UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE AGRONOMIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DO SOLO

FATORES EROSIVIDADE DAS CHUVAS DE AUGUSTO PESTANA (RS), COBERTURA E MANEJO DO SOLO E ERODIBILIDADE DE LATOSSOLO VERMELHO PARA USO NA EQUAÇÃO UNIVERSAL DE PERDAS DE SOLO.

> Marcelo Raul Schmidt (Dissertação de Mestrado)

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE AGRONOMIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DO SOLO

FATORES EROSIVIDADE DAS CHUVAS DE AUGUSTO PESTANA (RS),
COBERTURA E MANEJO DO SOLO E ERODIBILIDADE DE LATOSSOLO
VERMELHO PARA USO NA EQUAÇÃO UNIVERSAL DE PERDAS DE
SOLO.

MARCELO RAUL SCHMIDT ENGENHEIRO AGRÔNOMO (UNIPAMPA)

Dissertação apresentada como um dos requisitos à obtenção do Grau de Mestre em Ciência do Solo

> Porto Alegre (RS), Brasil Fevereiro de 2017

CIP - Catalogação na Publicação

Schmidt, Marcelo Raul

FATORES EROSIVIDADE DAS CHUVAS DE AUGUSTO PESTANA (RS), COBERTURA E MANEJO DO SOLO E ERODIBILIDADE DE LATOSSOLO VERMELHO PARA USO NA EQUAÇÃO UNIVERSAL DE PERDAS DE SOLO / Marcelo Raul Schmidt. -- 2017. 167 f.

Orientador: Elemar Antonino Cassol.

Dissertação (Mestrado) -- Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, Programa de Pós-Graduação em Ciência do Solo, Porto Alegre, BR-RS, 2017.

- 1. Erosão. 2. Equação Universal de Perdas de Solo.
- 3. Manejo. 4. Erosividade. 5. Erodibilidade. I. Cassol, Elemar Antonino, orient. II. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os dados fornecidos pelo(a) autor(a).

DISSERTAÇÃO

Submetida como parte dos requisitos para obtenção do Grau de

MESTRE EM CIÊNCIA DO SOLO

Programa de Pós-Graduação em Ciência do Solo Faculdade de Agronomia Universidade Federal do Rio Grande do Sul Porto Alegre (RS), Brasil

Aprovado em: 21.02.2017 Pela Banca Examinadara

ELEMAR ANTONINO CASSOL Orientador-EPG Ciência do Solo

finedis burn

epartamento de Solos/UFRGS

CLÁUDIA ALESSANDRA PEIXOTO DE BARROS Departamento de Solos/UFRGS

SON BEUTLER

CARLOS ALBERTO BISSANI Diretor da Faculdade

Homologado em: 09.04.2019

Programa de Pós-Graduação

Coordenador do

em Ciência do Solo

UNIPAMPA Diretor da f
de Agronomia

Dedico este trabalho aos principais responsáveis por todas minhas conquistas. Meus pais: **Claudio e Sirlei**

AGRADECIMENTOS

Ao professor Elemar Antonino Cassol, principalmente por ter aceitado me orientar nessa caminhada e por todo o conhecimento e didática repassados, tanto na pesquisa quanto em trabalhos de campo.

Aos vários funcionários das instituições (Cotrijui, IPRNR e Departamentoto de Solos da UFRGS), aos estudantes, técnicos, pesquisadores e professores responsáveis pela condução do experimento a campo, pelas coletas e análises de laboratório e pela manutenção do banco de dados que foi cedido para realização de minha dissertação.

Aos colegas do grupo de pesquisa em erosão, Joelma, Priscila e, principalmente, Tiago que sempre me ajudou muito em discussões e ideias durante a realização do trabalho. Assim como o colega Moacir, que sempre sanou dúvidas e auxiliou durante a pesquisa.

Aos meus pais que sempre foram os principais professores, me dando apoio, educação e conselhos durante toda a vida, bem como ajuda financeira nos momentos mais difíceis.

A minha namorada Natiéli, que nos momentos mais difíceis foi a fonte de inspiração para superá-los;

Aos colegas e amigos Denardin, Murilo, Vítor, Dionata e César pelos momentos de lazer, discussões e também ajudas. Tanto no trabalho quanto na vida pessoal.

A UFRGS pela oportunidade, a CAPES e ao CNPq pelo auxílio financeiro durante o curso.

A todos os professores e funcionários por ajudas e conhecimentos repassados.

A minha família pelo apoio e energia repassados.

FATORES EROSIVIDADE DAS CHUVAS DE AUGUSTO PESTANA (RS), COBERTURA E MANEJO DO SOLO E ERODIBILIDADE DE LATOSSOLO VERMELHO PARA USO NA EQUAÇÃO UNIVERSAL DE PERDAS DE SOLO⁽¹⁾

Autor: Eng^o. Agr^o. Marcelo Raul Schmidt Orientador: Prof. Dr. Elemar Antonino Cassol

RESUMO

A erosão do solo é um dos mais importantes problemas ambientais no mundo, podendo causar prejuízos econômicos, sociais e ambientais. Modelos de predição das perdas de solo por erosão permitem fazer planejamentos conservacionistas e controlar a erosão. A Equação Universal de Perdas de Solo (USLE) é um modelo simples e muito utilizado, mas necessita a determinação de seus fatores para ser possível aplicá-la a nível local. O objetivo do estudo foi determinar o fator R da USLE através de registros de chuyas do município de Augusto Pestana RS, bem como os fatores K e C da mesma, em experimento de campo realizado no mesmo município, entre 1976 e 1988, em Latossolo Vermelho com diferentes sistemas de uso e manejo do solo. Na USLE o fator K representa a erodibilidade do solo, o fator C representa o efeito de da cobertura e manejo do solo nas perdas por erosão e o fator R representa a erosividade das chuvas. Os tratamentos estudados foram: solo descoberto (SDPP); sucessão trigo-soja nos preparos convencional (TSPC), reduzido (TSPR) e direto (TSPD); sucessão aveia-milho nos preparos convencional (AMPC) e direto (AMPD); bem como o uso de pastagens de alfafa (RALF) e consórcio de setária, siratro e desmódio (RSSD) seguidas de três anos com a sucessão trigo-soja em preparo convencional. Utilizando-se 12 anos de registros de chuva, determinou-se fator R de 9.765 MJ mm ha-1 h-1, o valor seguiu a tendência apresentada no estado, de aumento de sul-norte e de leste-oeste. Utilizando-se 10 anos de dados de perdas de solo o valor do fator K foi de 0,0090 Mg ha h ha⁻¹ MJ⁻¹ mm⁻¹. O baixo valor do fator K é devido às características do Latossolo que lhe conferem alta resistência à erosão, ou seja, baixa erodibilidade. O fator C foi de 0,1824; 0,1195 e 0,0565 para TSPC, TSPR e TSPD respectivamente; de 0,1963 para AMPC e 0,0530 para AMPD. Nas pastagens o valor do fator C foi de 0,0134 para seis anos com alfafa e 0,0041 para quatro anos com setária + siratro + desmódio. Para a RALF, o fator C foi de 0,0244 e na RSSD foi de 0,0287. Os menores valores do fator C em sistemas conservacionistas e em pastagens permanentes, representam a eficiência dos mesmos na redução das perdas de solo.

-

⁽¹⁾ Dissertação de mestrado em Ciência do Solo. Programa de Pós-Graduação em Ciência do Solo, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul. Porto Alegre.155 p.). Fevereiro de 2017. Trabalho financiado com o apoio financeiro do CNPq e da CAPES.

FACTORS EROSIVITY OF AUGUSTO PESTANA (RS) RAINS, COVER AND MANAGEMENT AND ERODIBILITY OF AN OXISOL FOR USE IN THE UNIVERSAL SOIL LOSS EQUATION (1)

Author: Agron. Marcelo Raul Schmidt

Adviser: Prof. PhD. Elemar Antonino Cassol

ABSTRACT

Soil erosion is one of the most important environmental problems in the world and can cause economic, social and environmental damages. Prediction models of erosion soil losses allow for conservation planning and erosion control. The Universal Soil Loss Equation (USLE) is a simple and widely used model, but it needs to determine its factors in order to be able to apply it locally. The objective of the study was to determine the R factor of USLE through rainfall records of Augusto Pestana county, Rio Grande do Sul state, as well as factors K and C of it, in a field experiment conducted in the same county, between 1976 and 1988, in an Oxisol with different land use and management systems. In the USLE the K factor represents the soil erodibility, the C factor represents the effect of the cover and soil management in the erosion losses and the R factor represents the rainfall erosivity. The treatments studied were: uncovered soil (SDPP); wheat-soybean succession in conventional (TSPC), reduced (TSPR) and no tillage (TSPD) systems; oatmaize succession in conventional (AMPC) and no tillage (AMPD) systems; as well as the use of alfalfa pastures (RALF) and setaria siratro and desmódio consortium (RSSD) followed by three years with the wheat-soybean succession in conventional tillage. Using a 12-year rainfall record, R factor of 9,765 MJ mm ha⁻¹ h⁻¹ was determined; the value followed the trend presented in the state, rising of south-north and east-west. Using 10 years of soil loss data, the K factor value was 0.0090 Mg ha h ha⁻¹ MJ⁻¹ mm⁻¹. The low value of the K factor is due to the characteristics of the Oxisol that give it high resistance to erosion, that is, low erodibility. C factor was 0.1824; 0.1195 and 0.0565 to TSPC, TSPR and TSPD respectively; of 0.1963 for AMPC and 0.0530 to AMPD. In pastures the value of C factor was 0.0134 to six years with alfalfa and 0.0041 to four years with setaria + siratro + desmodio. To RALF, C factor was 0.0244 and in RSSD it was 0.0287. The lower values of C factor in conservation systems and permanent pastures represent their efficiency in reducing soil losses.

_

⁽¹⁾ M.Sc. Dissertation in Soil Science – Programa de Pós-Graduação em Ciência do Solo, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul. Porto Alegre (155 p.). February, 2017. Research supported by CNPq and CAPES.

SUMÁRIO

Pi	ag.
1. INTRODUÇÃO	1
2. REVISÃO BIBLIOGRÁFICA	3
2.1. Importância de experimentos de longa duração	3
2.2. Importância do estudo da erosão	4
2.3. Fatores que afetam a erosão	4
2.3.1. Clima	
2.3.2. Solo	
2.3.4. Ações antrópicas e manejo	8
2.4. Modelagem da predição de perdas de solo	
2.2. Equação Universal de Perdas de Solo (USLE)	
2.2.1. Fator R	
2.2.3. Fatores L e S	.13
2.2.4. Fator C	
3. HIPÓTESES	
4. OBJETIVOS	
4.1. Objetivo geral	
-	
4.2. Objetivos específicos	
5. MATERIAL E MÉTODOS	
5.1. Área experimental	
5.2. Clima da região	.20
5.3. Delineamento experimental e caracterização dos tratamentos	.20
5.4. Sistema coletor de escoamento superficial	24
5.5. Amostragem dos sedimentos pesados e em suspensão	24
5.6. Tabulação dos dados	25
5.7. Determinação do fator R	25
5.8. Determinação do fator K	28
5.8.1. Método direto com os dados obtidos a campo	

5.9. Determinação do fator C- Cobertura e manejo do solo	30
5.9.1. Divisão dos períodos das culturas	30
5.9.2. Determinação da Razão de Perdas de Solo	32
5.9.3 Determinação da Fração do Índice de Erosividade das chuvas	
5.9.4. Determinação do fator C	
6. RESULTADOS E DISCUSSÃO	34
6.1. Quantidade, distribuição, erosividade e padrão hidrológico das durante o período experimental	
6.2. Precipitação e erosividade das chuvas por ano agrícola	41
6.3. Perda de solo por ano agrícola e por períodos	45
6.4. Perdas de solo no tratamento solo descoberto e determinação K	
6.4.1. Método direto para determinação da erodibilidade	48
6.4.2. Determinação do fator K pelo nomograma de Wischmeier	
6.5. Manejo e Cobertura do Solo (fator C)	52
7. CONCLUSÕES	74
8. REFERÊNCIAS BIBLIOGRÁFICAS	76
9. APÊNDICES	86

RELAÇÃO DE FIGURAS

Figura 1. Localização geográfica do município de Augusto Pestana, local de
condução do experimento19
Figura 2. Esquema de disposição das parcelas com o sistema coletor para todos os tratamentos; solo descoberto (SDPP), sucessão trigo-soja em prepara convencional (TSPC), reduzido (TSPR) e direto (TSPD), sucessão aveia-milho em preparo convencional (AMPC) e direto (AMPD), pastagem de alfafa rotacionada com trigo-soja em preparo convencional (RALF) e pastagem de setária, siratro e desmódio rotacionada com trigo-soja em preparo convencional (RSSD)
Figura 3. Vista de algumas parcelas experimentais de campo; (a) com milho em estágio inicial em preparo convencional; (b) parcela com soja em estágio final em preparo convencional; (c), parcela padrão (solo descoberto); e, (d visão geral das parcelas com destaque ao sistema coletor de escoamento23
Figura 4. Parte de um pluviograma diário de precipitação27
Figura 5. Mapa da precipitação média anual no estado do RS - média histórica 1976-2002. Adaptado de Sotério, Pedrollo & Andriotti, (2005)
Figura 6. Distribuição média mensal pluvial entre julho de 1976 a maio de 1987 em Augusto Pestana, RS, incluindo chuvas erosivas e não erosivas36
Figura 7. Distribuição média mensal das chuvas erosivas e Índice El ₃₀ mensa entre julho de 1976 a maio de 1987 em Augusto Pestana, RS37
Figura 8. Distribuição dos padrões hidrológicos das chuvas erosivas de Augusto Pestana, RS, no período de julho de 1976 a junho de 1988, por: (a número total mensal de chuvas; (b) precipitação pluvial média mensal; (c índice de erosividade média mensal; (d) percentagem média total do número da quantidade total média anual (mm) e do índice de erosividade médio anua (El ₃₀).
Figura 9. Duração média das chuvas (horas) durante os meses do ano43

Figura 10. Erosividade média dos períodos de inverno e verão, entre o ve	erão
de 1976 e inverno de 1987	44
Figura 11. Fator K médio agregado em função do tempo de avaliação	em
Augusto Pestana, RS	50

RELAÇÃO DE TABELAS

Tabela 1. Duração média dos períodos das culturas de inverno e verão31
Tabela 2. Duração mínima, máxima e amplitude dos períodos das culturas nos10 anos de experimentação31
Tabela 3. Exemplo de determinação do fator C para cada ano agrícola de todos os tratamentos. 33
Tabela 4. Quantidade e erosividade anual das chuvas no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS, durante o período de 12 anos (de julho de 1976 a junho de 1988)34
Tabela 5. Datas inicias e finais, duração do ciclo das culturas, quantidade dechuvas e índice de erosividade para os cultivos de inverno e verão durante acondução do experimento, em Augusto Pestana, RS, durante o períodoexperimental, entre junho de 1977 e maio de 1987
Tabela 6. Perdas de solo nos tratamentos avaliados ao longo dos 10 anos deexperimentação, em Augusto Pestana/RS
Tabela 7. Perdas de solo média dos dez períodos ao longo dos 10 anos deexperimentação, nos diferentes sistemas de preparo e manejo, em AugustoPestana, RS
Tabela 8. Perdas de solo observadas e ajustadas para 9% de declividade notratamento solo descoberto (parcela padrão da USLE) para determinação dofator K nos 10 anos de condução do experimento, de 1977/78 a 1986/87, emAugusto Pestana, RS
Tabela 9. Dados granulométricos, matéria orgânica, estrutura e permeabilidade utilizados na determinação do fator K pela equação originada do nomograma de Wischmeier, Johnson & Cross, (1971)51
Tabela 10. Perdas de Solo na parcela padrão (SDPP), Razão de Perdas de Solo (RPS) e fator C para a sucessão de culturas de Trigo e Soia em preparo

convencional (TSPC), em preparo reduzido (TSPR) e em plantio direto (TSPD)
em cada período das culturas ao longo dos 10 anos (junho de 1977 a maio de
1987) de condução do experimento de campo no Centro de Treinamento da
Cotrijuí,em Augusto Pestana, RS54
Tabela 11. Perdas de Solo na parcela padrão (SDPP), Razão de Perdas de Solo
(RPS) e fator C para a sucessão de culturas de Aveia e Milho em preparo
convencional (AMPC) e em plantio direto (AMPD) em cada período das culturas
ao longo dos 10 anos (junho de 1977 a maio de 1987) de condução do
experimento de campo no Centro de Treinamento da Cotrijuí, em Augusto
Pestana, RS60
Tabela 12. Perdas de Solo na parcela padrão (SDPP), Razão de Perdas de Solo
(RPS) e fator C para a pastagem de alfafa rotacionada com a sucessão trigo-
soja em preparo convencional (RALF) e para a pastagem de setária, siratro e
desmódio rotacionada com a sucessão trigo-soja em preparo convenciona
(RSSD) em cada período das culturas durante 9 anos, de maio de 1978 a maio
de 1987 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS65
Tabela 13. Síntese dos valores de fator C para os diferentes sistemas de preparo
e manejo do solo e sucessões de culturas durante os 10 anos de condução do
experimento, de junho de 1977 a maio de 1987, em Augusto Pestana, RS70
experimente, de junito de 1977 a maio de 1907, em 7 agasto 1 estana, 11e7 a
Tabela 14. Síntese dos valores de fator C dos 3 últimos anos agrícolas (junho
de 1985 a maio de 1987) para a sucessão trigo-soja em preparo convenciona
em área trabalhada sete anos neste sistema (TSPC), em área cultivada com
alfafa por seis anos (RALF) e em área cultivada com o consórcio de setária
siratro e desmódio por 4 anos (RSSD), em Augusto Pestana, RS71

LISTA DE APÊNDICÊS

APÊNDICE 1 Chuvas individuais que ocorreram de julho a dezembro de 1976 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS86
APÊNDICE 2 Chuvas individuais que ocorreram no ano de 1977 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS
APÊNDICE 3 Chuvas individuais que ocorreram no ano de 1978 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS
APÊNDICE 4 Chuvas individuais que ocorreram no ano de 1979 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS94
APÊNDICE 5 Chuvas individuais que ocorreram no ano de 1980 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS
APÊNDICE 6 Chuvas individuais que ocorreram no ano de 1981 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS
APÊNDICE 7 Chuvas individuais que ocorreram no ano de 1982 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS
APÊNDICE 8 Chuvas individuais que ocorreram no ano de 1983 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS
APÊNDICE 9 Chuvas individuais que ocorreram no ano de 1984 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS
APÊNDICE 10 Chuvas individuais que ocorreram no ano de 1985 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS
APÊNDICE 11 Chuvas individuais que ocorreram no ano de 1986 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS
APÊNDICE 12 Chuvas individuais que ocorreram no ano de 1987 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS
APÊNDICE 13 Chuvas individuais que ocorreram de janeiro a junho de 1988 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS121
APÊNDICE 14 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1977/1978, entre 03/06/1977 e 23/05/1978, totalizando 356 dias, com o período de inverno entre 03/06/1977 e 30/11/1977 (181 dias) e o período de verão entre 01/12/1977 e 23/05/1978 (175 dias)
APÊNDICE 15 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1978/1979, entre 24/05/1978 e 28/07/1979, totalizando 431 dias, com o período de inverno entre 24/05/1978 e 29/11/1978 (190 dias) e o período de verão entre 30/11/1978 e 28/07/1979 (241 dias)
APÊNDICE 16 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante

o ano agricola 1979/1980, entre 29/07/1979 e 08/06/1980, totalizando 316 días com o período de inverno entre 29/07/1979 e 10/12/1979 (135 días) e o período de verão entre 11/12/1979 e 08/06/1980 (181 días)127
APÊNDICE 17 Número e data das coletas, chuvas erosivas e não erosivas, tota e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1980/1981, entre 09/06/1980 e 08/07/1981, totalizando 395 dias com o período de inverno entre 09/06/1980 e 24/11/1980 (169 dias) e o período de verão entre 25/11/1980 e 08/07/1981 (226 dias)
APÊNDICE 18 Número e data das coletas, chuvas erosivas e não erosivas, tota e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1981/1982, entre 09/07/1981 e 22/06/1982, totalizando 349 dias com o período de inverno entre 09/07/1981 e 16/12/1981 (161 dias) e o período de verão entre 17/12/1981 e 22/06/1982 (188 dias)
APÊNDICE 19 Número e data das coletas, chuvas erosivas e não erosivas, tota e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1982/1983, entre 23/06/1982 e 28/06/1983, totalizando 371 dias com o período de inverno entre 23/06/1982 e 01/12/1982 (162 dias) e o período de verão entre 02/12/1982 e 28/06/1983 (209 dias)
APÊNDICE 20 Número e data das coletas, chuvas erosivas e não erosivas, tota e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1983/1984, entre 29/06/1983 e 11/07/1984, totalizando 379 dias com o período de inverno entre 29/06/1983 e 16/11/1983 (141 dias) e o período de verão entre 17/11/1983 e 11/07/1984 (238 dias)
APÊNDICE 21 Número e data das coletas, chuvas erosivas e não erosivas, tota e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1984/1985, entre 12/07/1984 e 24/06/1985, totalizando 348 dias com o período de inverno entre 12/07/1984 e 09/11/1984 (121 dias) e o período de verão entre 10/11/1984 e 24/06/1985 (227 dias)
APÊNDICE 22 Número e data das coletas, chuvas erosivas e não erosivas, tota e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1985/1986, entre 25/06/1985 e 16/06/1986, totalizando 357 dias com o período de inverno entre 25/06/1985 e 17/12/1985 (176 dias) e o período de verão entre 18/12/1985 e 16/06/1986 (181 dias)
APÊNDICE 23 Número e data das coletas, chuvas erosivas e não erosivas, tota e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1986/1987, entre 17/06/1986 e 30/05/1987, totalizando 348 dias com o período de inverno entre 17/06/1986 e 19/11/1986 (156 dias) e o período de verão entre 20/11/1986 e 30/05/1987 (192 dias)
APÊNDICE 24 Total mensal das chuvas erosivas, por padrões hidrológicos, em número, quantidade (mm) e erosividade (El ₃₀ , em MJ mm ha ⁻¹ h ⁻¹), no Centro de Treinamento da Cotrijui, em Augusto Pestana, durante o período de condução do experimento (de julho de 1976 a junho de 1988)
APÊNDICE 25 Perdas de solo no ano agrícola 1977/1978 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (trigo e aveia) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soia)

APÊNDICE 26 Perdas de solo no ano agrícola 1978/1979 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (trigo e aveia) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja)147
APÊNDICE 27 Perdas de solo no ano agrícola 1979/1980 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (trigo e aveia) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja)148
APÊNDICE 28 Perdas de Solo no ano agrícola 1980/1981 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja)149
APÊNDICE 29 Perdas de Solo no ano agrícola 1981/1982 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja)150
APÊNDICE 30 Perdas de Solo no ano agrícola 1982/1983 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja)151
APÊNDICE 31 Perdas de Solo no ano agrícola 1983/1984 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja)152
APÊNDICE 32 Perdas de Solo no ano agrícola 1984/1985 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja)153
APÊNDICE 33 Perdas de Solo no ano agrícola 1985/1986 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja)154
APÊNDICE 34 Perdas de Solo no ano agrícola 1986/1987 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja)

1. INTRODUÇÃO

O processo de erosão geológica é um fenômeno de desgaste natural da superfície do solo, porém ações antrópicas podem acelerar este processo. A erosão do solo pode causar prejuízos nas lavouras, pelas perdas de solo, nutrientes e matéria orgânica, bem como em áreas adjacentes, pois as partículas transportadas pelas enxurradas podem causar eutrofização e assoreamento de corpos hídricos. Na agricultura atual, há preocupação com investimentos em tecnologia, ao passo que práticas simples para controle da erosão como semeadura direta e em contorno são negligenciadas por muitos produtores.

Estimar as perdas de solo é um desafio muito importante, sobretudo no que concerne ao planejamento e à escolha das melhores práticas de manejo a fim de reduzir as perdas de solo causadas pela erosão. Para isso deve-se conhecer os fatores que influenciam a mecânica da erosão, como a erodibilidade, a cobertura e manejo do solo e a erosividade das chuvas de determinado local. Apesar de existirem vários modelos usados na predição da erosão do solo, a Equação Universal de Perdas de Solo (USLE), por abrangir todos os fatores que influenciam a erosão e pela sua praticidade é um dos mais utilizados mundialmente.

Para ser possível a aplicação da USLE a nível local é necessária a determinação dos fatores que a mesma abrange. O fator topográfico é facilmente determinado com medição direta no terreno, assim como o fator de práticas conservacionistas que pode ser obtido em tabelas. Porém os fatores erosividade da chuva, erodibilidade do solo e cobertura e manejo são mais difíceis de serem obtidos, visto que necessitam de longos períodos de experimentação para sua determinação e são válidos apenas para a região onde foram determinados. Isto ocorre devido à peculiaridade de cada solo, ocorrendo variações inclusive em

solos de mesma classe. A quantidade e distribuição das chuvas também varia amplamente entre regiões, o que reflete no fator erosividade e no fator manejo e cobertura. Portanto, avaliações ao longo do tempo são necessárias para determinar valores mais precisos desses fatores, possibilitando a aplicação da USLE com maior segurança.

Na USLE, a erosividade da chuva é representada pelo fator R, a erodibilidade do solo pelo fator K e o manejo e cobertura do solo pelo fator C. O fator R expressa a capacidade que a chuva tem em causar erosão em determinada localidade, variando entre diferentes locais, visto que é dependente das chuvas, que por sua vez também tem alta variação em curtas distâncias. O fator K é relacionado a propriedades intrínsecas do solo, sendo menor em solos com maior capacidade de agregação, como por exemplo, solos com maiores teores de matéria orgânica, argila e óxidos. O fator C expressa o quanto determinado manejo e cobertura do solo é capaz de diminuir as perdas de solo por erosão hídrica quando comparado a um solo descoberto preparado em sistema convencional no sentido do declive.

Devido ao custo e ao tempo de experimentação necessário, e a variabilidade de solos e clima que o Brasil apresenta, nota-se uma carência de dados para calibração da USLE e outros modelos para diferentes locais. Pela grande quantidade de dados coletados, estudos desta natureza podem contribuir para o entendimento de processos relacionados à mecânica da erosão, comportamento das chuvas, entre outros.

Os objetivos deste estudo foram determinar o fator Cobertura e Manejo do Solo (fator C da USLE) em sistemas de cultivos com pastagens e culturas anuais em sucessão em diferentes sistemas de preparo do solo, o fator de erodibilidade do solo (fator K da USLE) de um Latossolo Vermelho distrófico típico e a erosividade da chuva (fator R da USLE) para Augusto Pestana, RS. Isto possibilitará a aplicação da USLE nesta região e, consequentemente, permitirá o planejamento de práticas agrícolas visando o controle da erosão. Além disso, existem outros modelos que utilizam os mesmos fatores da USLE, e em muitos casos, devido à falta de valores medidos, usam-se valores estimados, o que gera incertezas. Portanto, a determinação desses fatores pelo método direto contribui para parametrizar modelos e desta forma melhorar a aplicabilidade e a precisão dos mesmos.

2. REVISÃO BIBLIOGRÁFICA

2.1. Importância de experimentos de longa duração

Experimentos de longa duração permitem entender o comportamento e efeitos de determinado teste ou tratamento sobre alguma variável no passar dos anos.

Em experimentos que levam em conta o uso e manejo do solo, sabese que diferentes métodos de preparo conferem características químicas, físicas e biológicas distintas em diferentes profundidades do solo, modificando sua fertilidade e por consequencia o desenvolvimento das culturas (DEUBEL, HOFMANN & ORZESSEK, 2011). Porém os efeitos de diferentes usos e manejos sobre algumas características e comportamento do solo não são claras, devido ao curto tempo de experimentação. A experimentação por vários anos é ainda mais importante em váriaveis dependentes de fatores climáticos, visto a variabilidade que estes fatores, principalmente a chuva, estão sujeitos entre os anos. Devido a essa variabilidade, a Organização Meteorológica Mundial (WMO, 2011) define como clima, médias com período mínimo de 30 anos.

Portanto, experimentos de longa duração são importantes, principalmente em estudos de erosão, pois além de ser afetada pelo uso e manejo, é afetada por fatores climáticos. Conduzindo o experimento por vários anos, é possível diluir essa variação e constatar de forma mais exata os efeitos de cada uso e manejo do solo sobre variáveis que se deseja estudar.

2.2. Importância do estudo da erosão

A erosão do solo gera prejuízos ambientais, econômicos e sociais. Envolvendo eutrofização de rios e lagos; perdas de solo, nutrientes e matéria orgânica; reduzindo a capacidade produtiva do solo (LAL, 1976 e HE et al., 2003).

Práticas conservacionistas tem sido negligenciadas, mesmo perante o atual cenário agrícola, de investimentos crescentes em novas tecnologias. Telles, de Fátima Guimarães, & Dechen (2011), apresentaram estimativas dos custos da erosão do solo entre 1933 e 2010, a maior foi de US\$ 45,5 bilhões ao ano, para a União Europeia. No Brasil, no Estado do Paraná, atingem US\$ 242 milhões ao ano, e no Estado de São Paulo, US\$ 212 milhões ao ano. Essas estimativas se basearam em custos relacionados tanto na unidade produtiva como na área de meio ambiente, economia e sociedade.

Considerando apenas o setor agrícola, analisando perdas de nutrientes, Bertol et al. (2007a) estimaram os custos da erosão. As perdas na semeadura direta foram de US\$ 101,3 por hectare por ano, enquanto no cultivo mínimo foram de US\$ 107,91 e, no preparo convencional, de US\$ 157,17.

Além desses prejuízos, a magnitude da erosão chegou a ser considerada uma ameaça a própria existência da humanidade (FAO, 1993).

Por isso é importante conhecer os fatores que afetam a erosão para possibilitar a predição de perdas de solo e escolher as melhores práticas de manejo, visando reduzi-las ao máximo.

2.3. Fatores que afetam a erosão

2.3.1. Clima

A chuva é um dos fatores climáticos mais importantes para a erosão hídrica. A mesma influencia de forma diferente conforme sua intensidade, duração, quantidade, padrão hidrológico, tempo de retorno e distribuição geográfica e anual. As interações entre o tamanho, velocidade e forma das gotas controlam a capacidade da chuva em romper os agregados do solo (EVANS, 1980). A velocidade final das gotas de chuva aumenta conforme o tamanho

dessas gotas, (DE PLOEY & GABRIELS, 1980), consequentemente a capacidade de desagregação da chuva fica maior (LAWS & PARSONS, 1943), pois aumenta a energia cinética do impacto da gota na superfície do solo.

Segundo Serrano-muela et al. (2013), dentre as características da chuva, a intensidade é a de maior influência para as perdas de solo. Em estudo feito por Greer (1971), uma intensidade de chuva superior a 20 mm h⁻¹ representou apenas 37% da chuva total, porém essa porcentagem foi responsável por 75% da perda total de solo do evento.

O padrão hidrológico das chuvas também influencia as perdas de solo. As chuvas podem ser divididas nos padrões avançado, intermediário e atrasado. Avançado quando o pico de maior intensidade ocorre no primeiro terço de duração chuva, intermediário quando o pico de maior intensidade ocorre no segundo terço, e atrasado quando o pico ocorre no ultimo terço de duração da chuva (HORNER & JENS, 1941). As maiores perdas ocorrem em chuvas de padrão atrasado, pois neste caso o solo já está úmido quando ocorre a maior intensidade da chuva, facilitando os processos erosivos (ELTZ, MEHL & REICHERT, 2001).

Outros fatores como insolação e temperatura influenciam de forma indireta, pois são importantes na formação do solo, evaporação de água e desenvolvimento de plantas e outros organismos, que também tem papel importante no processo erosivo.

2.3.2. Solo

O solo é o corpo que sofre a erosão. Suas características intrínsecas conferem maior ou menor resistência do mesmo aos agentes erosivos. A suscetibilidade ou vulnerabilidade do solo em sofrer erosão é denominada erodibilidade. A erodibilidade se dá pela integração dos processos que determinam os efeitos da precipitação sobre o solo, relacionando a resistência do solo à desagregação e ao transporte de partículas, indicando seu grau de susceptibilidade a desagregação (DENARDIN, 1990).

A erodibilidade é influenciada por várias propriedades do solo, tais como físicas, químicas, reológicas, mineralógicas, biológicas e profundidade do solo. Sendo correlacionada principalmente com a estabilidade de agregados

(VEIHE, 2002).

A erodibilidade depende da distribuição das partículas primárias, ou seja, de como essas partículas são agregadas entre si, e se ocorre escoamento superficial durante um evento de chuva (DUIKER, FLANAGAN & LAL, 2001).

As propriedades físicas do solo por afetarem características do solo, tais como taxa de infiltração e permeabilidade que interferem no escoamento, e agregação do solo por interferir na resistência do solo às forças de dispersão, salpico e transporte são muito importantes no processo erosivo. Essas propriedades podem ser alteradas por meio do preparo mecânico, devido principalmente ao rompimento de agregados (BERTOL et al., 2008).

Dentre as características que influenciam na erodibilidade do solo, uma das mais expressivas é a textura (CORRECHEL, 2003). Solos de textura mais fina resistem mais às forças de cisalhamento devido à força de coesão entre as partículas (SINGER & BLACKWARD, 1982), isso porque a argila age como um agente cimentante que mantém as partículas agregadas (BOIX-FAYOS et al., 2001). Segundo Lado et al. (2004), em solos com teor de argila inferior a 4,1 kg kg-1 de argila, o impacto da gota de chuva é suficiente para desintegrar os agregados do solo. Simultaneamente com a desintegração dos agregados ocorre o selamento superficial (MORIN, BENYAMINI & MICHAEL, 1981). Este selo é caracterizado por alta densidade, poros finos e baixa condutividade hidráulica (WAKINDIKI & BEM-HUR, 2002), o que acaba por reduzir a capacidade de infiltração e aumentar o escoamento superficial (MORIN, BENYAMINI & MICHAEL, 1981). Porém apesar de serem mais facilmente desagregadas, partículas de areia muito grossa são mais difíceis de serem transportadas, conforme estudos de Wischmeier, Johnson & Cross, (1971), onde relataram uma tendência de aumento da erodibilidade, com o aumento do teor de silte e areia muito fina, e de redução, com o aumento de areia com diâmetro maior que 0,1 mm e argila.

Além da textura do solo, a mineralogia também tem grande influência na erodibilidade do solo, pois a mesma é responsável pela capacidade de troca de cátions do solo, que por sua vez tem papel importante na agregação das partículas de solo (WUDDIVIRA, STONEA & EKWUEB, 2013).

O conteúdo de matéria orgânica influencia o selamento superficial, escoamento superficial e erosão entre sulcos (LE BISSONNAIS & ARROUAYS,

1997). Essa diminuição do escoamento superficial e das perdas de solo por erosão hídrica ocorre porque a matéria orgânica tem efeito direto nas propriedades físicas e no aumento da biomassa microbiana do solo (KADLEC et al., 2012). O preparo convencional do solo acelera a mineralização da matéria orgânica, rompe os agregados e forma camadas compactadas na subsuperfície, predispondo o solo ao encrostamento superficial (DULEY, 1939).

2.3.3. Cobertura do solo

De forma geral, a cobertura do solo, pode reduzir a erosão por melhorar a capacidade de retenção e infiltração de água no solo, aumentar a rugosidade superficial, aumentando a resistência do solo a energia do escoamento superficial (GIMENEZ & GOVERS, 2008). Segundo Quinton et al. (1997), dentre as características das plantas, a porcentagem de cobertura pelo dossel é a que apresenta maiores relações com o escoamento superficial e com as perdas de solo por erosão.

Em solos cobertos por vegetação, as taxas de infiltração geralmente são altas devido à melhor estrutura do solo, além disso, a vegetação protege o solo contra a desagregação, reduzindo sua vulnerabilidade à erosão (SEUTLOALI & BECKEDAHL, 2015). A adição de resíduos de plantas pode melhorar a estrutura, permeabilidade e estabilidade do solo (WALSH & VOIGT, 1977). Raízes de plantas podem aumentar a resistência do solo (TOBIAS, 1994) e melhorar a infiltração (STYCZEN & MORGAN, 1994).

O dossel das plantas é importante para interceptar as gotas de chuva, e dessa forma dissipar a energia cinética das mesmas. As variações desse potencial de interceptação ocorrem em função da arquitetura, morfologia (ARMSTRONG & MITCHELL, 1988; GONZALEZ HIDALGO, RAVENTOS & ECHEVARRIA, 1997) e ao manejo das plantas (BERTOL, SCHICK & BATISTELA 2001). No momento que a planta intercepta as gotas de chuva, essas gotas são divididas em várias gotículas, reduzindo com isso a força de impacto sobre o solo. Enquanto que em um solo descoberto essas gotas maiores atingem diretamente o solo, desprendeendo as partículas através do salpicamento e transportando os materiais desprendidos pela água das enxurradas (BERTONI & LOMBARDI NETO, 2012).

O uso de resíduos na superfície do solo é importante por diminuir o escoamento superficial, e devido o aumento da rugosidade diminui também a velocidade do escoamento (JORDÁN, ZAVALA & MUÑOZ-ROJAS, 2011), além de conter sedimentos e nutrientes do escoamento (GHOLAMI, SADEGHI & HOMAEE, 2013). A cobertura por resíduos ainda é capaz de melhorar a capacidade de infiltração (WANG et al., 2016) e aumenta a retenção e armazenamento de água (MULUMBA & LAL, 2008).

O tipo de planta utilizado também causa diferenças na perda de solo, Dechen, Lombardi Neto & Castro, (1981) constataram que as gramíneas foram mais eficazes do que as leguminosas na diminuição das perdas de solo.

2.3.4. Ações antrópicas e manejo

Alterações no manejo do solo tem impactos significantes na degradação do mesmo, principalmente na erosão. Essa mudança é um dos indicadores mais sensíveis das interações entre as atividades antrópicas e o ambiente natural (ALKHARABSHEHA et al., 2013).

Melhorias na fertilidade do solo por adubação aumentam a produção de fitomassa das culturas, podendo reduzir as perdas de solo por erosão (COGO, LEVIEN & SCHWARZ, 2003).

O sistema de preparo utilizado também é capaz de reduzir as perdas de solo por erosão. O sistema de plantio direto, tem pouca mobilização do solo, causando menores perdas de solo quando comparado a sistemas de preparo reduzido e preparo convencional (BERTOL et al., 2002). Porém, essa redução das perdas ocasionadas pelo plantio direto gerou a ideia errônea de que o mesmo seria suficiente para o controle da erosão em todas as áreas, sendo assim, alguns produtores pararam de usar práticas complementares como o terraceamento e a semeadura em contorno (DENARDIN et al., 2008). O não revolvimento do solo e o tráfego de máquinas acabam por causar aumento na densidade do solo nessas áreas (GARCIA & RIGHES, 2008). Associado a isso, a baixa rugosidade superficial, diminuem a capacidade de infiltração de água do solo (CAMARA & KLEIN, 2005), causando enxurradas e altas perdas de solo, o que indica a necessidade de utilizar práticas para conter a enxurrada nas lavouras (BERTOL et al., 2007b).

Práticas de manejo como a semeadura em contorno e maior aporte de resíduos em cobertura diminui a formação de sulcos de erosão (BARBOSA et al., 2012).

2.3.5. Declive

O grau do declive influencia fortemente as perdas de solo e água por erosão hídrica, isso porque em áreas declivosas a velocidade e o volume de escoamento aumentam, além disso, a taxa de infiltração diminui. Assim a capacidade de transporte e desagregação desse escoamento torna-se alta (COGO, LEVIEN & SCHWARZ, 2003). Além do grau do declive, longos comprimentos de rampa também potencializam o escoamento superficial e a tensão cisalhante do mesmo, causando erosão em sulcos, isso porque ocorre um fenômeno chamado falha do resíduo, definido pela distância no terreno a partir da qual ocorre redução da eficácia do resíduo em controlar a enxurrada (FOSTER et al., 1982).

Em um estudo realizado no nordeste da China, concluiu-se que aproximadamente 60% do total dos sedimentos e escoamento produzidos são derivados de áreas agrícolas declivosas (TANG, 2004).

2.4. Modelagem da predição de perdas de solo

Atualmente existem diversos modelos com a proposta de descrever e estimar a erosão hídrica e a produção de sedimentos. O processo de modelagem é elaborado a partir de observações de processos erosivos e de sua descrição matemática.

Os modelos de predição são fundamentais, pois uma vez comprovada a sua adequação e confiabilidade, são capazes de avaliar diferentes cenários de manejo do solo sem necessidade de testes de campo (AKSOY & KAVVAS, 2005). Cada modelo tem sua peculiaridade, com seus objetivos variando em escalas espaciais e temporais quanto na sua base conceitual e fundamental (DE VENTE & POESEN, 2005).

O modelo mais conhecido e amplamente aplicado para predição de perdas de solo por erosão hídrica é a Equação Universal de Perda de Solo (USLE) (WISCHMEIER & SMITH, 1978). O qual é um modelo empírico, baseado primeiramente em observações, buscando representar as respostas dos dados observados. Portanto, para sua aplicação deve-se conhecer os fatores que afetam a erosão citados acima. Esses fatores são representados numéricamente na USLE e necessitam de experimentação para sua determinação a nível local.

2.2. Equação Universal de Perdas de Solo (USLE)

A Equação Universal de Perdas de Solo (USLE, na língua original "Universal Soil Loss Equation") foi desenvolvida na década de 70 para predizer a perda de solo média em áreas específicas, com específicos sistemas de manejo e cobertura. Nos dias de hoje, possivelmente devido sua facilidade de uso aliada com sua boa precisão, é um dos modelos de predição da erosão hídrica do solo mais utilizados no mundo. Além disso, a equação, ou em alguns casos seus fatores foram incorporados em outros modelos mais complexos, desta forma aumentando a aplicabilidade e uso da mesma (AKSOY & KAVVAS, 2005).

No Brasil, a USLE, tem sido amplamente utilizada para predizer as perdas de solo em bacias hidrográficas, em áreas sob diferentes tipos de cobertura e uso do solo, bem como incluida em outros modelos mais complexos de predição (CATEN, MINELLA & MADRUGA, 2012; DIDONÉ, 2013; GRAÇA et al., 2015; MIQUELONI, GIANELLO & BUENO, 2015; NEVES et al., 2011).

A equação leva em seu nome universal porque contempla entre seus parâmetros, o "universo" de fatores envolvidos ou que influenciam a erosão hídrica do solo. Este modelo foi obtido a partir de trabalhos realizados em mais de 10.000 parcelas-padrão (comprimento de 22,1m e declividade de 9%), localizadas em todas as regiões dos Estados Unidos (WISCHMEIER & SMITH, 1978).

A perda de solo é influenciada de formas e magnitudes distintas pelas características da chuva, suscetibilidade do solo em ser erodido, características do relevo, cobertura e manejo do solo e práticas conservacionistas empregadas. A interação desses fatores no processo de erosão hídrica foi sistematicamente organizada para determinação da USLE, a qual apresenta o seguinte modelo matemático:

$$A = R K L S C P, \tag{1}$$

onde: A, representa a perda de solo média anual calculada em t ha⁻¹ ano⁻¹; R, o fator de erosividade chuva (MJ mm ha⁻¹ h⁻¹ ano⁻¹); K, o fator de erodibilidade do solo (t ha h ha⁻¹ MJ⁻¹ mm⁻¹); L, o fator de comprimento do declive (adimensional); S, o fator do grau do declive ou declividade (adimensional); C, o fator de manejo e cobertura do solo (adimensional) e P o fator de práticas conservacionistas complementares (adimensional) (WISCHMEIER & SMITH,1978).

2.2.1. Fator R

A erosividade da chuva é representada por um valor que expressa sua capacidade de causar erosão em uma área desprotegida em determinada localidade (SILVA, WIECHETECK & ZUERCHER, 2011). O Fator R da USLE é determinado pelo índice El₃₀ de cada chuva, onde E é a energia cinética total da chuva, em MJ ha⁻¹ e I é a intensidade máxima em 30 minutos contínuos de chuva, dada em mm h⁻¹. A energia cinética da chuva está relacionada à sua intensidade, isso porque essa energia é dependente do total de gotas que ocorrem em uma precipitação (GUERRA, SILVA & BOTELHO, 2005).

Wischmeier e Smith (1958) verificaram que a perda de solo por erosão hídrica, apresentou elevada correlação entre a energia cinética total da chuva e a intensidade máxima em 30 minutos, desta forma, o produto obtido pela multiplicação desses dois valores gera a erosividade da chuva, expresso como índice El₃₀. No estudo de Wischmeier e Smith (1958) índice El₃₀ foi capaz de explicar 72 a 97% das perdas de solo causadas pelas chuvas.

2.2.2. Fator K

O fator K na USLE representa a erodibilidade do solo. O significado do termo "erodibilidade do solo" é diferente do termo "erosão do solo". A perda de solo pode ser influenciada por todos os fatores da USLE, no entanto alguns solos podem erodir mais do que os outros, mesmo todos os outros fatores sendo

iguais. Essas diferenças são causadas pelas propriedades intrínsecas do solo e se referem então a erodibilidade (WISCHMEIER & SMITH, 1978).

A determinação da erodibilidade do solo com chuvas naturais é um dos fatores mais caros e demorados de se obter, principalmente no Brasil onde há uma grande diversidade de solos (DENARDIN, 1990).

O fator K da USLE é dado pela razão das perdas de solo por unidade do índice de erosividade das chuvas, obtidos em condições da parcela padrão que é uma área com 22 m de comprimento de declive, declividade de 9%, preparada convencionalmente no sentido do declive e mantida continuamente sem vegetação ou resíduos de plantas (WISCHMEIER & SMITH, 1978).

Uma possibilidade de reduzir o tempo de obtenção é a utilização de simuladores de chuva. Nesse caso deve-se proceder aos ajustes necessários para correção do fator comprimento do declive, para relacionar as perdas de solo com as que ocorrem na parcela padrão da USLE. Uma vez obtido o fator K de diferentes solos por métodos diretos, pode-se relacioná-lo com algumas características de solo e desenvolver métodos analíticos indiretos de avaliação do fator K, representados por meio de regressões baseadas em atributos morfológicos, físicos, químicos e mineralógicos do solo. Como exemplo de método indireto tem-se o nomograma e a equação de Wischmeier, Johnson & Cross, (1971) baseado na textura, permeabilidade e teor de matéria orgânica do solo.

No entanto nem sempre o método indireto proporciona valores fiéis aos reais. As condições onde foi gerada a equação para obtenção do fator K, permitiu aos autores validarem a mesma para solos que não ultrapassem os teores de 70% de silte + areia muito fina (WISCHMEIER, JOHNSON & CROSS,1971).

Apesar das limitações, o nomograma tem sido amplamente usado em todo mundo (SINGH & KHERA 2009). Porém já existem vários trabalhos indicando a ineficiência do método em solos brasileiros (MARQUES et al., 1997; SILVA et al., 2000; AMORIM; SILVA & PRUSKI, 2009). Segundo Lo et al. (1985), o uso do nomograma não é aconselhável em países de clima tropical, por normalmente superestimar os valores de K nestas condições. Esse comportamento pode ser explicado devido ao fato de o nomograma não

considerar os efeitos dos óxidos de ferro e alumínio, principais agentes cimentantes das partículas em solos de regiões com clima tropical.

Segundo Romkens (1985), as melhores estimativas são obtidas por medições diretas em parcelas de escoamento sob chuva natural por longos períodos, ou com simulador de chuvas desde que a chuva simulada apresente o mesmo padrão de precipitação observado na localidade.

