e.g., 2 Mbps, 6
Mbps) equivalently with their respective representations of quality (e.g., 1080p, 4K). Also, we can
8MP4Box https://gpac.wp.imt.fr/mp4box/
9imec iLab.t: http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html
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Table 4. Main VR-EXP input parameters

Parameter Value/Range Details

VR video Google Spotlight-HELP and Freestyle Skiing Both videos are used in all experiments
Head track traces Google Spotlight-HELP and Freestyle Skiing multiple users/head track traces for each video
Video format MP4 - HEVC tile-based and HAS Using MP4Box10
Video encoder Kvazaar Kvazaar encoder [33]
HAS 720p (1.8Mbps), 1080p (2.7Mbps) and 4K (6Mbps) Kvazaar encoder [33]
Segment size 1 second the same for all experiments
Tiling scheme 8x4 and 12x4 Both tiling schemes are used in all experiments
Considered viewport One central tile and eight border tiles NA
Viewport error rate 0% up to 100% Default 0%
Rate adaptation heuristic FD and BFD Default BFD
Tile request method Single thread, 6 threads and 8 threads Default single thread
Playout buffer 2 sec up to 8 sec Default 2 sec

state that there is a correspondence between the average bitrate delivered to the user and the average
bitrate that effectively traversed the network (i.e., bandwidth consumption). However, when it
comes to tile-based VR video streaming, this relationship becomes less trivial. For example, consider
the streaming of a tile-based VR video using a 12x4 tiling scheme and a viewport containing nine
tiles. Assume that during most of the streaming session the viewport is displayed in 4K resolution,
while the tiles outside the viewport are fetched at 720p. It turns out that the bitrate delivered
to the user (visible portion of the VR video) is equivalent to the 4K representation (i.e., 6 Mbps).
However, when considering the FDB heuristic for adaptive bitrate, the overall bitrate of the video
(i.e., equivalent to the average bandwidth demand during the streaming session) will be slightly
higher than the bitrate of the 720p representation. It happens because most of the video (not visible
by the user) was fetched in low resolution. For didactic reasons, in this evaluation we use the term
Viewport Bitrate to denote the bitrate perceived by the user, while the term Video Bitrate refers to
the total bitrate of the video (averaged over all tiles), being equivalent to the bitrate effectively
demanded from the network.

As discussed in Section 2, depending on the viewport prediction algorithm and the playout buffer
size, the viewport prediction accuracy can be quite erratic. In this section, we apply VR-EXP to
evaluate the impact of the viewport prediction errors on both video playback performance and QoE.
Figure 5 shows the performance of the video playout, regarding viewport bitrate and QoE, when
subjected to variable network performance conditions and prediction error. Figure 5a illustrates
the baseline scenario, characterized by absence of viewport prediction errors. In this scenario, a
network delay below 12 ms is fundamental to provide good levels of viewport bitrate (recall that the
bitrate for the 4K representation is 6 Mbps). In such conditions, it is possible to observe viewport
rates close to 6 Mbps across a wide range of available bandwidth values.
Figures 5b and 5c show how the viewport prediction error affects the viewport average bitrate.

When considering a viewport prediction error rate equal to 50% (Figure 5b), the maximum bitrate
decreases approximately by 1 Mbps, while a 100% error in the viewport (Figure 5c) drops the
maximum bitrate to near 4 Mbps, even when considering the most favorable network condition.
The viewport error does not affect the playout performancewhen subjected to significantly degraded
levels of network performance (i.e., delay higher than 50 ms). In such cases, the rate adaptation
algorithm has no room for increasing the quality representation. All tiles are requested at the lowest
available quality representation and, as a direct consequence, a viewport error does not lead to
additional degradation. Figures 5d, 5e and 5f demonstrate the impact of prediction errors on QoE.
One can observe that severe prediction errors (Figure 5f) may lead to a decrease of up to 2 points in
the QoE score when compared to the baseline scenario shown in Figure 5d.
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Fig. 5. The effects of the viewport prediction error on VR video playout performance and QoE.

