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Abstract

In this thesis we study the dynamics of one-dimensional strongly interacting
few-body systems. We present the theory which allows us to describe such
systems as a spin chain where the exchange coefficients are determined by the
trapping geometry, and comment on the experimental feasibility of these mod-
els. We then proceed to apply our formalism to different dynamical problems,
where the strength of the interactions between the atoms in the trap plays
a fundamental role. We find that interesting effects - ranging from changes
in magnetic correlations to impurity oscillations and spin-charge separation
- arise in this context. Additionally, we perform studies of the static corre-
lations and many-body dynamics of bosonic systems away from the strongly
interacting limit.
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Resumo

Nesta tese estudamos a dinâmica de sistemas unidimensionais de poucas partícu-
las com interações fortes. Apresentamos uma teoria que nos permite descrever
esses sistemas como uma cadeia de spin, na qual os coeficientes de troca são
determinados pela geometria de aprisionamento, e comentamos sobre a via-
bilidade experimental desses modelos. Então aplicamos este formalismo para
diferentes problemas dinâmicos, onde a força das interações entre os átomos
na armadilha tem um papel fundamental. Notamos que efeitos interessantes -
desde mudanças nas correlações magnéticas até oscilações de impureza e sep-
aração de carga e spin - surgem nesse contexto. Adicionalmente, realizamos
estudos de correlações estáticas e dinâmicas de muitos corpos de sistemas
bosônicos fora do limite de interações fortes.
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Resumé

I denne afhandling studerer vi dynamikken af en-dimensionelle stærkt in-
teragerende få-legeme systemer. Vi præsenterer teorien, som tillader os at
beskrive sådant et system som en spinkæde, hvor vekselvirkningskoefficien-
terne er bestemt af fældens geometri, og vi kommenterer på den eksperi-
mentelle gennemførlighed af disse modeller. Dernæst anvender vi vores for-
malisme på forskellige dynamiske problemer, hvor styrken af interaktionen
mellem atomerne i fælden spiller en fundamental rolle. Vi finder at interes-
sante effekter – som spænder fra ændringer i magnetiske korrelationer til urene
svingninger og spin-ladning separation – opstår i denne kontekst. Derudover
udfører vi studier af den statistiske korrelation og mange-legeme dynamikker
af bosoniske systemer væk fra den stærkt interagerende grænse.
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Chapter 1

Introduction

The experimental realization of the first Bose-Einstein condensates (BECs)
[1, 2] in the 90’s paved the way for a whole new area of reasearch in physics. By
employing techniques such as laser [3] and evaporative cooling [4], physicists
were able to produce atomic ensembles at extremely low temperatures. Under
such conditions, a bosonic system will have a large fraction of its atoms in
the quantum state of lowest energy. This means that a simple theoretical
approach can be used to describe a system which is in general composed of
thousands of particles [5, 6].

These experiments were able to demonstrate in practice the validity of
textbook theories belonging to diverse fields like statistical physics [7, 8] and
quantum mechanics [9, 10]. However, the regime in which they take place was
by no means easy to achieve. Besides the aforementioned cooling to temper-
atures close to zero, the atomic ensembles used in the experiments needed to
be put in position and controlled so their properties could be measured with
the required precision [11].

The answer to this challenge came in the form of the so-called magneto-
optical traps (MOTs) [12, 13], where laser arrays and magnetic fields are
applied in order to create potential minima, therefore trapping the atoms.
The many ways in which these arrays can be arranged allow for the creation
of traps with different shapes and sizes. Most importantly, different directions
can be chosen to have distinct trapping lengths, creating systems with an
effectively lower dimensionalty. For instance, by choosing a shorter trapping
length in one direction as opposed to another, it became possible to “freeze"
degrees of freedom and create systems of atoms which move and interact along
a one-dimensional optical tube.

As an additional effect, the presence of magnetic fields and optical trapping
can lead to two related phenomena of decisive importance for these experi-
ments: Feshbach [14] and confinement induced resonances [15]. In the first
case, the strength of external magnetic fields can determine the energy dif-
ference between scattering channels of a certain atomic species, leading to
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4 CHAPTER 1. INTRODUCTION

the possiblity of tuning the scattering length (which in turn determines the
strength of repulsive or attractive interactions between pairs of atoms). In
the second case, the presence of tight confinement along some direction in the
system is able to change the scattering length in an effectively lower dimen-
sionality, which also reflects on the strength of the interactions between the
atoms.

Suddenly, theories which seemed to be only toy models were now subject
to experimental verification [16]. This is the case, for instance, of a class
of one-dimensional models of particles with contact interactions, such as the
Lieb-Liniger model [17, 18] of interacting bosons, Mcguire’s fermionic impu-
rity problem [19, 20] and the Gaudin-Yang model [21, 22] for two-component
fermions. These models have the attractive property of being integrable [8],
meaning that they have an exact solution in terms of the celebrated method
known as the Bethe ansatz [23].

These advances gave rise to a number of experiments with one-dimensional
systems in different trapping geometries and interaction regimes, ranging from
the weakly interacting one-dimensional analogue of a BEC [24] (which is
treated theoretically via the Gross-Pitaevskii theory [6]) to the infinitely re-
pulsive system of bosons called the Tonks-Girardeau gas [25–27]. Even more
refined techniques of atomic manipulation allowed for further control over the
size of these systems in terms of particle number. Experiments consisting of
no more than two or three atoms in a harmonic trap made possible the mea-
surement of quantum properties of systems well away from the many-body
regime [28, 29]. Moreover, by increasing the number of atoms one-by-one, the
elusive regime where few- and many-body phenomena overlap was achieved
[30].

A large number of theoretical studies followed in the trails of these practi-
cal advances. Many of these works deal with the fact that, in real experiments,
atoms are usually trapped by an external potential [31], which, in general, ren-
ders the one-dimensional system non-integrable. Others additionally consider
a regime of interactions beyond the realm of validity of most theories [32–34].

All of these developments have culminated in striking realizations that
combine theory and experiment to achieve results that could only be dreamed
of a few decades ago. Among these impressive accomplishments, we can
highlight the measurement of a non-thermalizing system of bosons in a one-
dimensional trap [35] (which captures the physics of an integrable system in
the lab), the realization of 1D fermionic systems with several internal compo-
nents [36] which leads to the exotic concept of synthetic dimensions [37, 38],
the observation of the magnetic properties of a system composed of three 6Li
atoms [39], among others. Recent works propose taking advantage os this
high degree of control to explore cold atoms as platforms for quantum simu-
lations [40, 41], and several experiments in this direction are being presently
performed. In this scenario, the experimental setup would be able to mimic
the properties of interesting physical systems (even beyond the standard mod-
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els of condensed matter) and entirely replace the simulations performed with
classical computers.

This thesis is the results of learning about all of these developments, and
in turn trying to come up some contribution to the field. Most of the work
presented here has been published in scientific journals, but the order of the
presentation is not necessarily chronological. The next chapter, for instance,
simply outlines the theoretical formalism that is applied to different problems
throughout the thesis.

The second part of the thesis is dedicated to the application of this for-
malism to different problems in the dynamics of strongly interacting one-
dimensional systems. Our main focus lies in the description of interesting
dynamical effects, such as magnetic transitions, impurity oscillations, state
transfer and spin-charge separation. An important feature troughout our stud-
ies is the role of interactions on these effects and the consequence of changing
such parameters is a recurring theme in this work.

The third part deals with slightly different approaches, for regimes outside
the limit of strong interactions, but also focusing on properties which can, in
principle, be measured in the lab. We start with a description of the static
properties of a few-body mixture with a variational approach to the wave
function, and then present a study of the dynamics of a many-body Bose
mixture governed by the Gross-Pitaevskii equation.

In each chapter, we provide a short introduction describing the goal of
the sections contained in it and stating in detail the modifications made with
respect to the published work, when that is the case. When necessary, we
also provide a description of the system where we include the relevant defini-
tions, before jumping into the actual calculations and results. We point out
that, while in many cases the theoretical approach between different studies
is equivalent, the notation may be conveniently adapted from one chapter to
another.





Chapter 2

Strongly interacting
one-dimensional systems

In this chapter we describe the theory that will be applied in several static
and dynamic problems throughout this work. It can be generally described as
a mapping of a one-dimensional strongly interacting two-component system of
atoms to a spin chain Hamiltonian, where the exchange coefficients between
neighboring spins are determined from the geometry of the trapping potential.
Section 2.2 has been published, with minor modifications, as an appendix in
Ref. [42].

As a first step, we describe a system of one-dimensional bosons with in-
finitely repulsive contact interactions, the so-called Tonks-Girardeau gas.

2.1 The Tonks-Girardeau gas
We consider initially a system of N bosons in one dimension with contact
interactions, as described by the following Hamiltonian:

H =
N∑
i=1

H0(xi) + g
N∑
i<j

δ(xi − xj) (2.1)

where

H0(x) = − ~2

2m
∂2

∂x2 + V (x) (2.2)

is the single-particle Hamiltonian in a trapping potential V (x), where m de-
notes the mass of the particles (we always assume particles with equal masses).
The interaction between the particles is given by the rightmost term in Eq.
(2.1). The interaction strength g is written in the energy units given by
ε = ~2

mL , where L is the characteristic length of the system and ~ is the re-
duced Planck’s constant. Throughout the rest of this work, we will usually
write the interaction parameters in this dimensionless form.

7
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CHAPTER 2. STRONGLY INTERACTING ONE-DIMENSIONAL

SYSTEMS

For the simple case of g = 0, the solutions are given simply by the single-
particle eigenstates of Eq. (2.2). For the case of general g, the solution for
this problem has been originally found by Elliott Lieb and Werner Liniger
[17, 18], for a system with periodic boundary conditions (the so-called Lieb-
Liniger model). The basic idea behind the method is to postulate a trial wave
function and then impose conditions for its derivative at the contact point
between two particles (where the interaction happens). These conditions are
usually contemplated in the form of a set of Bethe ansatz equations, which is a
general feature of integrable systems. This solution holds only in the absence
of an external trapping potential (V (x) = 0 in Eq. (2.2)).

The case of infinite repulsion (g = ∞), however, has an exact solution
found in 1960 by Marvin Girardeau, which holds even in the presence of a trap-
ping geometry. In his work, Girardeau showed that the wave function for a gas
of impenetrable particles has to satisfy two conditions: first, since the system
is one-dimensional and the repulsion is infinite, the particles cannot cross each
other. This means that the many-body wave function ψ(x1, x2, ..., xN ) of the
system can be written as a combination of the solutions in different sectors,
by which we mean the possible different orderings of the coordinates. Second,
the infinite interactions also require the wave function to vanish at the con-
tact point between two particles, that is ψ(x1, ..., xi, ..., xj , ..., xN )|xi=xj = 0.
Girardeau showed that the bosonic wave function ΦB(x1, ..., xN ) that satisfies
these conditions, while also preserving its symmetric nature, is simply written
as

ΦB(x1, ..., xN ) = |ΦF (x1, ..., xN )|, (2.3)

where ΦF (x1, ..., xN ) denotes the wave function for a system of spinless fermions
in the same geometry. The bosonic wave function in the limit of infinite re-
pulsion can thus be interpreted simply as the symmetrized version of the wave
function for identical fermions. Therefore, this correspondece is usually called
Bose-Fermi mapping. This result is particularly interesting since the wave
function for spinless fermions has a simple representation in terms of a Slater
determinant for N particles [43]:

ΦF (x) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) . . . φN (x1)
φ1(x2) φ2(x2) . . . φN (x2)

. . . . . .
. . . ...

φ1(xN ) φ2(xN ) . . . φN (xN )

∣∣∣∣∣∣∣∣∣∣
,

where φn(x) denotes the n-th eigenstate of the single-particle Hamiltonian
(2.2). Therefore, by knowing these solutions in a given potential V (x), it is
possible to calculate the wave function for a many-body gas of impenetrable
bosons. This analogy between the Tonks-Girardeau gas and the gas of spinless
fermions also holds for the energy. In the fermionic case, each particle has to
occupy a different energy level, due to the Pauli exclusion principle. In the
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bosonic case, the infinite repulsion mimics that effect, the result being that the
energy of both systems is simply the sum of the energy of each single-particle
orbital.

Figure 2.1: A trapped system of spinless fermions is mapped into a system of infinitely
repulsive bosons. The particles are placed one by one in each energy level (with a
corresponding wave function given by φn), in the fermionic case as a result of the
exclusion principle, and in the bosonic case due to the interactions.

As an example, we calculate now the wave function for the Tonks-Girardeau
gas in the simple case of N = 3. Our choice of potential will be a harmonic
trap, given by V (x) = 1

2mω
2x2, with frequency ω = 1. We also assume for

simplicity that ~ = m = 1. The Tonks-Girardeau wave function obtained by
calculating the Slater determinant for the lowest N = 3 orbitals is given by

ΦB(x1, x2, x3) = e−
1
2 (x2

1+x2
2+x2

3)

3π3/4 |(x1 − x2)(x1 − x3)(x2 − x3)|, (2.4)

where we see that the bosonic symmetry is preserved, but the wave function
still vanishes for xi = xj . A quantity of great importance in the following
chapters will be the single-particle densities, which determine the spatial dis-
tributions of individual particles in the trap. It is defined as

ρ(x) =
∫
dx1 ... dxN |Φ(x1, ..., x, ..., xN )|2, (2.5)

where the integrals are performed in the entire domain of the trapping poten-
tial under consideration. Calculating these densities for the example above, we
obtain the distribution shown in Fig. 2.2, where we consider the dimensionless
units determined by the harmonic oscillator length scale l =

√
~/(mω).

Clearly, an important feature of the Bose-Fermi mapping is the correspon-
dence between the energies and the spatial distributions of a system of impen-
etrable bosons and a system of spinless fermions. This is expected since the
wave functions for these systems only differ by a symmetry factor. However,
this correspondence is not extended to all quantities. A notable exception is
the momentum distribution, a measurable quantity where the symmetry of
the wave function is explicitly manifested [44, 45].
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Figure 2.2: One-body correlations for a Tonks-Girardeau gas with N = 3. Total
density is normalized to 1.

2.1.1 Spatially ordered densities

While Eq. (2.5) provides the single-particle distribution of a Tonks-Girardeau
gas, it will be necessary in the next chapters to calculate the individual den-
sities for particles in a given sector (that is, a particular ordering of the coor-
dinates). To do so, we must calculate

ρi(x) =
∫

Γ
dx1 ... dxN δ(xi − x)|Φ(x1, ..., z, ..., xN )|2, (2.6)

where the sector is defined by the integration domain (e.g Γ = x1 < x2 <
... < xN ) and the Dirac delta function picks out the distribution for a single
particle. Some analytical results can be obtained for this quantity in few-body
systems. Considering the case of N = 3 in a harmonic trap, for instance, we
obtain

ρ1(x) = Ae−3x2[− 8
√
πex

2
x
(
x2 − 1

)
erfc(x)

+ πe2x2 (4x4 + 3
)
erfc(x)2 + 4

(
x2 − 2

) ]
ρ2(x) = 2Ae−3x2{− 8

√
πex

2 (
x2 − 1

)
x erf(x)

− πe2x2 (4x4 + 3
)

[erfc(x)− 2] erfc(x)− 4x2 + 8
}

ρ3(x) = Ae−3x2{8
√
πex

2
x
(
x2 − 1

)
[erf(x) + 1]

+ πe2x2 (4x4 + 3
)

[erf(x) + 1]2 + 4
(
x2 − 2

)}
, (2.7)

where erf(x) = 1
π

∫ x
−x e

−y2
dy is the error function, erfc(x) = 1 − erf(x) is the

complementary error function, and A is a numeric constant theat assures that
each distribution is normalized to unity. In Fig. 2.3 we plot the densities given
by the expressions above, where it becomes clear that each expression provides
the distribution of the particles in a given order.



2.1. THE TONKS-GIRARDEAU GAS 11

-4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2.3: Spatial densities for a harmonically trapped Tonks-Girardeau gas with
N = 3, in the sector Γ = x1 < x2 < x3.

For larger N , the integrals defined in Eq. (2.6) become increasingly harder
to calculate. However, by exploring the determinant form of Φ(x1, ..., x > N),
it is possible to rewrite this expression (as shown by F. Deuretzbacher in
Ref. [32]) as

ρi(x) = ∂

∂x

N−1∑
j=0

cij
∂j

∂λj
det [B(x)− 1λ] |λ=0

 , (2.8)

where
cij = (−1)N−1(N − j − 1)!

(i− 1)!(N − j − i)!j! (2.9)

and the matrix B(x) is composed by the single particle states superpositions
bmn(x) =

∫ x
−∞ dy φm(y)φn(y) (here φ(x) again denote the single particle or-

bitals which go up to the state corresponding to the N -th particle). In Fig. 2.4
we show the results obtained with this expression for N = 10. In the case of a
symmetric potential, the calculations can be considerably reduced by obtain-
ing the distributions up to x = 0 and then mirroring the results to get the
positive values of x.

-6 -4 -2 0 2 4 6
0.0
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0.6

0.8

1.0

1.2

Figure 2.4: Spatial densities for a harmonically trapped Tonks-Girardeau gas with
N = 10, in the sector Γ = x1 < x2 < ... < xN , calculated with expression (2.8).
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Throughout this thesis, we consider the density for each individual particle
as given by Eq. (2.6) to be normalized to unity, unless stated otherwise. This
means that the total density ρ(x) =

∑N
i ρ

i(x) is always normalized to the
total number of particles N .

2.2 Mapping between a strongly interacting
two-component system and a spin chain

We now present a derivation of the spin chain Hamiltonian as a model for
strongly interacting two-component gases in one-dimension. Although dif-
ferent approaches can be employed to obtain this result, the content of this
section follows the calculations presented in Ref. [46].

We start by considering a two component bosonic gas in one dimension
with contact interactions. We label each component by its internal state
(either ↑, or ↓). The numbers of particles of each component is then given
by N↑ and N↓, an the total number of particles is written as N = N↑ + N↓.
We consider all particles with the same mass m, and the units of length and
energy are given as L and ε = ~2

mL . The Hamiltonian is then written as

H =
N∑
i=1

H0(xi) + g

N↑∑
i

N↓∑
j

δ(x↑i − x↓j) (2.10)

+ κg

N↑∑
i<i′

δ(x↑i − x↑i′) + κg

N↓∑
j<j′

δ(x↓j − x↓j′),

where g denotes the interaction strength between different particles, and
κg sets the interaction strength between identical particles (we focus only on
repulsive interactions, so g, κ > 0).

In the limit of infinite interactions (g →∞), the eigenstates of Hamiltonian
(2.10) can be described by

Ψ =
L(N↑,N↓)∑
k=1

akPkΦ({x↑i, x↓j}), (2.11)

where the sum runs over the L(N↑, N↓) =
(N↑+N↓

N↑

)
permutations of the coordi-

nates, Pk is the permutation operator (which exchanges the order of particles
denoted by k) and ak is the coefficient that denotes the probability amplitude
for a given order. In this expression, Φ is simply the wave function in the
impenetrable limit, with coordinates ordered as x↑1 < x↑2 < ... < x↑N↑ <
x↓1 < ... < x↓N↓ . We note that that permutations between indistinguishable
particles are not taken into account in the wave function described above.
These terms can be obtained by simply exchanging coordinates and consider-
ing the symmetry of the wave function Φ. As detailed in Section 2.1, Φ must
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be symmetric (antisymmetric) with respect to exchanges of identical particles
for bosons (fermions).

To investigate the behavior of the energy at very strong (but finite) inter-
actions, we use the Hellmann-Feynman theorem, which gives

∂E

∂g
=

N↑∑
i=1

N↓∑
j=1
〈Ψ|δ(x↑i − x↓j)|Ψ〉+ κ

N↑∑
i<i′

〈Ψ|δ(x↑i − x↑i′)|Ψ〉

+ κ

N↓∑
j<j′

〈Ψ|δ(x↓j − x↓j′)|Ψ〉, (2.12)

where the first term on the right-hand side accounts for interactions between
different bosons, while the remaining terms arise from interactions between
identical bosons. The Dirac brackets in this expression denote the integral
over all coordinates.

Inspired by the Bethe ansatz approach, we can write the conditions for the
derivatives of the wave function at the contact point between two particles as

(
∂Ψ
∂x↑i

− ∂Ψ
∂x↑i′

) ∣∣∣∣∣
+

−

= 2κgΨ(x↑i = x↑i′),

(
∂Ψ
∂x↓j

− ∂Ψ
∂x↓j′

) ∣∣∣∣∣
+

−

= 2κgΨ(x↓j = x↓j′) (2.13)

for identical bosons and

(
∂Ψ
∂x↑i

− ∂Ψ
∂x↓j

) ∣∣∣∣∣
+

−

= 2gΨ(x↑i = x↓j), (2.14)

for a distinguishable pair. In the expressions above we have +→ xm−xn = 0+,
while − → xm − xn = 0−.

