
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

JUCEMAR LUIS MONTEIRO

Algorithms to Improve Area Density
Utilization, Routability and Timing During

Detailed Placement and Legalization of
VLSI Circuits

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Microeletronics

Advisor: Prof. Dr. Marcelo de Oliveira Johann
Coadvisor: Prof. Dr. Laleh Behjat

Porto Alegre
May, 17th 2019

CIP — CATALOGING-IN-PUBLICATION

Monteiro, Jucemar Luis

Algorithms to Improve Area Density Utilization, Routabil-
ity and Timing During Detailed Placement and Legalization of
VLSI Circuits / Jucemar Luis Monteiro. – Porto Alegre: PGMI-
CRO da UFRGS, 2019.

246 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2019. Advisor: Marcelo de Oliveira Johann; Coadvisor:
Laleh Behjat.

1. Microelectronic. 2. EDA. 3. Placement. 4. Placement
Optimization. 5. Network Flow. 6. Branch and Cut. I. Johann,
Marcelo de Oliveira. II. Behjat, Laleh. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Tiago Roberto Balen
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

"If I have seen further it is by standing on the shoulders of Giants."

— SIR ISAAC NEWTON

Esta tese é dedicada aos meus pais, Juvencio e Gilvite,

e ao meu avô, Angelo Baldissera.

This thesis is dedicated to my parents, Juvencio and Gilvite,

and my grandparent, Angelo Baldissera.

ACKNOWLEDGEMENT

To my parents.

To my supervisors Dr. Marcelo Johann and Dr. Laleh Behjat

To the evaluation committee members Dr. Andrew Kahng, Dr. Patrick Groeneveld

and Dr. Ismail Bustany.

To the UFRGS colleagues Guilherme, Mateus, Éder, Henrique, Isadora and Gra-

cieli.

To the University of Calgary and ELAP program for the researching exchange

scholarship.

To Nima for the collaboration.

To Synopsys and Cadence for the internship opportunities.

To the CAPES for the Ph.D. scholarship.

The thesis work had soundtracks composed by Epica, Within Temptation, Delain,

Amaranthe, AC/DC, Black Sabbath, Iron Maiden, Scorpions, Taylor Davis, and Lindsey

Stirling.

ABSTRACT

Placement is a challenging stage in the Very Large-Scale Integration (VLSI) physical de-

sign flow. In modern VLSI designs, several design restrictions have been imposed to ad-

dress the complexity of advanced Complementary Metal-Oxide Semiconductor (CMOS)

fabrication nodes. Design restrictions have a considerable influence on achieving the

optimized circuit solution. The quality of the placement solution has a significant im-

pact on circuit performance. In placement, achieving circuit requirements of timing and

routability is a very challenging task. Timing and routability requirements are especially

hard to achieve in circuits which have regions with high-density area utilization. More-

over, the quality of placement has a direct influence on circuit quality and optimization

effort of Clock Tree Synthesis (CTS), routing, and post-placement algorithms. In this

thesis, the first contribution is an incremental timing-driven placement algorithm subject

to routability. The proposed timing-driven placement algorithm relies on net and path

characteristics to compute optimized-timing cell positions. Optimized-timing positions

are accepted only if these positions are inside regions free of routing violation. The sec-

ond contribution is a cell spreading algorithm. The objective is to move cells out of

high-density regions considering adverse side effects on moved cells. The proposed cell

spreading algorithm relies on network flow and branch and cut techniques to minimize

high-density regions. Area flows are moved from high-density to low-density regions

with optimized cost paths. Therefore, cell concentration is reduced, and white spaces are

opened in high-density regions with minimized adverse side effects on moved cells. Le-

galization, detailed placement, and post-placement algorithms can use these white spaces

to further optimize the placement solution. In high-density regions, white spaces are

limited resources. In the traditional placement flow (global placement, legalization, and

detailed placement), the placement optimization is limited by the strict placement flow.

The proposed cell spreading algorithms can be integrated into a mixed placement flow

that is composed of interleaved legalization and detailed placement algorithms. In this

mixed placement flow, the restriction to optimize detailed placement in a legalized netlist

can be relaxed. Detailed placement algorithms can achieve further placement optimiza-

tion with less restricted placement formulation. The focus of legalization algorithms can

only be to fix cell overlap with minimized adverse effects on placement, instead of also

fix density area violation. The proposed cell spreading algorithm is applied in legalization

and detailed placement stages to optimize area density utilization. The proposed legaliza-

tion algorithm has achieved improvement on average (30%) and maximum (350%) cell

displacement compared to the state of the arts legalization algorithms. In detailed place-

ment, the proposed algorithm has been evaluated in industrial and academic placement

flows. In industrial placement flow, the proposed cell spreading algorithm has achieved

improvement in cell displacement, power consumption, and timing. The proposed cell

spreading algorithm can improve the quality of placement in mixed placement flow in

both industrial and academic environments. The proposed algorithm provides a uniform

cell distribution placement in constrained designs with minimized adverse side effects on

moved cells.

Keywords: Microelectronic. EDA. Placement. Placement Optimization. Network Flow.

Branch and Cut.

Algoritmos para Aprimorar Densidade de Utilização de Área, Rotabilidade e

Tempo de Propagação Durante o Posicionamento Detalhado e a Legalização de

Circuitos VLSI

RESUMO

O posicionamento é um estágio desafiante no fluxo de projeto físico para integrar circui-

tos VLSI (sigla do inglês Very Large-Scale Integration (VLSI)). Em projetos modernos

de circuitos VLSI, diversas restrições de projeto são impostas para visar a complexidade

dos avançados nodos de fabricação CMOS (sigla do inglês). As restrições de projeto têm

uma considerável influência em obter soluções otimizadas de circuitos. A qualidade do

posicionamento tem uma significativa influência no desempenho do circuito. No posici-

onamento, obter os requisitos do circuito em tempo de propagação e rotabilidade é uma

tarefa desafiante. Requerimentos de tempo de propagação e rotabilidade são especial-

mente difíceis de obter em circuitos que tem regiões com alta densidade de utilização de

área. Além disso, a qualidade do posicionamento tem influência direta na qualidade do

circuito e no esforço de otimização dos algoritmos de síntese da árvore de relógio (sigla

do inglês CTS), roteamento e pós-posicionamento otimização. A primeira contribuição

apresentada nessa tese é um algoritmo incremental de posicionamento para otimizar vi-

olações no tempo de propagação sujeito a rotabilidade. O algoritmo proposto é baseado

em características das redes e dos caminhos de dados para computar posições otimizadas

para as células. Posições otimizadas são aceitas somente se elas estão dentro de regiões

livres de violações de roteamento. A segunda contribuição apresentada nessa tese é um

algoritmo de espalhamento de células. O objetivo é mover células fora de regiões com

alta densidade de área considerando efeitos adversos nas células movidas. O algoritmo

proposto é baseado em técnicas de network flow e branch and cut para minimizar regiões

com alta densidade de área. Fluxos de área são movidos de regiões com alta densidade

de área para regiões com baixa densidade de área com caminhos com custo otimizado.

Assim sendo, a concentração de células é reduzida e espaços são abertos em regiões com

alta densidade de área com minimizado efeitos adversos nas células movidas. Algoritmos

de legalização, posicionamento detalhado e pós-posicionamento podem utilizar esses es-

paços abertos para otimizar mais a solução de posicionamento. Em regiões com alta

densidade de área, espaços são recursos limitados. No fluxo de posicionamento tradici-

onal (posicionamento global, legalização e posicionamento detalhado), a otimização do

posicionamento é limitada pelo fluxo tradicional. O algoritmo proposto de espalhamento

de células pode ser integrado em um fluxo misto de posicionamento que é composto de

algoritmos intercalados de legalização e posicionamento detalhado. Nesse fluxo de po-

sicionamento misto, a restrição para otimizar posicionamento detalhado em uma netlist

legalizada pode ser relaxada. Algoritmos de posicionamento detalhado podem obter me-

lhor posicionamento com uma formulação de posicionamento menos restrita. O foco dos

algoritmos de legalização pode ser somente remover sobreposição de células com efeitos

adversos minimizados no posicionamento ao invés de também minimizar violações de

densidade de utilização de área. O algoritmo proposto de espalhamento de células é apli-

cado nos estágios de legalização e posicionamento detalhado para otimizar densidade de

utilização de área. O algoritmo proposto de legalização obteve melhoria no espalhamento

médio (30%) e máximo (350%) de células comparado com algoritmos de legalização

estado da arte. No posicionamento detalhado, o algoritmo proposto foi avaliado em flu-

xos de posicionamento industrial e acadêmico. No fluxo de posicionamento industrial,

o algoritmo proposto melhorou espalhamento de células, potência dissipada e tempo de

propagação. O algoritmo proposto de espalhamento de células pode melhorar a quali-

dade do posicionamento em fluxos de posicionamento mistos em ambiente industrial e

acadêmico. O algoritmo proposto fornece posicionamento com distribuição uniforme de

células em projetos limitados com efeitos adversos minimizados nas células movidas.