2.2.3. Fatores L e S

Os fatores topográficos, isto é, o comprimento (L) e a declividade (S) da encosta são importantes porque afetam a velocidade, volume, e por consequência a energia que o escoamento pode adquirir (MORGAN, 2005). Pela USLE esses dois fatores são considerados conjuntamente, podendo ser estimados pela equação de Wischmeier e Smith (1978) a seguir:

LS=
$$(L/22)^m$$
 (65,41sen² Θ + 4,56 sen Θ + 0,065), (2)

em que L é o fator comprimento da encosta (adimensional); S é o fator grau do declive (adimensioanl); "6" o ângulo do declive da encosta (graus) e m é um parâmetro de ajuste que varia em razão da declividade da encosta, admitindo-se valor de 0,5 para declividades maiores ou iguais a 5%, de 0,4 para declividades entre 3,5 e 4,5%, de 0,3 para declividades entre 1 e 3% e de 0,2 para declividades menores que 1%. O fator L representa a razão das perdas de solo que ocorrem num determinado comprimento de declive, para as perdas que ocorrem com comprimentos de 22 m. Para 22 m de comprimento, fator L= 1,0; para comprimentos maiores que 22 m, L>1,0 e para comprimentos menores que 22 m, L<1,0. O valor do fator L é adimensional. O fator S representa a razão entre as perdas de solo que ocorrem em uma determinada declividade e as perdas que ocorrem com 9% de declividade. Para 9% de declive, fator S= 1,0; para declividades maiores que 9%, fator S>1,0 e para declividades menores que 9%, Fator S<1,0. O valor do fator S é adimensional. Conforme Wischmeier & Smith (1978) os valores de 22 m para comprimento do declive e 9% para declividade, foram definidos por terem sido o comprimento de declive predominante e a declividade média das parcelas de campo em que foram feitas as medições de perdas de solo por erosão nos Estados Unidos da América, e que constituíram o banco de dados que originou a USLE.

2.2.4. Fator C

O fator C da USLE representa a influencia do manejo e da cobertura nas perdas de solo por erosão hídrica. O mesmo varia de 0 a 1, aproximando-se de 0, nos sistemas de manejo conservacionistas, e de 1, nos não conservacionistas (BERTOL et al., 2002). É calculado pela relação de perda de solo entre uma área com determinada cobertura e manejo, com as perdas que ocorrem na parcela padrão. O fator C varia de acordo com o desenvolvimento vegetativo, a cobertura do solo e o manejo, influenciado pela distribuição da erosividade de cada região.

A manutenção de resíduos culturais em superfície é muito importante, pois segundo Wischmeier (1975), estes são mais eficientes em relação ao dossel das plantas em reduzir o fator C e a erosão hídrica. Isso porque as gotas interceptadas por esse material não são capazes de readquirirem energia como ocorre no dossel das plantas; além de eliminar o impacto das gotas, o resíduo é importante para reduzir velocidade da enxurrada e, consequentemente o seu potencial em desagregar e transportar o solo. Essa energia que as gotas da chuva podem readquirir após serem interceptadas pode ser maior do que a erosividade da chuva antes de atingir a copa, se a distância do dossel até a superfície do solo for suficientemente grande como aquela encontrada em árvores (CHAPMAN, 1948).

O fator C é muito importante por ser um dos poucos que se pode manejar para manter as perdas de solo dentro dos limites toleráveis. Ele varia significativamente com a erosividade, culturas e o tipo de manejo e cultivo do solo.

A literatura brasileira é escassa para informações sobre o fator C (AMARAL, 2006). Apesar de terem ocorrido algumas publicações sobre o mesmo, após mais de uma década ainda é possível se notar a falta de estudos desta natureza. Desta forma a aplicação da Equação Universal de Perdas de Solo é dificultada, devendo-se optar por valores aproximados encontrados na literatura.

A dificuldade para se obter o fator C está no estabelecimento das RPS para inúmeras possíveis combinações de culturas, rotações e outras práticas de manejo nas quais as perdas de solo devem ser medidas (HUDSON, 1973; BERTOL, SCHICK & BATISTELA, 2001). Além disso, são necessários vários anos de avaliação para se obter resultados mais consistentes.

2.2.5. Fator P

O fator de práticas conservacionistas (P) representa o efeito que determinadas práticas podem representar sobre a perda de solo. O Fator P da USLE é definido como a razão das perdas de solo com utilização de uma determinada prática conservacionista, para as perdas que ocorrem com o cultivo no sentido do declive (WISCHMEIER E & SMITH, 1978).

Em geral quando um solo é usado para o cultivo em áreas com declives e exposto a chuvas erosivas, a cobertura que a cultura oferece ao sistema muitas vezes não é suficiente para a conservação do mesmo. Desta forma são necessárias práticas que visam aumentar sua proteção, tais como semeadura em nível, terraceamento e plantio em faixas (WISCHMEIER & SMITH, 1978).

Alguns valores para o fator P são apresentados em tabelas, por exemplo, a dos autores Bertoni e Lombardi Neto (2012), que apresentam o valor de P=1 para cultivo no sentido do declive; 0,5 para semeadura em nível; 0,4 para alternância de capinas + semeadura em nível e de 0,2 para cordões de vegetação permanente. Essas práticas tem o intuito de diminuir o escoamento superficial, e desta forma diminuem as perdas de solo por erosão hídrica.

3. HIPÓTESES

O Fator R da USLE para Augusto Pestana terá valor maior do que o determinado em Santa Maria e em Ijuí e menor do que o determinado em São Borja e em Santa Rosa, devido a tendência geral observada no Rio Grande do Sul de aumento da erosividade das chuvas de leste para oeste e de sul para norte.

Por possuir altas quantidades de argila e óxidos, boa agregação e um perfil profundo, o Latossolo apresenta alta resistência à erosão, o que refletirá em baixo valor do fator K da USLE.

Por ter sido gerado com base em solos ricos em silte, o uso do nomograma de Wischmeier para determinação do fator K não apresenta boa acurácia para o Latossolo do estudo, visto que este apresenta alto teor de argila.

Cultivos permanentes, como as pastagens proporcionam maior proteção do solo quando comparados às culturas anuais, refletindo em menores valores de fator C da USLE.

Entre as culturas anuais, preparos conservacionistas do solo são mais efetivos na redução das perdas de solo por erosão, gerando assim um menor valor do fator C da USLE quando comparados aos manejos convencionais.

4. OBJETIVOS

4.1. Objetivo geral

Determinar os fatores R, K e C da USLE com dados obtidos a campo para uso na região de Augusto Pestana, RS, e para o suporte na parametrização de outros modelos matemáticos de predição de perda de solo.

4.2. Objetivos específicos

Caracterizar o comportamento das chuvas ao longo de 12 anos, bem como determinar o fator R (erosividade das chuvas) da USLE para o município de Augusto Pestana, RS.

Determinar o fator K (erodibilidade do solo) da USLE de um Latossolo Vermelho distrófico típico pelo método direto e pelo nomograma de Wischmeier, Johnson & Cross (1971), para avaliar a aplicabilidade desse em solos com altos teores de argila e óxidos.

Verificar o efeito da estabilidade de sistemas e seu impacto na perda de solo para posterior determinação do fator C da USLE para diferentes sistemas de uso e manejo do solo.

5. MATERIAL E MÉTODOS

Entre os anos de 1976 e 1993 foi conduzido um experimento de campo em parceria entre o Departamento de Solos da Universidade Federal do Rio Grande do Sul-UFRGS, o Instituto de Pesquisas de Recursos Naturais Renováveis (a qual depois se tornou dependência da hoje extinta Fundação Estadual de Pesquisa Agropecuária do Rio Grande do Sul - FEPAGRO) e a Cooperativa Triticola Serrana Ltda, de Ijui (Cotrijuí). O experimento visava avaliar as perdas de solo e de água por erosão, em diferentes sistemas de uso e manejo e registrar a quantidade, a erosividade e os padrões hidrológicos das chuvas. O experimento foi conduzido dentro da filosofia empregada no desenvolvimento da Equação Universal de Perdas de Solo (USLE).

O experimento implantado a campo fazia parte de um programa de ações desenvolvido nos anos 70 e 80 do século XX. Tinha por objetivo intensificar as ações de conservação do solo dentro de um cenário de ampliação da área agrícola e avanço significativo da erosão do solo, no Estado do Rio Grande do Sul. Os dados foram obtidos pelas equipes de pesquisa e de apoio que trabalharam no Centro de Treinamento da Cotrijui (CTC-Cotrijui), no Instituto de Pesquisas de Recursos Naturais Renováveis (IPRNR), atualmente parte integrante da FEPAGRO e por professores, pesquisadores e estudantes do Departamento de Solos da UFRGS, atuantes na área de pesquisa de erosão e conservação do solo. Esses dados faziam parte de um banco de dados armazenados em planilhas manuais que se encontravam sob a responsabilidade do professor Elemar Antonino Cassol, no Departamento de Solos da UFRGS. De todo o banco de dados, foram selecionados os registros de chuva de 12 anos (entre julho de 1976 e junho de 1988) e os dados de perdas de solo obtidos

durante 10 anos (de junho de 1977 a maio de 1987) para constituir a base de dados que dão origem a este trabalho de dissertação de mestrado.

O Fator R da USLE para Augusto Pestana foi determinado com base nos registros de chuva de julho de 1976 a junho de 1988. Já os dados de perdas de solo obtidos entre junho de 1977 e maio de 1987 foram utilizados para determinação do fator K do Latossolo do local e do fator C para as culturas e sistemas de manejo estudados no experimento.

5.1. Área experimental

O experimento foi conduzido no campo sob condições de chuva natural, no município de Augusto Pestana (28° 43' latitude Sul, 54° 00' longitude Oeste e altitude de 305 m), região noroeste do Estado do Rio Grande do Sul (Figura 1), em uma área de propriedade do Ministério da Agricultura e que se encontrava cedida em comodato ao Centro de Treinamento da Cotrijuí.

Figura 1: Localização geográfica do município de Augusto Pestana, local de condução do experimento.

O solo do local é um Latossolo Vermelho distrófico típico (EMBRAPA, 2013). O relevo é ondulado a suavemente ondulado, com declive que varia de 3 a 10%, podendo ocorrer declividades de no máximo 15%.

5.2. Clima da região

Conforme a classificação de Köppen (1936), o clima da região é do tipo Cfa, subtropical úmido, com quatro estações distintas, temperatura média do mês mais quente superior a 22° C e a temperatura média do mês mais frio entre -3° C e 18° C, e a precipitação média anual é de 1.850 mm (FEPAM, 2010).

5.3. Delineamento experimental e caracterização dos tratamentos

O delineamento experimental foi realizado, com oito tratamentos, e uma repetição totalizando oito parcelas experimentais. As parcelas tinham dimensões de 22,0 × 3,5 m, totalizando uma área de 77 m². As parcelas foram delimitadas por chapas galvanizadas fixadas ao solo em profundidade de aproximadamente 10 cm nas laterais e na extremidade superior, sendo que na extremidade inferior havia uma calha coletora do escoamento (Figura 2).

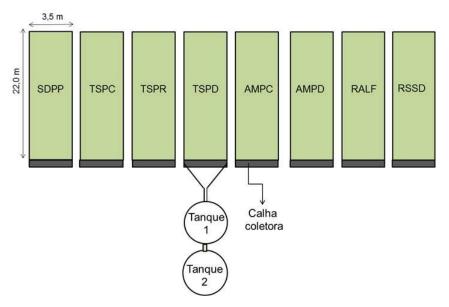


Figura 2: Esquema de disposição das parcelas com o sistema coletor para todos os tratamentos; solo descoberto (SDPP), sucessão trigo-soja em preparo convencional (TSPC), reduzido (TSPR) e direto (TSPD), sucessão aveia-milho em preparo convencional (AMPC) e direto (AMPD), pastagem de alfafa rotacionada com trigo-soja em preparo convencional (RALF) e pastagem de setária, siratro e desmódio rotacionada com trigo-soja em preparo convencional (RSSD).

Os tratamentos avaliados estão descritos a seguir:

- 1- SDPP: Solo descoberto em preparo convencional desde o inverno de 1976. Essa é a parcela padrão da Equação Universal de Perdas de Solo, onde o preparo do solo é realizado no sentido do declive com uma aração com arado reversível e duas gradagens com grade hidráulica. O preparo era realizado duas vezes ao ano, simultaneamente aos preparos das parcelas com culturas anuais. Para mantê-la descoberta durante todo o ano eram realizadas capinas com enxada ou retirarada manual da vegetação espontânea. Conforme a filosofia da USLE, os valores obtidos no primeiro ano experimental não são utilizados para determinação dos fatores K e C, isto porque o primeiro ano serve para estabilização do sistema, tirando o efeito residual do manejo e cobertura do período anterior à experimentação.
- 2- TSPC: Sucessão trigo-soja em preparo convencional, com uma aração com arado reversível e duas gradagens, realizadas no sentido do declive incorporando os restos culturais. Os tratamentos foram semeados com semeadora de plantio direto tracionada mecanicamente. O trigo foi semeado no espaçamento de 17 cm entrelinhas, sendo depositadas 60 63 sementes por metro linear. A soja foi semeada com espaçamento de 50 cm entrelinhas e depositando-se 30 sementes por metro linear. A colheita era realizada manualmente com foice e a palha era espalhada por toda a parcela, antes da realização dos preparos de solo. Para obtenção do Fator C desse tratamento utilizaram-se as perdas de solo do período de junho de 1977 a maio de 1987.
- 3- TSPR: Sucessão trigo-soja em preparo reduzido (uma gradagem leve no sentido do declive sobre a resteva da cultura anterior), utilizando a mesma semeadora e os mesmos espaçamentos do tratamento 2. Para obtenção do Fator C desse tratamento utilizaram-se as perdas de solo do período de julho de 1979 a maio de 1987.
- 4- TSPD: Sucessão trigo-soja em plantio direto. A semeadura era realizada no sentido do declive, sobre a palha da cultura anterior colhida e picada, utilizando a mesma semeadora e os mesmos espaçamentos do tratamento 2. Para obtenção do Fator C desse tratamento utilizaram-se as perdas de solo do período de junho de 1977 a maio de 1987.

- 5- AMPC: Sucessão aveia-milho em preparo convencional, com incorporação da resteva das culturas (uma aração com arado reversível e duas gradagens, realizadas no sentido do declive). A semeadura das culturas era realizada logo após o preparo. O milho foi semeado com espaçamento entrelinhas de 100 cm, sendo depositadas 5 sementes por metro linear no sentido do declive. Para obtenção do Fator C desse tratamento utilizaram-se as perdas de solo do período de junho de 1977 a maio de 1987.
- 6- AMPD: Sucessão aveia-milho em plantio direto desde o verão de 1977. A semeadura era realizada sobre a palha da cultura anterior colhida e picada, utilizando a mesma semeadora e os mesmos espaçamentos do tratamento 5. Para obtenção do Fator C desse tratamento utilizaram-se as perdas de solo do período de maio de 1978 a maio de 1987.
- 7- RALF: Pastagem de alfafa (*Medicago sativa*) desde o verão de 1978 até o inverno de 1984. A pastagem era cortada de duas a seis vezes no ano e deixada sobre a parcela, como cobertura morta. A partir do inverno de 1984 a parcela passou a ser utilizada com a sucessão trigo-soja em preparo convencional. Para obtenção do Fator C da pastagem de alfafa utilizaram-se as perdas de solo do período de julho de 1979 a junho de 1984. Para obtenção do Fator C da rotação entre pastagem de alfafa e trigo-soja convencional utilizaram-se as perdas de solo do período de maio de 1978 a maio de 1987. Os dados de perdas de solo entre julho de 1984 e maio de 1987 foram utilizados para obtenção do Fator C para o efeito residual da pastagem de alfafa na sucessão trigo-soja em preparo convencional.
- 8- RSSD: Pastagem de setária + siratro + desmódio (*Setaria sphacelata* + *Macroptilium atropurpureum* + *Desmodium ovalifolium*, respectivamente) desde o verão de 1980 até o inverno de 1984. A pastagem era cortada de duas a seis vezes no ano e deixada sobre a parcela, como cobertura morta. A partir do inverno de 1984 a parcela passou a ser utilizada com a sucessão trigo-soja em preparo convencional. Para obtenção do Fator C da pastagem de setária+siratro+desmódio utilizaram-se as perdas de solo do período de junho de 1980 a junho de 1984. Para obtenção do Fator C da rotação entre pastagem de alfafa e trigo-soja convencional utilizaram-se as perdas de solo do período de junho de 1980 a maio de 1987. Os dados de perdas de solo entre julho de 1984 e maio de 1987 foram utilizados para obtenção do Fator C

para o efeito residual da pastagem de setária+siratro+ desmódio na sucessão trigo-soja em preparo convencional.

Uma visão geral da área do experimento, bem como o detalhamento de alguns tratamentos e do sistema coletor do escoamento são apresentados na Figura 3.

Figura 3: Vista de algumas parcelas experimentais de campo; (a) com milho em estádio inicial em preparo convencional; (b) parcela com soja em estágio final em preparo convencional; (c), parcela padrão (solo descoberto); e, (d) visão geral das parcelas com destaque ao sistema coletor de escoamento. (Fotos: Prof. Elemar Antonino Cassol).

As perdas de solo que ocorreram no primeiro ciclo de cada tratamento foram desconsideradas devido à correção do solo seguida de revolvimento do mesmo, bem como para estabilização de cada sistema de manejo e cobertura do solo. Assim, utilizaram-se os dados de dez anos de perdas de solo para os tratamentos 1, 2, 4 e 5; nove anos para os tratamentos 6 e 7; oito anos para o tratamento 3 e sete anos para o tratamento 8.

5.4. Sistema coletor de escoamento superficial

Nas extremidades inferiores das parcelas foram instalados sistemas coletores de escoamento superficial, constituídos de uma calha conectada por uma tubulação de PVC a um tanque principal, com capacidade entre 300 e 500 litros, que armazenava os sedimentos de maior granulometria. Quando o volume coletado atingia capacidade do tanque, o material mais fino excedente era transferido para um tanque secundário, com capacidade de armazenamento entre 400 e 600 litros. O tanque secundário estava ligado ao principal por um divisor de enxurrada do tipo "GEIB", que permitia a passagem de 1/7, 1/9 ou 1/11 do total da enxurrada, sendo o restante descartado. O volume coletado no segundo tanque, bem como a massa de sedimentos sólidos nele contida era multiplicado pelo número de divisores e somados aos obtidos no primeiro tanque para obtenção do valor total de solo e água de cada evento coletado.

5.5. Amostragem dos sedimentos pesados e em suspensão

A cada evento de chuva em que houvesse a formação de escoamento superficial era efetuado o processo de amostragem, medição do volume e quantificação do solo e água na enxurrada. Pela medição da altura da lâmina formada pelo material armazenado dentro dos tanques era determinado o volume total da enxurrada. Os sedimentos mais pesados eram retirados de dentro dos tanques, determinado o peso total, amostrados e levados ao laboratório de erosão para serem quantificados. A seguir, o material da enxurrada restante nos tanques era homogeneizado para realização das coletas de amostras. As amostras de enxurrada eram coletadas utilizando-se frascos de vidro numerados, com capacidade de 300 mL, em número de dois por tanque. No laboratório os frascos eram pesados e adicionava-se Alúmem de Potássio (KAI(SO₄)₂), em cada frasco contendo a enxurrada para precipitar os sedimentos em suspensão. Após 24 a 48 h, era retirado o sobrenadante de dentro dos frascos, utilizando um sifão com uma mangueira plástica, deixando-se uma lâmina de cerca de 1,0 cm de água sobre os sedimentos. Os frascos então eram levados à estufa com circulação de ar, na temperatura de 55 - 60° C, até atingirem massa constante.

A partir das amostras de sedimentos secos nos frascos de vidro, a massa de solo contida em suspensão nos tanques foi calculada, sendo relacionada com os volumes de enxurrada dos tanques. Estes valores eram adicionados aos de massa de solo seco e volume de água contidos nos sedimentos pesados, permitindo obter as perdas totais de solo e de água ocorridas em cada chuva. A partir das perdas obtidas em cada parcela experimental, foram extrapolados os dados finais de perdas de solo, apresentados em Mg ha-1 e de perdas de água em *mm* e em % da chuva. Apenas os dados de perdas de solo foram utilizados no presente trabalho. Os procedimentos supracitados, utilizados para determinação das perdas de solo seguiram a metodologia sugerida por Cogo (1978).

5.6. Tabulação dos dados

A partir das coletas, organizou-se uma planilha de campo e uma de laboratório, dos quais se procediam os cálculos de perdas de solo e de água em cada tratamento.

Com base nas coletas efetuadas durante toda a condução do experimento, gerou-se um banco de dados de perdas de solo e água. Com a finalidade de estimar os fatores erodibilidade e manejo e cobertura do solo, os dados de todo o procedimento laboratorial das amostras de solo dos tratamentos SDPP, TSPC, TSPR, TSPD, AMPC, AMPD, RALF e RSSD foram tabulados. Além dos dados de perdas de solo e água, tem-se dados da precipitação pluvial obtidos em um pluviógrafo instalado no local, com os quais é possível determinar o fator R da USLE (o qual representa a erosividade). Esses dados estão guardados em planilhas manuais. Para processar essas informações utilizou-se o software Microsoft Office Excel, com o intuito de verificar os valores obtidos durante a realização do trabalho e estimar os fatores da USLE que são os objetivos do trabalho.

5.7. Determinação do fator R

O potencial das chuvas em causar erosão do solo é denominada erosividade. Wischmeier (1959) definiu o índice El₃₀ para determinação da

erosividade das chuvas, tendo Wischmeier & Smith (1978) utilizado esse índice para expressar o fator R da USLE, o qual foi convertido em unidades do sistema internacional por Foster et al. (1981).

O índice El₃₀ representa o produto da energia cinética total da chuva (MJ ha⁻¹) pela intensidade máxima (mm h⁻¹) com base em um período contínuo de 30 min de chuva, dado pela seguinte expressão:

$$EI_{30} = Ec_t I_{30}$$
 (3)

em que El₃₀ é o índice de erosividade (em MJ mm ha⁻¹ h⁻¹) da chuva individual e erosiva, Ec_t é a energia cinética total da chuva, em MJ ha⁻¹, e l₃₀ é a intensidade máxima da chuva em período contínuo de 30 min de chuva, em mm h⁻¹, ou seja, a quantidade máxima de chuva em um período contínuo de 30 min multiplicada por 2, determinada a partir dos dados obtidos do pluviograma

Determinou-se o índice El₃₀ para todas as chuvas individuais e erosivas que ocorreram no experimento durante um período de 12 anos (de julho de 1976 a junho de 1988). Conforme critérios definidos por Wischmeier & Smith (1958), posteriormente adaptados por Cabeda (1976) para regiões de clima tropical, a chuva é considerada individual quando separada de outra por um período mínimo de 6 h sem chuva ou com precipitação menor que 1,0 mm durante esse tempo. Chuva erosiva é toda aquela com quantidade total de 10,0 mm ou mais ou com 6,0 mm ou mais desde que ocorrendo em 15 min ou menos.

Para determinação do índice El₃₀ de cada chuva utilizaram-se os pluviogramas diários (Figura 4), nos quais foram separados os segmentos de mesma inclinação que representam períodos de mesma intensidade.

Em planilhas foram registrados as horas e minutos do dia em que determinada chuva ocorria, notando-se a variação de intensidade e a chuva acumulada até aquele momento. Os dados obtidos a partir desses pluviogramas foram analisados pelo programa CHUVEROS, desenvolvido pelo Professor Elemar Antonino Cassol, do Departamento de Solos da UFRGS, obtendo-se a erosividade pelo índice El₃₀.

Figura 4: Parte de um pluviograma diário de precipitação.

Para cada segmento uniforme da chuva, o programa *Chuveros* determina a energia cinética unitária básica a partir da equação proposta por Wischmeier e Smith (1958) e modificada por Foster et al. (1982), dada por:

$$e_c = 0.119 + 0.0873 \log 10 i$$
 (4)

onde e_c é a energia cinética unitária básica da chuva, em MJ ha⁻¹ mm⁻¹ e "*i*", em mm h⁻¹, representa a intensidade da chuva no referido segmento. O valor obtido na equação (4) é multiplicado pela quantidade de chuva no respectivo segmento uniforme para expressar a energia cinética da chuva naquele segmento, em MJ ha⁻¹. Somando-se a energia cinética de todos os segmentos uniformes de chuva obtêm-se a energia cinética total da chuva (Ec_t). A equação (4) é válida para segmentos de chuva com intensidades de até 76 mm h⁻¹. Para segmentos de chuva com intensidade igual ou maior que 76 mm h⁻¹, o valor de e_c é constante e igual a 0,2832 MJ ha⁻¹ mm⁻¹. Obtém-se assim a energia cinética total da chuva (Ec_t da equação 3). Multiplicando-se a energia cinética total da chuva (Ec_t em MJ ha⁻¹) pela intensidade máxima durante 30 min consecutivos (dada em mm h⁻¹), obtém-se o índice de erosividade (El₃₀) em MJ mm ha⁻¹ h⁻¹ de cada chuva.

A erosividade das chuvas de um determinado mês é dada pelo somatório do índice El₃₀ das chuvas individuais e erosivas do mês. A erosividade anual é dada pelo somatório dos índices El₃₀ de cada mês do ano. O Fator R

para Augusto Pestana foi obtido pela média anual do índice El₃₀ dos 12 anos de registros das chuvas.

A obtenção das erosividades mensais e anuais durante toda a avaliação do experimento é necessária para a determinação dos fatores K e C.

Além da erosividade, a partir dos dados pluviométricos, determinouse o padrão hidrológico das chuvas.

5.8. Determinação do fator K

5.8.1. Método direto com os dados obtidos a campo

O Fator K da USLE (que representa a erodibilidade do solo) foi determinado para cada ano agrícola, durante os dez anos de avaliação das perdas de solo na parcela de solo descoberto. Considerou-se o ano agrícola o período de tempo entre o preparo do solo e semeadura das culturas de inverno (trigo e aveia) e a colheita das culturas de verão (soja e milho) e preparo do solo para as culturas seguintes. O fator K é determinado pela razão entre a perda de solo por unidade de erosividade da chuva (fator R) na condição de parcela padrão (solo descoberto, preparado convencionalmente no sentido do declive, com 22 m de comprimento e 9% de declividade). Na condição padrão os fatores L, S, C e P passam a ser igual a unidade e a equação é reduzida a expressão A= R×K. Assim, obtém que K= A/R, sendo K dado em unidades de Mg ha h MJ¹ mm⁻¹ ha⁻¹; A representa as perdas de solo em Mg ha⁻¹ ano⁻¹ e R o fator de erosividade das chuvas em MJ mm ha⁻¹ h⁻¹ ano⁻¹.

Como a área experimental apresenta 7,5% de declividade, é necessário um ajuste das perdas de solo para declividade de 9%, pela seguinte equação (Wischmeier & Smith, 1978):

$$S = 4,56 \operatorname{sen} \theta + 65,41 (\operatorname{sen} \theta)^2 + 0,065$$
 (5)

onde, S é o fator grau do declive e θ é o ângulo do declive.

Encontrou-se o valor do fator de correção para ajuste das perdas de solo a 9% de declividade de 0,77192.

As perdas de solo originais foram divididas por esse fator para poder adequar aos níveis de 9%, ou seja, o fator K foi determinado conforme a seguinte equação:

$$K = \frac{A}{R S} \qquad (6)$$

onde, K é o fator de erodibilidade do solo (Mg ha h ha⁻¹ MJ⁻¹ mm⁻¹); A é a perda de solo (Mg ha⁻¹ ano⁻¹) observada, determinada na unidade experimental com 7,5% de declividade; R é o fator de erosividade da chuva (MJ mm ha⁻¹ h⁻¹) e S é o fator grau do declive para a declividade de 7,5%.

5.8.2. Método indireto utilizando dados analíticos

Para verificar a precisão de métodos indiretos na determinação do fator K do Latossolo estudado, com base em dados analíticos, utilizou-se o método do nomograma de Wischmeier & Smith (1978) que é dado pela seguinte equação:

$$K = \frac{2.1 \times M^{1.14} \times 10^{-4} \times (12-a) + 3.25 (b-2) + 2.5 (c-3)}{100} \times 0.1317$$
 (7)

onde, K= índice de erodibilidade do solo; M= parâmetro que representa a textura do solo (M= (% de silte + areia muito fina)×(100,0 - % de argila)); a= percentagem de matéria orgânica; b= código para estrutura do solo; c= código para classe de permeabilidade do solo.

Os valores dos códigos para estrutura são: b= 1 (estrutura granular muito fina); b= 2 (estrutura granular fina); b= 3 (estrutura granular, média ou grossa); b= 4 (estrutura em blocos, laminar ou massiva).

Para permeabilidade os valores dos códigos são dados por c= 1 (permeabilidade rápida); c= 2 (moderada a rápida); c= 3 (permeabilidade moderada); c= 4 (lenta a moderada); c= 5 (permeabilidade lenta); c= 6 (muito lenta).

A escolha dos valores dos códigos de estrutura foi baseada nas características desta classe de solo descritas no levantamento de reconhecimento dos solos do estado do Rio Grande do Sul (BRASIL, 1973). Para os valores de granulometria, usaram-se dados de análises feitas na época pela

equipe que trabalhava no experimento, o método utilizado foi do hidrômetro (BOUYOUCOS, 1926).

Os valores obtidos pelo nomograma devem ser multiplicados por um fator de correção igual a 0,1317 para poder expressar os resultados em unidades do Sistema Internacional, Mg ha h MJ⁻¹ mm⁻¹ ha⁻¹.

5.9. Determinação do fator C- Cobertura e manejo do solo

5.9.1. Divisão dos períodos das culturas

O fator C deve ser avaliado em estádios pré-determinados, de acordo com o desenvolvimento das culturas ao longo do ciclo. Conforme Wischmeier & Smith (1978), o estádio de desenvolvimento do dossel das plantas é dividido em seis períodos: período F (do preparo primário ao secundário); período SB (do final do F até 10% de cobertura pelo dossel); período 1 (do final de SB até 50% de cobertura pelo dossel); período 2 (do final do 1 até 75% de cobertura do solo pelo dossel (60% para algodão)); período 3 (do final de 2 até a colheita) e período 4 (da colheita até o preparo primário do novo cultivo).

No entanto, para condições brasileiras, não se tem o período F por não haver ocorrência de neve ou gelo e degelo, o período SB inicia na semeadura e o estádio 4 vai da colheita até a próxima semeadura. Desta forma, em condições de sucessões de culturas anuais, o ano agrícola de desenvolvimento das culturas é dividido em dez períodos, considerando-se cinco para as culturas com ciclo de inverno/primavera e cinco para as culturas com ciclo de verão/outono. Além disso, neste experimento, não foi determinada a cobertura do solo pelo dossel das plantas, como sugere o método. Assim, adaptou-se o procedimento relacionando os estádios de desenvolvimento com a duração em dias após a semeadura das culturas e com as datas das coletas, ajustando-se de forma que houvesse pelo menos uma coleta em cada período. A duração média dos 5 primeiros períodos do ano agrícola, correspondentes ao ciclo das culturas de inverno/primavera bem como os 5 posteriores referentes ao ciclo das culturas de verão/outono são apresentados na Tabela 1. Para facilitar a apresentação de dados, o período de inverno/primavera será tratado como período de inverno e o período de verão/outono como período de verão.

Tabela 1: Duração média dos períodos das culturas de inverno e verão.

Período	Inverno	Verão
1	41	52
2	32	44
3	32	40
4	27	34
5	27	36
Total	159	206

O período de verão tem duração média maior que o período de inverno. No Estado do Rio Grande do Sul, normalmente o período entre a colheita das culturas de verão e a semeadura das culturas de inverno é maior que o período entre a colheita das culturas de inverno e a semeadura das culturas de verão. A duração média dos períodos foi diferente entre os anos devido ao ajuste feito com as datas das coletas. Essa variação é apresentada na Tabela 2.

Tabela 2: Duração mínima, máxima e amplitude dos períodos das culturas nos 10 anos de experimentação.

Ciclo	Período _	Duração (dias)								
Cicio	i eriodo _	Mínima	Máxima	Amplitude						
-	1	30	69	39						
	2	21	38	17						
Inverno	3	21	47	26						
	4	17	36	19						
	5	10	51	41						
	6	26	76	50						
	7	22	67	45						
Verão	8	21	54	33						
	9	17	46	29						
	10	15	57	42						

Considerou-se o ano agrícola se iniciando com os preparos das culturas de inverno e terminando com a colheita das culturas de verão. Os períodos de 1 o 5 são referentes ao das culturas do trigo e da aveia, denominado como período de inverno. Os períodos de 6 a 10 são referentes ao das culturas da soja e do milho, denominado como período de verão.

Na parcela padrão da USLE (solo descoberto durante todo o ano), o preparo do solo sempre foi realizado na mesma época do preparo e semeadura dos tratamentos com culturas anuais.

5.9.2. Determinação da Razão de Perdas de Solo

A Razão de Perdas de Solo (RPS) é determinada pela relação entre as perdas de solo em determinado tratamento pelas perdas de solo da parcela padrão (WISCHMEIER & SMITH, 1978). A RPS foi determinada para cada um dos dez períodos das culturas. A perda de solo de cada perído de determinado tratamento foi dividida pela perda de solo da parcela padrão no mesmo período. A RPS varia entre zero e um, sendo zero quando não ocorreu perda de solo no tratamento considerado em determinado período, e um quando a perda de determinado tratamento for igual a perda que ocorreu na parcela padrão.

5.9.3. Determinação da Fração do Índice de Erosividade das chuvas

A erosividade total das chuvas em cada período das culturas foi dividida pela erosividade total do correspondente ano agrícola, para se obter a Fração do Índice de Erosividade (FEI₃₀) nesses respectivos períodos. Foi determinado a FEI₃₀ de todos os períodos dos ciclos da sucessão de culturas de inverno e de verão. A FEI₃₀ varia entre zero e um, pois representa a porcentagem do índice de erosividade anual que causou a erosão no estádio considerado, sendo, portanto, um o somatório de todas FEI₃₀ do ano.

5.9.4. Determinação do fator C

Para obter o fator C anual de cada tratamento, soma-se o produto da RPS pela FEI₃₀ obtido em cada período, conforme a seguinte expressão:

Fator C anual =
$$\sum_{i=1}^{i=10} RPS \times FEI_{30}$$
 (8)

onde i representa o período da cultura.

Na Tabela 3 observa-se esquematicamente como foi determinado o fator C em cada ano agrícola.

Tabela 3. Exemplo de determinação do fator C para cada ano agrícola de todos os tratamentos.

Período das culturas	RPS	Х	FEI ₃₀	=	Fator C
1	RPS₁ inv	Х	FEI ₃₀ inv ₁	=	Subfator C ₁
2	RPS ₂ inv	X	FEI ₃₀ inv ₂	=	Subfator C ₂
3	RPS ₃ inv	X	FEI ₃₀ inv ₃	=	Subfator C₃
4	RPS ₄ inv	X	FEI ₃₀ inv ₄	=	Subfator C ₄
5	RPS ₅ inv	X	FEI ₃₀ inv ₅	=	Subfator C₅
6	RPS ₆ ver	Χ	FEI ₃₀ ver ₆	=	Subfator C ₆
7	RPS7 ver	X	FEI ₃₀ ver ₇	=	Subfator C ₇
8	RPS ₈ ver	X	FEI ₃₀ ver ₈	=	Subfator C ₈
9	RPS ₉ ver	X	FEI ₃₀ ver ₉	=	Subfator C ₉
10	RPS ₁₀ ver	X	FEI ₃₀ ver ₁₀	=	Subfator C ₁₀
Total					∑= Fator C anual

O fator C final para cada tratamento é determinado pela média do fator C de todos os anos de experimentação.

6. RESULTADOS E DISCUSSÃO

6.1. Quantidade, distribuição, erosividade e padrão hidrológico das chuvas durante o período experimental

A quantidade e as características das chuvas foram avaliadas entre julho de 1976 e junho de 1988, totalizando 12 anos de dados. A precipitação média anual entre esses anos foi de 1.824 mm. Desse total, a quantidade média anual das chuvas erosivas foi de 1.652 mm ano-1 e das chuvas não erosivas foi de 172 mm ano-1 (Tabela 4).

Tabela 4. Quantidade e erosividade anual das chuvas no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS, durante o período de 12 anos (de julho de 1976 a junho de 1988).

Ano		Qua	ntidade d	le Chuva		Erosividade
	Е	rosivas	Não	Erosivas	Total	El ₃₀
	N٥	mm	Ν°	mm	mm	MJ mm ha ⁻¹ h ⁻¹
1976*	22	633,7	39	129,2	762,9	3.183,9
1977	57	1.699,5	73	142,1	1.841,6	12.374,5
1978	52	1.178,0	66	139,3	1.317,3	5.027,5
1979	58	1.672,1	74	137,0	1.809,1	10.342,1
1980	49	1.578,0	69	168,4	1.746,4	9.314,1
1981	39	1.155,5	68	158,4	1.313,9	9.067,8
1982	50	1.721,1	77	198,5	1.919,6	9.939,9
1983	57	2.430,5	57	155,4	2.585,9	14.182,1
1984	57	2.026,5	64	177,6	2.204,1	12.311,3
1985	47	1.649,3	54	164,4	1.813,7	7.915,0
1986	52	1.805,4	59	181,4	1.986,8	10.499,4
1987	54	1.816,7	61	212,2	2.028,9	10.252,8
1988*	28	451,3	59	106,1	557,4	2.775,8
Total	622	19.817,6	820	2.070,0	21.887,6	117.186,2
Média em 12 anos	52	1.651,5	68	172,5	1.824,0	9.765,5
%	43,1	90,5	56,9	9,5	100,0	100,0

^{*}Valores de 1976 entre os meses de julho a dezembro e de 1988 de janeiro a junho.

O valor médio anual de 1.824 mm encontrado para Augusto Pestana, é superior a 1.617, encontrado por Cassol et al. (2007), para o município de Ijuí, RS, onde a estação de coleta se localizava cerca de 40 km ao leste da estação utilizada para este trabalho. Apesar da pequena distância, a diferença entre os dois locais é de aproximadamente 13%, concordando com Reichardt et al. (1995), onde afirmam que as chuvas podem ter grande variabilidade mesmo em pequenas distâncias

No mapa estadual de precipitação (Figura 5) gerado a partir de 26 anos de dados (SOTÉRIO, PEDROLLO & ANDRIOTTI, 2005), o município de Augusto Pestana se localiza numa linha de 1800 mm de chuvas anuais, valor semelhante ao encontrado no trabalho. Pelo mesmo mapa é possível perceber que na região há uma tendência de aumento dos valores no sentido leste-oeste, o que justifica o maior valor de precipitação do local quando comparado com o valor de ljuí (Cassol et al., 2007).



Figura 5: Mapa da precipitação média anual no estado do RS, média histórica 1976-2002. Fonte: Adaptado de Sotério, Pedrollo & Andriotti, (2005).

O ano de 1983 foi o de maior pluviosidade, com 2.586 mm de chuva, enquanto o de 1981 apresentou o menor valor, 1.314 mm (Tabela 4). A amplitude

de variação entre esses dois anos é alta, sendo que 1983 apresenta aproximadamente o dobro da precipitação quando comparado ao de 1981. Tal fato mostra a necessidade de avaliação de vários anos na elaboração de trabalhos dessa natureza, assim como mostra a dificuldade para se fazer planejamento conservacionista em locais que apresentem alta variação climatológica anual.

O número de chuvas erosivas representou 43% do total, porém elas são responsáveis por 91% da precipitação total anual (Tabela 4).

Comparando a precipitação média mensal, o maior valor é referente ao mês de novembro, com 178 mm, já o menor valor é referente ao mês de março, com 110 mm. Os valores dos demais meses podem ser observados na Figura 6.

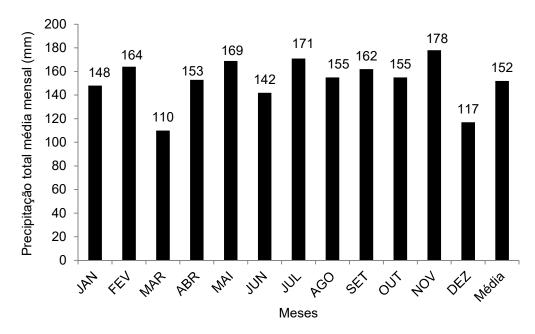


Figura 6: Distribuição média mensal pluvial, entre julho de 1976 e maio de 1987 em Augusto Pestana, RS, incluindo chuvas erosivas e não erosivas.

Os maiores volumes de chuva nem sempre representam alta erosividade, isso porque além da quantidade, características como a duração e a intensidade máxima em 30 min influenciam fortemente o valor da erosividade. O período de maior erosividade ocorre entre os meses de novembro a fevereiro (Figura 7), com destaque ao mês de dezembro, que apesar de ter baixa precipitação, apresenta alta erosividade. O período de menor erosividade ocorre no mês de março e nos meses de junho a agosto. O baixo valor de erosividade no mês de março é justificado pela baixa quantidade de precipitação. Já nos

meses de junho a agosto a quantidade precipitada é alta, portanto os valores baixos de erosividade ocorrem devido às características das chuvas, principalmente pela maior duração das mesmas nesses meses (Detalhes nos Apêndices 1 a 13).

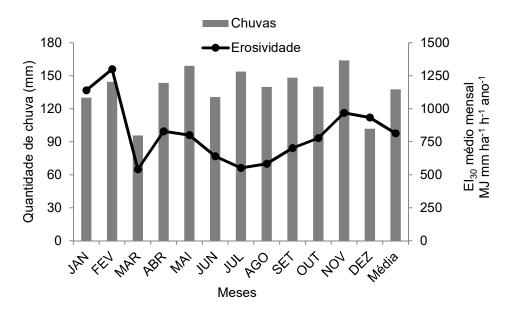


Figura 7: Distribuição média mensal das chuvas erosivas e Índice El₃₀ mensal entre julho de 1976 a maio de 1987 em Augusto Pestana, RS.

Entre os meses de setembro e dezembro ocorre o preparo do solo, nos sistemas reduzido e convencional; e a semeadura das principais culturas de verão na região. Esses meses apresentam altos valores de erosividade, principalmente novembro e dezembro. O ideal é não realizar preparo do solo nesses meses, expondo o solo o mínimo possível aos processos erosivos. A proteção ao solo fornecida pelos resíduos e menor mobilização oferecida pelos sistemas de manejo conservacionistas são, portanto, ainda mais importantes para o controle da erosão nesses períodos. Nos meses de janeiro e fevereiro onde ocorrem os maiores valores de erosividade, as culturas já estão desenvolvidas e o solo está protegido pelo dossel contra o impacto das gotas de chuva, tendo potencial para reduzir o escoamento.

Cuidados devem ser tomados também nos meses de abril e maio, onde ocorre alta erosividade justamente no período de entressafra, quando é utilizada a sucessão da soja com cereais de inverno. Portanto seria interessante nesse período utilizar uma cobertura outonal, com alguma cobertura de verão para proteger o solo até a época de semeadura da cultura do inverno. Outra justificativa para essa prática é pela cultura predominante de verão da localidade

ser a soja, a qual produz baixa quantidade de matéria seca e, por ser uma leguminosa, tem alta taxa de decomposição de seus resíduos, o que deixa o solo desprotegido rapidamente (DA ROS & AITA, 1996).

Entre os meses de maio e junho ocorre o preparo do solo nos sistemas reduzido e convencional, e a semeadura das principais culturas de inverno na região. No mês de maio, em que ocorre alta erosividade, cuidados devem ser tomados em caso de uso de preparo convencional ou reduzido. Em caso de necessidade de revolvimento do solo na região, para correção do solo, por exemplo, é importante que esta seja feita no mês de março ou em junho-julho, pois coincidem com meses de baixa erosividade. Fazendo a correção do solo nesses meses também não impedirá a implementação das culturas na época recomendada pelo zoneamento climático.

O preparo convencional é pouco usado atualmente na região. Porém a prática de silagem de milho é comum, a qual deixa o solo sem cobertura entre dezembro e janeiro; meses que apresentam alta erosividade, necessitando desta forma imediata implantação de outra cultura para fornecer proteção ao solo. Em outras áreas da região é comum o monocultivo de soja no verão, a qual fornece baixa quantidade de matéria seca ao sistema. Portanto cuidados são necessários no período de entressafra verão/inverno, almejando ter quantidade suficiente de cobertura vegetal ou de resíduos sobre a superfície para proteção do solo.

Durante o período experimental, a maior erosividade anual ocorreu no ano de 1983 com 14.182 MJ mm ha-1 h-1 ano-1, enquanto que a menor ocorreu no ano de 1978 com 5.028 MJ mm ha-1 h-1 ano-1 (Tabela 4). O ano de 1983 além da maior erosividade apresentou também a maior pluviosidade. Em 1982/1983 ocorreu um intenso episódio El Niño / Oscilação Sul, causando chuvas torrenciais, muito acima das médias históricas para a região (CAVALCANTI, 1996), justificando a maior precipitação e erosividade neste ano. Porém no ano de menor erosividade (1978), a lógica citada acima não se aplica visto que neste ano não teve a menor pluviosidade a qual ocorreu no ano de 1981. Isso se explica pelas características e distribuição das chuvas serem diferentes entre os anos de 1978 e 1981. As chuvas de 1978 foram melhor distribuídas durante o ano, em comparação ao ano de 1981. No ano de 1981 ocorreram eventos isolados com maior erosividade. As três maiores erosividades em eventos

isolados do ano de 1978 foram 721, 573 e 315 MJ mm ha⁻¹ h⁻¹ (Apêndice 3), enquanto as três maiores do ano de 1981 foram 2.331, 1.560 e 571 MJ mm ha⁻¹ h⁻¹ (Apêndice 6). Por ter poucos eventos com erosividade alta, o ano de 1978 apresentou a menor erosividade média anual.

A erosividade média anual em Augusto Pestana, RS, com base no período estudado foi de 9.765 MJ mm ha-1 h-1 ano-1. Esse valor representa o valor do fator R da USLE para essa localidade, tornando possível a utilização da mesma no planejamento conservacionista da atividade agrícola na região. Esse é um valor que representa um alto potencial erosivo das chuvas. Valores do Fator R foram determinados em vários locais do Estado do Rio Grande do Sul, como em Rio Grande (32° 01' S e 52° 09' W) com 5.135 MJ mm ha-1 h-1 ano-1 (BAZZANO, ELTZ & CASSOL, 2010); em Encruzilhada do Sul (30° 32' S e 52° 31' W) com 5.534 MJ mm ha⁻¹ h⁻¹ ano⁻¹ (ELTZ, CASSOL & PASCOTINI, 2011); em Eldorado do Sul, (30° 05' S e 51° 39' W) com 5.605 MJ mm ha-1 h-1 ano-1; (SILVA, 2016); em São Gabriel (30° 27' S e 54° 19' W) com 6.432 MJ mm ha-1 h-¹ ano-¹ (ELTZ et al., 2013); em Santa Maria (29° 41' S e 53° 48' W) com 7.866 MJ mm ha⁻¹ h⁻¹ ano⁻¹ (COGO, ELTZ & CASSOL, 2006); em ljuí (28° 23' S e 53° 54' W) com 8.825 MJ mm ha⁻¹ h⁻¹ ano⁻¹ (CASSOL et al., 2007); em Uruguaiana (29° 45' S e 57° 05' W) com 8.875 MJ mm ha⁻¹ h⁻¹ ano⁻¹ (HICKMANN, et al., 2008); em Quarai (30° 23' S e 56° 26' W) com 9.292 MJ mm ha-1 h-1 ano-1 (BAZZANO, ELTZ & CASSOL, 2007); em São Borja (28° 39' S e 56° 00' W) com 9.751 MJ mm ha⁻¹ h⁻¹ ano⁻¹ (CASSOL et al., 2008); e em Santa Rosa (27° 51' S e 54° 29' W) com 11.217 MJ mm ha-1 h-1 ano-1 (MAZURANA et al., 2009). Comparando as erosividades já determinadas é possível perceber que no estado do Rio Grande do Sul a mesma aumenta no sentido sul-norte e leste-oeste.