Combining Eqs. (2.12), (2.13) and (2.14), we get

∂E

∂g
= K↑↓

g2 + K↑↑
κg2 + K↓↓

κg2 , (2.15)



14
CHAPTER 2. STRONGLY INTERACTING ONE-DIMENSIONAL

SYSTEMS

where

K↑↓ =

∑N↑,N↓
i=1,j=1

∫
dx↑1,··· ,dx↑N↑

∫
dx↓1,··· ,dx↓N↓

∣∣∣∣∣( ∂Ψ
∂x↑i
− ∂Ψ
∂x↓j

)∣∣∣∣+
−

∣∣∣∣∣
2

δ(x↑i−x↓j)

4
∫
dx↑1,··· ,dx↑N↑

∫
dx↓1,··· ,dx↓N↓ |Ψ|

2 ,

K↑↑ =

∑N↑
i<i′
∫
dx↑1,··· ,dx↑N↑

∫
dx↓1,··· ,dx↓N↓

∣∣∣∣∣( ∂Ψ
∂x↑i
− ∂Ψ
∂x↑i′

)∣∣∣∣+
−

∣∣∣∣∣
2

δ(x↑i−x↑i′ )

4
∫
dx↑1,··· ,dx↑N↑

∫
dx↓1,··· ,dx↓N↓ |Ψ|

2 ,

K↓↓ =

∑N↓
j<j′

∫
dx↑1,··· ,dx↑N↑

∫
dx↓1,··· ,dx↓N↓

∣∣∣∣∣( ∂Ψ
∂x↓j

− ∂Ψ
∂x↓j′

)∣∣∣∣+
−

∣∣∣∣∣
2

δ(x↓j−x↓j′ )

4
∫
dx↑1,··· ,dx↑N↑

∫
dx↓1,··· ,dx↓N↓ |Ψ|

2 ,

and the denominator in each of these expressions introduces simply a normal-
ization factor. Notice that, in the expressions above, we have restored the
delta function on the right side to keep the integration over all coordinates.
Integrating with respect to g we obtain the following energy functional

E = E0 −
(
K↑↓
g

+ K↑↑
κg

+ K↓↓
κg

)
, (2.16)

where E0 is the energy in the limit of infinite repulsion, and we neglect terms
of higher order in (1/g - we remember that, for strong interactions, 1/g2 � 1).
By introducing the wave function described by Eq. (2.11) in the expression
above, we obtain

E = E0 −∑N−1
i=1

αi
g

(∑L(N↑−1,N↓−1)
k=1 A↑↓

ik
+ 2
κ

∑L(N↑−2,N↓)
k=1 A↑↑

ik
+ 2
κ

∑L(N↑,N↓−2)
k=1 A↓↓

ik

)
∑L(N↑,N↓)

k=1 a2
k

(2.17)

with

A↑↓ik = (a↑↓ik − a
↓↑
ik )2, A↑↑ik = (a↑↑ik )2, A↓↓ik = (a↓↓ik )2, (2.18)

where a↑↓ik represents the coefficients in Eq. (2.11) multiplying terms with
neighboring ↑ and ↓ particles at position i and i+ 1, while the remainig terms
have the same role, for ↓↑, ↑↑ and ↓↓ pairs. The purpose of such terms is to
account for the energy contribution of exchanging two neighboring particles
with particular spin projections, while other particles remain in the same or-
dering determined by k. The coefficients αi are now independent of spin [47],
and can be written as

αi =

∫
x1<x2···<xN−1 dx1...dxN−1

∣∣∣∂Φ(x1,··· ,xi,··· ,xN )
∂xN

∣∣∣2
xN=xi∫

x1<x2···<xN−1 dx1 · · · dxN |Φ(x1, · · · , xi, · · · , xN )|2 , (2.19)
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where Φ(x1, · · · , xi, · · · , xN ) is again the wave function present in Eq. (2.11)
(where we have omitted the spin indices). Since this wave function is defined
in the region determined by a particular order of the coordinates, it is enough
to calculate the integrals in one particular sector, such as x1 < x2 · · · < xN−1.

Now, let us consider a spin chain Hamiltonian defined as

Hs = E0 −
N−1∑
i=1

Ji

(
Πi,i+1
↑↓ + 1

κ
Πi,i+1
↑↑ + 1

κ
Πi,i+1
↓↓

)
(2.20)

where Πi,i+1
↑↓ = 1

2(1 − ~σi · ~σi+1) is the operator that exchanges neighboring
spins with different projections and Πi,i+1

↑↑ = Πi,i+1
↓↓ = 1

2(1 + σizσ
i+1
z ) have the

same action, but for identical spins. A generic spin state can now be written
as

|χ〉 =
L(N↑,N↓)∑
k=1

akPk|↑1 · · · ↑N↑↓1 · · · ↓N↓〉, (2.21)

where once again the sum runs over the permutations of the N↑ and N↓ spins.
If we calculate the expected value of Hamiltonian (2.20) as 〈χ|H|χ〉, we obtain

〈χ|H|χ〉 = E0 −∑N−1
i=1 Ji

(∑L(N↑−1,N↓−1)
k=1 A↑↓

ik
+ 2
κ

∑L(N↑−2,N↓)
k=1 A↑↑

ik
+ 2
κ

∑L(N↑,N↓−2)
k=1 A↓↓

ik

)
∑L(N↑,N↓)

k=1 a2
k

(2.22)

where the coefficientsA↑↓ik , A
↑↑
ik and A↓↓ik have the same meaning as in Eq. (2.18),

and
∑L(N↑,N↓)
k=1 a2

k introduces a normalization factor. It becomes clear that the
energy functionals given by Eqs. (2.17) and (2.22) are identical for Ji = αi/g.
Furthermore, by rewriting Eq. (2.20) in terms of the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.23)

we obtain

Hs = E01−
N−1∑
i=1

αi
g

[1
2(1− ~σi · ~σi+1) + 1

κ
(1 + σizσ

i+1
z )

]
, (2.24)

where 1 is the identity matrix. We conclude then that the eigenvalue prob-
lems defined with Eqs. (2.17) and (2.22) are identical, which validates, for a
strongly interacting system, the mapping between Hamiltonians (2.10) and
(2.24). From now on, we assume that the spin eigenstates in a strongly inter-
acting system are described by the solution of Eq. (2.24).
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2.3 Geometric coefficients
In this section we present some results for the geometric coefficients in a
system with an increasingly larger number of particles. As stated previously,
the geometric coefficients can be calculated using

αi =

∫
x1<x2···<xN−1 dx1...dxN−1

∣∣∣∂Φ(x1,··· ,xi,··· ,xN )
∂xN

∣∣∣2
xN=xi∫

x1<x2···<xN−1 dx1 · · · dxN |Φ(x1, · · · , xi, · · · , xN )|2 . (2.25)

In Table (2.1) we present the numerical values for these exchange coeffi-
cients for a system of up to N = 6 in the presence of a harmonic trap. Note
that the sole function of these coefficients is to encode the geometry of the
trapping potential; for instance, as the potential gets deeper, we find that the
numerical values of the coefficients increase. Furthermore, if the potential is
symmetric around the origin, this symmetry is also reflected in the coefficients
and we must calculate at most N/2 coefficients for even N and (N − 1)/2 for
odd N . An interesting way to visualize the magnitude of the geometrical co-
efficients is to think also in terms of the overlaps between particles in the trap
- the larger the overlap, the greater the numerical value of αi (see Fig. 2.4, for
instance).

N α1/(~2ω2l) α2/(~2ω2l) α3/(~2ω2l)
2 0.7978
3 1.3464
4 1.7876 2.3465
5 2.1661 3.1773
6 2.5031 3.9054 4.3605

Table 2.1: Numerical values of the geometric coefficients for N particles in a harmonic
trap. Since the trapping potential is symmetric, it is enough to calculate at most N/2
coefficients for any system.

For large N , the multidimensional integrals given by Eq. (2.25) become
hard to calculate, as is the case for the individual particle densities. One way
around this problem is to again explore the determinant form of the spinless
fermion wave function Φ(x1, x2, ..., xN ). This leads to [48, 49]:

αi =
N∑
j=1

N∑
k=1

(−1)j+k
∫ +∞

−∞
dxi φ

′
j(xi)φ′k(xi)

N−1−i∑
l=0

(−1)N−1−i

l!

(
N − l − 2
i− 1

)

× d

dxi

[
∂

∂λl
det (B(xi)− 1λ)jk |λ=0

]
(2.26)

where φ′j(xi) denotes the spatial derivative of a given single-particle orbital.
Once again the matrix B(x) is composed by the single-particle states super-
positions bmn(x) =

∫ x
−∞ dy φ

∗
m(y)φn(y), and the subscript jk on the right side
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indicates that the j-th row and k-th column are removed. While we do not
explicitly include the time parameter in these expressions, we could consider
the orbitals φi(x) to be time-dependent.

In Fig. 2.5, we compare the values of Table (2.1) with results calculated
with expression (2.26). In the next chapter, we use this expression to simplify
the calculations for the case of time-dependent coefficients.

N=6

N=5

N=4

N=3

N=2

1 2 3 4

1

2

3

4

Figure 2.5: Numerical values of the goemetric coefficients with increasing N . The
colored solid lines connect the coefficients for a same number of particles, while the
black circles show the numerical results obtained with Eq. (2.26).

For larger systems, the open source package CONAN [48] is available and
can calculate the geometrical coefficients for up to N ≈ 30 in arbitrary po-
tentials. This opens up the perspective of studying the static and dynamical
properties of spin chains where the exchange coefficients are specially tailored
to achieve interesting properties [47, 50].

2.4 Exact solutions in a fermionic 2+1 system
We now use the formalism presented in the last sections to calculate, as an
example, the spin densities for a fermionic system with N↑ = 2 and N↓ = 1.
We additionally compare the results with numerical calculations performed
with the method of Matrix Product States (MPS) using the open package
OpenMPS [51]. We begin by writing the Hamiltonian for the fermionic spin
chain as

Hs = E01−
N−1∑
i=1

αi
g

[1
2(1− ~σi · ~σi+1)

]
, (2.27)

where the coefficients α are given by N = 3 in Table (2.1). Notice that,
in comparison to Eq. (2.20), this Hamiltonian does not include the term of
intraspecies interaction governed by κ. The reason for this is that any interac-
tion between identical fermions is ruled out by the Pauli exclusion principle.

We then write our Hamiltonian in a truncated basis composed by |↑↑↓〉,
|↑↓↑〉 and |↓↑↑〉. We choose an interaction strength of g = 25, and diagonalize
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the Hamiltonian to find the following eigenstates

|ψ1〉 = − 1√
6
|↑↑↓〉+

√
2
3 |↑↓↑〉 −

1√
6
|↓↑↑〉

|ψ2〉 = − 1√
2
|↑↑↓〉+ 1√

2
|↓↑↑〉

|ψ3〉 = 1√
3
|↑↑↓〉+ 1√

3
|↑↓↑〉+ 1√

3
|↓↑↑〉, (2.28)

with energies of E1 = 4.33843, E2 = 4.44614 and E3 = 4.5, respectively
(notice that the energy of the highest excited state is the same as that of an
impenetrable system - simply the sum of the energy of each harmonic oscillator
level up to N). We are now able to calculate spin densities by defining this
quantity as

ρ↑,↓(x) =
N∑
i=1

mi
↑,↓ρ

i(x), (2.29)

where mi
↑,↓ is the probability of finding ↑, ↓ particles at the site i, as ρi(x) is

given by Eq. (2.6). In Fig. 2.6 we show the results for these densities in the
ground state and the two excited states of the 2+1 system of fermions in a
harmonic trap.

Figure 2.6: Comparison between exact spin densities (solid colored curves) with nu-
merical results obtained with OpenMPS (black dashed curves) for a) the ground state,
b) the first excited state and c) the second excited state of a harmonically trapped 2+1
system.

As expected (since the spin states are described by a Heisenberg chain),
we see that the ground state has a dominating antiferromagnetic contribution,
while in the first excited state the majority spins localize in the center of the
trap. In the second excited state, we have a result that is frequently called
a Heisenberg-type ferromagnetic state [52]. In this case, every spin has an
equal probability of being at each site, and the densities are solely determined
by the modulation of the spatial distributions. We also find good comparison
between the exact results and the MPS results, specially in the excited states.
We find an agreement of approximately 97% between exact and numerical
approaches for the energies of each state. This is mainly due to an imprecision
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in the approximation of the continuum with MPS, and can be improved by
considering a larger number of sites in the Hubbard model (see Appendix A
for details).

2.5 Experimental remarks

In this chapter and throughout the next sections, we assume that systems of
strongly interacting cold atoms in effectively one-dimensional geometries can
be produced in the lab, using a combination of sophisticated experimental
techniques. In this section we comment on the technical details associated
with these experimental procedures.

A first necessary feature of the systems we consider here is the low tem-
perature. The methods involved in achieving the necessary temperature for
experiments with cold atoms (tipically on the scale of 100 nK) date back to the
creation of the first Bose-Einstein condensates [1, 2]. Usually, a combination
of laser cooling [3] and evaporative cooling [4] is employed. In the first case,
laser arrays with a frequency slightly below that of an atomic transition of the
element are placed in opposite directions. Due to the Doppler effect, atoms
moving towards the laser beams tend to absorb photons, since they experience
a small increase in the laser frequency. If the recoil energy of reemission of
these photons is below the initial kinetic energy of the atoms, the net effect of
this process is a reduction of the total kinetic energy of a sample, which means
the temperature is reduced. The basic idea behind evaporative cooling [11]
is that the internal state of the atoms with larger kinetic energy is changed,
such that the trapping potential no longer affects them. The atoms are then
free to evaporate from the trap, leaving behind only atoms with a smaller
kinetic energy, which also leads (after collisional processes) to a decrease in
the sample’s temperature.

Naturally, some of these methods already imply a detailed control over
the confining potential. These traps are usually realized in terms of optical
lattices, where counter-propagating laser beams create standing waves. The
minima of these stading waves can then be used to create effective wells that
confine the atoms. By combining counter-propagating waves in two or three
directions, it is possible to create arrays of one-dimensional tubes or cigar-
shaped traps - where the motion of the atoms is effectively one-dimensional
- or even three-dimensional lattices (see Fig. 2.6 for a schematic depiction of
these scenarios).

An additional factor which is decisive in the realization of experiments
with trapped cold atoms is the control over interactions. A true interaction
potential generally has a somewhat complicated form which is usually given
by the Van der Waals force; at low energies, however, this interaction can
be treated as an effective contact potential - described by a δ(r) function
- with a strength that depends only on a parameter known as the three-
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Figure 2.7: Schematic depiction of the realization of a) two-dimensional pancake
traps, b) effectively one-dimensional cigar-shaped traps and c) a lattice potential. Fig-
ure taken from Ref. [53].

dimensional scattering length a3D [6]. This quantity can be controlled by
exploring the phenomenon of Feshbach resonances [14]. These occur when the
energy difference between a scattering channel and a bound state channel in
a two-body interaction approaches zero. This effect can be manipulated with
the action of magnetic fields, which leads to the possibility of changing the
scattering length between atoms according to

a3D(B) = a0
3D

(
1− ∆

B −B0

)
(2.30)

where B0 is the position of the Feshbach resonance, ∆ is the energy separation
between the open and closed channels and a0

3D is the scattering length in the
abscence of magnetic fields. The relation between the coupling strength in
three dimensions and the scattering length is given by

g3D = 2π~2a3D
m

. (2.31)

The application of a magnetic field thus allows for a tuning of the scattering
length over a wide parameter space, resulting in different interactions in the
attractive or repulsive regimes.

Another important development in the control of interactions between
atoms trapped in optical lattices is the discovery of the so-called confinement-
induced resonances (CIR). Let’s assume a system that is trapped in a two-
dimensional harmonic potential, where the longitudinal and transversal trap-
ping frequencies are given by ω‖ and ω⊥, respectivelly. We also make ω‖ � ω⊥,
such that the motion of the atoms is effectively frozen in the transversal di-
rection (this system is realized with the cigar-shaped traps in Fig. 2.7). We
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then define the transversal oscillator length as a⊥ =
√
~/mω⊥, where m is

the atomic mass. It has been shown by Maxim Olshanii [15] that the one-
dimensional coupling strength for this system is given by

g1D = 2~2a3D
ma2
⊥

1
1− Ca3D/a⊥

, (2.32)

where C = 1.0326 is a constant which has been verified experimentally [54].
Notice that a resonance occurs for a⊥ = Ca3D, making the one-dimensional
coupling infinitely large.

By combining the techniques described above, experimental physicists have
been able to study a myriad of low-dimensional models in radically different
interaction regimes. As examples, we have the Tonks-Girardeau [25, 26] and
the Super Tonks-Girardeau [27] gases, which are obtained for infinitely strong
repulsive and attractive interactions, respectively.

An ingredient which introduces an additional degree of complexity in these
experimental realizations is the possibility of exploring the atomic hyperfine
structure. Many of the early experiments realizing Bose-Einstein condensates
employed single-component dilute vapors of alkali metals, such as Rubidium
(Rb), Sodium (Na), Lithium (Li) and Potassium (K). Elements of this family
are usually favored due to the simplicity of their electronic structure, where
the outermost electron lies in a s- orbital.

The number of available internal states naturally depends on the choice of
atomic element. In general, these states can be accessed and manipulated with
radiofrequency or microwave pulses. As we have shown, when interactions
between the atoms become really strong, we can treat our interactions in terms
of spin permutations in one dimension, with the internal degrees of freedom
now being interepreted as “pseoudospin" states. These hyperfine states are
usually labelled as |F,mF 〉, where F denotes the total spin (including the
nuclear spin) and mF the spin projection on a chosen axis. An experiment
with a two-component 87Rb gas, for instance, explores the |F = 1,mF = −1〉
and |F = 2,mf = 1〉 hyperfine states of this element [55]. Fermionic few-
body experiments, on the other hand, tipically use 6Li fermions, with the
hyperfine states defined by |F = 1

2 ,mf = 1
2〉 and |F = 1

2 ,mf = −1
2〉 [28,

29]. The interactions between different components are usually tuned through
Feshbach or confinement induced resonances, with the additional possibility
of introducing imbalanced interactions is some particular cases [56].

Finally, recent experiments have been able to achieve multi-component 1D
gases exploring the internal states of fermionic ytterbium (173Yb) [36]. Here,
the atoms have zero electronic spin, so the internal states are defined only by
the nuclear spin. Since the interactions between atoms in different internal
states are all equal, this fermionic system presents SU(N) symmetry (with up
to N = 6 is this particular realization). The possibility of exploring such a
high number of interal states has led to the concept of “synthetic dimensions"
[38], which has also been contemplated in experiments with 87Rb [37].
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Chapter 3

Dynamical realization of
magnetic states

Our first application of the formalism described in the previous part is the case
of a few-body Bose gas, where the interactions can be dynamically tuned. Pre-
vious works have shown that a few-body one-dimensional Bose gas with two
internal components can present the prototypical features of quantum mag-
netism [57]. Additionally, it has been shown that the intraspecies interactions
have a decisive role in defining the magnetic properties of its ground state
[52]. Here we focus on a system where the intraspecies interaction is slowly
changed in time, and we calculate the dynamical spin densities of the system.

The following sections are based on the work published in Ref. [58]. With
respect to the published paper, we have substantially modified this introduc-
tion and Sections 3.1 and 3.3 to remove redundant information regarding the
definition of the system and general conclusions. Except for minor modifca-
tions, Section 3.2 (including the figures) remains identical to the publication.
The content of this chapter has also been presented as part of the Qualifying
Exam.

3.1 Hamiltonian and initial state

We consider a trapped one-dimensional Bose gas with contact interactions
and two different bosonic species (↑, ↓). The total number of particles is
N = N↑ +N↓ where N↑ and N↓ are the numbers of particles of species ↑ and
↓, respectively. The N -body Hamiltonian is given by Eq. (2.10), which, for
convenience, we rewrite as

H =
N∑
i

H0(xi) + g
∑
↑↓
δ(xi − xj) + κg

∑
↑↑
δ(xi − xj) + κg

∑
↓↓
δ(xi − xj),(3.1)
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where we assume ~ = m = 1 and

H0(x) = −1
2
∂2

∂x2 + 1
2ω

2x2 (3.2)

is the single particle Hamiltonian in a harmonic trap. The remaining terms
of the Hamiltonian account for the contact interactions between particles of
different species (with strength parameter g) and of the same species (with
strength parameter κg). We consider the length, time and energy units to
be l =

√
~/mω, τ = 1/~ω and ~ω, respectively, where ω is the longitudinal

harmonic confinement frequency. The units for the interaction parameter g
are given by ~2/(ml).

In the limit of infinite repulsion (1/g = 0), the solution of this system
is given by the Bose-Fermi mapping, as shown previously. The energy of
the system in this limit, E0, is simply the sum of the energies of the lowest
occupied energy levels of the potential V (x). In the limit of strong interactions
(g � 1), the Hamiltonian (3.1) can be mapped, up to linear order in 1/g, to
the spin chain given by Eq. (2.24). In the limit of κ → ∞ and positive g
the identical bosons are infinitely repulsive, while for κ = 1, the interaction
strength between all bosons is the same. In the particular case of κ = 2 we have
an effectiveXX model, as summarized in Ref. [46]. The spin model for bosons
described in Ref. [59] can be obtained from Eq. (2.24) by performing a unitary
transformation (see Supplemental Material of Ref. [50]). The coefficients α
depend only on the geometry of the trap and are obtained from Eq. (2.19). We
will mainly focus on the N = 5 problem, for which we obtain α1 = α4 ≈ 2.166
and α2 = α3 ≈ 3.177 (since the trap is symmetric, we have that αi = αN−i).
Due to a factor of 1/2 in the Hamiltonian, our geometric coefficients αi are
twice as large as the ones calculated in Ref. [52].