Palavras-chave: EDA, Posicionamento, Otimização, Network Flow, Branch and Cut.

LIST OF ABBREVIATIONS AND ACRONYMS

ABU Average Bin Utilization

ACD Average Cell Displacement

ACM Association for Computing Machinery

ASIC Application-Specific Integrated Circuit

AT Arrival Timing

B2B Bound to Bound

BFS Breadth-First Search

BIST Built-In Self-Test

CCS Composite Current Source

CMOS Complementary Metal-Oxide Semiconductor

CPPR Common Path Pessimism Removal

CPU Central Processing Unit

CTS Clock Tree Synthesis

DAC Design Automation Conference

DEF Design Exchange Format

DRAM Dynamic Random-access Memory

ECSM Effective Current Source Model

EDA Electronic Design Automation

Eh?L Eh?Legalizer

ELAP Emerging Leaders of the Americas Program

FPGA Field-Programmable Gate Array

FPL FastPlace Legalizer

FSM Finite-state Machine

GCC GNU Compiler Collection

GCell Global Cell

GND Ground

GPU Graphics Processing Unit

GRO Global Routing Overflow

HDL Hardware-Description Language

HPWL Half Perimeter Wire Length

IC Integrated Circuit

ICCAD International Conference on Computer Aided Design

ILP Integer Linear Programming

IO Input/Output

IP-Core Semiconductor Intellectual Property Core

ISCAS International Symposium on Circuits and Systems

ISPD International Symposium on Physical Design

ITDP Incremental Timing-Driven Placement

LAL Look Ahead Legalization

LCB Local Clock Buffer

LEF Layout Exchange Format

LP Linear Programming

MIP Mixed Integer Programming

NDR Non Default Rule

NFCS Network Flow-based Cell Spreading

NFL Network Flow-based Legalization

NLDP Non Linear Delay Model

NPA Non Placeable Area

NP Nondeterministic Polynomial Time

OAL Obstacle-aware Legalization

OF Overfilled

P Polynomial Time

PATMOS International Workshop on Power And Timing Modeling, Optimization and

Simulation

PCB Printed Circuit Board

PEKO Placement Examples with Known Optimal

PLL Phase-locked Loop

PTM Predictive Technology Model

PVT Process, Voltage, and Temperature

QoR Quality of Results

RAITDP Routing-aware Incremental Timing-driven Placement

RAT Required Arrival Timing

RMST Rectilinear Minimum Spanning Tree

RO Routing Overflow

RSA Rectilinear Steiner Arborescence

RSMT Rectilinear Steiner Minimum Tree

RTL Register-Transfer Level

SA Simulated-Annealing

SPEF Standard Parasitic Exchange Format

SRAM Static Random-Access Memory

STA Static Timing Analysis

STST Single-Trunk Steiner Tree

TAU International Workshop on Timing Issues in the Specification and Synthesis of Dig-

ital Systems

TNS Total Negative Slack

TQoR Timing Quality of the Results

VDD Power

VIA Vertical Interconnect Access

VLSI Very Large-Scale Integration

WNS Worst Negative Slack

LIST OF SYMBOLS

|x| Absolute Value

α Alpha

β Beta

C Capacitance

(x, y) Cartesian point

{} Curly Brackets

◦C Degree Celsius

∆ Delta

x
y

Division

∃ Exist an element

= Equal Symbol

∀ For all elements

f(x) Function Sign

γ Gamma

> Greater Than

≥ Greater Than or Equal to

∈ In Symbol

∞ Infinity

I Integer Numbers

< Less Than

≤ Less Than or Equal to

m Meter

m Milli

µ Micro

mod Modulo Operation

× Multiplication

n Nano

N Natural Numbers

− Negative or Subtraction Sign

ω Omega

() Parenthesis

% Percentage

π Pi

+ Positive or Addition Sign

R Real Numbers

RC Resistance-Capacitance

→ Right Arrow

s Second

√
x Square Root

{x, y} Set Sign∑
Summation

τ Tau

−→x Vector representation

| Vertical Slash

V Volt

LIST OF FIGURES

Figure1.1 Digital design flow. In this thesis, the proposed contributions are to
optimized placement solutions in legalization and detailed placement stages32

Figure2.1 Layout of inversor (a) and NAND (b) standard cells. Layout is a set
of rectangular geometries that abstract electric functions. Standard cells are
implementations of Boolean functions ..38

Figure2.2 Multideck standard cells have cell height higher than default cell height.
These standard cells have overlap with two or more rows39

Figure2.3 An example of a digital circuit. Digital circuit may be composed of
macroblocks, cells, Input/Output (IO) pins or pads, wires and Vertical Inter-
connect Accesses (VIAs). Cells are placed inside circuit core boundaries.
These cells are aligned to row and site boundaries ..40

Figure2.4 A row is a small part of the circuit core. Rows are divided into site
areas. Cells must be aligned to the left, bottom and top site boundaries. Rows
also share power rails with neighboring rows. Power rails are parallel and
horizontal metal track to provide Power (VDD) and Ground (GND) to cells41

Figure2.5 In digital circuits, the clock is a periodic square wave. The clock signal
controls and synchronizes operations of sequentical circuit elements....................42

Figure2.6 In combinational circuits, the circuit operation depends only on chang-
ing input signals. Combinational circuits do not have memory elements44

Figure2.7 In sequential circuits, the circuit operation depends on clock transition
to launch input data. Sequential circuits have memory elements44

Figure2.8 Corner cases to characterize digital circuits. The best case provides the
optimal condition to a signal propagation while the worst case provides the
inverse condition to a signal propagation..47

Figure2.9 An example of a part of a digital circuit ..49
Figure2.10 Representative Static Timing Analysis (STA) graph of the circuit in

Figure 2.9 ..49
Figure2.11 Required arrival timing window. A data signal must arrive at the end

point after the minimum (early) and before the maximum (late) required ar-
rival timings ..50

Figure2.12 π wire model. Electric properties of wire segments are modeled with
two capacitors that are connected by resistor ..52

Figure2.13 T wire model. Electric properties of wire segments with two resistors
and one capacitor. One terminal of each resistor is connected to the capacitor53

Figure2.14 Example of a structured RC tree network. Electric signal delay is com-
puted from source to P5 points with Elmore model ...53

Figure2.15 Digital design flow comprises of three main parallel flows that are split
into several steps. The circuit implementation starts with requirement doc-
uments. After several synthesis, optimization, verification, simulation steps,
the circuit layout is ready to be manufactured ..55

Figure2.16 The physical synthesis flow that is part of the digital design flow is
split into several sequential optimization steps and parallel stages to estimate
design metrics ...58

Figure3.1 Diagram of intersection among classes Polynomial Time (P), Nondeterministic
Polynomial Time (NP), NP-complete and NP-hard problems................................63

Figure3.2 An example of a graph tree ..65

Figure3.3 Hyperedge nets must be decomposed into a set of pair connections be-
tween only two points using a net model. In this example, the net with five
pins is decomposed into clique, star, hybrid and Bound to Bound (B2B) net
models ...69

Figure3.4 All net pins are connected to each other when hyperedge nets are de-
composed with the clique net model...69

Figure3.5 All net pins of hyperedge nets are connected to a central point in the star
net model...70

Figure3.6 In the hybrid net model, hyperedge nets that have up to 3 pins are de-
composed using the clique net model. Remaining hyperedge nets are decom-
posed using the star net model ..70

Figure3.7 In the B2B net model, net pins are classified into inner and outer pins.
All pins of each net are connected to boundaries of net bound box. Two
independent B2B net models are built for abscissa and ordinate axis of each net .71

Figure3.8 An example of Global Cells (GCells). A GCell grid is a grid of bins
which covers the circuit core. Each GCell has on each border routing capacity.
Routed wires cross GCell border. A GCell grid is a simple and fast way to
estimate routing congestion ...75

Figure3.9 Example to compute centrality of critical timing pins...................................79
Figure3.10 Grids of bins which do not have overlap and have overlap with mac-

roblocks and fixed cells...81

Figure4.1 Placement optimization flow is composed of global placement, legaliza-
tion, and detailed placement stages...85

Figure4.2 Solution space of the Simulated Annealing algorithm...................................88
Figure4.3 Examples of global and legalized placement solutions..................................96
Figure4.4 Bins are connected to their immediate neighbors or the bins on the op-

posite side of macroblocks or blockages. Connected bins are modeled as a
graph ...99

