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“If you believe in the ”atomic hypothesis”, the molecules composing a
liter of cold water can be in all kinds of different configurations. In fact,
the molecules dance around and the configuration changes all the time. In
quantum language, we have a system of many particles, which can be in a very
large number of different states. But while these states would look different
if you could see microscopic details, they all look the same to the naked eye;
in fact, they all look like a liter of cold water.

So, when we refer to a liter of cold water, we refer in fact to something
quite ambiguous. Boltzmann’s discovery is that the entropy is a measure of
this ambiguity. Technically, the right definition is that the entropy of a liter
of cold water is the number of digits in the number of ”microscopic”states
corresponding to this liter of cold water. The definition extends of course to
hot water, and to many other systems. ”

- David Ruelle, Chance and Chaos.



Resumo

Neste trabalho são analisados sistemas de Haar associados a grupoides obti-
dos por diversas relações de equivalencia especialmente de carácter dinâmico.
A dinâmica básica considerada é a do shift e portanto foca-se em relações
sobre conjuntos como {1, 2, ..., d}Z, {1, 2, ..., d}N ou (S1)N. Também são des-
critas propriedades de funções transversas, probabilidades quase invariantes
e estados KMS sobre algebras de von Neumann (e também sobre algebras
C∗) associada a estes grupoides. Iremos mostrar que alguns destes estados
KMS estão relacionados a estados de Gibbs do formalismo termodinâmico
(via medidas quase invariantes) sobre o espaço simbólico {1, 2, ..., d}N.

Também é explorado aqui um resultado de Ruelle e Haydn onde é obtida
uma relação de equivalencia entre estados KMS de certas algebras C∗ e pro-
babilidades de equilibrio do formalismo termodinâmico. Este resultado é ob-
tido aqui no contexto da relação de equivalência homocĺınica em {1, 2, ..., d}Z
(um setting mais simples do que o considerado por Ruelle e Haydn que con-
sidera diffeomorfismos do tipo Axioma A). A vantagem do ponto de vista de
considerar o shift agindo no espaço simbólico (seguido no presente trabalho)
é que num setting mais simples as principais idéias por trás das diversas
demonstrações se tornam mais claras. Elas podem ser entendidas sem a ne-
cessidade de ter que enfrentar certas tecnicalidades, por exemplo, associadas
a desintegração nas variedades instáveis.

Os estados KMS desempenham na Mecânica Estat́ıstica Quântica o papel
das medidas de Gibbs na Mecânica Estat́ıstica Clássica.

A seção 3.5 descreve as propriedades básicas da integração não comuta-
tiva, mais precisamente, a relação entre medidas transversas, funções trans-
versas, cociclos e probabilidades quase invariantes (seguindo a apresentação
de [18] ). Ressaltamos aqui o fato que conseguimos apresentar uma pequena
parte do trabalho “Sur la Theorie commutative de l’integration” by of A.
Connes (see [18] ) numa linguagem que pode ser mais facilmente entendida
pela comunidade de Teoria Ergódica.

Todos os resultados no presente trabalho são expressos na linguagem de
Teoria Ergódica.



Abstract

We analyse Haar systems associated to groupoids obtained by certain equi-
valence relations of dynamical nature on sets like {1, 2, ..., d}Z, {1, 2, ..., d}N,
S1 × S1, or (S1)N, where S1 is the unitary circle. We also describe proper-
ties of transverse functions, quasi-invariant probabilities and KMS states for
some examples of von Neumann algebras (and also C∗-Algebras) associated
to these groupoids. We relate some of these KMS states with Gibbs states
of thermodynamic formalism via quasi-invariant probabilities.

We also explore a result by Ruelle and Haydn where it is shown an equi-
valence of KMS states of C∗-algebras with equilibrium probabilities of Ther-
modynamic Formalism. Not surprisingly such result is also obtained in the
context of equivalence relations. Such result is obtained here in a simpler
setting, with the advantage that in this setting the main ideas of the proofs
can be clearly written in the context of measure and ergodic theory.

The KMS states play the role in Quantum Statistical Mechanics of the
Gibbs probabilities in Classical Statistical Mechanics.

Section 3.5 describes the basic properties of non commutative integra-
tion, more precisely, the relation of transverse measures, transverse functi-
ons, cocycles and quasi-invariant probabilities (according to [18]). We point
out that we were able to present a small part of the work “Sur la Theorie
commutative de l’integration” by of A. Connes (see [18] ) in a language more
easily understandable for the ergodic theory community.
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Caṕıtulo 1

Introduction

The study of dynamical systems can be enriched by the correct choice of
an appropriate measure. In this sense several different measures have been
defined in the field. Historically the first of these measures where invariant
measures defined in the context of Hamiltonian systems [?]. Then ergodic
measures, a subgroup of the invariant measures, were defined. The utility of
ergodic measures became obvious after the proof of the Ergodic Theorem by
Birkhoff in 1931 (see [8]).

It is no secret that behind some of these first definitions there was some
underling physical intuition coming from the the branch of physics known
as Statistical Mechanics [61]. Statistical Mechanics tries to understand the
macro behavior of physical systems by looking at how the micro parts of
this system behaves. In a general sense this field of physics tries to des-
cribe the general behavior of a system by understanding the deterministic
behavior of its parts; much in the same way that ergodic theory tries to un-
derstand the general behavior of dynamical systems, whose particles follow
clear deterministic laws. Relating the two fields of study has not just pro-
vided mathematicians with new measures, but also with important concepts
such as entropy.

In the sense of exploring further the possible contributions of statistical
mechanics for dynamical systems the field of thermodynamic formalism was
created, founded mainly by Sinai, Ruelle and Bowen (see [13]). New measures
were defined for possible uses in dynamical systems, specially DLR measures,
Gibbs measures and equilibrium measures, among others. Gibbs measure,
for instance, refer to the Gibbs distribution of Statistical Mechanics, i.e.,
the state that a system in contact with an infinite heat bath at constant
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temperature tends to achieve at equilibrium.
In order to apply some of the concepts of Thermodynamic Formalism to

Dynamical Systems the concept of disintegration along stable and unstable
foliation plays a main role. Despite certain powerful results like Rokhlin’s
Disintegration Theorem, disintegration in the general sense isn’t simple and
in some cases is an open problem. This work in some sense follows the
approach of endowing the unstable foliations with an algebraic structure,
like a C∗-algebra or a von Neumann Algebra, and then defining things that
look like measures in this algebraic structure.

The set of DLR probabilities coincides with the set of eigenprobabilities
of the dual of the Ruelle operator for the potentials we consider here (see
[17]).

We are interested in relating eigenprobabilities of the dual of the Ruelle
operator (also called transfer operator) in chapter 3 with KMS states. The
role of quasi-invariant probabilities is a key ingredient on this relation. We
point out that some probabilities which are absolutely continuous with res-
pect to the eigenprobabilities of the dual of the Ruelle operator can also be
quasi-invariant for the groupoid we consider.

Moreover, we will relate equilibrium probabilities in chapter 2 with KMS
states (for a certain groupoid).

More precisely in this work we analyze properties of Haar systems, quasi-
invariant probabilities, transverse measures, C∗-algebras and KMS states
related to Thermodynamic Formalism and Gibbs states. The basis of our
algebraic structure will be grupoids obtained by equivalence relations.

One of the most important equivalence relations in the context of dynami-
cal systems is clearly given by x ∼ y iff x and y belong to the same unstable
foliation. This dynamical relation will not be the only one studied but a
special attention will be given to it. We will also consider the homoclinic
equivalence relation.

In chapter 2 we shall follow D. Ruelle’s and Haydn’s (see [59] and [23])
footsteps and show an equivalence between KMS states of C∗-algebras and
Hölder equilibrium probabilities of Thermodynamic Formalism. We shall
present this result in a particularized setting (symbolic space). In this way
our results aren’t new, but the advantage here is that they are simple, i.e.,
our examples and demonstrations can be understand with just basic notions
of measure theory. Some of the proofs presented here are different from the
ones in [23].
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Chapter 3 analyze properties of Haar systems, quasi-invariant probabi-
lities, transverse measures, C∗-algebras and KMS states which are related
to Thermodynamic Formalism and Gibbs states. We will consider a specific
particular setting where the groupoid will be defined by some natural equiva-
lence relations on a set X, where X is {1, 2, ..., d}N or {1, 2, ..., d}Z, S1 × S1,
or (S1)N. Most of the equivalence relations considered in this text will be of
dynamic origin.

Chapters 2 and 3 are completely independent. In this thesis we use a
notation and an approach closer to the one commonly used on Ergodic Theory
and Thermodynamic Formalism.

For some reason equilibrium probabilities appear in a natural way for
the action of the shift on {1, 2., , , d}Z and eigenprobabilities for the dual of
the Ruelle operator appear in a natural way for the action of the shift on
{1, 2., , , d}N.

Section 3.5 describes the basic properties of non comutative integration
and its relation with quasi-invariant probabilities. We point out that we
were able to present a small part of the work “Sur la Theorie commutative
de l’integration” of A. Connes (see [18] ) in a language which is more easily
understandable for the ergodic theory community.

Classical references on measured groupoids and von Neumann algebras
are [33]; [31] and the book [32]. KMS states and C∗-algebras are described
on [46]. Results on C∗-algebras and KMS states from the point of view of
Thermodynamic Formalism are presented in the papers [37]; [57]; [51]; [65];
[1]; [29] and the books [66]; [30]. The paper [?] considers equivalence rela-
tions and DLR probabilities for certain interactions on the symbolic space
{1, 2, ...d}Z (not in {1, 2, ...d}N). Theorem 6.2.18 in Vol II of [12] and [4]
describe the relation between KMS states and Gibbs probabilities for inte-
ractions on certain spin lattices (on the one-dimensional case corresponds to
the space {1, 2, .., d}Z). We point out that Lecture 9 in [21] presents a brief
introduction to C∗-Algebras and non-commutative integration.

The present work in some sense can be said to be aimed to obtain a
better and deeper understanding from the point of view of ergodic theory
of the work described in the master dissertation [43] (under the guidance of
Prof. Ali Tahzibi in USP São Carlos). This was our inspiration.

Our thesis originated two papers that were submitted for publication:

1) ”The KMS Condition for the homoclinic equivalence relation and Gibbs
probabilities”, A. O. Lopes and G. Mantovani (to appear in São Paulo Journal
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of Mathematical Science)
2) ”Haar systems, KMS states on von Neumann algebras and C∗-algebras

on dynamically defined groupoids and Noncommutative Integration”, G. Cas-
tro, A. O. Lopes and G. Mantovani

The main contributions of the thesis are:
a) a different proof (for the symbolic space) on chapter 2 of the results pre-

sented in [23] concerning KMS states (on the dynamically defined groupoid
given by the homoclinic equivalence relation) and equilibrium probabilities
on the lattice {1, 2, .., d}Z.

b) the relation of DLR probabilities {1, 2, .., d}N with quasi-invariant pro-
babilities for a certain Haar system associated to a groupoid dynamically
defined (the bigger than two relation) described in Theorem 3.4.24.

c) questions regarding the relation of the quasi invariant probability and
the SBR probability for a non linear of Baker map described in Example
3.3.6.

d) a simplified description of the relation (described on [18]) of non com-
mutative integration with quasi-invariant probabilities which is here presen-
ted on section 3.5.

4



Caṕıtulo 2

The KMS Condition for the
homoclinic equivalence relation
and Gibbs probabilities

2.1 Introduction

D. Ruelle in [59] considered a general setting (which includes hyperbolic dif-
feomorphisms on manifolds) where he is able to describe a formulation of
the concept of Gibbs state based on conjugating homeomorphism in the
so called Smale spaces. On this setting he shows a relation of KMS states
of C∗-algebras with Hölder equilibrium probabilities of Thermodynamic For-
malism. Part of the formulation of this relation requires the use of a non
trivial result by N. Haydn (see [23]). Later, the paper [24] by N. Haydn and
D. Ruelle presents a shorter proof of the equivalence.

Here we consider similar problems but now on the symbolic space and the
dynamics will be given by the shift. We will present a simplified proof of the
equivalence mentioned above. The main result of this chapter is Theorem
2.5.4 on section 2.5. One can get a characterization of the equilibrium pro-
bability for a potential defined on the lattice {1, 2, ..., d}Z−{0} without using
the Ruelle operator (which acts on the lattice {1, 2, ..., d}N). The probability
we get is invariant for the action of the shift τ acting on {1, 2, ..., d}Z−{0}.

The proof of this result will take several subsequent sections.
In section 3.6 we show the relation of these probabilities with the KMS

dynamical C∗-state on the C∗-Algebra associated to the groupoid defined
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by the homoclinic equivalence relation. On the initial sections we introduce
several results which are necessary for the simplification of the final argument
on section 3.6.

We present several examples helping the reader on the understanding of
the main concepts.

On [60] and also on the beginning of the book [7] it is explained the
relation of equilibrium states of Thermodynamic Formalism with the corres-
ponding concept in Statistical Physics. The role of KMS C∗-dynamical states
on Quantum Statistical Physics is described on [12]. KMS C∗-dynamical sta-
tes correspond to the DLR probabilities (see [14] for definition) in Statistical
Mechanics.

In section 3.6 we present definitions and properties regarding the C∗-
algebra we will consider here.

Working on the symbolic space helps to avoid several technicalities which
are required in the case of the study of hyperbolic diffeomorphisms on ma-
nifolds (where one have to use stable foliation, the local product structure,
etc...).

Our proof consider mainly potentials A : {1, 2, ..., d}Z−{0} → R which
depend on a finite number of coordinates. The case of a general Hölder
potential (more technical) can be obtained by adapting our reasoning but we
will not address this question here.

On the papers [15] and [42] the authors consider among other things a
relation of KMS probabilities with eigenprobabilities for the dual of the Ruelle
operator (which are not necessarily invariant for the shift). This problem is
analyzed on the lattice {1, 2, .., d}N which is a different setting that the one
we consider here. The equivalence relations are also not related. Despite
some similarities that can be perceived in the statements of the main results
obtained in the two settings we point out that the reasoning on the respective
proofs are quite different.

Lecture 9 in [21] presents a brief introduction to C∗-Algebras and the
KMS condition.

In [29] and [30] a relation of KMS states in a certain C∗-Algebra and
eigenprobabilities of the dual of the Ruelle operator is considered.

In a different setting the paper [9] also considers the homoclinic equiva-
lence relation.
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2.2 Conjugating homeomorphisms

In this section Ω = {1, 2, ..., d}Z−{0} and a general point x on Ω is denoted as

x = (..., x−n, ..., x−2, x−1 |x1, x2, ..., xn, ...),

xj ∈ {1, 2, .., d}, j ∈ Z.
We consider the dynamics of the shift τ : Ω→ Ω, that is,

τ(..., x−n, ..., x−2, x−1 |x1, x2, ..., xn, ...) = (..., x−n, ..., x−2, x−1, x1 |x2, ..., xn, ...).

We also consider the usual metric d on Ω which is defined in such way
that for x, y ∈ Ω we set

d(x, y) = 2−N ,

N ≥ 0, where for

x = (..., x−n, ..., x−1 |x1, .., xn, .. ) , y = (..., y−n, ..., y−1 | y1, .., yn, .. ),

we have xj = yj, for all j, such that, −N ≤ j ≤ N and, moreover xN+1 6=
yN+1, or x−N−1 6= y−N−1. Given x, y as above we denote ϑ(x, y) = N ,
therefore ϑ(x, y) = − log2(d(x, y)).

Given x, y ∈ Ω, we say that x ∼ y if

lim
k→+∞

d(τ kx, τ ky) = 0

and

lim
k→−∞

d(τ kx, τ ky) = 0. (2.1)

This means there exists an N ≥ 0 such that xj = yj for j > N and j < −N
(note that given ε > 0, there exists n such that 2−n < ε ≤ 2−n+1, and if
d(x, y) < ε, then x and y should coincide for coordinates smaller than n). In
other words, there are only a finite number of i’s such that xi 6= yi. In this
case we say that x and y are homoclinic.
∼ is an equivalence relation and defines the groupoid G ⊂ Ω×Ω of pairs

(x, y) of elements which are related (see for instance [54], [57], [15] or [42]).
Let κ(x, y) be the minimum M as above. Therefore xκ(x,y) 6= yκ(x,y) or

x−κ(x,y) 6= y−κ(x,y). Note that ϑ(x, y) ≤ κ(x, y) and could be strictly less.
Note that κ(x, y) is defined just when x ∼ y.
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Example 2.2.1. For example in Ω = {1, 2}Z−{0} take

x = (..., x−n, ..., x−7, 1, 2, 2, 1, 2, 2 | 1, 2, 1, 2, 1, 1, x7, ...xn, ..)

and
y = (..., y−n, ..., y−7, 1, 2, 2, 1, 2, 2 | 1, 2, 1, 1, 1, 2, y7, ...yn, ..)

where xj = yj for |j| > 6 = κ(x, y). In this case d(x, y) = 2−3 and N =
ϑ(x, y) = 3.

Given a Hölder function U : Ω → R it is easy to see that if x and y are
homoclinic, then the following function is well defined

V (x, y) =
∞∑

n=−∞

(U(τn(x))− U(τn(y))). (2.2)

Indded, note that if x ∼ y, they coincide for large n, then, there exists a
constant c, such that, d(τn(x), τn(y)) ≤ c 2−n. If U has Holder exponent α,
then, the sum converges absolutely because

∑
n(2α)−n <∞.

This function satisfies the property

V (x, y) + V (y, z) = V (x, z)

when x ∼ y ∼ z.
A function V with this property will play an important role in some parts

of our reasoning. We will not assume on the first part of this work that V
was obtained from a U as above.

Now we will describe a certain class of conjugating homeomorphism
for the relation ∼ (see (2.1)) described above.

Given two fixed points x and y (y in the class of x) we define the open
set O(x,y) = B 1

2κ(x,y)
(x) = {z ∈ Ω : d(x, z) < 2−κ(x,y)+1}.

We will define for each such pair (x, y) a conjugating homeomorphisms
ϕ(x,y) which has domain on O(x,y).

We denote for m,n ∈ N

x−mx−m+1...x−1 |x1...xn−1xn =

{z ∈ Ω | zj = xj, j = −m,−m+ 1, ...,−1, 1, 2, ..., n− 1, n},

8



and call it the cylinder determined by the finite string

x−mx−m+1...x−1 |x1...xn−1xn.

We will say that a cylinder, or a string, is symmetric if n = m.
Note that given x ∼ y

O(x,y) = x−κ(x,y) x−κ(x,y)+1 ... x−1 |x1 ... xκ(x,y)−1 xκ(x,y),

and O(x,y) is a symmetric cylinder.
Now we shall define the main kind of conjugating homeomorphisms

that we will be using. Given (x, y) ∈ G, let n = κ(x, y), we define a conju-
gating ϕ = ϕ(x,y) with domain

O(x,y) = B 1
2n

(x) = {z ∈ Ω : d(x, z) < 2−n+1} = x−nx−n+1...x−1 |x1...xn−1xn,

where ϕ(x,y) : O(x,y) → B 1
2n

(y) is defined by the expression: z of the form

z = (...z−n−2z−n−1 x−nx−n+1...x−1|x1...xn zn+1zn+2...)

goes to

ϕ(x,y)(z) = ...z−n−2z−n−1 y−ny−n+1...y−1|y1...yn zn+1zn+2... (2.3)

We shall call these transformations the family of symmetric conjugating
homeomorphisms. We shall denote by S the set of symmetric conjugating
homeomorphisms obtained by considering all pairs of related points x and y.

Note that the homeomorphism ϕ(x,y) transforms the cylinder O(x,y) =

x−nx−n+1...x−1 |x1...xn−1xn in the cylinder y−ny−n+1...y−1 | y1...yn−1yn.
The graph of ϕ(x,y) is on G.
A more explicit formulation of the concept of symmetric conjugating ho-

meomorphism will be presented on next section via expressions (2.6) and
(2.7).

Example 2.2.2. Consider

x = (...1 1 2 1 1 2 2 2 2 1 1 1|2 1 2 1 2 2 1 2 2 2 1 1...)

and
y = (...1 1 2 1 1 2 2 2 2 1 1 2|1 2 2 1 2 2 1 2 2 2 1 1...)

9



in this case κ(x, y) = 2, and for z of the form

z = (...z−4 z−3 1 1|2 1 z3 z4 z5...)

we get

ϕ(x,y)(z) = (...z−4 z−3 1 2|1 2 z3 z4 z5...).

It is easy to see that the family of symmetric conjugating homeomorphisms
we define above has the following properties: given x ∼ y

a) ϕ(x,y) : O(x,y) ⊂ Ω→ Ω is an homeomorphism over its image
b) ϕ(x,y)(x) = y, and
c) limk→∞ d(τ k(z), τ k(ϕ(x,y)(z)) = 0 and limk→−∞ d(τ k(z), τ k(ϕ(x,y)(z)) =

0.
Item c) implies that z and ϕ(x,y)(z) are on the same homoclinic class.

2.3 C∗-Gibbs states and Radon-Nikodym de-

rivative

We consider the groupoid G ⊂ Ω× Ω of all pair of points which are related
by the homoclinic equivalence relation.

We consider on G the topology generated by sets of the form

{ (z, ϕ(x,y)(z))| where z ∈ O(x,y) with x ∼ y}.

This topology is Hausdorff (see [59]).
Now consider a continuous function V : G→ R such that

V (x, y) + V (y, z) = V (x, z), (2.4)

for all related x, y, z. Note that this implies that V (x, x) = 0 and V (x, y) =
−V (y, x).

Here we call V a modular function.
Under some other notation the function δ(x, y) = eV (x,y) is called a mo-

dular function (or, a cocycle).
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Definition 2.3.1. Given a function V : G → R as above we say that a
probability measure α on Ω is a C∗-Gibbs probability with respect to the
parameter β ∈ R and V , if for any x ∼ y∫

O(x,y)

exp(−βV (z, ϕ(x,y)(z)))f(ϕ(x,y)(z))dα(z) =

∫
ϕ(x,y)(O(x,y))

f(z)dα(z),

(2.5)
for every continuous function f : Ω → C (and conjugated homeomorphism
(O(x,y), ϕ(x,y))).

We will show on section 3.6 a natural relation of this probability α with
the C∗-dynamical state on a certain C∗-algebra. This is the reason for such
terminology.

The above definition was taken from [59]. This is a version of the Renault-
Radon-Nikodym condition (Def. 1.3.15 in [54]).

It is easy to see that the above definition is equivalent to say that: given
any pair of finite strings

x−nx−n+1...x−1, x1... xn−1xn and y−ny−n+1...y−1 y1...yn−1yn,

n ∈ N, the transformation

ϕ : x−nx−n+1...x−1 |x1...xn−1xn → y−ny−n+1...y−1 | y1...yn−1yn (2.6)

defined by the expression:

ϕ(z) = (...z−n−2z−n−1 y−ny−n+1...y−1 | y1...yn zn+1zn+2...), (2.7)

where
z = (...z−n−2z−n−1 z−nz−n+1...z−1 | z1...zn zn+1zn+2...),

is such that for any continuous function f : y−ny−n+1...yn−1yn → R∫
x−nx−n+1... | ...xn−1xn

e−β V ( z , ϕ(z) )f(ϕ(z))dα(z) =

∫
y−ny−n+1... | ...yn−1yn

f(z)dα(z).

(2.8)

Note in particulary that by taking f = 1 we get∫
x−nx−n+1... | ...xn−1xn

e−β V ( z , ϕ(z) )dα(z) =

∫
y−ny−n+1... | ...yn−1yn

dα(z). (2.9)
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In the moment we only consider symmetric conjugating homeomorphisms
of the form (2.7).

We will show on section 2.5 a relation of the C∗-Gibbs probabilities α
with the Gibbs (equilibrium) probabilities of Thermodynamic Forma-
lism.

In a more explicit formulation α is such that given any conjugating homeo-
morphism (O(x,y), ϕ(x,y)) of the form (2.6), and continuous function f : Ω→ C∫

O(x,y)

e−βV (z,ϕ(x,y)(z))f(ϕ(x,y)(z))dα(z) =∫
O(x,y)

e−βV ((...z−n,...,z−1|z1,...,zn,...),(...z−n−1y−n,...,y−1|y1,...,yn,zn+1,...))f(ϕ(x,y)(z))dα(z) =∫
ϕ(x,y)(O(x,y))

f(z)dα(z). (2.10)

In this case, clearly the Radon-Nikodym derivative of the change of coordi-
nates ϕ is

e−βV ((...z−n,...,z−1|z1,...,zn,...),(...z−n−1y−n,...,y−1|y1,...,yn,zn+1,...)).

In order to simplify the notation sometimes on the text we will consider
the value β = 1.

We will consider a larger class of conjugating homeomorphisms.

Definition 2.3.2. Given n and m and pair of finite strings

x−nx−n+1...x−1, x1... xm−1xm and y−ny−n+1...y−1 y1...yn−1ym, (2.11)

n,m ∈ N, the transformation

ϕ : x−nx−n+1...xm−1xm → y−ny−n+1...ym−1ym (2.12)

defined by the expression:

ϕ(z) = (...z−n−2z−n−1 y−ny−n+1...y−1 |y1...ym zm+1zm+2...), (2.13)

where

z = (...z−n−2z−n−1 x−nx−n+1...x−1 |x1...xm zm+1zm+2...),

is called a non-symmetric conjugating homeomorphism associated to
the pair (2.11).

12



Proposition 2.3.4 claims that if α is a C∗-Gibbs probability, then the
relation (2.10) is satisfied for a bigger class of ϕ transformations, i.e. not ne-
cessarily symmetric. Before that we shall provide the reader with an example
of idea of the proof.