By taking Eq. (2.6) for the case of N = 5, we can calculate the spin
densities for the imbalanced cases of three bosons of species ↑ and two bosons
of species ↓ (N↑ = 3, N↓ = 2) and four bosons of species ↑ and one boson of
species ↓ (N↑ = 4, N↓ = 1). To write the separate densities for components
↑ and ↓ we must combine the spatial and spinorial contributions; the density
for component ↑, for instance, is given by ρ↑(x) =

∑N
i=1 ρ

i
↑(x) (Eq. (2.29)),

where ρi↑ = mi
↑ρ
i(x). The value of mi for an eingenstate is found by exact

diagonalization of Hamiltonian (2.24), where we consider g = 100. Since the
total spin projection is conserved, we choose a truncated basis composed by
|↑↑↑↓↓〉, ..., |↓↓↑↑↑〉 for the N↑ = 3, N↓ = 2 case and |↑↑↑↑↓〉, ..., |↓↑↑↑↑〉 for the
N↑ = 4, N↓ = 1 case.

We now construct the initial states of the system by choosing the ground
states in which the intraspecies interaction is smaller than the interspecies
interaction (κ = 0.1). In Fig. 3.1 we show the spin densities for the imbalanced
cases of N↑ = 3, N↓ = 2 and N↑ = 4, N↓ = 1. At this point, due to the
difference in the interaction strengths, the species tend to separate in the trap.
The densities profiles for κ < 1 show a ferromagnetic (FM) order [60] of the
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Figure 3.1: Spin densities for the initial states, with κ = 0.1, for the (a) N↑ = 3, N↓ =
2 and (b) N↑ = 4, N↓ = 1 cases. The separation of different components in the trap
indicates a FM behavior.

Ising type (as opposed to the case where κ = 1, which will be addressed next).
In panel (b), we see a density that is similar to that of the Bose polaron [57],
where a strongly interacting impurity is pushed to the edges of the system.

3.2 Dynamics
We now consider the time evolution of the system for a slow increase in
the intraspecies interaction parameter κ. We take κ varying in the inter-
val [0.1, 10.1]. The eigenfunctions of the spin chain Hamiltonian thus evolve
as

|χ(tf )〉 = U(tf , t0)|χ0〉 (3.3)

where U(tf , t0) is the time evolution operator and |χ0〉 is the initial state.
Since the Hamiltonian is time dependent, we can break the time evolution in
several steps

|χ(tf )〉 = U(tN , tN−1)...U(t2, t1)U(t1, t0)|χ0〉 (3.4)

increasing ∆κ = 10−5 and taking the Hamiltonian to be constant at each time
step.

During the first steps of the time evolution (κ ∼ 0.1) the change in energy
at each step is larger than the energy gap ∆E between the ground state and
the first excited state of Hamiltonian 2.24. This means that, initially, the
evolution of the system is not adiabatic, although κ is still slowly increasing.
Therefore, the whole set of eigenvalues and eigenstates of the spin chain must
be calculated for all times. The energy gap between the ground state and the
first excited state of the spatial wave function, however, is given by ~ω �
∆κ~ω, so we can neglect the excited states of Φ(x1, x2, ..., xN ). The recursion
formula for the time evolution of the spin wave function is then given by

|χi+1〉 =
ν∑
i=1

ci+1
n e−iE

i+1
n ∆t|φi+1

n 〉, (3.5)
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Figure 3.2: Time evolution of the squared projection of the wave function over the
initial state for (a) the N↑ = 3, N↓ = 2 and (b) the N↑ = 4, N↓ = 1 cases. In both
figures, we disregard the projections over basis states that are symmetric and therefore
show the same results. At t = 0.45 × 104 [τ ], the system reaches the Heisenberg type
FM state characterized by κ = 1, where the values for all the projections are the same.

where i denotes the time step, Ei+1
n and φi+1

n are the eigenvalues and eigen-
vectors of the Hamiltonian 2.24 at step i + 1, ci+1

n = 〈φi+1
n |χi〉 and ν is the

number of eigenstates (the total time evolution may be thought of as a succes-
sion of small quenches, with fixed ∆t = 0.05 [τ ]). In Fig. 3.2 we show the time
evolution of the squared projection of the wave function over the initial state,
F 2
ξ (t), with Fξ(t) = |〈ξ|χ(t)〉|, where |ξ〉 is some basis state (e.g. |ξ〉 = |↑↑↑↓↓〉

for the N↑ = 3, N↓ = 2 case).
In Fig. 3.3 we present the time evolution (up to t = 1.5 × 104 [τ ]) of

the spin densities for the two imbalanced cases under consideration. We see
that, for 0 < κ ≤ 1, the system evolves through a FM phase. This phase is
characterized first by the separation of the two components in the trap and
then (around t = 0.45 × 104 [τ ] and κ ∼ 1) by the typical densities of two-
component bosonic systems with strong repulsive interactions [61]. For the
particular case of κ = 1, all interactions are identical. The magnetic order
is of the Heisenberg FM type with isotropic interactions, and the squared
projections assume the same values for all basis states, as we can observe in
Fig. 3.2. Notice the distinction between the profiles in this regime and in the
Ising type FM regime of κ < 1. In Fig. 3.4 (a) and (b), we show the comparison
between the slice at t = 0.5× 104 [τ ] (which corresponds to κ = 1.1), and the
results obtained by exactly diagonalization of Hamiltonian 2.24 with g = −100
and κ→∞. In this limit, the densities reproduce the results expected for the
strongly attractive two-component fermionic gas [52].

As the intraspecies interaction becomes stronger (κ > 1) an antiferromag-
netic (AFM) profile starts to arise. This is seen in plots as the increase of the
projections over the states |↑↓↑↓↑〉 and |↑↑↓↑↑〉 in Fig. 3.2. Finally, for κ� 1,
the AFM profiles become more pronounced. In Fig. 3.4 (c) and (d), we com-
pare the final densities at κ = 10.1 to the results obtained for κ → ∞. The
results in this case match the AFM states of strongly repulsive two-component
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Figure 3.3: Initial part of the time evolution (t ≤ 1.5 × 104 [τ ]) of the spin densities
for the cases of (a) N↑ = 3, N↓ = 2 and (b) N↑ = 4, N↓ = 1. Red and blue curves
indicate ↑ and ↓ bosons, respectively. Initial profiles (up to t = 0.5× 104 [τ ]) indicate
FM states. At around t = 104 [τ ], AFM profiles start to arise.

fermions. It is important to point out that while the spin densities may re-
produce results of fermionic systems in certain limits, this may not be true
for other correlations (e.g. the momentum distribution).

The total time evolution is given by tf = 0.5 × 105 [τ ]. In current exper-
imental setups, the inverse frequency τ is of the order of 100µs [39]. This
results in a total time of 5 seconds for the process we are considering, which
is a relatively long time for experiments with ultracold atoms. We point out,
however, that the transition from FM to AFM-like profiles is manifested early
on in this time evolution. This means that these effects could conceivably be
observed in smaller time intervals. Alternatively, increasing the trap frequency
could lead to smaller time scales, where the increase in the interactions would
take a shorter time.
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Figure 3.4: Spin densities at κ = 1.1 compared to the results obtained with g = −100
and κ → ∞ in the (a) N↑ = 3, N↓ = 2 and (b) N↑ = 4, N↓ = 1 cases. Final profiles
(t = 0.5 × 105 [τ ], κ ∼ 10) of the bosonic system compared to the limiting case of
g = 100 and κ→∞ for the (c) N↑ = 3, N↓ = 2 and (d) N↑ = 4, N↓ = 1 cases.

3.2.1 Balanced System

We consider now a balanced system composed of N↑ = 2, N↓ = 2. Once again
we choose an initial state where the intraspecies interaction is smaller than
the interspecies interaction (κ = 0.1). In Fig. 3.5 (a), although a FM profile
is still observed, there is no visible separation of components in the trap, due
to the fact that the system is now balanced.

Since the probabilities of finding spin up and down bosons at each site
are always the same, the spin densities do not change in time as κ increases.
However, the squared projections display a behavior analogous to that of the
imbalanced cases, where the AFM states become dominant as κ→∞. Unlike
the imbalanced cases, the AFM state for N↑ = 2, N↓ = 2 is composed by the
linear combination of |↑↓↑↓〉 and |↓↑↓↑〉.

3.3 Conclusions

In this chapter we showed that different magnetic profiles can be obtained
by dynamically changing the intraspecies interactions of a two-component
strongly repulsive few-body bosonic gas. Due to the strong interactions, this
model can be mapped to an effective spin chain with solutions that completely
determine the state of the system. By slowly increasing the interactions be-
tween the identical bosons, we are able to keep the spatial densities fixed in
the ground state, while the spin eigenstates evolve in time. The spin densities
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Figure 3.5: (a) Spin densities for a balanced N↑ = 2, N↓ = 2 system. Due to the
absence of imbalance in the number of atoms, there is no change in the spin densities
as κ is varied. (b) The squared projections display a transition from FM to AFM
states similar to those observed in the imbalanced cases.

then display a clear transition between ferromagnetic and antiferromagnetic
profiles. In addition, during this evolution the system exhibits results that
match the limiting cases of strong interspecies attraction or repulsion, de-
pending only on the tuning of the parameter κ.





Chapter 4

Junction dynamics in a
trapped system with an
impurity

In this chapter we study a strongly interacting system composed of an impu-
rity and a bosonic background in single- and double-well potentials. Different
methods have been employed to study the many-body problem of bosons in
a double-well, even outside the mean-field regime [62–66]. Addressing the
subject from a few-body perspective [67–71], however, might lead to new in-
sight on the properties of these systems. Here we show that, in the regime
where the repulsion between the impurity and the background is dominant,
the system can exhibit non-trivial dynamical effects: the impurity undergoes
Josephson-like oscillations when initialized at the edge of the system, and can
have its tunneling enhanced when a barrier is present. The persistent current
oscilations that characterize a Josephson junction have been first predicted
[72] and observed [73] in condensed matter systems with superconducting de-
vices. Later, however, an analogous effects was shown to occur in ultracold
bosonic systems in double-well geometries [74, 75]. The effects described here
provide new perspectives in the study of spin state transfer and quantum
transport in one-dimensional systems, and should be observable using current
experimental techniques.

The content of this chapter has been published in Ref. [42]. With respect
to the published paper, we have made substantial changes to the next two
sections, where we have removed information that is already contained in
Chapter 2. The last section, which was published as an Appendix in Ref. [42],
was also been edited: with respect to the published material, we have kept
only the relevant information on the single-particle solutions in the double-
well. Except for minor modifications, the remaining part of the chapter and
the figures have been kept identical to the original publication.
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CHAPTER 4. JUNCTION DYNAMICS IN A TRAPPED SYSTEM WITH

AN IMPURITY

4.1 System description and Hamiltonian
We consider the problem of an impurity confined in the presence of a back-
ground of strongly interacting bosons. We assume the impurity is a boson in an
internal state defined by |↓〉, while the remaining identical bosons are described
by |↑〉. Consequently, all atoms have the same mass m. Two-component Bose
gases can be realized experimentally using, for instance, 87Rb atoms in dif-
ferent hyperfine states, as described in Chapter 2. The number of identical
bosons is given by N↑, while the total system size is N = N↑+ 1. The Hamil-
tonian for this problem is given by Eq. (2.10), which we rewrite - to consider
a single atom in the |↓〉 state - as

H =
N∑
i=1

H0(xi) + g

N↑∑
i=1

δ(x↓ − x↑i) + κg

N↑∑
i<j

δ(x↑i − x↑j). (4.1)

The coordinates are thus denoted by x↓ for the impurity and x↑i for the
remaining bosons. The interaction parameters are defined as in Chapters 2 and
3. The single-particle Hamiltonian in Eq. 4.1 is given by H0(x) = − ~2

2m
∂2

∂x2 +
V (x). Here, V (x) is a double-well potential (see Fig. 4.1) expressed as V (x) =
1
2mω

2
(
|x| − b̃

)2
, where ω is the trapping frequency. The parameter b̃ denotes

the displacement of the two minima of the wells with respect to the origin, and
also defines the size of the barrier at this point as V (0) = 1

2mω
2b̃2. We then

refer to b̃ as the “barrier parameter". By making b̃ = 0 we naturally recover the
harmonic single-well potential. Although this form of potential has analytical
solutions in terms of parabolic cylinder functions [9], we obtain the single-
particle wave functions and energies through numerical diagonalization (see
4.5).

We will focus on the behavior of the spatial distributions and the impu-
rity dynamics in the repulsive case (g, κ > 0), for different choices of the
intraspecies interaction parameter κ and the barrier parameter b̃. While cases
of attractive interactions (g, κ < 0) can in principle be explored, the properties
of the system in this regime reproduce only highly excited states related to
the so-called Super Tonks-Girardeau gas [27, 76]. Simulating the dynamics of
systems with attractive interactions would likely require taking into account
the formation of bound pairs, an effect which is beyond the scope of the for-
malism employed here. Throughout this chapter, we consider all quantities
in harmonic oscillator units; therefore, length, energy and time are given in
units of l =

√
~/mω, ~ω and ω−1, respectively. While the intraspecies inter-

action parameter κ is dimensionless, the parameter g is considered in units of
~2/ml. For simplicity, we also make the barrier parameter dimensionless by
rescaling it as b = b̃/l. In our calculations, we set g = 20 and assume that
~ = ω = m = 1.

In the limit of strong interactions (g � 1), Hamiltonian 4.1 can be written,
up to linear order in 1/g, as the XXZ spin chain (2.24) with the appropriate
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Figure 4.1: Sketch of the 1D bosonic system with an impurity in the double-well
potential. The parameter b̃ sets the position of the minimum of each well and also
the size of the barrier between them at x = 0. In the limit of strong interactions, the
system can be mapped to a spin chain where the coefficients α are determined by the
shape of the trap.

number of atoms in each species. The coefficients αi are calculated using the
wave function for a system of N spinless fermions, which is constructed as the
Slater determinant of the lowest occupied orbitals in the trap (see Section 4.5).
The spatial part of the wave function for a bosonic system is obtained by means
of the Fermi-Bose mapping. A comparative study of the spatial distributions
for a strongly interacting few-body bosonic system in the double-well has been
presented in Ref. [77].

4.2 Spin densities

To obtain the probability densities for each component in the system, we
must combine the spatial distributions of the atoms in the trap with the
probability of finding a given spin component at each site of the spin chain
described by Eq. 2.24. The spin densities are calculated according to Eq.(2.29).
The quantities ρ↓(x) and ρ↑(x) thus describe the spatial distributions of the
impurity and the background bosons, respectively. In Fig. 4.2 a) we show the
results for the spin densities of a 3+1 system for b = 0 (single-well) and b = 2
(double-well) at different values of the intraspecies parameter κ.

The cases where b = 0 correspond to the results expected for the harmonic
trap, which have been broadly covered for bosonic and fermionic systems in
previous works [33, 61, 78–80]. For κ < 1 the repulsion between the impu-
rity and the background is larger than the background repulsion. This causes
the impurity to be pushed to the edges of the system, which is an effect also
found in the case of a weakly interacting background [60]. In this regime,
the system exhibits Ising-type ferromagnetic correlations, and is character-
ized by a nearly degenerate ground state [52]. At κ = 1, all interactions
are equal and the spin densities show the Heisenberg-type ferromagnetic pro-
files expected for isospin bosons [81]. In this case both distributions display
the same characteristic Tonks-Girardeau spatial densities, but scaled to the
number of particles in each species. When κ > 1, the repulsion between the
background bosons dominates, and we observe predominantly antiferromag-
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Figure 4.2: a) Spin densities for the ground state of a 3+1 system at different values
of the barrier parameter b and of the background interaction parameter κ (the values
for each panel are determined by the labels on the rows/columns). The red curve
corresponds to the background density ρ↑(x) while the blue curve corresponds to the
impurity density ρ↓(x). b) Spin densities for a 9+1 system at κ = 0.2 and two
different choices of b. For a larger value of b, the impurity has a greater probability
of being placed near the barrier, at the center of the system. The density for each
component is normalized to its corresponding number of particles.

netic correlations, where the impurity is placed near the center of the trap.
These correlations for the system with a single impurity are in agreement with
the results found for mixed systems in Chapter 3.

In the double-well potential, all densities are depleted in the center of the
system, but this is not the only relevant effect. For the case of κ < 1 the
impurity has now a larger probability of being near the center of the trap (as
compared to the single-well case), since the background density is strongly
reduced in this region. It is even possible to expect a configuration (specially
for a larger number of background bosons) where the impurity is completely
localized near the barrier between the wells (see Fig.4.2 b)). This effect is
directly related to the imbalance in the numerical values of the geometrical
coefficients at the edges and near the center of the system as b is increased.
For the cases of κ = 1 , again the impurity and the background densities have
the same shape, aside from normalization. At κ > 1, we observe a similar
configuration, with a small bias of the impurity toward the center of the trap.

4.3 Dynamics

We now turn to the dynamics of the impurity after being initialized at the
left edge of the system. The corresponding spin state is therefore given by
|↓↑↑↑〉. Since this is not an eigenstate of the spin chain, we can expect the
spin state to evolve in time governed by Eq. (2.24), and we denote it by |χ(t)〉.
A thorough study of spin state transfer in traps of different shapes has been
done by Volosniev et. al. in Ref. [46]. It has been shown [47, 82, 83] that
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transfer is optimized by considering κ = 2 (which turns Eq. (2.24) into an
XX Hamiltonian) with a set of exchange coefficients where αj ∝

√
j(N − j).

Here we focus on the tunneling times for the impurity between the wells (or
between the left and right sides of the system in the case of a single well) when
the background repulsion is smaller than the repulsion between the impurity
and the background (κ < 1). We point out that, since we do not consider any
other external perturbations, like trap or interaction quenches, we can assume
that the spatial distributions remain in the ground state. This also allows
us to consider only the manifold of Eq. 2.24 with lowest energy, as done in
Chapter 3. To quantify the dynamics of the impurity, we calculate its average
position as

〈x↓(t)〉 =
∫
ρ↓(x, t)x dx, (4.2)

where ρ↓(x, t) is the time dependent spin density calculated with the spin state
|χ(t)〉. When considering the regime of κ < 1, we observe that the projections
of the initial wave function on the two-lowest eigenstates are dominant when
compared to the case of higher excited states. This allows us to attempt a
two-level description for the time evolution of the spin wave function; we thus
write |ψ(t)〉 = cge

−iωJ t|g〉+ ce|e〉, where |g〉 and |e〉 denote the two egeinstates
of the spin chain with lower energy, and cg and ce are the projections of the
initial wave function over these states. The frequency ωJ = Ee − Eg is given
by the gap between the energies of the first excited state Ee and the ground
state Eg.

In Fig. 4.3, we present the results for 〈x↓(t)〉 in the single-well (b = 0)
and double-well potentials (b = 2), with two choices of κ < 1, also showing a
comparison with the two-level description in each of these cases. At b = 0, we
notice that the motion of the impurity between the edges of the system is very
well captured by the two-level approximation. This behavior clearly resem-
bles the oscillations in population expected for a bosonic Josephson junction
described as a many-body system in a double-well. In the present context,
however, the barrier is composed by the repulsive background gas. We expect
these results to hold even in the case of more than one impurity, provided
that the system is imbalanced (that is, the background gas must have a larger
number of particles). In this situation, an initial state decribed by the minor-
ity species completely localized at either side of the trap should have its time
evolution governed mainly by the two lowest energy states. In the single-well
case with weaker intraspecies interaction (κ = 0.2) the tunneling of the impu-
rity is suppressed. Here, the the behavior of the background approaches that
of an ideal Bose gas, where the atoms tend to “bunch up" in the center of the
trap.

Now, comparing the single- and double-well cases, we see that, for κ =
0.5, the presence of the barrier slows down the tunneling of the impurity.
Furthermore, we observe oscillations on a smaller scale, due to a larger overlap
between the initial state and the excited states of the spin chain Hamiltonian.
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Figure 4.3: Impurity average position as a function of time for different values of κ
and b. The solid red curves show the exact results, while the blue dashed curves are
obtained with the two-level description (see text).

At κ = 0.2, however, we get an enhanced tunneling of the impurity when
considering a double-well as opposed to the single-well case. This effect has
been also found with a different choice of double-well potential [46]. One might
interpret it as a splitting of the background gas by the barrier in such a way
that the impurity is able to tunnel through faster than it would in the absence
of the barrier. However, if we consider a single-particle problem where an
atom is initialized in the left well, it is clear that increasing the barrier size
would only lead to exponential suppression in the tunneling frequencies. We
therefore conclude that the accelerated tunneling observed in the regimes we
consider is only possible due to the presence of the bosonic background, and
thus constitutes a many-body effect.

To get an understanding of this behavior over a larger parameter space,
we plot in Fig. 4.4 the energy gap between the ground state and the first
excited state for several values of κ and b. The non-monotonic behavior of
the gap as a function of b indicates that, for small κ, there is some choice
of barrier size that increases that energy gap, and therefore enables a higher
tunneling frequency between the wells. As κ increases, however, we see that
this behavior disappears and the presence of the barrier only reduces the gap,
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Figure 4.4: Energy gap between the two lowest states of the spin chain for different
values of the barrier parameter b and background interaction κ for the 3+1 case.

thus making the tunneling slower.

4.4 Increasing N↑

As a final example, we consider a case where we increase the number of back-
ground bosons to N↑ = 5 (to observe similar effects as in the case of N↑ = 3,
we choose to maintain an even total number of atoms). The initial state is
once again defined by the impurity placed at the left edge of the system, that
is, |↓↑↑↑↑↑〉. We keep the intraspecies repulsion parameter fixed at κ = 0.25.