Figure5.1 In the proposed Routing-aware Incremental Timing-driven Placement
(RAITDP) algorithm, timing critical cells are moved to positions which tim-
ing violation is improved and Routing Overflow (RO) is lower than the RO in
current positions..108

Figure5.2 In the proposed RAITDP algorithm, cell movements are rejected if tar-
get positions have RO. Routability restriction is relaxed if both optimized and
current cell positions are inside of the same GCell...109

Figure5.3 The Proposed Routing-aware Incremental Timing-Driven Placement Flow.
Critical timing cells are moved to the local timing-optimized positions subject
to routability and maximum cell displacement constraints...................................110

Figure5.4 Exploring clock skew to minimize early timing violation. End point
register which is the end point of an early timing violation path is moved
closer to its Local Clock Buffer (LCB). In this approach, clock latency is
reduced in the end point register ...113

Figure5.5 Early timing violation is minimized by increasing wire capacitance and
resistance in the combinatorial critical timing cell ...115

Figure5.6 Registers that have the same local clock network are swapped to mini-
mize early timing violation ...117

Figure5.7 End point register of early timing violation paths are moved away from
the data driver cell...120

Figure5.8 Cluster of late critical timing cells is built. Critical timing cells are
moved towards optimized-timing positions. In this approach, late timing vio-
lation is minimized..123

Figure5.9 Critical timing buffer is moved to optimized position. In this position,
the total signal delay is locally minimized in input and output nets of the buffer 127

Figure5.10 Late critical timing cells are moved to optimized-timing positions...........129
Figure5.11 In late critical timing nets, non critical timing sink cells are moved

closer to their driver cells. In this approach, wire capacitance of branches is
reduced in critical timing nets...132

Figure5.12 Moving non critical late timing cells from overfilled bins to a neighbor-
ing bin with white space. In this approach, area density violation is minimized
by moving out non critical timing cell ...134

Figure5.13 Cell displacement constraint and GCell capacity corner cases to com-
prehensively evaluated timing violations and RO improvement from the International
Conference on Computer Aided Design (ICCAD) benchmarks...........................138

Figure5.14 In the original GCell capacity, there is no significant RO from the 2015
ICCAD benchmarks..139

Figure5.15 In the half GCell capacity, there is more RO to properly evaluate the
proposed RAITDP ..140

Figure5.16 The average RO and quality scores for the set Half GCell capacity........144
Figure5.17 The average RO and quality scores for the set Original GCell capacity..145

Figure6.1 Cell spreading approaches are presented. Cells can be directly moved
to the nearest white space location. Optimized-cost paths can be computed
to move cells out from high-density regions through intermediate regions to a
low-density region...150

Figure6.2 Example of flagging cells and computing outflow area151
Figure6.3 Example of search tree to compute optimized-cost path152
Figure6.4 Example of cell movement between neighboring bins155
Figure6.5 Area overfill in bin 1 may be fixed by computing the path composed of

bin 0, bin 1 and bin 2 to spread cells. Cells B and C will be moved to bin 2 to
open space to receive cell A from bin 0 ...159

Figure6.6 The same cell is shared in two pairs of neighboring bins. The shared
cell will cause mismatch in the inflow and outflow in the pairs of neighboring
bins ...167

Figure7.1 Average Bin Utilization (ABU) distributions from the 2006 International
Symposium on Physical Design (ISPD) benchmarks are presented. Circuits
have been placed with the RePlace global placement algorithm..........................179

Figure7.2 Distribution of bins with area density violation, free of area density vi-
olation and invalid bins. The 2006 ISPD contest benchmarks are placed with
the RePlace global placement algorithm ..180

Figure7.3 ABU, and Non Placeable Area (NPA) from the 2006 ISPD benchmarks
are presented. These circuits have been placed with the FastPlace global
placement algorithm..182

Figure7.4 Distribution of bins with area density violation, free of area density vio-
lation and invalid ABU bins. The 2006 ISPD contest benchmarks are placed
with the FastPlace global placement algorithm ...183

Figure7.5 ABU from the 2006 ISPD benchmarks is presented. These circuits have
been placed with the Eh?Placer global placement algorithm185

Figure7.6 Distribution of bins with area density violation, free of area density vi-
olation and invalid ABU bins. The 2006 ISPD contest benchmarks have been
placed with the Eh?Placer global placement algorithm186

Figure7.7 ABU from the 2015 ICCAD benchmarks is presented. These circuits
have been placed with the Eh?Placer global placement algorithm.......................187

Figure7.8 Distribution of bins with area density violation, free of area density vi-
olation and invalid ABU bins. The 2015 ICCAD contest benchmarks have
been placed with the Eh?Placer global placement algorithm188

Figure7.9 Cell displacement from the 2006 ISPD contest benchmarks is presented.
These circuits have been placed with the RePlace global placement algorithm...190

Figure7.10 Cell displacement from the 2006 ISPD contest benchmarks is pre-
sented. These circuits have been placed with the FastPlace global placement
algorithm...193

Figure7.11 Cell displacement of Newblue 3 to 7 circuits from the 2006 ISPD con-
test benchmarks. These circuits have been placed with the Eh?Placer global
placement algorithm..195

Figure7.12 Cell displacement of the proposed Network Flow-based Legalization
(NFL) from the 2015 ICCAD contest benchmarks is presented. Circuits have
been placed with the Eh?Placer global placement algorithm197

Figure8.1 The optimization flow of the proposed Network Flow-based Cell Spread-
ing (NFCS) algorithm in commercial flow ...201

Figure8.2 Experimental configuration of the proposed cell spreading algorithm in
academic environment ..204

Figure8.3 Non-aligned cell spreading and ABU grid graphs204
Figure8.4 ABU distributions from the 2006 ISPD circuits are presented. The cell

spreading and ABU grid graphs are not aligned. Circuits have been placed
with the FastPlace global placement algorithm ..206

Figure8.5 ABU distributions from the 2006 ISPD circuits are presented. Cell
spreading and ABU grid graphs are aligned. Circuits have been placed with
the FastPlace global placement algorithm ..210

LIST OF TABLES

Table3.1 Weights of average area utilization of γ highest overfilled bins......................74
Table3.2 2014 and 2015 ICCAD contest weights to compute the Timing Quality

of the Results..78

Table5.1 Results comparing the developed RAITDP with the top 3 teams from the
2015 ICCAD contest and Incremental Timing-Driven Placement (ITDP) (FLACH
et al., 2016) for the set Original GCell capacity of Fig. 5.13.............................141

Table5.2 Timing violation and routing overflow improvement by changing cell dis-
placement constraint and GCell capacity as introduced in Figure 5.13...............143

Table7.1 Chracteristics of the 2006 ISPD contest circuit bechmarks...........................175
Table7.2 Chracteristics of the 2015 ICCAD contest circuit bechmarks.......................177
Table7.3 ABU, NPA and area density constraints of the 2006 ISPD circuit bench-

marks are given. These circuits have been placed with the RePlace global
placement algorithm. ABU, NPA and area density constraints are presented
in percentages. ..179

Table7.4 ABU, NPA and area density constraints of the 2006 ISPD circuit bench-
marks are presented. These circuits have been placed with the FastPlace
global placement algorithm. ABU, NPA and area density constraints are pre-
sented in percentages. ...182

Table7.5 ABU, NPA and area density constraints of the 2006 ISPD circuit bench-
marks are presented. These circuits have been placed with the Eh?Placer
global placement algorithm. ABU, NPA and area density constraints are pre-
sented in percentages. ...184

Table7.6 ABU, NPA and area density constraints of the 2015 ICCAD circuit bench-
marks are presented. These circuits have been placed with the Eh?Placer
global placement algorithm. ABU, NPA and area density constraints are pre-
sented in percentages. ...186

Table7.7 Experimental Results of the proposed NFL algorithm are compared with
FastPlace Legalizer (FPL) and Jezz. The 2006 ISPD circuit benchmarks have
been placed with RePlace algorithm..189

Table7.8 Experimental Results of the proposed NFL algorithm are compared with
FastPlace Legalizer (FPL) and Jezz. The 2006 ISPD benchmarks are placed
with the FastPlace algorithm..192

Table7.9 The proposed NFL algorithm is evaluated from the 2006 ISPD bench-
marks. The 2006 ISPD benchmarks have been placed with the Eh?Placer al-
gorithm. Experimental results of the proposed NFL algorithm are compared
with Jezz and Eh?Legalizer (Eh?L) algorithms. ..194

Table7.10 Experimental Results of the proposed NFL algorithm are compared
with the Jezz legalizer. The 2015 ICCAD benchmarks are placed with the
Eh?Placer algorithm...196

Table8.1 Experimental results in the commercial environment. The proposed NFCS
algorithm is inserted in two stages of the commercial detailed placement flow.
The two flows (with and without) the proposed NFCS algorithm are compared.202