Example 2.3.3. Consider the non-symmetric conjugating homeomorphism
ϕ : 0|11→ 1|10 given by

ϕ(...z−3z−20|11z3...) = ...z−3z−21|10z3...

we shall prove that if α is a C∗-Gibbs measure then relation (2.5) is valid
for ϕ. This is actually straightforward, first divide the domain and image of
the function into symmetric cylinders, and in these cylinders apply relation
(2.10). So in this case consider ϕ0 : 00|11 → 01|10, and ϕ1 : 10|11 → 11|10
such that

ϕa(...z−3a0|11z3...) = (...z−3a1|10z3...)

for a = 0 or a = 1. Now notice that∫
0|11

e−βV (x,ϕ(x))f(ϕ(x))dα(x) =

∫
00|11

e−βV (x,ϕ(x))f(ϕ(x))dα(x) +

∫
10|11

e−βV (x,ϕ(x))f(ϕ(x))dα(x) =∫
00|11

e−βV (x,ϕ0(x))f(ϕ(x))dα(x) +

∫
10|11

e−βV (x,ϕ1(x))f(ϕ(x))dα(x)
(2.10)
=∫

01|10

f(x)dα(x) +

∫
11|10

f(x)dα(x) =

∫
1|10

f(x)dα(x).

This claim proves that relation (2.10) is valid for this conjugating.

Proposition 2.3.4. Assume α is C∗-Gibbs for V as in (2.10), then for any
non-simmetric homeomorphism (ϕ,O), as defined on (2.13), we have that
for n,m ∈ N, the transformation∫

x−nx−n+1...x−1 |x1 ...xm−1xm

e−βV (z,ϕ(z))f(ϕ(z))dα(z) =∫
O
e−βV ((...z−n−1z−n,...,z−1|z1,...,zm,zm+1...),(...z−n−1y−n,...,y−1|y1,...,ym,zm+1,...))f(ϕ(z))dα(z) =
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∫
y−ny−n+1...y−1 | y1 ...ym−1ym

f(z)dα(z). (2.14)

We leave the proof (which is similar to the reasoning of example 2.3.3)
for the reader.

As a particular case we get∫
|x1 ...xm

e−βV (z,ϕ(z))f(ϕ(z))dα(z) =

∫
| y1 ...ym

f(z)dα(z). (2.15)

for given |x1 ... xm, | y1 ... ym and the corresponding conjugating homeomorphism
ϕ.

It is possible to consider more general forms of conjugating homeomorphisms
as described on the next example.

Example 2.3.5. Consider the homeomorphism ϕ : 112|2→ 1|122 given by

ϕ(...z−4112|2z2z3z4...) = (...z−4z2z31|122z4...).

Note that 112|2 is translation by τ−2 of the set 1|122.
As in the previous example we will prove that if α is a C∗-Gibbs probability

then relation (2.10) is also valid for such ϕ and O = 112|2. First consider
the conjugating homeomorphisms, ϕ1, ϕ2, ϕ3 and ϕ4, given by

ϕ1(...z−4112|2 11z4...) = (...z−4 111|122z4...),

ϕ2(...z−4112|2 12 z4...) = (...z−4 12 1|122z4...),

ϕ3(...z−4112|2 21 z4...) = (...z−4 21 1|122z4...),

ϕ4(...z−4112|2 22z4...) = (...z−4 22 1|122z4...).

Therefore we have that∫
112|2

eV (x,ϕ(x))f(ϕ(x))dα(x) =

∫
112|211

eV (x,ϕ(x))f(ϕ(x)) +

∫
112|212

eV (x,ϕ(x))f(ϕ(x))+∫
112|221

eV (x,ϕ(x))f(ϕ(x)) +

∫
112|222

eV (x,ϕ(x))f(ϕ(x)) =
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∫
112|211

eV (x,ϕ1(x))f(ϕ1(x)) +

∫
112|212

eV (x,ϕ2(x))f(ϕ2(x))+∫
112|221

eV (x,ϕ3(x))f(ϕ3(x)) +

∫
112|222

eV (x,ϕ4(x))f(ϕ4(x)) =∫
111|122

f(x) +

∫
121|122

f(x) +

∫
211|122

f(x) +

∫
221|122

f(x) =∫
1|122

fdα(x)

where some of the dα where omitted. Since we proved that∫
112|2

eV (x,ϕ(x))f(ϕ(x))dα(x) =

∫
1|122

fdα(x)

for any continuous function f then we have that relation (2.10) is satisfied.

In analogous way as in last example one can define a conjugating ϕ such
that

ϕ : x−n...x−r ...x−1 |x1 ...xm → x−nx−n+1...x−r−1 |x−r ...x−1 x1 ...xm.
We will consider such transformation ϕ in the next result.

Proposition 2.3.6. Assume α is C∗-Gibbs for V as in (2.10), then for
n,m ∈ N, and 0 < r, such that, r ≤ n, we get

∫
x−nx−n+1...x−r−1 x−r x−r+1...x−1 |x1 ...xm−1xm

e−βV (z,ϕ(z))f(ϕ(z))dα(z) =

∫
x−nx−n+1...x−r−1 |x−r x−r+1...x−1 x1 ...xm−1xm

f(z)dα(z), (2.16)

where ϕ is of the form (2.13).

Proof: The proof is similar to the reasoning of example 2.3.5. One just
has to consider the homeomorphisms

ϕ(...z−n−r−1 z−n−r...z−n−1x−nx−n+1...x−1 |x1 ...xm−1xmzm+1...zm+r zm+r+1...) =

(...z−n−r zm+1...zn+r x−nx−n+1...x−r−1 |x−r x−r+1......x−1x1...xm−1xm zn+r+1...).
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Note that
τ−r (x−nx−n+1...x−1 |x1 ...xm−1xm ) =

x−nx−n+1...x−r−1 |x−r x−r+1...x−1 x1 ...xm−1xm.

We want to show that α is C∗-Gibbs for V , then, the pullback ρ = τ ∗(α)
is also C∗-Gibbs for V .

The next example will help to understand the main reasoning for the
proof of the above claim.

Example 2.3.7. Suppose V (x, y) is defined when x ∼ y. Assume that for
all x, y on the groupoid we have that V (x, y) = V (τ(x), τ(y)).

Given α consider the pull back ρ = τ ∗(α).
Consider

ϕ : 11|21→ 21|12,

where
ϕ(...x−4x−3 11|21x3 x4... ) = (...x−4x−3 21|12x3 x4... ),

and
ϕ1 : 112|1→ 211|2,

where
ϕ1(...x−5x−4 112|1x2 x3... ) = (...x−5x−4 211|2x2 x3... ).

If for any continuous function g we have that∫
11|21

eV (x,ϕ(x))g(ϕ(x))dα(x) =

∫
21|12

g(x)dα(x),

then, for any continuous function f we have that∫
112|1

eV (x,ϕ1(x))f(ϕ1(x))dρ(x) =

∫
211|2

f(x)dρ(x).

In fact both properties are equivalent.
Note first that ϕ1 ◦ τ = τ ◦ ϕ.
Moreover, V (τ(x), ϕ1(τ(x)) = V (τ(x), τ(ϕ1(x)) = V (x, ϕ1(x)) by hy-

pothesis.
Therefore, ∫

112|1
eV (x,ϕ1(x))f(ϕ1(x))dρ(x) =
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∫
I112|1(x) eV (x,ϕ1(x))f(ϕ1(x))dρ(x) =∫

I112|1(τ(x))eV (τ(x),ϕ1(τ(x)))f(ϕ1(τ(x)))dα(x) =∫
I112|1(τ(x))eV (x,ϕ1(x))f(ϕ1(τ(x)))dα(x) =∫
I112|1(τ(x)) eV (x,ϕ1(x))f(τ(ϕ(x))))dα(x) =∫
I11|21(x) eV (x,ϕ1(x))f(τ(ϕ(x))))dα(x) =∫

11|21

eV (x,ϕ1(x))f(τ(ϕ(x))))dα(x) =∫
21|12

f(τ(x))dα(x) =∫
I21|12 (x)f(τ(x))dα(x) =∫

I21|12 (τ−1 ◦ τ)(x)f(τ(x))dα(x) =∫
I21|12 (τ−1(x))f(x)dρ(x) =∫

211|2
f(x)dρ(x).

Above we took g = f ◦ τ.
From the above reasoning we get that both properties are equivalent.

Proposition 2.3.8. If α is C∗-Gibbs for V , and V (x, y) = V (τ(x), τ(y)),
for all x, y ∈ G, then, the pull back ρ = τ ∗(α) is also C∗-Gibbs for V .

Proof: Suppose α is C∗-Gibbs for V .
The reasoning of the proof is just a generalization of the argument used

on last example.
Consider for r, s > 0

ϕ : a−r...a−1|a1a2...as → b−r...b−1|b1b2...bs,

17



where
ϕ(...x−r+2x−r+1 a−r...a−1|a1a2...as xs+1 xs+2... ) =

(...x−r+2x−r+1 b−r...b−1|b1b2...bs xs+1 xs+2... ),

and
ϕ1 : a−r...a−1a1|a2...as → b−r...b−1b1|b2...bs,

where
ϕ(...x−r+2x−r+1 a−r...a−1a1|a2...as xs+1 xs+2... ) =

(...x−r+2x−r+1 b−r...b−1b1|b2...bs xs+1 xs+2... ),

Adapting the argument of last example one can easily show that if for
any continuous function g we have that∫

a−r...a−1|a1a2...as
eV (x,ϕ(x))g(ϕ(x))dα(x) =

∫
b−r...b−1|b1b2...bs

g(x)dα(x), (2.17)

then, for any continuous function f we have that∫
a−r...a−1a1|a2...as

eV (x,ϕ1(x))f(ϕ1(x))dρ(x) =

∫
b−r...b−1b1|b2...bs

f(x)dρ(x). (2.18)

As α is C∗-Gibbs for V , then (2.18) is true for any f . From (2.18) it
follows that ρ is C∗-Gibbs for V .

We point out that it is equivalent to ask the C∗-Gibbs property for V
taking symmetric cylinders or taking not symmetric cylinders (this is implicit
on the proof of Proposition 2.3.6).

2.4 Modular functions and potentials

As we mentioned before given a Hölder function U : Ω → R there is a
natural way (described by (2.2)) to get a continuous function V satisfying
the property (2.4).

We suppose now that V is such that V (x, y) =
∑∞

k=−∞[U(τ k(x)−U(τ k(y)],
when x ∼ y, where U : Ω → R is Hölder (see (2.2)). The function U will
sometimes be called a potential. We shall also suppose that U is a finite
range potential, or equivalently that it depends on a finite number of positive
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coordinates, that is, there is k ∈ N and a function f : {1, ..., d}k → R, such
that, for all x ∈ Ω we get

U(x) = U (...x−nx−n+1...x−2x−1 |x1 x2...xm−1xm...) = f(x1, x2, ..., xk),
(2.19)

for this fixed f and k > 0, where U : Ω→ R. In this case we say that U
depends on k coordinates.

Note that such V satisfies V (x, y) = V (τ(x), τ(y)) and then Proposition
2.3.8 can be applied.

Remark 1: By abuse of language we can write U : {1, 2, .., d}N → R.

If x ∼ y it isn’t hard to see that there is a finite M > 0, such that,

V (x, y) =
∞∑

k=−∞

[U(τ k(x))− U(τ k(y))] =
M∑

k=−M

[U(τ k(x))− U(τ k(y))].

In this way, if z ∼ ϕ(z), then,

V (z, ϕ(z)) =
M∑

k=−M

U(τ k(z))−
M∑

k=−M

U(τ k(ϕ(z)) =
M∑

k=−M

[U(τ k(z)−U(τ k(ϕ(z))].

Therefore, in this case, equation (2.10) means∫
x−n,...,x−1 |x1,x2,...,yn

e
∑M
k=−M U(τk(ϕ(z))]−

∑M
k=−M U(τk(z))f(ϕ(z))dα(z) =

∫
y−n,...,y−1 | y1,y2,...,yn

f(z)dα(z) (2.20)

If α is C∗-Gibbs for V , and V (z, ϕ(z)) =
∑+∞

k=−∞ U(z)−U(ϕ(z)) we also say

by abuse of language that α is C∗-Gibbs for U : Ω→ R.

Definition 2.4.1. Given a function V : G→ R, V (x, y) =
∑∞

k=−∞[U(τ k(x))−
U(τ k(y))], with U of Hölder class, we say that a probability measure α on Ω
is the quasi C∗-Gibbs probability with respect to the parameter β ∈ R
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and U , if there exists constants d1 > 0 and d2 > 0, such that, for any x ∼ y
and any O(x,y),

d1

∫
O(x,y)

exp(−βV (z, ϕ(x,y)(z)))g(ϕ(x,y)(z))dα(z) ≤

∫
ϕ(x,y)(O(x,y))

g(z)dα(z) ≤ d2

∫
O(x,y)

exp(−βV (z, ϕ(x,y)(z)))g(ϕ(x,y)(z))dα(z)

(2.21)
for every every continuous function g : Ω → C (and symmetric conjugated
homeomorphism (O(x,y), ϕ(x,y)).

In the same way as before one can extend the above property for sym-
metric conjugated homeomorphisms to non symmetric conjugated homeo-
morphisms.

A C∗-Gibbs probability is a quasi C∗-Gibbs probability.

We say that a potential Ũ : {1, 2.., d}N → R - which depends on a finite
number of coordinates - is normalized, if for k large enough and for any
(x1, x2, .., xk) we get

∑d
j=1 e

Ũ(j,x1...,xk−1) = 1 - in particularly, we get eŨ(x) =

eŨ(x1...,xk) < 1 for all x = (x1, x2, ...) ∈ {1, 2, ..., d}N.
From this follows that for any w = (w1, w2, ..., wm, ...) ∈ {1, 2, ..., d}N and

n ∈ N,
d∑

z1,z2,..,zn=1

e
∑n−1
j=0 Ũ(σj(z1,z2,..,zn,w1,w2,w3,...,wm,...) = 1

where σ is the shift acting on {1, 2, .., d}N.
Suppose for such U that α is quasi C∗-Gibbs for U (satisfies the double

inequality (2.21) for any continuous g). This implies in particular that there

exist d1, d2 > 0, such that, for any cylinders of the form |x0
1, x

0
2, ...x

0
s and

| y0
1, y

0
2, ...y

0
s , and a function ϕ, such that,

d1

∫
|x01,x02,...x0s

e−βV (z,ϕ(z))g(ϕ(x,y)(z))dα(z) ≤

∫
| y01 ,y02 ,...y0s

g(z)dα(z) ≤ d2

∫
|x01,x02,...x0s

e−βV (z,ϕ(z))g(ϕ(x,y)(z))dα(z), (2.22)
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where ϕ(x,y) is the associated conjugating homeomorphism, such that,

ϕ(x,y) : (|x0
1, x

0
2, ...x

0
s)→ | y0

1, y
0
2, ...y

0
s

Example 2.4.2. Consider the homeomorphism ϕ : 112|2→ |1122 given by

ϕ(...z−4112|2z2z3z4...) = (...z−4z2z3z4|1122z5...).

Note that 112|2 is translation by τ−3 of the set |1122.
Consider the conjugating homeomorphisms, ϕ1, ϕ2, ϕ3 and ϕ4, given by

ϕ1(...z−4112|2 11z4...) = (...z−4 11|1122z5...),

ϕ2(...z−4112|2 12 z4...) = (...z−4 12 |1122z5...),

ϕ3(...z−4112|2 21 z4...) = (...z−4 21 |1122z5...),

ϕ4(...z−4112|2 22z4...) = (...z−4 22 |1122z5...).

Suppose α is quasi-C∗ Gibbs and satisfies (2.21).
Therefore, ∫

112|2
eV (x,ϕ(x))f(ϕ(x))dα(x) =∫

112|211

eV (x,ϕ(x))f(ϕ(x)) +

∫
112|212

eV (x,ϕ(x))f(ϕ(x))+∫
112|221

eV (x,ϕ(x))f(ϕ(x)) +

∫
112|222

eV (x,ϕ(x))f(ϕ(x)) =∫
112|211

eV (x,ϕ1(x))f(ϕ1(x)) +

∫
112|212

eV (x,ϕ2(x))f(ϕ2(x))+∫
112|221

eV (x,ϕ3(x))f(ϕ3(x)) +

∫
112|222

eV (x,ϕ4(x))f(ϕ4(x)) ≤

1

d1

[

∫
11|1122

f(x) +

∫
12|1122

f(x) +

∫
21|1122

f(x) +

∫
22|1122

f(x) ] =

1

d1

∫
|1122

fdα(x),
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where some of the dα where omitted. We proved that∫
112|2

eV (x,ϕ(x))f(ϕ(x))dα(x) ≤ 1

d1

∫
|1122

fdα(x),

for any measurable function f .
Taking f = 1, we get that∫

112|2
eV (x,ϕ(x))dα(x) ≤ 1

d1

∫
|1122

dα(x).

As eV (x,ϕ(x)) is strictly positive we get that if α(|1122) = 0, then, α(112|2) =
0.

Using the inequality for d2 in (2.21) we get in a similar way that if
α(112|2) = 0, then, α(|1122) = 0.

One can also show that∫
|1122

dα(x) ≤ d2

∫
112|2

eV (x,ϕ(x))dα(x).

Proposition 2.4.3. Suppose α is quasi-C∗-Gibbs for a potential U that
depends on finite coordinates, then

α(a−r...a−1|a1a2...as) > 0,

if and only if,
α(|a−r...a−1a1a2...as) > 0.

Moreover, there exist b1 > 0, b2 > 0, such that, for any cylinder set of the
form a−r...a−1|a1a2...as we get

b1 α( a−r...a−1|a1a2...as ) ≤ α( | a−r...a−1a1a2...as ) ≤

b2 α( a−r...a−1|a1a2...as ). (2.23)

Proof: We left the proof for the reader which is an adaptation of the
reasoning of Example 2.4.2.

The next result shows that we can always consider normalized potentials
(see Theorem 2.2 in [47] for general results) on the definition of quasi C∗-
Gibbs probability.
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Theorem 2.4.4. Suppose the probability α on Ω is C∗-Gibbs for Hölder
potential U . Assume, X : Ω→ R is such that X = U + g − g ◦ τ + λ, where
g : Ω→ R is a Hölder continuous function and λ a constant, then α is quasi
C∗-Gibbs for X.

Proof: Suppose that for any continuous f we have∫
Ox,y

eβ
∑∞
k=−∞ U(τk(ϕ(z)))−U(τk(z))f(ϕ(z))dα(z) =

∫
ϕ(O(x,y))

f(z)dα(z) (2.24)

Note that
∞∑

k=−∞

[ g(τ k(z))− g(τ k(ϕ(z)))]

is limited since g is Hölder, actually the summation is absolutely convergent
by the same reason. The same can be said of

∞∑
k=−∞

[ g(τ k+1(z))− g(τ k+1(ϕ(z)))]

and of
∞∑

k=−∞

[U(τ k(z))− U(τ kϕ(z)) ]

.
The absolute convergence allow us to sum the quantities above in any

order, the resulting sum is limited since each of the above quantities are.
Therefore,

∞∑
k=−∞

[X(τ k(ϕ(z)))−X(τ k(z))] =

[
∞∑

k=−∞

U(τ k(ϕ(z))]− U(τ k(z)) ]+

[
∞∑

k=−∞

g(τ k(ϕ(z))− g(τ k(z)) ]−
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[
∞∑

k=−∞

g(τ k+1(ϕ(z)))− g(τ k+1(z)) ]

is bounded above and below by constants which do not depend on x ∼ y,
Ox,y and corresponding ϕx,y.

Then, α is quasi C∗-Gibbs for X.

By Proposition 1.2 in [47] given a Hölder potential U : Ω → R, one can
find W depending on positive coordinates (1, 2, 3, .., n, ...) ∈ {1, 2, ..., d}N and
a continuous function v : Ω→ R (which depends on finite coordinates), such
that, W = U + v − v ◦ τ.

The function V is Hölder and then last theorem can be applied.
More precisely, there exist W̃ : {1, 2, ..., d}N → R an r, such that,

W (...x−n−1 x−nx−n+1...x−1 |x1...xm xm+1...) =

W̃ (x1...xm xm+1...) = K(x1...xr ),

for a certain function K : {1, 2, ..., d}r → R.
The bottom line is: from Theorem 2.2 in [47], given such W̃ one can find,

u and positive constant λ, such that, W̃ = Ũ + u − u ◦ τ + λ. Moreover,
Ũ : {1, 2, ..., d}N → R and u : {1, 2, ..., d}N → R both depend on a finite
number of coordinates.

Remark 2: Therefore, from Theorem 2.4.4 if α is C∗-Gibbs for a Hölder
potential U : Ω → R, which depends on a finite number of coordinates,
we can assume that α is quasi-C∗-Gibbs for another potential, denoted Ũ ,
which is normalized and depending on a finite number of coordinates.

By abuse of language one can write Ũ : {1, 2, ..., d}Z → R.

2.5 Equivalence between equilibrium measu-

res and C∗-Gibbs measures

First we present two important and well known theorems (see theorems 1.2
and 1.22 in [11] and also [60]).

We will consider without loss of generality that β = 1.
Mτ (Ω) denotes the set on invariant probabilities for τ acting on Ω.
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Theorem 2.5.1. (see Theorem 1.2 in [11]) Suppose U : Ω→ R is of Hölder
class. Then, there is a unique ρ ∈ Mτ (Ω), for which one can find constants

C1 > 0, C2 > 0, and P such that, for all s ≥ 0, for all cylinder | y0
1, y

0
2, ...y

0
s

we have

C1 ≤
ρ(| y0

1, y
0
2, ...y

0
s)

exp
(
−P s+

∑s−1
k=0 U(τ kx)

) ≤ C2, (2.25)

where

x = (...x−k, x−k+1, ..., x−1 |x1, ..., xm, xm+1, ...) ∈ | y0
1, y

0
2, ...y

0
s ⊂ Ω,

We call (2.25) the Bowen’s inequalities.

Definition 2.5.2. The probability ρ = ρU of Theorem 2.5.1 is called equili-
brium probability for the potential U .

Theorem 2.5.3. Given U as above and ρU the equilibrium measure for U ,
then ρU is the unique probability on Mτ (Ω), for which

h(ρU) +

∫
UdρU = P (U) := sup

ν∈Mτ

{h(ν) +

∫
Udν},

where h(ν) is the entropy of ν.

For a proof see [47] or [11].
P (U) is called the pressure of U . One can show that the P of (2.25) is

equal to such P (U).

Remember that if α is C∗-Gibbs for V , and V (z, ϕ(z)) =
∑+∞

k=−∞ U(z)−
U(ϕ(z)) we also say by abuse of language that α is C∗-Gibbs for U : Ω→ R.

Note that if ρ is an equilibrium probability for a Hölder potential U ,
then, it is also an equilibrium probability for U + (g ◦ τ)− g + c, where c is
constant and g : Ω → R is Hölder continuous (see [47]). In this way we can
assume without lost of generality that ρU is an equilibrium probability for a
normalized potential U . If U is normalized then P (U) = 0.

If α on Ω is C∗-Gibbs for U , then, from Remark 2 we have that α is
quasi-C∗-Gibbs for another potential U which is normalized.

Note that given U we are dealing with two definitions: C∗-Gibbs and
Equilibrium. From the above comments we can assume in either case that
U is normalized.
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The bottom line is: we can assume (see [47]) that the Hölder potential
Ũ = U + (g ◦ τ) − g + c is normalized, depends just on future coordinates
Ũ : {1, 2, ..., d}N → R and has pressure zero.

We will work here (due to Theorem 2.4.4 and the above comments) with
the case where the probability α - which is C∗-Gibbs for the potential U -
is also a quasi-C∗-Gibbs probability for the potential Ũ satisfying Pressure
P (Ũ) = 0. In this case, if we want to prove expression (2.25) for such
probability α over Ω, this can be simplified just showing that there exist
c1, c2 > 0, such that,

c1 ≤
α(| y0

1, y
0
2, ...y

0
s)

exp
(∑s−1

k=0 Ũ(σkx)
) ≤ c2, (2.26)

where σ is the shift acting on {1, 2, .., d}N and where x is of the form

x = (y0
1, y

0
2, ...y

0
s , xs+1, ..., xm, xm+1, ...) ∈ {1, 2, .., d}N.

Remark 3: Indeed, due to Remark 2 we get that Ũ = U +(g ◦ τ)−g+ c,
where g depends on finite coordinates. Therefore, to show (2.26) - for α
which is C∗-Gibbs for U : Ω → R - is equivalent to prove (see details on
the proof of Theorem 2.4.4) that there exists C1, C2 > 0, such that,

C1 ≤
α(| y0

1, y
0
2, ...y

0
s)

exp
(∑s−1

k=0 U(τ kx)
) ≤ C2, (2.27)

where τ is the shift acting on {1, 2, .., d}Z and where

x = (...x−2, x−1 | y0
1, y

0
2, ...y

0
s , xs+1, ..., xm, xm+1, ...) ∈ {1, 2, .., d}Z.

It’s important to note that the main equivalence (equilibrium and C∗-
Gibbs) is still valid in a more general setting of a Hölder potential in a general
Smale Space. D. Ruelle proved on the setting of hyperbolic diffeomorphisms
that Equilibrium implies C∗-Gibbs in his book [60], see theorems 7.17(b),
7.13(b) and section 7.18). On the other hand Haydn proved in the paper [23]
that C∗-Gibbs implies Equilibrium. Later, the paper [24] presents a shorter
proof of the equivalence.