O padrão hidrológico das chuvas ocorridas em Augusto Pestana durante 12 anos (julho de 1976 a junho de 1988) é apresentado na Figura 8. O padrão de chuva avançado foi o predominante em número total de chuvas, quantidade precipitada e erosividade, com exceção do mês de agosto, onde o padrão intermediário foi o predominante. A superioridade do padrão intermediário no mês de agosto é mais perceptível em relação à erosividade, onde esta é 17% superior quando comparada a média dos outros padrões.

Chuvas do padrão hidrológico atrasado provocam maiores perdas de solo quando comparados aos padrões intermediários e avançado, pois quando

ocorre a maior intensidade da chuva o solo já está úmido, facilitando os processos erosivos (ELTZ, MEHL & REICHERT, 2001). Portanto, pode-se inferir que as perdas de solo ocorridas na região, poderiam ser maiores caso houvesse predominância dos outros padrões hidrológicos.

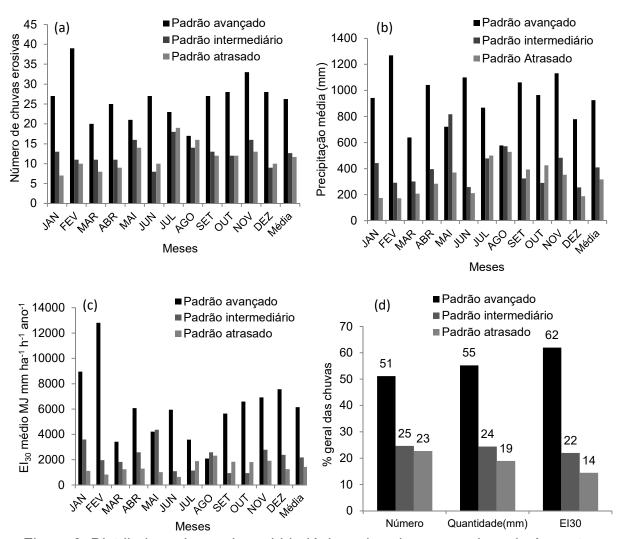


Figura 8. Distribuição dos padrões hidrológicos das chuvas erosivas de Augusto Pestana, RS, no período de julho de 1976 a junho de 1988, por: (a) número total mensal de chuvas; (b) precipitação pluvial média mensal; (c) índice de erosividade média mensal; (d) percentagem média total do número, da quantidade total média anual (mm) e do índice de erosividade médio anual (El₃₀).

A maior ocorrência do padrão hidrológico avançado nas chuvas é constante no Estado do Rio Grande do Sul, conforme já observado por Cogo, Eltz & Cassol (2006) em Santa Maria, por Cassol et al. (2007) em Ijuí, por Cassol et al. (2008) em São Borja, por Mazurana et al. (2009) em Santa Rosa, por Eltz, Cassol & Pascotini (2011) em Encruzilhada do Sul, RS, entre outros.

A quantidade total, duração, padrão hidrológico e o índice El₃₀ de todas as chuvas que ocorreram entre julho de 1976 e junho de 1988 estão

apresentados nos apêndices 1-13. No apêndice 24 são apresentadas as médias do número, quantidade (mm) e da erosividade das chuvas dos três padrões hidrológicos durante os doze meses do ano.

6.2. Precipitação e erosividade das chuvas por ano agrícola

Os valores de pluviosidade e erosividade médias totais do ano agrícola diferem das do ano de calendário, pois o período considerado é diferente. A duração média do período de inverno foi de 159 dias e o de verão de 206 dias (Tabela 5). O período de inverno variou entre 121 (1984/1985) e 190 dias (1978/1979), enquanto o período de verão variou entre 175 (1977/1978) e 241 dias (1978/1979). O período de verão é maior devido às características de ciclo das culturas, o pousio que ocorre entre a colheita da cultura de inverno até a semeadura da cultura de verão é menor do que o tempo de pousio que ocorre entre o ciclo de verão e o ciclo de inverno, o que causa também maior duração do período de verão.

O ano agrícola de 1977/1978 foi o que apresentou a menor erosividade, enquanto o ano com maior erosividade é o de 1982/1983, respectivamente 6.904.4 e 17.919,4 MJ mm ha⁻¹ h⁻¹ ano⁻¹ (Tabela 5).

A pluviosidade média foi de 891 mm para o período de inverno, enquanto para o período de verão foi de 987 mm. A erosividade média foi de 4.083 MJ mm ha-1 h-1 ano-1 para o período de inverno e de 5.343 MJ mm ha-1 h-1 ano-1 para o período de verão (Tabela 5). A erosividade do período de verão é cerca de 30% superior, enquanto a quantidade de chuva é apenas 10% superior no mesmo período. O que pode ser explicado principalmente pela duração das chuvas, que é menor nos meses de dezembro a março, meses que participam do período de verão (Figura 9). Portanto, se a quantidade de chuva é alta, e o tempo é menor, a intensidade é alta e consequentemente a erosividade também.

No total o ano agrícola teve em média 1.879 mm de pluviosidade e 10.138 MJ mm ha⁻¹ h⁻¹ ano⁻¹ de erosividade (Tabela 5).

Tabela 5. Datas inicias e finais, duração do ciclo das culturas, quantidade de chuvas e índice de erosividade para os cultivos de inverno e verão durante a condução do experimento, no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS, entre junho de 1977 e maio de 1987.

Ano Agrícola	Ciclo das culturas	Data Período		Duração do ciclo	Chuva total	El ₃₀ por período	El ₃₀ no ano agrícola
		Início	Final	Dias	mm	MJ mm	ha ⁻¹ h ⁻¹ ano ⁻¹
1977/78	Inverno Verão	03/06/1977 01/12/1977	30/11/1977 23/05/1978	181 175	928,5 417,4	5.111,7 1.792,7	6.904,4
1978/79	Inverno Verão	24/05/1978 30/11/1978	29/11/1978 28/07/1979	190 241	959,0 880,2	3.819,5 4.845,4	8.664,9
1979/80	Inverno Verão	29/07/1979 11/12/1979	10/12/1979 08/06/1980	135 181	908,2 636,9	5.415,0 2.136,1	7.551,1
1980/81	Inverno Verão	09/06/1980 25/11/1980	24/11/1980 08/07/1981	169 226	918,6 839,2	4.602,4 6.685,3	11.287,7
1981/82	Inverno Verão	09/07/1981 17/12/1981	16/12/1981 22/06/1982	161 188	575,6 735,1	2.543,4 5.418,0	7.961,4
1982/83	Inverno Verão	23/06/1982 02/12/1982	01/12/1982 28/06/1983	162 209	1.272,4 1.636,4	6.887,4 11.032,0	17.919,4
1983/84	Inverno Verão	29/06/1983 17/11/1983	16/11/1983 11/07/1984	141 238	937,3 1.442,7	3.313,1 9.323,9	12.637,0
1984/85	Inverno Verão	12/07/1984 10/11/1984	09/11/1984 24/06/1985	121 227	705,9 1.152,4	2.347,4 5.453,6	7.801,0
1985/86	Inverno Verão	25/06/1985 18/12/1985	17/12/1985 16/06/1986	176 181	798,4 827,9	3.231,2 4.694,4	7.925,6
1986/87	Inverno Verão	17/06/1986 20/11/1986	19/11/1986 30/05/1987	156 192	906,7 1.301,4	3.558,6 9.164,4	12.723,0
Média	Inverno Verão			159 206	891,3 987,0	4.083,0 5.343,1	
Total	Inverno Verão			2247 2747	8.921,6 9.869,6	40.809,7 60.545,8	
Total mé	dio anual			365	1.878,3	10.137,6	10.137,6

Nos apêndices 14 a 23 estão apresentadas de forma detalhada as perdas de solo de cada tratamento, a quantidade de chuva e a erosividade em cada coleta realizada durante o período experimental.

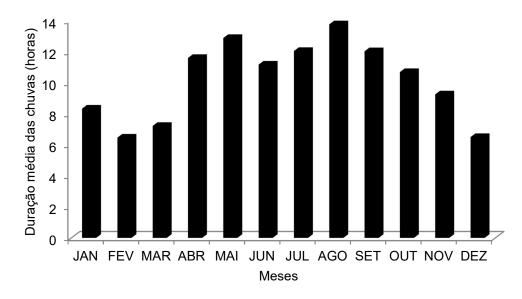


Figura 9: Duração média das chuvas (horas) durante os meses do ano.

A maior duração das chuvas no inverno e menor no verão ocorre porque nos meses de verão as chuvas mais comuns são as convectivas e no inverno as frontais (MORENO, 1961). Chuvas convectivas são originadas pelo movimento de massas de ar mais quentes que sobem e condensam, normalmente apresentando alta intensidade. Chuvas frontais ocorrem quando há o encontro entre uma massa de ar quente com uma fria. Neste choque, a massa de ar fria e seca, que é mais densa, impulsiona para cima a massa de ar quente e úmida, ao ganhar altitude, a umidade da massa de ar quente se condensa, formando assim a chuva. As chuvas frontais normalmente média intensidade. longa duração (FORGIARINI, apresentam VENDRUSCOLO & RIZZI, 2014). Portanto as chuvas convectivas têm maior erosividade, podendo causar maiores perdas de solo.

Na Figura 10 estão apresentadas as erosividades médias dos períodos de inverno e verão das culturas estudadas. Durante o ciclo de inverno a erosividade de todos os períodos ficou abaixo da média do ano agrícola, com a maior erosividade deste ciclo ocorrendo no período 5, período de senescência das culturas. O fato das culturas estarem no final do ciclo no período de maior erosividade do inverno, não é tão preocupante, visto que há a presença de restos culturais de aveia e de trigo. Crusciol et al. (2008), em estudo da decomposição da aveia concluíram que essa cultura tem alta persistência e durabilidade, com baixa taxa de decomposição. Oliveira & Borszowskei (2012), estudando a

decomposição da palhada do trigo em Ponta Grossa (Paraná) verificaram que apenas 23% da palhada total da cultura era decomposta em 140 dias. Schomberg, Steiner & Unger (1994), em condições de clima temperado verificaram uma decomposição ainda mais lenta, sendo que aos 369 dias, apenas de 32 a 47% dos resíduos de trigo estavam decompostos.

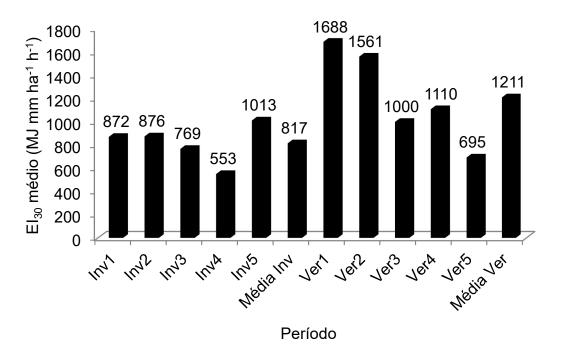


Figura 10: Erosividade média dos períodos de inverno e verão, entre o verão de 1977 e inverno de 1987.

Ao iniciar o período de verão, se o manejo adotado for o plantio direto, os resíduos ainda persistirão sobre a superfície do solo, caso seja incorporado essa decomposição aumenta. Segundo Brown e Dickey (1970), ao longo de um ano e meio, a taxa de decomposição dos resíduos mantidos em superfície é cerca de 67% menor em relação aos incorporados.

Ao contrário do que ocorre no período de inverno, no verão a situação é preocupante, isso porque o período com a maior erosividade (1.688 MJ mm ha-1 h-1 ano-1) ocorre justamente no período do preparo do solo e semeadura das culturas, desta forma os riscos de perda de solo por erosão são altos, principalmente nos sistemas de manejo não conservacionistas. Torna-se ainda mais importante a utilização de sistemas conservacionistas de manejo do solo na implantação das culturas de verão.

6.3. Perda de solo por ano agrícola e por períodos

Para posterior determinação do fator C e do fator K as perdas de solo de todos os anos avaliados em cada tratamento foram dispostas na Tabela 6. Além disso, na tabela é apresentada a duração de cada ano agrícola.

Maiores detalhes podem ser encontrados nos apêndices 25-34, onde são apresentados para todos os anos estudados: a duração de cada um dos 10 períodos anuais das culturas, bem como a chuva (mm), a erosividade (MJ mm ha-1 h-1) e as perdas de solo ocorridas em cada período.

Os resultados da Tabela 6 indicam o tratamento solo descoberto, com as maiores perdas de solo. Na sucessão trigo-soja as perdas de solo decresceram do preparo convencional, para o preparo reduzido e para o plantio direto. Do mesmo modo para a sucessão trigo-milho em preparo convencional e plantio direto. Por fim, as menores perdas de solo ocorreram nas pastagens de alfafa e do consórcio de setária, siratro e desmódio.

Nos tratamentos com pastagens, os últimos três anos foram cultivados com trigo-soja em preparo convencional. Comparando as perdas dessas parcelas com a parcela que vinha sendo trabalhada continuadamente com a sucessão trigo-soja em preparo convencional percebe-se que a parcela onde vinha sendo cultivada com alfafa apresentou menores perdas nos dois primeiros anos, e a parcela que vinha sendo cultivada com setária, siratro e desmódio apresentou perda menor apenas no primeiro ano.

Quanto menor o revolvimento do solo, maior a quantidade de resíduos deixados em superfícies. Os resíduos vegetais na superfície do solo reduzem a desagregação de partículas do solo, por diminuírem a exposição do solo aos impactos das gotas de chuva. Diminuem também a velocidade do escoamento superficial, reduzindo assim o transporte de partículas de solo (BRAIDA & CASSOL, 1999). Esse comportamento pode ser visualizado nas perdas de solo dos tratamentos estudados, onde os tratamentos com plantio direto e pastagens que mantém maior cobertura de solo, apresentaram menores perdas de solo.

Tabela 6. Perdas de solo nos tratamentos avaliados ao longo dos 10 anos de experimentação, em Augusto Pestana/RS.

		Perda de solo por tratamento									
Ano agrícola	Duração	SDPP ⁽¹⁾	TSPC ⁽²⁾	TSPR ⁽³⁾	TSPD ⁽⁴⁾	AMPC ⁽⁵⁾	AMPD ⁽⁶⁾	RALF ⁽⁷⁾	RSSD ⁽⁸⁾		
	Dias		Mg/ha								
1977/78	356	30,67	1,16	-	0,08	1,82	-	-	-		
1978/79	431	73,79	7,11	-	0,54	8,96	0,23	0,81	-		
1979/80	316	51,56	11,99	1,71	0,53	9,47	0,46	0,12	-		
1980/81	395	61,63	4,44	4,87	0,39	6,86	1,52	0,00	0,04		
1981/82	349	41,20	13,63	13,35	1,05	13,36	1,79	0,01	0,01		
1982/83	371	157,34	4,92	1,03	1,63	1,74	0,48	0,06	0,01		
1983/84	379	181,80	41,70	5,59	1,71	40,50	0,95	0,30	0,04		
1984/85*	348	4,58	0,06	0,18	0,10	0,13	0,18	0,05	0,03		
1985/86	357	50,62	0,61	0,42	0,07	3,76	2,86	0,21	0,75		
1986/87	348	111,91	0,08	0,14	0,08	0,18	0,05	0,10	0,77		
Média	365	76,51	8,57	3,41	0,62	8,68	0,95	0,18	0,24		

⁽¹⁾ Solo descoberto; (2) Sucessão trigo-soja em preparo convencional; (3) Sucessão trigo-soja em preparo reduzido; (4) Sucessão trigo-soja em plantio direto; (5) Sucessão aveia-milho em preparo convencional; (6) Sucessão aveia-milho em plantio direto; (7) Pastagem de alfafa rotacionada com trigo-soja em preparo convencional; *Revolvimento do solo em todas as parcelas para incorporação de calcário, neste mesmo ano as parcelas das pastagens passaram a ser trabalhadas com trigo-soja em preparo convencional.

No preparo convencional após pastagens o efeito residual positivo é perceptível principalmente nos dois primeiros anos no caso da alfafa e no primeiro ano no consórcio de setária, siratro e desmódio. Possivelmente após o segundo ano de revolvimento o teor de matéria orgânica já se aproximou ao apresentado pela parcela em que sempre foi realizado preparo convencional. Pois, o cultivo intensivo juntamente com o frequente revolvimento do solo, são responsáveis pela redução do conteúdo de matéria orgânica do solo, a qual é um dos principais agentes de formação e estabilização dos agregados (CASTRO FILHO et al., 1998).

Na Tabela 7 estão apresentados os resultados de perdas de solo média de cada período de avaliação das culturas de inverno e verão.

Tabela 7. Perdas de solo média dos dez períodos ao longo dos 10 anos de experimentação, nos diferentes sistemas de preparo e manejo, em Augusto Pestana, RS.

Período	SDPP	TSPC	TSPR	TSPD	AMPC	AMPD	RALF	RSSD
				Mg h	a ⁻¹			
1	2,22	1,79	0,42	0,09	0,80	0,10	0,02	0,05
2	1,20	0,16	0,08	0,02	0,52	0,03	0,00	0,03
3	2,44	0,17	0,05	0,01	0,20	0,02	0,06	0,00
4	1,18	0,01	0,01	0,01	0,05	0,01	0,01	0,00
5	5,64	0,02	0,01	0,01	0,12	0,01	0,03	0,00
Inverno	12,68	2,15	0,57	0,13	1,69	0,17	0,13	0,09
6	5,68	3,17	2,13	0,15	2,33	0,34	0,02	0,05
7	22,50	2,47	0,23	0,14	1,60	0,31	0,01	0,07
8	9,51	0,33	0,09	0,16	0,56	0,01	0,00	0,00
9	20,76	0,36	0,07	0,02	2,32	0,02	0,02	0,00
10	5,37	0,09	0,06	0,02	0,16	0,02	0,01	0,01
Verão	63,83	6,41	2,57	0,49	6,98	0,70	0,05	0,13
Anual	76,51	8,57	3,14	0,62	8,68	0,87	0,18	0,22

SDPP = perdas de solo na parcela padraão; TSPC= trigo-soja em prepare convencional; TSPR= trigo-soja em preparo reduzido; TSPD= trigo-soja em plantio direto; AMPC= aveia-milho em preparo convencional; AMPD= aveia-milha em plantio direto; RALF= pastagem de alfafa; RSSD= pastagem de setária, siratro e desmódio.

De forma geral, as maiores perdas de solo ocorrem no primeiro período de verão e no primeiro período de inverno, onde ocorre mobilização do solo e as culturas proporcionam pouca cobertura ao solo.

Em relação a parcela padrão, por passar o ano todo descoberta, as maiores perdas ocorrem nos períodos com maior erosividade. Concentrando

cerca de 80% das perdas no período de verão, onde também ocorre cerca de 60% da erosividade do ano agrícola. No primeiro período do inverno, apesar da erosividade ser baixa, as perdas são altas devido ao revolvimento do solo neste período.

O plantio direto por apresentar cobertura do solo durante todo o ano e não sofrer preparo do solo, apresenta perdas menores e mais homogêneas entre os períodos quando comparado aos preparos convencional e reduzido. Porém, apesar da pouca mobilização do solo causada pela semeadura, aliada a baoxa cobertura do solo, as maiores perdas de solo ocorreram nos períodos iniciais. Os outros períodos que ocorrem perdas maiores são os que coincidem com os de maiores erosividades.

6.4. Perdas de solo no tratamento solo descoberto e determinação do fator K

6.4.1. Método direto para determinação da erodibilidade

O fator K, que na USLE representa a suscetibilidade do solo à erosão é determinado pela razão entre perdas de solo ocorridas na parcela padrão e a erosividade das chuvas, sempre em base anual. Como a parcela do estudo apresentava declividade inferior a parcela padrão, as perdas de solo foram ajustadas (Tabela 8). Na mesma tabela estão apresentadas as perdas de solo observadas, a erosividade e o fator K.

O fator K sofre ampla variação entre os anos estudados, variando de 0,0008 e 0,0186 t ha h MJ-1 mm-1 ha-1. Apesar do fator K ser uma relação direta entre erosividade e perdas de solo, essas variações são comuns em estudos dessa natureza. Podendo ser relacionada principalmente com as variações climáticas que influenciam no potencial erosivo das chuvas (BERTOL et al., 2007c), mas também por mudanças no teor de matéria orgânica do solo, agregação e características de infiltração (SINGH & KHERA 2009). Além disso, vários outros fatores podem influenciar nos resultados, tais como umidade antecedente do solo, precisão na quantificação dos sedimentos sólidos e em suspensão e preparo do solo anteriormente a chuvas de alta intensidade (EDUARDO, 2013).

Tabela 8. Perdas de solo observadas e ajustadas para 9% de declividade no tratamento solo descoberto (parcela padrão da USLE) para determinação do fator K nos 10 anos de condução do experimento, de 1977/78 a 1986/87, em Augusto Pestana, RS.

Ano	Perdas	de solo	El ₃₀	Fator K
7110	Observadas	Ajustadas ⁽¹⁾	$\left(\frac{\text{MJ mm}}{\text{ha h}}\right)$	$\left(\frac{\text{Mg ha h}}{\text{ha MJ mm}}\right)$
	(Mg ha	⁻¹ ano ⁻¹)	(,	(IIa MJ IIIII/
1977/1978	30,67	39,73	6.904,4	0,0058
1978/1979	73,79	95,59	8.664,9	0,0110
1979/1980	51,56	66,79	7.551,1	0,0088
1980/1981	61,63	79,85	11.287,7	0,0071
1981/1982	41,20	53,37	7.961,4	0,0067
1982/1983	157,34	203,83	17.919,4	0,0114
1983/1984	181,80	235,52	12.637,0	0,0186
1984/1985	4,58	5,94	7.801,0	0,0008
1985/1986	50,62	65,58	7.925,6	0,0083
1986/1987	111,91	144,98	12.723,0	0,0114
Média	76,51	99,12	10.137,6	0,0090
D. Pad.	56,68	73,43	3483,5	0,0047
CV (%)	74	74	34	52

⁽¹⁾ Ajustada para 9% de declividade pelo fator S de 0,771918.

O ano de 1984/1985 apresentou o menor valor de fator K. Além do valor de erosividade ter sido baixo, a perda de solo neste ano foi muito baixa quando comparada aos outros anos.

O maior valor de fator K foi constatado no ano de 1983/1984. Porém o mesmo apresentou as maiores perdas de solo sem apresentar a maior erosividade. Neste ano ocorreram mais chuvas de padrão hidrológico atrasado quando comparado ao ano 1982/1983 (ano com maior erosividade), causando maiores perdas de solo. Justificando desta forma a maior perda de solo mesmo com menor erosividade em relação ao ano de 1982/1983.

A variação do fator K conforme a adição de anos analisados é apresentada na Figura 11, onde o primeiro ponto é referente ao valor obtido no primeiro ano, o segundo se refere ao valor médio obtido nos dois primeiros anos, o terceiro ponto ao valor médio obtido nos três primeiros anos, e assim sucessivamente. Essa variação conforme a adição de anos estudados justifica a necessidade de vários anos de avaliação nesse tipo de estudo. Até o sétimo ano

percebe-se uma tendência de aumento no valor de fator K, possivelmente devido a uma redução nos teores de matéria orgânica do solo devido aos preparos anuais e a ausência de culturas. O que consequentemente diminui a estabilidade dos agregados. Este mesmo comportamento foi constatado por outros autores (SILVA, 2016; SCHICK et al., 2014; CAMPOS FILHO et al.,1992). Nos 3 últimos anos se percebe uma situação de equilibrio, possivelmente devido à uma estabilização da quantidade de matéria orgânica do solo.

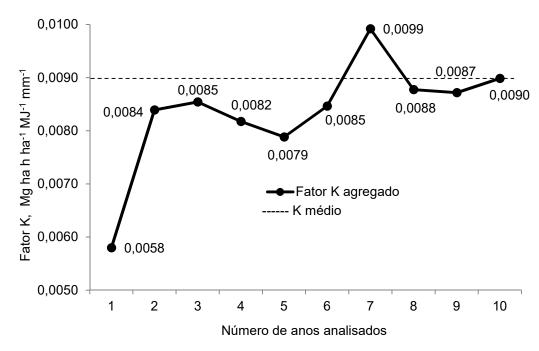


Figura 11: Fator K médio agregado em função do tempo de avaliação em Augusto Pestana, RS.

Para os Estados Unidos, Foster et al. (1981), classificaram os valores do fator K como: a) baixo: com valores entre 0,01 e 0,03 t ha h MJ⁻¹ mm⁻¹ ha⁻¹; b) médio: com valores entre 0,03 e 0,06 t ha h MJ⁻¹ mm⁻¹ ha⁻¹, e c) alto: com valores acima de 0,06 t ha h MJ⁻¹ mm⁻¹ ha⁻¹. No Latossolo desse estudo, o valor de fator K médio durante 10 anos de experimentação é de 0,0091, situado no nível inferior da classe "erodibilidade baixa" de Foster et al. (1981).

Os valores de fator K de um Latossolo Vermelho escuro e de um Latossolo Vermelho amarelo da região de Lavras, MG, sob chuva simulada são de 0,004 e 0,010 t ha h MJ⁻¹ mm⁻¹ ha⁻¹ (LIMA, 1991). O valor de fator K do Latossolo deste estudo é intermediário aos dois encontrados pelo autor. Portanto, mesmo pertencendo a mesma classe de solo, ocorrem variações entre cada solo, que refletem em diferentes valores de fator K. Pequenas variações

nas características do solo, especialmente nos teores de argila, matéria orgânica e óxidos podem ser responsáveis por essas diferenças em uma mesma classe de solo.

Apesar das variações, de forma geral os Latossolos apresentam baixa erodibilidade. Isso ocorre devido aos altos teores de argila ocorrentes nesses solos. Das três classes de partículas primárias do solo, a argila é o fator mais importante para a estabilidade de agregados (RUSSEL, 1973). Além do teor de argila, esses solos contêm óxidos que também tem propriedades cimentantes. Aluminossilicatos (mineral com óxido de alumínio e silício), participam, juntamente com óxidos, como agentes inorgânicos adsorvidos à superfície das argilas e com propriedades ligantes, principalmente na classe de agregados menores que 2 mm (TISDALL & OADES 1982).

6.4.2. Determinação do fator K pelo nomograma de Wischmeier

Foram realizadas análises de solo no local e determinou-se os valores de 2% para matéria orgânica, 32,4% de silte + areia muito fina e 63% de argila. Para determinação da estrutura e permeabilidade do solo, baseou-se no levantamento de reconhecimento dos solos do estado do Rio Grande do Sul (MINISTÉRIO DA AGRICULTURA, 1973); determinando assim que o solo possuía estrutura em blocos e permeabilidade moderada. Com essas informações é possível determinar os códigos necessários para uso no nomograma de Wischmeier, Johnson & Cross, (1971) (Tabela 9).

Tabela 9. Dados granulométricos, matéria orgânica, estrutura e permeabilidade utilizados na determinação do fator K pela equação originada do nomograma de Wischmeier, Johnson & Cross, (1971).

Parâmetro		Classe	Código ou valor	Fator K (Mg ha h ha MJ mm)
(Silte + AMF) x (100-%argila)	М		1.198,8	
Matéria orgânica (%)	а		2,0	0,0175
Estrutura	b	Blocos	4	5,26
Permeabilidade	С	Moderada	3	

O valor encontrado pelo nomograma foi 94% superior em relação ao método direto. Essa diferença é explicada pelas condições em que o nomograma foi desenvolvido, onde não se tinha nenhum solo de classe semelhante aos Latossolos. Outros autores (LIMA, 1991; SILVA et al., 1994) ressaltaram que o nomograma não é adequado para se determinar o fator K da USLE para caracterizar a erodibilidade em Latossolos. Atribuindo ao fato de que o banco de dados utilizados no modelo abrange solos com altos teores de silte, incluindo solos acima de 50%, provavelmente justique o fato da baixa acuracidade do método monográfico para solos intemperizados que apresentam baixo teor de silte. Apesar do Latossolo desse estudo possuir 31% de silte, mais uma vez foi evidenciada a falta de acurácia do nomograma para Latossolos.

Denardin (1990) estudou modelos matemáticos estimativos da erodibilidade e concluiu que a variável "M" do nomograma de Wischmeier, Johnson & Cross, (1971) tem baixa correlação com o fator K quando atinge valores inferiores a 3.000. Nas condições do estudo, o valor de "M" foi igual a 1.198,8 (Tabela 9), reforçando a explicação da diferença entre os valores de fator K determinados pelo nomograma e pelo método direto. Desta forma, o nomograma não apresenta boa acurácia na determinação do fator K para essa classe de solo. Denardin (1990) ainda elaborou um modelo empírico para determinação da erodibilidade dos solos do Brasil, incluindo no modelo de Wischmeier, Johnson & Cross, (1971) outras variáveis, tais como o teor de óxidos de alumínio. Porém com este modelo o valor de fator K para o Latossolo Vermelho distrófico típico foi de 0,015. Desta forma ainda apresentando variação de 67% quando comparado ao valor obtido a campo. Portanto, esses modelos empíricos em Latossolos não atendem as expectativas, necessitando a elaboração de novos modelos, ou optar por determinar o fator K pelo método direto.

6.5. Manejo e Cobertura do Solo (fator C)

A determinação do fator C foi efetuada para cada um dos dez anos agrícolas do período experimental, entre junho de 1977 e maio de 1987. Na Tabela 10 estão apresentados os valores utilizados na determinação do fator C para o tratamento sucessão trigo-soja em preparo convencional (TSPC),

reduzido (TSPR) e direto (TSPD). Apresenta ainda os resultados referentes as perdas de solo nos 10 períodos das culturas, na parcela-padrão (SDPP) e, com as respectivas erosividades e fator C determinado para cada ano agrícola. O fator C médio anual foi determinado ao longo dos 10 anos de experimentação para os preparos convencional e direto e de 8 anos para o preparo reduzido.

Tabela 10. Perdas de Solo na parcela padrão (SDPP), Razão de Perdas de Solo (RPS) e fator C para a sucessão de culturas de Trigo e Soja em preparo convencional (TSPC), em preparo reduzido (TSPR) e em plantio direto (TSPD) em cada período das culturas ao longo dos 10 anos (junho de 1977 a maio de 1987) de condução do experimento de campo no Centro de Treinamento da Cotrijuí, em Augusto Pestana. RS.

Dawia da	El ₃₀ /MJ mm\	Fração	SDPP	TSPC	TSPR	TSPD	TSP	C	TSF	PR	TS	PD
Período	$\left(\frac{\text{MJ IIIII}}{\text{ha h}}\right)$	FEÍ ₃₀		Perdas de Sol	o em Mg ha ⁻¹		RPS	Fator C	RPS	Fator C	RPS	Fator C
					Ano Agrío	ola 1977/197	8					
1	674,8	0,0977	0,454	0,411	-	0,032	0,9052	0,0885	-	-	0,0707	0,0069
2	909,0	0,1317	1,271	0,703	-	0,016	0,5532	0,0728	-	-	0,0125	0,0016
3	274,7	0,0398	0,057	0,003	-	0,002	0,0573	0,0023	-	-	0,0282	0,0011
4	367,8	0,0533	0,169	0,004	-	0,009	0,0246	0,0013	-	-	0,0545	0,0029
5	2.885,4	0,4179	27,608	0,020	-	0,013	0,0007	0,0003	-	-	0,0005	0,0002
6	903,8	0,1309	0,014	0,010	-	0,004	0,7156	0,0937	-	-	0,2985	0,0391
7	198,5	0,0287	0,320	0,004	-	0,000	0,0119	0,0003	-	-	0,0009	0,0000
8	315,0	0,0456	0,014	0,000	-	0,001	0,0022	0,0001	-	-	0,0528	0,0024
9	228,9	0,0332	0,761	0,004	-	0,003	0,0049	0,0002	-	-	0,0042	0,0001
10	146,5	0,0212	0,008	0,000	-	0,000	0,1405	0,0030	-	-	0,4054	0,0086
Γotal	6.904,4	1,0000	30,668	1,159	-	0,081		0,2625		-		0,0630
					Ano Agrío	ola 1978/197	9					
1	620,4	0,0716	0,588	0,364	-	0,167	0,6189	0,0443	-	-	0,2831	0,0203
2	575,1	0,0664	3,828	0,340	-	0,027	0,0887	0,0059	-	-	0,0071	0,0005
3	417,5	0,0482	0,571	0,039	-	0,004	0,0674	0,0032	-	-	0,0072	0,0003
4	142,0	0,0164	0,003	0,003	-	0,000	0,9853	0,0161	-	-	0,0000	0,0000
5	2.064,5	0,2383	20,989	0,076	-	0,056	0,0036	0,0009	-	-	0,0027	0,0006
6	1.181,3	0,1363	0,434	0,428	0,074	0,149	0,9864	0,1345	0,0000	-	0,3445	0,0470
7	868,3	0,1002	4,672	2,950	0,216	0,035	0,6315	0,0633	0,0159	-	0,0075	0,0007
8	2.174,9	0,2510	29,951	2,390	0,001	0,093	0,0798	0,0200	0,0072	-	0,0031	0,0008
9	95,4	0,0110	0,532	0,024	0,116	0,000	0,0442	0,0005	0,0022	-	0,0005	0,0000
10	525,5	0,0606	12,221	0,494	0,407	0,010	0,0404	0,0025	0,0095	-	0,0008	0,0001
Γotal	8.664,9	1,0000	73,789	7,107	0,074	0,542		0,2912		-		0,0703
					- Ano Agríco	ola 1979/1980)					
1	909,5	0,1204	9,854	9,849	0,785	0,240	0,9995	0,1204	0,0796	0,0096	0,0243	0,0029
2	804,1	0,1065	0,600	0,041	0,076	0,005	0,0676	0,0072	0,1265	0,0135	0,0080	0,0009

3	2.235,2	0,2960	20,189	1,557	0,235	0,052	0,0771	0,0228	0,0116	0,0034	0,0026	0,0008
4	1.192,7	0,1580	9,028	0,069	0,016	0,002	0,0077	0,0012	0,0017	0,0003	0,0002	0,0000
5	273,5	0,0362	2,583	0,011	0,008	0,003	0,0044	0,0002	0,0030	0,0001	0,0010	0,0000
6	243,6	0,0323	0,333	0,265	0,036	0,151	0,7950	0,0256	0,1067	0,0034	0,4542	0,0147
7	521,5	0,0691	0,267	0,078	0,000	0,057	0,2917	0,0201	0,0000	0,0000	0,2125	0,0147
8	586,0	0,0776	2,177	0,015	0,412	0,004	0,0067	0,0005	0,1893	0,0147	0,0020	0,0002
9	566,9	0,0751	5,154	0,075	0,067	0,007	0,0145	0,0011	0,0130	0,0010	0,0013	0,0001
10	218,1	0,0289	1,371	0,031	0,080	0,007	0,0226	0,0007	0,0580	0,0017	0,0051	0,0001
Total	7.551,1	1,0000	51,556	11,990	1,713	0,527		0,1998		0,0477		0,0343
					- Ano Agríc	ola 1980/198	31					
1	387,2	0,0343	0,204	0,046	0,129	0,076	0,2229	0,0076	0,6326	0,0217	0,3716	0,0127
2	2.248,3	0,1992	1,826	0,065	0,230	0,017	0,0354	0,0071	0,1261	0,0251	0,0096	0,0019
3	467,2	0,0414	0,004	0,000	0,004	0,000	0,0455	0,0019	0,8182	0,0339	0,0000	0,0000
4	1.108,8	0,0982	0,899	0,015	0,013	0,005	0,0167	0,0016	0,0147	0,0014	0,0050	0,0005
5	390,9	0,0346	0,786	0,002	0,007	0,001	0,0020	0,0001	0,0086	0,0003	0,0009	0,0000
6	3.364,5	0,2981	10,128	4,102	4,278	0,264	0,4050	0,1207	0,4224	0,1259	0,0261	0,0078
7	2.659,9	0,2356	35,893	0,190	0,201	0,020	0,0053	0,0012	0,0056	0,0013	0,0006	0,0001
8	200,7	0,0178	3,556	0,007	0,002	0,003	0,0021	0,0000	0,0007	0,0000	0,0009	0,0000
9	316,3	0,0280	6,787	0,012	0,004	0,007	0,0017	0,0000	0,0006	0,0000	0,0011	0,0000
10	143,9	0,0128	1,551	0,001	0,000	0,001	0,0007	0,0000	0,0000	0,0000	0,0004	0,0000
Total	11.287,7	1,0000	61,634	4,439	4,868	0,394		0,1404		0,2097		0,0231
					- Ano Agríc	ola 1981/198	32					
1	761,8	0,0957	0,043	0,000	0,000	0,014	0,0000	0,0000	0,0000	0,0000	0,3163	0,0303
2	676,4	0,0850	0,070	0,001	0,000	0,050	0,0165	0,0014	0,0046	0,0004	0,7157	0,0608
3	190,4	0,0239	0,228	0,006	0,008	0,004	0,0241	0,0006	0,0348	0,0008	0,0168	0,0004
4	309,4	0,0389	0,059	0,000	0,037	0,040	0,0000	0,0000	0,6268	0,0244	0,6811	0,0265
5	605,4	0,0760	0,046	0,013	0,008	0,027	0,2792	0,0212	0,1812	0,0138	0,5986	0,0455
6	3.030,0	0,3806	16,973	13,431	13,028	0,736	0,7913	0,3012	0,7676	0,2921	0,0434	0,0165
7	872,2	0,1096	7,576	0,012	0,065	0,012	0,0016	0,0002	0,0085	0,0009	0,0016	0,0002
8	349,9	0,0439	2,448	0,067	0,098	0,093	0,0273	0,0012	0,0401	0,0018	0,0379	0,0017
9	161,7	0,0203	0,963	0,002	0,007	0,001	0,0019	0,0000	0,0071	0,0001	0,0007	0,0000
10	1.004,2	0,1261	12,793	0,102	0,102	0,059	0,0080	0,0010	0,0080	0,0010	0,0046	0,0006
Total	7.961,4	1,0000	41,198	13,633	13,353	1,036		0,3268		0,3353		0,1824

1	1.175,0	0,0656	2,905	1,046	0,651	0,054	0,3601	0,0236	0,2240	0,0147	0,0184	0,0012
2	970,3	0,0541	1,572	0,154	0,134	0,023	0,0982	0,0053	0,0855	0,0046	0,0144	0,0008
3	1.209,3	0,0675	1,609	0,068	0,067	0,005	0,0425	0,0029	0,0419	0,0028	0,0032	0,0002
4	1.522,1	0,0849	0,412	0,015	0,010	0,001	0,0373	0,0032	0,0232	0,0020	0,0011	0,0001
5	2.010,7	0,1122	0,263	0,038	0,008	0,003	0,1459	0,0164	0,0311	0,0035	0,0120	0,0014
6	1.237,1	0,0690	0,851	0,126	0,000	0,049	0,1481	0,0102	0,0005	0,0000	0,0571	0,0039
7	4.254,4	0,2374	89,527	2,184	0,032	0,032	0,0244	0,0058	0,0004	0,0001	0,0004	0,0001
8	2.108,9	0,1177	25,649	0,690	0,032	1,388	0,0269	0,0032	0,0012	0,0001	0,0541	0,0064
9	2.649,0	0,1478	30,955	0,563	0,090	0,071	0,0182	0,0027	0,0029	0,0004	0,0023	0,0003
10	782,6	0,0437	3,595	0,031	0,004	0,003	0,0087	0,0004	0,0010	0,0000	0,0009	0,0000
Total	17.919,4	1,0000	157,338	4,917	1,029	1,628		0,0736		0,0283		0,0144
					Ano Agrícola	a 1983/1984						
1	1.130,4	0,0895	6,583	5,935	1,502	0,207	0,9016	0,0806	0,2281	0,0204	0,0314	0,0028
2	475,0	0,0376	1,953	0,231	0,115	0,017	0,1185	0,0045	0,0587	0,0022	0,0089	0,0003
3	879,1	0,0696	1,430	0,030	0,029	0,005	0,0207	0,0014	0,0202	0,0014	0,0034	0,0002
4	301,0	0,0238	1,229	0,016	0,003	0,001	0,0130	0,0003	0,0022	0,0001	0,0010	0,0000
5	527,6	0,0418	0,665	0,010	0,006	0,001	0,0156	0,0007	0,0083	0,0003	0,0019	0,0001
6	2.944,0	0,2330	22,599	13,340	1,766	0,154	0,5903	0,1375	0,0781	0,0182	0,0068	0,0016
7	2.563,3	0,2028	49,330	18,944	1,545	1,201	0,3840	0,0779	0,0313	0,0064	0,0243	0,0049
8	354,1	0,0280	4,849	0,063	0,010	0,014	0,0131	0,0004	0,0020	0,0001	0,0028	0,0001
9	2.396,6	0,1896	91,006	2,942	0,412	0,041	0,0323	0,0061	0,0045	0,0009	0,0005	0,0001
10	1.065,9	0,0843	2,159	0,193	0,204	0,064	0,0895	0,0075	0,0945	0,0080	0,0298	0,0025
Total	12.637,0	1,0000	181,803	41,705	5,590	1,706		0,3170		0,0579		0,0127
					Ano Agrí	cola 1984/19	85					
1	372,5	0,0478	0,131	0,030	0,114	0,050	0,2307	0,0110	0,8691	0,0415	0,3835	0,0183
2	968,0	0,1241	0,018	0,002	0,004	0,014	0,1169	0,0145	0,2434	0,0302	0,7645	0,0949
3	571,8	0,0733	0,053	0,013	0,007	0,003	0,2352	0,0172	0,1335	0,0098	0,0484	0,0035
4	178,1	0,0228	0,004	0,001	0,000	0,002	0,2988	0,0068	0,0778	0,0018	0,4445	0,0101
5	257,0	0,0329	0,071	0,000	0,000	0,000	0,0000	0,0000	0,0021	0,0001	0,0003	0,0000
6	769,8	0,0987	0,019	0,000	0,000	0,001	0,0000	0,0000	0,0000	0,0000	0,0258	0,0025
7	1.159,4	0,1486	0,148	0,000	0,000	0,007	0,0000	0,0000	0,0000	0,0000	0,0465	0,0069
8	1.026,0	0,1315	0,445	0,004	0,014	0,009	0,0084	0,0011	0,0308	0,0041	0,0200	0,0026
9	1.518,3	0,1946	0,663	0,002	0,014	0,002	0,0035	0,0007	0,0206	0,0040	0,0025	0,0005
10	980,1	0,1256	3,030	0,004	0,011	0,011	0,0012	0,0002	0,0036	0,0005	0,0037	0,0005
Total	7.801,0	1,0000	4,584	0,056	0,165	0,098		0,0515		0,0919		0,1399

					- Ano Agrío	cola 1985/198	6					
1	1.321,6	0,1668	0,201	0,159	0,161	0,016	0,7917	0,1320	0,8015	0,1336	0,0790	0,0132
2	580,6	0,0733	0,555	0,090	0,045	0,007	0,1628	0,0119	0,0810	0,0059	0,0130	0,0009
3	972,6	0,1227	0,220	0,016	0,022	0,001	0,0735	0,0090	0,0986	0,0121	0,0054	0,0007
4	163,1	0,0206	0,009	0,000	0,000	0,001	0,0000	0,0000	0,0251	0,0005	0,1010	0,0021
5	193,3	0,0244	0,006	0,000	0,004	0,001	0,0000	0,0000	0,7227	0,0176	0,1839	0,0045
6	440,5	0,0556	2,276	0,022	0,021	0,025	0,0097	0,0005	0,0090	0,0005	0,0110	0,0006
7	1.653,3	0,2086	32,044	0,302	0,161	0,010	0,0094	0,0020	0,0050	0,0010	0,0003	0,0001
8	1.173,1	0,1480	4,014	0,014	0,000	0,004	0,0034	0,0005	0,0000	0,0000	0,0009	0,0001
9	501,3	0,0633	8,757	0,003	0,009	0,001	0,0004	0,0000	0,0010	0,0001	0,0001	0,0000
10	926,2	0,1169	2,542	0,000	0,000	0,000	0,0000	0,0000	0,0001	0,0000	0,0001	0,0000
Total	7.925,6	1,0000	50,623	0,606	0,423	0,065		0,1560		0,1715		0,0222
					Ano Agrío	ola 1986/198	7					
1	1.366,3	0,1074	1,201	0,049	0,040	0,001	0,0404	0,0043	0,0329	0,0035	0,0011	0,0001
2	553,9	0,0435	0,344	0,003	0,049	0,000	0,0077	0,0003	0,1412	0,0061	0,0001	0,0000
3	469,8	0,0369	0,005	0,000	0,000	0,000	0,0062	0,0002	0,0059	0,0002	0,0042	0,0002
4	247,2	0,0194	0,013	0,000	0,000	0,000	0,0000	0,0000	0,1003	0,0019	0,0865	0,0017
5	921,4	0,0724	3,395	0,004	0,000	0,000	0,0011	0,0001	0,0001	0,0000	0,0001	0,0000
6	2.766,7	0,2175	3,208	0,011	0,031	0,003	0,0033	0,0007	0,0096	0,0021	0,0008	0,0002
7	860,6	0,0676	5,222	0,001	0,000	0,005	0,0002	0,0000	0,0000	0,0000	0,0010	0,0001
8	1.716,2	0,1349	22,040	0,005	0,000	0,004	0,0002	0,0000	0,0000	0,0000	0,0002	0,0000
9	2.663,2	0,2093	62,030	0,009	0,019	0,059	0,0001	0,0000	0,0003	0,0001	0,0010	0,0002
10	1.157,7	0,0910	14,454	0,001	0,002	0,004	0,0001	0,0000	0,0001	0,0000	0,0003	0,0000
Total	12.723,0	1,0000	111,911	0,081	0,141	0,077	·	0,0058		0,0140	<u>'</u>	0,0024
Média anual			76,510	8,569	3,410	0,615		0,1824		0,1195		0,0565

O fator C variou amplamente entre os anos estudados. Isso ocorre por este fator ser influenciado principalmente pela distribuição da erosividade, que por sua vez também tem grande variação ao longo dos anos, além da influencia dos sistemas de preparo e do desenvolvimento das culturas. Nos três tratamentos, o menor valor de fator C ocorreu no ano de 1986/1987. Os maiores valores de fator C ocorreram no ano de 1981/1982.

Os valores extremos de fator C (0,1824 e 0,3268 para TSPC; 0,1195 e 0,3353 para TSPR; 0,0565 e 0,1824 para TSPD) são relacionados principalmente com a erosividade do primeiro período do verão, onde a média deste período para todos os anos estudados foi de 1.688 MJ mm ha-1 h-1 ano-1. No ano de 1986/1987 a erosividade do primeiro período de inverno foi 1.366 MJ mm ha-1 h-1 ano-1, cerca de 24% abaixo da média para o período. Já no ano de 1981/1982 a erosividade do primeiro período de verão foi de 3.030 MJ mm ha-1 h-1 ano-1, cerca de 80% acima da média dos anos. Visto que no primeiro período do verão ocorre mobilização do solo e as plantas conferem pouca proteção ao solo, anos com maior erosividade neste período tendem a perder mais solo, refletindo significativamente no valor de fator C.