Table8.2 ABU improvement from the proposed NFCS algorithm in non-aligned
ABU and cell spreading grid graphs. ABU, NPA and area density restriction
(density) are presented in percentage. ...206

Table8.3 The Average Cell Displacement (ACD) of the proposed NFCS algorithm
in non-aligned ABU and cell spreading grid graphs. The ACD is presented
in number of row heights. ...207

Table8.4 Legalization results from Jezz and CSJ flows in non-aligned ABU and
cell spreading grid graphs. ..208

Table8.5 ABU improvement from the proposed NFCS algorithm in aligned ABU
and cell spreading grid graphs. ABU, NPA and area density restriction (den-
sity) are presented in percentage. ..209

Table8.6 ACD of the proposed NFCS algorithm in aligned ABU and cell spreading
grid graphs. ACD is presented in number of row heights.211

Table8.7 Legalization results from Jezz and CSJ flows in aligned ABU and cell
spreading grid graphs. ...212

Table8.8 Experimental results on academic circuits. The proposed NFCS algo-
rithm is evaluated in two legalization flows. The first flow is composed only
of the legalizer while the second flow is composed of the proposed algorithm
and the legalizer. ..214

Table8.9 Experimental results of the proposed algorithm in academic benchmarks.
The proposed NFCS algorithm is evaluated in two flows. In one flow, MDP (LIN
et al., 2016) binary is executed before NFCS algorithm. In the second flow,
only MDP is executed. ...214

TableA.1 Distribution of bins with ABU violation (ABU 1% to 20%), Overfilled
(OF) bins, bins free of OF, NPA, invalid and total bins.233

TableA.2 The number of bins with area density violations, free of overfill and
invalid ABU. The 2006 ISPD contest benchmarks are placed with the Fast-
Place global placement algorithm. ..235

TableA.3 The total number of bins are presented. These bins are classified into
area density violation, free of overfill area and invalid types. In the 2006
ISPD contest benchmarks, Newblue circuits from 3 to 7 have been placed
with the Eh?Placer global placement algorithm. ..235

TableA.4 The total number of bins are presented. These bins are classified into
area density violation, free of overfill area and invalid types. The 2015
ICCAD contest circuit benchmarks are placed with the Eh?Placer global
placement algorithm. ..236

TableA.5 Distribution of total cells by row height displacement for circuits from
the 2006 ISPD benchmarks..238

TableA.6 Distribution of cells by row height displacement for circuits from the
2006 ISPD benchmarks..238

TableA.7 Distribution of total cells by row height displacement239
TableA.8 Distribution of cells by row height displacement for circuits from the

2006 ISPD benchmarks..239
TableA.9 Distribution of total cells by row height displacement for Newblue 3 to

7 circuits from the 2006 ISPD benchmarks. ..240
TableA.10 Distribution of cells by row height displacement for Newblue 3 to 7

circuits from the 2006 ISPD benchmarks. ...240
TableA.11 Distribution of total cells by row height displacement for circuits from

the 2015 ICCAD benchmarks. ...241
TableA.12 Percentage of cell distribution by row height displacement for circuits

from the 2015 ICCAD benchmarks. ..241

TableB.1 The Electronic Design Automation (EDA) contests in past years hosted
by ISPD..245

TableB.2 The EDA contests in past years hosted by International Workshop on
Timing Issues in the Specification and Synthesis of Digital Systems (TAU)
and International Workshop on Power And Timing Modeling, Optimization
and Simulation (PATMOS) ..245

TableB.3 The EDA contests in past years hosted by Design Automation Confer-
ence (DAC) ..245

TableB.4 The EDA contests in past years hosted by ICCAD.......................................246

CONTENTS

1 INTRODUCTION...29
1.1 Motivation..30
1.2 Contributions...31
1.3 Thesis Organization ..33
2 DIGITAL CIRCUIT DESIGN...37
2.1 Introduction...37
2.2 Digital Circuit Definitions ..37
2.2.1 Library Cells ..38
2.2.2 Digital Circuit ..39
2.2.3 Manufacturing Process...41
2.2.4 Clock Signal...42
2.2.5 Memory Components...43
2.2.6 Combinational and Sequential Circuits ...43
2.2.7 Digital Circuit Designs ..44
2.2.8 Circuit Power and Timing Characterization ..45
2.2.9 Digital and Analogical Circuits ...47
2.3 Static Timing Analysis ..47
2.4 Electrical Wire Models ...51
2.4.1 Traditional Electrical Wire Models..52
2.5 Digital Design Flow...54
2.5.1 Design flow ..54
2.5.2 Test Structure Flow ..56
2.5.3 Formal Verification and Simulation ...56
2.5.4 Physical Synthesis Flow...57
2.6 Summary..58
3 ELECTRONIC DESIGN AUTOMATION...61
3.1 Introduction...61
3.2 Algorithm Definitions ...62
3.3 Graph Definitions..64
3.4 Optimization Algorithms..65
3.4.1 Network Flow ..66
3.4.2 Branch and Cut ..67
3.5 Models to Decompose Hyperedge Nets ...68
3.6 Circuit Evaluation Metrics...71
3.6.1 Wire Length ...72
3.6.2 Area Density Utilization ..73
3.6.3 Routing Congestion ...75
3.6.4 Timing Violations ..77
3.6.5 Driver Strength, Criticality and Centrality...78
3.6.5.1 Driver strength ..78
3.6.5.2 Criticality ..79
3.6.5.3 Centrality...79
3.6.6 Cell Displacement..80
3.7 Grid of Bins for Network Flow-based Cell Spreading Algorithms81
3.8 Physical Synthesis ...82
3.9 Summary..83
4 DIGITAL CIRCUIT PLACEMENT...85
4.1 Introduction...85

4.2 Global Placement ..86
4.2.1 Stochastic Global Placement..87
4.2.2 Partitioning-based Placement...89
4.2.3 Analytical Global Placement ...90
4.2.4 Wire Length-driven Global Placement ..93
4.2.5 Timing-driven Global Placement ...94
4.2.6 Routing-driven Global Placement..95
4.3 Legalization ...96
4.3.1 Network Flow-based Legalization Algorithms..98
4.4 Detailed Placement..101
4.4.1 Wire Length-driven Detailed Placement..102
4.4.2 Timing-driven Detailed Placement ..103
4.4.3 Routing-driven Detailed Placement ...104
4.5 Summary..105
5 ROUTING-AWARE INCREMENTAL TIMING-DRIVEN PLACEMENT.......107
5.1 Introduction...107
5.2 The Proposed Routing-aware Incremental Timing-driven Placement Op-

timization Algorithm ..108
5.2.1 Algorithm Outline..111
5.2.2 Early Optimization...111
5.2.2.1 Clock Skew Optimization ...112
5.2.2.2 Iterative Cell Spreading ..114
5.2.2.3 Register Swap ...117
5.2.2.4 Register-to-Register Path Fix..120
5.2.3 Late Optimization ..121
5.2.3.1 Clustered Cell Movement ...122
5.2.3.2 Buffer Balancing ...127
5.2.3.3 Cell Balancing...128
5.2.3.4 Driver Load Capacitance Optimization ..131
5.2.4 Area Density Optimization ..133
5.2.5 Cell Movement Algorithm...135
5.3 Experimental Results..137
5.3.1 Experimental Setup..137
5.3.2 Numerical Results..140
5.4 Summary..145
6 THE PROPOSED NETWORK FLOW-BASED CELL SPREADING AL-

GORITHM ..147
6.1 Introduction...147
6.2 Overview of the Proposed Network Flow-based Cell Spreading Technique ...148
6.2.1 An Example of Cell Spreading ..148
6.2.2 Overview of the N-ary Tree to Search Optimized-Cost Paths149
6.2.3 Cell Movement...154
6.3 Grid Graph..154
6.4 The Proposed Cell Spreading Algorithm..155
6.4.1 Path Augmentation Algorithm...160
6.4.2 Compute Outflow Area from Source Bin ..163
6.4.3 Cell Movement Algorithm...165
6.5 Summary..166
7 THE PROPOSED NETWORK FLOW-BASED CELL SPREADING AP-

PLIED IN LEGALIZATION...169
7.1 Introduction...169

7.2 Correlated Network Flow-based Legalization Algorithms170
7.3 The Proposed Network Flow-based Legalization Algorithm............................171
7.3.1 Cell Legalization..172
7.4 Experimental Results..172
7.4.1 Characteristics of the Circuits in the Contest Benchmarks..................................173
7.4.1.1 Characteristics from the 2006 ISPD Benchmarks ..173
7.4.1.2 Characteristics from the 2015 ICCAD Benchmarks...176
7.4.2 Global Placement Results ..178
7.4.2.1 RePlace Solution from the 2006 ISPD Benchmarks...178
7.4.2.2 FastPlace Solution from the 2006 ISPD Benchmarks181
7.4.2.3 Eh?Placer Solution from the 2006 ISPD Benchmarks183
7.4.2.4 Eh?Placer Solution from the 2015 ICCAD Benchmarks..................................184
7.4.3 Experimental Results of Legalization..187
7.4.3.1 Legalization Results of the RePlace placement solutions from the 2006