On the two next sections we will present the proof of the following theo-
rem.
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Theorem 2.5.4. Given a potential U depending on a finite number of coordi-
nates, then, α is the equilibrium measure for U , if and only if, α is C∗-Gibbs
for U . As the equilibrium probability is unique we get that the C∗-Gibbs
probability for U is unique.

2.6 Equilibrium implies C∗-Gibbs

The fact that Equilibrium state implies C∗-Gibbs was proved by Ruelle in a
general setting. The proof is in the book [60] (see theorems 7.17(b), 7.13(b)
and section 7.18).

For completeness we will explain the proof on our setting.
We drop the (x, y) on ϕ(x,y) and O(x,y).

Lemma 2.6.1. Let (Ω, τ) be the shift on the Bernoulli space Ω = {1, 2, ..., d}Z−{0}
and ρ0 be the τ -invariant probability measure which realizes the maximum of
the entropy, or, simply the equilibrium state for U = 0. If (O, ϕ) is a conju-
gating homeomorphism, then for any continuous function f∫

O
f(ϕ(x))dρ0(x) =

∫
ϕ(O)

f(x)dρ0(x) (2.28)

Proof: Given

O = x−nx−n+1...x−1 |x1 ...xm−1xm

and
ϕ(O) = y−ny−n+1...y−1 | y1 ...ym−1ym,

we have that for any r > m and k > n

ρ0(x−kx−k+1...x−1 |x1 ...xr−1xr) = d− ( r+k ) =

ρ0(y−ky−k+1...y−1 | y1 ...yr−1yr).

We shall prove that equation (2.28) is valid when f is equal to an cha-
racteristic function of an arbitrary cylinder. Note that for this purpose is
enough to consider f as the characteristic function of cylinders of the form
y−ky−k+1...y−1 | y1 ...yr−1yr. Therefore,
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∫
O
Iy−ky−k+1...y−1 | y1 ...yr−1yr

(ϕ(x))dρ0(x) =∫
ϕ(O)

Iy−ky−k+1...y−1 | y1 ...yr−1yr
(y)dρ0(y).

From this follows the claim.

We denote by Cα(Ω) the set of α Hölder functions on Ω.

Lemma 2.6.2. (see corollary 7.13 in [60]) Consider the shift space (Ω, τ)
and A,B ∈ Cα(Ω). Write for integers a < 0 and b > 0

Z[a,b] =

∫
e
∑b−1
k=aB◦τ

k

d ρA

Then, Z−1
[a,b] (exp

∑b−1
k=aB ◦ τ k) ρA tends to ρA+B in the weak star topology,

when a→ −∞ and b→ +∞.
In particular, taking A = 0, when a→ −∞ and b→ +∞, we get that

Z−1
[a,b] e

∑b−1
k=aB ◦ τ

k

ρ0 → ρB,

where

Z[a,b] =

∫
e
∑b−1
k=aB◦τ

k

d ρ0

Theorem 2.6.3. If ρB is an equilibrium state for a potential B that depends
on a finite number of coordinates then it is a C∗-Gibbs state for B.

Proof: The statement holds for B = 0 by Lemma 2.6.1. Moreover,
Lemma 2.6.2 allow us to extend this result for allB ∈ Cα(ΣN) in the following
manner: given O and the associated ϕ∫

ϕ(O)

g(x)dρB(x) = lim
a→−∞
b→∞

Z−1
[a,b]

∫
ϕ(O)

exp

(
b−1∑
k=a

B ◦ τ k(x)

)
g(x)dρ0(x)

2.6.1
=

lim
a→−∞
b→∞

Z−1
[a,b]

∫
O

exp

(
b−1∑
k=a

B ◦ τ k ◦ ϕ(x)

)
g ◦ ϕ(x)dρ0(x) =
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lim
a→−∞
b→∞

Z−1
[a,b]

∫
O

exp

(
b−1∑
k=a

B ◦ τ k ◦ ϕ(x)−
b−1∑
k=0

B ◦ τ k(x)

)

exp

(
b−1∑
k=a

B ◦ τ k(x)

)
g ◦ ϕ(x)dρ0(x) =

lim
a→−∞
b→∞

Z−1
[a,b]

∫
O
e(−V (x,ϕ(x)))g ◦ ϕ(x) exp

(
b−1∑
k=a

B ◦ τ k(x)

)
dρ0(x) =

∫
O
e(−V (x,ϕ(x)))g ◦ ϕ(x)dρB(x).

Since the equality∫
ϕ(O)

g(x)dρB(x) =

∫
O
e(−V (x,ϕ(x)))g ◦ ϕ(x)dρB(x)

was verified for any conjugating homeomorphism ϕ and any g, then it follows
that ρB is an C∗-Gibbs state for B.

2.7 C∗-Gibbs implies Equilibrium

Given a C∗-Gibbs probability α for a potential U that depends on a finite
number of coordinates we will show in this section that α is the equilibrium
probability for U . We shall further assume that the potential U depend only
on positive coordinates and is normalized according to the Ruelle operator,
i.e.

d∑
z1,z2,..,zn=1

e
∑n−1
j=0 Ũ(σj(z1,z2,..,zn,w1,w2,w3,...,wm,...) = 1, (2.29)

for any w = (w1, w2, ..., wm, ...) ∈ {1, 2, ..., d}N and n ∈ N. Such assupti-
ons aren’t restrictive, since given any potential W that depends on a finite
number of coordinates, it’s possible to find a function g depending on finite
coordinates, and a normalized potential W̃ that depends of future coordina-
tes, such that [47]

W = W̃ + g − g ◦ τ − λ
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If we show that α is τ -invariant and also satisfies the Bowen’s inequalities
for U , then, it will follow that α is the equilibrium probability for U by
Theorem 2.5.1.

We will show first that a quasi C∗-Gibbs probability α for U satisfies the
Bowen’s inequalities (2.27) for U .

Later we will show that a C∗-Gibbs probability α is invariant for τ (see
Proposition 2.7.5). This will finally show (see Theorem 2.7.6) that ”C∗-Gibbs
implies Equilibrium”.

Note that we want to show (2.27) but due to Remark 3 we just have to
show (2.26).

We assume α is such that (2.22) is true, that is, there exists d1, d2 > 0,
such that, for any continuous function g

d1

∫
|x01,x02,...x0s

e−V (z,ϕ(x,y)(z))g(ϕ(x,y)(z))dα(z) ≤

∫
| y01 ,y02 ,...y0s

g(z)dα(z) ≤ d2

∫
|x01,x02,...x0s

e−V (z,ϕ(x,y)(z))g(ϕ(x,y)(z))dα(z). (2.30)

We denote U = supx∈Ω U(x)− infx∈Ω U(x).

Lemma 2.7.1. Given a normalized Hölder potential U(x) = f(x1, x2, .., xr),
consider x0

1 ...x
0
s and y0

1 ...y
0
s fixed, and also a, b ∈ {1, 2..., d} fixed. Let

x = (...x−mx−m+1...x−1 |x0
1 ...x

0
s xs+1, xs+2, ...xm−1xm...) ∈ |x0

1, x
0
2, ...x

0
s

y = (...x−mx−m+1...x−1 | y0
1 ...y

0
s xs+1, xs+2, ...xm−1xm...) ∈ | y0

1, y
0
2, ...y

0
s ,

and also

xa = (...x−mx−m+1...x−1 |x0
1 ...x

0
s axs+2...xm−1xm...) ∈ |x0

1, x
0
2, ...x

0
s

yb = (...x−mx−m+1...x−1 | y0
1 ...y

0
s bxs+2...xm−1xm...) ∈ | y0

1, y
0
2, ...y

0
s .

Assume that x ∼ y.
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Then,

|
∞∑

k=−∞

U(τ k(xa))− U(τ k(yb))| ≤

2 r U + |
∞∑

k=−∞

U(τ k(x))− U(τ k(y))| .

Proof: Let I the set of indicies for k such that U(τ k(xa)) (or, U(τ k(yb)))
differs from U(τ k(x)) (or, U(τ k(y))). It‘s easy to see that the cardinality of
I is r. Therefore

|
∑
k∈Z

U(τ k(xa))− U(τ k(yb))| ≤

|
∑
k∈Z\I

U(τ k(xa))− U(τ k(yb))| + |
∑
k∈I

U(τ k(xa))− U(τ k(yb))| =

|
∑
k∈Z\I

U(τ k(x))− U(τ k(y))| + |
∑
k∈I

U(τ k(xa))− U(τ k(yb))| ≤

|
∑
k∈Z\I

U(τ k(x))− U(τ k(y))| + rU ≤

|
∑
k∈Z

U(τ k(x))− U(τ k(y))| + 2rU

We will adapt the formulation of Proposition 2.1 in [23] to the present
situation.

For fixed |x0
1, x

0
2, ...x

0
s denote

Ua = |x0
1, x

0
2, ..., x

0
s, a

a = 1, 2.., d.
Note that

∑
a α(Ua) = α(|x0

1, x
0
2, ...x

0
s), in particular∑

a

α(Ua) < d α(|x0
1, x

0
2, ...x

0
s). (2.31)

Consider now a fixed | y0
1, y

0
2, ...y

0
s and ϕa,b, a = 1, 2, ..., d, b = 1, 2, ..., d,

denotes the conjugating homeomorphism from Ua to | y0
1, y

0
2, ...y

0
s b = ϕa,b(Ua).
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Note also that for each a

α( | y0
1, y

0
2, ...y

0
s ) =

d∑
b=1

α(ϕa,b (Ua) ). (2.32)

Denote

K = sup
m∈N
{
m−1∑
k=0

[Ũτ k(u)− Ũτ k(v)] , where u, v ∈ | a1, a2, ..., am ,

and (a1, a2, ..., am) ∈ {1, 2, .., d}m }.
On the above expression we ask that u ∼ v.
Note that if α is C∗-Gibbs and satisfies (2.30) we get in particular that

d1

∫
|x01,x02,...x0s

e−V (z,ϕ(x,y)(z))dα(z) ≤

∫
| y01 ,y02 ,...y0s

dα(z) ≤ d2

∫
|x01,x02,...x0s

e−V (z,ϕ(x,y)(z))dα(z). (2.33)

Proposition 2.7.2. Suppose α is quasi-C∗-Gibbs for U as above. Then,
there exists a constat c1 > 0, such that,

c1 ≤ e−
∑s−1
k=0 Uτ

k(x) α( |x0
1, x

0
2, ...x

0
s )

for any cylinder |x0
1, x

0
2, ...x

0
s and any x on the cylinder.

The α-probability of any cylinder is positive.

Proof: We assume that (2.33) is true.

Fix a certain cylinder |x0
1, x

0
2, ...x

0
s and fix a point x ∈ |x0

1, x
0
2, ...x

0
s then

choose another cylinder | y0
1, y

0
2, ...y

0
s with non null probability and a point

y ∈ | y0
1, y

0
2, ...y

0
s . Fix x ∈ |x0

1, x
0
2, ...x

0
s and y ∈ | y0

1, y
0
2, ...y

0
s . Choose a, b ∈

{1, 2, ..., d} and define xa and yb as

xa = (...x−mx−m+1...x−1 |x0
1 ...x

0
s a, xs+2, ...xm−1xm...) ∈ |x0

1, x
0
2, ...x

0
s

yb = (...x−mx−m+1...x−1 | y0
1 ...y

0
s b, xs+2, ...xm−1xm...) ∈ | y0

1, y
0
2, ...y

0
s .
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we get from Lemma 2.7.1 that

α(ϕa,b (Ua) ) ≤ d2

∫
Ua

e
∑∞
k=−∞ U(τkϕ(z))−U(τk(z))dα(z) ≤

d2

∫
e
∑s
k=0 U(τkϕ(z))−U(τkyb)+U(τkϕ(z))−U(τkxa)e

∑s
k=0 U(τkyb)−U(τkxa)

e
∑∞
k=s U(τkϕ(z))−U(τkz)e

∑∞
k=0 U(τ−kϕ(z))−U(τ−kz)dα(z) ≤

d2 e
2K+r Ue

∑s−1
k=0[Ũτk(yb)−Ũτk(xa)] α(Ua) ≤

d2 e
2K+3 r Ue

∑s−1
k=0[Ũτk(y)−Ũτk(x)] α(Ua).

Then, from (2.32)

α(| y0
1, y

0
2, ...y

0
s) =

d∑
b=1

α(ϕa,b (Ua) ) ≤ d2 d e
2K+3rUe

∑s−1
k=0[Uτk(y)−Uτk(x)] α(Ua).

From this and from (2.29) we get

1 =
d∑

y01 ,y
0
2 ,...y

0
s=1

α(| y0
1, y

0
2, ...y

0
s) ≤ d2 d e

2K+3 rUe−
∑s−1
k=0 Uτ

k(x) α(Ua),

and, finally, for x = (..., x−t, ..., x−2, x−1 |x1, x2, .., xt, ...) ∈ |x0
1, x

0
2, ...x

0
s

d =
d∑
a=1

d∑
y01 ,y

0
2 ,...y

0
s=1

α(| y0
1, y

0
2, ...y

0
s) ≤

d∑
a=1

d2 d e
2K+3rUe−

∑s−1
k=0 Uτ

k(x) α(Ua) =

d2 d e
2K+3 rUe−

∑s−1
k=0 Uτ

k(x) α(|x0
1, x

0
2, ...x

0
s).

This also shows that the α-probability of any cylinder |x0
1, x

0
2, ...x

0
s is

positive when α is quasi-C∗-Gibbs.
By Proposition 2.4.3 we get that any cylinder of the form x−m...x−1|x1x2...xs

has positive α-probability.
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Proposition 2.7.3. There exists a constant c2 > 0, such that,

e−
∑s−1
k=0 Uτ

k(x) α( |x0
1, x

0
2, ...x

0
s ) ≤ c2,

for any cylinder |x0
1, x

0
2, ...x

0
s and any x on the cylinder.

The α-probability of any cylinder is positive.

Proof: We assume that (2.33) is true.

Again consider fixed x ∈ |x0
1, x

0
2, ...x

0
s and y ∈ | y0

1, y
0
2, ...y

0
s . Choose a, b ∈

{1, 2, ..., d} and define xa and yb as

xa = (...x−mx−m+1...x−1 |x0
1 ...x

0
s a, xs+2, ...xm−1xm...) ∈ |x0

1, x
0
2, ...x

0
s

yb = (...x−mx−m+1...x−1 | y0
1 ...y

0
s b, xs+2, ...xm−1xm...) ∈ | y0

1, y
0
2, ...y

0
s .

Using an analogous reasoning as in proposition 2.7.3. But now we use
the function g(z) = eV (z,ϕ(z)) in the first inequality of (2.30). After some
algebraic work similar to the former demonstration we reach

α(Ua) ≤
1

d1

e2K+rUe
∑s−1
k=0[Uτk(xa)−Uτk(yb)] α(ϕa,b(Ua) ) ≤

1

d1

e2K+3 r Ue
∑s−1
k=0[Uτk(x)−Uτk(y)] α(ϕa,b (Ua) ).

Therefore,

e
∑s−1
k=0 Uτ

k(y)α(|x0
1, x

0
2, ...x

0
s) = e

∑s−1
k=0 Uτ

k(y)]

d∑
a=1

α(Ua) ≤

1

d1

e2K+3 r Ue
∑s−1
k=0 Uτ

k(x)

d∑
a=1

α(ϕa,b (Ua) ). (2.34)

Finally, as | y0
1, y

0
2, ...y

0
s b = ϕa,b(Ua) we get from (2.29) and (2.34)

dα(|x0
1, x

0
2, ...x

0
s) =

d∑
b=1

d∑
y01 ,y

0
2 ,...y

0
s=1

e
∑s−1
k=0 Uτ

k(y)α(|x0
1, x

0
2, ...x

0
s) ≤

34



e2K+3 rU

d1

e
∑s−1
k=0 Uτ

k(x)

d∑
a=1

d∑
b=1

d∑
y01 ,y

0
2 ,...y

0
s=1

α(ϕa,b (Ua)) =
d e2K+3 rU

d1

e
∑s−1
k=0 Uτ

k(x).

This shows the claim of the proposition.

Now we have to show that α is invariant by τ .

Corolary 2.7.4. If α1 and α2 are quasi C∗-Gibbs for U , where

U(..., x−n, ..., x−2, x−1 |x1, x2, ..., xr, xr+1, ...xm...) = f(x1, x2, ..., xr)

for some fixed r and function f : {1, 2, ..., d}r → R, then α1 is absolutely
continuous with respect to α2.

Proof: We assume that U is normalized. Suppose α1 and α2 are quasi
C∗-Gibbs for U .

Expression (2.26) for α1 and α2 will determine, respectively, constants
d1

1, d
1
2 and d2

1, d
2
2.

From last Propositions there exist constants Y1 > 0 and Y2 > 0, such
that, for any cylinder |x1, x2, .., xn and for any point x in this cylinder we
get

α1(|x1, x2, .., xn)

e
∑n−1
k=0 U(τk(x))

≤ Y1,

and

Y2 ≤
α2(|x1, x2, .., xn)

e
∑n−1
k=0 U(τk(x))

.

Therefore,
Y2

Y1

α1(|x1, x2, .., xn) ≤ α2(|x1, x2, .., xn).

Now consider a cylinder set of the form

(x−m, ...x−1|x1, x2, .., xn).

Expression (2.23) for α1 and α2 will determine, respectively, constants
b1

1, b
1
2 and b2

1, b
2
2.

Then, by Proposition 2.4.3 we get that

b1
1 α1(x−m, ...x−1|x1, x2, .., xn) ≤ α1(|x−m, ...x−1x1, x2, .., xn) ≤
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Y1

Y2

α2(|x−m, ...x−1x1, x2, .., xn) ≤ Y1

Y2

b2
2α2(x−m, ...x−1|x1, x2, .., xn). (2.35)

The Borel sigma-algebra over Ω is generated by the set of cylinders of the
form x−m, ...x−1|x1, x2, .., xn.

As the probability αj(B), j = 1, 2, of a Borel set B is obtained, respecti-
vely, as an exterior probability using probabilities of the generators we finally
get that the analogous inequalities as in (2.35) are true with the same same
constants, that is,

b1
1α1(B) ≤ Y1

Y2

b2
2α2(B). (2.36)

Therefore, α1 is absolutely continuous with respect to α2.

Proposition 2.7.5. Assume α is C∗-Gibbs for U , then, α is invariant for
τ .

Proof: From Corollary 2.7.4 we get that any two C∗-Gibbs probabilities
for U are absolutely continuous with respect to each other.

Suppose α is C∗-Gibbs, then, α1 = τ ∗(α) is also C∗-Gibbs by Proposition
2.3.8. If α 6= τ ∗(α) then, following Theorem 2.5 in [24] we get that ρ1 =
|α1 − α|+ α1 − α and ρ2 = |α1 − α| − α1 + α are also C∗-Gibbs. But ρ1 and
ρ2 are singular with respect to each other and this is a contradiction.

Therefore, α = τ ∗(α).

Theorem 2.7.6. Suppose U : Ω→ R is of the form

U(..., x−n, ..., x−2, x−1 |x1, x2, ..., xr, xr+1, ...xm...) = f(x1, x2, ..., xr),

for some fixed r and fixed function f : {1, 2, ..., d}r → R.
If α is C∗-Gibbs for the potential U then α is the equilibrium state for U .

Proof: As we know by Proposition 2.7.5 that α is τ invariant and, mo-
reover, we also know that α is quasi-C∗ invariant for another normalized
potential, it follows from Proposition 2.7.2, Proposition 2.7.3 and Theorem
2.5.1 that α is the equilibrium probability for U

Another conclusion one can get from the above reasoning is that for po-
tentials that depends on finite coordinates the concepts of quasi C∗-Gibbs
and C∗-Gibbs are equivalent on the lattice Z.
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2.8 Construction of the C∗-Algebra

Remember that we consider the groupoid G ⊂ Ω × Ω of all pair of points
which are related by the homoclinic equivalence relation.

Remember also that we consider on G the topology generated by sets of
the form

{ (z, ϕ(x,y)(z)) |where z ∈ O(x,y) and x, y ∈ Ω such that x ∼ y}.

This topology is Hausdorff [59].
We denote by [x] the class of x ∈ Ω. For each x the set of elements on

the class [x] is countable.
We now come to the construction of the noncommutative algebra. Let

Cc(G) be the linear space of complex continuous functions with compact
support on G. If A,B ∈ Cc(G) we define the product A ∗B by

(A ∗B)(x, y) =
∑
z∈[x]

A(x, z)B(z, y).

Note that if (x, y) ∈ G then they are conjugated and so the sum is over all z
that are conjugated to x and y.

Note that there are only finitely many nonzero terms in the above sum
because the functions A,B have compact support [59].

Considering the above, A∗B ∈ Cc(G) as one checks readily, so that Cc(G)
becomes an associative complex algebra. An involution A→ A∗ is defined
by

A∗(x, y) = A(y, x)

where the bar denotes complex conjugation.
For each equivalence class [x] of conjugated points of Ω there is a repre-

sentation π[x] → C in the Hilbert space l2([x]) of square summable functions
[x]→ C, such that

((π[x]A)ξ(y) =
∑
z∈[x]

A(y, z)ξ(z)

for ξ ∈ l2([x]). Denoting by ‖π[x]A‖ the operator norm, we write

‖A‖ = sup
[x]

‖π[x]A‖. (2.37)

37



ID (the indicator function of the diagonal D) is such that for any A ∈
Cc(G) we get ID ∗ A = A ∗ ID = A.

The completion of Cc(G) with respect to this norm is separable. It is called
the reduced C∗-algebra which is denoted by C∗r (G). The unity element ID is
contained in this C∗ algebra.

Remark 2.8.1. If A ∈ Cc(G) and t ∈ R, we write

(σtA)(x, y) = eiV (x,y)tA(x, y) (2.38)

defining a one-parameter group (σt) of ∗-automorphisms of Cc(G) and a uni-
que extension to a one parameter group of ∗-automorphisms of C∗r (G).

We say that A ∈ Cc(G) is analytic (a classical terminology on C∗-algebras)
if the real variable t on the function t → σtA can be extended to the com-
plex variable z ∈ C. Under our assumptions this will be always the case.
Therefore, σ−βiA is well defined.

Definition 2.8.2. A state ω on C∗r (G) is a linear functional ω : C∗r (G)→ C,
such that, ω(A ∗ A∗) ≥ 0, and ω(ID) = 1 (see [12]).

Such state ω is sometimes called a dynamical C∗-state.

Definition 2.8.3. A state ω is invariant if ω ◦ σt = ω, for all t ∈ R.

It is of paramount importance to be able to substitute the above real
value t by the complex number β i (where β is real). We refer the reader to
Propositions 5.3.6 e 5.3.7 in [12] for the technical details of this claim.

Definition 2.8.4. Given a modular function V : G→ R and the associated
σt, t ∈ R, we say that an invariant state ω : C∗r (G)→ C satisfies the KMS
boundary condition for V and β ∈ R, if for all A,B ∈ C∗r (G), there is
a continuous function F on {z ∈ C : 0 ≤ Im(z) ≤ β}, holomorphic in
{z ∈ C : 0 < Im(z) < β}, and such that for any real t

ω(σtA ∗B) = F (t), ω(B ∗ σtA) = F (t+ iβ) (2.39)

Note that using (2.39) we have that F (0) = ω(A ·B) and

F (0) = F (−βi+ βi) = ω(B ∗ σ−βiA).
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Therefore, for any A,B we get

ω(A ∗ B) = ω(B ∗ e−iβA)

which is the classical KMS condition for ω according to [12] (see Propositi-
ons 5.3.6 e 5.3.7 there). This condition is equivalent to KMS boundary
condition.

Theorem 2.8.5. If µ is a probability measure on Ω then a state w = µ̂ on
C∗r (G) can be defined for any A ∈ Cc(G) by

µ̂(A) =

∫
A(x, x)dµ(x) (2.40)

Proof:
µ̂ is bounded with respect to the above defined norm.
First note that it’s easy to verify that µ̂ is linear, and for any A we have

µ̂(A∗A∗) ≥ 0 and moreover µ̂(ID) = 1. Now, note that since the diagonal D
is a compact set, then any continuous function A : G → C has a maximum
at D, therefore (2.40) is well defined for continuous function. µ̂ is also well
defined on the C∗-algebra.

Definition 2.8.6. A probability ν on Ω is called a KMS probability for
the modular function V if the state ν̂ on C∗r (G) defined by

ν̂(A) =

∫
A(x, x)ν(dx) (2.41)

satisfies the KMS condition for V . Here G is the groupoid given by the
homoclinic equivalence relation.

This probability is sometimes called quasi-stationary (see [15]).
The next claim was proved on [59]. For completeness we will present a

proof of this claim with full details.

Theorem 2.8.7. If the probability α on Ω is a C∗-Gibbs probability with
respect to V and β, then, α̂ is a KMS probability for the modular function
β V . The associated α̂ is a C∗ dynamical state for the C∗r (G) algebra given
by the groupoid obtained by the homoclinic equivalence relation and satisfies
the KMS boundary condition.
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Proof: Suppose α is a C∗-Gibbs state with respect to βV . We assume
β = 1.