Apesar da alta erosividade ocorrida no ano de 1986/1987 o fator C foi baixo, isso porque a mesma foi bem distribuida durante o ano. Em 1981/1982, ano em que ocorreu o maior valor de fator C, a erosividade foi baixa, porém 38% do total anual concentrou-se no primeiro período do verão, onde a cultura não está desenvolvida e a proteção do solo é muito baixa, principalmente no sistema de preparo convencional.

Na sucessão de culturas trigo-soja o fator C médio foi de 0,1824 para o preparo convencional, 0,1195 para o preparo reduzido e 0,0565 para o plantio direto. Esses valores médios do fator C serão os utilizados na Equação de Perdas de Solo para estimar as perdas por erosão hídrica nesses sistemas de manejo e cobertura do solo. Considerando o valor do preparo convencional como 100%, o valor do fator C é 1,5 vezes menor no preparo reduzido e 3,5 vezes menor no plantio direto, caracterizando uma eficiência no controle da erosão, principalmente no plantio direto. Isso evidencia a importância dos preparos conservacionistas para reduzir o fator C e consequentemente as perdas de solo.

Silva (2016) em um Argissolo de Eldorado do Sul, RS, em estudo com 13 anos sob chuva natural (1976-1989) para a mesma sucessão de culturas encontrou valores de fator C de 0,1576, 0,0407 e 0,0368 para os preparos convencional, reduzido e direto respectivamente. Os valores do fator C encontrados neste estudo são maiores quando comparados aos obtidos por Silva (2016), sendo que no preparo reduzido foi onde ocorreu a maior diferença. A erosividade no município de Eldorado do Sul, RS, é inferior à de Augusto Pestana, porém a distribuição é semelhante, sendo a primeira o fator que mais influenciou os valores de fator C. A maior diferença ocorrida no preparo reduzido possivelmente é atríbuida ao método utilizado, no estudo de Silva (2016) foi realizada uma escarificação, enquanto neste trabalho uma gradagem, o que causou essas diferenças. Isso porque a gradagem diminui a rugosidade superficial pela maior fragmentação dos agregados (PANACHUKI et al., 2010), enquanto a escarificação promove alto índice de rugosidade (CARVALHO FILHO et al., 2007). A rugosidade superficial do solo, induzida por métodos de preparo, reduz a velocidade e o volume do escoamento superficial, diminuindo os danos causados pela erosão hídrica em áreas agrícolas (CASTRO, COGO & VOLK, 2006), justificando, portanto, o maior valor de fator C em áreas com uso de gradagem quando comparadas a áreas com uso de escarificação.

Para a mesma sucessão de culturas, Bertol, Schick & Batistela (2001) encontraram valores de fator C (entre o verão de 1992/93 ao inverno de 1998, em Lages/SC) de 0,3595, 0,2661 e 0,1043 para os preparos convencional, reduzido e direto, respectivamente. Em todos os sistemas de preparo, os valores de fator C são superiores aos encontrados neste estudo. A variação destes resultados pode ser atribuída a diferença da distribuição das chuvas entre os locais. No preparo reduzido, os autores usaram uma escarificação e uma gradagem, enquanto neste estudo foi realizada apenas uma gradagem, mobilizando menos o solo, o que pode ter influenciado nas diferenças ocorridas neste sistema de preparo. Entretanto, a maior variação ocorreu possivelmente devido a metodologia de determinação, onde esses autores somaram o fator C do trigo e o da soja, ou seja, um fator C com base na fração da erosividade do ciclo cultural, e no presente trabalho, foi em relação a fração da erosividade anual.

Os resultados do fator C do presente estudo apresentaram maior aproximação com os valores encontrados por Amaral (2006). Este autor determinou o fator C em experimento de campo, sob chuva natural (entre

novembro de 2002 e outubro de 2005, em Lages/SC). Para a mesma sucessão de culturas em preparo convencional, reduzido e direto, encontrou valores de 0,198, 0,099 e 0,042, respectivamente. Estes valores são 1% maiores no preparo convencional, 21% menores no preparo reduzido e 26% menores no plantio direto quando comparados aos valores deste estudo.

Na Tabela 11 estão apresentados os valores utilizados na determinação do fator C para o tratamento da sucessão aveia-milho em preparo convencional (AMPC) e direto (AMPD). Apresenta ainda os resultados referentes as perdas de solo em todos os 10 períodos das culturas, na parcela-padrão (SDPP) e, com as respectivas erosividades e fator C determinado para cada ano agrícola. O fator C médio anual foi determinado ao longo dos 10 anos de experimentação para o preparo convencional e de 9 anos para o plantio direto.

Tabela 11. Perdas de Solo na parcela padrão (SDPP), Razão de Perdas de Solo (RPS) e fator C para a sucessão de culturas de Aveia e Milho em preparo convencional (AMPC) e em plantio direto (AMPD) em cada período das culturas ao longo dos 10 anos (junho de 1977 a maio de 1987) de condução do experimento de campo no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Poríodo	El ₃₀	Fração	SDPP	AMPC	AMPD	AM	1PC	AM	IPD
Período	$\left(\frac{\text{MJ mm}}{\text{ha h}}\right)$	FEI ₃₀	Per	das de so Mg ha ⁻¹	olo	RPS	С	RPS	С
	(114 11)		Ano	Agrícola ´	1977/1978	3			
1	674,8	0,0977	0,454	0,019	-	0,0420	0,0041	-	-
2	909,0	0,1317	1,271	0,029	-	0,0230	0,0030	-	-
3	274,7	0,0398	0,057	0,000	-	0,0000	0,0000	-	-
4	367,8	0,0533	0,169	0,010	-	0,0563	0,0030	-	-
5	2.885,4	0,4179	27,608	1,075	-	0,0390	0,0163	-	-
6	903,8	0,1309	0,014	0,010	0,002	0,7174	0,0939	0,1297	-
7	198,5	0,0287	0,320	0,008	0,011	0,0250	0,0007	0,0349	-
8	315,0	0,0456	0,014	0,008	0,001	0,5673	0,0259	0,0468	-
9	228,9	0,0332	0,761	0,663	0,000	0,8712	0,0289	0,0000	-
10	146,5	0,0212	0,008	0,001	0,000	0,6486	0,0138	0,4865	-
Total	6.904,4	1,0000	30,668	1,823	0,014		0,1896		-
			Ano	Agrícola ´	1978/1979)			
1	620,4	0,0716	0,588	0,518	0,060	0,8801	0,0630	0,1013	0,0073
2	575,1	0,0664	3,828	2,972	0,067	0,7765	0,0515	0,0175	0,0012
3	417,5	0,0482	0,571	0,159	0,045	0,2778	0,0134	0,0779	0,0038
4	142,0	0,0164	0,003	0,001	0,000	0,2303	0,0038	0,0000	0,0000
5	2.064,5	0,2383	20,989	0,104	0,051	0,0049	0,0012	0,0024	0,0006
6	1.181,3	0,1363	0,434	0,254	0,000	0,5856	0,0798	0,0000	0,0000
7	868,3	0,1002	4,672	1,411	0,000	0,3020	0,0303	0,0001	0,0000
8	2.174,9	0,2510	29,951	2,617	0,004	0,0874	0,0219	0,0001	0,0000

•	0= 4	0.0440	. =	0.040					
9	95,4	0,0110	0,532	0,019	0,000	0,0357	0,0004	0,0000	0,0000
10	525,5	0,0606	12,221	0,904	0,008	0,0739	0,0045	0,0007	0,0000
Total	8.664,9	1,0000	73,789	8,958	0,235		0,2698		0,0128
			Ano	Agrícola	1979/1980)			
1	909,5	0,1204	9,854	2,932	0,163	0,2975	0,0358	0,0165	0,0020
2	804,1	0,1065	0,600	0,597	0,004	0,9956	0,1060	0,0074	0,0008
3	2.235,2	0,2960	20,189	1,571	0,044	0,0778	0,0230	0,0022	0,0006
4	1.192,7	0,1580	9,028	0,393	0,052	0,0435	0,0069	0,0057	0,0009
5	273,5	0,0362	2,583	0,007	0,011	0,0027	0,0001	0,0041	0,0001
6	243,6	0,0323	0,333	0,265	0,142	0,7972	0,0257	0,4264	0,0138
7	521,5	0,0691	0,267	0,106	0,014	0,3948	0,0273	0,0523	0,0036
8	586,0	0,0776	2,177	1,854	0,003	0,8516	0,0661	0,0012	0,0001
9	566,9	0,0751	5,154	1,234	0,018	0,2393	0,0180	0,0035	0,0003
10	218,1	0,0289	1,371	0,507	0,011	0,3700	0,0107	0,0081	0,0002
Total	7.551,1	1,0000	51,556	9,466	0,461		0,3196	-,	0,0224
		,	-	-	1980/1981		.,		
1	387,2	0,0343	0,204	0,078	0,096	0,3820	0,0131	0,4701	0,0161
2	2.248,3	0,1992	1,826	0,284	0,043	0,1556	0,0310	0,0233	0,0046
3	467,2	0,0414	0,004	0,001	0,000	0,2979	0,0123	0,0000	0,0000
4	1.108,8	0,0982	0,899	0,022	0,016	0,0246	0,0024	0,0176	0,0017
5	390,9	0,0346	0,786	0,001	0,001	0,0008	0,0000	0,0011	0,0000
6	3.364,5	0,2981	10,128	4,741	1,275	0,4681	0,1395	0,1259	0,0375
7	2.659,9	0,2356	35,893	1,712	0,059	0,4001	0,1333	0,0017	0,0004
8	2.000,7	0,2330	3,556	0,002	0,033	0,0004	0,0000	0,0040	0,0004
9	316,3	0,0170	6,787	0,002	0,008	0,0004	0,0001	0,0040	0,0001
10	143,9	0,0200	1,551	0,013	0,006	0,0016	0,0001	0,0012	0,0000
Total	11.287,7	1,0000	61,634	6,857	1,518	0,0020	0,2097	0,0007	0,0606
Total	11.207,7	1,0000	-	-	1981/1982)	0,2031		0,0000
1	761,8	0,0957	0,043	0,002	0,002	0,0498	0,0048	0,0358	0,0034
2	676,4	0,0957		0,002	0,002		0,0048		0,0034
3					0,009				0,0113
	190,4 309,4	0,0239	0,228	0,010	0,011	0,0437	0,0010	0,0477	
4		0,0389	0,059	0,055	,	0,9336	0,0363	0,1015	0,0039
5	605,4	0,0760	0,045	0,012	0,007	0,2704	0,0206	0,1499	0,0114
6	3.030,0	0,3806	16,973	13,088	1,700	0,7711	0,2935	0,1002	0,0381
7	872,2	0,1096	7,576	0,093	0,020	0,0123	0,0013	0,0026	0,0003
8	349,9	0,0439	2,448	0,027	0,011	0,0108	0,0005	0,0046	0,0002
9	161,7	0,0203	0,963	0,000	0,000	0,0002	0,0000	0,0004	0,0000
10	1.004,2	0,1261	12,793	0,060	0,026	0,0047	0,0006	0,0020	0,0003
Total	7.961,4	1,0000	41,198	13,361	1,791	<u> </u>	0,3750		0,0703
	4 475 0	0.0050			1982/1983		0.0404	0.0070	0.0004
1	1.175,0	0,0656	2,905	0,582	0,108	0,2005	0,0131	0,0370	0,0024
2	970,3	0,0541	1,572	0,101	0,043	0,0642	0,0035	0,0274	0,0015
3	1.209,3	0,0675	1,609	0,082	0,018	0,0509	0,0034	0,0111	0,0008
4	1.522,1	0,0849	0,412	0,007	0,002	0,0158	0,0013	0,0058	0,0005
_			0.000	0.040	0.000	0.0000	0.0044	0 0001	0 0004
5	2.010,7	0,1122	0,263	0,010	0,008	0,0389	0,0044	0,0301	0,0034
5 6 7			0,263 0,851 89,527	0,010 0,151 0,487	0,008 0,104 0,052	0,0389 0,1773 0,0054	0,0044 0,0122 0,0013	0,0301 0,1221 0,0006	0,0034 0,0084 0,0001

8	2.108,9	0,1177	25,649	0,094	0,036	0,0037	0,0004	0,0014	0,0002
9	2.649,0	0,1478	30,955	0,210	0,088	0,0068	0,0010	0,0028	0,0004
10	782,6	0,0437	3,595	0,018	0,022	0,0051	0,0002	0,0060	0,0003
Total	17.919,4	1,0000	157,338	1,742	0,481	·	0,0410	· · · · · · · · · · · · · · · · · · ·	0,0179
	•	•	•		1983/198	4	•		
1	1.130,4	0,0895	6,583	3,747	0,382	0,5692	0,0509	0,0580	0,0052
2	475,0	0,0376	1,953	0,631	0,064	0,3229	0,0121	0,0326	0,0012
3	879,1	0,0696	1,430	0,124	0,022	0,0866	0,0060	0,0157	0,0011
4	301,0	0,0238	1,229	0,055	0,007	0,0446	0,0011	0,0054	0,0001
5	527,6	0,0418	0,665	0,011	0,002	0,0163	0,0007	0,0026	0,0001
6	2.944,0	0,2330	22,599	4,655	0,114	0,2060	0,0408	0,0050	0,0012
7	2.563,3	0,2028	49,330	10,911	0,214	0,2212	0,0449	0,0043	0,0009
8	354,1	0,0280	4,849	0,016	0,017	0,0032	0,0001	0,0034	0,0001
9	2.396,6	0,1896	91,006	20,299	0,061	0,2231	0,0423	0,0007	0,0001
10	1.065,9	0,0843	2,159	0,048	0,072	0,0222	0,0019	0,0335	0,0028
Total	12.637,0	1,0000	181,803	40,495	0,954		0,2079		0,0128
			Ano	Agrícola	1984/198	5			
1	372,5	0,0478	0,131	0,024	0,085	0,1799	0,0086	0,6467	0,0309
2	968,0	0,1241	0,018	0,015	0,006	0,8421	0,1045	0,3073	0,0381
3	571,8	0,0733	0,053	0,002	0,005	0,0368	0,0027	0,1003	0,0074
4	178,1	0,0228	0,004	0,001	0,000	0,1266	0,0029	0,0000	0,0000
5	257,0	0,0329	0,071	0,000	0,000	0,0000	0,0000	0,0036	0,0001
6	769,8	0,0987	0,019	0,000	0,015	0,0000	0,0000	0,8105	0,0800
7	1.159,4	0,1486	0,148	0,000	0,022	0,0000	0,0000	0,1476	0,0219
8	1.026,0	0,1315	0,445	0,043	0,012	0,0973	0,0128	0,0260	0,0034
9	1.518,3	0,1946	0,663	0,011	0,012	0,0159	0,0031	0,0184	0,0036
10	980,1	0,1256	3,030	0,032	0,014	0,0104	0,0013	0,0046	0,0006
Total	7.801,0	1,0000	4,584	0,127	0,171		0,1359		0,1860
				Agrícola	1985/198				
1	1.321,6	0,1668	0,201	0,091	0,035	0,4532	0,0756	0,1727	0,0288
2	580,6	0,0733	0,555	0,507	0,039	0,9136	0,0669	0,0702	0,0051
3	972,6	0,1227	0,220	0,017	0,015	0,0755	0,0093	0,0691	0,0085
4	163,1	0,0206	0,009	0,000	0,001	0,0000	0,0000	0,1365	0,0028
5	193,3	0,0244	0,006	0,000	0,005	0,0000	0,0000	0,9286	0,0226
6	440,5	0,0556	2,276	0,107	0,037	0,0472	0,0026	0,0164	0,0009
7	1.653,3	0,2086	32,044	1,310	2,670	0,0409	0,0085	0,0833	0,0174
8	1.173,1	0,1480	4,014	0,929	0,026	0,2316	0,0343	0,0064	0,0009
9	501,3	0,0633	8,757	0,755	0,020	0,0862	0,0055	0,0023	0,0001
10	926,2	0,1169	2,542	0,040	0,011	0,0159	0,0019	0,0041	0,0005
Total	7.925,6	1,0000	50,623	3,756	2,859		0,2045		0,0877
	4.000.0	0.4074			1986/198		0.0040	0.0000	0.0000
1	1.366,3	0,1074	1,201	0,054	0,004	0,0447	0,0048	0,0030	0,0003
2	553,9	0,0435	0,344	0,001	0,000	0,0042	0,0002	0,0003	0,0000
3	469,8	0,0369	0,005	0,000	0,000	0,0000	0,0000	0,0280	0,0010
4	247,2	0,0194	0,013	0,000	0,001	0,0000	0,0000	0,2248	0,0044
5	921,4	0,0724	3,395	0,000	0,001	0,0000	0,0000	0,0002	0,0000
6	2.766,7	0,2175	3,208	0,068	0,010	0,0211	0,0046	0,0030	0,0006

Total 1	1.157,7 2.723,0	0,0910 1,0000	14,454 111,911	0,008 0,175	0,015 0,055	0,0006	0,0001 0,0098	0,0010	0,0001 0,0066
Total 1:	2.723,0	1,0000	111,911 76,510	0,175 8.676	0,055		0,0098		0,0066

O fator C da sucessão aveia-milho variou amplamente entre os anos estudados, da mesma forma que na sucessão trigo-soja. Nos dois tratamentos o menor valor de fator C ocorreu no ano agrícola de 1986/1987. No preparo convencional o maior valor de fator C ocorreu no ano de 1981/1982, enquanto no plantio direto no ano de 1984/1985. Porém no ano de 1984/1985 foi o ano que foi realizada a calagem, descaracterizando o sistema plantio direto. Desconsiderando o ano da calagem, em 1981/1982 ocorreu o maior valor de fator C no sistema plantio direto também.

Os valores médios do fator C para o tratamento sucessão aveia-milho em preparo convencional foi de 0,1963 e para a sucessão aveia-milho em plantio direto foi de 0,0530, durante o período de avaliação. Esses valores médios do fator C serão os utilizados na Equação de Perdas de Solo para estimar as perdas por erosão hídricas nesses sistemas de manejo e cobertura do solo.

Dados de fator C para a sucessão aveia-milho são escassos na literatura. Bertol, Schick & Batistela (2002) em Lages, SC, encontraram valores do fator C para a sucessão aveia-milho em preparo convencional e direto de 0,1768 e 0,0982, respectivamente, 11% inferior no preparo convencional e 85% superior no plantio direto quando comparados aos deste estudo. As diferenças podem ser atribuídas a distribuição da erosividade entre os locais, e à diferença na metodologia, onde os autores determinam o fator C separadamente para cada cultura, enquanto neste estudo se determinou juntamente para a sucessão de culturas. A diferença mais expressiva foi no plantio direto, da qual os autores notaram que a semeadura direta reduzia a erosão hídrica em 1,8 vezes, avaliada com base no fator C em relação ao preparo convencional. Já neste trabalho o plantio direto reduziu 3,7 vezes a erosão hídrica, portanto apresentou maior eficiência. Isso pode ser atribuído a diferente produção de massa seca entre os locais. Além disso, o tempo de experimentação, que neste estudo foi aproximadamente 67% maior, o que pode ter possibilitado maior

amadurecimento do plantio direto e adquirindo, portanto, os benefícios que o mesmo fornece em longo prazo. Segundo Rosa (2009), o plantio direto com maior duração atribui maior resistência a pressões originadas pelo tráfego de máquinas, oferecendo menores deformações da estrutura, além de maior grau de saturação inicial, o que pode oferecer maior disponibilidade de água as plantas. Tal fato pode ter atribuído melhor desenvolvimento das culturas neste estudo, justificando a maior eficiência no plantio direto.

Em trabalho com 13 anos de avaliação (1976-1989) sob condição de chuva natural, Silva (2016) em um Argissolo de Eldorado do Sul, RS, encontrou os valores de 0,1238 para preparo convencional e 0,0329 para plantio direto para a sucessão trigo-milho. Esses valores são 59 e 61% inferiores em relação aos encontrados neste estudo. Tal variação pode ser decorrente da diferença da quantidade de erosividade entre os dois locais, visto que a distribuição da mesma é semelhante. Outra razão que pode ser a principal influência dessa variação é a cultura utilizada no inverno. A palhada da aveia, que foi a cultura utilida neste estudo tem relação C/N de aproximadamente 48 (AMADO, MIELNICZUK & FERNANDES, 2000), enquanto a do trigo é de aproximadamente 65 (LUZ, 2007). Tal fato pode ter acelerado a decomposição da palha neste estudo, deixando o solo com menor proteção e aumentando o fator C. Além disso, a quantidade de chuva neste estudo é cerca de 450 mm maior, o que aumenta ainda mais a decomposição dos resíduos.

Na Tabela 12 estão os resultados da perda de solo nos tratamentos SDPP, RALF e RSSD com as respectivas perdas de solo, erosividade, valores de RPS, FEI₃₀, fator C determinado para cada ano agrícola e o fator C médio anual ao longo de 9 anos de experimentação para RALF e de 7 anos para RSSD.

Assim como nos demais tratamentos o fator C varia amplamente entre os anos estudados. Os valores médios de fator C foram de 0,0244 para a rotação de culturas com seis anos pastagem de alfafa e três anos da sucessão trigo-soja em preparo convencional e de 0,0287 para a rotação de culturas com quatro anos do consórcio de setária, siratro e desmódio seguidos de três anos da sucessão trigo-soja em preparo convencional.

Tabela 12. Perdas de Solo na parcela padrão (SDPP), Razão de Perdas de Solo (RPS) e fator C para a pastagem de alfafa rotacionada com a sucessão trigosoja em preparo convencional (RALF) e para a pastagem de setária, siratro e desmódio rotacionada com a sucessão trigo-soja em preparo convencional (RSSD) em cada período das culturas durante 9 anos, de maio de 1978 a maio de 1987 no Centro de Treinamento da Cotrijuí, em Augusto Pestana. RS.

ue 1907	El ₃₀	Fração	SDPP	RALF				RSSD	
Período	/MJ mm	` -	Perd						
	$\frac{1}{hah}$	FEI ₃₀		as as ss. ∕Ig ha⁻¹	•	RPS	С	RPS	С
	- (114 11)		Ano Ag	rícola 197	78/1979				
1	620,4	0,0716	0,588	0,000	-	0,0000	0,0000	-	-
2	575,1	0,0664	3,828	0,000	-	0,0000	0,0000	-	-
3	417,5	0,0482	0,571	0,539	-	0,9429	0,0454	-	-
4	142,0	0,0164	0,003	0,002	-	0,8294	0,0136	-	-
5	2.064,5	0,2383	20,989	0,254	-	0,0121	0,0029	-	-
6	1.181,3	0,1363	0,434	0,000	-	0,0000	0,0000	-	-
7	868,3	0,1002	4,672	0,007	-	0,0015	0,0001	-	-
8	2.174,9	0,2510	29,951	0,006	-	0,0002	0,0000	-	-
9	95,4	0,0110	0,532	0,000	-	0,0001	0,0000	-	-
10	525,5	0,0606	12,221	0,006	-	0,0005	0,0000	-	-
Total	8.664,9	1,0000	73,789	0,813	-		0,0621		-
			Ano Ag	rícola 197	79/1980				
1	909,5	0,1204	9,854	0,004	-	0,0004	0,0000	-	-
2	804,1	0,1065	0,600	0,003	-	0,0056	0,0006	-	-
3	2.235,2	0,2960	20,189	0,008	-	0,0004	0,0001	-	-
4	1.192,7	0,1580	9,028	0,104	-	0,0116	0,0018	-	-
5	273,5	0,0362	2,583	0,000	-	0,0001	0,0000	-	-
6	243,6	0,0323	0,333	0,001	0,004	0,0015	0,0000	0,0119	-
7	521,5	0,0691	0,267	0,000	0,000	0,0000	0,0000	0,0000	-
8	586,0	0,0776	2,177	0,000	0,000	0,0000	0,0000	0,0000	-
9	566,9	0,0751	5,154	0,000	0,013	0,0001	0,0000	0,0025	-
10	218,1	0,0289	1,371	0,001	0,003	0,0007	0,0000	0,0018	-
Total	7.551,1	1,0000	51,556	0,122	0,019		0,0027		-
			Ano Ag	rícola 198	30/1981				
1	387,2	0,0343	0,204	0,000	0,014	0,0000	0,0000	0,0694	0,0024
2	2.248,3	0,1992	1,826	0,003	0,015	0,0015	0,0003	0,0085	0,0017
3	467,2	0,0414	0,004	0,000	0,000	0,0000	0,0000	0,0356	0,0015
4	1.108,8	0,0982	0,899	0,000	0,005	0,0003	0,0000	0,0053	0,0005
5	390,9	0,0346	0,786	0,001	0,001	0,0015	0,0001	0,0006	0,0000
6	3.364,5	0,2981	10,128	0,001	0,008	0,0000	0,0000	0,0007	0,0002
7	2.659,9	0,2356	35,893	0,000	0,002	0,0000	0,0000	0,0001	0,0000
8	200,7	0,0178	3,556	0,000	0,000	0,0000	0,0000	0,0000	0,0000
9	316,3	0,0280	6,787	0,000	0,000	0,0000	0,0000	0,0000	0,0000
10	143,9	0,0128	1,551	0,000	0,000	0,0000	0,0000	0,0000	0,0000
Total	11.287,7	1,0000	61,634	0,005	0,045		0,0004		0,0063
			Ano Ag	rícola 198	31/1982				
1	761,8	0,0957	0,043	0,001	0,002	0,0240	0,0023	0,0370	0,0035

	2	676,4	0,0850	0,070	0,002	0,000	0,0248	0,0021	0,0000	0,0000
	3	190,4	0,0239	0,228	0,002	0,002	0,0102	0,0002	0,0093	0,0002
	4	309,4	0,0389	0,059	0,001	0,001	0,0134	0,0005	0,0210	0,0008
	5	605,4	0,0760	0,046	0,001	0,002	0,0179	0,0014	0,0476	0,0036
	6	3.030,0	0,3806	16,973	0,001	0,002	0,0001	0,0000	0,0001	0,0000
	7	872,2	0,1096	7,576	0,001	0,000	0,0002	0,0000	0,0000	0,0000
	8	349,9	0,0439	2,448	0,000	0,000	0,0000	0,0000	0,0000	0,0000
	9	161,7	0,0203	0,963	0,001	0,000	0,0013	0,0000	0,0001	0,0000
	10	1.004,2	0,1261	12,793	0,001	0,002	0,0001	0,0000	0,0001	0,0000
-	Total	7.961,4	1,0000	41,198	0,011	0,011		0,0066		0,0083
-				Ano Ag	rícola 198	32/1983				
-	1	1.175,0	0,0656	2,905	0,000	0,000	0,0001	0,0000	0,0001	0,0000
	2	970,3	0,0541	1,572	0,001	0,000	0,0004	0,0000	0,0002	0,0000
	3	1.209,3	0,0675	1,609	0,000	0,000	0,0000	0,0000	0,0001	0,0000
	4	1.522,1	0,0849	0,412	0,006	0,001	0,0140	0,0012	0,0026	0,0002
	5	2.010,7	0,1122	0,263	0,007	0,002	0,0279	0,0031	0,0056	0,0006
	6	1.237,1	0,0690	0,851	0,000	0,000	0,0000	0,0000	0,0004	0,0000
	7	4.254,4	0,2374	89,527	0,007	0,001	0,0001	0,0000	0,0000	0,0000
	8	2.108,9	0,1177	25,649	0,005	0,001	0,0002	0,0000	0,0000	0,0000
	9	2.649,0	0,1478	30,955	0,030	0,002	0,0010	0,0001	0,0001	0,0000
	10	782,6	0,0437	3,595	0,003	0,000	0,0009	0,0000	0,0000	0,0000
_	Total	17.919,4	1,0000	157,338	0,058	0,007		0,0046		0,0009
-				Ano Ag	rícola 198	3/1984				
_	1	1.130,4	0,0895	6,583	0,003	0,003	0,0005	0,0000	0,0004	0,0000
	2	475,0	0,0376	1,953	0,006	0,001	0,0030	0,0001	0,0004	0,0000
	3	879,1	0,0696	1,430	0,001	0,010	0,0010	0,0001	0,0069	0,0005
	4	301,0	0,0238	1,229	0,001	0,001	0,0010	0,0000	0,0006	0,0000
	5	527,6	0,0418	0,665	0,001	0,005	0,0007	0,0000	0,0070	0,0003
	6	2.944,0	0,2330	22,599	0,083	0,012	0,0037	0,0009	0,0005	0,0001
	7	2.563,3	0,2028	49,330	0,010	0,003	0,0002	0,0000	0,0001	0,0000
	8	354,1	0,0280	4,849	0,000	0,001	0,0000	0,0000	0,0003	0,0000
	9	2.396,6	0,1896	91,006	0,136	0,000	0,0015	0,0003	0,0000	0,0000
	10	1.065,9	0,0843	2,159	0,059	0,001	0,0273	0,0023	0,0005	0,0000
_	Total	12.637,0	1,0000	181,803	0,301	0,036		0,0038		0,0010
-				Ano Agr	ícola 198	4/1985*				
_	1	372,5	0,0478	0,131	0,034	0,013	0,2596	0,0124	0,0970	0,0046
	2	968,0	0,1241	0,018	0,002	0,001	0,1176	0,0146	0,0283	0,0035
	3	571,8	0,0733	0,053	0,002	0,001	0,0372	0,0027	0,0136	0,0010
	4	178,1	0,0228	0,004	0,001	0,000	0,2111	0,0048	0,0887	0,0020
	5	257,0	0,0329	0,071	0,003	0,000	0,0379	0,0012	0,0000	0,0000
	6	769,8	0,0987	0,019	0,000	0,000	0,0000	0,0000	0,0000	0,0000
	7	1.159,4	0,1486	0,148	0,000	0,006	0,0000	0,0000	0,0417	0,0062
	8	1.026,0	0,1315	0,445	0,000	0,005	0,0000	0,0000	0,0121	0,0016
	9	1.518,3	0,1946	0,663	0,006	0,005	0,0086	0,0017	0,0070	0,0014
	10	980,1	0,1256	3,030	0,001	0,001	0,0002	0,0000	0,0005	0,0001
-	Total	7.801,0	1,0000	4,584	0,048	0,032		0,0375		0,0204
_				Ano Ag	rícola 198	35/1986				

Média anual			81,604	0,185	0,209		0,0244		0,0287
Total	12.723,0	1,0000	111,911	0,096	0,772		0,0077		0,0648
10	1.157,7	0,0910	14,454	0,002	0,007	0,0001	0,0000	0,0005	0,0000
9	2.663,2	0,2093	62,030	0,003	0,020	0,0001	0,0000	0,0003	0,0001
8	1.716,2	0,1349	22,040	0,002	0,005	0,0001	0,0000	0,0002	0,0000
7	860,6	0,0676	5,222	0,000	0,001	0,0000	0,0000	0,0002	0,0000
6	2.766,7	0,2175	3,208	0,025	0,361	0,0078	0,0017	0,1125	0,0245
5	921,4	0,0724	3,395	0,000	0,008	0,0000	0,0000	0,0022	0,0002
4	247,2	0,0194	0,013	0,000	0,000	0,0000	0,0000	0,0870	0,0017
3	469,8	0,0369	0,005	0,000	0,000	0,0000	0,0000	0,0050	0,0002
2	553,9	0,0435	0,344	0,005	0,136	0,0134	0,0006	0,3966	0,0173
1	1.366,3	0,1074	1,201	0,060		0,0498	0,0053	0,1944	0,0209
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		rícola 198	6/1987		-		<u> </u>
Total	7.925,6	1,0000	50,623	0,208	0,750		0,0940		0,0993
10	926,2	0,1169	2,542	0,000	0,046	0,0000	0,0000	0,0180	0,0021
9	501,3	0,0633	8,757	0,001	0,000	0,0001	0,0000	0,0000	0,0000
8	1.173,1	0,1480	4,014	0,000	0,016	0,0000	0,0000	0,0040	0,0006
7	1.653,3	0,2086	32,044	0,049	0,525	0,0015	0,0003	0,0164	0,0034
6	440,5	0,0556	2,276	0,032	0,018	0,0139	0,0008	0,0081	0,0004
5	193,3	0,0244	0,006	0,000	0,004	0,0000	0,0000	0,6976	0,0170
4	163,1	0,0206	0,009	0,000	0,001	0,0000	0,0000	0,0709	0,0015
3	972,6	0,1227	0,220	0,003	0,003	0,0122	0,0015	0,0119	0,0015
2	580,6	0,0733	0,555	0,017	0,059	0,0303	0,0022	0,1072	0,0079
1	1.321,6	0,1668	0,201	0,107	0,078	0,5351	0,0892	0,3896	0,0650

1984/1985*, ano em que iniciou a sucessão trigo soja em preparo convencional.

Analisando apenas os anos com pastagem, a alfafa apresentou valor de fator C de 0,0134 e o consórcio de setária, siratro e desmódio de 0,0041.

Na pastagem de alfafa, o maior valor ocorreu no ano de 1978/1979, enquanto o menor no ano de 1980/1981. No ano de 1978/1979 possívelmente a pastagem ainda não estava bem desenvolvida e por isso apresentou maiores perdas de solo. No ano de 1980/1981, onde ocorreu o menor valor de fator C, a alfafa já estava em seu terceiro ano de desenvolvimento, proporcionando melhorias nas características físicas do solo. Da-Silva et al. (2012), constataram que um sistema com um ano de milho e três anos de alfafa apresenta maior condutividade hidráulica, o que reflete em efeitos benéficos na infiltração de água no solo e redução de escoamento superficial. Portanto, em 1980/1981, apesar da erosividade ocorrida ter sido acima da média, as perdas de solo foram baixas nesta parcela, e na parcela padrão foram altas, gerando assim baixo valor de RPS e consequentemente, baixo valor de fator C.

Para o consórcio de setária, siratro e desmódio o maior valor de fator C ocorreu no ano agrícola de 1981/1982 e o menor em 1982/1983. No ano de 1981/1982 as perdas de solo na parcela padrão foram quase 4 vezes menores em relação ao ano de 1982/1983, como a perda da pastagem não apresentou a mesma relação, os valores de RPS foram maiores em 1981/1982, refletindo em alto valor de fator C.

Os anos de 1982/1983 e 1983/1984 são os anos com maiores valores de erosividade e menores valores de fator C para o consórcio de setária, siratro e desmódio. Portanto, é possível inferir que nesses anos a pastagem estava bem desenvolvida e por isso a parcela apresentou baixas perdas de solo. Com a alta erosividade destes anos a parcela padrão teve altas perdas, o que gerou baixo valor de RPS para a pastagem, resultando em baixo valor de fator C.

Para pastagens, valores de fator C da USLE são ainda mais escassos. Silva (2016) em um Argissolo de Eldorado do Sul, RS, em estudo com 13 anos sob chuva natural (1976-1989) determinou o fator C para o campo nativo do local (gramíneas de várias espécies) e para a pastagem de trevo durante três anos (1976-1979). Os valores encontrados foram de 0,0009 para campo nativo e de 0,0047 para pastagem de trevo. Comparando os valores obtidos nas pastagens deste estudo com as estudadas por Silva (2016), o consórcio de setária, siratro e desmódio, apresentou valor semelhante ao da pastagem de trevo. Já a pastagem de alfafa apresentou valor de quase 3 vezes superior ao da pastagem de trevo, portanto, o trevo foi mais eficiente em relação a alfafa na proteção do solo contra a erosão hídrica. O valor de fator C da pastagem de setária, siratro e desmódio é cerca de 4,5 vezes superior ao campo nativo, enquanto da pastagem de alfafa é cerca de 15 vezes superior.

Apesar das diferenças entre as chuvas dos dois locais, é possível perceber o importante papel que um sistema de patagem natural, onde não ocorrem ações antrópicas. Visto que nem mesmo a pastagem mais conservacionista utilizada neste estudo se aproximou do valor de fator C conferido pelo campo nativo. Silva, 2016 chegou a considerar insignificantes as perdas de solo ocorridas no campo nativo.

A vegetação nativa de Augusto Pestana é Mata Atlântica. Martins et al. (2010), em dois Argissolos e um Plintossolo, determinaram o valor de fator C de 0,02 para essa cobertura do solo em Aracruz, ES. O local apresenta

erosividade média semelhante à de Augusto Pestana, RS. No entanto, esse valor de fator C é maior do que os encontrados para as pastagens desse estudo.

Como já constatado nos outros tratamentos, ocorre grande diferença nos valores de fator C de cada ano. Em ambos os tratamentos, os maiores valores de fator C ocorreram no ano agrícola de 1985/1986, cujo representa o segundo ano de preparo convencional e possivelmente já se perdeu boa parte do efeito residual conferido pelas pastagens.

Apesar de isoladamente o consórcio de setária, siratro e desmódio apresentar menor valor de fator C em relação a alfafa, o efeito residual da alfafa foi melhor, apresentando valor de fator C médio dos três anos 33% menor. No último ano do experimento, as perdas de solo na parcela que foi cultivada com alfafa, foi oito vezes menor quando comparada a do consórcio de setária, siratro e desmódio. Possivelmente devido a pastagem de alfafa ter sido implantada dois anos antes do que a setária, siratro e desmódio, seu efeito foi mais significativo na agregação do solo e no aumento do teor de matéria orgânica.

Silva (2016) estudou o efeito residual de pastagem de trevo cultivado. Após três anos com a pastagem, foi cultivada a sucessão trigo-soja em preparo convencional durante dois anos, seguida de dois anos em pousio, e mais três anos de sucessão trigo-soja em preparo convencional. O valor de fator C referente a esses 7 anos (a partir do momento que passou a ser usado em preparo convencional) foi de 0,0546, valor este intermediário aos encontrados neste estudo.

Na Tabela 13 estão apresentados os valores de fator C anuais para todos os tratamentos estudados, assim como o fator C médio final para os mesmos.

Os sistemas com preparo convencional apresentaram os maiores valores de fator C. O preparo reduzido, testado apenas na sucessão trigo-soja apresentou valores intermediários de fator C quando comparado aos demais tratamentos. O plantio direto, por causar menor mobilização do solo apresentou os menores valores de fator C. Os valores foram semelhantes entre as sucessões trigo-soja e aveia-milho. No preparo convencional a sucessão aveia-milho apresentou valor um pouco superior, o que pode ser atribuido a menor relação C/N da aveia e a menor cobertura do solo proporcionada pelo milho no estádio inicial, visto que o espaçamento do mesmo era 2 vezes maior que o

usado para soja. No plantio direto, a sucessão trigo soja apresentou valor um pouco superior, possivelmente devido ao maior revolvimento do solo na linha de semeadura, visto o espaçamento menor usado na cultura da soja.

Tabela 13. Síntese dos valores de fator C para os diferentes sistemas de preparo e manejo do solo e sucessões de culturas durante os 10 anos de condução do experimento, de junho de 1977 a maio de 1987, em Augusto Pestana, RS.

Ano agrícola	TSPC ⁽¹⁾	TSPR ⁽²⁾	TSPD ⁽³⁾	AMPC ⁽⁴⁾	AMPD ⁽⁵⁾	RALF ⁽⁶⁾	RSSD ⁽⁷⁾
				- Fator C -			
1977/78	0,2625	-	0,0630	0,1896	-	-	-
1978/79	0,2912	-	0,0703	0,2698	0,0128	0,0621	-
1979/80	0,1998	0,0477	0,0343	0,3196	0,0224	0,0027	-
1980/81	0,1404	0,2097	0,0231	0,2097	0,0606	0,0004	0,0063
1981/82	0,3268	0,3353	0,1824	0,3750	0,0703	0,0066	0,0083
1982/83	0,0736	0,0283	0,0144	0,0410	0,0179	0,0046	0,0009
1983/84	0,3170	0,0579	0,0127	0,2079	0,0128	0,0038	0,0010
1984/85*	0,0515	0,0919	0,1399	0,1359	0,1860	0,0375	0,0204
1985/86	0,1560	0,1715	0,0222	0,2045	0,0877	0,0940	0,0993
1986/87	0,0058	0,0140	0,0024	0,0098	0,0066	0,0077	0,0648
Média	0,1824	0,1195	0,0565	0,1963	0,0530	0,0244	0,0287

⁽¹)Sucessão trigo-soja em preparo convencional; (²)Sucessão trigo-soja em preparo reduzido; (³)Sucessão trigo-soja em plantio direto; (⁴)Sucessão aveia-milho em preparo convencional; (⁵)Sucessão aveia-milho em plantio direto; (⁶)Pastagem de alfafa rotacionada com trigo-soja em preparo convencional; (७)Pastagem de setária, siratro e desmódio rotacionada com trigo-soja em preparo convencional; *Revolvimento do solo em todas as parcelas para incorporação de calcário, neste mesmo ano as parcelas das pastagens passaram a ser trabalhadas com trigo-soja em preparo convencional.

Analisando a Tabela 13, nota-se que os menores valores de fator C ocorreram nas pastagens. Por serem culturas permanentes, não necessitam de revolvimento do solo durante seu desenvolvimento. Dos componentes do manejo, o preparo do solo é uma das atividades que mais exerce influência nos atributos indicadores da qualidade física do solo, pois atua diretamente na sua estrutura (HAMZA & ANDERSON, 2005). Portanto, não havendo revolvimento a estrutura é preservada.

Desta forma é possível perceber a importância do mínimo revolvimento do solo na redução das perdas de solo por erosão hídrica. Isso porque onde o solo não é revolvido a palhada continua em superfície, protegendo o solo contra o impacto direto da gota de chuva bem como aumentando a

rugosidade, o que é capaz de reduzir a velocidade e a quantidade do escoamento superficial (COGO, 1981). A manutenção de palhada em superfície também atua neste sentido, aumentando a taxa de infiltração, diminuindo o escoamento superficial, bem como diminuindo a concentração de nutrientes nos sedimentos erodidos (MARTINS FILHO et al., 2009). Além de que na medida em que se intensifica o uso agrícola, os atributos físico-hídricos do solo sofrem alterações, geralmente adversas ao crescimento vegetal (SANTOS et al., 2011). Portanto, o plantio direto é capaz de aportar mais matéria seca, conferindo assim maior proteção ao solo. Além disso, o não revolvimento causa inúmeros benefícios ao solo, gerando sustentabilidade do sistema.

Também foi avaliado de forma separada o efeito residual da pastagem de alfafa e do consórcio de pastagens de setária, siratro e desmódio nas perdas de solo quando na sequência, a área for submetida a uma sucessão de trigosoja em preparo convencional.

Analisando os três ultimos anos (1984-1987) com trigo-soja em preparo convencional, o fator C médio foi de 0,0711 para a parcela onde vinha sendo trabalhada em preparo convencional desde 1977/1978, de 0,0464 para a sucessão trigo soja em preparo convencional após seis anos com pastagem de alfafa e de 0,0615 para a mesma sucessão após quatro anos com pastagem de setária, siratro e desmódio. Os valores foram cerca de 53 e 16% inferiores quando comparados a área trabalhada continuamente em preparo convencional (Tabela 14).

Tabela 14. Síntese dos valores de fator C dos 3 últimos anos agrícolas (junho de 1985 a maio de 1987) para a sucessão trigo-soja em preparo convencional em área trabalhada sete anos neste sistema (TSPC), em área cultivada com alfafa por seis anos (RALF) e em área cultivada com o consórcio de setária, siratro e desmódio por 4 anos (RSSD), em Augusto Pestana, RS.

Ano agrícola	TSPC	RALF	RSSD
1984/85	0,0515	0,0375	0,0204
1985/86	0,1560	0,0940	0,0993
1986/87	0,0058	0,0077	0,0648
Média	0,0711	0,0464	0,0615

Analisando cada ano separadamente, é possível perceber efeito residual positivo das pastagens apenas nos dois primeiros anos. No tratamento que foi cultivado com alfafa, o efeito residual proporcionou valor de fator C 1,4 vezes inferior no primeiro ano e 1,7 vezes inferior no segundo, com base nos mesmos anos do tratamento com sucessão trigo-soja convencional. No tratamento que foi cultivado com o consórcio de setária, siratro e desmódio o efeito residual proporcionou valor de fator C 2,5 vezes inferior no primeiro ano e 1,6 vezes inferior no segundo, também com base nos mesmos anos do tratamento sucessão trigo-soja convencional. Após dois anos, não ocorria mais efeito residual das pastagens, com valores de fator C, inclusive maiores do que os encontrados na parcela de trigo-soja em preparo convencional continuadamente. Portanto, mesmo utilizando o solo por vários anos em sistema conservacionista, dois anos de preparo convencional são capazes de anular todos os benefícios gerados anteriormente. Neste mesmo raciocínio, é possível perceber a importância de descartar o primeiro ano de dados para a determinação dos fatores C e K da USLE, conforme sugerido por Wischmeier e Smith (1978), visto que o sistema leva algum tempo para estabilizar.

O valor de fator C no ano de 1984/1985 é maior nas parcelas que foram cultivadas em plantio direto em relação aquelas que foram cultivadas em preparo convencional e reduzido. Isso deve-se ao fato da realização de uma calagem com a incorporação ao solo por aração e gradagem, como era a recomendação. Apesar das perdas de todos os tratamentos terem sido baixas neste ano devido a baixa e bem distribuida erosividade, o fato gera questionamentos sobre o que o revolvimento do solo pode causar em uma área que foi cultivada em plantio direto. Na literatura ainda são escassos estudos relacionados a esse comportamento. Esses dados são preocupantes, visto que em áreas onde o alto índice de compactação é capaz de reduzir o desenvolvimento radicular das culturas, o manual de adubação e calagem sugere o revolvimento do solo para desta forma reiniciar o plantio direto (SOCIEDADE BRASILEIRA DE CIÊNCIA DO SOLO, 2016).

Realizando a prática da calagem, que causa a dispersão de microagregados (SPERA et al., 2008), e ainda revolvendo o solo, podem ocorrer elevadas perdas de solo caso ocorra alta erosividade, principalmente logo após o solo ser preparado. Portanto, caso a mobilização do solo seja a única solução,

pode-se optar em realizar essa mobilização em faixas, para que a faixa não mobilizada retenha os sedimentos transportados da faixa mobilizada, da mesma forma que ocorre no cultivo em faixas (WISCHMEIER & SMITH, 1978). Essa mobilização do solo pode ser considerada principalmente em casos que a formação de camadas compactadas está relacionada com a dispersão de argilas resultante da aplicação de calcário sem incorporação, conforme relatado por Spera et al., (2008).

7. CONCLUSÕES

- As chuvas em Augusto Pestana, RS, são em sua maioria de padrão avançado e as de maior potencial erosivo coincidem com as épocas de preparo do solo.
- 2. O fator R da Equação Universal de Perdas de Solo para aplicação na região de Augusto Pestana é de 9.765 MJ mm ha-1 h-1 ano-1. Este valor representa uma alta capacidade erosiva das chuvas.
- 3. O fator K da USLE (que no modelo representa a erodibilidade do solo), é de 0,0090 Mg ha h ha-1 MJ-1 mm-1 para o Latossolo Vermelho distrófico típico, caracterizando um solo de alta resistência a erosão.
- A utilização do nomograma de Wischmeier para estimativa do fator K, não é adequado para uso nesta classe de solo, pois estimou um valor 94% superior ao do método direto.
- 5. O sistema de preparo convencional gerou os maiores valores do falor C; 0,1824 para a sucessão trigo-soja e de 0,1963 para aveia-milho, valores aproximadamente 1,5 e 3,5 vezes maiores quando comparados aos sistemas de preparo reduzido e direto respectivamente, refletindo a importância do não revolvimento do solo.
- As pastagens foram os sistemas mais conservacionistas, apresentando menores valores de fator C, 0,0134 para alfafa e de 0,0041 para o consórcio de setária, siratro e desmódio.