In Fig. 4.5 a) we once again show the results for the average position of the
impurity as a function of time. For the single-well, the tunneling times are so
long that the impurity is effectively frozen at the left edge of the system. In
this case, an analogy can be drawn to the self-trapped regime in a few-body
system as presented in Ref. [67]. For b = 3, however, we again notice that a
faster motion of the impurity from the left to the right well is induced. The
difference in the results with and without the barrier is even clearer than in
the case of N↑ = 3. This can also be seen in the energy gap between the two
lowest states, as presented in Fig. 4.5 b): a very pronounced curve shows the
increase in this quantity for small κ and b > 1. We point out that the final
time (t = 104 in units of ω−1) considered in the present case is five times
larger than in the case of N↑ = 3.

4.5 Single-particle solutions

In this section we present the solutions obtained with numerical diagonal-
ization for the single-particle problem in a double-wel. The eigenvalues and
eigenstates of a particle in a double-well were obtained through numerical
diagonalization of the Hamiltonian H0 using the 50 lowest states of the har-
monic oscillator trap (b = 0) as basis. In Fig. 4.6 we present these solutions
for different values of the barrier parameter b. In panel a), we show the the
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Figure 4.5: a) Average position of the impurity as a function of time for the 5+1 case,
in the single- (b = 0, red solid curve) and double-well (b = 3, blue dashed curve). The
background interaction parameter is set as κ = 0.25. b) Energy gap between the two
lowest states of the spin chain for different values of the barrier parameter b and
background interaction κ.

eigenvalues obtained from numerical diagonalization and compare to results
obtained from the open-source code CONAN [48] (we also use this tool to
obtain the numerical values of the exchange coefficients α as the barrier pa-
rameter is increased). Notice how each pair of states becomes degenerate as
the barrier size is increased. This is reflected in the eigenstates shown in panel
b): at larger values of b, the ground state and the first excited state have the
same probability distribution, differing only in parity.

4.6 Conclusions

In this chapter we have studied the static and dynamic properties of an impu-
rity in the presence of a background of bosons in single-well and double-well
geometries. The ground state spin densities are described by a combination of
the spatial distributions in the limit of infinite repulsion and the eigenstates
of a spin chain. We have shown that the dynamics of an impurity initialized
at the left edge of the system displays oscillations similar to the ones observed
in Josephson junctions. Additionally, for weaker background interactions, the
tunneling of the impurity can in fact be enhanced by the introduction of a bar-
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Figure 4.6: a) Single-particle energies of the 4 lowest eigenstates of the double-well
potential as a function of the barrier parameter b. The dotted curves show the results
calculated with CONAN (see text), while the symbols are the values obtained by nu-
merical diagonalization. The inset shows the energy E0 of the spinless fermion wave
function as a function of b for N = 4. b) The four lowest single-particle eigenstates
for different values of the barrier parameter b. Solid blue, dashed red, dotted green and
dot-dashed black curves correspond to ground state, 1st, 2nd and 3rd excited states,
respectively.

rier. This many-body effect is only possible in the presence of a background.
We interpret it as the increase of the gap between the two lowest energy states,
which governs the low-frequency dynamics of the system. Our results open
new perspectives on the study of quantum transport in one-dimensional sys-
tems, hinting at the possibility of realizing a bosonic Josephson junction in the
complete absence of an artificial barrier. Moreover, the inclusion and manipu-
lation of double-well potentials and even lattices may allow for the optimized
transfer of spin states.





Chapter 5

Effects of interacting
imbalance in a Bose mixture

In this chapter, we focus on a yet unexplored regime of interactions in a one-
dimensional strongly interacting Bose mixture. We show that, assuming an
imbalance in the interaction between the two species it is possible to obtain
radically different spatial correlations in a few-body system. Furthermore,
we describe the dynamics of a mixture with imbalanced populations in this
interaction regime. We observe that, for a certain combination of interactions,
the minority species can travel through the system as an effective spin wave
packet.

The content of this chapter has been published in Ref. [84]. With respect
to the original publication, much of the Introduction has been removed to
avoid redundance with the information provided in Chapter 2. Some of the
definitions in the next two sections have also been replaced by references
to equations described in Chapter 2. The interpretation of the results, the
conclusions and the figures have been kept identical to the publication, except
for minor modifications.

5.1 Hamiltonian

We consider the problem of a two-component Bose gas with population and
interaction imbalance in an effective one-dimensional trapping geometry. We
assume that the two different components consist of atoms of a same element,
but in different hyperfine states. Therefore, the two bosonic species we take
into account have the same mass m, but are defined by the states |↑〉 or
|↓〉; the number of atoms in each species is respectively given by N↑ and N↓,
with the total number of atoms written as N = N↑ + N↓, as considered in
Chapter 3. We are interested in the spatial distributions and the dynamics of
an imbalanced mixture where a minority species with N↓ atoms interacts with
the remaining N↑ majority atoms. The general Hamiltonian for this system,
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considering contact interactions, is given by Eq. (2.10). Here, we conveniently
rewrite it as

H =
N∑
i=1

H0(xi) + g↑↑

N↑∑
i<j

δ(x↑i − x↑j)

+g↓↓
N↓∑
i<j

δ(x↓i − x↓j) + g↑↓

N↑∑
i

N↓∑
j

δ(x↑i − x↓j), (5.1)

where H0(x) = − ~2

2m
∂
∂x + V (x) is the single particle Hamiltonian with a trap-

ping potential given by V (x). In the following we consider energy units of
ε = ~2/(mL2), where L is the length of the trapping potential, and assume
that ~ = m = 1. We consider the general case of different intraspecies and
interspecies interactions, that is g↑↑ 6= g↓↓ 6= g↑↓. The particular case of
g↑↑ = g↓↓ = g↑↓ can be solved (for a homogeneous case) with the Bethe
ansatz. In the limit of strong interactions (g � 1), the Hamiltonian (5.1) can
be mapped (up to linear order in 1/g) to an effective spin chain. Here, we
write that expression in the most general case of different interactions between
the components as [59]

Hs = E0 −
N−1∑
i=1

αi

(
1
g↑↑

P i,i+1
1,1 + 1

g↓↓
P i,i+1

1,−1 + 1
g↑↓

P i,i+1
1,0

)
, (5.2)

where PS,M denotes the projection operator on the two-particle eigenstates
with total spin S and magnetization M , while E0 is the energy in the limit
of infinite repulsion (see below). The exchange coefficients αi are again deter-
mined by the trapping potential. Contrary to the previous chapters, in the
next sections we will focus on a system trapped in an infinite square well of
length L, where all coefficients αi have the same constant value. We point
out that the results for the spatial distributions shown in the next section
also hold for the case of a harmonic trap. Since we consider the bosonic case
where no interaction between atoms is forbidden by the Pauli principle, the
two-body scattering happens in the triplet channel [59]

|1, 1〉 = |↑↑〉; |1,−1〉 = |↓↓〉; |1, 0〉 = |↑↓〉+ |↓↑〉√
2

, (5.3)

from which the projectors in Eq.(5.2) can be built as

P1,1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , P1,−1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , P1,0 = 1
2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 .(5.4)
Following the same reasoning, spin chains for bosons or fermions with a higher
number of internal components can be constructed [85, 86]. By expanding
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the projection operators in terms of the Pauli matrices [59], it is possible
to reproduce a XXZ Hamiltonian (for g↑↑ = g↓↓ 6= g↑↓) and the Heisenberg
Hamiltonian with ferromagnetic correlations (for g↑↑ = g↓↓ = g↑↓) [81].

5.2 Spatial distributions

We now focus on calculating the spatial distributions of a two-component
bosonic system with population imbalance and arbitrary combinations of the
interactions g↑↑, g↓↓ and g↑↓. We point out that, while the interactions may
be different, the spin chain approach only remains valid as long as we have
(g↑↑, g↓↓, g↑↓) � 1. Here, we calculate the densities for individual atoms in
the trap and combine those results with the spin orderings obtained from
the eigenstates of Eq. (5.2). Thus the spin densities are again defined by
Eq. (2.29). We stress that this quantity depends on the spinless fermion wave
function Φ0(x1, ..., xi, ..., xN ), which is constructed as the Slater determinant
of N particles in the potential V (x). In our case, those are simply the N lowest
eigenstates of the infinite square-well (the energy E0, present in Eq. (5.2), is
the sum of the energies of these orbitals). Since in these calculations we want
to address a system that is slightly larger than in the previous chapters, and
to avoid having to calculate multidimensional integrals, we obtain the single-
particle densities from Eq. (2.8).

In Fig. 5.1 we show the results for the spin densities calculated for N = 7
atoms and different population imbalances: N↑ = 4, N↓ = 3, N↑ = 5, N↓ = 2,
and N↑ = 6, N↓ = 1. We also consider different interaction regimes, which
we define as: the Heisenberg ferromagnetic (HFM) regime (g↑↑ = g↓↓ = g↑↓),
the Ising ferromagnetic (IFM) regime (g↑↑ = g↓↓ < g↑↓), the antifferomag-
netic regime (AFM) (g↑↑ = g↓↓ > g↑↓) and the completely imbalanced (IMB)
regime (g↓↓ < g↑↓ < g↑↑). Each of these cases corresponds to a column in
Fig. 5.1: in the column defined by panels (a), (e) and (i), we observe the re-
sults for the HFM regime of identical interactions, where the distributions are
the same, only scaled to the number of particles in the specific component.
The profiles show ferromagnetic correlations of the Heisenberg type, which
are expected for isospin bosons [81]. Column (b), (f), (j) show the IFM case
where the intraspecies interaction is smaller than the interspecies interactions.
This regime is characterized by a phase separated distribution, typical of an
Ising ferromagnet. In column (c), (g), (k) we present the AFM case where the
intraspecies interactions are larger than the interspecies interactions. Here,
we observe that antiferromagnetic correlations arise, being particularly visible
in the slightly imbalanced case of panel (c). Finally, we consider in column
(d), (h), (l) a completely imbalanced regime (IMB), where g↓↓ < g↑↓ < g↑↑.
Here, we see that we again obtain phase-separated profiles, except that now
the minority atoms sit in the center of the trap. This happens because the
minority intraspecies interactions are smaller and the net result is an effec-
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Figure 5.1: Spin densities for a system with N = 7 and (a)-(d) N↑ = 4, N↓ = 3, (e)-
(h) N↑ = 5, N↓ = 2, (i)-(l) N↑ = 6, N↓ = 1. The blue curves show the densities ρ↑(x),
while the yellow curves show ρ↓(x). Each column describes an interaction regime (see
text): (a), (e), (i) HFM (g↑↑ = g↓↓ = g↑↓); (b), (f), (j) IFM (g↑↑ = g↓↓ < g↑↓);
(c), (g), (k) AFM (g↑↑ = g↓↓ > g↑↓) and (d), (h), (l) IMB (g↓↓ < g↑↓ < g↑↑). The
density for each component is normalized to the number of particles.

tively attractive regime for this component. We note that these distributions
resemble the XY phase described in a Bose-Fermi mixture [87]. The evident
similarity between the last two panels (k) and (l) stems from the fact that
in both cases there is only one minority particle. Therefore, the intraspecies
interaction in this case has no effect on the minority spin density.

5.3 Dynamics

We now turn to the dynamics of the system in the case of population and
interaction imbalance. We choose to analyze the two cases of N↑ = 5, N↓ = 2
and N↑ = 4, N↓ = 3, with interactions strength ratios set as g↑↓ = 3g↓↓ and
g↑↑ = 5g↓↓. The case of a single minority spin in different interaction regimes
and trapping potentials has been studied in Ref. [46, 47]. We will show that,
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in the imbalanced regime, non-trivial effects for the dynamics of the minority
species can arise. The system is initialized in the state where the minority
species is placed at the left side, that is |ψ(0)〉 = |↓1 ... ↓N↓↑1 ... ↑N↑〉. We
disregard any external excitations to the system, such that the dynamics can
be described completely by Eq. (5.2). The time unit of the system is related
to the energy scale as τ = ~/ε. We calculate the time-dependent overlap of
the wave function with a state |s〉 defined by a given spin ordering as

Fs(t) = |〈s|e−iHSt|ψ(0)〉|2. (5.5)

In Fig. 5.2 we show the results for the cases of (a) N↑ = 5, N↓ = 2 and (b)
N↑ = 4, N↓ = 3. We focus only in the cases where |s〉 denotes a state where
the minority spins are “bunched up" the system, e.g. |↓↓↑↑↑↑↑〉, |↑↓↓↑↑↑↑〉,
and so on.
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Figure 5.2: Time evolution of the overlap probabilities Fs(t) for the population im-
balances (a) N↑ = 5, N↓ = 2 and (b) N↑ = 4, N↓ = 3, in the regime where
g↓↓ = g↑↑/5 = g↑↓/3. Each curve shows the projection over a state with a differ-
ent spin ordering, as indicated by the arrows. The black curves show the sum of the
projections over all states |s〉.

We clearly observe in both imbalanced cases that the minority spins, ini-
tialized in the left, travel through the system together, with higher amplitudes
for the projections over the states with the minority at the edges. We also
show the sum of the projections over all states |s〉, which nearly amounts to
unity at all times, indicating that other spin orderings have little influence on



48
CHAPTER 5. EFFECTS OF INTERACTING IMBALANCE IN A BOSE

MIXTURE

the dynamics. The physical interpretations for this phenomenon comes from
the fact that the majority interactions are dominating with respect to the
remaining two parameters. This leads to a regime where the minority atoms
behave as if under the effect of an attractive force. While this combination
of strongly imbalanced interactions may be hard to achieve in practice, it is
possible to devise a scenario where the majority strongly repulsive bosons are
replaced by a Fermi gas. Bose-Fermi mixures have been studied under the
same formalism applied here [87], and could present similar dynamical effects.

5.4 Conclusions
We have studied the effects of imbalance in the spatial correlations and dy-
namics of a strongly interacting two-component Bose gas. The results for spin
densities reproduce the expected behavior in the known regimes of ferromag-
netic and antiferromagnetic correlations. Furthermore, the completely imbal-
anced case can present non-trivial spatial distributions that are not found in
other regimes. The dynamics of the system is also affected by the population
and interaction imbalance. We demonstrated that, given a certain choice of
interaction parameters, a minority population initialized at the edge of the
system can move around as if bound by an effectively attractive force.

Our work suggests that setups where the interactions can be tuned between
different species may be ideal for studying the transfer of spin packets. Such
a realization could provide knowledge of quantum transport in spin chains
beyond the case of a single impurity. By generalizing the spin chain approach
to a higher number of internal components, it is also possible to consider
cases of mixed multicomponent systems with different interactions in several
scattering channels.



Chapter 6

Dynamics in a few-body spin
chain with external driving

In the previous chapters, we have worked with Hamiltonians which are static
or slowly changing in time. However, from an experimental point of view,
out-of-equilibrium systems, which respond in certain ways under the action of
external driving, can be a source of interesting new physical effects. To be able
to treat systems with time-dependence, we can employ different tools, such as
the Crank-Nicolson method for the time evolution of discretized wave functions
[88] (see Appendix A) and Floquet theory [89] for periodic Hamiltonians.

This chapter is dedicated to using these tools to describe the time evolution
of the wave function in a spin chain under the action of external driving. This
study is mostly dedicated to comparing methods and understanding how they
relate to each other. The physical system under consideration is a small spin
chain with a periodic driving in one of the exchange coefficients. We analyze
the behavior of the response frequencies of the system for different interactions
using both the numerical approach and a treatment based on the Floquet
quasienergies of the periodic Hamiltonian. Generalizing our results for a wide
range of driving frequencies, we are able to understand how subharmonic
frequencies arise as a response to the external driving.

The proposal for the system considered in this chapter and the interpre-
tation of the results were done in collaboration with O. V. Marchukov and A.
G. Volosniev.

6.1 System description

We consider a spin-1/2 XXZ Hamiltonian described by

H(t) = −
N−1∑
i=1

Ji(t)
[1

2(1− ~σi · ~σi+1) + ∆(1 + σizσ
i+1
z )

]
, (6.1)
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where σx, σy, σz are the Pauli matrices, Ji(t) are the exchange coefficients
for each pair of first neighbors, which can have a general time-dependence,
and ∆ is a dimensionless anisotrpy parameter that sets the imbalance in the
interactions between spins with the same orientation. We choose to explore
this spin Hamiltonian due to the similarities with the physical systems we
have described so far. The number of spins in each component is given by N↑
and N↓, with the total number of spins being N = N↑ + N↓. We consider a
few-body system composed of N↑ = 3 and N↓ = 1, with different choices of
∆. Generally speaking, for ∆ � 1, we approach a Heisenberg Hamiltonian,
where antiferromagnetic correlations are dominating in the ground state of a
homogeneous systems (J1 = J2 = J3). The most probable configurations is
then given by the down spin placed near the center of the chain. In the case
of ∆ > 1, the interaction between spins with different orientations dominates,
and the ground state is similar to that of an Ising ferromagnet, where the
down spin is pushed to the edges of the system. This regime is additionally
characterized by a quasidegeneracy between the ground and first excited states
[52], a feature that plays an important role in the dynamics of these systems.

In the next calculations, the units for frequency and time are J0/~ and
(~J0)−1. Additionally, we make ~ = 1 for simplicity.

6.2 Dynamics in the presence of periodic driving
We now explore the dynamics of a system governed by the Hamiltonian de-
scribed above, when one of the exchange coefficients Ji(t) has a periodic be-
havior in time. We first describe the basic elements of Floquet theory that
we apply to the problem, and then compare the results with a numerical
approach.

6.2.1 Floquet analysis

The Floquet theorem [89] states that, for a periodic Hamiltonian H(t) =
H(t+ T ), where T is the period, solutions of the form

|Ψn(t)〉 = exp (−iεnt/~)|un(t)〉 (6.2)

exist, where |un(t)〉 = |un(t + T )〉 are time-periodic functions called Floquet
modes, and εn the corresponding Floquet quasienergies. The Floquet modes
can be obtained by solving the following eigenvalue equation

H(t)|un(t)〉 = εn|un(t)〉, (6.3)

where H(t) = H(t)− i~∂/∂t. Alternatively, we can consider the action of the
time evolution operator on the wave function over one period [90, 91]

U(t+ T )|Ψ(t)〉 = |Ψ(t+ T )〉, (6.4)
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and inserting the decomposition on the Floquet modes in the expression above
we obtain

U(t+ T )|un(t)〉 = exp (−iεnT/~)|un(t)〉, (6.5)

since u(t + T ) = u(t). This shows that the Floquet modes are eigenstates of
the time evolution operator over one period. By diagonalizing U(T, 0), we can
obtain the quasienergies and Floquet modes at t = 0, and then calculate them
at time t as

|un(t)〉 = exp (iεnt/~)U(t, 0)|un(0)〉. (6.6)

To obtain U(t, 0), we numerically solve

i~
∂

∂t
U(t, 0) = H(t)U(t, 0) (6.7)

with initial condition U(0) = 1. The time evolution of the wave function, for
an initial state |Ψ(0)〉, is then given by

|Ψ(t)〉 =
∑
n

cn exp (−iεnt/~)|un(t)〉, (6.8)

where cn = 〈un(0)|Ψ(0)〉.

6.2.2 Comparison to numerical results

Upon initializing the system in the corresponding ground state of each regime
(with a given value of ∆ and J2(0) = 1), we obtain the dynamics for a periodic
driving of the central coefficent given by J2(t) = 1+cos(ωDt)

2 , where ωD is
the driving frequency. This makes J2 oscillate between 1 and 0 with period
T = 2π/ωD, while the remaining exchange coefficients are fixed as J0 = 1.
The Schrödinger equation is numerically integrated using the Crank-Nicolson
method (see Appendix A). We choose as a suitable observable the probability
of finding the down spin at the edges of the system, that is P (t) = |〈↓↑↑↑
|Ψ(t)〉|2+|〈↑↑↑↓|Ψ(t)〉|2. In Fig. 6.1 we show the time evolution of this quantity
for driving frequencies of ωD = 2 and ωD = 5, with different choices of the
anisotropy parameter ∆.

As we see, in all cases the time evolution obtained with the numerical
method agrees well with the results from Floquet theory. The initial values of
P (t) depend heavily on the choice of ∆: for ∆ < 1, the down spin is initially
localized near the center of the system, and moves outwards as the central
exchange coefficient is reduced. The opposite is true for ∆ > 1. For a lower
driving frequency (left column) the oscillations in P (t) tend to have a larger
amplitude at smaller values of ∆, which is not possible for larger ωD (right
column). More interestingly, for larger values of ωD and ∆ it is possible to
see the emergence of a response frequency on P (t) which is smaller than the
driving frequency (this is made clear by comparing the colored curves to the
grey shaded area in the background). To find the relationship between the
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Figure 6.1: Time evolution of P (t) for different choices of the interaction anisotropy
parameter: a)-d) show the cases where ωD = 2 and e)-h) with ωD = 5. The values
of ∆ are indicated in each panel. Red solid lines show the results obtained with
the Floquet mode decomposition, while the blue dashed curves present the numerical
results. The grey shaded curvex show the variation of J2(t) for the same interval of
time.

response and the driving over a larger frequency interval, we calculate the
power spectrum for P (t), defined as

S(ωR) =
∣∣∣ ∫ P (t)e−iωRtdt

∣∣∣2, (6.9)

where ωR is the response frequency, which is also considered in units of J0/~.
In Fig. 6.2 we show the results for S(ωR) with ωD given by the interval (0, 5),
with increments in the driving frequency of δωD = 0.1.