α̂ is σt invariant if for all t ∈ C it’s true that∫
σtA(x, x)α(dx) =

∫
A(x, x)α(dx)

which by definition (2.38) it’s equivalent to∫
eiV (x,x)tA(x, x)α(dx) =

∫
A(x, x)α(dx)

but since V (x, x) = 0 then the state have to be σt invariant.
Now we will show that if A,B ∈ Cc(G), then

α̂(σtA ∗B) =

∫
α(dx)

∑
y∈[x]

eiV (x,y)tA(x, y) ·B(y, x)

extends to an entire function (just change t to z ∈ C). For this purpose we
will pick t0 ∈ C and show that

lim
t→t0

α̂(σtA ∗B)− α̂(σtoA ∗B)

t− t0
(2.42)

exist. Indeed, the limit (2.42) is equivalent to

lim
t→t0

1

t− t0

∫ α(dx)
∑
y∈[x]

eiV (x,y)tA(x, y) ·B(y, x)−

∫
α(ds)

∑
y∈[s]

eiV (s,y)t0A(s, y) ·B(y, s)

 =

lim
t→t0

∫ α(dx)
∑
y∈[x]

(eiV (x,y)t − eiV (x,y)t0)

t− t0
A(x, y) ·B(y, x)

 . (2.43)

Always have in mind that for each x the summation is over finite terms.
Let R be a closed ball of radius 1 centered in t0. So we can consider the

continuous function ft0 : R\{t0}× supp(A)→ C

ft0(t, x) =
∑
y∈[x]

(eiV (x,y)t − eiV (x,y)t0)

t− t0
A(x, y) ·B(y, x)
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To extend ft0 for the case t = t0 we need to solve the limit

Lt0(x) = lim
t→t0

∑
y∈[x]

(eiV (x,y)t − eiV (x,y)t0)

t− t0
A(x, y) ·B(y, x) = (2.44)

∑
y∈[x]

lim
t→t0

(eiV (x,y)t − eiV (x,y)t0)

t− t0
A(x, y) ·B(y, x) =

∑
y∈[x]

iV (x, y)eiV (x,y)t0A(x, y) ·B(y, x).

So define ft0(t0, x) = Lt0(x).
In this way ft0 is a continuous function defined on a compact domain.

Therefore we may assume that both it’s real and imaginary parts are limited
by a value M in the domain. Consider a sequence of functions indexed by
the t variable, {ft0(tn, x)}n∈N∗ that converge to Lt0(x) when n → ∞, e.g.
ft0(t0 +(1+ i)/n, x). In this way the dominated convergence theorem assures
that the limit (2.42) is equal to the integral:∫

α(dx)Lt0(x).

Indeed formally what we have is,∫
α(dx)Lt0(x) =

∫
α(dx)

∑
y∈[x]

iV (x, y)eiV (x,y)t0A(x, y) ·B(y, x) =

∫
α(dx) lim

n→∞

∑
y∈[x]

(eiV (x,y)tn − eiV (x,y)t0)

tn − t0
A(x, y) ·B(y, x) =

lim
n→∞

∫
α(dx)

∑
y∈[x]

(eiV (x,y)tn − eiV (x,y)t0)

tn − t0
A(x, y) ·B(y, x) =

lim
n→∞

α̂(σtnA ∗B)− α̂(σtoA ∗B)

tn − t0
(2.45)

Now since the sequence was arbitrary we could remake these calculations
to any desired convergent sequence with the same result, therefore (2.45) is
equal to

lim
t→t0

α̂(σtA ∗B)− α̂(σtoA ∗B)

t− t0
,
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what proves existence of the limit in equation (2.42). This allow us to con-
clude that α̂(σtA ∗B) is an holomorphic function everywhere.

Let F (t) = α̂(σtA ∗ B). Using a partition of unity on supp A we may
write A =

∑
Aj, where supp Aj ⊂ Wj = {(z, ϕj(z)) : z ∈ Oj}, and (Oj, ϕj)

is a conjugating homeomorphism. Since supp A is a compact set then we
may assume the summation to occur over a finite amount of elements. Thus

F (t) =

∫
Ω

∑
j

α(dx)Aj(x, ϕjx)B(ϕjx, x) exp(iV (x, ϕjx)t) =

∑
j

∫
Oj
α(dx)Aj(x, ϕjx)B(ϕjx, x) exp(iV (x, ϕjx)t)

and therefore

F (t+ i) =
∑
j

∫
Oj

[e−V (x,ϕjx)α(dx)]Aj(x, ϕjx)B(ϕjx, x) exp(iV (x, ϕjx)t)

If α is an C∗-Gibbs state by (2.5) we have that

F (t+ βi) =
∑
j

∫
ϕj(Oj)

α(dy)B(y, ϕ−1
j y)Aj(ϕ

−1
j y, y) exp(iV (ϕ−1

j y, y)t) =

∑
j

∫
ϕj(Oj)

α(dy)B(y, ϕ−1
j y)σtAj(ϕ

−1
j y, y) =

∫
Ω

∑
j

α(dy)B(y, ϕ−1
j y)σtAj(ϕ

−1
j y, y) =

∫
Ω

α(dy)(B ∗ σtA)(y, y) = α̂(B ∗ σtA)

so that α̂ satisfies the KMS condition.
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Caṕıtulo 3

Haar systems, KMS states on
von Neumann algebras,
C∗-algebras on dynamically
defined groupoids and
Noncommutative Integration

3.1 The groupoid associated to a partition

We will analyze properties of Haar systems, quasi-invariant probabilities,
transverse measures, C∗-algebras and KMS states related to Thermodynamic
Formalism and Gibbs states. We will consider a specific particular setting
where the groupoid will be defined by some natural equivalence relations on
the sets of the form {1, 2, ..., d}N or {1, 2, ..., d}Z, S1 × S1, or (S1)N. These
equivalence relations will be of dynamic origin.

We will denote by X any one of the above sets.
The main point here is that we will use a notation which is more close to

the one used on Ergodic Theory and Thermodynamic Formalism.
On section 3.2 we introduce the concept of transverse functions associated

to groupoids and Haar systems.
On section 3.3 we consider modular functions and quasi-invariant pro-

babilities on groupoids. In the end of this section we present a new result
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concerning a (non-)relation of the quasi-invariant probability with the SBR
probability of the generalized Baker map.

On section 3.4 we consider a certain von Neumann algebra and the as-
sociated KMS states. On proposition 3.4.24 we present a new result concer-
ning the relation between probabilities satisfying the KMS property (quasi-
invariant) and Gibbs (DLR) probabilities of Thermodynamic Formalism on
the symbolic space {1, 2, ..., d}N for a certain groupoid. Proposition 3.4.25
shows that the KMS probability is not unique on this case.

[33], [31] and [32] are the classical references on measured groupoids and
von Neumann algebras. KMS states and C∗-algebras are described on [46].

On section 3.5 we present a natural expression - based on quasi-invariant
probabilities - for the integration of a transverse function by a transverse
measure. Some basic results on non-commutative integration (see [18] for a
detailed description of the topic) are briefly described.

On section 3.6 we present briefly the setting of C∗-algebras associated to
groupoids on symbolic spaces. We present the well known and important
concept of approximately proper equivalence relation and its relation with
the direct inductive limit topology (see [25], [26], [27] and [57]).

On section 3.7 we present several examples of quasi-invariant probabilities
for different kinds of groupoids and Haar systems.

Results on C∗-algebras and KMS states from the point of view of Ther-
modynamic Formalism are presented in [37], [57], [51], [65], [66], [1], [29] and
[30].

The paper [9] considers equivalence relations and DLR probabilities for
certain interactions on the symbolic space {1, 2, ...d}Z (not in {1, 2, ...d}N like
here).

Theorem 6.2.18 in Vol II of [12] and [4] describe the relation between
KMS states and Gibbs probabilities for interactions on certain spin lattices
(on the one-dimensional case corresponds to the space {1, 2, .., d}Z).

We point out that Lecture 9 in [21] presents a brief introduction to C∗-
Algebras and non-commutative integration.

We denote {1, 2, ..., d}N = Ω and consider the compact metric space with
metric d where for x = (x0, x1, x2, ..) ∈ Ω and y = (y0, y1, y2, ..) ∈ Ω

d(x, y) = 2−N ,

where N is the smallest natural number j ≥ 0, such that, xj 6= yj.
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We also consider {1, 2, ..., d}Z = Ω̂ and elements in Ω̂ are denoted by
x = (..., x−n, ..., x−1 |x0, x1, .., xn, .. ).

We will use the notation
←−
Ω = {1, 2, ..., d}N and

−→
Ω = {1, 2, ..., d}N.

Given x = (..., x−n, ..., x−1 |x0, x1, .., xn, .. ) ∈ Ω̂, we call (..., x−n, ..., x−1 ) ∈
←−
Ω the past of x and (x0, x1, .., xn, ..) ∈

−→
Ω the future of x.

In this way we express Ω̂ =
←−
Ω × |

−→
Ω .

Sometimes we denote

(..., a−n, ..., a−1 | b0, b1, .., bn, .. ) =< a | b >,

where a = (..., a−n, ..., a−1) ∈
←−
Ω and b = ( b0, b1, .., bn, ..) ∈

−→
Ω .

On Ω̂ we consider the usual metric d, in such way that for x, y ∈ Ω̂ we
set

d(x, y) = 2−N ,

N ≥ 0, where for

x = (..., x−n, ..., x−1 |x0, x1, .., xn, .. ) , y = (..., y−n, ..., y−1 | y0, y1, .., yn, .. ),

we have xj = yj, for all j, such that, −N + 1 ≤ j ≤ N − 1 and, moreover
xN 6= yN , or x−N 6= y−N .

The shift σ̂ on Ω̂ = {1, 2, ..., d}Z is such that

σ̂(..., y−n, ..., y−2, y−1 | y0, y1, ...., yn, ...) = (..., y−n, ..., y−2, y−1, y0 | y1, ...., yn, ...).

On the other hand the shift σ on Ω = {1, 2, ..., d}N is such that

σ(y0, y1, ...., yn, ...) = ( y1, ...., yn, ...).

A general equivalence relation R on a space X define classes and we will
denote by x ∼ y when two elements x and y are on the same class. We
denote by [y] the class of y ∈ X.

Definition 3.1.1. Given an equivalence relation ∼ on X, where X is any
of the sets Ω, Ω̂, (S1)N, or S1 × S1, we denote by G the subset of X × X,
containing all pairs (x, y), where x ∼ y. We call G the groupoid associated
to the equivalence relation ∼.

We also denote by G0 the set {(x, x) |x ∈ X} ∼ X, where X denote any
of the sets Ω, Ω̂, (S1)N, or S1 × S1.
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Remark: There is a general definition of groupoid (see [18]) which as-
sumes more structure but we will not need this here. For all results we will
consider there is no need for an additional algebraic structure (on the class of
each point). In this way we can consider a simplified definition of groupoid
as it is above. Our intention is to study C∗-algebras and Haar systems as a
topic on measure theory (intersected with ergodic theory) avoiding questions
of algebraic nature.

There is a future issue about the topology we will consider induced on G.
One possibility is the product topology, which we call the standard structure,
or, a more complex one which will be defined later on section 3.6 (specially
appropriate for some C∗-algebras).

We will present several examples of dynamically defined groupoids. The
equivalence relation of most of our examples is proper (see definition 3.6.5).

Example 3.1.2. For example consider on {1, 2, ..., d}N the equivalence rela-
tion R such that x ∼ y, if xj = yj, for all j ≥ 2, when x = (x1, x2, x3, ...)
and y = (y1, y2, y3, ...). This defines a groupoid G. In this case G0 = Ω =
{1, 2, ..., d}N.

For a fixed x = (x1, x2, x3, ...) the equivalence class associated to x is the
set { (j, x2, x3, ...), j = 1, 2.., d }. We call this relation the bigger than two
relation.

Example 3.1.3. Consider an equivalence relation R which defines a parti-
tion η0 of {1, 2, ..., d}Z−{0} = Ω̂ such its elements are of the form

a× |
−→
Ω = a× {1, 2, ..., d}N = (..., a−n, ..., a−2, a−1)× | {1, 2, ..., d}N,

where a ∈ {1, 2, ..., d}N =
←−
Ω . This defines an equivalence relation ∼.

In this way two elements x and y are related if they have the same past.

There exists a bijection of classes of η0 and points in
←−
Ω .

Denote π = π2 : Ω̂ →
←−
Ω the transformation such that takes a point and

gives as the result its class.
In this sense

π−1(x) = π−1((..., x−n, ..., x−1 |x1, .., xn, ..) )) =

(..., x−n, ..., x−2, x−1)× |
−→
Ω ∼= Ω.
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The groupoid obtained by this equivalence relation can be expressed as
G = {(x, y), π(x) = π(y)}. In this way x ∼ y if they have the same past.

In this case the number of elements in each fiber is not finite.

Using the notation of page 46 of [18] we have Y ⊂ Ω̂× Ω̂ and X =
←−
Ω .

In this case each class is associated to certain a = (a−1, a−2, ..) ∈
←−
Ω =

{1, 2, ..., d}N..
We use the notation (a |x) for points on a class of the form

(a |x) = (..., a−n, ..., a−2, a−1 |x1, ...., xn, ...) .

Example 3.1.4. A particulary important equivalence relation R on Ω̂ =
{1, 2, ..., d}Z is the following: we say x ∼ y if

x = (..., x−n, ..., x−2, x−1 |x0, x1, ...., xn, ...),

and,
y = (..., y−n, ..., y−2, y−1 | y0, y1, ...., yn, ...)

are such that there exists k ∈ Z, such that, xj = yj, for all j ≤ k.
The groupoid Gu is defined by this relation x ∼ y.
By definition the unstable set of the point x ∈ Ω̂ is the set

W u(x) = {y ∈ Ω̂ , such that lim
n→∞

d( σ̂−n(x), σ̂−n(y) ) = 0 }.

One can show that the unstable manifold of x ∈ Ω̂ is the set

W u(x) = {y = (..., y−n, ..., y−2, y−1 | y0, y1, ...., yn, ...) | there exists

k ∈ Z, such that xj = yj, for all j ≤ k}.
If we denote by Gu the groupoid defined by the above relation, then, x ∼ y,

if and only if, y ∈ W u(x).
An equivalence relation of this sort - for hyperbolic diffeomorphism - was

considered on [62] and [43].

Example 3.1.5. An equivalence relation on
−→
Ω = {1, 2, ..., d}N similar to the

previous one is the following: we say x ∼ y if

x = (x0, x1, ...., xn, ...),

and,
y = (y0, y1, ...., yn, ...)

are such that there exists k ∈ N, such that, xj = yj, for all j ≥ k.
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Example 3.1.6. Another equivalence relation on
−→
Ω is the following: fix

k ∈ N, and we say x ∼k y, if when

x = (x0, x1, ...., xn, ...),

and,
y = (y0, y1, ...., yn, ...)

we have xj = yj, for all j ≥ k.
In this case each class has dk elements.

Example 3.1.7. Given x, y ∈ Ω̂ = {1, 2, ..., d}Z, we say that x ∼ y if

lim
k→+∞

d(σ̂kx, σ̂ky) = 0

and

lim
k→−∞

d(σ̂kx, σ̂ky) = 0. (3.1)

This means there exists an M ≥ 0, such that, xj = yj for j > M , and,
j < −M . In other words, there are only a finite number of i’s such that
xi 6= yi. This is the same to say that x and y are homoclinic.

For example in Ω̂ = {1, 2}Z take

x = (..., x−n, ..., x−7, 1, 2, 2, 1, 2, 2 | 1, 2, 1, 2, 1, 1, x7, ...xn, ..)

and
y = (..., y−n, ..., y−7, 1, 2, 2, 1, 2, 2 | 1, 2, 1, 1, 1, 2, y7, ...yn, ..)

where xj = yj for |j| ≥ 7.
In this case x ∼ y.
This relation is called the homoclinic relation on Ω̂ (see section 2) It

was considered for instance by D. Ruelle and N. Haydn in [58] and [24] for
hyperbolic diffeomorphisms and also on more general contexts (see also [40],
[44] and [9] for the symbolic case).

Example 3.1.8. Consider an expanding transformation T : S1 → S1, of
degree two, such that log T ′ is Holder and log T ′(a) > log λ > 0, a ∈ S1, for
some λ > 1.

Suppose T (x0) = 1, where 0 < x0 < 1. We say that (0, x0) and (x0, 1) are
the domains of injectivity of T .
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Denote ψ1 : [0, 1)→ [0, x0) the first inverse branch of T and ψ2 : [0, 1)→
[x0, 1] the second inverse branch of T .

In this case for all y we have T ◦ ψ1(y) = y and T ◦ ψ2(y) = y.
The associated T -Baker map is the transformation F : S1 × S1 such

that satisfies for all a, b the following rule:
1) if 0 ≤ b < x0

F (a, b) = (ψ1(a), T (b)),

and
2) if x0 ≤ b < 1

F (a, b) = (ψ2(a) , T (b)).

In this case we take as partition the one associated to (local) unstable
manifolds for F , that is, sets of the form Wa = { (a, b) | b ∈ S1}, where
a ∈ S1.

Given two points z1, z2 ∈ S1 × S1 we say that they are related if the first
coordinate of each is equal.

On S1 × S1 we use the distance d which is the product of the usual arc
length distance on S1.

The bijection F expands vertical lines and contract horizontal lines.
As an example one can take T (a) = 2a (mod 1) and we get (the inverse

of) the classical Baker map (see [63]).
One can say that the dynamics of such F in some sense looks like the one

of an Anosov diffeomorphism.

Example 3.1.9. The so called generalized XY model consider the space
(S1)N, where S1 is the unitary circle and the shift acting on it.

We can consider the equivalence relation R such that x ∼ y, if xj = yj,
for all j ≥ 2, when x = (x1, x2, x3, ...) and y = (y1, y2, y3, ...). This defines a
groupoid G. In this case G0 = (S1)N.

For a fixed x = (x1, x2, x3, ...) the equivalence class associated to x is the
set { (a, x2, x3, ...), a ∈ S1 }. We call this relation the bigger than two relation
for the XY model and G the standard XY groupoid over (S1)N.

3.2 Kernels and transverse functions

A general reference for the material of this section is [18] (see also [34]).
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We consider over G ⊂ X ×X the Borel sigma-algebra B (on G) induced
by the natural product topology on X ×X and the metric d on X ([31] and
[32] also consider this sigma algebra). This will be fine for the setting of von
Neumann algebras. Later, another sigma-algebra will be considered for the
setting C∗-algebras.

We point out that the only sets X which we are interested are of the form
Ω̂, Ω, (S1)N, or S1 × S1.

We denote F+(G) the space of Borel measurable functions f : G→ [0,∞)
(a function of two variables (a, b)).
F(G) is the space of Borel measurable functions f : G → R. Note that

f(x, y) just make sense if x ∼ y.
There is a natural involution on F(G) which is f → f̃ , where f̃(x, y) =

f(y, x).
We also denote F+(G0) the space of Borel measurable functions f : G0 →

[0,∞) (a function of one variable a).
There is a natural identification of functions f : G0 → R, of the form

f(x), with functions g : G → R which depend only on the first coordinate,
that is g(x, y) = f(x). This will be used without mention, but if necessary
we write (f ◦ P1)(x, y) = f(x) and (f ◦ P2)(x, y) = f(y).

Definition 3.2.1. A measurable groupoid G is a groupoid with the to-
pology induced by the product topology over X ×X, such that, the following
functions are measurable for the Borel sigma-algebra:

P1(x, y) = x, P2(x, y) = y, h(x, y) = (y, x) and Z( (x, s), (s, y) ) = (x, y),
where Z : { ( (x, s), (r, y) ) | r = s } ⊂ G×G → G.

Now, we will present the definition of kernel (see beginning of section 2
in [18]).

Definition 3.2.2. A G-kernel ν on the measurable groupoid G is an appli-
cation of G0 in the space of measures over the sigma-algebra B, such that,

1) for any y ∈ G0, we have that νy has support on [y],
and
2) for any A ∈ B, the function y → νy(A) is measurable.
The set of all G- kernels is denoted by K+.

Example 3.2.3. As an example consider for the case of the groupoid G
associated to the bigger than two relation, the measure νy, for each y =
(y1, y2, y3, ...), such that ν(j, y2, y3, ...) = 1, j = 1, 2, ..., d. In other words
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we are using the counting measure on each class.We call this the standard
G-kernel for the the bigger than two relation.

More precisely, the counting measure is such that νy(A) = #(A∩ [y]),
for any A ∈ B.

Example 3.2.4. Another possibility is to consider the G-kernel such that
νy, for each y = (y1, y2, y3, ...), is such that ν(j, y2, y3, ...) = 1

d
, We call this

the normalized standard G-kernel for the bigger than two relation.

Example 3.2.5. Given any groupoid G another example of kernel is the
delta kernel ν which is the one such that for any y ∈ G0 we have that
νy(dx) = δy(d x), where δy is the delta Dirac on y. We denote by d such
kernel.

We denote by Fν(G) the set of ν-integrable functions.

Definition 3.2.6. Given a G-kernel ν and an integrable function f ∈ Fν(G)
we denote by ν(f) the function in F(G0) defined by

ν(f) (y) =

∫
f (s, y) νy(ds), y ∈ G0.

A kernel ν is characterized by the law

f ∈ Fν(G) → ν(f) ∈ F(G0).

In other words, for a kernel ν we get

ν : Fν(G)→ F(G0).

By notation given a kernel ν and a positive f ∈ Fν(G) then the kernel f ν
is the one defined by f(x, y)νy(dx). In other words the action of the kernel
f ν get rid of the first coordinate:

h(x, y) →
∫
h(s, y)f (s, y) νy(ds).

In this way if f ∈ Fν(G0) we get f(x)νy(dx).

Note that ν(f) is a function and f ν is a kernel.
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Definition 3.2.7. A transverse function is a G-kernel ν, such that, if
x ∼ y, then, the finite measures νy and νx are the same. The set of transverse
functions for G is denoted by E+. We call probabilistic transverse function
any one such that for each y ∈ G0 we get that νy is a probability on the class
of y.

The above means that∫
f(a)νx(d a) =

∫
f(a)νy(d a),

if x and y are related. In the above we have x ∼ y ∼ a.

Remark 3.2.8. The above equality implies that a transverse function is left
(and right) invariant. Together with the conditions defining a G-kernel, we
have that ν is a Haar system (see [54]) in a measurable sense. In what
follows we use transverse function and Haar system as synonyms.

The standard G-kernel for the bigger than two relation (see example 3.2.3)
is a transverse function.

The normalized standard G-kernel for the the bigger than two relation
(see example 3.2.4) is a probabilistic transverse function.

If we consider the equivalence relation such that each point is related just
to itself, then the transverse functions can be identified with the positive
functions defined on X.

The difference between a function and a transverse function is that the
former takes values on the set of real numbers and the latter on the set of
measures.

If ν is transverse, then νx = νy when x ∼ y, and we have from definition
3.2.6

(ν ∗ f)(x, y) =

∫
f (x, s) νx(ds) = ν(f̃)(x), ∀y ∼ x (3.2)

and,

(f ∗ ν)(x, y) =

∫
f (s, y) νy(ds) = ν(f)(y), ∀x ∼ y. (3.3)
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Definition 3.2.9. The pair (G, ν), where ν ∈ E+, is called the measured
groupoid for the transverse function ν. We assume any ν we consider
is such that νy is not the zero measure for any y.

In the case ν is such that,
∫
νy(ds) = 1, for any y ∈ G0, the Haar system

will be called a probabilistic Haar system.

Note that the delta kernel d is not a transverse function.

Given a measured groupoid (G, ν) and two measurable functions f, g ∈
Fν(G), we define (f ∗

ν
g) = h in such way that for any (x, y) ∈ G

(f ∗
ν
g)(x, y) =

∫
g(x, s) f(s, y) νy(ds) = h(x, y).

(f ∗
ν
g) is called the convolution of the functions f, g for the measured

groupoid (G, ν).

Example 3.2.10. Consider the groupoid G of Example 3.1.2 and the family
νy, y ∈ {1, 2, ..., d}N, of measures (where each measure νy has support on the
equivalence class of y), such that, νy is the counting measure. This defines a
transverse function (Haar system) called the standard Haar system.

Example 3.2.11. Consider the groupoid G of Example 3.1.2 and the norma-
lized standard family νy, y ∈ {1, 2, ..., d}N. This defines a transverse function
called the normalized standard Haar system.

More precisely the family νy, y ∈ {1, 2, ..., d}N, y = (y1, y2, y3, ...), of
probabilities on the set

{ (a, y2, y3, ...), a ∈ {1, 2, .., d} },

is such that, νy( {(a, y2, y3, ...) }) = 1
d
, a ∈ {1, 2, .., d}

Example 3.2.12. In example 3.1.6 in which k is fixed consider the transverse
function ν such that for each y ∈ G0, we get that νy is the counting measure
on the set of points x ∼k y.

Example 3.2.13. Suppose J : {1, 2, ..., d}N → R is continuous positive func-
tion such that for any x ∈ Ω we have that

∑d
a=1 J(ax) = 1. For the grou-

poid G of Example 3.1.2, the family νy, y ∈ {1, 2, ..., d}N, of probabilities on
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{ (a, y2, y3, ...), a ∈ {1, 2, .., d} }, such that, νy(a, y2, y3, ...) = J(a, y2, y3, ...),
a ∈ {1, 2, .., d} defines a Haar system. We call it the probability Haar
system associated to J .

Example 3.2.11 is a particular case of the present example.

Example 3.2.14. On the groupoid over {1, 2, ..., d}Z described on example

3.1.3, where we consider the notation: for each class specified by a ∈
←−
Ω the

general element in the class is given by

(a |x) = (..., a−n, ..., a−2, a−1 |x1, ...., xn, ...),

where x ∈
−→
Ω .