- 7. A rotação de culturas com seis anos de alfafa seguida de três anos com a sucessão trigo-soja em preparo convencional apresentou valor de fator C de 0,0244, enquanto a com quatro anos de setária, siratro e desmódio seguida de três anos de trigo-soja em preparo convencional apresentou valor de de 0,0287.
- 8. O uso do solo com a sucessão trigo-soja em preparo convencional após pastagens gerou valores de fator C 55% menor na área com alfafa e 15% menor na área com setária, siratro e desmódio em relação a área trabalhada desde o início do experimento com sucessão trigo-soja em preparo convencional. Porém, o efeito residual das pastagens ocorre apenas durante os dois primeiros anos.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- AKSOY, H.; KAVVAS, M. L. A review of hillslope and watershed scale erosion and sediment transport models. **Catena**, Amsterdam, v. 64, n. 1, p. 247-271, 2005.
- ALKHARABSHEHA, M. M. et al. Impact of land cover change on soil erosion hazard in northern Jordan using remote sensing and GIS. **Procedia Environmental Sciences**, Amsterdam, v. 19, p. 912-921, 2013.
- AMADO, T. J. C.; MIELNICZUK, J.; FERNANDES, S. B. V. Leguminosas e adubação mineral como fontes de nitrogênio para o milho em sistemas de preparo do solo. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 24, n. 1, p. 179-189, 2000.
- AMARAL, A. J. Fator cobertura e manejo da equação universal de perda de solo para soja e trigo em um Cambissolo Húmico alumínico submetido a diferentes sistemas de manejo. 2006. 112 p. Dissertação (Mestrado) Centro de Ciência Agroveterinária, Universidade do Estado de Santa Catarina, Lages, SC, 2006.
- AMORIM, R. S. S.; SILVA, D. D.; PRUSKI, F. F. Principais modelos para estimar as perdas de solo em áreas agrícolas. In: PRUSKI, F. F. (Ed.). **Conservação de solo e água:** Práticas mecânicas para o controle da erosão hídrica. 2. ed. Viçosa, MG, Universidade Federal de Viçosa, 2009. p.74-107.
- ARMSTRONG, C. L.; MITCHELL, J. K. Plant canopy characteristics and process wich effect transformation of rainfall properties. **Transactions of the American Society of Agricultural Engineers**, Saint Joseph, v. 5, p. 1400-1409, 1988.
- BARBOSA, F.T. et al. Comprimento crítico de declive relacionado à erosão hídrica, em três tipos e doses de resíduos em duas direções de semeadura direta. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 36, n. 4, p. 1279-1290, 2012.
- BAZZANO, M. G. P.; ELTZ, F. L. F.; CASSOL, E. A. Erosividade, coeficiente de chuva, padrões e período de retorno das chuvas de Quarai, RS. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 31, n. 5, p. 1205-1217, 2007.
- BAZZANO, M. G. P.; ELTZ, F. L. F.; CASSOL, E. A. Erosividade e características hidrológicas das chuvas de Rio Grande (RS). **Revista Brasileira de Ciência do Solo**, Viçosa, v. 34, n.1, p. 235-244, 2010.
- BERTOL, I. et al. Aspectos financeiros relacionados às perdas de nutrientes

- por erosão hídrica em diferentes sistemas de manejo do solo. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 31, n. 1, p. 133-142, 2007a.
- BERTOL, I.; SCHICK, J.; BATISTELA, O. Razão de perdas de solo e fator c para as culturas de soja e trigo em três sistemas de preparo em um Cambissolo húmico alumínico. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 25, n. 2, p. 451-461, 2001.
- BERTOL, I.; SCHICK, J.; BATISTELA, O. Razão de perdas de solo e fator C para milho e aveia em rotação com outras culturas em três tipos de preparo de solo. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 26, n. 2, p. 545-552, 2002.
- BERTOL, I. et al. Erodibilidade de um Cambissolo Húmico alumínico léptico, determinada sob chuva natural entre 1989 e 1998 em Lages (SC). **Revista Brasileira de Ciência do Solo**, Viçosa, v. 26, n. 2, p. 465-471, 2002.
- BERTOL, I. et al. Erodibilidade de um Nitossolo Háplico alumínico determinada em condições de campo. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 31, n. 3, p. 541-549, 2007c.
- BERTOL, I. et al. Efeito de escarificação e da erosividade de chuvas sobre algumas variáveis de valores de erosão hídrica em sistemas de manejo de um Nitossolo Háplico. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 32, n. 2, p. 747-757, 2008.
- BERTOL, O. J. et al. Perdas de solo e água e qualidade do escoamento superficial associadas à erosão entre sulcos em área cultivada sob semeadura direta e submetida às adubações mineral e orgânica. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 31, n. 4, p. 781-792, 2007b.
- BERTONI, J.; LOMBARDI N. F. **Conservação do Solo**, 8. ed. São Paulo: Ícone, 2012. 355 p.
- BOIX-FAYOS, C. A. et al. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. **Catena**, Amsterdam, v. 44, n. 1, p. 47-67, 2001.
- BOUYOUCOS, G. J. Estimation of the colloidal material in soils. **Science**, Washington, v. 64, n. 1658, p. 362, 1926
- BRAIDA, J. A.; CASSOL, E. A. Relações da erosão em entressulcos com o tipo e com a quantidade de resíduo vegetal na superfície do solo. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 23, n. 3, p. 711-721, 1999.
- BRASIL. Ministério da Agricultura. Divisão de Pesquisa Pedológica. **Levantamento de reconhecimento dos solos do estado do Rio Grande do Sul**. Recife: MA-DPP/ASDRNR/INCRA-RS, 1973. 431 p.
- BROWN, P. L.; DICKEY, D. D. Losses of wheat straw residue under simulated field conditions. **Soil Science**, Madison, v. 34, n. 1, p. 118-121, 1970.
- CABEDA, M. S. V. **Computation of storm El Values**. West Lafayette: Purdue University, 1976. 6 p. (unpublished).
- CAMARA, R. K.; KLEIN, V. A. Escarificação em plantio direto como técnica de conservação do solo e da água. **Revista Brasileira de Ciência do Solo**,

- Viçosa, v. 29, n. 5, p. 789-796, 2005.
- CAMPOS FILHO, O. R. et al. Erosividade da chuva e erodibilidade do solo no agreste de Pernambuco. **Pesquisa Agropecuária Brasileira,** Brasília, v. 27, n. 9, p. 1363-1370, 1992.
- CARVALHO FILHO, A. et al. Métodos de preparo do solo: alterações na rugosidade do solo. **Engenharia Agrícola**, Jaboticabal, v. 27, n. 1, p. 229-237, 2007.
- CASSOL, E. A. et al. Erosividade, padrões hidrológicos, período de retorno e probabilidade de ocorrência das chuvas em São Borja, RS. Revista Brasileira de Ciência do Solo, Viçosa, v. 32, n. 3, p. 1239-1251, 2008.
- CASSOL, E. A. et al. Erosividade e padrões hidrológicos das chuvas de Ijuí (RS), no período de 1963 a 1993. **Revista Brasileira de Agrometeorologia**, Sete Lagoas, v. 15, n. 3, p. 220-231, 2007.
- CASTRO FILHO, C.; MUZILLI, O.; PODANOSCHI, A.L. Estabilidade dos agregados e sua relação com o teor de carbono orgânico em um Latossolo Roxo Distrófico, em função de sistemas de plantio, rotações de culturas e métodos de preparo das amostras. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 22, n. 3, p. 527-538, 1998.
- CASTRO, L. G.; COGO, N. P.; VOLK, L. B. S. Alterações na rugosidade superficial do solo pelo preparo e pela chuva e sua relação com a erosão hídrica. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 30, n. 2, p. 339-52, 2006.
- CATEN, A. T.; MINELLA, J. P. G.; MADRUGA, P. R. A. Desintensificação do uso da terra e sua relação com a erosão do solo. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 16, p. 1006-1014, 2012.
- CAVALCANTI, I.F.A. Episódios El Niño/Oscilação Sul durante a década de 1986 a 1996 e suas influências sobre o Brasil. In: **Climanálise especial.** Edição comemorativa de 10 anos. [S.I.]: Centro de Previsão de Tempo e Estudos Climáticos CPTEC, 1996. p. 52-64. Resumos.
- CHAPMAN, G. Size of raindrops and their striking force at the soil surface in a red pine plantation. **American Geophysical Union**, New Jersey, v. 29, n. 5, p. 664-670, 1948.
- COGO, N. P. Effect of residue cover, tillage induced-roughness, and slope length on erosion and related parameters. 1981. 346 p. Tese (Doutorado) West Lafayette, Purdue University, 1981.
- COGO, C. M.; ELTZ, F. L. F.; CASSOL, E. A. Erosividade das chuvas de Santa Maria, RS, determinada pelo índice El₃₀. **Revista Brasileira de Agrometeorologia**, Piracicaba, v. 14, n. 3, p. 309-317, 2006.
- COGO, N. P. Uma contribuição à metodologia de estudo das perdas de erosão em condições de chuva natural. I. Sugestões gerais, medição dos volumes, amostragem e qualificação de solo e água da enxurrada (1º aproximação). In: ENCONTRO NACIONAL DE PESQUISA SOBRE CONSERVAÇÃO DO SOLO, 2., 1978, Passo Fundo. **Anais**... Passo Fundo: EMBRAPA—CNPT, 1978. p. 75-

- COGO, N. P.; LEVIEN, R.; SCHWARZ, R. A. Perdas de solo e água por erosão hídrica influenciadas por métodos de preparo, classes de declive e níveis de fertilidade do solo. **Revista Brasileira de Ciência Do Solo**, Viçosa, v. 27, n. 4, p. 743-753, 2003.
- CORRECHEL, V. Avaliação de índices de erodibilidade do solo através da técnica da análise da redistribuição do "fallout" do 137Cs. 2003. 79 p. Tese (doutorado) Centro de Energia Nuclear na Agricultura, Universidade Federal de São Paulo, Piracicaba, SP, 2003.
- CRUSCIOL, C. A. C. et al. Taxas de decomposição e de liberação de macronutrientes da palhada de aveia preta em plantio direto. **Bragantia**, Campinas, v. 67, n. 2, p. 481-489, 2008.
- DA ROS, A. O.; AITA, C. Efeito de espécies de inverno na cobertura do solo e fornecimento de nitrogênio ao milho em plantio direto. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 20, n. 1, p. 135-140, 1996.
- DA-SILVA, V. L. et al. Melhoria da estrutura de um Latossolo por sistemas de culturas em plantio direto nos Campos Gerais do Paraná. **Revista Brasileira de Ciência do Solo**, Viçosa, v.36, n.3, p.983-992, 2012.
- DECHEN, S. C. F.; LOMBARDI NETO, F.; CASTRO, O. M. Gramíneas e leguminosas e seus restos culturais no controle de erosão em Latossolo Roxo. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 5, p. 133-137, 1981.
- DENARDIN, J. E. **Erodibilidade de solo estimada por meio de parâmetros físicos e químicos**. 1990. 81 p. Tese (Doutorado) Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 1990.
- DENARDIN, J. E. et al. "Vertical mulching" como prática conservacionista para manejo de enxurrada em sistema plantio direto. **Revista Brasileira de Ciência do Solo**, Viçosa, v.32, n.spe, p.2847-2852, 2008.
- DEUBEL, A.; HOFMANN, B.; ORZESSEK, D. Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. **Soil and Tillage Research**, Amsterdam, v. 117, p. 85-92, 2011.
- DE PLOEY, J.; GABRIELS, D. Measuring soil loss and experimental studies. In: KIRKBY, M.J., MORGAN, R.P.C. (Ed.). **Soil Erosion.** [S.I.:s.n.], 1980. p. 63-108.
- DE VENTE, J.; POESEN, J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. **Earth-Science Reviews**, Amsterdam, v. 71, n. 1-2, p. 95-125, 2005.
- DIDONÉ, E. J. Erosão bruta e produção de sedimento em bacia hidrográfica sob plantio direto no planalto do Rio Grande do Sul. 2013. 228 p. Dissertação (Mestrado) Universidade Federal de Santa Maria, Centro de Ciências Rurais, Programa de Pós-Graduação em Ciência do Solo, Santa Maria, 2013.
- DUIKER, S. W.; FLANAGAN D. C.; LAL, R. Erodibility and infiltration characteristics of five major soils of southwest Spain. **Catena**, Amsterdam, v. 45, n. 2, p. 103-121, 2001.

- DULEY, F. L. Surface factors effecting the rate of intake of water by soils. **Soil Science Society of America Journal**, Madison, v. 4, p. 60-64, 1939.
- EDUARDO E. N. et al. Erodibilidade, fatores cobertura e manejo e práticas conservacionistas em Argissolo vermelho-amarelo, sob condições de chuva natural. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 37, n. 3, p. 796-803, 2013.
- ELTZ, F. L. F.; CASSOL, E. A.; PASCOTINI, P. B. Potencial erosivo e características das chuvas de Encruzilhada do Sul, RS. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 15, n. 4, p. 331-337, 2011.
- ELTZ, F. L. F.; MEHL, H. U.; REICHERT, J. M. Perdas de Solo e Água em Entressulcos em um Argissolo Vermelho-Amarelo Submetido a Quatro Padrões de Chuva. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 25, n. 2, p. 485-493, 2001.
- ELTZ, F. L. F. et al. Potencial erosivo e características das chuvas de São Gabriel, RS, de 1963 a 1993. **Revista Brasileira de Engenharia Agrícola e Ambiental** (Online), v. 17, n. 6, p. 647-654, 2013.
- EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. **Sistema brasileiro de classificação de solos**. 3. ed. Brasília: [Embrapa], 2013. 353 p.
- EVANS, E. Mechanics of water erosion and their spatial and temporal controls: an empirical viewpoint. In: KIRKBY, M. J.; MORGAN, R. P. C. (Ed.). **Soil Erosion**. [S.I.:s.n.], 1980. p. 109-128.
- FAO. Desarrollo sostenible de tierras aridas y lucha contra la desertificacion: Posición de la FAO. Rome: [FAO], 1993. 30 p.
- FEPAM. **Zoneamento ambiental da silvicultura:** estrutura, metodologia e resultados. Porto Alegre: Governo do Estado do Rio Grande do Sul, SEMA, FEPAM, 2010. 131 p. v. 1.
- FORGIARINI, F. R.; VENDRUSCOLO, D. S.; RIZZI, E. S. Análise de chuvas orográficas no centro do estado do Rio Grande do Sul. **Revista Brasileira de Climatologia**, Curitiba, v. 13, n. 9, p. 107-119, 2014.
- FOSTER, G. R. et al. Conversion of the universal loss equation to SI metric units. **Journal of Soil and Water Conservation**, Ankeny, v. 36, n. 6, p. 355-359, 1981.
- FOSTER, G. R. Modelling the erosion process. In: HAAN, C. T.; JOHNSON, H. D.; BRAKENSIEK, D. L. (Ed.). **Hydrologic modeling of small watersheds**. Saint Joseph: [s.n.], 1982. p. 297-380.
- GARCIA, S. M.; RIGHES, A. A. Vertical mulching e manejo da água em semeadura direta. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 32, n. 2, p. 833-842, 2008.
- GHOLAMI, L.; SADEGHI, S. H. R.; HOMAEE, M. Straw mulching effect on splash erosion, runoff and sediment yield from eroded plots. **Soil Science Society of America Journal**, Madison, v. 77, n. 1, p. 268-278, 2013.

- GIMENEZ, R.; GOVERS, G. Effects of freshly incorporated straw residue on rill erosion and hydraulics. **Catena**, Amsterdam, v. 72, n. 2, p. 214-223, 2008.
- GONZALEZ HIDALGO, J. C.; RAVENTOS, J.; ECHEVARRIA, M. T. Comparison of sediment ratio curves for plants with different architectures. **Catena**, Amsterdam, v. 29, p. 333-340, 1997.
- GRAÇA, C. H. et al. Multitemporal analysis of estimated soil loss for the river Mourão watershed, Paraná Brazil. **Brazilian Journal of Biology**, São Carlos, v. 75, n. 4, supl. 2, p. 120-130, 2015.
- GREER J. D. Effect of excessive rate rainstorms on erosion. **Journal of Soil and Water Conservation**, Washington, v. 24, p. 196-197, 1971.
- GUERRA, A. J. T.; SILVA, A. S.; BOTELHO, R. G. M. (Org.). **Erosão e Conservação dos Solos:** conceitos, temas e aplicações. 2 ed. Rio de Janeiro: Bertrand Brasil, 2005. 339 p.
- HAMZA, M. A.; ANDERSON, W. K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. **Soil and Tillage Research**, Amsterdam, v. 82, n. 2, p. 121-145, 2005.
- HE, X. et al. Down-scale analysis for water scarcity in response to soil-water conservation on Loess Plateau of China. **Agriculture Ecosystems and Environment**, Amsterdam, v. 94, n. 3, p. 355–361, 2003.
- HICKMANN, C. et al. Erosividade das chuvas em Uruguaiana, RS, determinada pelo índice El₃₀, com base no período de 1963 a 1991. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 32, n. 2, p. 825-831, 2008.
- HORNER, W.W.; JENS, S.W. Surface runoff determination from rainfall without using coefficients. **Transactions of the American Society of Agricultural**, Saint Joseph, v. 107, p. 1039-1117, 1941.
- HUDSON, N. **Soil Conservation**. 2. ed. Ithaca, New York: Cornell University Press, 1973. 320 p.
- JORDÁN, A.; ZAVALA, L. M.; MUÑOZ-ROJAS, M. Mulching, effects on soil physical properties. In: GLIŃSKI, J.; HORABIK, J.; LIPIEC, J. (Ed.). **Encyclopedia of Agrophysics**. Dordrecht: Springer, 2011. p. 492-496.
- KADLEC, V. O. et al. Soil organic carbon dynamics and its influence on the soil erodibility factor. **Soil and Water Research**, *Czech Republic*, v. 7, n. 3, p. 97-108, 2012.
- KÖPPEN, W. Das geographische System der Klimate. KÖPPEN, W., R. GEIGER (Eds.): Handbuch der Klimatologie. **Gebrüder Borntrager**, Berlin, n. 1, p. 1–44, 1936. part C.
- LAL, R. Soil erosion on alfisols in Western Nigeria: IV. Nutrient element losses in runoff and eroded sediments. **Geoderma**, Amsterdam, v. 16, n. 5, p. 403–417, 1976.
- LAWS, J. O., PARSONS, D. A. The relationship of raindrop size to intensity. **Transactions American Geophysical Union**, Washington, v. 24, p. 452-460, 1943.
- LE BISSONNAIS, Y.; ARROUAYS, D. Aggregate stability and assessment of

- soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents. **European Journal of Soil Science**, Oxford, v. 48, n. 1, p. 39-48, 1997.
- LIMA, P. M. de P. Índices de erodibilidade diretos e indiretos para dois Latossolos do município de Lavras - Minas Gerais. **Ciência e Prática**, Lavras, v. 15, n. 2, p. 186-193, 1991.
- LO, A. et al. Effectiveness of E₁₃₀ as an index in Hawaii. In: EL-SWAIFY, S.A. (Ed.). **Soil erosion and conservation**. Ankery: Soil Conservation Society of America, Madison, 1985. p. 2384-2382.
- LUZ, L. P. da. **Dinâmica do carbono durante a decomposição de palha de trigo marcada com** ¹³**C e dejetos líquidos de suínos**. 2007. 61 p. Dissertação (Mestrado) Universidade Federal de Santa Maria, Santa Maria, 2007.
- MARQUES, J. J. G. S. M. et al. Índices de erosividade da chuva, perdas de solo e fator erodibilidade para dois solos da região dos cerrados primeira aproximação. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 21, n. 3, p. 427-434, 1997.
- MARTINS FILHO, M. V. et al. Perdas de solo e nutrientes por erosão num Argissolo com resíduos vegetais de cana-de-açúcar. **Engenharia Agrícola**, Jaboticabal, v. 29, n. 1, p. 8-18, 2009.
- MARTINS, S. G. et al. Fator cobertura e manejo do solo e perdas de solo e água em cultivo de eucalipto e em Mata Atlântica nos Tabuleiros Costeiros do estado do Espírito Santo. **Scientia Forestalis**, Piracicaba, v. 38, n. 87, p. 517-526, 2010.
- MAZURANA, J. et al. Erosividade, padrões hidrológicos e período de retorno das chuvas erosivas de Santa Rosa (RS). **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 13, supl. p. 975-983, 2009.
- MIQUELONI, D. P.; GIANELLO, E. M.; BUENO, C. R. P. Variabilidade espacial de atributos e perda de solo na definição de zonas de manejo. **Pesquisa Agropecuária Tropical**, Goiânia, v. 45, n. 1, p. 18-28, 2015.
- MORENO, J. A. **Clima do Rio Grande do Sul.** Porto Alegre: Secretaria da Agricultura, Diretoria de Terras e Colonização, Seção de Geografia, 1961. 46 p.
- MORGAN, R. P. C. **Soil Erosion and Conservation.** 3rd edition. Oxford: Blackwell Publishing, 2005. 316 p.
- MORIN, J.; BENYAMINI, Y.; MICHAELI, A. The effect of rain drop impact on the dynamics of soil surface crusting and water movement in the profile. **Journal of Hydrology**, Amsterdam, v. 52, n. 3-4, p. 321-335, 1981.
- MULUMBA, L. N.; LAL, R. Mulching effects on selected soil physical properties. **Soil and Tillage Research**, Amsterdam, v. 98, n. 1, p. 106-111, 2008.
- NEVES, S. M. A. da S. et al. Estimativa de perda de solo por erosão hídrica na bacia hidrográfica do Rio Jauru/MT. **Sociedade & Natureza**, Uberlândia, v. 3, n. 3, p. 423-434, 2011.
- OLIVEIRA, D. L. de; BORSZOWSKEI, P. R. Taxa de decomposição da palhada

- de trigo e liberação de N-P-K em sistema de plantio direto no município de ponta grossa-PR. **Technoeng**, Ponta Grossa, v. 5, online, 2012.
- PANACHUKI, E. et al. Rugosidade da superfície do solo sob diferentes sistemas de manejo e influenciada por chuva artificial. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 34, n. 2, p. 443-452, 2010.
- QUINTON, J. N.; EDWARDS, G. M.; MORGAN, R. C. The influence of vegetation species and plant properties on runoff and soil erosion: Results from a rainfall simulation study in south east Spain. **Soil Use and Management**, Wallingford, v. 13, n. 3, p. 143-148, 1997.
- REICHARDT, K. et al. Daily rainfall variability at a local scale (1,000 Ha). in Piracicaba, SP, Brazil, and its implications on soil water recharge. **Scientia Agricola**, Piracicaba, v. 52, n. 1, p. 43-49, 1995.
- ROMKENS, M. J. M. Soil erodibility factor: a perspective. **Soil Conservation Society of America**, lowa: Ankeny, 1985. p. 445-461.
- ROSA, V. T. da. **Tempo de implantação do sistema plantio direto e propriedades físico-mecânicas de um Latossolo**. 2009. 101 p. Tese (Doutorado) Universidade Federal de Santa Maria, Santa Maria, 2009.
- RUSSEL, E.W. **Soil conditions and plant growth**. 10. ed. London: Longman, 1973. 472 p.
- SANTOS, G. G. et al. Qualidade física do solo sob sistemas de integração lavoura-pecuária. **Pesquisa Agropecuária Brasileira**, Brasília, v. 46, n. 10, p. 1339-1348, 2011.
- SCHICK, J. et al. Erosivity of rainfall in Lages, Santa Catarina, Brazil. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 38, n. 6, p. 1890-1905, 2014.
- SEUTLOALI, K. E.; BECKEDAHL, H. R. Understanding the factors influencing rill erosion on roadcuts in the south-eastern region of South Africa. **Solid Earth**, Hoboken, v. 6, n. 2, p. 633-641, 2015.
- SCHOMBERG, H. H.; STEINER, J. L.; UNGER, P. W. Decomposition and nitrogen dynamics of crop residues: Residue quality and water effects. **Soil Science Society of America Journal**, Madison, v. 58, n. 2, p. 372-381, 1994.
- SERRANO-MUELA, M. P. et al. An exceptional rainfall event in the central western pyrenees: spatial patterns in discharge and impact. **Land Degradation & Development**, New Jersey, v. 26, n. 3, p. 249-262, 2013.
- SILVA, A. M. da; WIECHETECK, M.; ZUERCHER B. W. Spatial Assessment of Indices for Characterizing the Erosive Force of Rainfall in El Salvador Republic. **Environmental Engineering Science**, Larchmont, v. 28, n. 4, p. 309-316, 2011.
- SILVA, M. L. N. et al. Avaliação de métodos indiretos e determinação da erodibilidade de Latossolos brasileiros. **Pesquisa Agropecuária Brasileira**, Brasília, v. 35, n. 6, p. 1207-1220, 2000.
- SILVA, M. L. N. et al. Comparação entre métodos direto e indiretos para determinação da erodibilidade em Latossolos sob cerrado. **Pesquisa Agropecuária Brasileira**, Brasília, v. 29, n. 11, p. 1751-1761, 1994.

- SILVA, T. S. da. Erodibilidade de um Argissolo Vermelho-Amarelo e fator manejo e cobertura vegetal da Equação Universal de Perdas de Solo. 2016. 164 p. Dissertação (Mestrado) Universidade Federal do Rio Grande do Sul, Porto Alegre, 2016.
- SINGER, M.J.; BLACKWARD, J. Slope angle-interrill soil loss relationships for slopes up to 50%. **Soil Science Society of America Journal**, Madison, v. 46, n. 6, p. 1270-1273, 1982.
- SINGH, M. J.; KHERA, K. L. Nomographic estimation and evaluation of soil erodibility under simulated and natural rainfall conditions. **Land Degradation and Development**, New Jersey, v. 20, n. 5, p. 471-480, 2009.
- SOCIEDADE BRASILEIRA DE CIÊNCIA DO SOLO. **Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina**. [Porto Alegre]: Sociedade Brasileira de Ciência do Solo, 2016. 376 p.
- SOTÉRIO, P. W.; PEDROLLO, M. C.; ANDRIOTTI, J. L. Mapa de isoietas do Rio Grande do Sul. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 2005, João Pessoa. **Anais**... João Pessoa: Associação Brasileira de recursos hídricos, 2005. 16 p.
- SPERA, S. T. et al. Dispersão de argila em microagregados de solo incubado com calcário. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 32, n.esp, p. 2613-2620, 2008.
- STYCZEN, M.E.; MORGAN, R.P.C. Engineering properties of vegetation. In: MORGAN, R. P. C.; RICKSON, R. J. (Ed.). **Slope stabilization and erosion control: a bioengineering approach.** [S.I.]: McGraw Hill, 1994. p. 5-58.
- TANG, K. Soil and Water Conservation in China. **Chinese Science Press**, Beijing, p.15–20, 2004.
- TELLES, T. S.; DE FÁTIMA GUIMARÃES, M.; DECHEN, S. C. F. Os custos da erosão do solo. **Revista Brasileira de Ciência Do Solo**, Viçosa, v. 35, n. 2, p. 287-298, 2011.
- TISDALL, J.M.; OADES, J.M. Organic matter and water-stable aggregates in soil. **European Journal of Soil Science**, Oxford, v. 33, p. 141-163,1982.
- TOBIAS, S. Shear strength of the soil root system: in situ shear tests. In: RICKSON, R. J. (Ed.). **Conserving Soil Resources:** European Perspectives. Wallingford: CAB International, 1994. p.405-412.
- VEIHE, A. The spatial variability of erodibility and its relation to soil types: a study from northern Ghana. **Geoderma**, Amsterdam, v. 106, n. 1-2, p. 101-120, 2002.
- WAKINDIKI, I. C.; M. BEN-HUR. Soil mineralogy and texture effects on crust micromorphology, infiltration and erosion. **Soil Science Society of America Journal**, Madison, v. 66, p. 897-905, 2002.
- WALSH, R.P.D.; VOIGT, P.J. Vegetation litter: an underestimated variable in hydrology and geomorphology. **Journal of Biogeography**, Oxford, v. 4, n. 3, p. 253-274, 1977.
- WANG, J. et al. Simulated study on effects of ground managements on soil

water and available nutrients in jujube orchards. Land Degradation and Development; New Jersey, v. 27, n. 1, p. 35-42, 2016.

WISCHMEIER, W. H. A rainfall erosion index for a universal soil-loss equation. **Soil Science Society of America Journal**, Madison, v. 23, n. 3, p. 246-249, 1959.

WISCHMEIER, W. H. Estimating the soil loss equation's cover and management factor for undisturbed areas. In: **Present and prospective technology for predicting sediment yields and sources.** Washington, DC: USDA-ARS, 1975. p. 118-124.

WISCHMEIER, W. H.; JOHNSON, C. B.; CROSS, B. V. A soil erodibility nomogram for farmland and construction sites. **Journal of Soil and Water Conservation**, Washington, v. 26, p. 189-193, 1971.

WISCHMEIER, W. H.; SMITH D. D. **Predicting rainfall erosion losses: a guide to conservation planning**. Washington: USDA, 1978. 58 p. (Agricultural Handbook, 537).

WISCHMEIER, W. H.; SMITH D. D. Rainfall energy and its relationship to soil loss. **Transactions of the American Geophysical Union,** Washington, v. 39, n. 2, p. 285-291, 1958.

WMO nº 100. **Guide to Climatological Practices.** Geneva: Secretariat of the World Meteorological Organization, 2011. 117 p.

WUDDIVIRA, M. N.; STONEA, R. J.; EKWUEB, E. I. Influence of cohesive and disruptive forces on strength and erodibility of tropical soils. **Soil and Tillage Research**, Amsterdam, v. 133, p. 40-48, 2013.

9. APÊNDICES

APÊNDICE 1 Chuvas individuais que ocorreram de julho a dezembro de 1976 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Da	ta	Erosiva/Não	Quantidade	Dui	ação	Padrão	El ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JUL	12	E	44,0	18	30	Avançado	110,4
JUL	14	NE	1,2			•	0,0
JUL	14	NE	0,5				0,0
JUL	25	NE	7,2				0,0
JUL	25	E	10,3	03	05	Atrasado	11,4
JUL	26	NE	0,6				0,0
JUL	27	NE	0,1				0,0
JUL	27	E	10,3	03	50	Intermediário	13,3
JUL	28	NE	2,0				0,0
JUL	29	NE	1,4				0,0
JUL	30	NE	8,7				0,0
AGO	03	NE	7,3				0,0
AGO	04	E	20,7	23	35	Atrasado	30,7
AGO	05	NE	2,2				0,0
AGO	05	NE	9,0				0,0
AGO	80	E	38,1	12	40	Avançado	193,2
AGO	09	NE	6,0				0,0
AGO	17	E	10,1	06	15	Intermediário	6,8
AGO	28	NE	7,4				0,0
SET	03	E	63,9	21	40	Intermediário	90,4
SET	04	Е	13,8	10	35	Intermediário	14,9
SET	05	NE	0,1				0,0
SET	06	NE	1,2				0,0
SET	06	NE	0,5				0,0
SET	07	NE	2,1				0,0
SET	07	NE	0,2				0,0
SET	80	NE	0,3				0,0
SET	80	NE	0,1				0,0
SET	09	NE	5,0				0,0
SET	10	NE	3,0				0,0
SET	13	NE	3,8				0,0
SET	22	NE	2,2				0,0
SET	29	Е	36,0	13	35	Atrasado	141,6

OUT	04	Е	20,0	06	30	Avançado	55,8
OUT	08	NE	8,0	00	50	Avariçado	0,0
OUT	14	NE	2,0				0,0
OUT	14	NE	7,0				0,0
			•				•
OUT	15	NE	2,0				0,0
OUT	16	NE	2,7				0,0
OUT	17	Е	14,9	03	35	Avançado	22,8
OUT	18	NE	5,1				0,0
OUT	23	NE	2,1				0,0
OUT	23	NE	2,8				0,0
OUT	28	NE	3,6				0,0
OUT	29	E	30,0	03	20	Intermediário	118,5
NOV	03	NE	5,0				0,0
NOV	03	Ε	82,9	14	45	Avançado	742,6
NOV	05	E	19,3	09	05	Intermediário	25,1
NOV	17	NE	2,6				0,0
NOV	20	NE	3,4				0,0
NOV	27	Е	19,9	05	05	Atrasado	105,7
NOV	28	Е	10,3	01	25	Avançado	25,1
NOV	29	NE	5,5				0,0
NOV	30	NE	3,0				0,0
NOV	30	Е	49,2	15	40	Atrasado	438,9
DEZ	07	Е	18,2	09	35	Intermediário	49,2
DEZ	15	E	20,9	04	15	Avançado	129,0
DEZ	16	NE	2,3				0,0
DEZ	19	E	19,9	05	50	Avançado	77,7
DEZ	22	E	69,5	80	20	Avançado	760,0
DEZ	27	E	11,5	03	40	Atrasado	20,8
Total			762,9				3.183,9

APÊNDICE 2 Chuvas individuais que ocorreram no ano de 1977 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Data		Erosiva/Não	Quantidade	Duração		Padrão	El ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	01	E	12,4	05	15	Atrasado	61,3
JAN	02	E	83,7	25	55	Avançado	534,0
JAN	16	E	98,6	21	35	Intermediário	1.209,5
JAN	21	Ē	30,7	01	30	Avançado	264,3
JAN	22	NE	0,5			3	0,0
JAN	23	NE	0,6				0,0
JAN	25	NE	0,1				0,0
JAN	30	Е	41,9	04	10	Avançado	656,2
FEV	05	Е	11,1	03	50	Avançado	39,5
FEV	06	E	13,6	05	20	Avançado	80,9
FEV	07	E	63,6	80	00	Avançado	857,0
FEV	80	NE	5,3			-	0,0
FEV	09	NE	0,2				0,0
FEV	11	NE	1,6				0,0
FEV	15	NE	0,9				0,0
FEV	17	NE	3,5				0,0
FEV	18	E	27,7	06	15	Avançado	263,8
FEV	22	E	44,5	06	30	Avançado	419,2
FEV	25	NE	3,1				0,0
FEV	26	NE	5,2				0,0
FEV	27	E	45,7	01	20	Avançado	816,6
FEV	28	Е	7,6	00	35	Avançado	30,6
MAR	01	NE	0,4				0,0
MAR	03	NE	0,5				0,0
MAR	05	NE	1,2				0,0
MAR	10	E	8,9	00	20	Avançado	42,2
MAR	13	E	14,0	04	50	Avançado	52,0
MAR	20	NE	0,2				0,0
MAR	21	NE	0,3				0,0
MAR	28	Е	76,6	15	30	Intermediário	482,6
MAR	31	NE	2,0				0,0
ABR	03	NE	1,5				0,0
ABR	80	NE	0,2				0,0
ABR	09	NE	5,9				0,0
ABR	10	NE	0,4				0,0
ABR	14	E	61,2	07	10	Avançado	336,4
ABR	17	E	18,6	06	05	Intermediário	32,8
ABR	21	NE	1,7				0,0
MAI	01	NE _	0,2	_			0,0
MAI	07	E	29,1	15	15	Atrasado	94,9
MAI	80	NE	0,2				0,0
MAI	08	NE _	0,1				0,0
MAI	10	Е	10,2	04	00	Avançado	21,4

MAI	15	E	21,7	11	40	Intermediário	52,0
MAI	26	E	20,8	80	45	Avançado	49,8
MAI MAI	29 29	NE E	0,4 21,8	04	05	Intermediário	0,0 119,2
JUN	01	NE	0,1				0,0
JUN JUN	06 15	NE NE	1,6				0,0
JUN	18	E	0,3 33,4	04	50	Avançado	0,0 173,3
JUN	19	Ē	34,3	22	30	Avançado	124,4
JUN	20	NE	2,0			•	0,0
JUN	20	E	39,0	18	10	Avançado	161,4
JUN JUN	20 24	NE E	2,0 12,0	09	15	Atrasado	0,0 15,0
JUN	24	NE	2,0	00	10	7 ta adado	0,0
JUN	28	Е	23,8	07	45	Atrasado	98,0
JUN	28	E	7,3	00	20	Intermediário	26,7
JUL JUL	07 08	NE E	5,5 32,3	23	00	Avançado	0,0 76,0
JUL	09	NE	0,9	25	00	Avançado	0,0
JUL	10	NE	1,4				0,0
JUL	10	NE	0,9				0,0
JUL	12	NE	0,2	06	EE	Atropodo	0,0
JUL JUL	13 15	E E	12,8 19,5	06 12	55 00	Atrasado Intermediário	28,8 50,8
JUL	20	NE	9,0			miomodiano	0,0
JUL	21	E	15,4	01	40	Intermediário	94,6
JUL	21	NE E	8,6	ΩE	25	Intormodiário	0,0
JUL JUL	22 23	NE	10,2 0,4	05	35	Intermediário	35,5 0,0
JUL	27	E	56,1	19	30	Avançado	539,5
JUL	31	E	14,4	11	20	Intermediário	8,7
AGO	01	Ē	24,5	09	05	Avançado	43,3
AGO	11 11	E NE	7,3	00	45	Atrasado	22,3
AGO AGO	12	E	0,1 21,1	14	30	Avançado	0,0 37,9
AGO	15	Ē	40,0	36	50	Avançado	47,6
AGO	17	NE	0,5			-	0,0
AGO	17	E	12,8	08	10	Intermediário	14,5
AGO AGO	23 23	E NE	25,4 0,3	14	40	Atrasado	31,4 0,0
AGO	23 24	NE NE	0,3				0,0
AGO	24	NE	1,9				0,0
AGO	25	NE	0,2				0,0
AGO	30	NE	0,1				0,0
SET SET	05 14	NE E	0,2 11,4	04	15	Atrasado	0,0 25,5
SET	15	E E	7,7	03	25	Avançado	23,3
SET	15	Ē	48,6	27	25	Avançado	180,2
SET	20	NE	4,7			•	0,0
SET	23	NE	1,8	00	40	A	0,0
SET SET	28 28	E NE	20,3 4,4	02	40	Avançado	112,3 0,0
OUT	03	NE NE	1,5				0,0
OUT	09	NE	2,0				0,0
OUT	10	NE	0,9				0,0
OUT	10	NE	4,7				0,0

OUT	12	NE	3,9				0,0
OUT	13	NE	0,7				0,0
OUT	14	NE	0,1				0,0
OUT	15	NE	5,2				0,0
OUT	24	E	35,6	10	10	Avançado	220,0
OUT	25	NE	0,3				0,0
OUT	25	Е	11,0	02	45	Intermediário	35,5
OUT	26	NE	0,6				0,0
OUT	31	E	92,0	10	35	Avançado	1.714,7
NOV	01	NE	3,1			-	0,0
NOV	02	NE	0,2				0,0
NOV	03	NE	0,5				0,0
NOV	05	NE	1,9				0,0
NOV	09	E	15,5	02	45	Avançado	76,1
NOV	09	NE	1,2			•	0,0
NOV	10	Ε	75,1	23	35	Avançado	533,2
NOV	11	NE	2,9			•	0,0
NOV	19	Ε	10,0	01	15	Avançado	47,6
NOV	21	Ε	22,6	04	15	Atrasado	123,1
NOV	23	NE	6,5				0,0
NOV	24	Ε	10,4	03	35	Intermediário	32,8
NOV	27	E	34,9	10	30	Avançado	357,9
DEZ	01	NE	6,2			•	0,0
DEZ	05	NE	0,8				0,0
DEZ	06	Ε	49,2	10	50	Avançado	502,7
DEZ	06	Е	27,1	80	15	Intermediário	137,2
DEZ	07	NE	1,3				0,0
DEZ	09	NE	5,2				0,0
DEZ	20	NE	1,1				0,0
DEZ	25	NE	5,6				0,0
DEZ	30	Ε	22,5	10	45	Atrasado	106,7
	To	otal	1.841,6				12.374,5

APÊNDICE 3 Chuvas individuais que ocorreram no ano de 1978 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Data		Erosiva/Não	Quantidade	Dui	ração	Padrão	EI ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	05	NE	0,1				0,0
JAN	07	NE	3,5				0,0
JAN	80	E	12,1	00	30	Avançado	77,2
JAN	13	NE	7,6				0,0
JAN	19	NE	0,1				0,0
JAN	20	NE	0,7				0,0
JAN	20	Е	13,7	05	35	Avançado	44,0
JAN	21	NE	2,6				0,0
JAN	24	NE	1,0				0,0
JAN	25	NE	2,6				0,0
JAN	25	NE	0,2				0,0
JAN	26	E	19,5	07	45	Intermediário	36,0
JAN	28	NE	2,7				0,0
JAN	29	NE	4,4				0,0
FEV	01	E	6,9	00	30	Avançado	23,9
FEV	02	E	13,1	10	30	Avançado	33,0
FEV	03	NE	0,5				0,0
FEV	11	E	10,5	01	15	Avançado	35,6
FEV	11	NE	0,9				0,0
FEV	16	E	17,3	03	10	Avançado	106,0
FEV	19	NE	0,6				0,0
FEV	20	NE	0,4				0,0
MAR	01	E	61,3	11	20	Avançado	315,0
MAR	01	NE	2,2				0,0
MAR	02	NE	0,1				0,0
MAR	11	NE	5,5				0,0
MAR	11	NE	0,5				0,0
MAR	14	NE	6,1				0,0
MAR	20	E	9,8	00	35	Intermediário	48,6
MAR	23	NE _	0,6				0,0
MAR	25	E	17,1	06	05	Avançado	95,2
MAR	26	E	19,9	05	15	Avançado	85,1
MAR	28	NE _	0,5				0,0
ABR	19	E	12,8	02	40	Avançado	36,6
ABR	29	NE	1,4				0,0
ABR	29	NE	1,0				0,0
MAI	14	NE _	3,0				0,0
MAI	15	E	41,8	11	00	Atrasado	109,9
JUN	12	E	20,5	10	05	Avançado	27,4
JUN	13	NE	1,6	0.5	4-	1.6	0,0
JUN	16	E	59,4	05	45	Intermediário	239,8
JUN	17	NE	0,1				0,0
JUN	17	NE	2,3				0,0

JUN	18	E	10,8	05	10	Avançado	19,4
JUN	18	NE	2,3				0,0
JUN	19	E	41,9	09	05	Avançado	133,8
JUN	24	Е	11,1	06	00	Avançado	22,7
JUN	30	Е	26,6	06	10	Avançado	177,3
JUL	02	NE	2,0				0,0
JUL	11	NE	5,2				0,0
JUL	12	NE	0,2				0,0
JUL	14	NE	5,6				0,0
JUL	15	Ē	15,2	06	35	Avançado	56,8
JUL	16	NE	0,2			,	0,0
JUL	17	E	26,9	06	40	Atrasado	40,2
JUL	19	Ē	26,5	05	15	Atrasado	104,3
JUL	20	Ē	18,5	03	50	Atrasado	96,1
JUL	21	Ē	13,4	06	20		30,1
JUL	23	E		08	30	Avançado Atrasado	
	26	E	13,9	11	30 10		68,1
JUL			10,8			Avançado	5,5
JUL	27	E	13,5	07	10	Avançado	43,0
JUL	27	E	22,2	11	30	Intermediário	20,5
JUL	31	Ē	30,9	06	55	Atrasado	110,2
AGO	09	Ē	51,3	11	05	Intermediário	158,5
AGO	10	E	35,4	12	20	Intermediário	115,4
AGO	12	NE	0,2				0,0
AGO	12	NE	3,8				0,0
AGO	14	NE	1,7				0,0
AGO	19	NE	0,4				0,0
AGO	20	NE	1,2				0,0
AGO	29	E	13,5	05	10	Atrasado	15,9
AGO	29	NE	2,2				0,0
SET	03	E	10,1	04	20	Intermediário	6,8
SET	03	NE	5,2				0,0
SET	04	NE	4,6				0,0
SET	04	NE	0,3				0,0
SET	06	NE	0,5				0,0
SET	07	Е	8,9	01	15	Avançado	27,2
SET	13	Е	44,0	25	40	Avançado	93,7
SET	13	NE	1,0				0,0
SET	19	Е	12,0	10	55	Atrasado	9,9
OUT	04	E	11,0	11	10	Avançado	8,8
OUT	09	NE	1,2				0,0
OUT	09	Е	37,5	14	35	Avançado	85,4
OUT	13	Ε	20,0	10	50	Atrasado	37,9
OUT	14	NE	0,6				0,0
OUT	18	NE	2,2				0,0
OUT	20	NE	0,1				0,0
OUT	25	NE	1,8				0,0
OUT	26	Е	16,6	05	20	Intermediário	67,9
OUT	29	NE	6,9				0,0
OUT	30	NE	0,8				0,0
OUT	30	Ē	18,5	80	10	Avançado	70,5
OUT	30	NE	0,1		. •	,	0,0
OUT	31	NE	3,9				0,0
OUT	31	NE	2,6				0,0
NOV	03	E	12,4	04	10	Avançado	49,3
NOV	04	NE	0,7	0 1		,a.ışaao	0,0
NOV	08	E	22,8	00	50	Atrasado	240,1
O V	33	_	,0		55	,	210,1

NOV	09	NE	9,0				0,0
NOV	16	NE	0,1				0,0
NOV	17	E	68,3	10	15	Avançado	572,5
NOV	18	Е	60,5	14	25	Intermediário	720,8
NOV	19	E	34,8	12	55	Intermediário	113,6
NOV	20	E	12,3	04	15	Intermediário	43,9
NOV	21	NE	3,1				0,0
NOV	25	E	22,5	05	25	Avançado	179,1
NOV	26	E	10,8	05	35	Avançado	6,8
DEZ	03	E	12,6	07	35	Avançado	58,2
DEZ	05	NE	9,3				0,0
DEZ	05	NE	3,5				0,0
DEZ	05	NE	0,2				0,0
DEZ	06	NE	0,9				0,0
DEZ	12	NE	0,3				0,0
DEZ	13	Е	7,6	00	55	Avançado	29,2
DEZ	14	NE	0,1				0,0
DEZ	24	NE	2,5				0,0
DEZ	30	E	16,7	27	35	Atrasado	74,5
-	To	otal	1.317,3				5.027,5

APÊNDICE 4 Chuvas individuais que ocorreram no ano de 1979 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Da	ta	Erosiva/Não	Quantidade	Dur	ação	Padrão	El ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	02	NE	0,1				0,0
JAN	10	NE	0,2				0,0
JAN	26	E	52,2	01	10	Intermediário	840,1
JAN	27	E	10,5	03	15	Intermediário	13,9
JAN	28	NE	2,7				0,0
FEV	10	NE	1,9				0,0
FEV	11	NE	4,8				0,0
FEV	12	NE	2,6				0,0
FEV	12	E	31,2	05	55	Intermediário	165,4
FEV	16	E	57,2	18	10	Avançado	312,1
FEV	17	NE	8,1				0,0
FEV	18	NE	0,4				0,0
FEV	22	E	18,5	12	25	Atrasado	12,9
FEV	23	NE	0,4				0,0
FEV	23	NE	4,8				0,0
FEV	24	NE	0,9				0,0
FEV	28	E	50,0	80	05	Intermediário	430,0
MAR	05	NE	1,6				0,0
MAR	07	NE	4,1				0,0
MAR	07	NE	0,1				0,0
MAR	80	NE	0,1				0,0
MAR	09	E	10,2	03	50	Atrasado	17,7
MAR	10	E	13,3	02	25	Atrasado	42,6
MAR	12	NE	0,1				0,0
MAR	13	NE	4,2				0,0
MAR	13	E	11,5	04	45	Avançado	7,3
MAR	28	NE	2,5				0,0
ABR	02	E	11,0	06	40	Atrasado	15,4
ABR	03	NE	0,5				0,0
ABR	04	NE	0,6				0,0
ABR	04	E	11,4	80	25	Intermediário	14,7
ABR	05	NE	0,3				0,0
ABR	05	E	12,4	07	00	Intermediário	15,6
ABR	05	NE	0,7				0,0
ABR	06	NE	1,2				0,0
ABR	09	NE	0,4				0,0
ABR	10	ΝE	2,3	00	40	1.6	0,0
ABR	14 16	E	131,1	23	10 25	Intermediário	1.391,4
ABR ABR	16 17	E E	11,3 26,1	02 08	25 10	Atrasado Avançado	50,9 86,2
ABR	29	NE	3,9	00	10	Avanyauo	0,0
MAI	03	E	44,5	11	05	Atrasado	192,2
MAI	06	NE	0,1				0,0
MAI	80	E	19,8	11	45	Atrasado	20,1