ISPD contest benchmarks ...187
7.4.3.2 Legalization Results of the FastPlace placement solutions from the 2006

ISPD contest benchmarks ...190
7.4.3.3 Legalization Results of the Eh?Placer placement solutions from the 2006

ISPD contest benchmarks ...194
7.4.3.4 Legalization Results of the Eh?Placer placement solutions from the 2015

ICCAD contest benchmarks ...195
7.5 Summary..197
7.5.1 Summary of Global Placement Solutions ..198
7.5.2 Summary of Legalization Solutions...198
8 THE PROPOSED NETWORK FLOW-BASED CELL SPREADING AP-

PLIED IN DETAILED PLACEMENT...199
8.1 Introduction...199
8.2 The Proposed Network Flow-based Cell Spreading Algorithm200
8.3 Experimental Results..201
8.3.1 Evaluation of the proposed NFCS algorithm in Commercial Environment201
8.3.2 Evaluation of the proposed NFCS algorithm in academic circuits......................203
8.3.2.1 Experimental Results in benchmarks from the 2006 ISPD contest in non-

aligned grid graphs..205
8.3.2.2 Experimental Results in benchmarks from the 2006 ISPD contest in aligned

grid graphs ..208
8.3.2.3 Experimental Results in benchmarks from the 2014 and 2015 ICCAD contests211
8.4 Summary..213
9 CONCLUSIONS ...215
9.1 Summary of Contributions ..216
9.2 Future Works...218
9.3 Publications, Awards, and Open-Source Framework219
9.3.1 Journal Publication...219
9.3.2 Conferences, Symposiums and Workshops ...219
9.3.3 Awards ...220
9.3.4 Open-source Framework in EDA...220
REFERENCES...221
APPENDIX A — EXTRA EXPERIMENTAL RESULTS OF THE PROPOSED

NETWORK FLOW-BASED LEGALIZATION ALGORITHM233
A.1 Global Placement Results..233
A.1.1 RePlace Solution from the 2006 ISPD Benchmarks...233
A.1.2 FastPlace Solution from the 2006 ISPD Benchmarks ..234

A.1.3 Eh?Placer Solution from the 2006 ISPD Benchmarks..234
A.1.4 Eh?Placer Solution from the 2015 ICCAD Benchmarks....................................236
A.2 Legalization Experimental Results...236
A.2.1 Legalization Results in the RePlace placement solutions from the 2006 ISPD

contest benchmarks...236
A.2.2 Legalization Results in the FastPlace placement solutions from the 2006

ISPD contest benchmarks ...237
A.2.3 Legalization Results in the Eh?Placer placement solutions from the 2006

ISPD contest benchmarks ...240
A.2.4 Legalization Results in the Eh?Placer placement solutions from the 2015

ICCAD contest benchmarks ...240
APPENDIX B — ELECTRONIC DESIGN AUTOMATION CONTESTS...........243
B.1 Circuit Benchmarks ...243
B.2 List of Contest Subjects ...244

29

1 INTRODUCTION

The fast advancements in Complementary Metal-Oxide Semiconductor (CMOS)

technology has allowed an increase in the density of transistors and to integrate more

features in Integrated Circuits (ICs). Advanced CMOS technologies imposes a significant

number of design rules to improve manufacturability. In digital design flow, new design

rules restrict the search space for optimization algorithms. The fast increase in density

of transistors and shrinking of CMOS technology imposes new optimization challenges

to the digital design flow. Modern circuits may have millions of cells and billions of

transistors. These modern circuits may also be composed of thousands of macroblocks.

For example, a 32 nm Intel Core i7 (INTEL. . . , 2018) microprocessor has 2.7 billions

transistors (KURD et al., 2010).

Digital design flow is a sequence of steps to elaborate and to synthesize digital cir-

cuits. Design flow is split into 1) circuit synthesis, 2) simulation and formal verification,

and 3) implementation of test structures. In design flow, the initial step is to elaborate

the circuit requirement document. Then, circuit micro-architecture is designed. Circuit

behavior is coded in Register-Transfer Level (RTL) description. Logic functions in RTL

are optimized in the logic synthesis stage. In this synthesis stage, the optimized circuit

is mapped to library cells. In the last stage (physical synthesis), the circuit layout is built

and optimized. Circuit floorplan is established. Cells are placed in optimized positions,

and pins are connected with Vertical Interconnect Accesses (VIAs) and wire segments.

Physical synthesis stage is split into 1) floorplanning, 2) placement, 3) Clock Tree Syn-

thesis (CTS), and 4) routing. The traditional placement flow is divided into 1) global

placement, 2) legalization and 3) detailed placement. Simulation and formal verification

are performed in parallel to the synthesis flow. The objective simulation and formal veri-

fication is to detect logic errors in netlist and layout. A second flow is also performed in

parallel to design and to implement test structures.

Digital design flow is composed of several optimization algorithms. These al-

gorithms rely on heuristics and formal methods to optimize circuit objectives subject to

constraints. In global placement, optimized rough cell positions are computed to mini-

mize total wire length subject to area density utilization. Circuit timing and routability re-

quirements are directly or indirectly considered while optimizing global placement. Cell

overlapping and cell alignment to rows are relaxed in global placement. In legalization,

cells are placed in positions where cells are aligned to rows and are free of cell overlap-

30

ping. Finally, in detailed placement, the circuit is locally optimized. One cell or a small

set of cells are moved to optimized positions in each algorithm iteration. The common

objectives to optimized in detailed placement algorithms are 1) wire length, 2) power

consumption, 3) timing violations, 4) routability, and 5) manufacturability.

Optimizing timing and routability in placement is a challenging task. Timing and

routability requirements are especially hard to be achieved in circuits that have regions

with high-density area utilization. Usually, timing and routability optimization algorithms

relax routability and timing constraints, respectively. The quality of the placement solu-

tion has a direct impact on the quality of the circuit solution and the optimization effort

of the CTS, routing, and post-placement algorithms.

Placement may be stated as an optimization problem with objectives and con-

straints. The typical placement objectives are 1) minimizing total wire length, and 2)

optimizing area density utilization (KIM; LEE; MARKOV, 2012). Typical placement

constraints are 1) maximum area density utilization, 2) maximum signal delay, 3) maxi-

mum routing resources, and 4) design rules. Placement algorithms rely on heuristics and

mathematical formulations to optimize placement solution. Placement constraints im-

pose limits to the search space to optimize the placement solution (ALPERT et al., 2012;

MARKOV; HU; KIM, 2015).

1.1 Motivation

Placement is a hard problem to obtain an optimized solution. Optimization place-

ment algorithms depend heavily on heuristics and formal methods. Advanced CMOS

technologies impose new design restrictions which must be observed. Placement problem

formulation and design restrictions open opportunities to research heuristics and formal

methods for placement algorithms to improve placement solution.

In detailed placement, achieving an optimized placement solution in high-density

regions is a challenging task. In high-density regions, the lack of white spaces severely

limits to improve the quality of placement solution. On the other hand, opening white

spaces in high-density regions can be a costly operation regarding the adverse side effects

in the placement and required computing resources. A rough cell spreading algorithm

can lead to significant adverse side effects on moved cells. Circuit constraints may be

very challenging to achieve with a rough cell spreading procedure. Therefore, a cell

spreading algorithm with minimized adverse side effects on moved cells can aid place-

31

ment optimization algorithms indirectly. Newly opened white spaces can be used by these

optimization algorithms to further improve the placement solution.

In the detailed placement stage, optimization algorithms compute optimized-positions

to move cells. In optimized-positions, white spaces are required to place the cells. De-

tailed placement algorithms could improve the placement solution if white spaces are

available in high-density regions. Moreover, the traditional placement flow (global place-

ment, legalization and detailed placement) limits placement optimization. Usually, de-

tailed placement algorithms require the input netlist to be legalized. These detailed place-

ment algorithms commonly provide legal-optimized placement solution. Several de-

tailed placement algorithms may optimize placement with relaxed legalization constraint.

Therefore, the placement solution can be further improved. Legalization algorithms with

minimized cell displacement can later perform circuit legalization.