Consider a fixed probability µ on
−→
Ω . We define the transverse function

νa(dx) = µ(dx) independent of a.

Example 3.2.15. In the example 3.1.8 we consider the partition of S1× S1

given by the sets Wa = { (a, b) | b ∈ S1}, where a ∈ S1. For each a ∈ S1,
consider a probability νa(d b) over { (a, b) | b ∈ S1} such that for any Borel
set K ⊂ S1 × S1 we have that a → νa(K) is measurable. This defines a
probabilistic transverse function and a Haar system.

Consider a continuous function A : S1 × S1 → R. For each a ∈ S1

consider the kernel νa such that
∫
f(b)νa(db) =

∫
f(b) eA(a,b)db, where db is

the Lebesgue measure. This defines a transverse function.
We call the standard Haar system on S1 × S1 the case where for each

a we consider as the probability νa(d b) over { (a, b) | b ∈ S1} the Lebesgue
probability on S1.

We will present several properties of kernels and transverse functions on
Section 3.5.

A question of notation: for a fixed groupoid G we will describe now for
the reader the common terminology on the field (see [18], [34], [54] and [57]).
It is usual to denote a general pair (x, y) ∈ G by γ (of related elements x, y).
The γ is called the directed arrow from x to y. In this case we call s(γ) = x
and r(γ) = y (see [45] for a more detailed description of the arrow’s setting).

Here, for each pair of related elements (x, y) there exist an unique di-
rected arrow γ satisfying s(γ) = x and r(γ) = y. Note that, since we are
dealing with equivalence relations, (y, x) denotes another arrow. In category
language: there is a unique morphism γ that takes {x} to {y}, whenever x
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and y are related, and this morphism is associated in a unique way to the
pair (x, y).

In this notation r−1(y) is the set of all arrows that end in y. This is in
a bijection with all elements on the same class of equivalence of y. We call
r−1(y) the fiber over y. If x ∼ y, then r−1(y) = r−1(x).

We adapt the notation in [18] and [34] to our notation. We use here the
expression (s, y) instead of γ γ′. This makes sense considering that γ = (x, y)
and γ′ = (s, x). We use the expression (y, s) for (γ′)−1 γ, where in this case,
γ = (x, y) and γ′ = (s, y), and, finally, νy(γ′) means νy(ds) for γ′ = (s, y).

In the case of the groupoid G associated to the bigger than two relation
we have for each x = (x1, x2, x3, ...) the property r−1(x) = { (j, x2, x3, ...),
j = 1, 2.., d }.

The terminology of arrows will not be essentially used here. It was in-
troduced just for the reader to make a parallel (a dictionary) with the one
commonly used on papers on the topic.

Using the terminology of arrows Definition 3.2.7 is equivalent to say that:
if, γ = (x, y) = (s(γ), r(γ)), then,

νy = γ νx.

3.3 Quasi-invariant probabilities

Definition 3.3.1. A function δ : G→ R \ {0} such that

δ(x, z) = δ(x, y) δ(y, z),

for any (x, y), (y, z) ∈ G is called a modular function (also called a mul-
tiplicative cocycle).

In the arrow notation this is equivalent to say that

δ(γ1γ2) = δ(γ1)δ(γ2).

Note that δ(x, y) δ(y, y) = δ(x, y) and it follows that for any y we have
δ(y, y) = 1. Moreover, δ(x, y) δ(y, x) = δ(x, x) = 1 is true. Therefore, we get
δ̃ = δ−1.
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Example 3.3.2. Given W : G0 → R, W (x) > 0,∀x, a natural way to get a

modular function is to consider δ(x, y) = W (x)
W (y)

. In this case we say that the
modular function is derived from W .

Example 3.3.3. In the case of example 3.1.8 the equivalence relation is:
given two points z1, z2 ∈ S1 × S1 they are related if the first coordinate is
equal.

Consider a expanding transformation T and the associated Baker map F .
Note que F n(a, b) = (∗, T n(b)) for some point ∗.

Given two points z1 ∼ z2, for each n there exist zn1 and zn2 , such that,
respectively, F n(zn1 ) = z1 and F n(zn2 ) = z2, and zn1 ∼ zn2 .

For each pair z1 = (a, b1) and z2 = (a, b2), and n ≥ 0, the elements zn1 , z
n
2

are of the form zn1 = (an, bn1 ), zn2 = (an, bn2 ).
In this case T n(bn1 ) = b1 and T n(bn2 ) = b2.
Note also that T n(a) = an.
The distances between bn1 and bn2 are exponentially decreasing with n.
We denote

δ(z1, z2) = Π∞j=1

T ′(bn1 )

T ′(bn2 )
<∞.

This product is well defined because∑
n

log
T ′(bn1 )

T ′(bn2 )
=
∑
n

[log T ′(bn1 ) − log T ′(bn2 ) ]

converges. This is so because log T ′ is Hölder and for all n we have |bn1−bn2 | <
λ−n, where T ′(x) > λ > 1 for all x.

This δ is a cocycle.
In the case of example 3.2.15 considered a Holder continuous function

A(a, b), where A : S1 × S1 → R.
Define for z1 = (a, b1) and z2 = (a, b2)

δ(z1, z2) = Π∞j=1

eA(zn1 )

eA(zn2 )
.

The modular function δ(z1, z2) is well defined because A is Hölder.
We will show that δ can be expressed in the form of example 3.3.2. Indeed,

fix a certain b0 ∈ S1, then, taking z1 = (a, b1) consider z0 = (a, b0). We
denote in an analogous way zn1 and zn0 the ones such that F n(zn1 ) = z1 and
F n(zn0 ) = z0.
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Define V : G0 → R by

V (z1) = Π∞j=1

eA(zn1 )

eA(zn0 )
. (3.4)

V is well defined and if z1 ∼ z2 we get that

δ(z1, z2) =
V (z1)

V (z2)
.

We will show later (see Proposition 3.7.4) that V (a, b) does not depend
on a, and then we can write V (b), and finally

δ(z1, z2) =
V (b1)

V (b2)
.

Example 3.3.4. Consider a fixed Holder function Â : {1, 2, ..., d}Z → R and
the groupoid given by the equivalence relation of example 3.1.4. Denote for
any (x, y)

δ(x, y) = Π∞j=1

Â(σ̂−j(s(γ)))

Â(σ̂−j(r(γ)))
= Π∞j=1

Â(σ̂−j(x))

Â(σ̂−j(y))
.

The modular function δ is well defined because Â is Holder. Indeed, this
follows from the bounded distortion property.

In a similar way as in the last example one can show that such δ can be
expressed on the form of example 3.3.2.

Definition 3.3.5. Given a measured groupoid G for the transverse function
ν we say that a probability M on G0 is quasi-invariant for ν if there exist a
modular function δ : G→ R, such that, for any integrable function f : G→ R
we have∫ ∫

f(s, x)νx(ds)dM(x) =

∫ ∫
f(x, s) δ−1(x, s) νx(ds)dM(x). (3.5)

In a more accurate way we say that M is quasi-invariant for the transverse
function ν and the modular function δ.
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Note that if δ(x, s) = B(x)
B(s)

we get that the above condition (3.5) can be
written as∫ ∫

f(s, x)B(s)νx(ds)dM(x) =

∫ ∫
f(x, s)B(s) νx(ds)dM(x). (3.6)

Indeed, in (3.5) replace f(s, x) by B(s)f(s, x).

Quasi-invariant probabilities will be also described as the ones which sa-
tisfies the so called KMS condition (on the setting of von Neumann algebras,
or C∗-algebras) as we will see later on section 3.4.

As an extreme example consider the equivalence relation such that each
point is related to just itself. In this case a modular function δ takes only
the value 1. Given any transverse function ν the condition

∫ ∫
f(s, x)νx(ds)dM(x) =

∫ ∫
f(x, s) δ−1(x, s) νx(ds)dM(x) (3.7)

is satisfied by any probability M on X. In this case the set of probabilities
is the set of quasi-invariant probabilities.

Example 3.3.6. Quasi invariant probability and the SBR probability
for the Baker map

We will present a particular example where we will compare the probability
M satisfying the quasi invariant condition with the so called SBR probability.
We will consider a different setting of the case described on [62] (considering
Anosov systems) which, as far as we know, was never published.

We will show that the quasi invariant probability is not the SBR
probability.

We will address later on the end of this example the kind of questions
discussed on [62] and [43].

We will consider the groupoid of example 3.1.8, that is, we consider the
equivalence relation: given two points z1, z2 ∈ S1 × S1 they are related if the
first coordinate is equal.

In example 3.1.8 we consider an expanding transformation T : S1 → S1

and F denotes the associated T -Baker map. The associated SBR probability
is the only absolutely continuous F -invariant probability over S1 × S1.

The dynamical action of F in some sense looks like the one of an Anosov
diffeomorphism.
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Consider the measured groupoid (G , ν) where in each vertical fiber over
the point a we set νa as the Lebesgue probability db over the class (a, b),
0 ≤ b ≤ 1.

This groupoid corresponds to the local unstable foliation for the transfor-
mation F .

We fix a certain point b0 ∈ (0, 1). For each pair x = (a, b) and y = (a, b0),
where a, b ∈ S1, and n ≥ 0, the elements zn1 , z

n
2 , n ∈ N, are such that

F n(zn1 ) = x = (a, b) and F n(zn2 ) = y = (a, b0). Note that they are of the form
zn1 = (an, bn), zn2 = (an, sn). We use the notation zn1 (x), bn(x), n ∈ N, to
express the dependence on x.

We denote for x ∈ S1 × S1

V (x) = V (a, b) = Π∞n=1

T ′(bn(x))

T ′(sn)
= Π∞n=1

T ′(bn(a, b))

T ′(sn)
<∞.

This is finite because sn and bn(x) are on the same domain of injectivity
of T for all n and T ′ is of Holder class.

In a similar fashion as in [62] we define δ by the expression

δ( (a, y1) , (a, y2) ) =
V (a, y1)

V (a, y2)
=
V (y1)

V (y2)
= Π∞n=1

T ′(bn(a, y1))

T ′(bn(a, y2))
,

where (a, y1) ∼ (a, y2).
Consider the probability M on S1 × S1 given by

dM(a, b) =
V (a, b)∫
V (a, c)dc

db da.

The density ψ(a, b) = V (a,b)∫
V (a,c)dc

satisfies the equation

ψ(a, b)
1

T ′(b)
= ψ(F (a, b)). (3.8)

Denote F (a, b) = (ã, b̃), then, it is known that the density ϕ(a, b) of the
SBR probability for F satisfies

ϕ(a, b)
T ′(ã)

T ′(b)
= ϕ(F (a, b)). (3.9)

This follows from the F -invariance of the SBR
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Therefore, M is not the SBR probability - by uniqueness of the SBR.

We will show that M satisfies the quasi invariant condition.
Note that ∫ ∫

f( (a, b), (a, s) ) νa(d s) dM(a, b) =∫ ∫ ∫
f( (a, b), (a, s) )

V (a, b)∫
V (a, c)dc

ds db da.

On the other hand∫ ∫
f( (a, s), (a, b) )

V (a, s)

V (a, b)
νa(d s) dM(a, b) =∫ ∫ ∫

f( (a, s), (a, b) )
V (a, s)

V (a, b)

V (a, b)∫
V (a, c)dc

ds db da =∫ ∫ ∫
f( (a, s), (a, b) )

V (a, s)∫
V (a, c)dc

ds db da.

If we exchange the variables b and s, and using Fubini’s theorem, we get
that M satisfies the quasi invariant condition.

The relation of quasi-invariant probabilities and transverse measures is
described on section 3.5.

The result considered on Theorem 6.18 in [62] for an Anosov diffeo-
morphism concerns transverse measures and cocycles. [62] did not mention
quasi-invariant probabilities.

Note that from equations (3.8) and (3.9) one can get that the conditional
disintegration along unstable leaves of both the SRB and the quasi-invariant
probability M are equal (see page 533 in [39]).

Using the relation of quasi-invariant probabilities, cocycles and transverse
measures one can say that one of the main claims in [62] (see Theorem 6.18)
and [43] (both considering the case of Anosov Systems) can be expressed in
some sense via the above mentioned property about conditional disintegration
along unstable leaves (using the analogy with the case of the above Baker map
F ).

In section 3.7 we will present more examples of quasi-stationary probabi-
lities.
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3.4 von Neumann Algebras derived from me-

asured groupoid

We refer the reader to [2], [34] and [18] as general references for von Neumann
algebras related to groupoids.

Here X ∼ G0 will be either Ω̂, Ω or S1 × S1. We will denote by G a
general groupoid obtained by an equivalence relation R.

Definition 3.4.1. Given a measured groupoid G for the transverse function
ν and two measurable functions f, g ∈ Fν(G), we define the convolution
(f ∗

ν
g) = h, in such way that, for any (x, y) ∈ G

(f ∗
ν
g)(x, y) =

∫
g(x, s) f(s, y) νy(ds) = h(x, y).

In the case there exists a multiplicative neutral element for the operation
∗ we denote it by 1.

The above expression in some sense resembles the way we get a matrix
as the product of two matrices.

For a fixed Haar system ν the product ∗
ν

defines an algebra on the vector

space of ν-integrable functions Fν(G).
As usual function of the form f(x, x) are identified with functions f :

G0 → R of the from f(x).

Example 3.4.2. In the particular case where νy is the counting measure on
the fiber over y then

(f ∗
ν
g)(x, y) =

∑
s

g(x, s) f(s, y).

Denote by I∆ the indicator function of the diagonal on G0 ×G0. In this
case, I∆ is the neutral element for the product ∗

ν
operation.

In this case 1 = I∆.
Note that I∆ is measurable but generally not continuous. This is fine

for the von Neumann algebra setting. However, we will need a different
topology (and σ-algebra) on G0×G0 - other than the product topology - when
considering the unit 1 = I∆ for the C∗-algebra setting (see [20], [56], [57]).
This will be more carefully explained on section 3.6.
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Remark: The indicator function of the diagonal on G0×G0 is not always
the multiplicative neutral element on the von Neumann algebra obtained
from a general Haar system (G, ν).

Example 3.4.3. Another example: consider the standard Haar system of
example 3.2.10.

In this case

(f ∗
ν
g)(x, y) =

∫
g(x, s) f(s, y)νy(ds) =

1

d

d∑
a=1

g(x, ( a, x2, x3, ...) ) f( (a, x2, x3, ...) , y ) = h(x, y).

The neutral element is d I∆ = 1.

Example 3.4.4. Suppose J : {1, 2, ..., d}N → R is a continuous positive
function such that for any x ∈ Ω we have that

∑d
a=1 J(ax) = 1. The measured

groupoid (G, ν) of Example 3.2.13, where νy, y ∈ {1, 2, ..., d}N, is such that
given f, g : G → R, we have for any (x, y) ∈ G, x = (x1, x2, x3, ...), y =
(y1, x2, x3, ..) that

(f ∗
ν
g)(x, y) =

∫
g(x, s) f(s, y)νy(ds) =

d∑
a=1

g(x, ( a, x2, x3, ...) ) f( (a, x2, x3, ...) , y ) J(a, x2, x3, ...) = h(x, y).

Note that xj = yj for j ≥ 2.
Suppose that f is such that for any string (x2, x3, ...) and a ∈ {1, 2, ., d}

we get

f( (a, x2, x3, ...) , (a, x2, x3, ...) ) =
1

J(a, x2, x3, ...)
,

and, a, b ∈ {1, 2, ., d}, a 6= b

f( (a, x2, x3, ...) , (b, x2, x3, ...) ) = 0.

In this case the neutral multiplicative element is 1(x, y) = 1
J(x)

I∆(x, y).

62



Consider a measured groupoid (G, ν), ν ∈ E , then, given two functions
ν-integrable f, g : G → R, we had defined before an algebra structure on
Fν(G) in such way that (f ∗

ν
g) = h, if

(f ∗
ν
g)(x, y) =

∫
g(x, s) f(s, y)νy(ds) = h(x, y),

where (x, y) ∈ G and (s, y) ∈ G.

To define the von Neumann algebra associated to (G, ν), we work with
complex valued functions f : G → C. The product is again given by the
formula

(f ∗
ν
g)(x, y) =

∫
g(x, s) f(s, y)νy(ds).

The involution operation ∗ is the rule f → f̃ = f ∗, where f̃(x, y) =
f(y, x). The functions f ∈ F(G0) are of the form f(x) = f(x, x) are such
that f̃ = f.

Following Hahn [33], we define the I-norm

‖f‖I = max

{∥∥∥∥y 7→ ∫
|f(x, y)| νy(dx)

∥∥∥∥
∞
,

∥∥∥∥y 7→ ∫
|f(y, x)| νy(dx)

∥∥∥∥
∞

}
,

and the algebra I(G, ν) = {f ∈ L1(G, ν) : ‖f‖I <∞} with the product and
involution as above. An element f ∈ I(G, ν) defines a bounded operator Lf
of left convolution multiplication by a fixed f on L2(G, ν). This gives the
left regular representation of I(G, ν).

Definition 3.4.5. Given a measured groupoid (G, ν), we define the von
Neumann Algebra associated to (G, ν), denoted by W ∗(G, ν), as the
von Neumann generated by the left regular representation of I(G, ν), that is,
W ∗(G, ν) is the closure of {Lf : f ∈ I(G, ν)} in the weak operator topology.

The multiplicative unity is denoted by 1.

In the case ν is such that,
∫
νy(ds) = 1, for any y ∈ G0, we say that the

von Neumann algebra is normalized.

In the setting of von Neumann Algebras we do not require that 1 is
continuous.
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Definition 3.4.6. We say an element h ∈ W ∗(G , ν) is positive if there exists
a g such that h = g ∗ g̃.

This means

h(x, y) = (g ∗
ν
g̃)(x, y) =

∫
g(x, s) g(y, s)νy(ds) = h(x, y).

Note que h(x, x) = (g ∗
ν
g̃)(x, x) ≥ 0.

Example 3.4.7. Consider over the set G0 = {1, 2.., d} the equivalence re-
lation where all points are related. In this case G = {1, 2.., d} × {1, 2.., d}.
Take ν as the counting measure. A function f : G→ R is denoted by f(i, j),
where i ∈ {1, 2.., d}, j ∈ {1, 2.., d}.

The convolution product is

(f ∗
ν
g)(i, j) =

∑
k

g(i, k) f(k, j).

In this case the associated von Neumann algebra (the set of functions
f : G → C) is identified with the set of matrices, the convolution is the
product of matrices and the identity matrix is the unit 1. The involution
operation is to take the hermitian of a matrix.

Example 3.4.8. For the groupoid G of Example 3.1.2 and the counting
measure, given f, g : G→ C, we have that

(f ∗
ν
g)(x, y) =∑

a∈{1,2,..,d}

g( (x1, x2, ... ) , ( a, x2, x3, ..) ) f( ( a, x2, x3, ..) , ( y1, x2, ... ) ).

We call standard von Neumann algebra on the groupoid G (of Example
3.1.2) the associated von Neumann algebra. For this W ∗(G , ν) the neutral
element 1 (or, more formally L1) is the indicator function of the diagonal (a
subset of G). In this case 1 is measurable but not continuous.

Example 3.4.9. For the probabilistic Haar system (G, ν) of Example 3.2.13,
given f, g : G→ C, we get

(f ∗
ν
g)(x, y) =
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∑
a∈{1,2,...,d}

ϕ(a, x2, x3, ...) g((x1, x2, ... ), ( a, x2, x3..)) f(( a, x2, x3, ...), ( y1, x2, ... )),

where ϕ is Hölder and such that
∑

a∈{1,2,...,d} ϕ(a, x1, x2, ...) = 1, for all x =

(x1, x2, ...).
This ϕ is a Jacobian.
The neutral element is described in example 3.4.4.

Example 3.4.10. In the case νy = δx0 for a fixed x0 independent of y, then

(f ∗
ν
g)(x, y) = g(x, x0) f(x0, y).

Proposition 3.4.11. If (G, ν) is a measured groupoid, then for f, g ∈ I(G, λ).

(f ∗
ν
g)∼ = g̃ ∗

ν
f̃ .

Proof: Remember that for (x, y) in G

(f ∗
ν
g)(x, y) =

∫
g(x, s) f(s, y)νy(ds) = h(x, y).

Then,

(f ∗
ν
g)∼(x, y) =

∫
g(y, s) f(s, x)νx(ds).

On the other hand

(g̃ ∗
ν
f̃)(y, x) =

∫
f(s, x) g(y, s)νy(ds).

As νy = νx we get that the two expressions are equal.

Then by proposition 3.4.11 we have for the involution ∗ it is valid the
property

(f ∗
λ
g)∗ = g∗ ∗

λ
f ∗.

For more details about properties related to this definition we refer the
reader to chapter II in [54] and section 5 in [34].

We say that c : G → R is a linear cocycle function if c(x, y) + c(y, z) =
c(x, z), for all x, y, z which are related. If c is a linear cocycle then eδ is a
modular function (or, a multiplicative cocycle).
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Definition 3.4.12. Consider the von Neumann algebra W ∗(G, ν) associated
to (G, ν).

Given a continuous cocycle function c : G → R we define the group
homomorphism α : R → Aut(W ∗(G, ν)), where for each t ∈ R we have
that αt ∈ Aut(W ∗(G, ν)) is defined by: for each fixed t ∈ R and f : G → R
we set αt(f) = et i c f .

Remark: Observe that in the above definition that for each fixed t ∈ R
and any f : G0 → R, we have αt(f) = f , since c(x, x) = 0 for all x ∈ G0.

We are particularly interested here in the case where G0 = Ω or G0 = Ω̂.
The value t above is related to temperature and not time. We are later

going to consider complex numbers z in place of t. Of particular interest is
z = βi where β is related to the inverse of temperature in Thermodynamic
Formalism (or, Statistical Mechanics).

Definition 3.4.13. Consider the von Neumann Algebra W ∗(G, ν) with unity
1 associated to (G, ν). A von Neumann dynamical state is a linear func-
tional w (acting on the linear space W ∗(G, ν)) of the form w : W ∗(G, ν)→ C,
such that, w(a) ≥ 0, if a is a positive element of W ∗(G, ν), and w(1) = 1.

Example 3.4.14. Consider over Ω = {1, 2, .., d}N the equivalence relation
R of Example 3.1.2 and the Haar system (G, ν) associated to the counting
measure in each fiber r−1(x) = {(a, x2, x3, ...) |a ∈ {1, 2, ..., d}}, where x =
(x1, x2, ...).

Given a probability µ over Ω we can define a von Neumann dynamical
state ϕµ in the following way: for f : G→ C define

ϕµ(f) =

∫
f(x, x) dµ(x) =

∫
f((x1, x2, x3, ... ), (x1, x2, x3, ...)) dµ(x).

(3.10)
If h is positive, that is, of the form h(x, y) =

∫
g(x, s) g(y, s)νy(ds), then

ϕµ(h) =

∫
(

∫
‖g(x, s)‖2νx(ds) ) dµ(x) ≥ 0.

Note that ϕµ1 = 1.
Then, ϕµ is indeed a von Neumann dynamical state.
In this case given f, g : G→ C

ϕµ(f ∗
ν
g) =
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∫ ∑
a∈{1,2,..,d}

f((x1, x2, ... ), ( a, x2, x3..)) g(( a, x2, x3..), (x1, x2, ... )) dµ(x).

It seems natural to try to obtain dynamical states from probabilities M
on G0 (adapting the reasoning of the above example). Then, given a cocycle
c it is also natural to ask: what we should assume on M in order to get a
KMS state for c?

Example 3.4.15. For the von Neumann algebra of complex matrices of
example 3.4.7 taking p1, p2, .., pd ≥ 0, such that p1 + p2 + .. + pd = 1, and
µ =

∑d
j=1 δj, we consider ϕµ such that

ϕµ(A) = A11p1 + A22p2 + ...+ Addpd,

where Aij are the entries of A.
Note first that ϕµ(I) = 1.
If B = AA∗, then the entries Bjj ≥ 0, for j = 1, 2, ..., d.
Therefore, ϕµ is a dynamical state on this von Neumann algebra.

Example 3.4.16. Consider over Ω = {1, 2, .., d}N the equivalence relation R
of Example 3.2.13 and the associated probability Haar system ν.

Given a probability µ over Ω we can define a von Neumann dynami-
cal state ϕµ in the following way: given f : G → C we get ϕµ(f) =∫
f(x, x) J(x) dµ(x). In this way given f, g we have

ϕµ(f ∗
ν
g) =∫ ∑

a∈{1,2,..,d}

J(a, x2, ..) g((x1, x2, ... ), ( a, x2, ..)) f(( a, x2, ..), (x1, x2... )) J(x)dµ(x).

For the neutral multiplicative element 1(x, y) = 1
J(x)

I∆(x, y) we get

ϕµ(1) =

∫
1

J(x)
I∆(x, x) J(x)dµ(x) = 1.

67



Consider G a groupoid and a von Neumann Algebra W ∗(G, ν), where ν is
a transverse function, with the algebra product f ∗

ν
g and involution f → f̃ .

Given a continuous cocycle c : G→ R we consider α : R→ Aut(W ∗(G, ν)),
t 7→ αt, the associated homomorphism according to definition 3.4.12: for each
fixed t ∈ R and f : G→ R we set αt(f) = et i c f .

Definition 3.4.17. An element a ∈ W ∗(G, ν) is said to be analytical with
respect to α if the map t ∈ R 7→ αt(a) ∈ W ∗(G, ν) has an analytic continua-
tion to the complex numbers.