NA A I	00	NIT	0.0				0.0
MAI MAI	09 12	NE NE	0,2 0,5				0,0 0,0
MAI	18	E	28,8	12	25	Atrasado	123,5
MAI	22	E	31,2	06	40	Avançado	310,6
MAI MAI	28 29	NE NE	0,1 0,9				0,0 0,0
MAI	30	NE	0,3				0,0
JUN	04	NE	0,6				0,0
JUN	04	E	20,3	12	55	Avançado	17,4
JUN JUN	07 11	NE NE	6,4 5,9				0,0 0,0
JUN	24	NE	6,3				0,0
JUL	01	Ē	20,2	80	05	Avançado	67,7
JUL JUL	02 03	E NE	10,5	07	45	Avançado	10,3
JUL	03	NE NE	0,9 0,5				0,0 0,0
JUL	04	NE	0,4				0,0
JUL	06	E	37	17	40	Atrasado	86,6
JUL JUL	07 15	E NE	48,1 0,2	24	00	Atrasado	416,9 0,0
JUL	19	NE	2,7				0,0
JUL	19	E	15,3	20	00	Avançado	6,4
JUL	19	NE	0,5				0,0
JUL JUL	20 20	NE NE	0,2 1,4				0,0 0,0
JUL	25	E	15,3	06	50	Intermediário	15,6
AGO	03	Ē	64,3	12	45	Avançado	405,2
AGO AGO	05 07	E NE	36,8 1,7	04	10	Atrasado	296,2 0,0
AGO	08	E	16,7	12	10	Avançado	23,0
AGO	11	E	17,6	04	20	Avançado	104,9
AGO	11	NE	1,3				0,0
AGO AGO	14 14	NE E	0,4 19,0	07	05	Avançado	0,0 34,9
AGO	16	Ē	14,6	16	55	Atrasado	15,2
AGO	18	NE	1,7				0,0
AGO AGO	19 25	NE E	0,1 12,9	06	10	Avançado	0,0 30,1
AGO	26	NE	0,6	00	10	Avançado	0,0
AGO	28	NE	8,2				0,0
AGO	31	NE	1,3				0,0
SET SET	01 09	NE E	0,8 14,8	15	05	Avançado	0,0 7,1
SET	10	NE	4,4	.0	00	/ Wangado	0,0
SET	12	E	16,2	11	40	Atrasado	13,8
SET SET	13 22	NE NE	1,0				0,0
SET	22 25	E	2,8 68,1	16	10	Atrasado	0,0 783,2
SET	28	Ē	105,7	28	50	Avançado	554,3
SET	30	NE	1,2				0,0
OUT OUT	01 03	NE E	3,7 9,0	00	50	Intermediário	0,0 33,4
OUT	03	NE	0,3	00	50	momodano	0,0
OUT	04	E	32,2	80	15	Avançado	316,5
OUT OUT	05 05	NE E	0,8 65.6	11	45	Avancado	0,0
OUT	US	Ē	65,6	11	40	Avançado	698,0

OUT	05	Е	66,3	26	40	Avançado	171,1
OUT	07	Ē	16,2	03	35	Atrasado	88,9
OUT	07	NE	4,7				0,0
OUT	13	E	14,2	15	20	Avançado	13,0
OUT	23	Ē	27,4	06	40	Atrasado	125,7
OUT	24	Е	39,9	10	05	Avançado	234,3
OUT	28	Е	54,7	80	45	Atrasado	605,5
OUT	28	NE	2,3				0,0
NOV	07	E	16,2	05	15	Intermediário	24,9
NOV	09	NE	0,9				0,0
NOV	10	NE	1,0				0,0
NOV	15	NE	0,6				0,0
NOV	16	E	14,1	02	15	Intermediário	94,0
NOV	17	E	34,7	03	05	Avançado	468,3
NOV	24	E	15,0	06	05	Avançado	23,7
NOV	24	NE	0,5				0,0
NOV	24	NE	0,3				0,0
NOV	30	NE	8,8				0,0
DEZ	03	Е	11,5	01	55	Atrasado	27,5
DEZ	05	E	16,2	03	55	Avançado	92,8
DEZ	06	NE	3,8				0,0
DEZ	07	E	10,4	06	10	Avançado	23,0
DEZ	80	E	13,6	04	30	Avançado	80,3
DEZ	09	E	11,1	02	10	Avançado	26,2
DEZ	12	E	15,6	05	50	Avançado	108,4
DEZ	13	NE	1,4				0,0
DEZ	14	E	15,3	80	30	Avançado	30,5
DEZ	15	NE	3,5				0,0
DEZ	19	NE	0,3				0,0
DEZ	19	NE	0,6				0,0
DEZ	29	E	37,3	18	25	Avançado	104,7
DEZ	31	NE	0,4				0,0
	То	tal	1.809,1				10.342,1

APÊNDICE 5 Chuvas individuais que ocorreram no ano de 1980 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Da	ta	Erosiva/Não	Quantidade	Dui	ração	Padrão	El ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	06	NE	1,4				0,0
JAN	80	NE	4,3				0,0
JAN	80	NE	0,2				0,0
JAN	13	E	9,8	01	00	Avançado	35,5
JAN	17	NE	0,1				0,0
JAN	19	NE	9,6				0,0
JAN	23	NE	1,7				0,0
JAN	24	E	11,0	07	20	Avançado	17,3
JAN	27	NE	2,4				0,0
JAN	30	NE	4,7				0,0
JAN	31	NE	0,3				0,0
FEV	04	E	14,2	09	25	Avançado	16,1
FEV	10	NE	2,7				0,0
FEV	15	E	15,4	01	10	Atrasado	87,9
FEV	23	NE	2,2				0,0
FEV	24	NE	2,7				0,0
FEV	28	NE	3,4				0,0
FEV	29	NE	1,3				0,0
MAR	01	E	26,9	10	50	Avançado	110,2
MAR	02	NE	1,1				0,0
MAR	03	NE	3,4				0,0
MAR	06	NE	0,8				0,0
MAR	09	NE	0,6				0,0
MAR	10	NE	9,2				0,0
MAR	11	NE	0,1				0,0
MAR	11	E	45,2	10	00	Avançado	254,5
MAR	12	NE	3,8				0,0
MAR	12	NE	1,1				0,0
MAR	13	NE	0,2				0,0
MAR	13	E	16,5	03	25	Atrasado	132,7
MAR	26	E	14,0	07	20	Intermediário	16,3
MAR	27	E	22,0	05	15	Atrasado	144,8
MAR	28	E	21,0	10	40	Intermediário	130,9
MAR	29	NE	0,4				0,0
ABR	11	NE	0,7				0,0
ABR	12	E	47,1	17	20	Avançado	161,3
ABR	18	NE _	0,8	4.4	4.5	1.7.	0,0
MAI MAI	01 02	E NE	47,9 0.7	11	45	Intermediário	104,0
MAI	02 07	E	0,7 33,6	22	35	Intermediário	0,0 104,5
MAI	09	Ē	113,1	28	45	Intermediário	358,4
MAI	16	Ē	29,7	04	35	Avançado	169,0
MAI	17	NE	0,2			•	0,0
MAI	18	NE	5,1				0,0

MAI	18	NE	0,2				0,0
MAI	19	NE	5,0				0,0
MAI	20	NE	2,1				0,0
MAI MAI	21 29	NE NE	0,9 2,0				0,0 0,0
MAI	31	E	19,7	13	30	Avançado	49,1
JUN	11	NE	0,1			, wanyaac	0,0
JUN	12	E	15,7	06	35	Avançado	24,1
JUN	13	NE	0,4				0,0
JUN	13	NE	0,6	40	0.5	11	0,0
JUN JUN	19 19	E NE	34,0 0,9	10	25	Intermediário	93,7 0,0
JUN	24	NE	5,0				0,0
JUN	25	NE	0,2				0,0
JUN	30	NE	7,8				0,0
JUL	08	E	14,9	06	35	Avançado	18,4
JUL	12	NE	0,1				0,0
JUL JUL	20 26	NE NE	7,1 7,9				0,0 0,0
JUL	28	E	7,9 11,0	03	40	Intermediário	26,8
JUL	28	Ē	26,2	06	25	Intermediário	143,7
JUL	29	E	24,6	07	40	Atrasado	80,5
AGO	05	NE	7,9				0,0
AGO	05	E	12,3	13	25	Intermediário	10,8
AGO AGO	06 07	NE NE	0,2				0,0
AGO	17	E	0,1 59,4	01	45	Intermediário	0,0 831,1
AGO	18	Ē	13,5	04	10	Avançado	55,8
AGO	19	E	16,6	07	25	Intermediário	37,9
AGO	20	E	53,5	10	45	Atrasado	532,6
AGO	22	NE	5,6	07	00	A	0,0
SET SET	01 08	E E	120,7 17,7	27 02	20 05	Avançado Avançado	780,1 66,3
SET	08	NE	0,3	UZ	03	Avançado	0,0
SET	08	NE	0,4				0,0
SET	14	NE	2,0				0,0
SET	14	NE	1,0				0,0
SET	15	NE	2,0	04	20	Λ tu = = = = =	0,0
SET SET	20 27	E E	15,7 21,4	01 14	20 45	Atrasado Avançado	111,1 15,8
OUT	04	NE	2,9	17	40	Avançado	0,0
OUT	04	E	11,2	02	35	Avançado	18,6
OUT	07	NE	7,9			•	0,0
OUT	80	NE	0,2				0,0
OUT	11	NE	0,5				0,0
OUT OUT	11 18	NE NE	4,3 9,9				0,0 0,0
OUT	20	E	50,7	07	10	Atrasado	255,4
OUT	21	Ē	25,4	14	00	Atrasado	30,9
OUT	27	E	73,6	43	15	Atrasado	323,8
OUT	29	E	10,7	07	25	Avançado	13,4
NOV	05 05	NE E	0,2	00	EE	Avor 224 -	0,0
NOV NOV	05 06	E NE	83,2 2,5	09	55	Avançado	740,7 0,0
NOV	06	E	2,5 19,3	07	45	Atrasado	123,6
NOV	08	Ē	40,9	38	25	Atrasado	43,7
			,				,

NOV	18	NE	0,8				0,0
NOV	19	NE	1,0				0,0
NOV	20	E	41,9	07	00	Avançado	107,1
NOV	21	NE	2,2				0,0
NOV	22	Ε	20,8	11	35	Intermediário	116,5
NOV	23	NE	1,7				0,0
NOV	28	Ε	42,6	18	45	Avançado	249,0
DEZ	02	Ε	37,4	05	45	Avançado	442,8
DEZ	03	NE	0,2			-	0,0
DEZ	04	NE	0,3				0,0
DEZ	11	Ε	69,9	04	30	Intermediário	1.459,8
DEZ	17	E	23,0	01	55	Atrasado	180,6
DEZ	18	Ε	12,1	04	50	Atrasado	21,9
DEZ	19	Ε	12,1	05	45	Atrasado	12,1
DEZ	23	Ε	43,8	03	00	Intermediário	413,1
DEZ	26	Ε	15,1	05	20	Avançado	39,9
DEZ	27	NE	5,9			-	0,0
DEZ	28	NE	2,9				0,0
01 0	To	otal	1.746,4	^ 1		1 1000 5	9.314,1

Obs.: Os padrões hidrológicos das chuvas do mês de dezembro de 1980 foram obtidos da estação agrometeorológica do município de Ijuí (CASSOL et al., 2007).

APÊNDICE 6 Chuvas individuais que ocorreram no ano de 1981 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Da		Erosiva/Não	Quantidade	Dur	ação	Padrão	EI ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	06	E	12,4	04	45	Avançado	50,6
JAN	10	NE	2,2				0,0
JAN	12	NE	2,0				0,0
JAN	17	E	32,7	01	00	Avançado	494,7
JAN	18	NE	4,1				0,0
JAN	19	E	16,8	05	35	Avançado	69,4
JAN	20	E	29,0	03	55	Avançado	272,5
JAN	23	NE	0,8				0,0
JAN	24	NE	1,7				0,0
JAN	25	NE	2,1				0,0
JAN	26	NE	0,1				0,0
JAN	29	NE	1,4				0,0
JAN	29	NE	0,9				0,0
FEV	02	E	10,7	01	45	Avançado	62,7
FEV	03	E	51,5	16	25	Avançado	207,3
FEV	04	NE	6,2				0,0
FEV	08	E	7,2	01	20	Avançado	24,6
FEV	10	NE	0,4				0,0
FEV	11	NE	0,2				0,0
FEV	12	E	38,8	07	50	Avançado	172,9
FEV	14	NE	1,0				0,0
FEV	14	NE	1,7				0,0
FEV	16	E	10,2	00	20	Atrasado	57,9
FEV	18	E	73,7	04	25	Avançado	1.559,5
FEV	21	NE _	3,2				0,0
FEV	22	E	10,1	00	40	Intermediário	43,2
FEV	28	NE _	1,0				0,0
MAR	02	E	32,0	09	05	Intermediário	190,0
MAR	03	NE	0,2				0,0
MAR	14	NE	2,1				0,0
MAR	29	NE	0,8				0,0
MAR	30	NE	4,5				0,0
ABR	03	NE	1,0				0,0
ABR	09	NE	5,0				0,0
ABR	12 14	NE	0,2				0,0
ABR ABR	14	NE NE	3,6				0,0
ABR	15	NE NE	0,2 0,3				0,0 0,0
ABR	22	E	30,9	07	50	Intermediário	89,6
ABR	25	Ē	28,9	04	55	Atrasado	111,0
ABR	26	NE	0,3				0,0
ABR	26	NE	0,6				0,0
ABR	28	NE NE	2,9				0,0
ABR	29	NE	0,4				0,0

N 4 A 1	4.4	NIE	4.0				0.0
MAI MAI	14 19	NE NE	1,8 8,6				0,0 0,0
MAI	25	E	18,6	03	20	Intermediário	118,7
MAI	26	NE	4,6				0,0
JUN	02	Е	33,8	05	10	Avançado	197,6
JUN	06	NE	2,3				0,0
JUN	06	NE	1,2				0,0
JUN JUN	06 07	NE NE	2,5 7,9				0,0 0,0
JUN	10	E	25,4	05	45	Avançado	42,5
JUN	22	Ē	31,2	18	50	Intermediário	101,4
JUL	10	Е	12,9	07	45	Atrasado	17,6
JUL	11	NE	5,0				0,0
JUL	12	NE E	0,5	07	00	Avanaada	0,0
JUL JUL	16 17	NE	13,4 0,5	07	00	Avançado	22,7 0,0
JUL	20	NE NE	0,5 2,9				0,0
JUL	20	NE	1,0				0,0
AGO	07	NE	5,6				0,0
AGO	08	NE	0,4				0,0
AGO	12	NE	3,7				0,0
AGO AGO	27 29	NE NE	2,2 1,5				0,0 0,0
AGO	30	NE	1,3				0,0
AGO	30	NE	2,8				0,0
SET	01	NE	0,5				0,0
SET	01	NE	6,8				0,0
SET	03	NE	3,2				0,0
SET SET	03 12	NE E	2,8 110,2	47	20	Avançado	0,0 721,5
SET	15	NE	0,3	71	20	Avançado	0,0
SET	19	NE	0,8				0,0
SET	20	E	18,4	19	35	Atrasado	34,1
SET	21	NE	0,2	07	45	A .	0,0
SET SET	22	E	62,0	27 06	45 05	Avançado Intermediário	139,6
SET	24 29	E E	27,1 10,3	06 04	05 05	Intermediário Intermediário	68,2 14,2
OUT	03	Ē	34,4	01	55	Avançado	420,3
OUT	05	NE	1,1			3	0,0
OUT	06	NE	0,3				0,0
OUT	06	NE	1,2	16	25	Avanaada	0,0
OUT OUT	19 26	E E	36,8 12,0	16 07	35 10	Avançado Intermediário	168,0 13,1
NOV	02	Ē	10,0	10	45	Atrasado	9,3
NOV	03	NE	2,0	. •		7 111 5.5 5.4	0,0
NOV	06	E	27,1	13	55	Atrasado	139,9
NOV	18	E	20,9	05	45	Atrasado	41,0
NOV	24	NE	4,0	06	25	Avanaada	0,0
NOV NOV	28 29	E E	20,9 17,0	06 06	35 30	Avançado Atrasado	86,7 41,8
NOV	30	NE	6,6	00	30	Allasado	0,0
NOV	30	NE	4,6				0,0
DEZ	05	E	47,0	05	30	Atrasado	571,3
DEZ	14	NE	8,5		4.5		0,0
DEZ	15	E	25,0	10	10	Avançado	34,1
DEZ	18	NE	0,9				0,0

DEZ	19	E	110,7	03	55	Avançado	2.331,1
DEZ	20	NE	3,6			-	0,0
DEZ	20	E	11,7	00	40	Intermediário	68,0
DEZ	23	NE	0,5				0,0
DEZ	26	E	11,6	01	05	Avançado	44,6
DEZ	27	NE	3,2			-	0,0
DEZ	31	E	22,2	02	15	Atrasado	214,6
	То	tal	1.313,9		•		9.067,8

Obs.: Os padrões hidrológicos das chuvas dos meses de janeiro a novembro de 1981 foram obtidos da estação agrometeorológica do município de Ijuí (CASSOL et al., 2007).

APÊNDICE 7 Chuvas individuais que ocorreram no ano de 1982 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Da	ta	Erosiva/Não	Quantidade	Dui	ração	Padrão	El ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	06	E	13,5	04	50	Avançado	11,6
JAN	07	NE	1,0			•	0,0
JAN	07	NE	2,4				0,0
JAN	80	NE	0,7				0,0
JAN	17	NE	0,8				0,0
JAN	29	NE	5,0				0,0
JAN	31	E	17,4	07	50	Atrasado	35,7
FEV	03	E	45,9	07	30	Atrasado	324,4
FEV	04	NE	0,2				0,0
FEV	80	E	10,8	07	10	Atrasado	42,1
FEV	09	NE	7,1				0,0
FEV	09	NE	4,0				0,0
FEV	11	E	16,4	06	50	Avançado	20,6
FEV	12	E	9,5	00	20	Intermediário	45,2
FEV	13	NE	1,8				0,0
FEV	13	NE	2,0				0,0
FEV	15	E	20,8	05	25	Avançado	88,7
FEV	17	NE	4,1				0,0
FEV	18	NE	2,8				0,0
FEV	19	NE	0,2				0,0
FEV	19	NE	3,3				0,0
FEV	20	NE	1,1				0,0
FEV	21	NE	1,7				0,0
FEV	21	E	24,2	04	10	Avançado	124,9
FEV	28	NE	4,0				0,0
MAR	01	NE	1,2				0,0
MAR	13	E	32,3	04	25	Intermediário	254,7
MAR	14	E	34,7	13	00	Avançado	221,2
MAR	21	E	14,3	01	30	Intermediário	74,8
MAR	27	NE	0,4				0,0
MAR	28	NE	4,5				0,0
ABR	14	E	11,9	10	15	Avançado	11,3
ABR	20	E	14,7	03	35	Intermediário	25,6
ABR	24	NE	2,2				0,0
MAI	80	NE	1,7				0,0
MAI	09	NE _	1,6				0,0
MAI	10	E	23,3	11	05	Avançado	58,6 254.4
MAI MAI	11 14	E E	30,8 15,2	07 28	35 10	Avançado Avançado	254,4 18,3
MAI	18	E	34,1	05	10	Avançado	143,4
JUN	08	NE	0,9	30	.0	,	0,0
JUN	10	E	82,4	80	35	Avançado	777,5
JUN	12	E	14,9	00	30	Avançado	117,3
JUN	13	NE	0,2				0,0

JUN	14	NE	1,6				0,0
JUN	14	NE	2,7				0,0
JUN	14	E	22,7	07	25	Avançado	66,6
JUN	15	NE	0,6	01	20	, tranşado	0,0
JUN	19	NE	1,1				0,0
JUN	19	E	18,8	06	45	Avançado	42,8
JUN	20	NE	1,2	00	70	Avançado	0,0
JUN	26	E	63,6	10	25	Avançado	606,9
JUN	27	NE	0,9	10	23	Avançado	0,0
JUN	27	E	39,2	11	55	Atrasado	143,5
JUN	28	NE	1,1	11	55	Allasauu	
JUL	04	E	45,9	10	00	Intermediário	0,0 194,1
JUL	05	NE	45, 9 5,7	10	00	Intermediano	0,0
JUL	05	NE	3,7 4,9				
JUL	06	NE NE	2,1				0,0
JUL	06	NE NE	3,4				0,0
JUL	11	NE NE	3, 4 1,5				0,0 0,0
JUL	12	E	40,8	16	10	Atrasado	182,3
JUL	16	NE	2,8	10	10	Allasauu	
JUL	16	NE					0,0
JUL	17	E	6,3	01	25	Avancado	0,0
JUL	17	NE	8,1 1.7	Οī	23	Avançado	22,4
		NE NE	1,7				0,0
JUL JUL	17 22	NE NE	9,2				0,0
JUL	22	NE NE	3,2				0,0
JUL		NE NE	1,1				0,0
JUL	23 28	E	2,8 15,4	05	30	Atrasado	0,0
AGO	01	NE	4,8	03	30	Allasauu	25,8 0,0
AGO	07	E	161,0	45	00	Avançado	860,0
AGO	09	NE	0,4	70	00	Avançado	0,0
AGO	09	NE	0,9				0,0
AGO	09	NE	0,5				0,0
AGO	11	NE	0,1				0,0
AGO	15	E	38,4	12	25	Avançado	75,6
AGO	16	NE	0,2	12	20	7 (Valigado	0,0
AGO	23	NE	4,5				0,0
AGO	27	E	14,0	03	05	Atrasado	34,7
AGO	30	Ē	74,0	20	20	Atrasado	307,1
SET	11	Ē	13,9	11	05	Intermediário	36,1
SET	12	NE	7,1	• • •	00	momodano	0,0
SET	17	E	106,0	22	10	Avançado	840,4
SET	18	NE	0,3		. 0	, trainga ao	0,0
SET	23	NE	3,0				0,0
SET	24	NE	6,0				0,0
SET	25	E	15,6	07	10	Avançado	25,7
SET	27	NE	6,0	01	.0	/ tvaligado	0,0
OUT	01	NE	3,3				0,0
OUT	01	NE	0,9				0,0
OUT	01	NE	0,1				0,0
OUT	06	NE	0,3				0,0
OUT	06	E	29,2	13	50	Avançado	34,9
OUT	07	NE	2,5		55	,yaao	0,0
OUT	10	NE	0,8				0,0
OUT	12	NE	5,2				0,0
OUT	17	E	16,4	02	10	Avançado	87,4
OUT	21	Ē	21,0	02	20	Avançado	127,8
			−·, •				, •

OUT	22	E	53,6	03	55	Avançado	740,2
OUT	23	Ē	72,3	11	15	Avançado	531,8
OUT	24	NE	1,5			3	0,0
OUT	27	NE	2,6				0,0
NOV	01	Е	54,0	18	50	Avançado	316,1
NOV	03	E	67,8	13	15	Intermediário	539,4
NOV	04	NE	0,4				0,0
NOV	05	E	47,3	11	45	Avançado	107,8
NOV	05	NE	0,5			•	0,0
NOV	10	E	19,1	03	00	Atrasado	95,8
NOV	11	E	58,8	09	10	Avançado	537,5
NOV	13	E	33,8	17	40	Avançado	61,9
NOV	19	E	37,2	04	15	Intermediário	333,6
NOV	20	NE	8,6				0,0
NOV	26	NE	0,9				0,0
NOV	28	E	10,8	05	25	Avançado	18,6
DEZ	01	NE	7,1				0,0
DEZ	06	NE	3,9				0,0
DEZ	12	NE	1,8				0,0
DEZ	12	NE	5,7				0,0
DEZ	16	NE	7,4				0,0
DEZ	18	NE	1,8				0,0
DEZ	21	E	10,0	07	45	Avançado	9,4
DEZ	22	NE	0,3				0,0
DEZ	23	Е	15,3	02	10	Intermediário	84,7
DEZ	23	NE	0,3				0,0
DEZ	29	E	30,0	04	25	Avançado	198,7
	To	otal	1.919,6				9.939,9

APÊNDICE 8 Chuvas individuais que ocorreram no ano de 1983 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Da	ta	Erosiva/Não	Quantidade	Dur	ação	Padrão	EI ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	03	NE	1,9				0,0
JAN	04	E	51,7	06	25	Avançado	452,2
JAN	06	NE	0,5			•	0,0
JAN	06	NE	2,6				0,0
JAN	13	Е	13,0	04	25	Avançado	51,0
JAN	14	Е	21,0	06	55	Intermediário	47,8
JAN	18	NE	0,4				0,0
JAN	25	Е	10,9	05	05	Intermediário	10,9
JAN	27	NE	0,2				0,0
JAN	28	NE	7,3				0,0
JAN	29	E	33,0	13	35	Intermediário	59,5
JAN	30	E	63,8	09	10	Atrasado	322,9
FEV	07	NE	3,0				0,0
FEV	09	E	27,9	03	40	Avançado	137,4
FEV	15	E	101,6	19	50	Avançado	783,9
FEV	16	NE	6,5				0,0
FEV	22	NE	0,6				0,0
FEV	23	E	20,7	04	05	Avançado	146,4
FEV	24	NE	1,2				0,0
FEV	25	NE	2,2				0,0
FEV	26	E	161,1	33	45	Avançado	3.008,6
FEV	27	NE	4,6				0,0
MAR	10	NE	5,0				0,0
MAR	11	E	33,3	12	00	Avançado	178,1
MAR	12	NE	6,4				0,0
MAR	16	Е	38,1	04	50	Atrasado	270,7
MAR	17	E	75,1	23	50	Atrasado	517,9
MAR	31	NE	1,1				0,0
ABR	01	NE	6,0				0,0
ABR	03	E	99,3	22	30	Intermediário	776,4
ABR	04	E	19,3	14	20	Avançado	19,2
ABR	14	NE	0,8				0,0
ABR	17	E	86,1	24	20	Atrasado	524,7
ABR	19	NE	1,7				0,0
ABR	23	E	33,5	80	05	Avançado	75,8
ABR	28	E	87,9	24	40	Avançado	493,5
ABR	29	NE	0,8				0,0
MAI	01 01	NE	1,9	02	EE	Atropado	0,0
MAI MAI	01	E E	10,8 59,3	02 18	55 05	Atrasado Atrasado	25,5 118,5
MAI	05	Ē	23,2	07	20	Intermediário	40,6
MAI	07	Ē	38,9	06	25	Avançado	154,7
MAI	80	NE	0,7			-	0,0
MAI	80	NE	2,3				0,0

MAI	09	Е	26,4	80	55	Atrasado	33,4
MAI	10	Ē	20,5	10	00	Atrasado	99,5
MAI	11	NE	0,9	10	00	711140440	0,0
MAI	11	NE	0,3				0,0
MAI	14	E	152,4	45	10	Intermediário	1.553,4
MAI	18	NE		45	10	IIILEITHEUIAHO	
			2,3	15	25	Intermediária	0,0
MAI	19	E	20,5	15	25	Intermediário	54,1
MAI	20	NE	0,5				0,0
MAI	20	NE	1,3				0,0
MAI	23	NE	0,5				0,0
MAI	27	E	55,3	15	20	Intermediário	229,7
MAI	28	NE	0,8				0,0
JUN	03	NE	1,9				0,0
JUN	80	NE	0,9				0,0
JUN	12	E	37,2	12	35	Avançado	47,7
JUN	14	NE	0,7			,	0,0
JUN	14	NE	2,1				0,0
JUN	22	Е	68,2	16	50	Avançado	505,2
JUN	30	Ē	11,9	08	15	Atrasado	14,9
JUL	02	NE	4,2		. •	, madado	0,0
JUL	05	E	67,8	16	05	Avançado	336,9
JUL	06	Ē	44,2	10	25	Intermediário	60,1
JUL	07	E		07	45		
JUL	08	E	50,0	10	35	Atrasado	340,6
JUL	09	NE	17,6	10	33	Avançado	40,6
		E	0,9	06	ΩE	Intermediária	0,0
JUL	10		14,0	06	05	Intermediário	6,6
JUL	13	NE	7,9	00	EE	A tracada	0,0
JUL	15	E	31,1	09	55	Atrasado	67,2
JUL	24	E	50,0	20	10	Intermediário	157,3
JUL	26	Ē	62,4	28	05	Intermediário	90,8
JUL	29	E	16,1	14	10	Intermediário	15,4
JUL	30	NE	2,8				0,0
AGO	01	NE	1,1				0,0
AGO	01	NE	1,0				0,0
AGO	80	NE	3,1				0,0
AGO	13	NE	7,3				0,0
AGO	14	E	81,4	24	20	Intermediário	415,2
AGO	16	E	35,2	24	35	Atrasado	41,7
AGO	30	NE	0,8				0,0
AGO	30	E	20,0	13	50	Atrasado	18,1
SET	05	E	10,4	03	30	Avançado	18,4
SET	11	NE	2,1			•	0,0
SET	14	Е	41,5	11	20	Avançado	261,3
SET	22	Е	45,0	09	50	Intermediário	365,3
SET	23	Ē	11,3	02	35	Avançado	58,0
SET	29	Ē	32,3	10	25	Intermediário	176,1
SET	30	Ē	10,0	11	50	Intermediário	12,4
OUT	09	Ē	21,8	18	10	Intermediário	24,5
OUT	10	NE	0,3	10	10	Intermediano	0,0
OUT	16	E	70,0	23	25	Atrasado	203,6
OUT	18	NE		23	23	Allasauu	
			3,4	10	25	Avanaada	0,0
OUT	21	E	14,3	12	25	Avançado	10,1
OUT	30	E	23,8	10	20	Atrasado	50,4
OUT	30	NE	4,0				0,0
OUT	31	NE	2,1	40	00	Atuaca da	0,0
NOV	02	E	72,7	12	20	Atrasado	502,2

NOV	04	Е	11,9	12	05	Atrasado	11,8
NOV	10	NE	1,8				0,0
NOV	11	NE	0,7				0,0
NOV	12	E	20,0	14	55	Avançado	13,6
NOV	15	NE	7,1			-	0,0
DEZ	01	NE	1,1				0,0
DEZ	05	NE	8,3				0,0
DEZ	12	E	16,9	04	30	Avançado	73,5
DEZ	16	NE	7,7			-	0,0
DEZ	18	NE	1,6				0,0
DEZ	19	NE	7,4				0,0
DEZ	20	NE	0,3				0,0
DEZ	21	NE	8,5				0,0
DEZ	30	Е	36,9	13	55	Intermediário	56,3
	To	otal	2.585,9				14.182,1

APÊNDICE 9 Chuvas individuais que ocorreram no ano de 1984 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Da	ta	Erosiva/Não	Quantidade	Dur	ação	Padrão	EI ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	01	Е	13,0	07	25	Avançado	73,4
JAN	02	NE	1,2			,	0,0
JAN	03	Е	114,7	10	45	Avançado	2.111,7
JAN	10	Е	37,9	09	00	Atrasado	523,8
JAN	11	Е	18,9	03	35	Atrasado	105,3
JAN	13	NE	0,5				0,0
JAN	14	NE	1,8				0,0
JAN	15	NE	0,4				0,0
JAN	15	E	43,0	23	10	Avançado	136,4
JAN	17	NE	2,7			-	0,0
JAN	19	NE	8,1				0,0
JAN	23	NE	2,3				0,0
JAN	24	E	12,2	01	20	Intermediário	63,3
JAN	26	E	48,4	05	10	Avançado	759,7
JAN	27	NE	0,5				0,0
JAN	29	E	11,3	07	40	Atrasado	42,8
JAN	30	E	97,6	23	45	Avançado	1158,5
FEV	01	NE	9,2			-	0,0
FEV	02	E	11,8	17	10	Avançado	9,2
FEV	03	E	10,0	04	25	Atrasado	28,2
FEV	05	E	20,6	07	10	Avançado	123,1
FEV	18	E	7,5	00	25	Atrasado	25,7
FEV	20	NE	0,4				0,0
FEV	26	NE	2,7				0,0
FEV	27	NE	2,5				0,0
FEV	27	E	21,7	01	50	Avançado	216,4
MAR	01	NE	1,3				0,0
MAR	03	NE	2,1				0,0
MAR	04	E	19,4	02	45	Atrasado	70,9
MAR	06	E	17,7	05	55	Avançado	69,2
MAR	09	NE	2,8				0,0
MAR	17	NE	6,8				0,0
MAR	19	NE	8,8				0,0
MAR	24	E	24,1	05	50	Avançado	58,6
MAR	28	E	12,9	03	50	Atrasado	51,0
ABR	01	E	36,0	17	00	Avançado	104,4
ABR	02	NE	0,5				0,0
ABR	13 16	NE NE	1,3				0,0
ABR ABR	17	NE E	5,4 22,6	04	30	Avançado	0,0 126,0
ABR	20	NE	3,3	U -1	50	Avanyauu	0,0
ABR	21	NE	2,9				0,0
ABR	21	E	28,5	80	50	Avançado	142,8
ABR	22	E	64,3	23	40	Avançado	439,0

MAI	05	E	45,9	03	40	Avançado	473,3
MAI MAI	06 08	E NE	63,6 7,6	18	45	Avançado	429,6 0,0
MAI	09	E	105,5	37	00	Avançado	441,2
MAI	19	NE	2,1				0,0
MAI MAI	19 19	NE NE	4,3 1,0				0,0 0,0
MAI	22	E	52,6	80	05	Avançado	344,7
MAI JUN	29 03	NE E	6,9 114,0	78	15	Avançado	0,0 476,9
JUN	06	NE	0,9	70	10	Avançado	0,0
JUN	07	NE	0,3	4.0	0.5		0,0
JUN JUN	09 11	E NE	28,0 2,1	10	25	Atrasado	78,9 0,0
JUN	14	NE	0,9				0,0
JUN	16	NE	1,4				0,0
JUN JUN	17 19	NE NE	0,1 2,6				0,0 0,0
JUN	22	NE	0,2				0,0
JUN	22	NE E	0,3	04	15	Avanaada	0,0
JUN JUN	23 26	E E	18,4 20,1	04 10	15 35	Avançado Atrasado	103,1 21,1
JUL	03	E	13,4	03	15	Intermediário	32,4
JUL JUL	06 08	NE E	8,4 91,8	13	45	Avançado	0,0 353,5
JUL	12	NE	4,1	13	40	Avançauo	0,0
JUL	14	E	36,4	10	15	Avançado	170,6
JUL JUL	15 19	NE E	0,3 21,2	17	15	Atrasado	0,0 49,0
JUL	20	NE	1,8	.,	10	711143440	0,0
AGO	01	E	17,8	12	05	Atrasado	18,3
AGO AGO	04 05	NE E	0,6 20,2	80	15	Intermediário	0,0 48,2
AGO	06	E	11,2	07	30	Avançado	11,1
AGO	07	E	57,2	28	25	Intermediário	75,3
AGO AGO	12 18	NE NE	2,6 1,7				0,0 0,0
AGO	20	Е	56,3	12	50	Atrasado	539,8
AGO AGO	23 24	NE NE	5,0 6,4				0,0 0,0
SET	12	NE	8,9				0,0
SET	13	Ē	17,5	22	20	Avançado	13,0
SET SET	18 21	E NE	87,3 0,1	21	40	Atrasado	415,2 0,0
SET	24	E	11,2	80	25	Atrasado	12,4
SET	24	E	75,2	15	40	Atrasado	229,7
SET OUT	27 04	NE NE	1,3 1,0				0,0 0,0
OUT	04	E	46,3	12	40	Intermediário	129,8
OUT	05 05	E E	10,3	01	45 55	Avançado Intermediário	45,4
OUT OUT	05 05	NE	15,7 2,4	03	55	Intermediário	63,6 0,0
OUT	07	NE	3,5			_	0,0
OUT OUT	08 17	E E	44,4 27,9	11 05	50 25	Avançado Intermediário	90,9 91,7
OUT	29	E	33,3	12	45	Intermediário	86,4

NOV	01	E	30,3	09	15	Avançado	188,3
NOV	01	NE	6,5			•	0,0
NOV	03	NE	3,0				0,0
NOV	05	NE	6,3				0,0
NOV	07	NE	3,2				0,0
NOV	07	NE	1,5				0,0
NOV	80	Ε	25,8	07	35	Intermediário	68,7
NOV	09	NE	0,2				0,0
NOV	11	NE	0,7				0,0
NOV	11	NE	2,6				0,0
NOV	16	NE	1,0				0,0
NOV	16	NE	0,3				0,0
NOV	17	NE	0,5				0,0
NOV	23	NE	5,4				0,0
NOV	24	NE	0,1				0,0
NOV	29	Ε	21,1	10	05	Avançado	44,2
NOV	30	E	14,8	18	15	Avançado	16,9
DEZ	05	Ε	10,5	04	40	Avançado	8,7
DEZ	12	Ε	40,0	06	00	Avançado	287,4
DEZ	16	Ε	13,5	11	45	Avançado	26,6
DEZ	30	E	33,7	02	25	Avançado	386,0
	То	tal	2.204,1				12.311,3

APÊNDICE 10 Chuvas individuais que ocorreram no ano de 1985 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Da	ta	Erosiva/Não	Quantidade	Dui	ração	Padrão	El ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	06	NE	4,6				0,0
JAN	80	NE	9,5				0,0
JAN	14	NE	2,2				0,0
JAN	15	E	55,9	03	20	Intermediário	645,6
JAN	21	E	13,1	01	40	Intermediário	73,0
JAN	26	NE	0,6				0,0
JAN	26	NE	0,5				0,0
FEV	02	NE	1,5				0,0
FEV	03	E	21,9	09	00	Atrasado	59,4
FEV	07	Е	25,4	09	00	Atrasado	165,9
FEV	80	E	24,5	11	50	Intermediário	29,6
FEV	09	E	10,9	02	00	Intermediário	16,7
FEV	09	NE	1,3				0,0
FEV	10	NE	0,2				0,0
FEV	12	NE	0,3				0,0
FEV	14	E	40,6	09	00	Avançado	169,2
FEV	15	E	6,5	01	10	Atrasado	20,0
FEV	16	E	49,5	03	05	Intermediário	704,8
FEV	17	E	9,5	04	25	Avançado	37,8
FEV	18	NE	3,7				0,0
FEV	19	NE	7,5				0,0
FEV	20	NE	2,2				0,0
FEV	21	NE	0,5				0,0
MAR	05	NE	0,7				0,0
MAR	80	NE	5,7				0,0
MAR	09	E	10,0	80	10	Intermediário	6,2
MAR	16	E	24,6	06	20	Intermediário	125,5
MAR	22	E	48,4	21	00	Avançado	54,2
MAR	24	E	13,7	06	00	Avançado	39,6
MAR	25	E	22,4	05	50	Intermediário	37,9
MAR	27	E	29,6	07	00	Avançado	104,5
MAR	29	E	19,4	04	40	Avançado	51,5
ABR	02	E	14,2	05	35	Avançado	55,6
ABR	03	E	46,5	12	20	Avançado	194,3
ABR	09	E	24,6	12	15	Atrasado	107,7
ABR	10 14	NE E	4,5 05.1	24	20	Avancada	0,0
ABR ABR	1 4 17	NE	95,1 0,5	24	30	Avançado	431,9 0,0
ABR	24	NE	5,0				0,0
ABR	25	NE	1,6				0,0
ABR	27	NE	4,0				0,0
ABR	28	E	11,7	06	20	Avançado	18,0
ABR	29 07	NE NE	0,8				0,0
MAI	07	NE	2,1				0,0

MAI	80	E	120,2	31	05	Intermediário	554,8
							•
MAI	18	Ē	59,6	11	55	Intermediário	293,6
MAI	23	E	33,0	05	35	Atrasado	118,0
MAI	27	E	17,0	80	20	Atrasado	17,1
MAI	28	Е	30,0	07	15	Intermediário	106,1
JUN	01	Ē	39,6	06	35	Atrasado	179,5
				00	33	Allasauu	
JUN	02	NE	1,1				0,0
JUN	07	NE	1,3				0,0
JUN	80	NE	0,4				0,0
JUN	16	E	28,5	09	55	Intermediário	265,8
JUN	29	Ē	72,1	15	20	Avançado	
			•	15	20	Avançado	647,3
JUL	01	NE	0,9				0,0
JUL	04	Е	77,1	42	30	Avançado	551,7
JUL	07	NE	4,9				0,0
JUL	27	NE	8,9				0,0
JUL	28	NE	9,5				
				00	00	14	0,0
JUL	30	E	55,0	22	00	Intermediário	122,6
JUL	31	NE	1,1				0,0
AGO	01	NE	0,5				0,0
AGO	02	NE	2,0				0,0
AGO	03	E	90,4	26	40	Atrasado	287,1
				20	40	Allasauu	
AGO	07	NE	6,5				0,0
AGO	80	E	59,7	16	05	Intermediário	152,8
AGO	10	E	28,7	40	30	Avançado	32,1
AGO	16	E	33,3	80	55	Avançado	61,0
AGO	16	NE	2,0			•	0,0
AGO	18	E	14,1	12	20	Avançado	11,8
	19	NE		12	20	Avançado	
AGO			5,0				0,0
AGO	20	NE	0,3				0,0
AGO	27	NE	1,1				0,0
AGO	27	E	19,8	06	55	Atrasado	35,8
AGO	29	NE	9,0				0,0
AGO	31	NE	1,0				0,0
SET	03	E	15,0	10	05	Intermediário	
				10	03	IIILEITIIEUIAITO	5,7
SET	10	NE	8,8				0,0
SET	11	NE	3,0				0,0
SET	12	E	10,6	02	00	Atrasado	15,9
SET	13	E	16,7	03	20	Intermediário	29,7
SET	14	Ē	80,9	11	50	Avançado	874,3
SET		NE		' '	30	Avançado	
	15		7,0				0,0
SET	15	NE	4,2				0,0
SET	15	NE	5,9				0,0
SET	16	E	12,7	14	35	Avançado	11,1
SET	19	E	17,6	18	45	Intermediário	35,9
SET	23	NE	1,3	. •	. •		0,0
OUT	05	NE	1,5				0,0
OUT	06	NE	1,3				0,0
OUT	09	NE	0,5				0,0
OUT	15	NE	5,4				0,0
OUT	19	Е	45,2	22	05	Intermediário	163,1
OUT	28	NE	0,4		00	momodano	0,0
NOV	21	NE	0,9	0.5	- ^	1.1	0,0
NOV	22	E	13,2	05	50	Intermediário	50,6
DEZ	10	NE	1,2				0,0
DEZ	12	E	41,3	12	55	Avançado	142,7
DEZ	13	NE	0,9			-	0,0
_	-		- , -				-,-

 DEZ
 31
 NE
 7,1
 0,0

 Total
 1.813,7
 7.915,0

APÊNDICE 11 Chuvas individuais que ocorreram no ano de 1986 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

Treinamento da Cotrijuí, em Augusto Pestana, RS.							
	ata	Erosiva/Não	Quantidade		ação	Padrão	El ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	01	NE	3,4				0,0
JAN	03	NE	0,6				0,0
JAN	80	NE	1,5				0,0
JAN	80	NE	0,3	03	20	Intermediário	0,0
JAN	09	NE	0,5	01	40	Intermediário	0,0
JAN	10	NE	1,6				207,7
JAN	12	E	57,8				232,8
JAN	17	E	38,4				0,0
JAN	19	NE	3,4	09	00	Atrasado	0,0
JAN	22	NE	1,6	09	00	Atrasado	0,0
JAN	27	NE	0,3	11	50	Intermediário	35,6
JAN	28	E	12,6	02	00	Intermediário	0,0
JAN	30	NE	5,8				0,0
JAN	31	NE	1,2				0,0
FEV	80	NE	5,3				1.175,6
FEV	09	E	61,0	09	00	Avançado	0,0
FEV	10	NE	5,5	01	10	Atrasado	0,0
FEV	14	NE	0,2	03	05	Intermediário	66,5
FEV	15	E	13,7	04	25	Avançado	0,0
FEV	16	NE	5,2			•	47,8
FEV	23	E	21,4				327,8
FEV	26	E	55,0				0,0
FEV	27	NE	1,8				0,0
FEV	27	NE	7,5				0,0
FEV	28	NE	2,2				0,0
MAR	05	NE	2,9	80	10	Intermediário	0,0
MAR	10	NE	5,2	06	20	Intermediário	354,4
MAR	11	E	48,5	21	00	Avançado	51,3
MAR	14	E	25,0	06	00	Avançado	0,0
MAR	15	NE	2,8	05	50	Intermediário	0,0
MAR	16	NE	2,7	07	00	Avançado	0,0
MAR	16	NE	7,7	04	40	Avançado	452,8
MAR	18	Е	44,8	05	35	Avançado	0,0
MAR	29	NE	9,5	12	20	Avançado	0,0
ABR	01	NE	0,8	12	15	Atrasado	0,0
ABR	01	NE	4,0				277,6
ABR	02	E	40,5	24	30	Avançado	37,0
ABR	03	E	24,7			•	55,0
ABR	04	E	16,5				249,6
ABR	05	E	42,5				135,4
ABR	06 07	E E	35,5	Λe	20	Avancada	11,7
ABR ABR	07 21	NE	14,5 7,8	06	20	Avançado	0,0 0,0
ABR	26	NE NE	0,4				0,0
ABR	26	NE	0,6	31	05	Intermediário	49,6
		-	-,-				· - , -

MAI	09	E	16,7	11	55	Intermediário	0,0
MAI	12	NE	3,1	05	35	Atrasado	311,7
MAI	17	E	31,4	80	20	Atrasado	54,3
MAI	20	E	17,8	07	15	Intermediário	425,1
MAI	24	E	55,0	06	35	Atrasado	39,9
MAI	29	E	19,6				0,0
MAI	30	NE	0,2				95,2
JUN	05	E	29,5				0,0
JUN	80	NE	0,1	09	55	Intermediário	0,0
JUN	11	NE	1,9	15	20	Avançado	0,0
JUN	14	NE	0,8			-	55,1
JUN	25	E	25,5	42	30	Avançado	7,8
JUN	28	E	13,2				1.213,1
JUN	29	E	174,3				47,4
JUL	18	E	16,8				42,9
JUL	19	E	19,2	22	00	Intermediário	0,0
JUL	20	NE	7,4				0,0
JUL	20	NE	1,0				0,0
JUL	30	NE	1,1				0,0
AGO	03	NE	3,3	26	40	Atrasado	393,5
AGO	04	E	89,2				96,6
AGO	11	E	29,0	16	05	Intermediário	63,8
AGO	13	E	23,7	40	30	Avançado	0,0
AGO	14	NE	6,1	80	55	Avançado	0,0
AGO	15	NE	0,5				0,0
AGO	16	NE	0,3	12	20	Avançado	0,0
AGO	22	NE	8,5				16,5
SET	03	E	14,2				0,0
SET	14	NE	1,7				0,0
SET	15	NE	8,6	06	55	Atrasado	338,9
SET	15	E	43,3				0,0
SET	16	NE	2,4				0,0
SET	17	NE	0,4	10	05	Intermediário	0,0
SET	17	NE	0,9				72,4
SET	21	E	26,8				42,0
SET	22	E	30,8	02	00	Atrasado	46,1
SET	24	E	10,6	03	20	Intermediário	108,3
OUT	07	E	22,0	11	50	Avançado	61,5
OUT	80	E	40,7				0,0
OUT	10	NE	0,7				0,0
OUT	10	NE	1,2				22,8
OUT	17	E	24,7	14	35	Avançado	0,0
OUT	20	NE	7,0	18	45	Intermediário	8,5
OUT	20	E	10,9				0,0
OUT	28	NE	3,2				137,5
OUT	31	E	46,7				174,2
NOV	01	E	33,6				211,2
NOV	02	E	50,5				0,0
NOV	03	NE	6,3	22	05	Intermediário	300,9
NOV	04	Ē	64,7				97,6
NOV	09	. <u>E</u>	29,0				0,0
NOV	19	NE	6,7	05	50	Intermediário	0,0
NOV	21	NE _	4,0				156,2
NOV	22	Ē	18,1	12	55	Avançado	80,8
NOV	25	Ē	33,8				27,6
NOV	26	E	12,4				0,0