The two top panels show results for a) ∆ = 0.5 and b) ∆ = 2.0, while the
bottom panels correspond to ∆ = 5.0 and ∆ = 10.0. In the top two, we see
that the response frequency for slow driving is linear, which we could expect by
considering the result from an adiabatic variation of the coefficients. However,
in both cases the response quickly saturates to a fixed value, which can be
predicted by considering the time evolution of P (t) for a quench of the central
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Figure 6.2: Power spectrum S(ωR) for a) ∆ = 0.5, b) ∆ = 2.0, c) ∆ = 5.0 and d)
∆ = 10.0. The white/red areas show the position of the peaks in S(ωR) for a given
driving frequency ωD. The black dots show the expected values for these frequencies
according to the gaps in the Floquet quasienergy spectrum (see text for details).

coefficient to the time-averaged value of the driving (that is, by switching J2
from 1 to 0.5 at t = 0). This means that for smaller values of ∆, the system
quickly becomes non-responsive to fast driving frequencies. Moreover, the
subsequent time evolution can be obtained by simply considering the time-
average of the Hamiltonian over one period.

For larger ∆, however, we obtain a different behavior: the reponse of the
system is linear only for very small values of ωD, and the dominating peaks
in the response frequency are always found below the diagonal, which char-
acterizes a subharmonic response. We further compare the results for S(ωR)
obtained with the numerical time evolution with the prediction given by the
Floquet quasienergies, as described in the previous section. By decomposing
the inital wave function |Ψ(0)〉 in the Floquet modes |un(t)〉, we find that at
all times t only two of these modes dominate the time evolution. The cor-
responding quasienergies are thus given by ε0 and ε1. The position of the
subharmonic peaks is obtained by simply calculating ∆ε = |ε1 ± ε0|. These
gaps are indicated by the black dots in Fig. 6.2. We point out that, while the
subharmonic modes are easily predicted by these gaps, their amplitudes can
be radically different. In fact, in some cases the smaller peaks are completely
washed out by the dominating excitations. Furthermore, the numerical simu-
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lations show also the existence of higher harmonics in the response frequency
which are not directly captured by the quasienergy gaps.

6.3 Conclusions
In this chapter we have performed a study of a few-body spin chain under
the action of an external periodic driving. We defined a driving protocol and
calculated the response in an observable of choice. Since the Hamiltonian is
periodic in time, we can apply Floquet theory to obtain the time evolution of
the wave function and compare to numerical results. We find that both ap-
proaches match well over a wide range of driving frequencies and with different
interaction parameters. Furthermore, the gaps in the quasienergy spectrum
allow us to predict the position of the excitation peaks in the response fre-
quency of the system.

While the model we considered here is not applied to a physical problem
in particular, several possible realizations of driven spin chains can be devised,
either in cold atomic setups or with superconducting circuits. Having these
tools will thus help us obtain the properties of other systems with time-periodic
Hamiltonians, as we will see in the next chapter.



Chapter 7

Spin-charge separation in
strongly interacting
multicomponent few-body
systems

An effect of particular interest, in the context of one-dimensional systems, is
the phenomenon known as spin-charge separation, where the degrees of free-
dom related to the mass (“charge") and spin components can be described
independently. This effect is well-captured by the celebrated Tomonaga-
Luttinger Liquid (TLL) model [92], originally proposed in the context of in-
teracting electrons in one dimension. Theoretical descriptions of spin-charge
separation usually explore this model [93] or assume weakly interacting many-
body Fermi [94] or Bose [95] mixtures. The strongly interacting regime, how-
ever, is where this effect is expected to manifest itself more dramatically, with
the freezing of the spin degrees of freedom as compared to the charge dy-
namics [96]. Additionally, the possibility of describing a strongly interacting
mixed system as an effective spin chain [46, 59, 78, 80, 86] presents a land-
scape where the separation of spin and charge arises naturally in a dynamical
context [97, 98].

Experimentally, ultracold atomic setups are good condidates for simulat-
ing a Tomonaga-Luttinger liquid [99–101] and measuring spin-charge sepa-
ration in detail. Unlike experiments in condensed matter, ultracold atomic
ensembles usually allow for a fine tuning of the interactions and the trapping
geometries, as well as a precise control over the number of atoms [30]. How-
ever, while spin-charge separation has been observed in quantum wires [102],
measurements with cold atoms are restricted to static signatures[103] and a
dynamical measurement remains elusive [104].

In this chapter, we present an analysis of the dynamics of a strongly in-
teracting few-body system of fermions with SU(N) symmetry after a sudden
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change - a quench - in the trapping potential. Recently, systems of cold atoms
in optical lattices with SU(3) and SU(4) symmetries have been explored the-
oretically [105, 106]. We begin by assuming the formalism used to describe
a system of strongly interacting atoms in a trap, where the Hamiltonian can
be mapped into a spin chain with position-dependent exchange coefficients.
We then describe the quench protocol, which essentially consists of changing
the trap from a split well (where we assume a gaussian barrier in the center
of the system) to a simple harmonic well (see Fig. 7.1 for a sketch of this
protocol). The ground-state configuration for these two systems is consider-
ably different, and by changing the potential we can expect a non-trivial time
evolution in the spin and charge sectors. Initially we describe the effect of the
quench in the spatial sector and its consequences on the spin chain dynamics.
By combining the dynamics of both sectors, we can extract the signatures of
spin-charge separation from the oscillations frequencies of the system, showing
how this effect can be observed in few-body ensembles, even as the number
of internal components is increased. Moreover, we show that for a completely
balanced system (where each atom is in a different internal state) the spin
signature vanishes, and the excitation spectrum is analogous to that of a gas
of impenetrable bosons. Finally, we explore a case where SU(N) symmetry is
broken and obtain the resulting effects on the dynamics of the system.

Multi-component cold atomic ensembles with strong interactions are cur-
rently within experimental reach [36] and often exhibit exotic dynamical ef-
fects, such as edge states[37, 38]. In these systems, the internal states of the
atoms can be manipulated with laser pulses, and the behavior of each com-
ponent can be measured with precision. Studying cold atoms with different
internal symmetries in a highly controllable environment can lead to insight
on particle physics models and even shed light on the validity of unification
schemes [107].

The content of this chapter has been taken from Ref. [108]. With respect
to the original material, we have substantially changed this introduction and
Section 7.1 to avoid redundant information. Except for minor changes, Sec-
tions 7.2 and 7.3 and the figures throughout the chapter remain identical to
the original work.

7.1 System description

Our goal is to describe the dynamics of a strongly interacting few-body system
with internal (“pseudospin") degrees of freedom. We focus our description
on a fermionic system, but the formalism is equally valid for bosons with
the correct adaptations to the Hamiltonian. We consider initially an SU(2)
system, where the internal degrees of freedom are labeled by |↑〉 and |↓〉, as
in the previous chapters. Later we will generalize our approach to systems
with higher symmetries. We denote the particle numbers in each species as
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Figure 7.1: a) Sketch of the quench protocol adopted in this work. An imbalanced
(N↑ = 3, N↓ = 1) strongly interacting two-component system of atoms is initialized
in the ground state of a harmonic potential modified by a gaussian bump centered at
x = 0. For t > 0 this perturbation is suddenly switched off, which induces a dynamical
behavior in the spin density of each component. The majority (minority) density
ρ↑(↓)(x) is shown in red (blue). The black curves, which are rescaled for clarity, show
the shape of the trapping potential at t = 0 and t > 0. b)-c) Time evolution of the
spin densities, where length and time are given in units of the harmonic potential (see
text for details). The slices shown in a) correspond to t/T0 = 0 and t/T0 = 5 in the
figures on the right.

N↑ and N↓, the total number of particles thus being given by N = N↑ + N↓.
For simplicity, we adopt the notation N↑ + N↓ (e.g. 3+1 for a system with
three particles of species |↑〉 and one of species |↓〉). Experimentally, two-
component fermionic systems can be realized by preparing trapped ensembles
of 6Li atoms in their two lowest hyperfine states [29, 39].

The Hamiltonian for the system under consideration is given by

H =
N∑
i

H0(xi) + g
∑
↑,↓

δ(xi − xj) (7.1)

where H0(x) = − ~2

2m
∂
∂x +V (x) denotes the single particle Hamiltonian, where

V (x) is a trapping potential. The remaining term accounts for the contact
interactions, where atoms in different internal states interact with strength g
(interactions between atoms in the same internal state are forbidden due to the
Pauli principle, thus the difference with respect to Hamiltonian (2.10)). Since
we are dealing with atoms of the same element in different internal states,
we consider all masses equal. We use the same harmonic trap units as in the
previous chapters.
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7.1.1 Strong interactions

In the limit of strong interactions Eq. (7.1) can be written, up to linear order
in 1/g, as [86]

H = E0 −
N−1∑
i=1

αi
g

(1− Pi,i+1), (7.2)

where Pi,i+1 is the permutation operator, which exchanges two neighboring
atoms of different components. When all interations between atoms in differ-
ent internal states are the same, the system obeys SU(N) symmetry.

The exchange coefficients are again determined by geometry of the trap-
ping potential, and can be calculated as given in Eq. (2.19). In the par-
ticular case of SU(2) fermions, the permutation operator can be written as
Pi,i+1 = 1

2(1 + ~σi · ~σi+1), thus giving

H = E0 −
1
2

N−1∑
i=1

αi
g

(1− ~σi · ~σi+1), (7.3)

which is a Heisenberg Hamiltonian with ground state antiferromagnetic cor-
relations. Obtaining the eigenstates of Eq. (7.3), we can calculate the spatial
distributions of each atomic component in the trap using Eq. (2.29). Since
we are interested in calculating the exchange coefficients and spin densities
dynamically, we also use of Eqs. (2.8) and (2.26) to avoid calculating multidi-
mensional integrals at each time step.

7.2 Dynamics

7.2.1 Quench protocol

In this section we describe the procedure that induces the dynamical evolution
of the system, which consists of a sudden change of the trapping potential.
Our initial choice of V (x) is given by a harmonic trap with an additional
gaussian bump in the center, as described by

Vt=0(x) = 1
2ω

2
0x

2 + V0e
−(x/s)2

, (7.4)

where V0 determines the height of the gaussian peak and s sets its width. The
system is therefore separated in an effective double-well by taking ω0 = 1, V0 =
50 and s = 0.25. The initial spinless fermion wave function Φ(x1, ..., xN , t = 0)
is constructed with the single particle orbitals obtained by numerical diago-
nalization, using the Ns = 35 lowest energy states of the harmonic oscillator.
We note that, since the gaussian peak is large compared to the individual
densities of the orbitals, the ground state is quasi-degenerate (the two lowest
energy states have nearly the same distribution, with opposite parity).
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For t > 0, the peak is suddenly turned off by making V0 = 0. The time
evolution of the spinless fermion wave function can then be described in terms
of the evolution of the single particles orbitals under the same quench protocol
[109, 110]. We describe the dynamics of the orbitals φj(x, 0) according to

φj(x, t) =
Ns∑
n=1

cne
−iεntψn(x) (7.5)

where cn =
∫
ψ∗(x)φ(x, 0) dx and ψn(x) are the eigenstates of the harmonic os-

cillator, with εn the corresponding eigenvalues. We are then able to construct
Φ(x1, ..., xN , t) for all times t, which in turn determines the time-dependence
of the exchange coefficients in Eq. (2.19). In the next section we describe the
time evolution of the spatial densities and its influence on αi.

7.2.2 Time evolution of charge density and geometrical
coefficients

TheN−1 exchange coefficients of the spin chain Hamiltonian given in Eq. (7.3)
are determined, after the quench protocol, by Φ(x1, ..., xN , t). As a general
rule, we can assume that the exchange coefficients are proportional to the
overlap between the single particle distributions (as calculated by Eq.(2.6));
additionally, since the trapping potentials are symmetric at all times, we have
α3(t) = α1(t) for the case of N = 4 particles. In Fig. 7.2 a) we show the time
evolution of the spatial densities obtained from Φ(x1, ..., xN , t). At this point,
we are not considering the spin sector, so the densities shown correspond to
the “charge" density

ρc(x, t) =
N∑
i=1

ρi(x, t), (7.6)

which is normalized to the total number of particles. Its dynamical behavior
is what should be expected for the coherent density oscillations of a Tonks-
Girardeau gas [109]. In panel b), we see the behavior of α1(t)/g and α2(t)/g as
a function of time (we consider a fixed value of g = 20 in our calculations). We
observe that the periodicity of the spatial densities is reflected in the dynamics
of the exchange coefficients. Particularly, since the system is approximately
split in two parts at t = 0, we have that α(t = 0) ∼ 0 (there is nearly no
overlap between the initial densities at the center of the system). When the
densities in the central region become larger, we see that the numerical value
of α2(t) surpasses that of α1(t).

Given the established time-periodicity of Hamiltonian (7.3), we can now
analyze the dynamics of the spin sector using Floquet theory (see Chapter 6).
While most studies performed in this context must deal with the issue of ther-
malization due to the external driving [111], in our case the time-dependence
of the spin chain originates directly from the dynamics of the charge sector
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Figure 7.2: Time evolution of a) the charge density ρc(x, t) and b) the exchange
coefficients α1(t) (blue) and α2(t) (red). Since the trapping potential is spatially
symmetric at all times, we have α3(t) = α1(t). In b), the black dashed curves show
the analytical results obtained with an analytical fit of the numerical data with a
Fourier expansion.

generated by the sudden change of the trapping potential. To describe the
time evolution of the system in these terms, we first find an analytical fit
of the exchange coefficients in terms of Fourier modes. In Fig. 7.2 b), this
approximation is shown as the black dashed curves.

7.2.3 Signatures of spin-charge separation

Once we know the time-dependence of Eq. (7.3), we can calculate the time evo-
lution of an initial state of the spin chain, which we call |χ0〉. We numerically
integrate the Schrödinger equation for this time-dependent Hamiltonian using
the Crank-Nicolson method [88] (see Appendix A). Our quantities of interest
are the dynamical charge (ρc(x, t)) and spin densities (ρ↑(x, t) and ρ↓(x, t)),
as well as the squared average density width of each spin component, defined
as 〈x2

↑,↓(t)〉 =
∫
dx ρ↑↓(x, t)x2.

SU(2)

We choose initially a fermionic 3+1 case, which can be interpreted as a few-
body Fermi background in the presence of an impurity, a system also known
as the Fermi polaron [71]. As we will show next, in this simple setup it is
already possible to find a signature of spin and charge separation in the time
evolution of the observables. The ground state of Hamiltonian (7.3) with
repulsive interactions (g > 0) has antiferromagnetic correlations, and can be
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described by

|gs〉 = |↓↑↑↑〉+
(
1 +
√

2
)

(|↑↑↓↑〉 − |↑↓↑↑〉)− |↑↑↑↓〉, (7.7)

aside from a normalization factor. Here, we have assumed a homogeneous
potential, such that the exchange coefficients are identical and equal to 1.
However, it can be shown that similar results hold for a harmonic trap. To
observe how the ground state correlations change with the choice of αi, we
define the operator

Pedge = |〈↓↑↑↑|gs〉|2 + |〈↑↑↑↓|gs〉|2, (7.8)

which gives us information regarding the position of the impurity (the ↓ atom)
in the system. In Fig. 7.3 we show the values of Pedge for different choices of
α1 and α2, where we assume a potential that is symmetryc across the origin,
such that α3 = α = 1 (this is true for the harmonic potential, for example).

Figure 7.3: Numerical values of Pedge for different combinations of α1 and α2. The
black dashed curve corresponds to the trajectory of the exchange coefficients in time
after the trap quench. The initial point is marked by the black dot, while white dot
marks the values of the exchange coefficients at t = T0/2.

We can readily see that, for α1 = α2, we have a constant result of Pedge =
1
4(2−

√
2), which is obtained by the normalized probabilities calculated from

the coefficients in Eq. (7.8). Above the diagonal (α2 > α1) we have the region
that includes, for instance, the coefficients obtained from a harmonic trap.
In this case, the antiferromagnetic correlations are even more prevalent. If,
however, α2 � 1, we have a larger probability of finding the impurity at
the edges. These ground state correlations are obtained when considering a
potential such as the one in Eq. (7.4). In fact, we can plot the trajectory of
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the exchange coefficients after the quench in the trapping potential described
in the previous section. This is shown by the dashed curve in Fig. 7.3. The
white dot denotes the values at t = 0; the curve is then travelled back and
forth periodically as t increases. The fact that this trajectory crosses over
the diagonal indicates that the sudden quench in the potential should induce
major changes in the spin correlations of the system.

To quantify this effect we can calculate the dynamical spin densities ρ↑,↓(x, t),
as well as the squared width of each component, given by 〈x↑,↓(t)〉2. It is im-
portant to notice that, for t > 0, the trapping potential is that of a simple
harmonic oscillator. In Fig. 7.1 b) and c), we show the time evolution of
ρ↑(x, t) and ρ↓(x, t), respectively. We notice that, while the underlying dy-
namics seen in Fig. 7.2 is still present, we now have an additional mode related
to the spin dynamics. Specifically, after the sudden change in the potential,
we observe a tendency of the majority atoms to spread to the edges, while the
impurity localizes towards the center.

In Fig. 7.4 a) we show the time evolution of the squared widths 〈x(t)2
↑,↓〉

for the density of each component, over a larger time interval. This can be
interpreted as induced “breathing modes" for the background and the im-
purity. Additionally, we show the dynamical behavior of the charge density
(Eq. (7.6)). Besides corroborating the results found in the time evolution
of the densities, these curves show how the excitations in the charge and
spin sectors are captured as two oscillations modes in each individual den-
sity. In Fig. 7.4 b) and c) we show the Fourier transform of 〈x2(t)〉, defined
as x̃2(ω) =

∫
dte−iωt〈x2(t)〉, where the contributions of the spin and charge

excitations appear as two separate peaks, the lower frequency corresponding
to the spin dynamics.

Here, we can see that the dynamics of the minority component is strongly
dominated by the spin excitations, with a small contribution of the charge
sector. On the other hand, the majority component has a more balanced
distribution of oscillations in the charge and spin sectors. In Fig 7.4 b) and
c), we additionally include the theoretical predictions for the charge and spin
density oscillations (as black and gray dashed lines, respectively). The first
is obtained by simply calculating the time-periodicity of 7.5. The second is
extracted by calculating the gaps in the Floquet spectrum of the time-periodic
spin chain (as done in Chapter 6). In the next sections, we show how increasing
the number of internal components will affect the behavior of these quantities.

SU(3)

We now consider a case of a three component strongly interacting fermionic
gas with SU(3) symmetry. These systems are particularly interesting due to
their connections to the quark model in the framework of quantum chromo-
dynamics. We label the three internal states as |↑〉, |→〉 and |↓〉. While the
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Figure 7.4: Dynamics in the SU(2) fermionic system. a) Time evolution of the
squared density widths 〈x2

↑(t)〉 (red), 〈x2
↓(t)〉 (blue) and 〈x2

c(t)〉 (black). Panels b) and
c) show the excitation peaks in the frequency domain, where the lower frequencies
correspond to the spin excitations. The black dashed lines mark the frequency of the
charge density oscillations. The gray dashed lines shows the value energy gap in the
Floquet spectrum of the time-dependent spin chain.

Hamiltonian can still be described by Eq. (7.2), the permutation operator is
now given by

Pi,i+1 = 1
3 + 1

2
~λi · ~λi+1, (7.9)

where ~λ is the vector composed by the eight generators of the SU(3) group,
namely the Gell-Mann matrices (see Appendix B for the matrix expressions of
the generators). A system described by Eq. (7.9) can be mapped into the Lai-
Sutherland model [112, 113] through Pi,i+1 = ~Si · ~Si+1+(~Si · ~Si+1)2−1, which is
a particular case of the spin-1 bilinear biquadratic model [114, 115]. We keep
the number of particles fixed as N = 4, with N↑ = 2, N→ = 1 and N↓ = 1. We
keep our focus on calculating the time evolution of the squared width 〈x(t)2〉
its corresponding Fourier transform, while maintaining the quench protocol
described in the previous sections.

In Fig. 7.5 a), we show 〈x(t)2〉 for each component and for the charge den-
sity. Since we have two minority particles, each interacting with the remaining
atoms with interaction strength g, the results for each of these components are
identical. The excitation peaks seen in Figs. 7.5 b) and c) reveal the contribu-
tions of the charge and spin oscillations to the dynamics of each component.
Still, we can see that the majority component has a larger contribution to
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Figure 7.5: Dynamics in the SU(3) fermionic system. a) Time evolution of the
squared density widths 〈x2

↑(t)〉 (red), 〈x2
→(t)〉 (dashed green), 〈x2

↓(t)〉 (blue) and 〈x2
c(t)〉

(black). Panels b) and c) show the excitation peaks in the frequency domain for 〈x2
↑(t)〉

and 〈x2
→(t)〉, respectively. The black dashed lines mark the frequency of the charge

density oscillations. The gray dashed lines shows the value energy gap in the Floquet
spectrum of the time-dependent spin chain.

the charge excitations. The minority cases, however, show a slight increase
in these frequencies as compared to the two-component case, with the spin
oscillations remaining dominant.

SU(4)

We now examine the effect of applying our formalism to the case where the
number of particles N matches the number of internal components. To that
end, we consider the SU(4) fermionic gas with N = 4 and internal states
labeled as |↑〉, |↗〉, |↘〉 and |↓〉. The number of particles in each state is thus
given by N↑ = 1, N↗ = 1, N↘ = 1 and N↓ = 1 (the so-called 1+1+1+1
infinitely repulsive system with different masses is known to have interesting
properties, which were described in Ref. [116]). We rewrite the permutation
operator for the SU(4) system as

Pi,i+1 = 1
4 + 1

2
~λi · ~λi+1, (7.10)

where now ~λ represents the vector spanning the 15 SU(4) generators [117] (see
Appendix B for the expressions). In the following, we focus on describing the
results only for the |↑〉 and |↗〉 components.
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Figure 7.6: Dynamics in the SU(4) fermionic system. a) Time evolution of the
squared density widths 〈x2

↑(t)〉 (red), 〈x2
↗(t)〉 (dashed purple) and 〈x2

c(t)〉 (black).
Panels b) and c) show the excitation peaks in the frequency domain for 〈x2

↑(t)〉 and
〈x2
↗(t)〉, respectively. The black dashed lines mark the frequency of the charge density

oscillations.