More precisely, there is a map ϕ : C→ W ∗(G, ν), such that, ϕ(t) = αt(a),
for all t ∈ R, and moreover, for every z0 ∈ C, there is a sequence (an)n∈N in
W ∗(G, ν), such that, ϕ(z) =

∑∞
n=0(z − z0)nan in a neighborhood of z0.

The analytical elements are dense on the von Neumann algebra (see [48]).

Definition 3.4.18. We say that a von Neumann dynamical state w is a
KMS state for β and c if

w ( b ∗
ν

(αi β(a) ) ) = w (a ∗
ν
b ),

for any b and any analytical element a.

It follows from general results (see [48]) that it is enough to verify: for
any f, g ∈ I(G, ν) and β ∈ R we get

w ( g ∗
ν
αβ i( f ) ) = w ( g ∗

ν
( e−β c f ) ) = w (f ∗

ν
g ). (3.11)

Consider the functions

u(x, y) = (f ∗ g)(x, y) =

∫
g(x, s) f(s, y) νy(ds),

and

v(x, y) = ( g ∗ (e−β c f) ) (x, y) =

∫
e−βc(x,s)f(x, s) g(s, y) νy(ds).
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Equation (3.11) means

w(u(x, y) ) = w( v(x, y) ). (3.12)

Note that equation (3.11) implies that a KMS von Neumann (or, C∗)-
dynamical state w satisfies:

a) for any f : G0 → C and g : G→ C :

w ( g ∗
ν
f ) = w (f ∗

ν
g ). (3.13)

This follows from the fact that for any t ∈ R and any f : G0 → R, we
have that αt(f) = f .

b) if the function 1 depends just on x ∈ G0, then, for any β

αi β(1) = 1.

c) w is invariant for the group αt, t ∈ R. Indeed,

w(αt(f)) = w(1 ∗
ν
αt(f)) = w(f ∗

ν
1) = w(f).

Example 3.4.19. For the von Neumann algebra (C∗-algebra) of complex
matrices of examples 3.4.7 and 3.4.15 consider the dynamical evolution σt =
ei tH , t ∈ R, where H is a diagonal matrix with entries the real numbers
H11 = U1, H22 = U2, ..., Hdd = Ud. The KMS state ρ for β is

ρ(A) = A1 1ρ1 + A2 2ρ2 + ...+ Ad dρd,

where ρi = e−βUi∑d
j=1 e

−βUj , i = 1, 2, ..., d, and Ai,j, i, j = 1, 2, ..., d, are the entries

of the matrix A (see [57]).
The probability µ of example 3.4.14 corresponds in some sense to the

probability µ = (ρ1, ρ2, .., ρd) on {1, 2, ..., d}. That is, ρ = ϕµ.
This is a clear indication that the µ associated to the KMS state has in

some sense a relation with Gibbs probabilities. This property will appear more
explicitly on Theorem 3.4.24 for the case of the bigger than two equivalence
relation.

Remember that if c is a cocycle, then c(x, z) = c(x, y) + c(y, z), ∀x ∼ y ∼
z, and, therefore,

δ(x, y) = eβc(x,y) = e−βc(y,x)

is a modular function.
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Definition 3.4.20. Given a cocycle c : G → R we say that a probability M
over G0 satisfies the (c, β)-KMS condition for the groupoid (G, ν), if for any
h ∈ I(G, ν), we have∫ ∫

h(s, x)νx(ds)dM(x) =

∫ ∫
h(x, s)e−β c(x,s) νx(ds)dM(x), (3.14)

where β ∈ R.
In this case we will say that M is a KMS probability.

The above means that M is quasi-invariant for ν and δ(x, s) =
e−βc(s,x).

When β = 1 and c is of the form c(s, x) = V (x)−V (s) the above condition
means∫ ∫

h(s, x)νx(ds)eV (x)dM(x) =

∫ ∫
h(x, s)eV (x) νx(ds)dM(x). (3.15)

Proposition 3.4.21. (J. Renault - Proposition II.5.4 in [54]) Suppose that
the state w is such that for a certain probability µ on G0 we have that for any
h ∈ I(G, ν) we get w(h) =

∫
h(x, x)dµ(x). Then, to say that µ satisfies the

(c, β)-KMS condition for (G, ν) according to Definition 3.4.20 is equivalent
to say that w is KMS for (G, ν), c and β, according to equation (3.11).

Proof: Note that for any f, g

( f ∗
ν
g )(x, y) =

∫
g(x, s) f(s, y)dνx(s)

and

( g ∗
ν

( e−β c f ) )(x, y) =

∫
f(x, s) g(s, y) e−β c(x,s) dνx(s).

We have to show that
∫
u(x, x)dµ(x) =

∫
v(x, x)dµ(x) (see equation

(3.12)).
Then, if the (c, β)-KMS condition for M is true, we take h(s, x) =

g(x, s) f(s, x) and we got equation (3.12) for such w.
By the other hand if (3.12) is true for such w and any f, g, then take

f(s, x) = h(s, x) and g(s, x) = 1.
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Example 3.4.22. In the case for each y we have that νy is the counting
measure we get that to say that a probability M over Ω̂ satisfies the (c, β)-
KMS condition means: for any h : G→ C∑

y∼x

∫
h(x, y)e−β c(x,y)dM(x) =

∑
x∼y

∫
h(x, y) dM(y). (3.16)

In the notation of [55] we can write the above in an equivalent way as∫
h e−β cd(s∗(M)) =

∫
h d(r∗(M)).

Note that in [55] it is considered r(x, y) = x and s(x, y) = y.

Suppose c(x, y) = ϕ(x) − ϕ(y). Then, taking h(x, y) = k(x, y) eβ ϕ(x) we
get an equivalent expression for (3.16): for any k(x, y)∑

y∼x

∫
k(x, y)eβ ϕ(y)dM(x) =

∑
x∼y

∫
k(x, y) eβ ϕ(x)dM(y). (3.17)

For a Hölder continuous potential A : {1, 2.., d}N → R the Ruelle operator
LA acts on continuous functions v : {1, 2.., d}N → R by means of LA(v) = w,
if

LA(v)(x1, x2, x3, ...) =
d∑
a=1

eA(a,x1,x2,x3,...)v(a, x1, x2, x3, ...) = w(x).

For a Hölder continuous potential A : {1, 2.., d}N → R there exist a
continuous positive eigenfunction f , such that, LA(f) = λ f , where λ is
positive and also the spectral radius of LA (see [47]).

The dual L∗A of LA acts on probabilities by Riesz Theorem (see [47]).
We say that the probability m on {1, 2.., d}N is Gibbs for the potential
A, if L∗A(m) = λm (same λ as above). In this case we say that m is an
eigenprobability for A.

Gibbs probabilities for Hölder potentials A are also DLR probabilities
on {1, 2, ...d}N (see [17]).

Gibbs probabilities for Hölder potentials A can be also obtained via Ther-
modynamic Limit from boundary conditions (see [17]).

We say that the potential A is normalized if LA(1) = 1. In this case
a probability µ is Gibbs (equilibrium) for the normalized potential A if it is
a fixed point for the dual of the Ruelle operator, that is, L∗A(µ) = µ.
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Suppose Ω = {−1, 1}N and A : Ω→ R is of the form

A(x0, x1, x2, ...) = x0a0 + x1a1 + x2a2 + x3a3 + ...+ xnan + ...

where
∑
an is absolutely convergent.

In [16] the explicit expression of the eigenfunction for LA and the eigen-
probability for the dual L∗A of the Ruelle operator LA is presented. The
eigenprobability is not invariant for the shift.

Example 3.4.23. For the Haar system of examples 3.1.6 and 3.2.12 where k
is fixed consider a normalized potential Hölder A : {1, 2.., d}N → R. Denote
by µ the equilibrium probability associated to such A.

Consider

δ(x, y) =
eA(y)+A(σ(y))+...+A(σk−1(y))

eA(x)+A(σ(x)+...+A(σk−1(x))
.

We claim that µ satisfies the (c, β)-KMS condition (3.15) for such δ when
β = 1.

For each cylinder set a1, a2, .., ak the transformation σk : a1, a2, .., ak →
{1, 2.., d}N is a bijection. The pull back by σk of the probability µ with respect
to µ has Radon-Nykodin derivative

φa1,a2,..,ak(x) = eA(x)+A(σ(x)+...+A(σk−1(x)).

Denote ϕa1,a2,..,ak : {1, 2.., d}N → a1, a2, .., ak the inverse of σk (restricted
to {1, 2.., d}N).

Consider the cylinders K = a1, a2, .., ak, L = b1, b2, .., bk.
Note that it follows from the use of the change of coordinates y → x =

ϕb1,b2,..,bk ◦ (ϕa1,a2,..,ak )−1(y) that∫
K

eA(y)+A(σ(y))+...+A(σk−1(y))dµ(y) =

∫
L

eA(x)+A(σ(x)+...+A(σk−1(x)) dµ(x)

For each class the number of elements s on K or L is the same.
This means that∑

s∈L

∫
K

eA(y)+A(σ(y))+...+A(σk−1(y))dM(y) =

∑
s∈K

∫
L

eA(x)+A(σ(x))+...+A(σk−1(x))dM(x). (3.18)
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Remark: Given y ∈ X, consider the function f(x, s), where f : [y] ×
[y]→ C.

For each pair (i, j) ∈ [y]× [y], denote zi,j = f(i, j).
Then, f : [y]× [y]→ C can be written as∑

i,j∈ [y]

zi,jIi Ij.

Then, any function f(x, s), f : [y] × [y] → C, is a linear combination of
functions which are the product of two functions: one depending just on x
and the other just on s.

Then, expression (3.18) means that for such f we have∑
s

∫
f(s, y)eA(y)+A(σ(y))+...+A(σk−1(y))dM(y) =

∑
s

∫
f(x, s)eA(x)+A(σ(x))+...+A(σk−1(x)) dM(x), (3.19)

The (c, β)-KMS condition (3.15) for the probability M and for any con-
tinuous function f means∑

s

∫
f(s, y)eβ(A(y)+A(σ(y))+...+A(σk−1(y))dM(y) =

∑
s

∫
f(x, s)eβ(A(x)+A(σ(x))+...+A(σk−1(x))) dM(x), (3.20)

Expression (3.20) follows from (3.19) and the above remark. Therefore,
such M satisfies the KMS condition for such δ.

In example 3.4.8 consider Ω = {1, 2}N and take νy the counting measure
on the class of y. Consider the von Neumann algebra associated to this
measured groupoid (G, ν) where G is given by the bigger than two relation.

In this case 1(x, y) = I∆(x, y).
Consider c(x, y) = ϕ(x) − ϕ(y), where ϕ is Hölder. We do not assume

that ϕ is normalized.
A natural question is: the eigenprobability µ for such potential ϕ is such

that f → ϕµ(f) =
∫
f(x, x) dµ(x) defines the associated KMS state? For

each modular function c?
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The purpose of the next results is to analyze this question when c(x, y) =
ϕ(x)− ϕ(y).

Consider the equivalence relation on Ω = {1, 2..., d}N which is

x = (x1, x2, x3, ..) ∼ y = (y1, y2, y3, ...) , if an only if , xj = yj for all j ≥ 2.

In this case the class [x] of x = (x1, x2, x3, ..) is

[x] = { (1, x2, x3, ..), (2, x2, x3, ..), ..., (d, x2, x3, ..) }.

The associated groupoid by G ⊂ Ω× Ω, is

G = {(x, y) |x ∼ y}.

G is a closed set on the compact set Ω×Ω. We fix the measured groupoid
(G, ν) where νx is the counting measure. The results we will get are the same
if we take the Haar system as the one where each point y on the class of x
has mass 1/d.

In this case equation (3.14) means∑
j

∫
f( (j, x2, x3, .., xn, ..) , (x1, x2, x3, .., xn, ..))dM(x) =

∑
j

∫
f( (x1, x2, x3, ..) , (j, x2, x3, ..))e

−c(j,x2,x3,..) , (x1,x2,x3,..))dM(x). (3.21)

The first question: given a cocycle c does there exist M as above?

Suppose c(x, y) = ϕ(y)− ϕ(x).
In this case equation (3.21) means∑

j

∫
f( (j, x2, x3, .., xn, ..) , (x1, x2, x3, .., xn, ..))dM(x) =

∑
j

∫
f( (x1, x2, x3, ..) , (j, x2, x3, ..))e

−ϕ(j,x2,x3,..) +ϕ(x1,x2,x3,..)dM(x). (3.22)

Among other things we will show later that if we assume that ϕ depends
just on the first coordinate then we can takeM as the independent probability
(that is, such independent M satisfies the KMS condition (3.22)).
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In section 3.4 in [57] and in [37] the authors present a result concerning
quasi-invariant probabilities and Gibbs probabilities on {1, 2, ..d}N which has
a different nature when compared to the next one. The groupoid is different
from the one we will consider (there elements are of the form (x, n, y), n ∈ Z).
In [57] and [37] for just one value of β you get the existence of the quasi
invariant probability. Moreover, the KMS state is unique (here this will not
happen as we will show on Theorem 3.4.25)

In [58], [24], [44] and [40] the authors present results which have some
similarities with the next theorem. They consider Gibbs (quasi-invariant)
probabilities in the case of the symbolic space {1, 2, ..d}Z and not {1, 2, ..d}N
like here. In all these papers the quasi-invariant probability is unique and
invariant for the shift. In [9] the authors consider DLR probabilities for
interactions in {1, 2, ..d}Z. The equivalence relation (the homoclinic relation
of Example 3.1.7) in all these cases is quite different from the one we will
consider.

Theorem 3.4.24. Consider the Haar system with the counting measure ν
for the bigger than two relation on {1, 2, ..d}N. Suppose that ϕ depends just
on the first k coordinates,

ϕ(x1, x2, ..., xk, xk+1, xk+2, ..) = ϕ(x1, x2, ..., xk).

Then, the eigenprobability µ (a DLR probability) for the potential −ϕ (that
is, L∗−ϕ(µ) = λµ, for some positive λ) satisfies the KMS condition (is quasi-
invariant) for the associated modular function c(x, y) = ϕ(y)− ϕ(x).

The same result is true, of course, for βc, where β > 0.

Proof: We are going to show that the Gibbs probability µ for the poten-
tial −ϕ satisfies the KMS condition.

We have to show that (3.22) is true when M = µ. That is, µ is a KMS
probability for the Haar system and the modular function.

Denote for any finite string a1, a2, ...an and any n

pa1,a2,...an =
e−[ϕ(a1,a2,...an, 1∞)+ϕ(a2,...an, 1∞)+...+ϕ(an, 1∞)]∑

b1,b2,...bn
e− [ϕ(b1,b2,...bn, 1∞)+ϕ(b2,...bn, 1∞)+...+ϕ(bn, 1∞)]

.

Note that for n > k we have that

e−[ϕ(a1,a2,...an, 1∞)+ϕ(a2,...an, 1∞)+...+ϕ(an, 1∞) ] =
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e

−[ϕ(a1,a2,...ak)+ϕ(a2,...ak+1)+...+ϕ(an,1, 1, .., 1︸ ︷︷ ︸
k−1

)+(n−k)ϕ(1, 1, .., 1︸ ︷︷ ︸
k−1

)]

.

Therefore, ∑
b1,b2,...bn

e− [ϕ(b1,b2,...bn, 1∞)+ϕ(b2,...bn, 1∞)+...+ϕ(bn, 1∞)] =

e

−(n−k)ϕ(1, 1, .., 1︸ ︷︷ ︸
k−1

) ∑
b1,b2,...bn

e

−[ϕ(b1,b2,...bk)+ϕ(b2,...bk+1)+...+ϕ(bn,1, 1, .., 1︸ ︷︷ ︸
k−1

) ]

.

Consider the probability µn, such that,

µn =
∑

a1,a2,...an

δ(a1,a2,...an, 1∞) pa1,a2,...an =

∑
a1,...an

δ(a1,...an, 1∞)
e

−[ϕ(a1,...ak)+ϕ(a2,...ak+1)+...+ϕ(an,1, .., 1︸ ︷︷ ︸
k−1

)]

∑
b1,...bn

e

−[ϕ(b1,...bk)+ϕ(b2,...bk+1)+...+ϕ(bn,1, .., 1︸ ︷︷ ︸
k−1

)]
.

and µ such that µ = limn→∞ µn.
Note that

pa1,a2,..,an =
e

−[ϕ(a1,...ak)+ϕ(a2,...ak+1)+...+ϕ(an,1, .., 1︸ ︷︷ ︸
k−1

) ]

∑
b1,...bn

e

−[ϕ(b1,...bk)+ϕ(b2,...bk+1)+...+ϕ(bn,1, .., 1︸ ︷︷ ︸
k−1

) ]
.

If ϕ is Hölder it is known that the above probability µ is the eigenproba-
bility for the dual of the Ruelle operator L−ϕ (a DLR probability). That is,
there exists λ > 0 such that L∗−ϕ(µ) = λµ. This follows from the Thermody-
namic Limit with boundary condition property as presented in [17].

We claim that the above probability µ satisfies the KMS condition.
Indeed, note that∑

j

∫
f( (j, x2, x3, .., xn, ..) , (x1, x2, x3, .., xn, ..))dµ(x) =

lim
n→∞

∑
j

∑
a1,a2,...an

f( (j, a2, a3, .., an, 1∞) , (a1, a2, a3, .., an, 1∞) )pa1,a2,...,an =
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lim
n→∞

∑
j

∑
a1

∑
a2,...an

f((j, a2, a3, .., an, 1∞)(a1, a2, a3, .., an, 1
∞)pa1,a2,...,an .

(3.23)
On the other hand

∑
j

∫
f( (x1, x2, x3, ..) , (j, x2, x3, ..))e

−ϕ(j,x2,x3,...) +ϕ(x1,x2,x3,..)dµ(x) =

lim
n→∞

∑
j

∑
a1,a2,...,an

f( (a1, .., an, 1∞) , (j, a2, .., an, 1∞) )e−ϕ(j,a2,...,ak) +ϕ(a1,a2,...ak)pa1,a2,...,an =

lim
n→∞

∑
j

∑
a1

∑
a2,...an

f( (a1, .., an, 1∞) , (j, a2, .., an, 1∞) )e−ϕ(j,a2,...,ak) +ϕ(a1,a2,...ak)

e

− [ϕ(a1,a2,...ak)+ϕ(a2,...ak+1)+...+ϕ(an,1, .., 1︸ ︷︷ ︸
k−1

)]

∑
b1,...bn

e

−[ϕ(b1,...bk)+ϕ(b2,...bk+1)+...+ϕ(bn,1, .., 1︸ ︷︷ ︸
k−1

)]
=

lim
n→∞

∑
j

∑
a1

∑
a2,...an

f( (a1, .., an, 1∞) , (j, a2, .., an, 1∞) )

e

− [ϕ(j,a2,,...ak)+ϕ(a2,...ak+1)+...+ϕ(an,1, .., 1︸ ︷︷ ︸
k−1

)]

∑
b1,...bn

e

−[ϕ(b1,...bk)+ϕ(b2,...bk+1)+...+ϕ(bn,1, .., 1︸ ︷︷ ︸
k−1

)]
. =

lim
n→∞

∑
j

∑
a1

∑
a2,...an

f( (a1, .., an, 1∞) , (j, a2, .., an, 1∞) )pj,a2,...,an .

On this last equation if we exchange coordinates j and a1 we get expres-
sion (3.23).

Then, such µ satisfies the KMS condition.

The above theorem can be extended to the case the potential ϕ is Hölder.
We refer the reader to [42] for more general results.

We will show now that under the above setting the KMS probability is
not unique.
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Proposition 3.4.25. Suppose µ satisfies the KMS condition for the measu-
red groupoid (G, ν) where c(x, y) = ϕ(y)−ϕ(x). Suppose ϕ is normalized for
the Ruelle operator, where ϕ : G0 = Ω → R. Consider v(x1, x2, x3, ..) which
does not depend of the first coordinate. Then, v(x)dµ(x) also satisfies the
KMS condition for the measured groupoid (G, ν).

Proof: Suppose µ satisfies the (c, β)-KMS condition for the measured
groupoid (G, ν). This means: for any g ∈ I(G, ν)∫ ∑

a∈{1,2,..,d}

g(( a, y2, y3..) , ( y1, y2, ... )) e
βϕ( a,y2,y3..) dµ(y) =

∫ ∑
a∈{1,2,..,d}

g((x1, x2, ... ), ( a, x2, x3..)) e
βϕ( a,x2,x3..) dµ(x). (3.24)

Take
h(x1, x2, x3, ..), (y1, y2, y3, ..)) =

k( (x1, x2, x3, ..), (y1, y2, y3, ..)) v(x1, x2, x3, ..) ) =

k( (x1, x2, x3, ..), (y1, y2, y3, ..)) v(x2, x3, ..) ).

From the hypothesis about µ we get that∫ ∑
a∈{1,2,..,d}

h(( a, y2, y3..) , ( y1, y2, ... )) e
βϕ( a,y2,y3..) dµ(y) =

∫ ∑
a∈{1,2,..,d}

h((x1, x2, x3, ... ), ( a, x2, x3..)) e
βϕ( a,x2,x3..) dµ(x).

This means, for any continuous k the equality∫ ∑
a∈{1,2,..,d}

k(( a, y2, y3..) , ( y1, y2, ... )) e
βϕ( a,y2,y3..) v(y2, y3, ...)dµ(y) =

∫ ∑
a∈{1,2,..,d}

k((x1, x2, x3, ... ), ( a, x2, x3..)) e
βϕ( a,x2,x3..) v(x2, x3, ..)dµ(x).

Therefore, v(x)dµ(x) also satisfies the (c, β)-KMS condition for the mea-
sured groupoid (G, ν).
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It follows from the above result that the probability that satisfies the
KMS condition for c and the measured groupoid (G, ν) is not always unique.

A probability ρ satisfies the Bowen condition for the potential −ϕ if there
exists constants c1, c2 > 0, and P, such that, for every

x = (x1, ..., xm, ...) ∈ Ω = {1, 2, ...d}N,

and all m ≥ 0,

c1 ≤
ρ{y : yi = xi, ∀i = 1, ...,m}
exp (−Pm−

∑m
k=1 ϕ(σk(x))

≤ c2. (3.25)

Suppose ϕ is Hölder, then, if ρ is the equilibrium probability (or, if ρ is
the eigenprobability for the dual of Ruelle operator L−ϕ) one can show that
it satisfies the Bowen condition for −ϕ.

In the case v is continuous and does not depend on the first coordinate
then v(x)dµ(x) also satisfies the Bowen condition for ϕ. The same is true for
the probability ρ̂ of example 3.4.26 on the case −ϕ = log J .

There is an analogous definition of the Bowen condition on the space
{1, 2, ...d}Z but it is a much more strong hypothesis on this case (see section
5 in [40]).

Example 3.4.26. We will show an example where the probability µ of the-
orem 3.4.24 (the eigenprobability for the potential −ϕ) is such that if f is a
function that depends just on the first coordinate, then, f µ does not neces-
sarily satisfies the KMS condition.

Suppose ϕ = − log J , where J(x1, x2, x3, ..) = J(x1, x2) > 0, and
∑

i Pi,j =
1, for all i. In other words the matrix P , with entries Pi,j, i, j ∈ {1, 2.., d},
is a column stochastic matrix. The Ruelle operator for −ϕ is the Ruelle
operator for log J. The potential log J is normalized for the Ruelle operator.

We point out that in Stochastic Processes it is usual to consider line
stochastic matrices which is different from our setting.

There exists a unique right eigenvalue probability vector π for P (acting
on vectors on the right). The Markov chain determined by the matrix P and
the initial vector of probability π = (π1, π2, .., πd) determines an stationary
process, that is, a probability ρ on the Bernoulli space {1, 2, ..., d}N, which is
invariant for the shift acting on {1, 2, ..., d}N.

For example, we have that ρ(21) = P21π1.
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We point out that such ρ is the eigenprobability for the L∗log J (associated
to the eigenvalue 1). Therefore, ρ satisfies the KMS condition from the above
results.

The Markov Process determined by the matrix P and the initial vector
of probability π = (1/d, 1/d, ..., 1/d) defines a probability ρ̂ on the Bernoulli
space {1, 2, ..., d}N, which is not invariant for the shift acting on {1, 2, ..., d}N.

In this case, for example, ρ̂(21) = P21 1/d.
Note that the probability ρ satisfies ρ = u ρ̂ where u depends just on the

first coordinate.
Note that unless P is double stochastic is not true that for any j0 we have

that
∑

k Pj0,k = 1.
Assume that there exists j0 such that

∑
k Pj0,k 6= 1.

We will check that, in this case ρ̂ does not satisfies the KMS condition
for the function f(x, y) = IX1=i0(x) IX1=j0(y).