NOV	26	NE	1,3				380,6
NOV	27	E	70,0				101,4
							•
DEZ	06	E	22,4				1.453,9
DEZ	13	E	66,9	03	20	Intermediário	0,0
DEZ	15	NE	3,8	01	40	Intermediário	14,1
DEZ	17	Е	10,3				0,0
DEZ	19	NE	0,2				0,0
DEZ	20	NE	4,2				0,0
DEZ	21	NE	2,2	09	00	Atrasado	31,8
DEZ	31	E	9,7	09	00	Atrasado	0,0
	Total		1.986,8				10.499,4

APÊNDICE 12 Chuvas individuais que ocorreram no ano de 1987 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

	ata	Erosiva/Não	Quantidade	Dui	ração	Padrão	EI ₃₀
Mês	Dia	erosiva	total (mm)	hs	min	hidrológico	MJ mm ha ⁻¹ h ⁻¹
JAN	01	NE	8,8				0,0
JAN	06	E	12,3	02	10	Avançado	58,0
JAN	07	E	80,6	28	15	Intermediário	462,3
JAN	09	NE	2,5				0,0
JAN	10	E	10,0	05	50	Intermediário	35,3
JAN	11	E	23,2	04	25	Avançado	149,1
JAN	12	NE	6,6			,	0,0
JAN	14	NE	3,8				0,0
JAN	15	E	13,5	13	40	Atrasado	24,0
JAN	16	NE	2,8				0,0
FEV	01	NE	8,4				0,0
FEV	04	NE	3,3				0,0
FEV	04	E	35,5	05	40	Avançado	253,8
FEV	05	NE	7,0				0,0
FEV	07	E	33,6	04	15	Avançado	366,6
FEV	80	E	22,9	14	00	Avançado	31,8
FEV	15	NE	3,6				0,0
FEV	17	E	15,7	02	05	Intermediário	104,7
FEV	18	E	11,7	03	35	Avançado	36,2
FEV	19	NE	1,1				0,0
FEV	20	NE	5,7				0,0
FEV	21	E	58,5	13	20	Avançado	592,7
FEV	21	E	13,9	80	40	Intermediário	46,1
FEV	22	NE	2,0				0,0
FEV	23	NE	0,6				0,0
FEV	23	E	25,9	04	45	Avançado	276,2
FEV	26	Е	15,2	03	35	Avançado	89,0
FEV	28	NE	4,0				0,0
MAR	05	NE	3,7				0,0
MAR	09	NE	6,3				0,0
MAR	11	NE	4,1				0,0
MAR	17	NE -	8,8				0,0
MAR	25	E	52,5	06	30	Avançado	571,3
ABR	01	E	23,1	07	45	Avançado	36,2
ABR ABR	05 09	NE E	5,8 45.3	10	25	Avanaada	0,0 371,0
ABR	11	E	45,3	47	30	Avançado	
ABR	12	NE NE	114,5 0,7	47	30	Avançado	662,0 0,0
ABR	13	NE	4,4				0,0
ABR	15	E	92,4	14	55	Avançado	1.529,3
ABR	16	E	15,2	10	40	Atrasado	8,0
ABR	17	E	10,0	05	40	Intermediário	9,7
ABR	18	E	9,9 1.5	00	50	Atrasado	47,0
ABR	22	NE	1,5				0,0

ABR	29	NE	1,9				0,0
MAI	01	E	25,6	80	00	Avançado	218,0
MAI	06	NE	0,2	0.5	0.5	1.7	0,0
MAI	06	E	21,9	05	35	Intermediário	70,7
MAI MAI	06 07	NE E	2,9 39,1	07	40	Avancado	0,0 245,1
MAI	11	NE	0,3	07	40	Avançado	0,0
MAI	12	NE	0,6				0,0
MAI	13	E	63,4	09	25	Intermediário	591,5
MAI	14	Ē	10,6	04	05	Atrasado	13,7
MAI	17	Е	14,0	14	20	Intermediário	12,4
MAI	18	NE	0,3				0,0
MAI	18	Е	12,0	15	35	Avançado	6,3
MAI	19	NE	6,3				0,0
MAI	20	NE	7,8				0,0
MAI	20	NE	2,2				0,0
MAI	21 22	NE NE	1,9				0,0
MAI JUN	02	NE E	0,2 25,5	07	45	Avancado	0,0 30,3
JUN	03	NE	25,5 9,5	07	43	Avançado	0,0
JUN	03	NE	2,4				0,0
JUN	04	NE	3,4				0,0
JUN	04	NE	0,2				0,0
JUN	05	E	24,7	14	50	Avançado	39,3
JUN	12	NE	3,5			-	0,0
JUN	12	Е	12,3	06	45	Atrasado	35,2
JUN	22	NE	8,3				0,0
JUN	29	NE	2,6				0,0
JUN	30	NE	0,9	07	25	A.,	0,0
JUN JUL	30 01	E E	24,5	07 14	25 30	Avançado	95,2
JUL	02	E E	32,9 21,7	14 12	05	Intermediário Avançado	49,2 51,7
JUL	03	Ē	43,2	13	15	Atrasado	74,2
JUL	06	Ē	53,2	20	00	Avançado	179,1
JUL	11	Ē	12,3	03	20	Avançado	47,6
JUL	23	NE	0,9			,	0,0
JUL	26	E	17,3	02	45	Avançado	43,2
JUL	27	E	205,2	66	00	Avançado	801,5
AGO	06	NE	3,9				0,0
AGO	07	NE	0,3				0,0
AGO	11	NE	3,2				0,0
AGO AGO	14 25	NE E	0,7	06	10	Intermediário	0,0
AGO	29	E E	24,0 41,8	06 17	40	Intermediário	43,6 274,7
SET	02	Ē	49,0	11	05	Intermediário	89,7
SET	09	Ē	6,7	00	45	Avançado	19,4
SET	10	Ē	25,3	12	15	Avançado	105,9
SET	15	NE	7,7			3 3	0,0
SET	30	Е	56,6	18	40	Avançado	214,4
OUT	12	E	45,4	03	20	Avançado	414,6
OUT	14	E	29,9	20	45	Avançado	76,0
OUT	25	NE	4,4				0,0
OUT	25	NE	0,1				0,0
OUT	27	NE E	1,3	4.4	10	Atrocada	0,0
OUT OUT	28 29	E NE	28,0	14	10	Atrasado	53,5
OUT	29	INC	0,6				0,0

NOV	04	NE	4,9				0,0
NOV	06	E	22,9	18	40	Intermediário	78,5
NOV	80	E	16,7	01	20	Avançado	117,2
NOV	13	NE	8,3			-	0,0
NOV	13	E	11,3	01	10	Avançado	61,2
NOV	14	NE	0,4			-	0,0
NOV	14	E	47,1	07	45	Avançado	282,2
NOV	24	NE	0,3			-	0,0
DEZ	03	Е	17,2	18	25	Avançado	57,4
DEZ	07	NE	4,5				0,0
DEZ	11	NE	0,3				0,0
DEZ	16	NE	6,3				0,0
DEZ	17	NE	4,2				0,0
DEZ	26	NE	1,2				0,0
DEZ	27	NE	0,8				0,0
DEZ	29	NE	2,9				0,0
	Tot	tal	2.024,8				10.252,8

APÊNDICE 13 Chuvas individuais que ocorreram de janeiro a junho de 1988 no Centro de Treinamento da Cotrijuí, em Augusto Pestana, RS.

	ata	Erosiva/Não	Ougatidada	Du	ração	Dodrão	
Mês	aia Dia	erosiva	Quantidade total (mm)	hs	ração min	Padrão hidrológico	El ₃₀ MJ mm ha ⁻¹ h ⁻¹
JAN	05	NE	6,6	113	1111111	Tharologico	0,0
JAN	13	NE	0,8				0,0
JAN	13	NE	9,2				0,0
JAN	16	NE NE	1,0				0,0
JAN	18	NE NE	2,3				0,0
JAN	19	NE	2,3 6,2				0,0
JAN	20	NE NE	6,0				0,0
JAN	21	E	17,1	01	05	Avançado	142,9
JAN	22	NE	1,0	01	00	Avançado	0,0
JAN	25	NE	5,8				0,0
JAN	26	E	10,4	02	15	Avançado	22,5
JAN	28	E	24,7	14	40	Intermediário	100,3
JAN	29	E	82,7	18	50	Avançado	841,2
FEV	13	NE	5,5	10	00	/ Wallyado	0,0
FEV	23	NE	7,5				0,0
FEV	24	NE	1,0				0,0
FEV	24	NE	4,5				0,0
MAR	05	NE	0,2				0,0
MAR	06	NE	5,1				0,0
MAR	07	NE	0,5				0,0
MAR	27	NE	1,6				0,0
MAR	28	NE	2,5				0,0
MAR	31	E	87,2	18	25	Avançado	708,7
ABR	07	E	15,9	06	10	Atrasado	91,0
ABR	80	NE	2,3				0,0
ABR	12	NE	1,4				0,0
ABR	12	NE	0,3				0,0
ABR	13	NE	0,7				0,0
ABR	22	NE	4,9				0,0
ABR	24	E	26,2	05	40	Avançado	163,3
ABR	25	NE	1,0				0,0
ABR	26	E	81,1	10	10	Atrasado	344,3
ABR	30	E	14,9	11	15	Intermediário	37,0
MAI	01	NE	0,8				0,0
MAI	02	NE	0,6	0.7	00	Δ.	0,0
MAI MAI	02 03	E NE	11,8 0,5	07	00	Atrasado	6,2 0,0
MAI	15	NE NE	0,5				0,0
MAI	16	NE	1,1				0,0
MAI	22	NE	8,0				0,0
JUN	07	NE	0,4				0,0
JUN	07	NE	9,2	00	0.5	lasta mas - eliteri	0,0
JUN JUN	80 80	E NE	29,3	09	25	Intermediário	138,5
JUN	UO	INE	0,9				0,0

JUN	12	E	11,0	04	55	Atrasado	46,2
JUN	17	NE	0,4				0,0
JUN	18	NE	1,2				0,0
JUN	19	NE	0,8				0,0
JUN	23	Е	39,0	80	40	Intermediário	133,7
JUN	27	NE	3,8				0,0
	Tot	al	557,4				2.775,8

APÊNDICE 14 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1977/1978, entre 03/06/1977 e 23/05/1978, totalizando 356 dias, com o período de inverno entre 03/06/1977 e 30/11/1977 (181 dias) e o período de verão entre 01/12/1977 e 23/05/1978 (175 dias).

	Coletas		Chi	uvas			El ₃₀		Tratar	Tratamentos			
		Е	rosivas		Não osivas	Total	$\left(\frac{\text{MJ mm}}{\right)$	Solo	Sucessão	Trigo-soja	Sucessão Aveia-milho		
Nº	Data	N°	(mm)	Nº	(mm)	(mm)	\ ha h /	descoberto	Convenc.	Direto	Convenc.		
								F	Perdas de so	olo em kg h	a ⁻¹		
1	20/06/1977	2	67,7	3	3,9	71,6	297,7	19,9	17,4	4,9	5,6		
2	22/06/1977	1	39,0	1	2,0	41,0	161,4	73,3	35,0	4,3	8,8		
3	29/06/1977	3	43,1	1	2,0	45,1	139,7	358,3	357,2	22,9	4,7		
4	10/07/1977	1	32,3	4	8,7	41,0	76,0	2,7	1,5	0,1	0,0		
5	15/07/1977	2	32,3	1	0,2	32,5	79,6	14,0	14,0	0,0	0,0		
6	21/07/1977	1	15,4	2	17,6	33,0	94,6	170,5	170,2	5,8	1,8		
7	28/07/1977	2	66,3	1	0,4	66,7	575,0	1.045,8	483,7	10,1	27,5		
8	01/08/1977	2	38,9	0	0,0	38,9	52,0	34,3	34,0	0,0	0,0		
9	16/08/1977	3	68,4	1	0,1	68,5	107,8	6,1	1,1	0,0	0,0		
10	18/08/1977	1	12,8	1	0,5	13,3	14,5	2,0	1,3	1,6	0,0		
11	24/08/1977	1	25,4	3	2,6	28,0	31,4	1,3	1,0	0,0	0,0		
12	14/09/1977	1	11,4	3	0,5	11,9	25,5	1,0	0,9	0,0	0,0		
13	17/09/1977	2	56,3	0	0,0	56,3	203,3	52,4	0,0	0,0	0,0		
14	29/09/1977	1	20,3	3	10,9	31,2	112,3	2,7	1,2	0,0	0,5		
15	25/10/1977	1	35,6	9	19,3	54,9	220,0	166,0	2,9	9,2	9,0		
16	26/10/1977	1	11,0	1	0,6	11,6	35,5	3.605,1	1,0	0,0	0,0		
17	31/10/1977	1	92,0	0	0,0	92,0	1.714,7	282,5	5,7	9,7	36,9		

40	04/44/4077	_	0.0				0.0	0.400.0	0.0	4.4	4 000 4
18	01/11/1977	0	0,0	4	5,7	5,7	0,0	9.460,6	9,6	1,4	1.033,1
19	11/11/1977	2	90,6	2	4,1	94,7	609,3	8.523,9	4,1	2,0	3,2
20	24/11/1977	3	43,0	1	6,5	49,5	203,5	0,9	0,0	0,0	0,0
21	28/11/1977	1	34,9	1	6,2	41,1	357,9	5.734,6	0,0	0,0	2,1
	Sub-Total	32	836,7	42	91,8	928,5	5.111,7	29.557,8	1.141,8	71,8	1.133,2
1	07/12/1977	2	76,3	2	2,1	78,4	639,9	8,3	7,2	2,8	5,0
2	27/01/1978	4	48,3	12	30,3	98,1	263,9	5,5	2,6	1,3	4,8
3	04/02/1978	2	20,0	3	7,6	27,6	56,9	12,2	0,0	0,0	1,1
4	16/02/1978	2	27,8	1	0,9	28,7	141,6	307,7	3,8	0,3	6,9
5	02/03/1978	1	61,3	4	3,3	64,6	315,0	14,4	0,0	0,8	8,2
6	27/03/1978	3	46,8	4	12,7	59,5	228,9	761,0	3,8	3,2	663,0
7	16/05/1978	2	54,6	4	5,9	60,5	146,5	0,8	0,1	0,3	0,5
	Sub-Total	16	354,6	30	62,8	417,4	1.792,7	1.110,0	17,5	8,7	689,6
	Total	48	1.191,3	72	154,6	1.345,9	6.904,4	30.667,8	1.159,3	80,5	1.822,8

APÊNDICE 15 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1978/1979, entre 24/05/1978 e 28/07/1979, totalizando 431 dias, com o período de inverno entre 24/05/1978 e 29/11/1978 (190 dias) e o período de verão entre 30/11/1978 e 28/07/1979 (241 dias).

	Coletas		Ch	uvas			EI ₃₀		Tratamentos					
		Er	osivas	Não	erosivas	Total	$\left(\frac{\text{MJ mm}}{\text{MJ mm}}\right)$	Solo		essão o-soja		essão -milho		
Nº	Data	Nº	(mm)	N°	(mm)	(mm)	\ ha h /	descoberto	Convenc.	Direto	Convenc.	Direto		
									Perda	as de solo em	n kg ha ⁻¹			
1	19/06/1978	3	90,7	4	6,3	97,0	286,6	61,9	70,2	82,3	57,4	13,3		
2	20/06/1978	1	41,9	0	0,0	41,9	133,8	413,8	127,4	42,9	317,0	13,8		
3	30/06/1978	2	37,7	0	0,0	37,7	200,0	112,8	166,7	41,4	143,5	32,5		
4	17/07/1978	1	15,2	5	13,2	28,4	56,8	33,4	51,0	18,2	53,4	26,9		
5	18/07/1978	1	26,9	0	0,0	26,9	40,2	0,5	0,0	0,1	0,0	0,0		
6	20/07/1978	1	26,5	0	0,0	26,5	104,3	31,7	47,1	1,7	62,8	1,0		
7	21/07/1978	1	18,5	0	0,0	18,5	96,1	603,5	91,4	2,6	498,5	30,3		
8	22/07/1978	1	13,4	0	0,0	13,4	30,4	1.502,1	60,4	1,8	1.179,8	3,9		
9	24/07/1978	1	13,9	0	0,0	13,9	68,1	1.482,8	55,9	1,2	954,2	1,6		
10	27/07/1978	2	24,3	0	0,0	24,3	48,5	165,7	27,6	0,3	211,0	0,8		
11	28/07/1978	1	22,2	0	0,0	22,2	20,5	1,6	2,8	0,0	4,4	0,0		
12	01/08/1978	1	30,9	0	0,0	30,9	110,2	6,4	3,4	1,2	8,1	2,5		
13	10/08/1978	1	51,3	0	0,0	51,3	158,5	0,0	6,9	1,1	1,7	0,4		
14	11/08/1978	1	35,4	0	0,0	35,4	115,4	0,2	0,5	0,6	0,1	0,6		
15	08/09/1978	3	32,5	10	20,1	52,6	49,9	570,9	31,1	2,4	156,7	43,5		
16	14/09/1978	1	44,0	1	1,0	45,0	93,7	0,0	0,0	0,0	0,2	0,0		
17	10/10/1978	3	60,5	1	1,2	61,7	104,1	2,7	2,7	0,0	0,0	0,0		

18	14/10/1978	1	20,0	1	0,6	20,6	37,9	0,3	0,2	0,0	0,7	0,0
19	30/10/1978	2	35,1	5	11,8	46,9	138,4	0,0	0,3	0,0	0,0	0,0
20	09/11/1978	2	35,2	5	16,3	51,5	289,4	157,5	2,2	0,7	3,2	1,5
21	20/11/1978	3	163,6	1	0,1	163,7	1.406,9	17.737,3	52,5	51,7	88,5	37,0
22	21/11/1978	1	12,3	1	3,1	15,4	43,9	2.952,1	15,8	0,0	5,5	8,3
23	27/11/1978	2	33,3	0	0,0	33,3	185,9	141,9	5,2	3,2	6,5	4,1
;	Sub- Total	36	885,3	34	73,7	959,0	3.819,5	25.979,0	821,2	253,5	3.753,2	222,0
1	13/02/1979	6	130,8	13	29,1	159,9	1.181,3	433,7	427,8	149,4	254,0	0,0
2	19/02/1979	1	57,2	2	8,5	65,7	312,1	323,1	190,4	0,5	419,0	0,4
3	28/02/1979	2	20,1	3	6,1	74,6	442,9	4.184,5	2.706,8	11,2	1.033,7	0,0
4	12/03/1979	2	23,5	5	6,0	29,5	60,3	163,7	51,8	21,9	72,1	0,0
5	06/04/1979	4	46,3	7	10,0	56,3	53,0	1,1	1,4	1,4	2,9	0,0
6	16/04/1979	1	131,1	2	2,7	133,8	1391,4	17.853,2	1.553,7	60,5	2.019,9	4,0
7	17/04/1979	1	11,3	0	0,0	11,3	50,9	184,8	0,0	0,0	19,7	0,0
8	18/04/1979	1	26,1	0	0,0	26,1	86,2	2.543,4	408,3	15,0	138,4	0,0
9	04/05/1979	1	44,5	1	3,9	48,4	192,2	275,7	93,2	4,6	89,3	0,0
10	09/05/1979	1	19,8	1	0,1	19,9	20,1	1,3	0,8	0,4	7,1	0,0
11	21/05/1979	1	28,8	2	0,7	29,5	123,5	347,3	8,4	0,5	0,8	0,0
12	22/05/1979	1	31,2	0	0,0	31,2	310,6	8.745,7	325,6	12,3	341,7	0,0
13	03/07/1979	3	51,0	9	21,9	72,9	95,4	531,6	23,5	0,3	19,0	0,0
14	09/07/1979	2	85,1	1	0,4	85,5	503,5	12.217,4	489,6	9,9	900,5	8,2
15	24/07/1979	1	15,3	5	5,0	20,3	6,4	2,3	3,4	0,1	1,0	0,0
16	27/07/1979	1	15,3	0	0,0	15,3	15,6	1,4	0,8	0,2	2,1	0,0
	Sub-Total	29	785,8	51	94,4	880,2	4.845,4	47.810,2	6.285,6	288,0	5.321,0	12,6
•	Total	65	1.671,1	85	168,1	1.839,2	8.664,9	73.789,2	7.106,8	541,5	9.074,2	234,6

APÊNDICE 16 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1979/1980, entre 29/07/1979 e 08/06/1980, totalizando 316 dias, com o período de inverno entre 29/07/1979 e 10/12/1979 (135 dias) e o período de verão entre 11/12/1979 e 08/06/1980 (181 dias).

	Coletas		Chi	uvas			EI ₃₀			Tra	atamentos			
		Eı	osivas	Não	erosivas	Total	$\left(\frac{\text{MJ mm}}{\right)$	Solo	Suc	essão Trigo-	soja	Suce: Aveia-		_ Pastagem
Nº	Data	Nº	(mm)	Nº	(mm)	(mm)	\ ha h /	descoberto	Convenc.	Reduzido	Direto	Convenc.	Direto	de Alfafa
										Perda	s de solo e	em kg ha ⁻¹		
1	06/08/1979	2	101,1	0	0,0	101,1	701,4	6.339,3	6.209,5	235,8	135,6	381,6	114,1	2,7
2	09/08/1979	1	16,7	1	1,7	18,4	23,0	248,7	602,9	6,2	5,4	840,0	0,7	0,2
3	13/08/1979	1	17,6	2	1,7	19,3	104,6	2.520,6	2.349,3	533,7	96,0	1.570,6	47,2	0,8
4	15/08/1979	1	19,0	0	0,0	19,0	34,9	741,9	549,4	4,9	1,6	80,1	0,0	0,0
5	17/08/1979	1	14,6	0	0,0	14,6	15,2	3,4	138,4	2,6	1,1	57,4	0,7	0,0
6	27/08/1979	1	12,9	3	2,4	15,3	30,1	0,0	0,0	1,5	0,0	2,2	0,0	0,0
7	14/09/1979	2	31,0	5	15,7	46,7	20,9	9,0	0,0	3,4	0,8	4,5	2,0	0,3
8	26/09/1979	1	68,1	1	2,8	70,9	783,2	590,7	40,5	72,5	4,0	592,6	2,5	3,0
9	01/10/1979	1	105,7	1	1,2	106,9	554,3	1.489,7	461,2	87,7	36,9	467,0	4,8	0,3
10	04/10/1979	2	41,2	2	4,0	45,2	349,9	7.709,2	265,2	17,9	6,4	547,0	4,9	0,3
11	05/10/1979	1	65,6	1	8,0	66,4	698,0	6.519,5	769,4	64,4	3,8	305,8	15,3	4,9
12	08/10/1979	2	82,5	1	4,7	87,9	260,0	3.956,0	45,0	53,1	3,6	200,9	3,4	0,8
13	25/10/1979	3	81,5	0	0,0	81,5	373,0	514,8	15,8	12,0	1,4	50,7	15,2	1,9
14	29/10/1979	1	54,7	0	0,0	54,7	605,5	8.508,9	53,3	8,1	1,2	385,0	45,6	104,1
15	30/10/1979	0	0,0	1	2,3	2,3	0,0	4,6	2,2	1,0	0,5	1,8	1,7	0,0
16	19/11/1979	3	65,0	3	2,5	67,5	587,2	514,2	13,6	6,4	0,2	6,1	4,4	0,3
17	04/12/1979	2	26,5	3	9,6	36,1	51,2	1.041,1	5,8	3,3	1,2	2,6	1,8	0,1

18	06/12/1979	1	16,2	0	0,0	16,2	92,8	567,5	5,0	1,5	0,2	1,5	5,4	0,1
19	09/12/1979	3	35,1	1	3,8	38,9	129,5	974,1	0,6	2,8	1,1	2,9	3,4	0,1
	Sub- Total	29	855,0	25	53,2	908,2	5.415,0	42.253,4	11.527,1	1.118,7	300,8	5.500,2	273,4	120,0
1	31/12/1979	3	68,2	4	5,8	74,0	243,6	333,0	264,7	35,5	151,2	265,4	142,0	0,5
2	12/03/1980	6	122,5	21	52,6	175,1	521,5	267,2	77,9	0,0	56,8	105,5	14,0	0,0
3	14/03/1980	1	16,5	3	5,1	21,6	132,7	407,6	7,3	404,9	2,5	163,1	0,4	0,0
4	27/03/1980	2	36,0	0	0,0	36,0	161,1	968,3	5,4	4,0	1,7	924,4	1,1	0,0
5	29/03/1980	1	21,0	1	0,4	21,4	130,9	800,9	2,0	3,1	0,2	766,3	1,1	0,0
6	14/04/1980	1	47,1	1	0,7	47,8	161,3	160,9	6,2	0,5	0,3	53,9	7,1	0,0
7	08/05/1980	2	81,5	2	1,5	83,0	208,5	130,3	3,6	1,8	0,9	129,8	2,3	0,0
8	12/05/1979	1	113,1	0	0,0	113,1	358,4	4.863,2	64,8	64,8	5,5	1.049,7	8,7	0,4
9	20/05/1980	1	29,7	4	10,5	40,2	169,0	1.238,3	24,6	74,8	3,2	485,0	11,1	1,0
10	03/06/1980	1	19,7	3	5,0	24,7	49,1	132,7	6,4	4,7	3,7	22,3	0,0	0,0
	Sub-Total	19	555,3	36	81,6	636,9	2.136,1	9.302,3	462,9	594,1	226,1	3.965,5	187,7	1,9
	Total	48	1.410,3	61	134,8	1.545,1	7.551,1	51.555,7	11.990,0	1.712,8	526,9	9.465,7	461,1	121,9

APÊNDICE 17 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1980/1981, entre 09/06/1980 e 08/07/1981, totalizando 395 dias, com o período de inverno entre 09/06/1980 e 24/11/1980 (169 dias) e o período de verão entre 25/11/1980 e 08/07/1981 (226 dias).

	Coletas		Ch	uvas			El ₃₀				Tratar	nentos			
		Eı	rosivas	Não	erosivas	Total	$\left(\frac{\text{MJ mm}}{\text{MJ mm}}\right)$	Solo	Suc	cessão Trigo-	soja		essão a-milho	_ Pastagem	Pastagem Setária,
Nº	Data	Nº	(mm)	Nº	(mm)	(mm)	\ ha h /	descoberto	Convenc.	Reduzido	Direto	Convenc	Direto	de Alfafa	Siratro e Desmódio
										P	erdas de s	solo em kg h	าa ⁻¹		
1	30/07/1980	6	126,4	10	30,1	156,5	387,2	204,3	45,5	129,3	75,9	78,1	96,1	0,0	14,2
2	18/08/1980	3	85,2	3	8,2	93,4	897,7	150,7	1,1	10,7	0,1	8,9	1,1	0,3	4,6
3	20/08/1980	2	70,1	0	0,0	70,1	570,5	1.611,9	40,4	198,1	16,3	273,4	39,3	1,2	3,9
4	03/09/1980	1	120,7	1	5,6	126,3	780,1	63,3	23,2	21,5	1,0	1,8	2,1	1,1	6,9
5	09/09/1980	1	17,7	2	0,7	18,4	66,3	4,4	0,2	3,6	0,0	1,3	0,0	0,0	0,2
6	21/10/1980	4	99,0	9	30,7	129,7	400,9	54,6	3,3	3,5	0,6	20,5	1,9	0,0	2,2
7	22/10/1980	1	25,4	0	0,0	25,4	30,9	8,9	1,2	3,8	0,2	0,5	0,0	0,1	0,4
8	29/10/1980	2	84,3	0	0,0	84,3	337,2	311,7	9,9	0,9	2,0	0,3	13,5	0,2	0,0
9	06/11/1980	1	83,2	2	2,7	85,9	740,7	523,5	0,5	5,0	1,6	0,8	0,4	0,0	2,1
10	07/11/1980	1	19,3	0	0,0	19,3	123,6	263,7	0,9	6,1	0,4	0,5	0,5	1,0	0,5
11	10/11/1980	1	40,9	0	0,0	40,9	43,7	0,3	0,7	0,7	0,3	0,1	0,3	0,2	0,0
12	23/11/1980	2	62,7	4	5,7	68,4	223,6	552,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Sub- Total	25	834,9	31	83,7	918,6	4.602,4	3.719,8	127,0	383,0	98,5	386,2	155,3	4,1	35,0
1	28/11/1980	1	42,6	0	0,0	42,6	249,0	3,4	1,5	0,0	0,0	0,9	0,8	0,2	3,3
2	03/12/1980	1	37,4	0	0,0	37,4	442,8	166,5	148,0	11,4	91,5	93,3	80,7	0,0	0,0
3	12/12/1980	1	69,9	2	0,5	70,4	1.459,8	8.164,3	3.586,0	3.496,5	80,5	3.814,6	1.152,7	0,3	3,7
4	19/12/1980	2	35,1	0	0,0	35,1	202,5	275,2	0,0	184,5	15,9	11,9	14,8	0,0	0,1

5	24/12/1980	2	55,9	0	0,0	55,9	425,2	1.095,6	273,9	562,0	21,1	786,6	13,0	0,0	0,1
6	19/01/1981	3	60,2	5	17,1	77,3	585,2	422,7	92,5	23,1	55,2	33,1	13,0	0,0	0,3
7	21/01/1981	2	45,8	0	0,0	45,8	341,9	7.719,4	127,4	172,1	5,9	192,1	8,5	0,0	0,0
8	04/02/1981	2	62,2	6	7,0	69,2	270,0	1.587,3	2,6	6,6	0,7	8,5	2,0	0,0	0,3
9	13/02/1981	2	46,0	3	6,8	52,8	197,5	2.951,5	3,1	3,5	0,8	8,5	2,6	0,0	0,0
10	17/02/1981	1	10,2	2	2,7	12,9	57,9	5.680,5	0,8	0,0	0,6	12,5	2,3	0,0	0,0
11	19/02/1981	1	73,7	0	0,0	73,7	1.559,5	15.720,6	41,2	17,7	10,5	1.466,3	32,5	0,0	1,9
12	03/03/1981	2	42,1	2	4,2	46,3	233,2	2.233,5	15,2	0,6	1,6	23,9	11,3	0,0	0,0
13	26/04/1981	2	59,8	10	17,9	77,7	200,6	3.555,9	7,4	2,4	3,3	1,5	14,3	0,0	0,0
14	27/05/1981	1	18,6	7	19,2	37,8	118,7	1.076,8	0,3	0,1	0,0	1,9	5,6	0,0	0,0
15	03/06/1981	1	33,8	0	0,0	33,8	197,6	5.710,5	11,2	4,3	7,2	10,5	2,4	0,0	0,0
16	11/06/1981	1	25,4	4	13,9	39,3	42,5	362,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
17	25/06/1981	1	31,2	0	0,0	31,2	101,4	1.188,9	1,1	0,0	0,6	4,1	5,7	0,0	0,0
	Sub-Total	26	749,9	41	89,3	839,2	6.685,2	57.914,5	4.312,2	4.484,9	295,5	6.470,3	1.362,4	0,5	9,7
	Total	49	1.584,8	72	173,0	1.757,8	11.287,6	61.634,3	4.439,2	4.867,9	394,0	6.856,5	1.517,7	4,6	44,7

APÊNDICE 18 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1981/1982, entre 09/07/1981 e 22/06/1982, totalizando 349 dias, com o período de inverno entre 09/07/1981 e 16/12/1981 (161 dias) e o período de verão entre 17/12/1981 e 22/06/1982 (188 dias).

	Coletas		Ch	uvas			El ₃₀				Tratar	nentos	·		
		Eı	rosivas	Não	erosivas	Total	$\left(\frac{\text{MJ mm}}{\text{MJ mm}}\right)$	Solo	Suc	cessão Trigo	-soja	Suce Aveia		_ Pastagem	Pastagem Setária,
Nº	Data	N°	(mm)	Nº	(mm)	(mm)	\ ha h /	descoberto	Convenc.	Reduzido	Direto	Convenc.	Direto	de Alfafa	Siratro e Desmódio
											Perdas de	solo em kg h	na ⁻¹		
1	15/09/1981	3	136,5	16	40,6	177,1	761,8	43,2	0,0	0,0	13,7	2,2	1,5	1,0	1,6
2	24/09/1981	2	80,4	3	1,3	81,7	173,7	24,3	0,0	0,0	8,2	1,9	1,8	0,9	0,0
3	25/09/1981	1	27,1	0	0,0	27,1	68,2	3,2	1,1	0,3	0,3	2,3	0,0	0,4	0,0
4	06/10/1981	2	44,7	2	1,4	46,1	434,5	42,3	0,0	0,0	41,5	9,2	7,6	0,5	0,0
5	21/10/1981	1	36,8	1	1,2	38,0	168,0	224,1	5,5	4,1	3,4	7,2	10,4	0,3	0,8
6	26/10/1981	1	12,0	0	0,0	12,0	13,1	2,5	0,0	3,9	0,4	2,7	0,5	2,0	1,3
7	03/11/1981	1	10,0	1	2,0	12,0	9,3	1,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8	06/11/1981	1	27,1	0	0,0	27,1	139,9	5,1	0,0	0,0	0,0	1,1	0,6	0,2	0,1
9	19/11/1981	1	20,9	0	0,0	20,9	41,0	2,9	0,0	0,0	0,0	0,0	0,5	0,0	0,8
10	30/11/1981	2	37,9	3	15,2	53,1	128,5	50,9	0,0	36,9	40,1	53,9	4,8	0,6	0,3
11	07/12/1981	1	47,0	0	0,0	47,0	571,3	35,5	12,7	6,5	16,5	3,3	2,6	0,8	0,0
12	15/12/1981	1	25,0	1	8,5	33,5	34,1	0,8	0,0	1,8	23,8	9,0	4,3	0,0	2,2
	Sub- Total	17	505,4	27	70,2	575,6	2.543,4	436,2	19,4	53,4	147,8	92,9	34,7	6,7	7,1
1	21/12/1981	2	122,4	2	4,5	126,9	2.399,1	14.967,9	13.360,6	12.931,3	731,7	12.973,2	1.697,4	0,5	1,2
2	03/02/1982	5	110,6	7	13,6	124,2	630,9	2.004,8	70,4	96,9	4,5	114,6	2,4	0,7	0,6
3	12/02/1982	2	27,2	3	11,3	38,5	62,7	17,5	0,9	0,5	0,0	2,6	1,3	0,0	0,0
4	18/02/1982	2	30,3	3	7,9	38,2	133,9	683,6	0,0	58,1	0,4	10,0	5,6	0,0	0,1

5	21/02/1982	1	24,2	5	9,1	33,3	124,9	568,2	6,7	0,7	7,8	41,0	10,3	0,0	0,0	
6	22/03/1982	3	81,3	2	5,2	86,5	550,7	6.306,7	4,2	5,2	4,1	39,8	2,5	1,3	0,3	
7	11/05/1982	4	80,7	5	10,4	91,1	349,9	2.448,3	66,9	98,1	92,9	26,5	11,3	0,1	0,0	
8	18/05/1982	2	49,3	0	0,0	49,3	161,7	963,1	1,8	6,8	0,6	0,2	0,4	1,2	0,1	
9	11/06/1982	1	82,4	1	0,9	83,3	777,5	5.104,1	52,2	76,1	2,9	34,5	5,7	0,5	1,3	
10	14/06/1982	1	14,9	2	1,8	16,7	117,3	3.285,7	5,3	1,9	4,9	6,9	1,9	0,2	0,3	
11	15/06/1982	1	22,7	1	2,7	25,4	66,6	3.394,9	41,5	20,1	48,9	13,8	13,2	0,1	0,0	
12	21/06/1982	1	18,8	3	2,9	21,7	42,8	1.008,1	3,3	3,9	2,3	4,7	4,7	0,0	0,0	
	Sub-Total	25	664,8	34	70,3	735,1	5.418,0	40.752,8	13.613,8	13.299,7	901,0	13.267,7	1.756,6	4,6	3,9	
	Total	42	1.170,2	61	140,5	1.310,7	7.961,4	41.189,0	13.633,2	13.353,1	1.048,8	13.360,6	1.791,3	11,3	11,0	

APÊNDICE 19 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1982/1983, entre 23/06/1982 e 28/06/1983, totalizando 371 dias, com o período de inverno entre 23/06/1982 e 01/12/1982 (162 dias) e o período de verão entre 02/12/1982 e 28/06/1983 (209 dias).

	Coletas		Ch	uvas			EI ₃₀				Tratan	nentos			
		E	rosivas	Não	erosivas	Total	$\left(\frac{\text{MJ mm}}{\right)$	Solo	Suc	essão Trigo-	soja	Suce: Aveia-		_ Pastagem	Pastagem Setária,
Ν°	Data	Nº	(mm)	Nº	(mm)	(mm)	\ ha h /	descoberto	Convenc.	Reduzido	Direto	Convenc.	Direto	de Alfafa	Siratro e Desmódio
										Pe	erdas de so	olo em kg ha	-1		
1	28/06/1982	2	102,8	2	2,0	104,8	750,4	2.019,4	458,5	252,2	7,9	270,5	15,7	0,2	0,2
2	05/07/1982	1	45,9	0	0,0	45,9	194,1	100,4	48,9	62,6	4,4	12,0	59,0	0,0	0,1
3	07/07/1982	0	0,0	4	15,8	15,8	0,0	60,8	138,6	51,6	3,7	50,9	10,7	0,0	0,0
4	12/07/1982	0	0,0	2	1,5	4,9	0,0	411,0	135,1	121,2	7,9	117,4	7,4	0,0	0,0
5	13/07/1982	1	40,8	0	0,0	40,8	182,3	234,2	148,9	78,4	17,6	112,3	9,8	0,1	0,0
6	18/07/1982	1	8,1	4	20,0	28,1	22,4	79,3	116,0	84,9	12,1	19,4	4,9	0,0	0,0
7	29/07/1982	1	15,4	3	7,1	22,5	25,8	0,1	0,6	0,0	0,0	8,1	0,1	0,0	0,2
8	09/08/1982	1	161,0	4	6,6	167,6	860,0	1.565,0	149,7	119,6	19,7	91,3	41,5	0,0	0,0
9	16/08/1982	1	38,4	2	0,3	38,7	75,6	6,4	4,0	14,7	2,8	1,6	1,4	0,6	0,0
10	27/08/1982	1	14,0	1	4,5	18,5	34,7	0,2	0,1	0,0	0,1	0,0	0,0	0,0	0,1
11	31/08/1982	1	74,0	0	0,0	74,0	307,1	75,1	20,9	7,9	0,9	12,5	2,2	0,0	0,0
12	13/09/1982	1	13,9	1	7,1	21,0	36,1	0,0	0,1	0,0	0,1	0,0	0,1	0,0	0,1
13	21/09/1982	1	106,0	1	0,3	106,3	840,4	1.500,0	46,0	37,7	3,5	68,0	12,5	0,0	0,1
14	28/09/1982	1	15,6	3	15,0	30,6	25,7	34,3	1,3	21,8	0,7	1,4	3,2	0,0	0,0
15	07/10/1982	1	29,2	4	4,6	33,8	34,9	0,5	0,0	0,0	0,0	0,3	0,1	0,0	0,1
16	18/10/1982	1	16,4	3	8,5	24,9	87,4	0,2	0,3	0,0	0,0	0,0	0,2	0,0	0,0
17	22/10/1982	1	21,0	0	0,0	21,0	868,0	0,6	0,0	0,1	0,1	0,0	0,1	2,4	0,6

18	25/10/1982	2	125,9	1	1,5	127,4	531,8	410,6	15,0	9,4	0,3	6,2	2,1	3,3	0,5
19	04/11/1982	2	121,8	1	2,6	124,4	855,5	73,3	7,0	1,7	0,3	2,0	0,6	0,8	0,2
20	08/11/1982	1	47,3	2	0,9	48,2	107,8	34,1	11,0	0,2	0,4	1,8	0,1	0,0	0,0
21	11/11/1982	2	77,9	0	0,0	77,9	633,3	53,4	14,2	4,5	2,2	5,7	6,5	3,2	1,2
22	18/11/1982	1	33,8	0	0,0	33,8	61,9	10,2	4,5	1,1	0,1	0,6	0,5	0,0	0,0
23	19/11/1982	1	37,2	0	0,0	37,2	333,6	91,6	1,6	0,7	0,1	0,1	0,2	3,3	0,0
24	01/12/1982	1	10,8	3	16,6	27,4	18,6	0,0	0,0	0.0	0,0	0,0	0,0	0,0	0,0
	Sub- Total	26	1.157,2	41	118,3	1.275,5	6.887,4	6.760,7	1.322,5	870,4	85,0	782,1	178,9	14,0	3,4
1	05/01/1983	4	107,0	8	23,1	130,1	745,0	372,7	38,4	0,0	2,2	118,7	1,1	0,0	0,1
2	14/01/1983	2	34,0	2	3,1	37,1	98,8	18,2	42,2	0,0	0,2	7,1	0,4	0,0	0,0
3	31/01/1983	3	107,7	3	7,9	115,6	393,3	460,1	45,5	0,4	46,2	25,1	102,5	0,0	0,3
4	16/02/1983	2	129,5	1	3,0	132,5	921,3	11.017,1	143,7	4,1	3,4	33,1	5,4	0,2	0,1
5	28/02/1983	2	181,8	5	15,1	196,9	3.155,0	76.500,5	1.952,9	24,8	22,7	431,8	42,6	6,2	0,3
6	14/03/1983	1	33,3	2	11,4	44,7	178,1	2.009,8	87,5	2,9	6,1	21,6	4,0	0,1	0,3
7	17/03/1983	1	38,1	0	0,0	38,1	270,7	176,8	7,3	1,3	0,3	5,2	4,4	0,5	0,0
8	18/03/1983	1	75,1	0	0,0	75,1	517,9	9.532,5	22,6	20,3	9,1	18,2	8,8	2,8	0,1
9	05/04/1983	2	118,6	2	7,1	125,7	795,6	13.158,7	655,4	6,7	5,2	42,4	6,2	1,2	0,5
10	20/04/1983	1	86,1	2	2,5	88,6	524,7	2.781,0	5,1	3,7	1.372,9	28,5	16,9	0,0	0,0
11	25/04/1983	1	33,5	0	0,0	33,5	75,8	290,3	14,6	0,2	0,3	2,3	0,7	0,0	0,0
12	29/04/1983	1	87,9	0	0,0	87,9	493,5	14.743,6	83,1	6,4	6,4	39,9	14,0	2,2	0,2
13	03/05/1983	2	70,1	2	2,7	72,8	144,0	4.277,9	12,9	1,9	0,6	6,5	5,5	0,1	0,1
14	07/05/1983	1	23,2	0	0,0	23,2	40,6	6,8	294,4	0,8	0,3	6,3	1,4	0,7	0,0
15	09/05/1983	1	38,9	2	3,0	41,9	154,7	6.274,7	28,9	2,2	3,6	21,2	5,4	1,9	0,2
16	10/05/1983	1	26,4	0	0,0	26,4	33,4	515,7	5,5	1,4	0,3	6,2	2,1	0,0	0,1
17	12/05/1983	1	20,5	2	1,2	21,7	99,5	2.814,1	28,0	10,6	2,7	15,6	6,4	1,0	0,0
18	16/05/1983	1	152,4	0	0,0	152,4	1.553,4	838,4	81,5	62,9	54,4	78,3	47,9	20,3	0,8
19	23/05/1983	1	20,5	4	4,6	25,1	54,1	1.193,2	14,1	4,0	2,1	34,2	4,9	3,4	0,2

20	30/05/1983	1	55,3	1	0,8	56,1	229,7	1.750,6	31,1	3,4	2,4	15,3	5,7	2,7	0,1
21	14/06/1983	1	37,2	4	5,6	42,8	47,7	94,1	0,0	0,2	1,0	2,9	15,9	0,5	0,0
22	22/06/1983	1	68,2	0	0,0	68,2	505,2	1.750,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Sub-Total	32	1.545,3	40	91,1	1.636,4	11.032,0	150.577,4	3.594,7	158,2	1.542,5	960,4	302,0	43,8	3,4
	Total	58	2.702,5	81	209,4	2.911,9	17.919,4	157.338,1	4.917,2	1.028,6	1.627,5	1.742,5	480,9	57,8	6,8

APÊNDICE 20 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1983/1984, entre 29/06/1983 e 11/07/1984, totalizando 379 dias, com o período de inverno entre 29/06/1983 e 16/11/1983 (141 dias) e o período de verão entre 17/11/1983 e 11/07/1984 (238 dias).