Next, we employed VR-EXP to assess more accurately the effects of the viewport prediction
error. To do so we added the tile scheme information. Moreover, we split the rates between the
bitrate observed for the tiles within the viewport and the bitrate for the entire video (including the
viewport). Figure 6a shows the baseline case, which considers a perfect viewport prediction. To
improve readability, in all plots of Figure 5 we show the network variability only in terms of delay,
removing the bandwidth dimension from the analysis. The red dots represent the bitrate for the
entire VR video (i.e., viewport + remaining tiles), which is equal to the network bandwidth required
for streaming the VR video. When it comes to the viewport (blue dots), both tiling schemes are
able to achieve the maximum bitrate when the delay is lower than 12 ms. However, the 8x4 tiling
scheme presents significantly better bitrates for intermediate network conditions (delay between
12 ms and 60 ms). This gain is explained by the fact that the HTTP request/response overhead is
lower for the 8x4 tiling scheme (32 files per segment) against 48 files per segment for the 12x4 tiling
scheme. When the delay is higher than 60 ms, the video playout is totally impaired, and neither the
tiling scheme nor the VPE introduces additional degradation.
Complementing the previous analysis, in Figures 6b and 6c it is possible to observe that the

tiling scheme plays an important role in the video playout performance. The viewport error leads
to lower viewport bitrate for intermediate network conditions when compared to the baseline
scenario. Still, for intermediate network delay, the 8x4 tiling scheme presents a viewport bitrate up
to 2 Mbps higher when compared to the 12x4 tiling scheme. The obtained results indicate that the
VPE influences, mainly, the average viewport bitrate and quality switch metrics. The remaining
metrics for playout performance (i.e., startup delay and stall time) are not affected by prediction
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errors. Figures 5d, 5e and 5f show that, in line with previous findings, the viewport prediction
error has the potential to reduce the QoE score significantly. Nevertheless, the tiling scheme can
dramatically influence the QoE score. For example, in Figure 6d it is possible to observe that, for a
network delay of around 35 ms, the 8x4 tiling scheme outperforms the 12x4 by more than 2 points
in the expected QoE score.

Main insight for viewport prediction error. Increased levels of VPE may result in reduced view-
port quality and QoE. The VPE does not introduce further degradation when subjected to low-
performance networks. The tiling scheme has the potential to highly affect QoE when considering
intermediate levels of prediction error and network performance.
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Fig. 6. The effects of the viewport prediction error and tiling scheme on playout performance and QoE.

5.2 Per Tile Rate Adaptation Heuristics
As discussed in Section 2, the tile-based rate adaptation algorithm is crucial for achieving a suitable
balance between playout performance and network bandwidth consumption. Although VR-EXP
can be extended to encompass several strategies, in this section we focus on two distinct approaches,
namely the Full Delivery (FD) [25] and the Full Delivery Basic (FDB) [12]. Recall that both approaches
request the tiles inside the viewport in the highest possible quality representation. The main
difference between them is that, depending on the available bandwidth, the FD method attempts to
increase the bitrate for all the tiles, including the ones outside the viewport. Conversely, the FDB
approach does not increase the quality representation for tiles outside the viewport, regardless of
the available bandwidth.

Figures 7a and 7b show the relationship between the measured viewport bitrate (blue) and the en-
tire video bitrate (red), when subjected to variable network performance conditions. The difference
between FD and FDB is more noticeable when the delay is lower than 20 ms. In this case, FD benefits
from the available network performance to maximize the quality representation of the entire video.
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One key advantage of the FD approach is its natural protection against viewport prediction errors,
at the cost of increased bandwidth consumption. On the other hand, when considering methods
for viewport prediction with low error rates, the FDB method may represent a better choice as
it will maintain good levels of QoE while avoiding bandwidth waste. For intermediate network
delay (between 20 and 40 ms), both methods perform similarly, because the network performance
is sufficient to accommodate only the viewport in high quality. Finally, for a network delay higher
than 40 ms, there is no room for increasing the quality representation at all, and both strategies
present equivalent performance.

Main insight for rate adaptation heuristics. The FD heuristic provides excellent protection against
viewport prediction errors at the cost of increased bandwidth consumption. If combined with low-
error viewport prediction algorithms, FDB may potentially lead to reduced bandwidth consumption.
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Fig. 7. Dynamic rate adaptation heuristics: FD and FDB.