It becomes clear that the behavior 〈x2(t)〉 as a function of time is the
same for both components shown in Fig. 7.6 (this also holds for the other two
components not shown). This is expected since the number of internal com-
ponents matches the total number of particles in the system. Moreover, the
frequency spectrum shows that the only contributions in the oscillations stem
from the charge excitations, as opoposed to the previous cases. This allows
us to interpret the dynamics of the SU(N) system with strong interactions as
the one expected for a gas of impenetrable bosons, as long as the number of
particles matches the number of internal components. This conclusion is in
agreement with the observation that the momentum distribution of an SU(N)
Fermi with strong repulsion approaches that of a Tonks-Girardeau gas [36].

In the models considered here, a vanishing spin signal in the excitation
spectrum can additionally be obtained by taking a balanced system with a
lower number of internal components (e.g. a 2+2 SU(2) system). This can
be explained as a result of the symmetric perturbation to the potential that
determines the initial state of the system. Turning off the barrier in this par-
ticular case has no effect on the ground state of the spin chain, which remains
unchanged as the charge oscillations take place. However, for a matching num-
ber of particles and internal components, the results described in this section
are the only possible outcomes for a system initialized in the ground state.
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Figure 7.7: Action of the SU(3) raising and lowering operators upon the internal
states. Positions in the plane are defined by states’ eigenvalues of the X and Y
operators.

7.2.4 Breaking SU(3) symmetry

An interesting perspective when dealing with multicomponent strongly inter-
acting gases is a case where interactions are slightly imbalanced and a par-
ticular symmetry is broken. Here we analyze the three-component case with
broken SU(3) symmetry. It is useful, in this context, to rewrite the SU(3)
permutation operator in terms of raising and lowering operators. These are
defined as T± = (λ1 ± iλ2)/2, V ± = (λ4 ± iλ5)/2 and U± = (λ6 ± iλ7)/2,
where once again λi is a given Gell-Mann matrix. The internal states are
eigenstates of the X = λ3 and Y =

√
3λ8 operators, as shown in Fig. 7.7. We

still consider the particular case of N = 4, with N↑ = 2, N→ = 1 and N↓ = 1.
Below we rewrite the permutation operator with these modifications, in-

cluding an additional symmetry-breaking parameter 1/η which multiplies the
operators T+ and T−.

Pi,i+1 = 1
3 + 1

η

(
T+
i T
−
i+1 + T−i T

+
i+1

)
+ V +

i V
−
i+1 + V −i V

+
i+1

+ U+
i U
−
i+1 + U−i U

+
i+1 + 1

2(λ3
iλ

3
i+1 + λ8

iλ
8
i+1), (7.11)

This means we are explicitly breaking the symmetry of the system by changing
the energy contribution of turning |↑〉 into |→〉 and vice-versa. In Fig. 7.8 we
show the result of breaking the SU(3) symmetry (by making η = 0.5) on
the dynamics. While the effects in the |↑〉 and |→〉 components are subtle
- a slight increase in the spin excitation frequency as seen in panels b) and
c) - in |↓〉 it is more drastic, with the spin contributions being distributed
over several low frequencies. As a consequence, the peaks corresponding to
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Figure 7.8: Dynamics in the 3-component system with broken SU(3) symmetry. a)
Time evolution of the squared density widths 〈x2

↑(t)〉 (red), 〈x2
→(t)〉 (dashed green),

〈x2
↓(t)〉 (blue) and 〈x2

c(t)〉 (black). Panels b), c) and d) show the respective excitation
peaks in the frequency domain. The black dashed lines mark the frequency of the
charge density oscillations.

spin oscillations in one of the components are almost washed out with respect
to the charge excitations. On the other hand, the remaining components
still preserve clear peaks for spin oscillations. This points to the possibility of
measuring spin-charge separation even in a context where internal symmetries
are not perfectly preserved. Of course, other results for the spin excitations can
be expected by choosing a different value for η, or by breaking the symmetry
in a different interaction channel.

7.2.5 A comparison to numerical results

In the calculations performed here we assumed that the spatial degrees of
freedom could be described, in a dynamical context, by the time evolution of
a Tonks-Girardeau wave function. The spin dynamics, on the other hand, is
given by a time-dependent spin chain Hamiltonian.

Here we present a quick comparison of this approach to numerical calcula-
tions performed with the package OpenMPS (see Appendix A for details). We
focus on comparing the case of SU(2) symmetry presented in Section. 7.2.3.
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Figure 7.9: Comparison of the oscillation modes for 〈x2
↑(t)〉 (red) and 〈x2

↓(t)〉 (blue)
with numerical results obtained with the TEBD algorithm (black dashed curves).

These calculations are performed with the TEBD (Time-Evolving Block Deci-
mation) algorithm. We use the Fermi-Hubbard Hamiltonian as an approxima-
tion of the continuum problem by considering a total of L = 51 sites, where
the continuum interaction strength is connected to the discrete interaction
strength through U = g/a. The same protocol for the sudden change of the
trapping potential is applied. Our results are displayed in Fig. 7.9.

Since the full numerical simulations are computationally cumbersome, we
consider only the initial part of the time evolution of the system after the
sudden change in the potential. A disagreement between the two methods
should be expected in some measure, due to the approximation considered in
the analytical approach but also because of a numerical error for larger times.
The comparison could be improved by increasing the number of sites L in
the Fermi-Hubbard model to better approximate the continuum limit, or by
decreasing the tolerance in the numerical error in the time evolution of the
initial state.

7.3 Conclusions

In this chapter we have presented an analysis of the phenomenon of spin-charge
separation in trapped atomic systems with SU(N) symmetry. The dynamics
of the system is obtained after a quench in the trapping potential, in which a
central barrier in the harmonic trap is switched off. This simple protocol is
particularly interesting from an experimental point of view, since it requires
only minor modifications to the potential.

The sudden change in the trap induces the motion of the spatial degrees
of freedom, which in turn are reflected in a time-dependence of the exchange
coefficients of the spin chain. It is important to point out that, since the system
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is initialized in the ground state of the spin chain, the motion observed in this
sector is only possible due to the quench in the potential. By monitoring the
time evolution of the breathing modes given by the oscillations in 〈x2(t)〉, we
describe the excitation spectrum of SU(2), SU(3) and SU(4) systems. In the
particular case where the number of internal components exactly matches the
number of particles, we see that the spin excitations are completely washed
out, and the only contributions are due to charge oscillations that agree with
those of a spinless Fermi gas.

We have thus demonstrated that spin-charge separation, rather than being
a bulk effect of many-body systems, can occur in few-body ensembles under
fairly simple conditions. The formalism described here can also be used to
predict the behavior of quantum gases with different atomic species (e.g. a
bosonic mixture), or generalized to more involved quench protocols, simply by
mapping the time evolution of the spatial orbitals into the exchange coefficients
of the spin chain under consideration.





Chapter 8

Discrete time-translation
symmetry breaking in a
few-body spin chain

Recent developments in theory and experiments with time-dependent quan-
tum mechanical set-ups have consolidated the concept of the discrete time
crystal, a system that spontaneously breaks discrete time-translation symme-
try. The original proposals for time crystals, both in the quantum [118] and
classical [119] regimes, suggested the possibility of a system exhibiting a pe-
riodic dynamical behavior in its lowest energy state [120]. This possibility
seems to have been ruled out by subsequent discussions [121, 122], including
no-go theorems for a broad class of systems [123, 124].

Surprisingly, it was later shown that systems in the presence of periodic
driving, generally described by Floquet theory [89], can indeed self-organize
and present a subharmonic response in the observables [125–127]. The phase
which exhibits the features of spatiotemporal order now recognized in time
crystals was also classified as the π-spin glass [128], and since then a precise
definition has been put forward [129].

The main idea behind discrete time crystals is the following [130]: a peri-
odically driven system exhibits discrete time-translation symmetry, given that
the Hamiltonian behaves in time as H(t+T ) = H(t). Now, breaking this dis-
crete symmetry means that the system responds to this periodic driving with
a different period, which is usually larger and thus constitutes a subhamornic
response. Moreover, it is required that this response be non-trivial (which
rules out non-interacting systems) and robust against imperfections in the
drive and spatial disorder.

The properties of these systems have been studied in radically different
configurations, such as atoms bouncing off an oscillating mirror [131] or spin
chains in the presence of disorder and many-body localization [132]. The latter
proved to be an ideal starting point for experiments and resulted in the first
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two observations of time crystals. While these experiments dealt with two
rather distinct arrangements (one exploring nitrogen vacancies in diamonds
[133] and the other a chain of trapped ions [134]), both had as a major feature
the presence of disorder. Since the external driving in such systems leads to
heating and eventual thermalization, it is generally assumed that Floquet time
crystals should occur in a pre-thermal regime. The existence of a many-body
localized regime serves, in this context, as a source of stabilization against
thermal effects.

Other studies have shown, however, that disorder is not a crucial require-
ment for the realization of discrete time crystals [135]. Cold atomic systems,
for instance, can sustain a time crystal phase even in a “clean" set-up where
disorder is absent [136]. Experimentally, time crystal phases have been ob-
served in ordered spin systems with nuclear magnetic resonance techniques
[137, 138]. In these studies, the presence of interactions between atoms or
spins is the decisive factor leading up to time-translation symmetry break-
ing. The manifestation of quasi-crystalline order and its transition to a time
crystal has been observed with Bose-Einstein condensates under the action of
periodical magnetic fields [139].

These developments raise the question of how simple a system that exhibits
a time crystal phase can be. To address this matter, we present a proposal for
the realization of discrete time-translation symmetry breaking in a few-body
system of cold atoms (see Fig. 8.1 for a schematic depiction), where the inter-
actions between different components can be tuned by means of Feshbach [14]
or confinement induced resonances [15]. In the limit of strong interactions,
the system behaves as a spin chain, where the exchange coefficients are deter-
mined by the shape of the trapping potential [34, 78]. Periodically driving the
system with spin-flip pulses [140] results in a response in the magnetization
which depends highly on the choice of interaction parameters. Moreover, we
show that realizing the system with fermionic or bosonic atoms - the latter
assuming that interactions between identical particles can be tuned - yields
very distinct results.

The content of this chapter has been taken from Ref. [141]. The original
material contains a section on superconducting circuits written in collabora-
tion with Stig E. Rasmussen, which has been removed here to focus on the case
of cold atoms. This introduction, Sections 8.1, 8.2, 8.3 and 8.5 and Fig. 8.1
have been changed to accommodate this modification. Section 8.4 is originally
part of the Supplemental Material of the reference above. The title and some
small sections of the text have also been modified with respect to the original
publication.
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Figure 8.1: Schematic depiction of the few-body system under consideration: an en-
semble of cold atoms in a harmonic trap, where the strong interactions allow for a
mapping of the system to a spin chain with position-dependent exchange coefficients.
The driving protocol can be realized by applying spin-flip pulses, represented by the
gray arrows.

8.1 System description and driving protocol

Proposals for the realization of time-crystals with ultracold atoms usually in-
volve the many-body problem of bosons in the presence of a periodic Hamilto-
nian [142, 143], which is generally described by the Gross-Pitaevskii equation.
In the present case we focus on the few-body problem of bosonic atoms with
two internal components, which we label as the pseudospin states |↑〉 and |↓〉.
We assume contact interactions given by g

∑
i<j δ(xi − xj) for atoms in dif-

ferent internal states and κg
∑
i<j δ(xi − xj) for atoms in the same internal

state. All atoms are confined by an effectively one-dimensional harmonic trap
described by V (x) = 1

2mω
2x2. For simplicity, we assume the atoms to have

the same mass m = 1, and define the trapping frequency as ω = 1.
In the limit of strong interactions (g � 1), this system can be described,

up to linear order in 1/g, by an effective spin chain [46, 78], which can be
described by

H = −
N−1∑
i=1

αi
g

[1
2
(
1− ~σi · ~σi+1

)
+ 1
κ

(
1 + σizσ

i+1
z

)]
, (8.1)

where αi are position-dependent exchange coefficients, which are determined
solely by the trapping geometry, and the remaining parameters have the mean-
ing described above. In the case of N = 5 in a harmonic trap, the exchange
coefficients have the values α1 = α4 ≈ 2.16612 and α2 = α3 ≈ 3.17738, where
the symmetry of the coefficients in guaranteed by the parity invariance of the
trap. The Hamiltonian above is the same spin chain Hamiltonian derived in
Chapter 2, where κ sets the strength of the intraspecies interactions. While
this Hamiltonian describes a system of strongly interacting bosons (due to the
presence of interactions between identical components), we can reproduce a
fermionic system by taking the limit κ→∞. Then, we obtain
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H = −
N−1∑
i=1

αi
g

(1− Pi,i+1), (8.2)

where P i,i+1 = 1
2(1 + ~σi · ~σi+1) is the permutation operator that exchanges

neighboring spins. Contrary to other theoretical approaches [144, 145] and
experiments [133], our model does not require long-range interactions.

8.2 Driving protocol
We focus on a system of N = 5 spins and our protocol for the external
driving is fairly simple: we choose an initial antiferromagnetic state, such
as |ψ(0)〉 = |↑↓↑↓↑〉, which is not an eigenstate of the spin chain under any
non-trivial parameter configuration. We then realize a sequence of spin-flip
operations (with period TD) at each site, rotating all spins by an angle θ. The
spin-flip operator is thus described by

O = exp
(
−iθ2

N∑
i=1

σix

)
. (8.3)

We keep track of the time evolution of the magnetization as given by

m(t) = 〈ψ(t)|
N∑
i=1

σiz|ψ(t)〉, (8.4)

which is the quantity we choose to register the effect of the external driving
on the system. For perfect (θ = π) pulses, the magnetization has a trivial
periodicity of Tm = 2TD. However, for imperfect rotations described by θ =
π − ε, we obtain a different response, which is strongly determined by the
presence of interactions between the spins. In the next section, we focus on
pulse imperfections of a constant value. However, we have also taken into
account cases with slightly modulated pulses (see Section 8.4).

8.3 Results
In Fig.8.2 a), b) and c) we show, respectively, the results for the time evolution
of the magnetization m(t), the overlap probability of the wave function with
the initial state, given by

F (t) = |〈ψ(0)|ψ(t)〉|2, (8.5)

and the spectral density
S(f) = |m̂(f)|2, (8.6)

where m(f) =
∫
dt e−2πiftm(t) is the Fourier transform of the magnetization.

We initially assume a periodic pulse that rotates the spins by an angle of θ = π
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Figure 8.2: Time evolution of observables in a system of N = 5 harmonically trapped
atoms. The parameter κ defines the atomic species (fermionic or bosonic) and the
value of ε determines the presence of imperfections in the driving (for ε = 0 we have
a perfect π-pulse). Panels a), d) and g) show the time evolution of the magnetization,
while panels b), e) and h) present the analogous results for the overlap with the initial
state F (t). In these figures, the black dashed curves show the results for F (t) in the
absence of driving. Panels c), f) and i) show the spectral density obtained through the
Fourier transform of m(t).

at times t = nTD with n being an integer. We find that the magnetization
oscillates with a period twice as large as the driving, which results in a peak
in f = fD/2 where fD is the driving frequency. While this quantity only
registers the global behavior of the system, the overlap with the initial state
F (t) describes its underlying spin dynamics. When all spins are rotated by π
with respect to the initial state, we have F (t) = 0. In the remaining times,
we observe that the time evolution of the spin distribution is described by the
exact results in the absence of periodic driving (black dashed curves).

If we consider an imperfect pulse with θ = π − ε, we observe two different
results. In the case of fermions (Figs. 8.2 d), e) and f)), the magnetization now
exhibits a beating pattern that destroys the subharmonic peak at f = fD/2.



76
CHAPTER 8. DISCRETE TIME-TRANSLATION SYMMETRY

BREAKING IN A FEW-BODY SPIN CHAIN

The overlap F (t) is no longer described by the result in the absence of driving.
For bosons (Figs. 8.2 g), h) and i)), on the other hand, the presence of a
dominating interaction between identical spins - defined by the small value of
κ - locks back the magnetization response peak at f = fD/2, even for ε 6= 0.
Here we see the breaking of the discrete time-translation symmetry (since the
response period is larger than the periodicity of the Hamiltonian) which is
not affected by the imperfect driving. This robustness of the response in the
presence of imperfect pulses is one of the defining features of a time crystal
phase [132]. In fact, here we find that it arises under fairly simple conditions,
without the need of switching interactions on and off as part of the driving
protocol. Moreover, it presents the possibility of studying the “melting" of
time crystals - in a many-body context - as interactions are modified. This
could be implemented, for instance, by taking a bosonic system and tuning κ
from small to large.

While cold atom experiments with fermions frequently deal with 6Li atoms
[28], two-component bosonic systems can be produced with a gas of 87Rb
atoms, where the two lowest hyperfine states are given by |F = 2,mf = −1〉
and |F = 1,mf = 1〉. Imbalance in the interactions can be introduced, for
instance, by means of confinement induced resonances [146]. The atoms can
then be driven between the two different hyperfine states through Raman
pulses, with a typical frequency of ∼ 6834 MHz. An important feature of these
systems is that the energy and time scales can be controlled by modifying the
external confinement (the inverse frequency of the harmonic trap in a few-body
experiment is ∼ 100µs). Recent works with multi-component bosonic 87Rb
systems indicate a lifetime of the order of µs with minimal heating originating
from Raman processes [37].

The driving protocol employed here can be also used in the case of sys-
tems with more than two internal components, as long as Ising-type inter-
actions are dominant in the Hamiltonian. By periodically switching between
different pseudospin states, it is possible to expect a fractional response fre-
quency given by f = fD/ν where ν is the number of internal states available.
Multi-component cold atomic gases, such as fermionic systems with SU(N)
symmetry, have been theoretically explored [59, 86], and can be realized in the
lab [36, 38]. A recent proposal for realizing time-crystals in SU(N) systems
explores the ladder of internal states as a synthetic dimension [136]. In a more
extreme example, systems where the response frequency is much smaller than
the driving frequency have been obtained in the framework of atoms bouncing
off an oscillating mirror [142].

8.4 Simulation in a lattice potential

In this section we extend our simulations to the case of a lattice potential,
which is extensively explored in experimental studies [13]. We increase our
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Figure 8.3: A system of N = 7 atoms in a lattice potential. Our mixture consists of
N↑ = 4 and N↓ = 3 atoms. We assume a set of homogeneous coefficients α = 1. The
external pulses are represented by the gray arrows and modulated by the coefficients
c1 = c7 = 0.98, c2 = c6 = 0.99, c3 = c5 = 1.0, c4 = 1.1.

spin chain description of the strongly interacting system to a mixture consist-
ing of N↑ = 4 and N↓ = 3 atoms and consider each site of the lattice to be
populated by a single atom (half-filling).

The presence of the lattice potential is now encoded in a set of homo-
geneous exchange coefficients αi. The magnitude of these coefficients can
be manipulated experimentally by changing the lattice depth and by conse-
quence the size of the barrier separating a pair of atoms. Additionally, we
consider also the presence of a slightly modulated driving pulse described by
O = exp (−i θ2

∑N
i=1 ciσ

i
x), where θ = π − ε and ε is the pulse imperfection.

The modulations are thus given by the coefficients ci and the initial state is
kept as |ψ0〉 = |↑↓↑↓↑↓↑〉. In Fig. 8.3 we show a sketch of the system under
consideration.

In Fig. 8.4 we show the results for the time evolution of the magnetization
m(t), the overlap with the initial state F (t) and the Fourier peaks of the
magnetization S(f). We focus on the perturbed cases where ε = 0.1. The
fermionic case (κ→∞) again shows beating due to the imperfect pulses, with
the possibility ofm(t) > 0.5 due to the modulation in the pulse. In the bosonic
case with κ = 0.1 we again find a period locking, even with a modulated
external pulse. Moreover, the system presents a complex underlying spin
dynamics, which is made evident by the disagreement between the behavior
of F (t) in the plots and the predicted results in the abscence of driving (black
dashed curves).

8.5 Conclusions
We have presented a proposal for the realization of discrete time-translation
symmetry breaking in a few-body spin chain consisting of strongly interacting
harmonically trapped atoms. A time crystal-like behavior arises under the
action of a periodic spin-flip driving, provided that the intraspecies repulsion
is smaller than the remaining interactions. This leads to the possibility of
studying time crystallization in bosonic as opposed to fermionic systems, or
even the dynamical “melting" of the time-crystal as the intraspecies interac-
tions are tuned. In this approach we do not need to introduce disorder, which
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Figure 8.4: Time evolution of the magnetization m(t) (left column), the overlap with
the initial state F (t) (center column) and the Fourier peaks of the magnetization
S(f) (right column). The top panels show the results for fermions, while the bottom
panels correspond to bosons. The black dashed curves show the results for F (t) in the
abscence of external driving. The driving period and driving frequency are denoted by
TD and fD, respectively.

is a common features in previous studies. Naturally, the results described in
our study can be generalized to larger chains or systems with more internal
degrees of freedom.



Part III

Static and dynamical
properties of one-dimensional

bosonic mixtures
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Chapter 9

Static correlations in a
few-body Bose mixture

In the previous part of this thesis, we have focus on caculating the static
and dynamical properties of one-dimensional strongly correlated systems. We
employed our theoretical tools not only to study few-body systems of trapped
cold atoms, but also spin chains which can be realized in alternative setups,
such as superconducting circuits. Now we take a step back and focus on the
properties of one-dimensional bosonic systems away from the limit of strong
interactions.