The fast advances in CMOS technology imposes more restrictions and limits search

space to achieve optimized placement solution. Placement algorithms require complex

heuristics and advanced optimization techniques to improve restricted placement formu-

lations. Placement objectives and constraints could be addressed together while moving

cells to optimized positions. Extra computing resources are required to achieve this op-

timized placement solution. Therefore, placement algorithms which can optimize placed

netlist with several objectives, numerous constraints, and minimized computing resources

are required. These algorithms can further improve the placement solution by smartly

exploring the relation of objectives and constraints. A cell spreading algorithm could pro-

vide a uniform cell distribution with minimized side effects on moved cells. Therefore,

detailed placement algorithms can focus to optimize objectives with relaxed area density

constraint.

1.2 Contributions

In this thesis, the four main contributions are listed as following.

• Development of a routing-aware incremental timing-driven detailed placement

algorithm. Detailed placement algorithms either optimize timing or routability. In

this thesis, a timing-driven detailed placement algorithm subject to routability is

proposed. In the proposed algorithm, optimized-timing cell positions are computed

subject to routing overflow restriction.

32

Figure 1.1: Digital design flow. In this thesis, the proposed contributions are to optimized
placement solutions in legalization and detailed placement stages

Source: Author (2019).

• Optimization of area utilization through cell spreading algorithm. A cell spread-

ing algorithm using network flow and branch and cut techniques is proposed. Optimized-

cost paths are computed using these techniques to move cells out from high-density

regions. A cell displacement cost model in which the history and direction of cell

movements are integrated into the proposed cell spreading algorithm. In this cost

model, the direction of cell movements close to or far away from initial positions is

easily obtained. Cells which are going to be moved closer to initial positions further

improve cell displacement. Otherwise, cell displacement is increased.

• Development of a legalization algorithm using the proposed cell spreading

technique. The network flow-based cell spreading technique is used in the pro-

posed network flow-based legalization algorithm. The proposed cell spreading al-

gorithm is used to optimize area density utilization. In cell legalization, optimized-

legal cell positions are also searched in the neighboring rows. Combined cell

spreading and cell legalization techniques allow for the achievement of further cell

displacement optimization.

• Optimization of area density utilization in detailed placement using the pro-

posed cell spreading technique. The cell spreading technique is used to optimize

area density utilization in detailed placement. Cells are moved out from high-

33

density regions subject to maximum cell displacement constraint. The proposed

algorithm opens white spaces in high-density regions. These white spaces can be

used by other detailed placement algorithms to further achieve circuit improvement.

In the cell spreading procedure, cell movements can be subject to several restric-

tions (e.g., timing, and routability). The proposed algorithm has been implemented

in commercial and academic environments. In both environments, the proposed

algorithm has contributed to further improve the placement solution.

1.3 Thesis Organization

This thesis is organized with this introductory chapter and eight chapters summa-

rized as following.

Chapter 2: In chapter 2, an introduction of digital circuits and digital design

is presented. The chapter introduction is given in Section 2.1. In Section 2.2, circuit

definitions are presented. Static Timing Analysis (STA) and electrical wire models to

estimate timing propagation of electric signals are presented in Sections 2.3 and 2.4,

respectively. Electric signal delay is essential data to guide optimization algorithms in

logic and physical synthesis. Digital design flow is introduced in Section 2.5. Digital

design flow is a sequence of steps to elaborate circuit requirements, to implement circuit

microarchitecture, to code and to synthesize netlist. Finally, in Section 2.6, the chapter

summary is shown.

Chapter 3: In this chapter, Electronic Design Automation (EDA) concepts and

correlated placement algorithms and techniques are introduced. In Section 3.1, the chapter

introduction is shown. Algorithm and graph definitions are briefly presented in Sections

3.2 and 3.3, respectively. Optimization techniques, especially network flow and branch

and cut are introduced in Section 3.4. In Section 3.5, net models to decompose hyperedge

nets for placement optimization algorithms are shown. In Section 3.6, metrics to evaluate

the quality of placement solution are presented. Grid graph of bins to compute optimized

paths in the proposed cell spreading algorithms is presented in Section 3.7. In Section 3.8,

physical synthesis in terms of EDA algorithms is given. In this Section, synthesis flow,

algorithms, and definitions are also presented. Finally, the summary of Chapter 3 is shown

in Section 3.9.

Chapter 4: In this chapter, digital circuit placement is introduced. In Section

4.1, the chapter introduction is given. In Section 4.2, global placement, global placement

34

techniques, and placement objectives are discussed. In Section 4.3, legalization and net-

work flow-based legalization are presented. In Section 4.4, detailed placement, detailed

placement techniques, and detailed placement objectives are shown. Relevant and re-

cent placement algorithms are highlighted in Sections 4.2, 4.3, 4.4. Finally, the chapter

summary is given in Section 4.5.

Chapter 5: In this chapter, the proposed algorithm to move critical timing cells to

optimized timing positions subject to routability is presented. In Section 5.1, the chapter

introduction is given. The proposed algorithm optimization flow is presented in Sec-

tion 5.2. Experimental results are discussed in Section 5.3. Finally, conclusions are given

in Section 5.4.

Chapter 6: In this chapter, the proposed network flow-based cell spreading al-

gorithm is presented. In the proposed algorithm, network flow and branch and cut tech-

niques are integrated. The objective is to compute minimum cost paths to move cells out

from high-density regions with minimized adverse side effects. Optimized-cost paths are

searched in an n-ary tree. Branches of the tree are opened only if the total cost of ances-

tor’s bins is lower than the upper limit cost. The upper limit cost is the cost of the current

minimum cost path. This current path is replaced every time a new path with lower cost

is found. In Section 6.1, the chapter introduction is given. In Section 6.2, insights into

the proposed network flow-based cell spreading algorithm are presented. In Section 6.3,

non-overlapping, and overlapping types of grid graphs are given. In Section 6.4, the pro-

posed cell spreading algorithm is discussed. Chapter summary is given in Section 6.5.

The proposed cell spreading algorithm may be applied in legalization and detailed place-

ment with minor adjustments. In this chapter, only the core of the proposed algorithm

without experimental results is given. Applied cell spreading technique in legalization

and detailed placement are presented in Chapters 7 and 8, respectively.

Chapter 7: The proposed cell spreading algorithm, which is shown in Chapter

6, is applied in the legalization stage. In this chapter, the proposed Network Flow-based

Legalization (NFL) algorithm is presented. In the first stage, high-density regions are

minimized with a cell spreading algorithm. Cells are moved out from high-density with

branch and cut, and a network flow-based path augmentation algorithm. Optimized-cell

positions are computed considering the history and direction of cell movements. Opti-

mization of high-density regions is limited by small dimensions of bins and restriction to

overlap bins with macroblocks and fixed cells. In the second stage, cells are placed in

legal positions. Legal positions are also searched in neighboring rows. In Section 7.1, the

35

chapter introduction is given. In Section 7.2, correlated network flow-based legalization

algorithms are presented. In Section 7.3, the proposed network flow-based legalization al-

gorithm is shown. Experimental results are discussed in Section 7.4. Finally, the chapter

summary is presented in Section 7.5.

Chapter 8: The proposed cell spreading algorithm, which is presented in Chap-

ter 6, is applied in the detailed placement stage. In this chapter, the proposed Network

Flow-based Cell Spreading (NFCS) algorithm is presented. Cells are moved out from

high-density regions with minimized cell displacement cost. In the cell displacement cost

model, optimized cost positions are computed considering the direction and the history

of cell movements. This cell spreading algorithm has larger bin dimensions and relaxed

restrictions of bin overlapping with macroblocks and fixed cells. In Section 8.1, the chap-

ter introduction is given. In Section 8.2, the proposed network flow-based cell spreading

algorithm is presented. Experimental results are shown in Section 8.3. Finally, chapter

conclusions are given in Section 8.4.

Chapter 9: In this chapter, conclusions are given. In Section 9.1, the list of main

contributions of this thesis are presented. Potential future research directions are given

in Section 9.2. Reference of published journal and conference papers, awards, and the

open-source framework are shown in Section 9.3.

36

37

2 DIGITAL CIRCUIT DESIGN

2.1 Introduction

The design of digital circuits is a challenging task. Modern circuit design strongly

depends on EDA tools. Digital designers use and rely on software tools intensively to

implement, optimize, verify, simulate, and analyze digital circuits. Design stages, such as

circuit synthesis, verification, and simulation, require specialized EDA tools.

In this chapter, relevant term definitions of circuits and circuit design are pre-

sented. This chapter also gives a global view of digital circuits and digital design flow.

Circuits and digital design are associated with a vast amount of terms and keywords.

Several of these terms and keywords may be unknown, confusing or ambiguous. In this

chapter, direct and clear definitions of the main circuits and digital circuit design terms are

given. These term definitions aim to avoid misunderstanding in the following thesis’ chap-

ters. Digital design flow is a complex and vast set of synthesis and optimization stages.