	Coletas		Ch	uvas			El ₃₀				Tratan	nentos			
		Er	osivas	Não	erosivas	Total	$\left(\frac{\text{MJ mm}}{\right)$	Solo	Suc	cessão Trigo-	soja	Suce: Aveia-		_ Pastagem	Pastagem Setária,
Ν°	Data	N°	(mm)	Nº	(mm)	(mm)	\ ha h /	descoberto	Convenc.	Reduzido	Direto	Convenc.	Direto	de Alfafa	Siratro e Desmódio
										P	erdas de s	olo em kg ha	-1		
1	04/07/1983	1	11,9	1	4,2	16,1	14,9	0,9	0,2	0,0	0,0	0,1	0,2	0,0	0,0
2	06/07/1983	1	67,8	0	0,0	67,8	336,9	426,5	484,0	116,0	31,3	332,4	97,3	0,6	0,8
3	08/07/1983	3	111,8	0	0,0	111,8	441,3	3.450,3	4.490,7	992,5	91,8	2.694,8	220,1	2,5	1,7
4	12/07/1983	1	14,0	1	0,9	14,9	6,6	699,0	493,5	264,9	60,4	331,6	36,8	0,1	0,1
5	14/07/1983	0	0,0	1	7,9	7,9	0,0	279,3	169,5	37,0	2,8	122,6	4,3	0,0	0,0
6	18/07/1983	1	31,1	0	0,0	31,1	67,2	969,0	239,5	78,4	17,7	148,7	10,9	0,0	0,1
7	25/07/1983	1	50,0	0	0,0	50,0	157,3	510,3	21,5	0,9	0,9	51,8	3,7	0,0	0,1
8	29/07/1983	1	62,4	0	0,0	62,4	90,8	227,1	29,0	5,5	0,4	52,9	7,0	0,0	0,1
9	02/08/1983	1	16,1	3	4,9	21,0	15,4	20,9	7,5	6,7	1,5	12,1	1,8	0,0	0,0
10	15/08/1983	1	81,4	2	10,4	91,8	415,2	1.830,4	213,5	106,3	14,2	598,6	55,9	5,9	0,7
11	18/08/1983	1	35,2	0	0,0	35,2	41,7	120,1	16,3	7,9	2,6	28,7	7,5	0,0	0,1
12	01/09/1983	1	20,0	1	0,8	20,8	18,1	2,2	1,6	0,5	0,5	3,2	0,3	0,0	0,1
13	15/09/1983	2	51,9	1	2,1	54,0	279,7	119,3	3,1	12,5	0,5	5,7	0,5	1,2	1,9
14	23/09/1983	2	56,3	0	0,0	56,3	423,3	980,6	23,0	14,9	4,2	109,3	21,5	0,1	7,8
15	30/09/1983	1	32,3	0	0,0	32,3	176,1	329,7	3,4	1,5	0,1	8,7	0,3	0,1	0,1
16	11/10/1983	2	31,8	1	0,3	32,1	36,9	85,9	0,3	0,0	0,1	0,2	0,2	0,0	0,1
17	21/10/1983	1	70,0	1	3,4	73,4	203,6	449,9	14,1	1,7	0,8	53,8	6,0	0,5	0,3
18	31/10/1983	2	38,1	2	6,1	44,2	60,5	692,7	1,5	1,0	0,3	0,9	0,4	0,7	0,4

19	03/11/1983	1	72,7	0	0,0	72,7	502,2	655,9	10,4	5,5	1,0	10,8	1,5	0,5	4,6
20	16/11/1983	2	31,9	3	9,6	41,5	25,4	9,4	0,0	0,0	0,2	0,0	0,2	0,0	0,0
	Sub- Total	26	886,7	17	50,6	937,3	3.313,1	11.859,4	6.222,5	1.653,7	231,4	4.566,7	476,7	12,3	18,8
1	03/01/1984	3	66,8	8	36,1	102,9	203,2	22.599,4	13.332,8	1.764,3	151,0	4.653,9	99,0	83,2	12,0
2	11/01/1984	2	152,6	0	0,0	152,6	2.635,5	0,0	7,5	1,6	3,2	1,0	14,8	0,0	0,0
3	12/01/1984	1	18,9	0	0,0	18,9	105,3	489,3	131,4	13,0	21,8	125,2	2,3	0,2	0,0
4	17/01/1984	1	43	4	5,4	48,4	136,4	304,7	149,8	0,0	6,8	120,5	6,7	0,0	0,2
5	27/01/1984	2	60,6	3	10,9	71,5	823,0	1.791,4	677,6	162,3	63,9	271,0	9,8	0,7	0,1
6	31/01/1984	2	108,9	0	0,0	108,9	1.201,3	37.813,9	15.852,7	1.219,8	1.095,2	9.683,2	177,3	0,8	0,1
7	01/02/1984	0	0,0	1	9,2	9,2	0,0	478,7	37,2	0,0	0,0	0,0	0,0	0,0	0,0
8	02/02/1984	1	11,8	0	0,0	11,8	9,2	366,1	300,0	12,7	1,1	226,2	0,1	0,5	0,0
9	06/02/1984	2	30,6	0	0,0	30,6	151,3	1.978,2	1.566,3	137,0	9,0	447,2	9,7	7,9	2,3
10	28/02/1984	2	29,2	3	5,6	34,8	242,1	6.107,8	228,7	0,0	2,9	37,4	8,3	0,0	0,0
11	05/03/1984	1	19,4	1	3,4	22,8	70,9	534,2	14,7	0,0	1,9	3,1	0,4	0,0	0,1
12	07/03/1984	1	17,7	0	0,0	17,7	69,2	915,4	24,6	0,0	0,1	3,0	0,0	0,0	0,0
13	26/03/1984	1	24,1	3	18,4	42,5	58,6	13,9	0,0	0,0	0,1	0,0	0,1	0,0	0,1
14	29/03/1984	1	12,9	0	0,0	12,9	51,0	1.958,1	1,2	0,0	0,0	7,5	0,9	0,0	0,8
15	02/04/1984	1	36,0	1	0,5	36,5	104,4	1.427,0	22,8	9,9	11,7	1,9	15,3	0,0	0,2
16	17/04/1984	1	22,6	2	6,7	29,3	126,0	5.421,3	32,5	14,5	8,4	24,6	4,2	0,1	0,0
17	23/04/1984	2	92,8	2	6,2	99,0	581,8	42.010,2	398,4	144,9	5,2	5.472,0	8,7	25,8	0,1
18	08/05/1984	2	109,5	1	7,6	117,1	902,9	25.173,4	1.457,1	83,3	12,1	8.361,4	21,5	68,1	0,0
19	11/05/1984	1	105,5	0	0,0	105,5	441,2	14.825,5	923,4	143,2	9,0	6.230,4	21,7	34,7	0,3
20	23/05/1984	1	52,6	3	7,4	60,0	344,7	3.576,0	130,3	26,0	6,5	210,9	4,9	7,5	0,0
21	07/06/1984	1	114,0	3	8,1	122,1	476,9	957,5	136,3	20,4	6,3	28,1	15,0	2,9	0,1
22	12/06/1984	1	28,0	1	2,1	30,1	78,9	1.174,0	32,2	33,0	2,5	7,9	0,9	8,4	0,4
23	25/06/1984	1	18,4	6	5,5	23,9	103,1	4,7	0,0	0,0	11,0	0,0	15,1	10,6	0,0
24	27/06/1984	1	20,1	0	0,0	20,1	21,1	5,2	0,0	0,0	2,0	3,4	5,0	0,0	0,0

25 04/07/1984	1	13,4	0	0,0	13,4	32,4	0,0	0,0	0,0	0,0	0,0	0,5	1,3	0,0
26 09/07/1984	1	91,8	1	8,4	100,2	353,5	17,8	24,7	150,7	42,5	8,7	35,7	35,7	0,5
Sub-Total	34	1.301,5	45	145,6	1.442,7	9.323,9	169.943,6	35.482,4	3.936,5	1.474,4	35.928,6	477,7	288,4	17,5
Total	60	2.188,2	52	196,2	2.380,0	12.637,0	181.803,0	41.704,9	5.590,2	1.705,8	40.495,3	954,4	300,7	36,3

APÊNDICE 21 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1984/1985, entre 12/07/1984 e 24/06/1985, totalizando 348 dias, com o período de inverno entre 12/07/1984 e 09/11/1984 (121 dias) e o período de verão entre 10/11/1984 e 24/06/1985 (227 dias).

	Coletas		Ch	uvas			El ₃₀				Tratan	nentos			
		E	rosivas	Não	erosivas	Total	$\left(\frac{\text{MJ mm}}{\text{MJ mm}}\right)$	Solo	Suc	essão Trigo-	soja	Suces Aveia-			o trigo-soja convenc.
N°	Data	N°	(mm)	Nº	(mm)	(mm)	\ ha h /	descoberto	Convenc.	Reduzido	Direto	Convenc.	Direto	Após Alfafa	Após Setária
										P	erdas de s	olo em kg ha	a ⁻¹		
1	16/07/1984	1	36,4	2	4,4	40,8	170,6	50,9	18,4	49,9	18,4	11,1	31,8	10,0	0,0
2	23/07/1984	1	21,2	1	1,8	23,0	49,0	22,5	3,0	22,5	2,5	0,0	14,2	6,6	0,0
3	06/08/1984	3	49,2	1	0,6	49,8	77,6	7,8	0,0	2,4	5,9	0,0	2,9	3,2	0,1
4	09/08/1984	1	57,2	0	0,0	57,2	75,3	12,7	5,5	10,8	10,1	3,4	10,9	2,2	1,7
5	20/08/1984	1	56,3	2	4,3	60,6	539,8	37,5	3,5	28,6	13,5	9,1	25,2	12,0	10,9
6	19/09/1984	2	104,8	3	20,3	125,1	428,2	18,2	2,1	4,4	13,9	15,3	5,6	2,1	0,5
7	26/09/1984	2	86,4	1	0,1	86,5	242,1	7,1	4,2	3,1	0,4	0,2	0,3	0,4	0,2
8	03/10/1984	0	0,0	2	2,3	2,3	0,0	29,1	7,0	2,3	2,1	1,2	4,7	1,4	0,5
9	10/10/1984	4	116,7	2	5,9	122,6	329,7	17,2	1,3	1,7	0,1	0,6	0,4	0,2	0,0
10	18/10/1984	1	27,9	0	0,0	27,9	91,7	2,8	0,0	0,3	0,3	0,5	0,0	0,9	0,2
11	30/10/1984	1	33,3	0	0,0	33,3	86,4	1,4	1,2	0,0	1,5	0,0	0,0	0,0	0,2
12	06/11/1984	1	30,3	3	15,8	46,1	188,3	49,2	0,0	0,2	0,0	0,0	0,3	2,7	0,0
13	09/11/1984	1	25,8	3	4,9	30,7	68,7	22,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Sub- Total	19	645,5	25	60,4	705,9	2.347,4	278,3	46,2	126,2	68,8	41,5	96,2	41,8	14,4
1	13/12/1984	4	86,4	7	10,6	97,0	357,2	2,5	0,0	0,0	0,5	0,0	0,6	0,0	0,0
2	02/01/1985	2	47,2	0	0,0	47,2	412,6	16,2	0,0	0,0	0,0	0,0	14,6	0,0	0,0
3	16/01/1985	1	55,9	3	16,3	72,2	645,6	130,2	0,0	0,0	0,0	0,0	12,4	0,0	0,0

4	11/02/1985	5	95,8	5	4,1	99,9	344,6	7,7	0,0	0,0	6,9	0,0	1,5	0,0	6,2
5	15/02/1985	1	40,6	1	0,3	40,9	169,2	10,5	0,0	0,0	0,0	0,0	8,1	0,0	0,0
6	18/02/1985	3	65,5	0	0,0	65,5	762,6	428,5	2,1	4,5	0,7	43,3	8,3	0,0	5,4
7	25/03/1985	5	119,1	6	20,3	139,4	263,4	16,7	1,7	9,2	8,2	0,0	3,3	0,0	0,0
8	03/04/1985	3	63,2	0	0,0	63,2	211,6	14,9	0,0	0,0	0,0	0,0	1,4	0,0	0,0
9	04/04/1985	1	46,5	0	0,0	46,5	194,3	8,6	1,0	1,6	0,8	2,8	4,5	0,0	0,0
10	11/04/1985	1	24,6	1	4,5	29,1	107,7	23,8	0,0	0,0	0,0	1,1	2,7	0,0	0,0
11	16/04/1985	1	95,1	0	0,0	95,1	431,9	312,9	1,1	11,9	0,7	2,6	3,0	5,6	4,5
12	25/04/1985	0	0,0	3	7,1	7,1	0,0	23,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0
13	09/05/1985	2	131,9	3	6,9	138,8	572,8	279,2	0,2	0,2	0,2	3,9	0,5	0,1	0,1
14	20/05/1985	1	59,6	0	0,0	59,6	293,6	74,3	1,5	3,8	3,0	6,8	2,5	0,7	0,0
15	24/05/1985	1	33,0	0	0,0	33,0	118,0	44,4	0,7	0,0	0,6	2,9	4,8	0,0	0,0
16	31/05/1985	2	47,0	0	0,0	47,0	123,2	51,6	1,0	2,3	2,8	2,9	3,5	0,0	0,0
17	05/06/1985	1	39,6	1	1,1	40,7	179,5	37,2	0,4	0,0	1,4	2,6	1,7	0,0	0,0
18	17/06/1985	1	28,5	2	1,7	30,2	265,8	2.822,9	0,0	4,8	3,4	16,3	1,6	0,0	1,4
	Sub-Total	35	1.079,5	32	72,9	1.152,4	5.453,6	4.305,9	9,7	38,3	29,1	85,3	75,0	6,4	17,6
	Total	54	1.725,0	57	133,3	1.858,3	7.801,0	4.584,2	55,9	164,5	97,9	126,8	171,2	48,2	32,0

APÊNDICE 22 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1985/1986, entre 25/06/1985 e 16/06/1986, totalizando 357 dias, com o período de inverno entre 25/06/1985 e 17/12/1985 (176 dias) e o período de verão entre 18/12/1985 e 16/06/1986 (181 dias).

	Coletas		Ch	uvas			EI ₃₀				Tratan	nentos			
		Er	osivas	Não	erosivas	Total	$\left(\frac{\text{MJ mm}}{\right)$	Solo	Suc	essão Trigo-	soja	Suce: Aveia-			Trigo-soja convenc.
Nº	Data	Nº	(mm)	Nº	(mm)	(mm)	\ ha h /	descoberto	Convenc.	Reduzido	Direto	Convenc.	Direto	Após alfafa	Após setária
										Pe	erdas de so	olo em kg ha	-1		
1	01/07/1985	1	72,1	1	0,9	73,0	647,3	24,5	2,2	6,8	8,4	3,0	9,5	3,6	3,4
2	05/07/1985	1	77,1	0	0,0	77,1	551,7	168,0	153,6	153,9	4,8	83,2	20,3	103,7	71,6
3	08/07/1985	0	0,0	1	4,9	4,9	0,0	2,8	0,0	0,0	0,0	0,0	2,1	0,0	0,4
4	01/08/1985	1	55,0	4	20,0	75,0	122,6	5,2	2,9	0,0	2,6	4,7	2,7	0,0	2,6
5	05/08/1985	1	90,4	1	2,0	92,4	287,1	532,4	64,9	35,3	5,4	486,3	11,6	15,7	51,8
6	09/08/1985	1	59,7	1	6,5	66,2	152,8	7,4	24,1	8,6	1,1	16,5	6,4	0,0	4,0
7	12/08/1985	1	28,7	0	0,0	28,7	32,1	4,2	0,0	0,0	0,0	1,4	7,2	0,0	3,0
8	20/08/1985	2	47,4	3	7,3	54,7	72,8	10,5	1,3	1,0	0,7	1,1	13,7	1,1	0,5
9	28/08/1985	1	19,8	1	1,1	20,9	35,8	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,2
10	02/09/1985	0	0,0	2	10,0	10,0	0,0	0,0	0,0	0,0	0,0	1,2	0,0	0,0	0,0
11	12/09/1985	2	25,6	2	11,8	37,4	21,6	9,1	0,0	0,0	0,8	0,0	0,0	0,0	0,0
12	13/09/1985	1	16,7	0	0,0	16,7	29,7	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,3
13	16/09/1985	1	80,9	3	17,1	98,0	874,3	187,4	16,2	21,7	0,4	15,6	15,0	2,7	2,1
14	19/09/1985	1	12,7	0	0,0	12,7	11,1	0,5	0,0	0,0	0,0	0,0	0,1	0,0	0,2
15	23/09/1985	1	17,6	1	1,3	18,9	35,9	23,3	0,0	0,0	0,0	1,1	0,0	0,0	0,0
16	21/10/1985	1	45,2	4	8,7	53,9	163,1	9,0	0,0	0,2	0,9	0,0	1,2	0,0	0,6
17	13/12/1985	2	54,5	3	2,5	57,9	193,3	5,7	0,0	4,1	1,0	0,0	5,3	0,0	4,0

-	Sub- Total	18	703,4	28	95,0	797,5	3.231,2	990,1	265,2	231,7	26,2	614,1	95,3	126,8	144,8
1	13/01/1986	1	57,8	7	15,0	72,8	206,8	1.887,2	22,1	20,5	24,0	92,2	29,1	31,6	9,0
2	20/01/1986	1	38,4	1	3,4	41,8	232,8	388,7	0,0	0,0	1,0	15,2	8,2	0,0	9,3
3	10/02/1986	2	73,6	5	14,2	87,8	1.211,2	28.656,4	283,5	153,0	7,7	1.301,8	2.654,1	44,1	520,8
4	24/02/1986	2	35,1	3	10,9	46,0	114,3	206,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0
5	27/02/1986	1	55,0	1	1,8	56,8	327,8	3.181,5	18,3	7,8	2,0	8,2	15,8	5,0	4,1
6	14/03/1986	1	48,5	4	17,8	66,3	354,4	22,5	0,0	0,0	0,2	5,4	2,4	0,0	11,3
7	17/03/1986	1	25,0	3	13,2	38,2	51,3	30,8	0,0	0,0	0,1	4,7	0,3	0,0	0,0
8	18/03/1986	1	44,8	0	0,0	44,8	452,8	3.049,0	6,8	0,0	0,0	37,9	16,3	0,0	0,3
9	02/04/1986	1	40,5	3	14,3	54,8	277,6	909,3	6,7	0,0	3,4	881,4	6,7	0,0	4,4
10	04/04/1986	1	24,7	0	0,0	24,7	37,0	2,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0
11	06/04/1986	2	59,0	0	0,0	59,0	304,6	6.881,4	3,4	9,1	0,4	461,2	20,1	0,6	0,4
12	07/04/1986	1	35,5	0	0,0	35,5	135,4	19,5	0,0	0,0	0,1	0,0	0,0	0,0	0,0
13	08/04/1986	1	14,5	0	0,0	14,5	11,7	1.802,5	0,0	0,0	0,0	157,2	0,0	0,0	0,0
14	15/04/1986	0	0,0	1	7,8	7,8	0,0	52,9	0,0	0,0	0,0	136,5	0,0	0,0	0,0
15	13/05/1986	1	16,7	3	4,1	20,8	49,6	0,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0
16	19/05/1986	1	31,4	0	0,0	31,4	311,7	15,3	0,0	0,0	0,0	9,4	6,2	0,0	8,2
17	29/05/1986	2	72,8	0	0,0	72,8	479,4	2.333,0	0,0	0,4	0,1	31,0	3,2	0,0	36,6
18	30/05/1986	1	19,6	0	0,0	19,6	39,9	9,8	0,0	0,0	0,0	0,0	0,1	0,0	0,0
19	09/06/1986	1	29,5	2	0,3	29,8	95,2	183,7	0,0	0,0	0,2	0,0	1,0	0,0	1,0
	Sub-Total	22	722,4	35	102,8	825,2	4.694,4	49.632,5	340,7	190,9	39,3	3.142,0	2.763,4	81,3	605,4
	Total	40	1.425,8	63	197,8	1.622,7	7.925,6	50.622,6	605,9	422,6	65,5	3.756,1	2.858,7	208,1	750,2

APÊNDICE 23 Número e data das coletas, chuvas erosivas e não erosivas, total e erosividade das chuvas e perdas de solo nos diferentes tratamentos, durante o ano agrícola 1986/1987, entre 17/06/1986 e 30/05/1987, totalizando 348 dias, com o período de inverno entre 17/06/1986 e 19/11/1986 (156 dias) e o período de verão entre 20/11/1986 e 30/05/1987 (192 dias).

	Coletas		Chi	uvas			El30				Tratan	nentos			
		Er	osivas	Não e	rosivas	Total	$\left(\frac{\text{MJ mm}}{\text{MJ mm}}\right)$	Solo	Suc	cessão Trigo-	soja	Suces Aveia-			o Trigo-soja o convenc.
Nº	Data	Nº	(mm)	Nº	(mm)	(mm)	\ ha h /	descoberto	Convenc.	Reduzido	Direto	Convenc.	Direto	Após alfafa	Após setária
										Pe	rdas de so	lo em kg ha ⁻	1		
1	02/07/1986	3	213,0	0	0,0	213,0	1276,0	1.191,8	48,4	39,5	1,3	53,6	3,6	59,8	233,5
2	21/07/1986	2	36,0	2	8,4	44,4	90,3	9,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0
3	06/08/1986	1	89,2	2	4,4	93,6	393,5	324,0	2,2	48,5	0,0	1,4	0,1	4,4	135,0
4	13/08/1986	2	52,7	0	0,0	52,7	160,4	19,8	0,5	0,1	0,0	0,0	0,0	0,2	1,4
5	17/09/1986	2	57,5	8	28,5	86,0	355,4	4,7	0,0	0,1	0,0	0,0	0,2	0,0	0,1
6	24/09/1986	2	57,6	1	0,9	58,5	114,4	10,8	0,1	0,0	0,1	0,0	0,3	0,0	0,0
7	26/09/1986	1	10,6	0	0,0	10,6	46,1	1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8	10/10/1986	2	62,7	0	0,0	62,7	169,8	0,6	0,0	0,1	0,1	0,0	0,4	0,0	0,1
9	21/10/1986	2	35,6	3	8,9	44,5	31,3	0,3	0,0	0,1	0,1	0,0	0,0	0,0	0,1
10	03/11/1986	3	130,8	1	3,2	134,0	522,9	818,3	0,8	0,2	0,2	0,0	0,4	0,0	0,3
11	06/11/1986	1	64,7	1	6,3	71,0	300,9	2.576,8	3,0	0,1	0,0	0,0	0,2	0,0	7,3
12	19/11/1986	1	29,0	1	6,7	35,7	97,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Sub- Total	22	849,4	20	67,3	906,7	3.558,6	4.957,4	55,0	88,6	1,7	55,1	5,2	64,4	377,7
1	24/11/1986	1	18,1	1	4,0	22,1	156,2	0,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0
2	26/11/1986	2	46,2	0	0,0	46,2	108,4	2,3	0,0	0,1	0,1	0,0	0,0	0,0	0,0
3	28/11/1986	1	70,0	1	1,3	71,3	380,6	915,5	9,9	30,6	1,9	66,1	9,4	25,2	360,2
4	09/01/1987	6	202,2	5	19,2	221,4	2.121,5	2.289,9	0,6	0,1	0,6	1,7	0,1	0,0	0,6

5	12/01/1987	2	33,2	2	9,1	42,3	184,4	623,4	1,0	0,2	4,1	0,7	0,0	0,0	1,0
6	16/01/1987	1	13,5	2	6,6	20,1	24,0	0,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0
7	06/02/1987	1	35,5	3	18,7	54,2	253,8	717,8	0,0	0,0	0,2	0,0	0,3	0,0	0,1
8	09/02/1987	2	56,5	0	0,0	56,5	398,4	3.880,0	0,0	0,0	0,9	0,0	0,1	0,0	0,1
9	18/02/1987	2	27,4	1	3,6	31,0	140,9	19,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0
10	23/02/1987	2	72,4	4	9,4	81,8	638,8	13.484,7	0,5	0,1	2,4	9,9	0,8	0,0	1,1
11	24/02/1987	1	25,9	0	0,0	25,9	276,2	5.094,9	3,4	0,0	0,8	0,0	0,1	0,0	0,4
12	27/02/1987	1	15,2	0	0,0	15,2	89,0	627,7	0,0	0,0	0,3	0,0	0,0	0,0	0,3
13	26/03/1987	1	52,5	5	26,9	79,4	571,3	2.813,2	0,6	0,2	0,1	4,2	3,1	1,6	3,7
14	01/04/1987	1	23,1	0	0,0	23,1	36,2	0,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0
15	05/04/1987	0	0,0	1	9,9	5,8	0,0	1.049,3	0,0	0,0	52,5	2,2	4,4	0,0	0,7
16	10/04/1987	1	45,3	0	0,0	45,3	371,0	6.577,8	1,2	1,7	0,0	2,1	4,0	0,0	1,6
17	14/04/1987	1	114,5	2	5,1	119,6	662,0	23.197,5	2,2	3,3	2,8	11,0	4,2	0,0	9,6
18	21/04/1987	4	127,5	0	0,0	127,5	1.594,0	31.204,9	5,5	14,4	4,0	14,2	8,2	3,1	7,9
19	08/05/1987	3	86,6	4	6,5	93,1	533,8	5.018,5	0,1	0,0	1,0	2,4	1,0	0,0	2,3
20	14/05/1987	2	74,0	2	0,9	74,9	605,2	9.433,7	0,9	2,0	3,1	5,7	13,6	1,9	4,8
21	22/05/1987	2	26,0	6	18,7	44,7	18,7	1,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Sub-Total	37	1.165,6	38	135,8	1.301,4	9.164,4	106.953,9	25,8	52,8	74,9	120,3	49,5	31,8	394,4
	Total	59	2.015,0	58	203,1	2.208,1	12.723,0	111.911,3	80,8	141,4	76,6	175,4	54,7	96,2	772,1

APÊNDICE 24 Total mensal das chuvas erosivas, por padrões hidrológicos, em número, quantidade (mm) e erosividade (EI₃₀, em MJ mm ha⁻¹ h⁻¹), no Centro de Treinamento da Cotrijui, em Augusto Pestana, durante o período de condução do experimento (de julho de 1976 a junho de 1988).

					Padrõ	es hidrológic	os					
-		Avançado			Interm	nediário		Atrasa	do		To	otal
MÊS	N°	(mm)	El ₃₀	N°	(mm)	El ₃₀	N°	(mm)	El ₃₀	N°	(mm)	El ₃₀
JAN	27	943,2	8.960,0	13	442,2	3.597,5	7	175,2	1.115,8	47	1.560,6	13.673,3
FEV	39	1.269,8	12.815,9	11	291,7	1.961,3	10	172,1	824,4	60	1.733,6	15.601,6
MAR	20	638,9	3.424,1	11	301,8	1.820,3	8	207,5	1.248,3	39	1.148,2	6.492,7
ABR	25	1.042,4	6.070,0	11	395,3	2.583,2	9	284,0	1.300,0	45	1.721,7	9.953,2
MAI	21	722,0	4.218,5	16	817,2	4.363,7	14	370,1	1.022,1	51	1.909,3	9.604,3
JUN	27	1.099,6	5.945,6	8	258,2	1.094,8	10	211,1	640,1	45	1.568,9	7.680,5
JUL	23	868,1	3.585,9	18	478,4	1.138,0	19	500,1	1.890,1	60	1.846,6	6.614,0
AGO	17	578,1	2.091,3	14	571,4	2.578,3	16	528,3	2.323,5	47	1.677,8	6.993,1
SET	27	1.061,4	5.637,0	13	324,7	945,4	12	392,9	1.834,4	52	1.779,0	8.416,8
OUT	28	965,0	6.589,3	12	290,8	935,8	12	425,4	1.806,9	52	1.681,2	9.332,0
NOV	33	1.131,5	6.920,6	16	482,9	2.782,1	13	353,4	1.392,3	62	1.967,8	11.095,0
DEZ	28	779,0	7.559,5	9	255,6	2.383,8	10	188,3	1.261,8	47	1.222,9	11.205,1
Total	315	11.099,0	73.817,7	152	4.910,2	26.184,2	140	3.808,4	16.659,7	607	19.817,6	116.661,6
%	51,89	56,0	63,3	25,0	24,8	22,4	23,1	19,2	14,3	100,0	100,0	100,0

APÊNDICE 25 Perdas de solo no ano agrícola 1977/1978 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (trigo e aveia) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja).

			El ₃₀	Solo	Sucessão Tri	go-Soja	Sucessão Ave	ia -Milho
Períodos	Duração	Chuva	MI	Descoberto	Convencional	Direto	Convencional	Direto
das culturas	(dias)	(mm)	$\left(\frac{\text{MJ mm}}{\text{ha h}}\right)$		Perdas de s	olo por perío	odo (kg ha ⁻¹)	
Período 1	38	197,8	674,8	454,2	411,1	32,1	19,1	-
Período 2	37	240,5	909,0	1.270,0	702,9	15,9	29,3	-
Período 3	34	109,5	274,7	56,8	3,3	1,6	0,0	-
Período 4	36	97,1	367,8	168,7	4,2	9,2	9,5	-
Período 5	36	283,6	2.885,4	27.607,7	20,3	13,0	1.075,4	-
Sub-Total	181	928,5	5.111,7	29.557,8	1.141,8	71,8	1.133,2	-
Período 6	58	176,5	903,8	13,8	9,8	4,1	9,9	1,8
Período 7	22	56,3	198,5	320,0	3,8	0,3	8,0	11,2
Período 8	20	64,6	315,0	14,4	0,0	8,0	8,2	0,7
Período 9	17	59,5	228,9	761,0	3,8	3,2	663,0	0,0
Período 10	57	60,5	146,5	0,8	0,1	0,3	0,5	0,4
Sub-Total	170	417,4	1.792,7	1.110,0	17,5	8,7	689,6	14,0
Total Anual	356	1.345,9	6.904,4	30.667,8	1.159,3	80,5	1.822,8	14,0

APÊNDICE 26 Perdas de solo no ano agrícola 1978/1979 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (trigo e aveia) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja).

			EI ₃₀	Solo		Sucessão T	rigo-Soja	Sucessão Av	eia-Milho	Pastagem de
Doríados dos	Duração	Chuna		Descoberto	Convencional	Reduzido	Direto	Convencional	Direto	Alfafa
Períodos das culturas	Duração (dias)	Chuva (mm)	$\left(\frac{\text{MJ mm}}{\text{ha h}}\right)$			Perdas de s	solo por períoc	lo (kg ha ⁻¹)		
Período 1	39	176,6	620,4	588,5	364,2	-	166,6	517,9	59,6	0,0
Período 2	38	205,0	575,1	3.827,7	339,6	-	27,1	2.972,3	67,0	0,0
Período 3	37	184,3	417,5	571,1	38,5	-	4,1	158,7	44,5	538,5
Período 4	33	82,3	142,0	2,9	2,9	-	0,0	0,7	0,0	2,4
Período 5	43	310,8	2.064,5	20.988,8	76,0	-	55,7	103,7	50,9	254,2
Sub-Total	190	959,0	3.819,5	25.979,0	821,2	-	253,5	3.753,2	222,0	795,1
Período 6	76	159,9	1.181,3	433,7	427,8	0,0	149,4	254,0	0,0	0,0
Período 7	52	226,1	868,3	4.672,4	2.950,4	74,3	34,9	1.411,3	0,4	6,8
Período 8	46	300,2	2.174,9	29.951,4	2.390,1	215,5	93,2	2.616,7	4,0	5,6
Período 9	42	72,9	95,4	531,6	23,5	1,2	0,3	19,0	0,0	0,0
Período 10	25	121,1	525,5	12.221,1	493,8	116,4	10,2	903,7	8,2	5,8
Sub-Total	241	880,2	4.845,4	47.810,2	6.285,6	407,5	288,0	5.024,6	12,6	18,3
Total Anual	431	1.839,2	8.664,9	73.789,2	7.106,8	407,5	541,5	8.957,9	234,6	813,4

APÊNDICE 27 Perdas de Solo no ano agrícola 1979/1980 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja).

Períodos	Duração	Chuva (mm)	El ₃₀	Solo Descoberto	Suces	ssão Trigo-So	ja	Sucessão Av	eia-Milho	Pastagem de Alfafa	Pastagem de Setária, Siratro e Desmódio
das culturas	(dias)		/MJ mm\		Convencional	Reduzido	Direto	Convencional	Direto		
			(hah)			Perdas	s de solo po	or período (kg ha ⁻¹)		
Período 1	30	187,7	909,5	9.853,9	9.849,5	784,6	239,6	2.931,9	162,7	3,7	-
Período 2	30	117,6	804,1	599,8	40,5	75,9	4,8	597,2	4,4	3,3	-
Período 3	30	387,2	2.235,2	20.189,3	1.556,6	235,0	52,1	1.571,4	43,7	8,3	-
Período 4	25	124,5	1.192,7	9.027,7	69,1	15,5	1,8	392,9	51,8	104,4	-
Período 5	21	91,2	273,5	2.582,7	11,4	7,6	2,5	6,9	10,6	0,2	-
Sub-Total	136	908,2	5.415,0	42.253,4	11.527,1	1.118,7	300,8	5.500,2	273,4	120,0	-
Período 6	25	74,4	243,6	333,0	264,7	35,5	151,2	265,4	142,0	0,5	4,0
Período 7	67	178,5	521,5	267,2	77,9	0,0	56,8	105,5	14,0	0,0	0,0
Período 8	33	123,0	586,0	1.466,1	14,7	412,0	4,4	1.853,8	2,6	0,0	0,0
Período 9	28	196,1	566,9	5.154,3	74,6	67,1	6,7	1.233,5	18,0	0,4	12,8
Período 10	27	64,9	218,1	1.371,0	31,0	79,5	7,0	507,3	11,1	1,0	2,5
Sub-Total	180	636,9	2.136,1	8.591,6	462,9	594,1	226,1	3.965,5	187,7	1,9	19,3
Total Anual	316	1.545,1	7.551,1	50.845,0	11.990,0	1.712,8	526,9	9.465,7	461,1	121,9	19,3

APÊNDICE 28 Perdas de Solo no ano agrícola 1980/1981 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja).

			El ₃₀		Suces	ssão Trigo-Sc	ja	Sucessão Av	veia-Milho		Pastagem
Períodos das culturas	Duração (dias)	Chuva (mm)	$\left(\frac{\text{MJ mm}}{\text{ha h}}\right)$	Solo Descoberto	Convencional	Reduzido	Direto	Convencional	Direto	Pastagem de Alfafa	de Setária, Siratro e Desmódio
						Perdas	s de solo po	or período (kg ha ⁻¹	')		
Período 1	52	156,5	387,2	204,3	45,5	129,3	75,9	78,1	96,1	0,0	14,2
Período 2	35	289,8	2.248,3	1.825,9	64,7	230,2	17,4	284,1	42,5	2,7	15,4
Período 3	47	148,1	467,2	4,4	0,2	3,6	0,0	1,3	0,0	0,0	0,2
Período 4	17	195,6	1.232,4	898,7	15,0	13,2	4,5	22,1	15,9	0,3	4,7
Período 5	18	128,6	267,3	786,4	1,6	6,8	0,7	0,7	0,9	1,2	0,5
Sub-Total	169	918,6	4.602,4	3.719,8	127,0	383,0	98,5	386,2	155,3	4,1	35,0
Período 6	54	314,6	3.364,5	10.127,7	4.101,9	4.277,6	264,2	4.740,5	1.275,1	0,5	7,5
Período 7	45	305,0	2.659,8	35.892,7	190,2	200,5	20,1	1.711,8	59,3	0,0	2,2
Período 8	54	77,8	200,7	3.555,9	7,4	2,4	3,3	1,5	14,3	0,0	0,0
Período 9	38	71,3	316,3	6.787,3	11,5	4,4	7,2	12,5	8,0	0,0	0,0
Período 10	35	70,5	143,9	1.550,9	1,1	0,0	0,6	4,1	5,7	0,0	0,0
Sub-Total	226	839,2	6.685,2	57.914,5	4.312,2	4.484,9	295,5	6.470,3	1.362,4	0,5	9,7
Total Anual	395	1.757,8	11.287,6	61.634,3	4.439,2	4.867,9	394,0	6.856,5	1.517,7	4,6	44,7

APÊNDICE 29 Perdas de Solo no ano agrícola 1981/1982 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja).

			El ₃₀		Suces	ssão Trigo-S	oja	Sucessão Av	eia-Milho	_	Pastagem
Períodos das culturas	Duração (dias)	Chuva (mm)	$\left(\frac{\text{MJ mm}}{\text{ha h}}\right)$	Solo Descoberto	Convencional	Reduzido	Direto	Convencional	Direto	Pastagem de Alfafa	de Setária, Siratro e Desmódio
						Perd	as de solo p	or período (kg ha	·1)		
Período 1	69	177,1	761,8	43,2	0,0	0,0	13,7	2,2	1,5	1,0	1,6
Período 2	21	154,9	676,4	69,8	1,1	0,3	49,9	13,5	9,4	1,7	0,0
Período 3	28	62,0	190,4	228,2	5,5	7,9	3,8	10,0	10,9	2,3	2,1
Período 4	27	101,1	309,4	58,9	0,0	36,9	40,1	54,9	6,0	0,8	1,2
Período 5	16	80,5	605,4	36,2	12,7	8,3	40,3	12,3	6,8	0,8	2,2
Sub-Total	161	575,6	2.543,4	436,3	19,4	53,4	147,8	92,9	34,7	6,7	7,1
Período 6	49	251,1	3.030,0	16.972,7	13.431,0	13.028,2	736,2	13.087,8	1.699,9	1,2	1,8
Período 7	47	196,5	872,2	7.575,9	11,9	64,5	12,3	93,3	19,7	1,3	0,4
Período 8	50	91,1	349,9	2.448,3	66,9	98,1	92,9	26,5	11,3	0,1	0,0
Período 9	27	49,3	161,7	963,1	1,8	6,8	0,6	0,2	0,4	1,2	0,1
Período 10	15	147,1	1.004,2	12.792,8	102,3	102,0	59,0	59,9	25,5	0,8	1,7
Sub-Total	188	735,1	5.418,0	40.752,8	13.613,8	13.299,7	901,0	13.267,7	1.756,6	4,6	3,9
Total Anual	349	1.310,7	7.961,4	41.189,1	13.633,2	13.353,1	1.048,8	13.360,6	1.791,3	11,3	11,0

APÊNDICE 30 Perdas de Solo no ano agrícola 1982/1983 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja).

			El ₃₀		Suces	são Trigo-S	oja	Sucessão Av	eia-Milho		Pastagem
Períodos das culturas	Duração (dias)	Chuva (mm)	$\left(\frac{\text{MJ mm}}{\text{ha h}}\right)$	Solo Descoberto	Convencional	Reduzido	Direto	Convencional	Direto	Pastagem de Alfafa	de Setária, Siratro e Desmódio
						Perda	s de solo po	or período (kg ha ⁻¹)		
Período 1	36	259,7	1.175,0	2.905,0	1.046,1	650,8	53,6	582,4	107,6	0,3	0,4
Período 2	32	224,8	970,3	1.571,7	154,3	134,3	22,7	101,0	43,1	0,6	0,3
Período 3	32	231,9	1.209,3	1.609,4	68,4	67,4	5,2	82,0	17,9	0,0	0,2
Período 4	31	209,7	1.522,1	411,9	15,4	9,6	0,5	6,5	2,4	5,8	1,1
Período 5	31	346,3	2.010,7	262,7	38,3	8,2	3,2	10,2	7,9	7,3	1,5
Sub-Total	162	1.272,4	6.887,4	6.760,7	1.322,5	870,4	85,0	782,1	178,9	14,0	3,4
Período 6	61	282,8	1.237,1	850,9	126,0	0,4	48,6	150,9	103,9	0,0	0,4
Período 7	42	374,1	4.254,4	89.527,4	2.184,2	31,9	32,2	486,6	52,0	6,5	0,7
Período 8	37	327,5	2.108,9	25.648,9	690,4	32,0	1.387,5	94,3	36,3	4,5	0,6
Período 9	33	484,9	2.649,0	30.954,7	562,9	90,3	70,7	210,4	88,2	29,6	1,6
Período 10	36	167,1	782,6	3.595,4	31,1	3,7	3,4	18,2	21,6	3,2	0,1
Sub-Total	209	1.636,5	11.032,0	150.577,4	3.594,7	158,2	1.542,5	960,4	302,0	43,8	3,4
Total Anual	371	2.908,9	17.919,4	157.338,1	4.917,2	1.028,6	1.627,5	1.742,5	480,9	57,8	6,8

APÊNDICE 31 Perdas de Solo no ano agrícola 1983/1984 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja).

			El ₃₀		Suces	são Trigo-S	oja	Sucessão Aveia-Milho			Pastagem
Períodos das culturas	Duração (dias)	Chuva (mm)	$\left(\frac{\text{MJ mm}}{\text{ha h}}\right)$	Solo Descoberto	Convencional	Reduzido	Direto	Convencional	Direto	Pastagem de Alfafa	de Setária, Siratro e Desmódio
						Per	das de solo	por período (kg ha	a ⁻¹)		
Período 1	35	383,0	1.130,4	6.583,2	5.935,3	1.501,8	206,7	3.746,9	382,1	3,3	2,8
Período 2	30	147,8	475,0	1.952,7	231,4	114,7	17,4	630,5	63,7	5,9	0,8
Período 3	29	142,6	891,5	1.429,6	29,5	28,9	4,8	123,8	22,4	1,4	9,8
Período 4	31	149,7	288,6	1.228,6	15,9	2,7	1,3	54,8	6,7	1,2	0,8
Período 5	16	114,2	527,6	665,3	10,4	5,5	1,2	10,8	1,7	0,5	4,6
Sub-Total	141	937,3	3.313,1	11.859,4	6.222,5	1.653,7	231,4	4.566,7	476,7	12,3	18,8
Período 6	56	274,4	2.944,0	22.599,4	13.340,3	1.765,8	154,3	4.655,0	113,7	83,2	12,0
Período 7	48	315,2	2.827,9	49.330,0	18.943,8	1.544,8	1.200,7	10.910,7	214,1	10,0	2,8
Período 8	44	132,4	480,1	4.848,6	63,3	9,9	13,7	15,6	16,6	0,0	1,3
Período 9	46	410,9	2.270,6	91.006,4	2.941,7	411,9	41,3	20.299,4	60,9	136,3	0,3
Período 10	44	309,8	1.065,9	2.159,2	193,2	204,0	64,4	48,0	72,2	59,0	1,1
Sub-Total	238	1.442,7	9.323,9	169.943,6	35.482,4	3.936,5	1.474,4	35.928,7	477,7	288,4	17,5
Total Anual	379	2.380,0	12.637,0	181.803,0	41.704,9	5.590,2	1.705,8	40.495,4	954,4	300,7	36,3

APÊNDICE 32 Perdas de Solo no ano agrícola 1984/1985 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja).

					Suces	Sucessão Trigo-Soja			eia-Milho	Sucessão Trigo-Soja Preparo convenc.		
Períodos das culturas	Duração (dias)	Chuva (mm)		Solo Descoberto	Convencional	Reduzido	Direto	Convencional	Direto	Após alfafa	Após setária, siratro e desmódio	
					Perdas de solo por período (kg ha ⁻¹)							
Período 1	40	231,4	372,5	131,4	30,3	134,2	53,9	23,6	96,5	34,1	12,7	
Período 2	30	125,1	968,0	18,2	2,1	4,4	13,9	15,3	5,6	2,1	0,5	
Período 3	21	211,4	571,8	53,3	12,5	7,1	2,6	2,0	5,3	2,0	0,7	
Período 4	20	61,2	178,1	4,3	1,2	0,3	1,9	0,5	0,0	0,9	0,4	
Período 5	10	76,8	257,0	71,2	0,0	0,2	0,0	0,0	0,3	2,7	0,0	
Sub-Total	121	705,9	2.347,4	278,3	46,2	146,2	72,2	41,5	107,7	41,8	14,4	
Período 6	54	144,2	769,8	18,8	0,0	0,0	0,5	0,0	15,2	0,0	0,0	
Período 7	44	213,0	1.159,4	148,4	0,0	0,0	6,9	0,0	21,9	0,0	6,2	
Período 8	39	204,9	1.026,0	445,2	3,7	13,7	8,9	43,3	11,6	0,0	5,4	
Período 9	44	379,8	1.518,3	663,1	2,3	13,7	1,7	10,5	12,2	5,7	4,6	
Período 10	46	210,5	980,1	3.030,4	3,7	10,9	11,1	31,5	14,0	0,7	1,4	
Sub-Total	227	1.152,4	5.453,6	4.300,1	9,7	38,3	29,1	85,3	75,0	6,4	17,6	
Total Anual	348	1858,3	7.801,0	4.486,7	55,9	184,5	101,3	126,8	182,7	48,2	32,0	

APÊNDICE 33 Perdas de Solo no ano agrícola 1985/1986 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja).

		- (((((((((((((((((((((((((((((((((((((El ₃₀		Suces	Sucessão Trigo-Soja			eia-Milho	Sucessão Trigo-Soja Preparo convenc.				
Períodos das culturas	Duração (dias)		$\left(\frac{\text{MJ mm}}{\text{ha h}}\right)$	Solo Descoberto	Convencional	Reduzido	Direto	Convencional	Direto	Após alfafa	Após setária, siratro e desmódio			
					Perdas de solo por período (kg ha ⁻¹)									
Período 1	38	230,0	1.321,6	200,5	158,8	160,7	15,8	90,9	34,6	107,3	78,1			
Período 2	32	272,9	580,6	554,5	90,3	44,9	7,2	506,6	38,9	16,8	59,4			
Período 3	30	183,7	972,6	220,4	16,2	21,7	1,2	16,6	15,2	2,7	2,6			
Período 4	25	53,9	163,1	9,0	0,0	0,2	0,9	0,0	1,2	0,0	0,6			
Período 5	51	57,0	193,3	5,7	0,0	4,1	1,0	0,0	5,3	0,0	4,0			
Sub-Total	176	797,5	3.231,2	990,1	265,2	231,7	26,2	614,1	95,3	126,8	144,8			
Período 6	35	115,5	440,5	2.275,9	22,1	20,5	25,0	107,4	37,3	31,6	18,3			
Período 7	37	190,6	1.653,3	32.044,5	301,8	160,8	9,7	1.309,9	2.669,9	49,1	524,9			
Período 8	37	287,8	1.477,7	4.013,8	13,5	0,0	3,7	929,4	25,6	0,0	16,0			
Período 9	38	78,6	196,7	8.756,5	3,4	9,1	0,5	754,9	20,1	0,6	0,4			
Período 10	34	153,6	926,2	2.541,8	0,0	0,4	0,3	40,4	10,5	0,0	45,8			
Sub-Total	181	826,1	4.694,4	49.632,5	340,7	190,9	39,3	3.142,0	2.763,4	81,3	605,4			
Total Anual	357	1.623,6	7.925,6	50.622,6	605,9	422,6	65,5	3.756,1	2.858,7	208,1	750,2			

APÊNDICE 34 Perdas de Solo no ano agrícola 1986/1987 nos períodos das culturas de 1 a 5 correspondentes ao ciclo da cultura de inverno (aveia e trigo) e os períodos de 6 a 10 ao ciclo das culturas de verão (milho e soja).

			EI ₃₀		Sucess	ão Trigo-Soj	Sucessão Avei	a-Milho	Sucessão Trigo-Soja Preparo convenc.		
Períodos das culturas	Duração (dias)	Chuva (mm)	$\left(\frac{\text{MJ mm}}{\text{ha h}}\right)$	Solo Descoberto	Convencional	Reduzido	Direto	Convencional	Direto	Após alfafa	Após setária, siratro e desmódio
						Perdas de so	olo por pe	eríodo (kg ha ⁻¹)			
Período 1	35	257,4	1.366,3	1.201,0	48,5	39,5	1,3	53,6	3,7	59,8	233,5
Período 2	23	153,2	553,9	343,9	2,6	48,5	0,0	1,4	0,1	4,6	136,4
Período 3	35	148,2	469,8	15,5	0,0	0,1	0,0	0,0	0,2	0,0	0,1
Período 4	35	107,2	247,2	1,9	0,1	0,2	0,2	0,0	0,7	0,0	0,2
Período 5	28	240,7	921,4	3.395,1	3,8	0,3	0,2	0,0	0,6	0,0	7,5
Sub-Total	156	906,7	3.558,6	4.957,4	55,0	88,6	1,7	55,1	5,2	64,4	377,7
Período 6	51	363,5	2.766,7	3.208,2	10,5	30,8	2,6	67,8	9,5	25,2	360,8
Período 7	36	170,6	860,6	5.221,9	1,0	0,2	5,2	0,7	0,3	0,0	1,2
Período 8	40	233,3	1.716,2	22.040,1	4,5	0,3	3,7	14,1	4,1	1,6	5,5
Período 9	26	321,3	2.663,2	62.030,0	8,8	19,4	59,3	29,5	20,8	3,1	19,8
Período 10	39	212,7	1.157,7	14.453,6	1,0	2,1	4,1	8,2	14,7	1,9	7,1
Sub-Total	192	1.301,4	9.164,4	106.953,9	25,8	52,8	74,9	120,3	49,5	31,8	394,4
Total Anual	348	2.208,1	12.723,0	111.911,3	80,8	141,4	76,6	175,4	54,7	772,1	772,1