In this chapter, we investigate the ground-state properties of a few-body
system of bosons in a one-dimensional harmonic trap in the presence of an
impurity of the same mass but in a different hyperfine state. We propose a
trial wave function based on the analytical solution for two trapped particles
[31], which generalizes the pair correlated wave function approach [147] for
the case of different interactions. This procedure allows us to study few-body
mixtures and calculate quantities such as correlation functions and momentum
distribution. We obtain such quantities for a system of two bosons and one
impurity and show that our results for the correlations are in good agreement
with the exact diagonalization for all interacting regimes and with existing
analytical results for the strongly repulsive impurity limit.

The results shown in this chapter have been published originally in Ref. [148],
in collaboration with A. S. Dehkharghani, who provided the data for the nu-
merical diagonalization and results for the infinitely repulsive limit. With
respect to the original publication, the introduction and system description
have been substantially changed to avoid repetition with respect to the previ-
ous chapters. A section from the original publication, on the analytics of the
wave function in the limit of infinite repulsion, has been removed. Aside from
minor modifications, the remaining part of the chapter and the figures have
been kept identical to the original publication. The content of this chapter
has also been presented as part of the Qualifying Exam.
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9.1 Hamiltonian
We start by considering a system of bosons with contact interactions in a one-
dimensional harmonic trap. The Hamiltonian for the N -body case is written
as

H = −1
2

N∑
i=1

∂2

∂x2
i

+
N∑
i=1

x2
i

2 +
∑
i<j

gijδ(xi − xj) (9.1)

where we consider the energies and lengths in units of ~ωL and bL =
√
~/mωL,

with ωL being the longitudinal harmonic confinement. The parameter gij is
given in units of ~2/mbL and accounts for the possible different interactions
between the pairs of atoms. Experimentally, these interactions can be con-
trolled by means of Feshbach [14] and confinement-induced resonances [15]. In
the absence of a trapping potential and considering all interactions between
the pairs to be equal, the Hamiltonian (9.1) reduces to the well-known Lieb-
Liniger integrable Hamiltonian [17, 18]. In this work, we will be particularly
interested in the case of three bosons with equal masses.

9.2 Ansatz
To calculate the physical properties of this model, we write our ansatz for the
wave function as

Ψ(x1, x2, ..., xN ) = ΦCMψR, (9.2)

where ΦCM = NCM exp
[(∑N

i xi
)2
/2N

]
is the center of mass part of the

wave function and NCM is a normalization constant. The relative part of the
wave function, ψR, is written as

ψR = NR
P∏
i<j

D(βij |xj − xi|;µij), (9.3)

where P = N(N−1)
2 is the number of pairs, D is a parabolic cylinder function

[149] which depends on the absolute separation between the particles |xj−xi|
and the parameters βij and µij , and NR is a normalization constant. This
factorized form of the wave function has first been proposed and used to
describe N -body bosonic systems with equal interactions in [147], where it
is employed to calculate energies and correlation properties. It is based on
the seminal solution by Thomas Busch et al. for the case of two δ-interacting
cold atoms in a harmonic trap [31]. For the case of different interactions in a
homogeneous potential, a similar procedure has been proposed in Ref. [150].
Here, we combine these two approaches to treat the general case of bosons with
different interactions in a trap. Using the boundary condition for the delta
function potential between a pair of particles, we find the following relation
for µij and gij :
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gij
βij

= −
23/2Γ(1−µij

2 )
Γ(−µij2 )

, (9.4)

where Γ are Gamma functions and µij varies between 0 and 1 as gij grows
from 0 to ∞. By choosing all βij =

√
2/N and considering all interactions

equal (gij = g for any pair) the total wave function reproduces the known
analytical ground state results in the non-interacting

Ψ0 = N e−
∑N

i

x2
i
2 (9.5)

and infinitely repulsive, also called Tonks-Girardeau (TG) [44]

Ψ∞ = N e−
∑N

i

x2
i
2

P∏
i<j

|xj − xi| (9.6)

cases, where N is the appropriate normalization constants for each limit. For
the particular case of N = 2, Eq. (9.3) is the exact relative wave function
at any interaction strength [31]. Outside of the limits described above (e.
g. for equal intermediate interactions or mixtures of bosons with different
interactions) the parameters βij are not fixed at

√
2/N , and we may treat

them variationally.

9.3 Probability densities
In this section we use our ansatz to calculate the densities for a system of
three bosons in the harmonic trap. First we consider a system with equal
interactions in the limits of g = 0 and g → ∞, then we calculate the same
properties for a system of two identical bosons plus an impurity, considering
this atom has a different interaction strength than the remaining pair. The
case of four particles is briefly discussed in the end of this section.

9.3.1 Equal Interactions

The single particle densities are defined for a normalized wave function as

ρ(x1) =
∫
dx2, ..., dxN |Ψ(x1, x2, ..., xN )|2. (9.7)

In Fig. 9.1 a) we show results for this quantity obtained using Ψ(x1, ..., xN ) =
ΦCMψR with ψR defined in Eq. (9.3), for the strongly interacting (g = 1000,
µ ∼ 1) and for the non-interacting (g = 0, µ = 0) limits in the case of
three identical bosons, where our wave function reproduces the exact re-
sults. We observe the tendency of the atoms to separate in the trap in the
strongly repulsive case, with the appearance of three separate peaks. The
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Figure 9.1: a) Single-particle densities in the non-interacting (blue circles) and
strongly interacting (red squares) limits. The solid gray lines show the results obtained
using the analytical limits 9.5 and 9.6. Pair correlations for b) the non-interacting
and c) the strongly repulsive limits.

non-interacting case shows the expected Gaussian profile. We also notice
that the wave function correctly reproduces the analytical cases given by
Eqs. (9.5) and (9.6). The pair correlation function, defined as ρ2(x1, x2) =∫
dx3, ..., dxN |Ψ(x1, x2, ..., xN )|2, shows similar effects; in Fig. 9.1 b), the atoms

do not interact; therefore the separation between any given pair can be zero.
In Fig. 9.1 c), the density goes to zero around the diagonal x1 = x2, since the
repulsion is strong.

9.3.2 Different Interactions: Two Bosons and one Impurity

We now turn to the case of different interactions between the atoms in the
trap. We focus in the problem of two identical bosons plus an impurity. In
Fig. 9.2 a) and b) we show a schematic depiction of two possible configurations
of the system. In a) we have the non-interacting case where all bosons can
be considered identical. In this scenario all particles tend to occupy positions
close to the center of the trap. If the interaction between the impurity and the
majority atoms is strong, as shown in Fig. 9.2 b), then the impurity will be
found at the edges of the trap. This effect can be verified in the correlations
of this system, as will be shown next.
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Figure 9.2: Depiction of two possible states for three bosons in the trap. a) Three
identical, non-interacting bosons and b) two identical bosons and a strongly repulsive
impurity.

We rewrite the coordinates as xI for the impurity atom and (xM1, xM2)
for the majority identical bosons. The interaction parameters are set as gIM
for the impurity-majority interactions and gMM for the majority-majority in-
teraction. The condition βij =

√
2/N is no longer necessary in the case of

different interactions. Furthermore, since the interaction g may be different for
each pair, the parameters βij may also be varied independently. To improve
the precision of our approach, we therefore treat βij variationally, optimizing
this parameter in each interaction case. We focus in three interaction regimes:
non-interacting (g ∼ 0), intermediate interaction (g = 2.56) and strong inter-
action (g = 200).

Figure 9.3: Spatial densities for the impurity boson with different impurity-majority
interaction strengths. The black solid lines show the results obtained through exact
diagonalization and the light blue dots the results from the analytical wave function
in the infinite repulsive limit.

In Fig. 9.3 we plot the spatial densities for the impurity atom. We as-
sume in this case that the majority bosons are non-interacting (gMM = 0).
The most relevant physical effect in this case is the increasing separation of
the density for the impurity, which tends to locate at one of the sides of the
trap as a consequence of the repulsion with the majority bosons. In Fig. 9.3
we also verify the validity of our approach by comparing to results obtained
by numerical diagonalization. In the non-interacting regime we observe once
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again that the exact density is reproduced. In the intermediate and strongly
repulsive regimes, we observe small deviations from the exact results, although
the general behavior is well captured. For the strongly repulsive regime we
also present a comparison with an analytical wave function, obtained by con-
sidering gMM = 0 and gIM → ∞ (see Ref. [57] for details). We notice that
this result agrees well with the case of gIM = 200, both in the exact diago-
nalization and in the pair correlated ansatz, which shows that for a value of
gIM = 200 the limit of infinite repulsion is effectively reached. The difference
ε(xI) = (ρ(xI)ED−ρ(xI))2, where ρ(xI)ED is the results for the one-body cor-
relation function obtained by exact diagonalization, is, as expected, ε(xI) = 0
for all points in the non-interacting case; in the interacting cases, it assumes
slightly larger values, in particular around xI = 0 for gIM = 2.56 and xI ± 1.8
for gIM = 200. At these last points, nevertheless, the value of ε(xI) is still
considerably small (∼ 0.001).

Figure 9.4: Pair correlation function for an impurity-majority pair, with interactions
fixed as a) gIM = 2.56 and gMM = 0, b) gIM = 200 and gMM = 0.

The pair correlations shown for an impurity-majority pair in Figs. 9.4
a) and b) also depict the tendency for the separation between the atoms of
different species, along the diagonal xI = xM1, as the interaction gIM is
increased.

The momentum distribution, a quantity of great experimental interest,
can be calculated as well from our approach, by taking a Fourier transform
of the one-body correlation function: n(p) = (1/2π)

∫
dx dx′ e−ip(x−x

′)ρ(x, x′).
In Fig. 9.5 a) we show results for the momentum distribution of the impurity
as the interaction parameter gIM is increased. The non-interacting case is
simply the Fourier transform of the non-interacting case shown in Fig. 9.3
and therefore has a simple Gaussian profile.

In the case of mixed interactions we consider gMM = 10−5. In Fig. 9.5 b)
we show the agreement between these two results and the ones obtained by
numerical diagonalization. In Fig. 9.5 c) we show the same results in log-log
scale, where it becomes clear that, for the interacting cases, the momentum
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Figure 9.5: a) Momentum distribution for the impurity in different interaction
regimes. The purple curve shows the result obtained with the exact non-interacting
wave function and the black curve shows the equal-interaction strongly repulsive
case (Tonks-Girardeau gas). b) Same results as in a) for the mixed interactions:
gMM = 10−5 and gIM = 200 (red curve) and gMM = 10−5 and gIM = 2.56 (orange
curve), compared to exact diagonalization results (dashed curves). c) Log-log scale
plot of the results in a). All interacting cases obey the C/p4 power-law for asymptotic
values of p.

distribution obeys a power law C/p4 for high values of p. This is a character-
istic behavior of systems with δ interaction; the constant C is usually called
the contact parameter, a concept that captures all universal properties of sys-
tems [151] and can be obtained analytically for both homogeneous [152] and
trapped [153] models.

For the particular case of a non-interacting majority pair and a strongly
repulsive impurity it is also possible to notice the bunching of the major-
ity bosons as a result of this repulsion. Fig. 9.6 a) shows the pair corre-
lations for the majority pair in this scenario. The identical bosons tend
to occupy the same position due to the weak repulsion between them, but
this position is slightly deviated from the origin of the system. This effect
has consequences on the Fourier transform of the pair correlations, defined
as n2(p) =

∫
dx3 e

−ip(x1−x2)ρ2(x1, x2) for an impurity-majority pair, and as
n2(p) =

∫
dx1 e

−ip(x2−x3)ρ2(x2, x3) for a majority-majority pair. In Fig. 9.6
b) we show results for this quantity in the same interaction regimes as in
Fig. 9.5. The red and orange solid lines show the results for mixed interac-
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Figure 9.6: a) Correlations for the non-interacting majority-majority pair with
strongly repulsive impurity. b) Fourier transform of the pair correlations in the non-
interacting and Tonks-Girardeau cases (purple and black solid lines, respectively) and
in the cases of intermediate (orange) and strong (red) repulsion by the impurity. Solid
lines correspond to the impurity-majority pair, while the dashed lines correspond to
the majority-majority pair.

tions considering an impurity-majority pair, with a behavior similar to that
of Fig. 9.5 when compared to the cases of equal interactions. The Fourier
transform of the majority pair (dashed lines), however, assumes values larger
than the non-interacting results for the low-momentum region. This effect can
be traced back to peaks in the static structure factor of homogeneous systems
[150], which accounts for an effective attractive interaction for the given pair
of bosons.

9.3.3 Three Bosons and one Impurity

Finally, to illustrate the generality of this approach, we extend it to the case of
four particles (three identical bosons and an impurity). In Fig. 9.7, we present
results for the one-body densities, with interactions between the impurity and
the majority pair again ranging from weak to strong, while the majority-
majority interactions are kept small (gMM = 10−5). Again, we notice the
separation of the density for the impurity as the interactions are increased.
The peaks are more pronounced than in Fig. 9.3, since the number of identical
bosons is larger. This effect can also be interpreted as precursor of ferromag-
netism in bosonic systems [57, 60], since particles of the same species tend to
bunch up on one side of the trap (provided that the intra-species interaction
is small).

9.3.4 Total density for mixed interactions

Considering our approach has been validated by the comparison to exact nu-
merical results, and to further elucidate the effect of the repulsive delta inter-
actions between the pairs on the correlations, we now look at the normalized
total density |Ψ(xI , xM1, xM2)|2 in nine different situations. The panels a), e)
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Figure 9.7: One-body correlation function for the impurity boson in the four particle
system with three different impurity-majority interaction strengths. The black solid
lines show the results obtained through exact diagonalization. In all cases we consider
gMM = 10−5.

and i), along the diagonal in Fig. 9.8 have equal interactions between all the
pairs. For the non-interacting a) and strongly repulsive i) densities we approx-
imately reproduce the two cases shown in Fig. 9.1 a). Panel e) shows the in-
termediate case, with the depletion of probability along the planes {xI = xM1,
xI = xM2, xM1 = xM2}, in a similar way as shown in [147]. The off-diagonal
densities are clearly not symmetric: in the column a), d) and g), only the in-
teraction gMM is being increased. That means the probability is lowered only
along the plane {xM1 = xM2}, which leads to the separation of the density
in two lobes. On the other hand, the line a), b), c) shows depletion of the
probability on two planes, namely {xI = xM1, xI = xM2}, which leads to the
appearance of a smaller lobe on b). The mixed cases f) and h) also reflect the
asymmetry of the interactions on the probability densities.

9.4 Conclusions

We have used a pair correlated wave function, based on the solution for a pair
of bosons in a trap, to access the features of the problem of few bosons in the
presence of an impurity. We have shown that this wave function reproduces
the limiting cases of zero interaction and infinite repulsion between the atoms.
The results for intermediate interactions are consistent with the qualitative
behavior expected for these systems. By increasing the interaction between
the impurity and the remaining pair, we show that there is a tendency for this
atom to occupy some position around the edges the trap. These effects on the
spatial correlations are also reflected on quantities of experimental interest,
such as the momentum distribution and the Fourier transform of the pair
correlations. We also extend the approach to a case of three identical bosons
and one impurity and compare results for the one-body densities with exact
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MIXTURE

Figure 9.8: Normalized total density |Ψ(xI , xM1, xM2)|2 shows the depletion of the
probability along the contact manifolds for different interactions. The repulsion be-
tween the majority-majority pair and the impurity-majority pairs is increased from
top to bottom and left to right, respectively.
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numerical results. It becomes clear that by combining a pair-correlated wave
function with variational optimization it is possible to address other systems
of great interest, such as balanced mixtures of two or more bosonic species.





Chapter 10

A mean-field approach to
spin-charge separation in
two-component Bose gases

In Chapter 7 we explored the phenomenon of spin-charge separation in a few-
body fermionic system with strong interactions. In the many-body regime,
this effect has been theoretically treated with different approaches: the Lut-
tinger liquid model [93], the Bethe ansatz approach [96, 154] and the Density
Matrix Renormalization Group (DMRG) [94, 95]. An experimental study of
spin-charge separation for two-component Bose gases has been presented in
Ref. [56].

Here, we develop a numerical study based on the Gross-Pitaevskii (GP)
equation [5, 6] for the propagation of charge and spin excitations in a two-
component Bose gas. We show that our results agree with the predicitions
from hydrodynamic theory. We further propose probing these effects in the
presence of a harmonic trap by simulating the dynamics of the system after a
sudden change in the trapping frequency.

10.1 Model and Hamiltonian

We consider a many-body Bose gas trapped in a quasi-1D geometry at zero
temperature. We assume that the gas has two internal states and define the
two components as ↑ and ↓. The numbers of particles in each component are
written asN↑ andN↓, with the total number of particles given byN = N↑+N↓.
In the mean-field limit, this system can be modelled by two coupled Gross-

93
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Pitaevskii (GP) equations:

i~
∂ψ↑(x)
∂t

=
(
− ~2

2m↑
∂2

∂x2 + V (x) +G↑↑|ψ↑(x)|2 +G↓↑|ψ↓(x)|2
)
ψ↑(x)

i~
∂ψ↓(x)
∂t

=
(
− ~2

2m↓
∂2

∂x2 + V (x) +G↓↓|ψ↓(x)|2 +G↑↓|ψ↑(x)|2
)
ψ↓(x),(10.1)

where V (x) is an external trapping potential, which will be discussed be-
low. The third term on the right-hand side of the equations (G↑↑, G↓↓) is
related to the intraspecies interactions for each component, and the remain-
ing terms (G↑↓, G↓↑) denote the interspecies interactions. We consider the
wave functions ψ(↑,↓)(x) to be normalized to unity, while the interaction terms
are scaled to the number of particles: this gives us G↑↑ = N↑g↑↑, G↓↓ = N↓g↓↓,
G↓↑ = N↓g↑↓ and G↑↓ = N↑g↑↓, where g↑↑, g↓↓ and g↑↓ are the “bare" inter-
actions. In the following, we shall consider that the two components have
the same masses (m↑ = m↓ = m), and that the intraspecies interactions are
the same (g↑↑ = g↓↓ = g). We focus on repulsive interactions (g, g↑↓ > 0) and
take, for simplicity, ~ = m = 1. We will also assume a balanced system, where
N↑ = N↓, which gives us G↑↑ = G↓↓ = G and G↑↓ = G↓↑.

For the trapping potential V (x), we assume a hard-wall box of length L.
This is done so that the densities for the two components, n↑(x) = N↑|ψ↑(x)|2
and n↓(x) = N↓|ψ↓(x)|2 are approximately constant near the center of the
system. For these constant densities we will simply use the notation n↑, n↓
or n, the latter referring to the single component gas. In our calculations,
we consider all quantities in the units of the trapping potential: length, time
and velocity are given in units of L, tB = 2mL2/(~π2) and v0 = ~2π2/(2mL),
respectively.

The Gross-Pitaevskii equation is assumed to be valid for small values of
the parameter γ = mg/n. For large densities, the system is in the so-called
Thomas-Fermi regime [6]. For smaller densities and g � 1, the system is
in the strogly repulsive Tonks-Girardeau limit, which is beyond the range of
our approach. Here, we focus on systems with large densities and relatively
small values of the interaction parameter g. In our calculations, we use the
split-step Crank-Nicolson method [88, 155], with the imaginary time evolution
method applied to creating steady states of the system and with the real time
evolution method applied to simulate the dynamics. A similar approach to
the one adopted here, with a focus on stability and phase separation of two
component Bose gases, is presented by Vidanović et. al. in Ref. [156].
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10.2 Density perturbations and spin-charge
separation

10.2.1 Single component

We first turn to the simple case of a single component in the box, for which we
create a density perturbation and obtain its propagation velocity. A detailed
study of the propagation of perturbations in a Bose gas at lower densities has
been performed in Ref. [94]. Here, we reproduce the expected results in the
GP regime to validate our approach for the case of two component gases. In
the single component scenario, instead of two coupled GP equations as given
in Eq. (10.1), we have a single equation with the interspecies interaction term
dropped. We create a gaussian perturbation to the density in the center of
the system, described by

Vp(x) = ε exp(−x2/2σ), (10.2)

where we consider σ = 2 and ε < 0, which induces a bump in the density of
the cloud at x = 0.

A steady state for the system in the presence of the perturbation is pre-
pared using the imaginary-time evolution with the Crank-Nicolson method.
With this we are able to calculate the average density n(0) near the center
of the trap, where the perturbation is placed. At t = 0 the perturbation is
switched off. In Fig. 10.1 we show the time evolution of the density n(x). The
bump initially placed in the middle of the system splits into two perturbations
that travel at the same velocity in opposite directions.

12.6

12.7

12.8

12.9

Figure 10.1: Time evolution of the density perturbation in the single component Bose
gas. The parameters used are n ≈ 12.5, g = 2.5, and ε = −1.

For the time scales shown in Fig. 10.1, the density perturbations have
not yet reached the edges of the system and there are no visible signs of
boundary effects and interference. For an infinitesimal perturbation (ε � 1)
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it is predicted by the hydrodinamic approach [5] that the perturbation should
propagate at the Bogoliubov speed of sound:

c =
√
gn

m
. (10.3)

We can compare the propagation of the density excitations to this result
by considering a small perturbation and registering the velocity of the density
peaks as seen in Fig. 10.1. In Fig. 10.2 we show a comparison of our results
to the theoretical predictions. In Eq. (10.3) the density is assumed to be the
average density near the center of the trap.