This chapter also gives a foundation of circuit term definitions, static timing analysis,

electrical wire models and digital design flow. In this chapter, term definitions, analysis,

and estimation models and digital design flow are presented in the bottom-up fashion. Ini-

tially, essential components are presented. These components are used in intricate flows,

and models to be integrated in complex circuits.

This chapter is organized as follows: In Section 2.2, definition terms of digital

circuits are given. The main concepts of static timing analysis are presented in Section 2.3.

In Section 2.4, common electric wire models to estimate electric signal characteristics are

highlighted. Digital design flow is presented in Section 2.5. Finally, the chapter summary

is given in Section 2.6.

2.2 Digital Circuit Definitions

In this section, term definitions of digital circuits are given. These term definitions

are grouped in sets related to parts of circuits and digital circuit design.

38

Figure 2.1: Layout of inversor (a) and NAND (b) standard cells. Layout is a set of rect-
angular geometries that abstract electric functions. Standard cells are implementations of
Boolean functions

(a) Inversor Standard Cell Layout (b) NAND Standard Cell Layout

Source: Author (2019).

2.2.1 Library Cells

Digital circuits are composed of an enormous amount of electronic components

which are synthesized and optimized. Electric circuit components are transistors, capac-

itors, resistors, and inductors. Transistors are switches and amplifiers of electric signals.

Transistors are enabled or disabled by changing the voltage level in the gate terminal.

Functional components of digital circuits are transistors.

Standard cells are Boolean functions implemented in semiconductor material with

transistors. In Figures 2.1a and 2.1b, layouts of inversor and NAND standard cells are pre-

sented. In digital circuits, standard-cells are designed with a predefined standard height.

The standard height is approximately the width of ten routing tracks. Standard-cells that

have height length higher than standard height are called multideck or multirow standard-

cells. In Figure 2.2, multideck standard cells are presented.

Power rails are Power (VDD) and Ground (GND) tracks in standard-cell layout.

In the standard-cell layout, power rails are placed a row height distance for each other. In

digital circuits, cells that are horizontal neighbors of each other can share the same power

rails. Standard-cells have n+ 1 power tracks, where n = cell height
row height

and n > 0.

Standard-cell libraries are a set of standard-cell layouts that are electrically char-

acterized in CMOS process nodes. Different layout versions of standard-cells may be

39

Figure 2.2: Multideck standard cells have cell height higher than default cell height. These
standard cells have overlap with two or more rows

Source: Author (2019).

available in standard-cell libraries. The layout of standard-cells may be modified accord-

ing to driver strength (gate width), power leakage, specific applications such as clock

buffers, and test structures. There are several versions of standard-cell layouts for the

same Boolean function. In modern technology libraries, standard-cells’ height may be

higher than the standard height. In this case, the remainder of the modulo operation of the

cell and row heights (cell height mod row height) must be equal to zero.

2.2.2 Digital Circuit

In digital circuits, optimized-logic functions are mapped to standard-cells. Cells

are instances of standard-cells that logic functions have been mapped. The same standard-

cell may be replicated numerous times in digital circuits. Digital circuits are composed of

thousands to millions of cells and up to thousands of macroblocks. Die is a small block

of semiconductor material where electronic components are manufactured. Die size is

determined by the necessary space to place circuit cells and macroblocks. In some digital

circuits, extra space is required to place pads. Circuit core is the area of the die to place

40

cells and macroblocks. Pads are placed inside the die area but outside of the circuit core.

Pads form a ring around the circuit core. Die and circuit cores have the same area and

shape in digital circuits without pads. In Figure 2.3, an example of a digital circuit is

presented.

Figure 2.3: An example of a digital circuit. Digital circuit may be composed of mac-
roblocks, cells, IO pins or pads, wires and VIAs. Cells are placed inside circuit core
boundaries. These cells are aligned to row and site boundaries

Source: Author (2019).

Module is part of the circuit that comprises a set of cells. A module can also be

denominated as submodule. Macrocells, macroblocks or blocks are modules that have

predefined function and fixed dimensions (e.g. Static Random-Access Memory (SRAM),

Dynamic Random-access Memory (DRAM), Central Processing Unit (CPU), hardware

accelerator, and so forth). Usually, macroblocks contain a considerable number of transis-

tors, and macroblocks have dimensions which are significantly higher than standard-cells.

Net is composed of a set of pins that have the same electric potential. Supply nets

are logic connections of power supply pins (VDD and GND). Power pins are connected

with metal segments and VIAs. Digital circuits are described in netlist format. Netlist is

a circuit description of nets which are connected to pins of cells or circuit IO interface. In

mapped netlists, cells have reference to standard-cells.

A Row is a predefined region of the circuit core. The height of the row is also equal

41

to the standard height of cells. Rows are partitioned into a set of sites. Row sites are small

rectangular regions of rows. Cells inside a row share the same horizontal VDD and GND

tracks. Neighboring rows can also share the same VDD and GND rails. In neighboring

rows, cells must be vertically flipped to share correctly the power rails. In Figure 2.4,

circuit rows are presented. In digital circuits, instances of multideck standard-cells are

called multideck cells.

Figure 2.4: A row is a small part of the circuit core. Rows are divided into site areas.
Cells must be aligned to the left, bottom and top site boundaries. Rows also share power
rails with neighboring rows. Power rails are parallel and horizontal metal track to provide
VDD and GND to cells

Source: Author (2019).

Circuits, cells, and macroblocks have external interfaces which are called pins or

pads. In digital circuits, pins are also denominated as ports. Pins and pads are elec-

tric terminals to connect internal circuit components to the external environment. Pins

are the interface to connect cells or macroblocks inside of another digital circuit. Pins

are connected with metal segments which are routed in metal layers. Digital circuits

that contain only pins which are external interface are called Semiconductor Intellectual

Property Cores (IP-Cores). Pads are interfaces that connect digital circuits externally

to the package (encapsulation). Encapsulated circuits are integrated in Printed Circuit

Boards (PCBs).

2.2.3 Manufacturing Process

The manufacturing process is a sequence of material transformation in the semi-

conductor substrate. In the transformation process, patterns of circuit layout are trans-

ferred to the semiconductor material. The circuit layout is the result of synthesis and op-

timization. Layout is a set of rectangular shapes which determine mask patterns. Masks

42

are used in the CMOS manufacturing process to transfer layout geometries to a substrate.

Circuit fabrication is a process divided into several manufacturing layers. Manufactur-

ing layer is a specific part of the fabrication process to manufacture active components

(transistors) and connections (metal layers). Usually, in the manufacturing process, tran-

sistors are associated with polysilicon and active layers (diffusion), and interconnections

are associated with poly and metal layers. Contact is a direct connection from the active

layer (transistor) to polysilicon or metal layers. VIAs are metal pieces that are used to

connect two metal segments in adjacent metal layers. Metal segments are separated with

an insulator. In each net, pins are connected with metal segments and VIAs.

2.2.4 Clock Signal

Digital circuits require a periodic electric signal to control and to synchronize

the correctness of operations of cells and macroblocks. In digital circuits, a clock is a

periodic signal that synchronizes and controls operations of registers, memories, Finite-

state Machines (FSMs), and pipelines. In Figure 2.5, an example of the clock of digital

circuits is presented.

Figure 2.5: In digital circuits, the clock is a periodic square wave. The clock signal
controls and synchronizes operations of sequentical circuit elements

Source: Author (2019).

The clock is an infinite sequence of electric signals that transition in opposite di-

rections (rise and fall, or fall and rise) in an interval of time. In rising transitions (edges),

the voltage of the clock is changed from GND to VDD levels. In falling transitions

(edges), clock voltage is changed from VDD to GND levels. A clock pulse is a rise

or fall transition. Consecutive clock transitions occur periodically. A clock period is the

total time between two clock transitions in the same direction (RISE-fall-RISE or FALL-

rise-FALL). Duty cycle is the total time in which the voltage of the clock signal is in VDD

43

level for each clock period.

Clock duty cycle is defined by the pair of rising and falling transitions in each clock

period. A clock cycle is the sequential repetition of clock periods. The clock period is the

main component of the maximum time that data signals have to propagate from start to

end points. Clock jitter is the time difference between two consecutive clock transitions.

Clock jitter originates from Phase-locked Loop (PLL) and the crystal that generates clock

pulses. Clock skew is the difference of clock arrival time in two distinct clock pins of

sequential components. Clock skew is the difference of the clock signal delay in clock

tree branches. Clock uncertainty is the summation of clock jitter and clock skew.