Indeed, equation (3.22) means∑
j

∫
f( (j, x2, x3, .., xn, ..) , (x1, x2, x3, .., xn, ..))dρ̂(x) =

∑
j

∫
IX1=i0(j, x2, x3, ..) IX1=j0(x1, x2, x3...)dρ̂(x) =

∫
IX1=i0(i0, x2, x3, ..) IX1=j0(x1, x2, x3...)dρ̂(x) =∫
IX1=j0(x1, x2, x3...)dρ̂(x) = ρ̂(j0) = 1/d =

∑
j

∫
f( (x1, x2, x3, ..) , (j, x2, x3, ..))e

−ϕ(j,x2,x3,..) +ϕ(x1,x2,x3,..)dρ̂(x) =

∑
j

∫
IX1=i0(x1, x2, x3, ..) IX1=j0(j, x2, x3...)e

−ϕ(j,x2,x3,..) +ϕ(x1,x2,x3,..)dρ̂(x) =

∫
IX1=i0(x1, x2, x3, ..) IX1=j0(j0, x2, x3...)e

−ϕ(j0,x2,x3,..) +ϕ(x1,x2,x3,..)dρ̂(x) =∫
IX1=i0(x1, x2, x3, ..) e

−ϕ(j0,x2,x3,..) +ϕ(x1,x2,x3,..)dρ̂(x) =∫
X1=i0

e−ϕ(j0,x2,x3,..) +ϕ(i0,x2,x3,..)dρ̂(x) =
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∑
k

∫
X1=i0 , X2=k

e−ϕ(j0,x2,x3,..) +ϕ(i0,x2,x3,..)dρ̂(x) =

∑
k

∫
X1=i0 , X2=k

Pj0,k P
−1
i0,k
dρ̂(x) =

∑
k

Pj0,k P
−1
i0,k

Pi0,k1/d =

∑
k

Pj0,k 1/d 6= 1/d = ρ̂(j0).

Therefore, ρ̂ does not satisfies the KMS condition.

Example 3.4.27. Consider Ω = {1, 2}N, a Jacobian J and take νy the
probability on each class y given by

∑
a J(a, y2, y3, ..)δ(a,y2,y3,..).

Note first that ϕ = log J is a normalized potential. Does the equilibrium
probability for log J satisfies the KMS condition? We will show that this in
not always true.

The question means: is it true that for any function k is valid∫ ∑
a∈{1,2}

k( (a, y2, ..), (y1, y2, ..) ) eϕ(a,y2,...) dµ(y) =

∫ ∑
a∈{1,2}

k( (a, x2, ..), (x1, x2, ..) ) eϕ(a,x2,...) dµ(x) =

∫ ∑
a∈{1,2}

k( (x1, x2, ..), (a, x2, ..) ) eϕ(a,x2,...) dµ(x)? (3.26)

Consider the example: take c(x, y) = ϕ(x) − ϕ(y), for ϕ : {1, 2}N → R,
such that,

ϕ(a, . , . , ...) = log p

where p = pa, for a ∈ {1, 2}, and p1 + p2 = 1, p1, p2 > 0.
The Gibbs probability µ for such ϕ is the independent probability associ-

ated to p1, p2.
Given such probability µ over Ω we can define a dynamical state ϕµ in

the following way: given f : G→ R we get ϕµ(f) =
∫
f(x, x) dµ(x).

Take β = 1. We will show that ϕµ is not KMS for c.
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The equation (3.26) for such µ means for any k(x, y)∫ ∑
a∈{1,2}

pa k( (a, y2, ..), (y1, y2, ..) ) dµ(y) =

∫ ∑
a∈{1,2}

k( (a, y2, ..), (y1, y2, ..) ) p(a, y2, ...) dµ(y) =

∫ ∑
b∈{1,2}

k( (x1, x2, ..), (b, x2, ..) ) p(b, x2, ...) dµ(x) =

∫ ∑
b∈{1,2}

pb k( (x1, x2, ..), (b, x2, ..) ) dµ(x).

It is not true that µ is Gibbs for the potential log p.
Indeed, given k consider the function

g(y1, y2, y3, y4, ...) = k( (y1, y3, ...) , (y2, y3, ...) ).

Note that

Llog p(g)(y1, y2, y3, ..) =
∑

a∈{1,2}

p(a, y1, y2, y3, ...) g(a, y1, y2, ...)

∑
a∈{1,2}

pa k( (a, y2, y3, ..), (y1, y2, ..) ).

Then, ∫ ∑
a∈{1,2}

pa k( (a, y2, ..), (y1, y2, ..) ) dµ(y) =

∫
Llog p(g)(y1, y2, y3, ..) dµ(y) =

∫
k( (y1, y3, ...) , (y2, y3, ...) )dµ(y).

Now, given k consider the function

h(x1, x2, x3, x4, ...) = k( (x2, x3, ...) , (x1, x3, x4, ...) ).

Then,∫
Llog p(h)(x1, x2, x3, ..) dµ(y) =

∫
k( (x2, x3, ...) , (x1, x3, ...) ) dµ(x).

For the Gibbs probability µ for log p is not true that for all k∫
k( (x2, x3, ...) , (x1, x3, ...) ) dµ(x) =

∫
k( (x1, x3, ...) , (x2, x3, ...) )dµ(x).
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3.5 Noncommutative integration and quasi-

invariant probabilities

In non-commutative integration the transverse measures are designed to in-
tegrate transverse functions (see [18] or [34]).

In the same way we can say that a function can be integrated by a measure
resulting in a real number we can say that the role of a transverse measure
is to integrate transverse functions (producing a real number).

The main result here is Theorem 3.5.8 which describes a natural way to
define a transverse measure from a modular function δ and a Haar system
(G , ν̂).

As a motivation for the topic of this section consider a foliation of the
two dimensional torus where we denote each leaf by l. This partition defines
a groupoid with a quite complex structure. Each leave is a class on the
associated equivalence relation. This motivation is explained with much more
details in [19]

We consider in each leave l the intrinsic Lebesgue measure on the leave
which will be denoted by ρl.

A random operator q is the association of a bounded operator q(l) on
L2(ρl) for each leave l. We will avoid to describe several technical assumpti-
ons which are necessary on the theory (see page 51 in [19]).

The set of all random operators defines a von Neumann algebra under
some natural definitions of the product, etc... (see Proposition 2 in page 52
in [19]) (*).

This setting is the formalism which is natural on noncommutative ge-
ometry (see [19]).

Important results on the topic are for instance the characterization of
when such von Neumann algebra is of type I, etc... (see page 53 in [19]).
There is a natural trace defined on this von Neumann algebra.

A more abstract formalism is the following: consider a fixed groupoid
G. Given a transverse function λ one can consider a natural operator Lλ :
F+(G)→ F+(G), which satisfies

f → λ ∗ f = Lλ(f) .

Lλ acts on F+(G) and can be extended to a linear action on the von
Neumann algebra F(G). This defines a Hilbert module structure (see section
3.2 in [38] or [34]).
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Given λ we can also define the operator Rλ : F+(G)→ F+(G) by

h(x, y) = Rλ(f)(γ) =

∫
f(s, y)dλx(d s),

for any (x, y).

Definition 3.5.1. Given two G-kernels λ1 and λ2 we get a new G-kernel
λ1 ∗λ2, called the convolution of λ1 and λ2, where given the function f(x, y),
we get the rule

(λ1 ∗ λ2) (f) = g ∈ F(G0),

given by

g(y) =

∫
(

∫
f(s, y) λx2(d s) ) λy1(dx).

In the above x ∼ y ∼ s.
In other words (λ1 ∗ λ2) is such that for any y we have

(λ1 ∗ λ2)y(dx) =

∫
λx2(d s ) λy1(dx). (3.27)

Note that
Rλ1∗λ2 = Rλ1 ◦Rλ2 .

For a given fixed transverse function λ, for each class [y] on the groupoid
G, we get that Rλ defines an operator acting on functions f(r, s), where
f : [y]× [y]→ C, and where Rλ(f) = h.

In this way, each transverse function λ defines a random operator q, where
q([y]) acts on L2(λy) via Rλ.

A transverse measure can be seen as an integrator of transverse functions
or as an integrator of random operators (which are elements on the von
Neumann algebra (*) we mention before).

First we will present the basic definitions and results that we will need
later on this section.

Remember that E+ is the set of transverse functions for the groupoid
G ⊂ X ×X associated to a certain equivalence relation ∼.
F+(G) denotes the space of Borel measurable functions f : G → [0,∞)

(a real function of two variables (a, b)).
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Remember that given a G kernel ν and an integrable function f ∈ Fν(G)
we can define two functions on G:

(x, y)→ (ν ∗ f)(x, y) =

∫
f (x, s) νy(ds)

and

(x, y)→ (f ∗ ν)(x, y) =

∫
f (s, y) νx(ds).

Note that ν ∗ 1 = 1 if νy is a probability for all y. Also note that
(f ∗ ν)(y, y) = ν(f) (y) (see definition 3.2.6).

About (3.27) we observe that

(λ1 ∗ λ2) (f) = λ1(f ∗ λ2).

A kind of analogy of the above concept of convolution (of kernels) with
integral kernels is the following: given the kernels K1(s, x) and K2(x, y) we
define the kernel

K̂(s, y) =

∫
K2(s, x)K1(x, y) dx.

This is a kind of convolution of integral kernels.
This defines the operator

f(x, y)→ g(y) =

∫
f(s, y)K̂(s, y)ds =

∫
(

∫
f(s, y)K2(s, x) d s ) K1(x, y) dx.

Example 3.5.2. Given any kernel ν we have that d ∗ ν = ν, where d is the
delta kernel of Example 3.2.5.

Indeed, for any f ∈ F(G)∫
f ( d ∗ ν )y =

∫ ∫
f(s, y) νx(d s) d y(d x) =

∫
f(s, y) νy(d s) =

∫
f νy

In the same way for any ν we have that ν ∗ d = ν.

Example 3.5.3. Given a fixed positive function h(x, y) and a fixed kernel
ν, we get that the kernel ν ∗ (h d ), where d is the Dirac kernel, is such that
given any f(x, y),

(ν ∗ (h d ))(f)(y) =

∫
(

∫
f(s, y)h(s, x) dx(d s) ) νy(dx) =
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∫
f(x, y)h(x, x) νy(dx).

Particularly, taking h = 1, we get ν ∗ d = ν.

Example 3.5.4. For the bigger than two equivalence relation of example
3.1.9 on (S1)N, where S1 is the unitary circle, the equivalence classes are of
the form { (a, x2, x3, ...), a ∈ S1 }, where xj ∈ S1, j ≥ 2, is fixed.

Given x = (x1, x2, x3, ...) we define νx(da) the Lebesgue probability on S1,
which can be identified with S1 × (x2, x3, .., xn, ...). This defines a transverse
function where G0 = (S1)N. We call it the standard XY Haar system.

In this case given a function f(x, y) = f( (x1, x2, x3, ..), (y1, y2, y3, ..) )

(ν ∗ f)(x, y) =

∫
f(x, s) νx(d s) =

∫
f ( (x1, x2, x3, ..), (s, x2, x3, ..) ) ds,

where s ∈ S1. Note that in the present example the information on y was
lost after convolution.

Such ν is called in [6] the a priori probability for the Ruelle operator.
Results about Ruelle operators and Gibbs probabilities for such kind of XY
models appear in [6] and [41].

After Proposition 3.5.14 we will present several properties of convolution
of transverse function (we will need soon some of them).

Note that if ν is transverse and λ is a kernel, then ν ∗ λ is transverse.
Remember that given a kernel λ and a fixed y the property λy(1) = 1

means
∫
λy(dx) = 1.

Definition 3.5.5. A transverse measure Λ over the modular function δ(x, y),
δ : G → R, is a linear function Λ : E+ → R+, such that, for each kernel λ
which satisfies the property λy(1) = 1, for any y, if ν1 and ν2 are transverse
functions such that ν1 ∗ (δλ) = ν2, then,

Λ(ν1) = Λ(ν2). (3.28)

A measure produces a real number from the integration of a classical
function (which takes values on the real numbers), and, on the other hand,
the transverse measure produces a real number from a transverse function ν
(which takes values on measures).
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The assumptions on the above definition are necessary (for technical rea-
sons) when considering the abstract concept of integral of a transverse func-
tion by Λ (as is developed in [18]). We will show later that there is a more
simple expression providing the real values of such process of integration by
Λ which is related to quasi-invariant probabilities.

If one consider the equivalence relation such that each point is related
just to itself, any cocycle is constant equal 1 and the only kernel satisfying
λy(1) = 1, for any y, is the delta Dirac kernel d. In this case if ν1 and ν2 are
such that ν1 ∗ (δλ) = ν2, then, ν1 = ν2 (see Example 3.5.2). Moreover, E+

is just the set of positive functions on X. Finally, we get that the associated
transverse measure Λ is just a linear function Λ : E+ → R+

Example 3.5.6. Given a probability µ over G0 we can define

Λ(ν) =

∫ ∫
νy(dz)dµ(y).

Suppose that λ satisfies λx(1) = 1, for any x, and

ν1 ∗ λ = ν2.

Then, Λ(ν1) = Λ(ν2). This means that Λ is invariant by translation on
the right side.

Indeed, note that,

Λ(ν1) =

∫ ∫
νy1 (dz)dµ(y),

and, moreover

Λ(ν2) =

∫ ∫
νy2 (dz)dµ(y) =∫

[

∫
(

∫
λx(d s) ) ) νy1 (dx)) ] dµ(y) =∫
(

∫
νy1 (dx)) dµ(y).

Therefore, Λ is a transverse measure of modulus δ = 1.
In this way for each measure µ on G0 we can associate a transverse me-

asure of modulus 1 by the rule ν → Λ(ν) =
∫ ∫

νy(dz)dµ(y) ∈ R.
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The condition
ν1 ∗ (δλ) = ν2

means for any f we get∫
f(x, y) ( ν1 ∗ (δλ ))y (d x) =

∫
(

∫
f(s, y) [ δ(s, x)λx(ds) ] ) νy1 (dx) =

∫
f(x, y) νy2 (dx). (3.29)

We define before (see (3.5)) the concept of quasi-invariant probability for
a given modular function δ, a groupoid G and a fixed transverse function ν.

For reasons of notation we use a slight variation of that definition. In
this section we say that M is a quasi invariant probability for δ and
ν if for any f(x, y)

∫ ∫
f(y, x) νy(x)dM(y) =

∫ ∫
f(x, y)δ(x, y)−1νy(x)dM(y). (3.30)

Proposition 3.5.7. Given a modular function δ, a groupoid G and a fixed
transverse function ν̂ denote by M the quasi invariant probability for δ.

Assume that
∫
ν̂y(dr) 6= 0 for all y.

If ν̂ ∗ λ1 = ν̂ ∗ λ2, where λ1, λ2 are kernels, then,∫
δ−1λ1(1) dM =

∫
δ−1λ2(1) dM.

This is equivalent to say that∫ ∫
δ−1(s, y)λy1(ds)dM(y) =

∫ ∫
δ−1(s, y)λy2(ds)dM(y).

Proof: By hypothesis g(y) = (ν̂ ∗ λ1)(δ−1) (y) = (ν̂ ∗ λ2)(δ−1)(y).
Then, we assume that (see (3.27))∫
g(y)

1∫
ν̂y(dr)

dM(y) =

∫ ∫ ∫
1∫

ν̂y(dr)
δ−1(s, y)λx1(ds)ν̂y(dx) dM(y) =

∫ ∫ ∫
1∫

ν̂y(dr)
δ−1(s, y)λx2(ds)ν̂y(dx) dM(y). (3.31)
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Therefore, ∫ ∫
δ−1(s, y)λy1(ds)dM(y) =∫ ∫ ∫

1∫
ν̂x(dr)

δ(y, s)λy1(ds)ν̂y(dx) dM(y) =∫ ∫ ∫
1∫

ν̂y(dr)
[ δ(y, x) δ(x, s)λy1(ds) ]ν̂y(dx) dM(y) =∫ ∫ ∫

1∫
ν̂y(dr)

[ δ(x, y)−1 δ(x, s)λy1(ds) ]ν̂y(dx) dM(y) =∫ ∫ ∫
1∫

ν̂x(dr)
[ δ(y, x)−1 δ(y, s)λx1(ds) ] δ−1(x, y)ν̂y(dx) dM(y) =∫ ∫ ∫

1∫
ν̂x(dr)

δ(y, s)λx1(ds)ν̂y(dx) dM(y) (3.32)

On the above from the fourth to the fifth line we use the quasi-invariant
expression (3.30) for M taking

f(y, x) =

∫
1∫

ν̂y(dr)
δ(x, y)−1 δ(x, s)λy1(ds).

Note that if ν̂ is transverse
∫
ν̂x(dr) does not depend on x on the class

[y].
Finally, from the above equality (3.32) (and replacing λx1 by λx2) it follows

that ∫ ∫
δ−1(s, y)λy1(ds) dM(y) =∫ ∫ ∫

1∫
ν̂y(dr)

δ(y, s)λy1(ds)ν̂y(dx) dM(y) =∫ ∫ ∫
1∫

ν̂y(dr)
δ(y, s)λy2(ds)ν̂y(dx) dM(y) =∫ ∫

δ−1(s, y)λy2(ds) dM(y).

From now on we assume that
∫
ν̂y(dr) 6= 0 for all y.
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Theorem 3.5.8. Given a modular function δ and a Haar system (G , ν̂),
suppose M is quasi invariant for δ.

We shall see in Proposition 3.5.16 that given a transverse function ν̂ there
exists a kernel ρ such that ν = ν̂ ∗ ρ. With this result in mind we define Λ
on the following way: Set

Λ(ν) =

∫ ∫
δ(x, y)−1ρy(dx)dM(y). (3.33)

Then, Λ is well defined and it is a transverse measure.

Proof: Λ is well defined by proposition 3.5.7.
We have to show that if λx(1) = 1, for any x, and ν1 and ν2 are such that

ν1 ∗ (δλ) = ν2, then, Λ(ν1) = Λ(ν2).
Suppose ν1 = ν̂ ∗ λ1, then, ν2 = ν̂ ∗ (λ1 ∗ (δ λ) ).
Note that

Λ(ν1) =

∫ ∫
δ(x, y)−1 λy1(dx)dM(y).

On the other hand from (3.27)

Λ(ν2) =

∫ ∫
δ(s, y)−1 (λ1 ∗ (δ λ ) )y(ds)dM(y) =∫ ∫ ∫

δ(s, y)−1 δ(s, x)λx(ds)λy1(dx) dM(y) =∫ ∫ ∫
δ(x, y)−1 λx(ds)λy1(dx) dM(y) =∫ ∫

δ(x, y)−1 (

∫
λx(ds) ) λy1(dx) dM(y) =∫ ∫

δ(x, y)−1 λy1(dx) dM(y) = Λ(ν1).

Remark: The last proposition shows that given a quasi invariant proba-
bility M - for a transverse function ν̂ and a cocycle δ - there is a natural way
to define a transverse measure Λ (associated to a groupoid G and a modular
function δ).

One can ask the question: given transverse measure Λ (associated to a
groupoid G and a modular function δ) is it possible to associate a probability
on G0? In the affirmative case, is this probability quasi invariant? We will
elaborate on that.

90



Definition 3.5.9. Given a transverse measure Λ for δ we can associate by
Riesz Theorem to a transverse function ν̂ a measure M on G0 by the rule:
given a non-negative continuous function h : G0 → R we will consider the
transverse function h(x) ν̂y(dx) and set

h→ Λ(h ν̂) =

∫
h(x)dM(x).

Such M is a well defined measure (a bounded linear functional acting on
continuous functions) and we denote such M by Λν̂ .

Λν̂ means the rule h→ Λ(h ν̂) = Λν̂(h).

Proposition 3.5.10. Given any transverse measure Λ associated to the mo-
dular function δ and any transverse functions ν and ν ′ we have for any
continuous f that

Λν′(ν(δ̃f)) = Λ(ν(δ̃f)ν ′) = Λ(ν ′(f̃)ν) = Λν(ν
′(f̃)).

Proof: If λy(1) = 1 ∀y, that is,
∫

1λy(ds) = 1 ∀y, then Λ(ν ∗δλ) = Λ(ν).
If g(x) = λx(1) =

∫
1λx(ds) 6= 1, then we can write λ′x(ds) = 1

g(x)
λx(ds),

where λ and λ′ are just kernels. In this way (ν ∗ δλ) = (gν) ∗ δλ′. Indeed, for
h(x, y), ∫

h(x, y) (ν ∗ δλ)y(dx) =

∫
h(s, y)δ(s, x)λx(ds)νy(dx)

=

∫
h(s, y)δ(s, x)λ′x(ds)g(x)νy(dx) =

∫
h(x, y)((gν) ∗ δλ′)y(dx).

Denoting λ(1)(x) = g(x) = λx(1) =
∫

1λx(ds), it follows that

Λ(ν ∗ δλ) = Λ(gν ∗ δλ′) = Λ(gν) = Λν(g) = Λν(λ(1)) = Λν(

∫
1λx(ds)).

(3.34)
From, (3.2) if ν is a kernel and f = f(x, y)

(ν ∗ f)(x, y) = ν(f̃)(x),

and, from the future Lemma 3.5.17, if λ is a kernel and ν is a transverse
function, then, for any f = f(x, y),

λ ∗ (fν) = (λ ∗ f)ν.
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It follows that, for transverse functions ν and ν ′, we get

ν ∗ [(δf̃)ν ′] = [ν ∗ (δf̃)]ν ′ = [ν(δ̃f)]ν ′.

As a consequence

Λν′(ν(δ̃f)) = Λ([ν(δ̃f)]ν ′) = Λ(ν ∗ [(δf̃)ν ′]) = Λ(ν ∗ δ(f̃ν ′)) =

Λν((f̃ν
′)(1)) = Λν(

∫
1 · f̃(s, y)ν ′y(ds)) = Λν(ν

′(f̃)).

Above we use equation (3.34) with λ = f̃ν ′.

Corolary 3.5.11. If ν ∈ E+, then for any f

Λ(ν(f̃) ν ) = Λ(ν(δ̃ f) ν) (3.35)

Proof: Just take ν = ν ′ on last Proposition.

Among other things we are interested on a modular function δ, a trans-
verse function ν̂ and a transverse measure Λ (of modulo δ) such that MΛ,ν̂ =
M is Gibbs for a Jacobian J . What conditions are required from M?

The main condition of the next theorem is related to the KMS condition
of definition 3.4.20

Proposition 3.5.12. Given a transverse measure Λ associated to the mo-
dular function δ, and a transverse function ν̂, consider the associated
M = Λν̂. Then, M is quasi invariant for δ. That is, M satisfies for all g

∫ ∫
g(s, x)ν̂x(ds)dM(x) =

∫ ∫
g(x, s)δ(x, s) ν̂x(ds)dM(x). (3.36)

Proof: First we point out that (3.36) is consistent with (3.30) (we are
just using different variables).

A transverse function ν̂ defines a function of f ∈ F(G)→ F(G0).
The probability M associated to ν̂ satisfies for any continuous function

h(x), where h : G0 → R the rule

h→ Λ(h ν̂) =

∫
h(x)dM(x),
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where h(x) ν̂y(dx) ∈ E+.
From proposition 3.5.11 we have that for the continuous function f(s, x) =

g̃(s, x), where f : G→ R, the expression

Λ(ν̂ (g) ν̂ ) = Λ(ν̂ (f̃) ν̂ ) = Λ(ν̂(δ−1 f) ν̂ ) = Λ(ν̂(δ−1 g̃) ν̂ )

For a given function g(s, x) it follows from the above that

Λ(ν̂ (g) ν̂ ) =

∫
ν̂ (g)(x) dM(x) =

∫ ∫
g(s, x)ν̂x(ds) dM(x).

On the other hand

Λ(ν̂(δ−1 g̃) ν̂ ) =

∫
ν̂(δ−1 g̃)(x)dM(x) =

∫
g(x, s)δ−1(s, x) ν̂x(ds) dM(x).

Proposition 3.5.13. Given a modular function δ, a grupoid G, a transverse
measure Λ and a transverse function ν̂, suppose for any ν, such that ν = ν̂∗ρ,
we have that

Λ(ν) = Λ(ν̂ ∗ ρ) =

∫ ∫
δ(s, x)−1ρx(ds)dµ(x) =

∫
δ−1ρ(1) d µ.

Then, µ = Λν̂.

Proof: Given f ∈ F(G0) consider λ the kernel such that λx(ds) =
f(x)δx(ds), where δx is the Delta Dirac on x.

Then, using the fact that δ(x, x) = 0 we get that the kernel f(x)ν̂y(dx)
is equal to ν̂ ∗ δ λ.

Then, taking ρ = δ λ on the above expression we get

Λ( fν̂) = Λ(ν̂ ∗ (δ λ) ) =∫
δ−1ρ(1)dµ =

∫
δ−1 (δλ)(1)dµ =

∫
λ(1)dµ =

∫
f(x)dµ(x).

Therefore, Λν̂ = µ.

Now we present a general procedure to get transverse measures.
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Proposition 3.5.14. For a fixed modular function δ we can associate to any
given probability µ over G0 a transverse measure Λ by the rule

ν → Λ(ν) =

∫ ∫
δ(s, x)−1 νx(ds) dµ(x). (3.37)

Proof:
Consider ν ′ ∈ E+ and λ, such that,

∫
λr(ds) = 1, for all r, and moreover

that ν ′ = ν ∗ (δλ).
We will write

(ν ∗ δλ) (δ−1) =

∫ ∫
δ−1(s, x) δ(s, r)λr(ds)νx(dr)

which is a function of x
Then

Λ(ν ′) =

∫ ∫
δ(s, x)−1 ν ′x(ds) dµ(x) =

∫
ν ′(δ−1)(x)dµ(x) =

=

∫ (
ν ∗ (δλ)

)
(δ−1)(x)dµ(x) =

∫ ∫ ∫
δ(s, x)−1δ(s, r)λr(ds)νx(dr)dµ(x) =

=

∫ ∫ ∫
δ(r, x)−1λr(ds)νx(dr)dµ(x) =

∫ ∫
δ(r, x)−1νx(dr)dµ(x) = Λ(ν).

This last transverse measure is defined in a quite different way that the
one described on Theorem 3.5.8.

Now we will present some general properties of convolution of transverse
functions.

Lemma 3.5.15. Suppose ν ∈ E+ is a transverse function, ν0 a kernel, and
g ∈ F+(G) is such that

∫
g(s, x)νy0 (dx) = 1, for all s, y. Then, ν0 ∗ (g ν) = ν ,

where g ν is a kernel.