0 1 2 3 4 5 6
0

5

10

15

Figure 10.2: Comparison between the propagation velocity of the perturbations (sym-
bols) and the sound velocity predicted by hydrodinamic theory (dashed lines). The red
circles are the results for n ≈ 50 and the blue squares for n ≈ 25. In both cases we
consider ε = −0.1.

We see that our results agree well with the behavior expected from Eq. (10.3)
up to intermediate values of g, provided that the value of γ remains small
enough. For all points, we have a deviation of at least 0.1 between the theo-
retical sound velocity and the perturbation velocity obtained from the simu-
lations. This is due to the fact that the perturbations, while very small, still
have a finite amplitude, which leads to propagation velocities larger than the
sound velocity. This effect is more pronounced at small values of g, where
the perturbation originated by Eq. (10.2) induces a larger bump in the gas
density. Therefore, for a fixed value of ε, we find better agreement with the
sound velocity predictions for large values of the GP non-linear term G = Ng.

10.2.2 Two components

We now focus on the dynamics of two-component Bose gases in a box. The
different species can be realized experimentally exploring different hyperfine
atomic states (e.g. |F = 2,mF = −1〉 and |F = 1,mF = 1〉 in 87Rb). As
a first example, we create a steady state in the presence of a spin-selective
perturbation given by Eq. (10.2), which affects only one of the components
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Figure 10.3: Initial profiles for the densities of the two-component system. The solid
curves refer to n↑(x) (black) and n↓(x) (gray), while the dashed orange curve and the
blue dotted curve refer to nC(x) and nS(x), respectively.

(we choose ↑). We further define a “charge" density as nC(x) = n↑(x) +n↓(x)
and a “spin" density as nC(x) = n↑(x) − n↓(x). In Fig. 10.3, we show the
steady state densities for the charge, spin and the two components in the
presence of the perturbation, at t = 0.

As in the single component case, the perturbation induces a bump in n↑(x).
Due to the repulsive interactions, this leads to a depletion of density, or a dimp,
in the distribution of n↓(x). The combined effect of these distributions lead to
perturbations of different amplitudes in the charge and spin densities (notice
that the spin density perturbation is very small). At t = 0, we turn off the
spin-selective potential, which leads to the propagation of the perturbations
in the background gas. In Fig. 10.4 we show the results for the time evolution
for the charge and spin densities.

It becomes clear than the charge and spin density perturbations travel at
different velocities. This difference is expected to become larger as the system
approaches the transition to phase separation (g↑↓ > g), where ferromagnetic
interactions are dominant. For the particular case of g↑↓ = g, we expect
to find a complete freezing of the spin degree of freedom as compared to
the propagation of charge perturbations. This regime has been analitically
explored with the Bethe ansatz in Ref. [96, 154]. The sound velocities for the
two component case can also be obtained by the hydrodynamic approximation:

vc,s = c

√
1± g↑↓

g
, (10.4)

where c is the single component velocity of sound, and the indices c and s
refer to charge and spin. In Fig. 10.5 we show a comparison for the velocity
of propagation of charge and spin perturbations to the results predicted by
Eq. 10.4. It is important to note that the velocity of the charge perturbation
is obtained by applying the potential given by Eq. 10.2 to both components).
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Figure 10.4: Time evolution of the charge (top) and spin (bottom) densities. The
parameters considered are n ≈ 5, g = 2.5, g↑↓ = 2.0 and ε = −1.
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Figure 10.5: Comparison between the charge (orange squares) and spin (blue circles)
perturbation velocities and the sound velocities predicted by Eq. 10.4. The parameters
used are n ≈ 25 and ε = −0.1.
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Once again we find good agreement up to intermediate values of g↑↓, with a
fixed intraspecies interaction strength of g = 5. The small deviations observed
in the single component case, due to the finite size of the perturbations, are also
present here. These results can be qualitatively compared to the ones obtained
for lower densities beyond the hydrodynamic description in Ref. [95, 157].
We further highlight the fact that large densities (as considered in the single
component case), which lead to strong non-linearities in the GP equation, can
induce instabilities in the dynamics of the the two-component, coupled GP
equations. More reliable results are obtained for the smaller densities shown
in Figs. 10.4 and 10.5.

10.2.3 Two component Bose gas in a harmonic trap

We now extend our approach to the case where the two-component Bose gas
is confined by a harmonic trap given by V (x) = mω2x2/2, where ω is the trap
frequency. Length and time are now given in units of the harmonic oscillator
length lH =

√
~/mω and the inverse frequency tH = ω−1.

It has been shown that spin-charge separation is also manifested in the
presence of a harmonic trap [157]. However, the dynamics of small perturba-
tions may be hard to register for these trapping geometries, since the spatial
distributions are inhomogeneous. Instead, here we consider a two-component
system confined by spin-selective trapping frequencies ω↑ and ω↓. We pre-
pare a steady state at t/tH < 0 considering ω↑ = ω↓. At t/tH = 0, we
switch the frequency of one of the components, such that ω↑ > ω↓, and at
t/tH ≈ 0.5 we switch back. The sudden changes in the trapping frequency
for one of the components induce oscillations in the distributions over time.
These “trap quenches" have been adopted in the hydrodynamic description to
simulate monopole oscillations in a Bose gas over a wide range of interactions
[158]. Here, the oscillations are extended to both components due to the in-
terspecies repulsion. To quantify this oscillatory behavior, we keep track of
the “charge" and “spin" squared widths w2

C,S = w2
↑ ± w2

↓, where

w2
↑,↓ =

∫
|ψ↑,↓(x)|2x2dx (10.5)

is the squared width for a single component. These monopole oscillations
in the width of the atomic cloud after trap quenches are also often called
“breathing modes" [159, 160].
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Figure 10.6: Time-evolution of the charge (solid orange curves) and spin (dashed
blue curves) squared widths for g = 5.0 and a)-b) g↑↓ = 0, c)-d) g↑↓ = 2.5 and e)-f)
g↑↓ = 4.0.

In Fig. 10.6 we show the results for w2
C(t) and w2

S(t), with the intraspecies
interactions fixed as g = 5 and for different values of the g↑↓. We immediately
notice that increasing g↑↓ has little effect on the dynamics of the charge sector
other than an increase of the average width of the cloud. The spin oscillations,
however, are highly affected by this parameter; we see that, as g↑↓ is increased,
the frequency of these oscillations is lowered (in the case of g↑↓ = 0, the
spin and charge oscillations naturally have the same frequency as the two
components are decoupled). We could expect these spin oscillations to would
completely freeze for g↑↓ →∞ (this regime is not, however, realistically treated
within the Gross-Pitaevskii approach).

10.2.4 Numerical details

In our simulations we obtain the steady states and the dynamics for the two-
components Bose gas using the split-step Crank-Nicolson method [155]. The
trapping potential considered is a box of length L centered at x = 0. We
discretize the system with a grid size of dx = 0.05, and consider the half-
length L/2 = 25. Outside these limits, we impose V (x) � 1 so that the
boundaries are effective hard walls. The size of the time step used in our
simulations is ∆t = 10−4, except in the case of the coupled GP equations
at large densities (e.g. Fig. 10.5) where instabilities arise due to the large
values of the non-linearities; in this cases, we consider ∆t = 0.25× 10−4. The
steady states and dynamics are obtained using a total number of time steps of
around 3× 104. In the harmonically trapped system, we consider a total size
of L = 25, with the same discretization parameters. The quench is performed
by considering ω↑ = 1.25ω↓.
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10.3 Conclusions
In this chapter, we have performed a study of spin-charge separation in a
two-component one-dimensional bose gas. Contrary to Chapter 7, where we
focused on a few-body system with strong interactions, here we explore the
many-body case where interactions are weak enought to be treated with the
Gross-Pitaevskii equation. Our initial step consists of obtaining results using
a quench protocol which is similar to previous studies with DMRG [94, 95].
We show that, in the single-component case, our results match the predictions
of Bogoliubov theory for the velocity of propagation of perturbations.

We then extend the same approach to the two-component case, where we
find that spin-charge separation is also manifested in the mean-field regime.
Once again, the results agree with the expected behavior obtained from the
hydrodynamic approximation.

To address the problem in the context of experiments with trapped cold
atoms, we further propose the case of a two-component Bose gas in a harmonic
trap. In this geometry, our quench protocol consists of suddenly changing
the trap frequency for one of the components, therefore inducing breathing
modes in the densities. By calculating the time-evolution of the charge and
spin densities we are able to obtain different oscillation frequencies for these
quantities, which also depend on the strength of the repulsion between the
two-components.





Chapter 11

Conclusion and Final
Remarks

We now present a brief summary of the work presented in each of the chapters
of this thesis, along with some remarks on the potential developments of the
subjects considered here.

The first part of the thesis is dedicated to an overview of the field of cold
atoms and the tools we employ in our studies. In the Introduction we pro-
vided general information on the types of systems we take under consideration,
namely one-dimensional quantum systems of interacting particles. A major
part of the renewed interest in this theoretical field of study is due to the
advances in experiments with trapped cold atoms, where several parameters
can be manipulated with precision. Numerous different theoretical proposals
appeared as a consequence of the possibilities presented by these experiments.
The combined effort of theory and experiment has given rise to a rich area
that draws insight from quantum and statistical mechanics, as well as atomic,
molecular and optical physics.

Chapter 2 lays out the general theory that is applied throughout the thesis.
The main goal of the chapter is to describe the mapping between a strongly
interacting system of atoms in one dimension and a spin chain, where the
spin states represent internal atomic degrees of freedom. We additionally
present a section dealing with the experimental details involved in realizing
one-dimensional systems of cold atoms, including recent experiments exploring
their exotic properties.

In the second and main part of the thesis we focus on presenting our
studies of dynamical effects in strongly interacting one-dimensional systems.
In Chapter 3 we show how transitions between magnetic profiles can be ob-
tained by considering a two-component Bose gas where a single parameter -
the instraspecies interaction strength - is slowly changed in time. This simple
protocol allows for the manipulation of magnetic correlations in the system,
and the same procedure could in principle be extended to many-body ensem-
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bles.
In Chapter 4 we study the case of a strongly interacting bosonic system

in the presence of a single impurity. We show that, by changing the strength
of the background repulsion (which is essentially the same parameter we ma-
nipulate in Chapter 3), we can greatly affect the dynamics of the impurity.
In fact, in a certain regime of interactions, the impurity presents an oscilla-
tory behavior that resembles a Josephson junction, even in the abscence of
a potential barrier. Additionally, we find that the barrier can enhance the
tunneling of the impurity in some particular cases, and provide an analysis of
this phenomenon through the interpretation of the energy gaps of the system.

In Chapter 5 we explore a more exotic possibility, where a two-component
Bose gas has a set of completely independent interaction parameters between
the two species. We show results for the spin densities in this system, consid-
ering a homogeneous potential and several combinations of interactions. One
of these specific combinations allows a minority set of spins to travel through
the system as an effective wave packet, an effect that could have applications
in the study of spin state transfer in long one-dimensional chains.

Chapter 6 presents an intermediate study in which we consider a spin chain
where one of the exchange coefficients is time-dependent. This model config-
ures a gateway into the exploration of time-periodic and externally driven spin
systems, which are currently the object of great interest in the physics com-
munity. By comparing numerical and analytical results, we show how we can
apply Floquet theory to predict the dynamical behavior of the observables in
this system.

In Chapter 7 we apply the methods above to the study of the dynamics of
a multicomponent few-body Fermi gas after a sudden change in the trapping
potential. We show how the time-evolution of the spatial sector provides us
with a set of time-dependent exchange coefficients for the spin chain. Combin-
ing the contribution of each sector, we obtain the time-evolution of the spin
densities, which show separate signals for charge and spin dynamics. Interest-
ingly, the spin excitations can again be predicted by the energy gaps in the
Floquet quasienergy spectrum of a spin chain with time periodicity. We addi-
tionally study the possibility of increasing the number of internal components
and the effect of doing so on the dynamics of the system. When the number of
internal states matches the number of atoms, we find that the spin oscillations
vanish and the system can be accurately described as a gas of impenetrable
bosons.

In Chapter 8 we take under consideration a different type of driven system,
where we analyze the response of a spin chain to an external spin-flip drive.
We provide details on the driving protocol and show that a bosonic system
is able to sustain, in a certain regime, the type of behavior expected for a
time crystal phase, where discrete time-translation symmetry is non-trivially
broken. This effect is shown to be robust against imperfections in the drive,
and is also present in a larger system in a lattice.
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The third part of the thesis is concerned with two alternative studies where
we explore different regimes of interactions and particle number. Chapter 9
presents static results for a few-body Bose mixture in a trap, where we apply
a variational approach to obtain the ground state wave function over a large
interval of interactions. We compare our results to numerical diagonalization
and show that we are able to reproduce the expected behavior for different
quantities, such as spatial densities and momentum distribution.

In Chapter 10 we go back to the effect of spin-charge separation, this time
employing the Gross-Pitaevskii description of a many-body Bose gas. We
begin by comparing the behavior of a perturbation in the single-component
Bose gas with the predictions of Bogoliubov theory. Then we extend our study
to the two-component case by numerically solving a set of coupled Gross-
Pitaevskii equations. Finally, we provide a proposal of a quench protocol
suited for the observation of spin-charge separation in a harmonically trapped
system.

The work presented in this thesis takes into account only a small fraction
of the possiblities offered by experiments with trapped cold atoms. Recent
studies are continuously pushing the boundaries of the field, either consid-
ering different geometries and combinations of internal states or taking into
account out-of-equilibrium systems, where the Hamiltonian is modified by
external fields. Furthermore, using cold atoms as quantum simulators may
provide insight on models belonging to fields as diverse as condensed matter
and particle physics. The models studied in this thesis have also become the
object of experiments with superconducting circuits, where similar chains of
spins can be built and controlled with precision. These platforms will cer-
tainly contribute for future advances in basic physics research as well as in the
design of quantum devices.





Part IV

Appendices

107





Appendix A

Numerical methods

In this appendix we present some details on the numerical methods used for
simulations of dynamics throughout this work. In the first section we pro-
vide a brief description of the well-known Crank-Nicolson method, which is
commonly used for simulations of dynamics in quantum mechanics. In the
second part we describe the lattice Hamiltonian we consider when simulating
the continuum and comparing to the spin chain results in Chapter 2.

A.1 Crank-Nicolson method

Throughout this thesis, we present several cases of simulations in dynamics
which frequently deal with sudden changes in the potential or even time-
dependent Hamiltonians. To address these problems, we use an implemen-
tation of the Crank-Nicolson method [88, 155]. The basic idea behind this
method is rather simple [161]. We assume that, for a small time step ∆t, the
wave function evolves as

ψ(t+ ∆t) = e−iH∆tψ(t), (A.1)

where we assume ~ = 1. By simply expanding the exponential to first order
we obtain

ψ(t+ ∆t) = 1− iH∆tψ(t). (A.2)

However, this simple expression does not preserver unitarity. To fix this, we
can split the time evolution operator as

ψ(t+ ∆t) = e
−iH∆t

2 e
−iH∆t

2 ψ(t), (A.3)

and multiply both sides of the expression by e
iH∆t

2 to get

e
iH∆t

2 ψ(t+ ∆t) = e
−iH∆t

2 ψ(t). (A.4)
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We now expand the exponentials to first order to obtain the time-evolution of
the wave function with Cayley’s form

ψ(t+ ∆t) ≈
1− 1

2 iH∆t
1 + 1

2 iH∆t
ψ(t), (A.5)

which can also be written as(
1 + 1

2 iH∆t
)
ψ(t+ ∆t) =

(
1− 1

2 iH∆t
)
ψ(t). (A.6)

Since we aim to describe a discrete system, we define the matrixA = 1+1
2 iH∆t

and write the wave function vector as Ψn, where n now denotes the time step
parameter. We have, therefore

A ·Ψn+1 = A∗ ·Ψn, (A.7)

which leads to
Ψn+1 = A−1A∗ ·Ψn. (A.8)

By iteratively applying this operator to an initial wave vector, we are able to
approximate the exact time-evolution of the system, even for time-dependent
Hamiltonians. The Crank-Nicolson method is characterized by a second order
error in the time step, which is negligible for ∆t� 1. In our simulations, we
usually employ ∆t = 2.5×10−3, unless stated otherwise. One important point
regarding this method is that, if A is a tridiagonal matrix, the computation
time can be greatly reduced by exploring the Thomas algorithm [162]. This is
the case for N + 1 spin chains, where only one anti-aligned spin is considered,
or in the case of the discretized Gross-Pitaevskii equation.

We now apply this formalism to dynamical simulations of a Heisenberg
chain, after the wave function is initialized in an arbitrary state. The Hamil-
tonian is simply defined by

H = −J
N−1∑
i=1

1
2
(
1− ~σi · ~σi+1

)
, (A.9)

where we fix the exchange coefficients J = 1. We choose a N = 6 system,
with two different combinations of spins: 3+3 and 5+1. In the first case, the
time-evolution of the system is obtained with the Crank-Nicolson method, as
described above. In the second, the Hamiltonian matrix can be reduced to
a tridiagonal shape and the Thomas algorithm is employed. In Fig. A.1 a)
and b) we show the comparison for the overlap probability F (t) = |〈ψ0|ψ(t)〉|2
between the exact and the numerical time-evolution of the system. The exact
result is obtained from

|ψ(t)〉 =
Ns∑
n=1

cne
−iEnt|φn〉, (A.10)
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where Ns denotes the total number of eigenstates |φn〉 and En are the corre-
sponding eingenvalues. The initial states are given by ψ0 = |↑↑↑↓↓↓〉 in the
3+3 case and by ψ0 = |↑↑↑↑↑↓〉 in the 5+1 case.

Figure A.1: Time-evolution of a) ψ0 = |↑↑↑↓↓↓〉 and b) ψ0 = |↑↑↑↑↑↓〉, as given by
Hamiltonian (A.9). The solid green curve shows the exact results from Eq. (A.10),
while the dashed black curves show the numerical resuts. In c) and d) we present the
increase in the error of F (t) between the numerical and exact approaches.

Besides applying the Crank-Nicolson method to the time-evolution of spin
chains with time-dependent Hamiltonians, we also use it, in Chapter 10, to
solve the Gross-Pitaevskii equation decribing a many-body one-dimensional
Bose gas. In this case, the Hamiltonian includes a self-interaction term which
depends on the wave function, which also makes in time-dependent. Further-
more, we employ the imaginary-time version of the code [155] to obtain the
steady states used in the description of the initial wave function in quench
protocols.

A.2 Matrix Product States

To validate the mapping of a strongly interacting two-component gas in one
dimension to a spin chain Hamiltonian, in Chapter 2 we have compared results
for the spin densities obtained with this method to numerical results stemming
from simulations with Matrix Product States (MPS). In this section we provide
details on the construction of the Hamiltonian and the mapping between a
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lattice model and the continuum. We focus on the description for a two-
component fermionic gas obeying the Fermi-Hubbard Hamiltonian [94], but
the case of bosons [95] can be also considered by including the corresponding
interaction terms in the theoretical description. The lattice Hamiltonian for
a fermionic gas with two internal components is given by

H = −t
∑
j,σ

(c†j+1,σcj,σ + H.c.) + U
∑
j

nj,↑nj,↓ +
∑
j,σ

εjnj,σ, (A.11)

where c† and c are the creation and annihilation operators, respectively, t is
the hopping parameter and U denotes the stregnth of the on-site interactions
between fermions with different spin projections. Additionally, we include a
term for the external potential εj which depends on the position.

To simulate the continuum, we choose a system length of 2L and a total
number of sites M , which defines the lattice spacing as a = 2l/M . The
mapping between the lattice and the continuum models is done by taking
t = 1

2ma2 , and U = g
a wherem is the mass of the atoms and g is the interaction

strength in the continuum. For simplicity, we again consider m = ~ = 1.
We simulate an external harmonic trap with εj = 1

2mω
2x2
j where xj is the

discretized position variable. To match the energies to the continuum, we
must additionally include in the Hamiltonian a term given by

∑
j,σ 1/a2. As

mentioned in Chapter 2, the simulations are performed with the open source
Python package OpenMPS [51, 163]. For these static simulations we define a
tolerance for the variance of ∆E = 10−5 and a maximum bond dimension of
χ = 500.



Appendix B

Generators of SU(3) and
SU(4) symmetries

In this chapter we present the matrix expressions for the SU(3) and SU(4)
generators used in Chapter 7. We additionally show the expressions for the
ladder operators of SU(3) symmetry.

B.1 SU(3)

The 8 generators for the SU(3) symmetry (Gell-Mann matrices [117]) are given
by:

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,
λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,
λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

 1 0 0
0 1 0
0 0 −2

 .

When studying the effects of symmetry breaking in the dynamics of the
SU(3) system, we consider also the action of the raising and lowering operators
given by
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T+ =

 0 1 0
0 0 0
0 0 0

 , T− =

 0 0 0
1 0 0
0 0 0

 ,
V + =

 0 0 1
0 0 0
0 0 0

 , V − =

 0 0 0
0 0 0
1 0 0

 ,
U+ =

 0 0 0
0 0 1
0 0 0

 , U− =

 0 0 0
0 0 0
0 1 0

 .
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B.2 SU(4)
The 15 generators for the SU(4) symmetry are given by

λ1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , λ2 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 ,

λ3 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 , λ4 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,

λ5 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , λ6 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,

λ7 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , λ8 = 1√
3


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

 ,

λ9 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , λ10 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 ,

λ11 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , λ12 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 ,

λ13 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , λ14 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 ,

λ15 = 1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

 .
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