5.3 Multithreaded Tile Downloading
As discussed in Section 3, the network delay is the QoSmetric that affects video playout performance
the most. The reason is that high levels of network delay, when combined with both short video
segments and tiling scheme overhead, limit the download throughput. Multithreaded tile request
methods can improve the VR video playout performance by reducing the stall time. As shown
in Figure 8b, when using six threads it is possible to dramatically reduce the VR video stall time.
Basically, when compared to the single thread approach (Figure 8a), the use of six threads enables
handling twice as much network delay (from 20 ms to 40 ms) while maintaining the same level of
stall time. When resorting to ten threads for tile downloading (Figure 8c) it was possible to slightly
reduce the stalling time, especially when considering VR videos using the 8x4 tiling scheme (as
discussed next).
Figures 8e and 8f depict the effects of the multithreaded approach in the QoE score. When

compared to the single thread (Figure 8d), the multithreaded approach is able to increase the QoE
score in up to 1.5 points when the delay is higher than 20 ms. However, for network delays higher
than 80 ms, the QoE is completely degraded, regardless of the available bandwidth and the use of
multithreaded approaches.
Figure 9 shows the effect of the multithreaded approach on distinct tiling schemes (i.e., 8x4

and 12x4). When considering a network delay of 40 ms, the six threads approach outperforms
the single thread by reducing the stall time from 60 to 5 seconds (approximately) (Figures 8a and
8b). The experiment with six threads resulted in similar results for both tiling schemes, with a
slight advantage to the 8x4 one. In turn, the ten-thread experiment variation (Figure 8c) led to an
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additional reduction of the stall time for the 8x4 scheme, but not for the 12x4, which presented
roughly the same results when compared to the six-thread experiment.

Main insight for multithreaded tile downloading. Multithreaded tile fetching can dramatically
reduce the stall time and increase the QoE score for intermediate levels of network performance.
However, it does not provide noticeable improvements in QoE for either high or low network
performance.
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(a) Single thread - stall time
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(b) Six threads - stall time
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(c) Ten threads - stall time
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(d) Single thread - QoE
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(e) Six threads - QoE
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Fig. 8. Multi-thread effect on VR video stall time.

●●●●●●●●
●●
●●

●●●●
●●●●

●
●
●●

●
●
●
●
●
●
●
●●●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●●
●
●
●
●

0 20 40 60 80 100

0
20

40
60

80
10

0

Network Delay (ms)

S
ta

ll 
tim

e 
(s

ec
on

ds
)

●

●

8x4
12x4

(a) Single thread - stall time

●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●●●●●● ●●

●●
●●●●●●
●●

●●●●●●
●
● ●●●●●●●●

●
●
●
●●●●●

●
●
●
●

●
●
●
●●●
●
●

●●●●●●
●
●

0 20 40 60 80 100

0
20

40
60

80
10

0

Network Delay (ms)

S
ta

ll 
tim

e 
(s

ec
on

ds
)

●

●

8x4
12x4

(b) Six threads - stall time

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●

●

●
●
●

●

●

●
●●●●●

●

●

●

●
●
●
●
●●●
●
●●●●●●●●● ●

●
●
●
●
●
●
●

●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

Network Delay (ms)

S
ta

ll 
tim

e 
(s

ec
on

ds
)

●

●

8x4
12x4

(c) Ten threads - stall time

Fig. 9. Multi-thread: stall time and tiling scheme VS network delay.
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5.4 Buffer Size and Viewport Prediction Error
The evaluation carried out earlier in this section has focused on evaluating the effects of each VR
video optimization technique on VR video playout performance and QoE. Aiming to further explore
the interplay among different VR video optimization techniques, in this experiment, we evaluate
a set of four optimization aspects simultaneously, namely variable viewport scheme, variable
viewport prediction error, variable buffer size, and the FDB rate adaptation approach. Additionally,
instead of evaluating how the optimization techniques perform when subjected to distinct network
performance conditions, in this evaluation we vary the network conditions within the VR video
session. Table 5 shows ten distinct combinations of network performance indicators that were
randomly selected within the range for each QoS metric (as discussed in Section 4). A particular
VR video session lasts for 60 seconds, where each network performance configuration lasts for 6
seconds, starting with the configuration ID 1 up to the ID 10. The main objective of this experiment
is to evaluate the interplay between multiple VR video optimization approaches while subjected
to highly variable network performance conditions. To provide a generalized analysis, the results
presented in Figure 10 represent the averaged values when considering the entire VR video dataset.
Therefore, the error bars, in this case, represent the min-max range for each histogram bin.