Remark The condition
∫
g(s, x)νy0 (dx) = 1, for all s, y means (ν0 ∗

g)(s, y) = 1 for all s, y, that is ν0 ∗ g ≡ 1 (See lemma 3 below).

Proof:

z(y) =

∫
f(s, y) νy(ds) =
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∫
f(s, y) [

∫
g(s, x)νy0 (dx)] νx(ds) =∫ ∫

f(s, y) [ g(s, x)νx(ds) ] νy0 (dx) =∫
f(s, y) (g ν)x(ds)νy0 (dx) =

∫
f(s, y) ( ν0 ∗ (g ν))y(ds).

We say that the kernel ν is fidel if
∫
νy0 (ds) 6= 0 for all y.

Proposition 3.5.16. For a fixed transverse function ν0 we have that for each
given transverse function ν there exists a kernel λ, such that, ν0 ∗ λ = ν.

Proof: Given the kernel ν0 take g0(s) = 1∫
1νs0(dr)

≥ 0. Note that g0(v)

is constant for v ∈ [s]. Then ν0(g) = 1, that is, for each s we get that∫
g0(s)νs0(dx) = 1.

We can take λ = g0 ν as a solution. Indeed, in a similar way as last
lemma we get

z(y) =

∫
f(s, y) νy(ds) =∫

f(s, y) [

∫
g0(s)νs0(dx)] νx(ds) =∫ ∫

f(s, y) [ g0(s)νx(ds) ] νy0 (dx) =∫
f(s, y) (g0 ν)x(ds)νy0 (dx) =

∫
f(s, y) ( ν0 ∗ (g0 ν))y(ds) =∫

f(s, y) ( ν0 ∗ λ)y(ds).

The next Lemma is just a more general form of Lemma 3.5.15.

Lemma 3.5.17. Suppose ν ∈ E+, g ∈ F+(G) and λ a kernel, then λ ∗
(g ν) = (λ ∗ g) ν , where g ν is a kernel and λ ∗ g is a function.

95



Proof:
Given f ∈ F(G) we get

(λ ∗ (g ν))(f)(y) =

∫
f(x, y) (λ ∗ (g ν))y(dx)

=

∫ ∫
f(s, y)[(gν)x(ds)]λy(dx) =

∫ ∫
f(s, y)[g(s, x)νx(ds)]λy(dx).

On the other hand

[(λ ∗ g) ν](f)(y) =

∫
f(s, y)[(λ ∗ g) ν]y(ds) =

∫
f(s, y)[(λ ∗ g)(s, y)]νy(ds)

=

∫
f(s, y)[

∫
g(s, x)λy(dx)]νy(ds) =

∫ ∫
f(s, y)g(s, x)νx(ds)λy(dx).

Proposition 3.5.18. Suppose ν and λ are transverse. Given f ∈ F+(G),
we have that

λ (ν ∗ f) = ν (λ ∗ f̃).

Proof:
Indeed, by definition (ν ∗ f)(x, y) = g(x, y) =

∫
f(x, s)νy(ds), and by

definition 3.2.6

λ (ν ∗ f)(y) = λ(g)(y) =

∫
g(x, y)λy(dx) =

∫ ∫
f(x, s)νy(ds)λy(dx).

By the same arguments (λ ∗ f̃)(x, y) = h(x, y) =
∫
f̃(x, s)λy(ds), and

ν (λ ∗ f̃)(y) = ν(h)(y) =

∫
h(x, y)νy(dx) =

∫ ∫
f̃(x, s)λy(ds)νy(dx) =

=

∫ ∫
f(s, x)λy(ds)νy(dx) = λ (ν ∗ f)(y),

if we exchange the coordinates x and s.
Note that in the case f ∈ F(G0) we denote f(x, s) = f(x). In the same

way
λ (ν ∗ f) = ν (λ ∗ f̃)
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in the following sense:∫ ∫
f(x)νy(ds)λy(dx) =

∫ ∫
f(s)λy(ds)νy(dx).

3.6 C∗-Algebras derived from Haar Systems

In this section the functions f : G → R will be required to be continuous
(not just measurable).

An important issue here is to have suitable hypotheses in such way that
the indicator of the diagonal 1 belongs to the underlying space we consider.
On von Neumann algebras the unit is just measurable and not continuous
(this is good enough). We want to consider another setting (certain C∗-
algebras associated to Haar Systems) where the unit will be required to be
a continuous function. In general terms, given a groupoid G ⊂ Ω × Ω, as
we will see, we will need another topology on the set G for the C∗-Algebra
formalism and for defining KMS states.

We will begin with some more examples. The issue here is to set a certain
appropriate topology.

Example 3.6.1. For n ∈ N we define the partition ηn over
−→
Ω = {1, 2, ..., d}N,

d ≥ 2, such that two elements x ∈
−→
Ω and y ∈

−→
Ω are on the same element of

the partition, if and only if, xj = yj, for all j > n. This defines an equivalence
relation denoted by Rn.

Example 3.6.2. We define a partition η over
−→
Ω , such that two elements

x ∈
−→
Ω and y ∈

−→
Ω are on the same element of the partition, if and only if,

there exists an n such that xj = yj, for all j > n. This defines an equivalence
relation denoted by R∞.

Example 3.6.3. For each fixed n ∈ Z consider the equivalence relation on
Ω̂: x ∼ y if

y = (..., y−n, ..., y−2, y−1 | y0, y1, ...., yn, ...)

is such that xj = yj for all j ≤ n, where Ω̂ =
←−
Ω ×

−→
Ω .

This defines a groupoid.
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Example 3.6.4. Recall that by definition the unstable set of the point x ∈ Ω̂
is the set

W u(x) = {y ∈ Ω̂ , such that lim
n→∞

d(σ̂−n(x), d(σ̂−n(y) ) = 0 }

One can show that the unstable manifold of x ∈ Ω̂ is the set

W u(x) = {y = (..., y−n, ..., y−2, y−1 | y0, y1, ...., yn, ...) | there exists

k ∈ Z, such that xj = yj, for all j ≥ k}.

If we denote by Gu the groupoid defined by the above relation, then, x ∼ y,
if and only if y ∈ W u(x).

Definition 3.6.5. Given the equivalence relation R, when the quotient Ω̂/R

(or,
−→
Ω/R) is Hausdorff and locally compact we say that R is a proper equi-

valence.

For more details about proper equivalence see section 2.6 in [57].

On the set X =
−→
Ω , if we denote x = (x1, x2, ..xn, ..), the family Ux(m) =

{y ∈
−→
Ω , such that, y1 = x1, y2 = x2, ..., ym = xm}, m = 1, 2, ..., is a funda-

mental set of open neighbourhoods on Ω.
Considering the relations Rm and R∞ we get the corresponding groupoids

G1 ⊂ G2 ⊂ ... ⊂ Gm ⊂ ... ⊂ G∞ ⊂
−→
Ω ×

−→
Ω = X ×X.

The equivalence relation described in example 3.6.2 (and also 3.1.4) is not

proper if we consider the product topology on
−→
Ω (respectively on Ω̂). The

equivalence relation described in example 3.6.1 (and also 3.6.3) is proper if

we consider the product topology on
−→
Ω (respectively on Ω̂) (see [29]).

We consider over Gn the quotient topology.

Lemma 3.6.6. Given X =
−→
Ω , for each n the map defined by the canonical

projection X → Gn is open.

Proof: Given an open set U ⊂ X take V = {y ∈ X | there exists x ∈ X,
satisfying y ∼ x for the relation Rn}. We will show that V is open.
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Consider y ∈ V , y ∈ U , such that, y ∼ x for the relation Rn. There exists
m > n, such that, Ux(m) ⊂ U . Then, Uy(m) ⊂ V . Indeed, if z ∈ Uy(m),
take z′ ∈ X, such that z′j = xj, when 1 ≤ j ≤ m, and z′j = zj , when j > m.

Then, z′ ∼ z for the relation Rn. But, as z ∈ Uy(m), this implies that
zj = yj, when 1 ≤ j ≤ m, and y ∼ x, for Rn, implies that yj = xj, when
j > n. Then, z′j = xj, if 1 ≤ j ≤ m. Therefore, z′ ∈ Ux(m) ⊂ U.

Lemma 3.6.7. Given X =
−→
Ω , for each n the map defined by the canonical

projection X → G∞ is open.

Proof: Given an open set U ⊂ X take V = {y ∈ X | there exists x ∈ X,
satisfying y ∼ x for the relation Rn} and V∞ = {y ∈ X | there exists x ∈ X,
satisfying y ∼ x for the relation R∞}. Then, V∞ = ∪∞n=1 Vn is open.

Lemma 3.6.8. Given X =
−→
Ω , for each n = 1, 2..., n, ..., the set Gn is

Hausdorff.

Proof: Given a fixed n, and x, y ∈ X, such that x and y are not related
by Rn, then, there exists m > n such that xm 6= ym. From this follows that
no element of Ux(m) is equivalent by Rn to an element of Uy(m). By lemma
3.6.6 it follows that Gn is Hausdorff.

Lemma 3.6.9. Given X =
−→
Ω the set G∞ is not Hausdorff.

Proof: If xm = (1, 1, ..., 1︸ ︷︷ ︸
m

, d, d, d...), then limn→∞ xn = (1, 1, 1..., 1, ...)

and (1, 1, ..., 1︸ ︷︷ ︸
m

, d, d, d...) ∼ (d, d, d, ..., d, ...), for the relation R∞. Note, howe-

ver, that (1, 1, 1..., 1, ...) is not in the class (d, d, d, ..., d, ...) for the relation
R∞.

Lemma 3.6.10. Given X =
−→
Ω denote by D the diagonal set on X × X.

Then, D is open on Gn for any n, where we consider on D the topology
induced by X ×X.

Proof: Given x ∈ X, we have that Ux(n)×Ux(n) is an open set of X×X
which contains (x, x).
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Consider y, z ∈ Ux(n) such that y and z are related by Rn. Then, yj =
xj = zj, when 1 ≤ j ≤ n, and yj = zj , when j > n. Therefore, y = z.

From this we get that

Ux(n)× Ux(n) ∩Gn ⊂ D

Definition 3.6.11. An equivalence relation R on a compact Hausdorff space
X is said to be approximately proper if there exists an increasing sequence of
proper equivalence relations Rn, n ∈ R, such that R = ∪nRn, n ∈ N. This in
the sense that if x ∼R y, then there exists an n such that x ∼Rn y.

Example 3.6.12. Consider the equivalence relation R∞ of example 3.6.2
and Rn the one of example 3.6.1. For each n the equivalence relation Rn is
proper.

Then, R∞ = ∪nRn, n ∈ N is approximately proper (see [29]).

Definition 3.6.13. Consider a fixed set K, a sequence of subsets W0 ⊂
W1 ⊂ W2 ⊂ ... ⊂ Wn ⊂ ... ⊂ K and a topology Wn for each set Wn ⊂ K.

By the direct inductive limit

t− lim
n→∞

Wn = K

we understand the set K endowed with the largest topology K turning the
identity inclusions Wn → K into continuous maps.

The topology of t− limn→∞Wn = K can be easily described: it consists of
all subsets U ⊂ K whose intersection U ∩Wn is in Wn for all n.

We call K the direct limit topology over K.

For more details about the inductive limit (see section 2.6 in [57]).

In the case Wn = Gn we consider as Wn the product topology.

Lemma 3.6.14. Given X =
−→
Ω if we consider over K = G∞ the inductive

limit topology defined by the sequence of the Gn ⊂ X×X, then, the indicator
function 1 on the diagonal is continuous.
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Proof: By lemma 3.6.10 the diagonal D is an open set.
Moreover, (G∞−D) ∩Gn = ( (X×X)−D) ∩ G∞) ∩Gn = ( (X×X ) −

D) ∩Gn is open on Gn for all n. Then, (G∞ −D) is open on G∞.

Remark: Note that on G∞ we have that D is not open on the indu-
ced topology by X × X. Indeed, consider a = (1, 1, 1, .., 1, ..) and bm =
(1, 1, ..., 1︸ ︷︷ ︸

m−1

, d, 1, 1, 1, ..1, ...). Then, limm→∞(a, bm) = (a, a) ∈ D, and (a, bm) ∈

G∞ but (a, bm) is not on D, for all m.

Example 3.6.15. In the above definition 3.6.13 consider Wn = Gn ⊂
←−
Ω ×−→

Ω , n ∈ N, which is the groupoid associated to the equivalence relation Rn (see

example 3.6.1). Then, ∪nWn = K = G ⊂
←−
Ω ×

−→
Ω , where G is the groupoid

associated to the equivalence relation R∞. Consider on Wn the topology Wn

induced by the product topology on
−→
Ω ×

−→
Ω .

For a fixed x the set U = {y |xj = yj for all j ≤ n} ∩Gn is open on Gn,
that is, an element on Wn.

Note that Gn ∩ (U × U) is a subset of the diagonal.
Points of the form

( (x1, x2, ..., xn, zn+1, zn+2, ...), (x1, x2, ..., xn, zn+1, zn+2, ...) )

are on this intersection.
Then, the diagonal {(y, y) , y ∈

−→
Ω} is an open set in the inductive limit

topology K over G
From this follows that the indicator function of the diagonal, that is, I∆,

where ∆ = {(x, x)|x ∈
−→
Ω}, is a continuous function.

Example 3.6.16. Consider the partition ηn, n ∈ Z, over Ω̂ of Example
3.6.3, Wn = Gn, for all n, and K = Gu.

We consider the topology Wn over Gn induced by the product topology. In
this way A ∈ Wn if

A = B ∩Gn,

where B is an open set on the product topology for Ω̂× Ω̂.
In this way A is open on t− limn→−∞Wn = K if for all n we have that

A ∩Xn ∈ Xn.
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Denote by D the diagonal on Ω̂ × Ω̂ and consider the indicator function
ID : Ω̂× Ω̂→ R.

The function ID is continuous over the inductive limit topology K over
K = Gu.

Here G0 will be the set Ω̂ =
←−
Ω ×

−→
Ω . We will denote by G a general

groupoid obtained by an equivalence relation R.
The measures we consider on this section are defined over the sigma-

algebra generated by the inductive limit topology.

Definition 3.6.17. Given a Haar system (G, ν), where G0 = Ω̂ =
←−
Ω ×

−→
Ω is equipped with the inductive limit topology, considering two continuous
functions with compact support f, g ∈ CC(G), we define (f ∗

ν
g) = h in such

way that for any (x, y) ∈ G

(f ∗
ν
g)(x, y) =

∫
g(x, s) f(s, y) νy(ds) = h(x, y).

The closure of the operators of left multiplication by elements of CC(G),
{Lf : f ∈ CC(G)} ⊆ B(L2(G, ν)), with respect to the norm topology is called
the reduced C*-algebra associated to (G, ν) and denoted by C∗r (G, ν).

Remark: There is another definition of a C*-algebra associated to (G, ν)
called the full C*-algebra. For a certain class of groupoid, namely the ame-
nable groupoids, the full and reduced C*-algebras coincide. See [3] for more
details.

As usual function of the form f(x, x) are identified with functions f :
G0 → C of the form f(x).

The collection of these functions is commutative sub-algebra of the C∗-
algebra C∗r (G, ν).

We denote by 1 the indicator function of the diagonal on G0×G0. Then, 1
is the neutral element for the product ∗

ν
operation. Note that 1 is continuous

according to example 3.6.16.
In the case there exist a neutral multiplicative element we say the C∗-

Algebra is unital.
Similar properties to the von Neumann setting can also be obtained.
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We can define in analogous way to definition 3.4.13 the concept of C∗-
dynamical state (which requires an unit 1) and the concept of KMS state for
a continuous modular function δ.

General references on the C∗-algebra setting are [54], [57], [25], [26], [27],
[29], [30], [35], [52], [37] and [1] .

3.7 Examples of quasi-stationary probabili-

ties

On this section we will present several examples of measured groupoids, mo-
dular functions and the associated quasi-stationary probability (KMS proba-
bility).

Example 3.7.1. Considering the example 3.1.3 we get that each

a ∈ {1, 2, ..., d}N =
←−
Ω

defines a class of equivalence

a× |
−→
Ω = a× {1, 2, ..., d}N = (..., a−n, ..., a−2, a−1)× | {1, 2, ..., d}N.

On next theorem we will denote by G such groupoid.
Given a Haar system ν over such G ⊂ Ω̂× Ω̂, note that if z1 =< a|b1 >

and z2 =< a|b2 >, then νz1 = νz2 . In this way it is natural to index the Haar

system by νa, where a ∈
←−
Ω . In other words, we have

ν<a|b>(d < a|b̃ >) = νa(d b̃). (3.38)

Consider V : G → R, m a probability over
←−
Ω and the modular function

δ(x, y) = eV (x)

eV (y) , where (x, y) ∈ G.

Finally we denote by µm,ν,V the probability on G0 = Ω̂, such that, for any

function g : Ω̂→ R and y =< a | b >∫
g(y)dµm,ν,V (y) =

∫
←−
Ω

(

∫
−→
Ω

g(< a|b >) eV (<a|b>) dνa(d b) ) dm(da).

Note that ν̂ = eV ν is a G-kernel but maybe not transverse. The next
theorem will provide a large class of examples of quasi-invariant probabilities
for such groupoid G.

103



Theorem 3.7.2. Consider a Haar System (G, ν) for the groupoid of example
3.7.1. Then, given m, V , using the notation above we get that M = µm,ν,V
is quasi-invariant for the modular function δ(x, y) = eV (x)

eV (y) .

Proof:
From (3.6) we just have to prove that for any f : G→ R

∫ ∫
f(x, y)eV (x)νy(dx)dµm,ν,V (dy) =

∫ ∫
f(y, x)eV (x)νy(dx)dµm,ν,V (dy).

(3.39)
We denote y =< a|b > and x =< ã|b̃ > . Note that if y ∼ x, then a = ã.
Note that, from (3.38)∫

(

∫
f (x, y) eV (x)νy(dx) ) dµm,ν,V (dy) =

∫
(

∫
f (< ã|b̃ >, < a|b >) e

V (<ã|b̃>)
ν
<a|b>

(d < ã|b̃ > ) dµm,ν,V (d < a|b >) =

∫
←−
Ω

[

∫
−→
Ω

(

∫ ∫
f (< ã|b̃ >, < a|b >) e

V (<ã|b̃>)
ν
<a|b>

(d < ã|b̃ >) e
V (<a|b>)

dν
a
(d b) ) ] dm(da) =

∫
←−
Ω

[

∫
−→
Ω

(

∫ ∫
f (< a|b̃ >, < a|b >) e

V (<a|b̃>)
e
V (<a|b>)

ν
a
(d b̃) dν

a
(d b) ) ] dm(da).

In the above expression we can exchange the variables b and b̃, and, finally,
as a = ã, we get

∫
←−
Ω

[

∫
−→
Ω

(

∫ ∫
f (< a|b >, < a|b̃ >) e

V (<a|b>)
e
V (<a|b̃>)

ν
a
(d b) dν

a
(d b̃) ) ] dm(da) =

∫
←−
Ω

[

∫
−→
Ω

(

∫ ∫
f (< a|b >, < a|b̃ >) e

V (<a|b̃>)
dν
a
(d b̃) e

V (<a|b>)
ν
a
(d b) ) ] dm(da) =

(

∫ ∫
f (y, x) e

V (x)
dν
y
(dx) dµm,ν,V (dy).

This shows the claim.

Example 3.7.3. Consider G associated to the equivalence relation given by
the unstable manifolds for σ̂ acting on Ω̂ (see example 3.1.4). Let’s fix a

certain x0 ∈
−→
Ω . Note that in the case x =< a1|b1 > and y =< a2|b2 > are

on the same unstable manifold, then there exists an N > 0 such that a1
j = a2

j ,
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for any j < −N . Therefore, when Â : Ω̂→ R is Hölder and (x, y) ∈ G then
it is well defined

δ(x, y) = Π∞i=1

eÂ(σ̂−i(x))

eÂ(σ̂−i(y))
= Π∞i=1

eÂ(σ̂−i(<a1|b1>))

eÂ(σ̂−i(<a2|b2>))
.

Fix a certain x0 =< a0, b0 >, then the above can also be written as

δ(x, y) =
eV (x)

eV (y)
=
eV (<a1|b1>)

eV (<a2|b2>)
,

where

eV (<a|b>) = Π∞i=1

eÂ(σ̂−i(<a|b>))

eÂ(σ̂−i(<a0|b0>))
.

Then, in this case δ is also of the form of example 3.3.2.
In this case, given any Haar system ν and any probability m, Theorem

3.7.2 can be applied and we get examples of quasi-invariant probabilities.

The next result has a strong similarity with the reasoning of [43] and [62].

Proposition 3.7.4. Given the modular function δ of example 3.3.3 consider
the probability M(d a, d b) = W (b) d b d a on S1×S1. Assume νy, y = (a0, b0),
is the Lebesgue probability db on the fiber (a0, b), 0 ≤ b < 1, then, M satisfies
for all f

∫ ∫
f(s, y)νy(ds)dM(y) =

∫ ∫
f(y, s)δ−1(y, s) νy(ds)dM(y). (3.40)

Proof:
We consider the equivalence relation: given two points z1, z2 ∈ S1 × S1

they are related if the first coordinate is equal.
In the case of example 3.3.3 we take the a priori transverse function

νz1(d b) = νa(d b), z1 = (a, b̃), constant equal to d b in each fiber. This
corresponds to the Lebesgue probability on the fiber.

For each pair z1 = (a, b) and z2 = (a, s), and n ≥ 0, the elements zn1 , z
n
2 ,

n ∈ N, such that F n(zn1 ) = z1 = (a, b) and F n(zn2 ) = z2 = (a, s), are of the
form zn1 = (an, bn), zn2 = (an, sn).
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We define the cocycle

δ(z1, z2) = Π∞j=1

A(zn1 )

A(zn2 )
.

Fix a certain point z0 = (a, c) and define V by

V (z1) = Π∞j=1

A(zn1 )

A(zn0 )
.

Note that we can write

δ(z1, z2) =
V (z1)

V (z2)
,

for such function V .
Remember that by notation x0 is a point where (0, x0) and (x0, 1) are

intervals which are domains of injectivity of T .

Remark: Note the important point that if x = (a, b) and x′ = (a′, b),
with x0 ≤ a ≤ a′, we get that bn(x) = bn(x′). In the same way if 0 ≤ a ≤ x0

we get that bn(x) = bn. In this way the bn does not depend on a.
This means, there exists W such that we can write

δ(z1, z2) = δ−1( (a, b), (a, s) ) = Q(s, b) =
W (s)

W (b)
,

where b, s ∈ S1.
Condition (3.40) for y of the form y = (a, b) means for any f :∫ ∫

f( (a, b), (a, s) ) νa(d s) dM(a, b) =∫ ∫
f( (a, s), (a, b) ) δ−1( (a, b), (a, s) ) νa(d s) dM(a, b) =∫ ∫

f( (a, s), (a, b) ) Q(s, b) νa(d s) dM(a, b).

Now, considering above f( (a, b), (a, s) )V (s) instead of f( (a, b), (a, s) ),
we get the equivalent condition: for any f :∫ ∫

f( (a, b), (a, s) )W (s) d s dM(a, b) =
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∫ ∫
f( (a, s), (a, b) ) W (s) d s dM(a, b).

As dM = W (b)d b da we get the alternative condition∫ ∫
f( (a, b), (a, s) )W (s) d s W (b)d b d a =∫ ∫
f( (a, s), (a, b) ) W (s) d s W (b)d b d a , (3.41)

which is true because we can exchange the variables b and s on the first term
above.

Example 3.7.5. Consider the groupoid G associated to the equivalence re-
lation of example 3.1.5. In this case x and y are on the same class when
there exists an N > 0 such that xj = yj, for any j ≥ N . Each class has a
countable number of elements.

Consider a Hölder potential A :
−→
Ω → R.

For (x, y) ∈ G it is well defined

δ(x, y) = Π∞i=0

eA(σi(x))

eA(σi(y))
.

Consider the counting Haar system ν on each class.
We say f : G → R is admissible if for each class there exist a finite

number of non zero elements.

The quasi-invariant condition (3.5) for the probability M on
−→
Ω means:

for any admissible integrable function f : G→ R we have∑
s

∫
f(s, x)dM(x) =

∑
s

∫
f(x, s) Π∞i=0

eA(σi(s))

eA(σi(x))
dM(x). (3.42)

Suppose B is such that B = A+ log h− log(g ◦ σ)− c. This expression is
called a coboundary equation for A and B. Under this assumption, as x ∼ s,
we get ∑

s

∫
f(x, s) Π∞i=0

eB(σi(x))

eB(σi(s))
dM(x) =

∑
s

∫
f(x, s) Π∞i=0

eA(σi(x))

eA(σi(s))

h(x)

h(s)
dM(x).
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Take f(s, x) = g(s, x)h(x), then, as M is quasi-invariant for A, we get
that∑

s

∫
g(x, s) Π∞i=0

eB(σi(x))

eB(σi(s))
h(x) dM(x) =

∑
s

∫
g(s, x)h(x) dM(x). (3.43)

As g(x, s) is a general function we get that h(x) dM(x) is quasi-invariant
for B.

Any Hölder function A is coboundary to a normalized Hölder potential.
In this way, if we characterize the quasi-invariant probability M for any
given normalized potential A, then, we will be able to determine, via the
corresponding coboundary equation, the quasi-invariant probability for any
Hölder potential.
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