Table 5. Network performance indicators within a 60-second-long VR video session

Conf. ID Delay (ms) Bandwidth (Mbps)

1 1 74
2 4 38
3 55 31
4 2 60
5 4 54
6 95 8
7 6 22
8 1 84
9 49 19
10 87 7

Figure 10a shows the average quality observed for the viewport when streaming VR videos
subjected to variable buffer size and viewport prediction error rates. As discussed in Section 2,
for most state-of-the-art viewport prediction algorithms, the bigger the buffer size, the higher the
prediction error rate. Aiming at evaluating a broad range of scenarios, in the analysis presented
in Figure 10a used a full factorial experiment design considering different values for buffer size
and error rate. The obtained results indicate that the viewport prediction error greatly affects the
viewport bitrate, while the buffer size itself does not have noticeable influence on it.

Figure 10b shows that the increased buffer size was able to dramatically reduce the stall time.
For example, when considering a playout buffer dimensioned for 4 seconds of video, the stall time
drops from 11 seconds to less than 2 seconds (on average). Furthermore, when increasing the buffer
to 8 seconds, it was possible to completely eliminate the stall time. However, as discussed in Section
2, most state-of-the-art viewport prediction algorithms experiment sudden accuracy drop when
increasing the playout buffer size. Hence, the effective analysis of the interplay between buffer size
and viewport error must be done through the evaluation of the QoE indicator, since the QoE score
will simultaneously consider both playout performance metrics. Figure 10c shows that, when using
8 seconds of playout buffer, the worst case scenario for the QoE score (i.e., viewport prediction
error of 100%) performs on par with the best case scenario of the 2 seconds buffer (i.e., viewport
prediction error of 0%). Furthermore, due to the human randomness, prediction algorithms may
present low accuracy even when considering small buffers (e.g., 2 sec). Therefore, using higher
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values for dimensioning the playout buffer (e.g., 8 sec) will probably outperform smaller buffers
setups in most cases.

Main insight for mixed buffer size and prediction error. When dealing with realistic performance
levels, increasing the playout buffer size may potentially lead to a better QoE score, even considering
the likely increase in the prediction error.

 1

 2

 3

 4

 5

 6

2 4 6 8

V
ie

w
po

rt
 B

itr
at

e 
(M

bp
s)

Buffer Length (seconds)

VP Error 0%
VP Error 50%

VP Error 100%

(a) Viewport average bitrate

 0

 2

 4

 6

 8

 10

 12

 14

 16

2 4 6 8

S
ta

ll 
T

im
e 

(s
ec

on
ds

)

Buffer Length (seconds)

VP Error 0%
VP Error 50%

VP Error 100%

(b) Stall time

 1

 2

 3

 4

 5

2 4 6 8

Q
oE

 

Buffer Length (seconds)

VP Error 0%
VP Error 50%

VP Error 100%

(c) QoE

Fig. 10. The influence of multiple VR video optimization techniques on VR video streaming playout perfor-
mance and QoE.

6 CONCLUSION
VR video streaming applications are growing fast. To cope with the huge demand for network
resources, both the scientific community and the industry have proposed optimization techniques
for VR videos. However, the complex interplay between VR video optimization techniques and
variable network conditions challenges developers of VR video solutions, as this interaction is
neither trivial nor has it been properly investigated. Additionally, a publicly-available solution to
provide a reproducible and in-depth evaluation of the VR video realm is still missing.

To address this problem, we proposed VR-EXP, an open-source platform for evaluating adaptive
VR video streaming that encompasses various optimization techniques and allows for network
performance conditions to be varied. To support realistic evaluation, we provide a 4G/LTE perfor-
mance dataset comprised of multiple network performance metrics. Employing VR-EXP, along
with realistic datasets, we have produced an extensive assessment that examines the performance
of several state-of-the-art optimization techniques when subjected to variable network conditions.
The results obtained evidence that the relationship between different optimization techniques for
video VR optimization is not trivial. Mainly, because certain combinations can benefit one aspect
of reproduction and impair others. For example, the increased buffer size, combined with the FDB
approach, may lead to increased viewport prediction error. In this case, the viewport bitrate will be
degraded and the stall time will be reduced. By combining an objective assessment of VR video
streaming playout performance and a comprehensive QoE model, VR-EXP allowed pinpointing the
components of the VR video ecosystem that most affect the performance of VR video playout and,
ultimately, QoE.

The benefits of this work are twofold. From the VR video developers’ perspective, we expect to
contribute a useful approach to conducting a precise and realistic performance evaluation of novel
optimization techniques. In turn, from the mobile operator’s perspective, we expect VR-EXP to be
a valuable tool for supporting investigations aimed at understanding and predicting how variable
network conditions impact VR video performance and QoE delivered to their end-users.
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