2.2.5 Memory Components

A memory element is a circuit to store data. In digital circuits, data is a level of

VDD or GND. Memory elements require a periodic signal (i.e., clock) to synchronize

their operations. Data are stored from memory input pins after the clock pulse. This clock

pulse triggers memory storage mechanisms. In several memory designs, the procedure

to read data is triggered by a clock transition. In this approach, power consumption is

minimized by reading data only when it is required. Memory elements can be triggered

by the rising (positive) or falling (negative) clock transitions. The type of clock transition

trigger determines the sensitive type of memory. Data is read in positive (negative) mem-

ory types with rising (falling) clock transition. In some memory elements such as DRAM

and SRAM, the storage mechanism requires an enabling signal and clock transition to

store data from the input interface. The read procedure of memories may also require an

active read signal and clock transition.

2.2.6 Combinational and Sequential Circuits

Digital circuits can be classified into combinational or sequential types. Combi-

national circuits are composed of cells and macroblocks where the output result is only

dependent on input data. Therefore, combinational components are independent on the

clock signal to trigger internal operations. On the other hand, sequential circuits are com-

posed of components that depend on a clock transition to trigger operations. Usually,

sequential circuits are composed of registers, memories (e.g., SRAM, DRAM, or cache),

44

pipelines, or FSMs. In Figures 2.6 and 2.7, examples of combinational and sequential

circuits are shown, respectively.

Figure 2.6: In combinational circuits, the circuit operation depends only on changing
input signals. Combinational circuits do not have memory elements

Source: Author (2019).

Figure 2.7: In sequential circuits, the circuit operation depends on clock transition to
launch input data. Sequential circuits have memory elements

Source: Author (2019).

2.2.7 Digital Circuit Designs

Digital circuits fall into full-custom or semi-custom design types. In full-custom

design, entire or parts of circuits are designed and implemented manually. Full-custom

circuits require a long time to implement. Digital circuits, which are designed with the

full-custom methodology, are more error-prone than circuits that are designed with the

semi-custom methodology. Errors are hard to detect and fix in the full-custom method-

ology. On the other hand, circuit delay and power consumption can be further improved.

Full-custom methodology fits better in circuits that have severe restrictions on timing and

45

power consumption budgets and an enormous production volume. Usually, microproces-

sors, Field-Programmable Gate Arrays (FPGAs), Graphics Processing Units (GPUs), and

memories are circuit types that have high volume production. These circuit types may

have strict requirements in terms of timing and power consumption. Semi-custom design

style is typically based on standard-cell libraries or circuit arrays (KAHNG et al., 2011).

Gate arrays are circuits with predefined logic cells. In gate array methodology, cells are

connected later, when circuit requirements are defined.

In FPGAs, logic elements and interconnections are prefabricated. Later, users

configure cell logic and connections based on circuit design. FPGAs may be reconfigured

numerous times. Structured-Application-Specific Integrated Circuits (ASICs) are simi-

lar to FPGAs. However, cell logic is nonconfigurable in Structured-ASICs. Structured-

ASICs interconnections are mask-programmed during the fabrication process. In circuit

design with standard-cell libraries, circuit logic is synthesized and optimized to prede-

fined logic functions available in standard-cell libraries. In this approach, errors are more

straightforward to detect and to fix. However, timing and power consumption improve-

ment compared to full-custom design can be hard to achieve.

2.2.8 Circuit Power and Timing Characterization

Process, Voltage, and Temperature (PVT) are environmental conditions to charac-

terize standard-cells in a CMOS process node. The maximum performance of standard-

cells is achieved in the corner of the best scenario. The maximum performance is ob-

tained with the minimum process variability, the minimum temperature, and the maxi-

mum allowed voltage. On the other hand, the minimum performance of standard-cells

is related to the worst case scenario. The worst performance is the scenario that is com-

posed of maximum process variability, the maximum temperature, and minimum allowed

voltage. Process variability depends on manufacturing parameters of CMOS technology

nodes. Digital designers cannot change the manufacturing parameters of CMOS technol-

ogy nodes.

Standard-cells are typically characterized in best, typical, and worst scenarios for

voltage variation and environmental temperature. Standard-cell libraries are characterized

to work in a range of environment temperatures from -20 ◦C to 85 ◦C. Usually, acceptable

voltage drop and voltage bounce is a percentage of the nominal voltage. Standard-cell li-

braries contain standard-cells which both power consumption and timing are evaluated

46

for several corner cases. A corner case is a pair of voltage and temperature conditions.

Timing and power characteristics of standard-cells are measured for discrete sets of input

slew transition and output capacitance. For each pair of input slew and output capacitance,

electric signals propagate from input pins to output pins in a specific delay. Therefore, the

state of the output from standard-cells requires an amount of time to be changed. The out-

put state of standard-cells is switched when the output electric signal is changed from low

to high or high to low voltages. Changing the voltage of electric signals in controlling in-

puts of standard-cells implies the voltage level is changed in standard-cell output. Data of

timing and power consumption data from each standard-cell are available in standard-cells

libraries for a set of corner cases. Usually, timing and power consumption of standard-

cells are characterized for a predefined set of corner cases. In the remaining corner cases,

timing and power consumption are interpolated using the closest upper and lower avail-

able timing values of input slew and output load capacitance in the standard-cell library

tables. In the standard-cell libraries, power component characteristics are split into dy-

namic and leakage power consumption. In digital circuits, timing and power consumption

properties of standard-cells and macroblocks are previously characterized.

Usually, power and timing characteristics of standard-cells are provided using

Liberty format. The common Liberty timing models are wire load model, Non Linear

Delay Model (NLDP), Composite Current Source (CCS) and Effective Current Source

Model (ECSM). The former timing models are more accurate to address sub-nanometric

effects of electric signals.

Digital circuits are designed to work correctly in a range of environmental tem-

peratures and voltages. Electric signal propagation is affected by temperature and voltage

conditions. Each environmental condition is associated with a corner case, which digi-

tal circuits must adequately work. Timing issues are measured in proper corner cases.

Usually, in standard-cell libraries, timing and power consumption properties of standard-

cells are provided for best, typical and worst cases. Temperature variation depends on

circuit external environmental conditions. Usually, the typical temperature is defined as

25◦ Celsius and the typical voltage is the nominal voltage of the CMOS technology node.

Voltage can vary from the nominal voltage of the technology node depending on the in-

ternal operations of digital circuits. Acceptable voltage variation is a small percentage

of the nominal voltage. Therefore, the voltage in each circuit component must be be-

tween the minimum and maximum voltage range. Process variability that is intrinsic to

the CMOS technology node is a random parameter related to layout geometries. Circuit

47

parameters are probabilistic instead of static because of the process variability (BORKAR

et al., 2003; BORKAR, 2009). In Figure 2.8, the typical set of corner cases to characterize

digital circuits are presented.

Figure 2.8: Corner cases to characterize digital circuits. The best case provides the opti-
mal condition to a signal propagation while the worst case provides the inverse condition
to a signal propagation

Source: Author (2019).

2.2.9 Digital and Analogical Circuits

Analogical circuits are mainly designed manually with the aid of EDA tools. On

the other hand, digital circuits are designed relying on EDA tools with an automatized

design flow. In digital circuit design, predefined and characterized circuit components

are integrated into the die. During circuit implementation, logic functions are optimized.

Optimized functions are mapped to predefined circuit components. Mapped components

are placed in optimized positions, and component connections are routed. Finally, circuit

metrics are evaluated to verify if the circuit layout is ready to be manufactured.

2.3 Static Timing Analysis

In static timing analysis, timing properties of electric signals in digital circuits are

estimated using formal methods. Electric signals propagate through metal wire segments

and transistors. Metal segments and transistors (semiconductor) have capacitance, resis-

tance, and inductance. Capacitors, resistors, and inductors affect electric signal voltage,

48

current, and delay. In digital circuits, voltage and the delay of electric signals must be

reliable. Electric signals must trigger digital components at the correct time.

In the digital design flow, it is only necessary to evaluate the timing properties

for wire segments that connect pins of nets. Standard-cells have been characterized in

the foundry. STA focus is to compute electric signal properties in wire segments and to

interpolate timing characteristics of cells. Timing data of cells are obtained from previ-

ously characterized standard-cells. Usually, input slew transition and output capacitance

are different from values used to characterize standard-cells. Therefore, the appropriated

data timing must be interpolated from timing tables of respective standard-cells.

Cell arcs are paths inside cells or blocks in which electric signals are propagated

from input to output pins. Edge arcs are segments of nets that propagate electric signals

from the output pin of driver cells to the input pins of sink cells. Driver is the cell which an

output pin is the source of the electric signal. Sink is a cell in which an input pin receives

an electric signal. The same net connects the net driver and the sink pins. Therefore,

driver and sink pins have the same electric potential.

In digital circuits, electric signals are propagated from start to end points. Electric

signals are launched in start points. These electric signals propagate in wire segments

and combinational cells. Therefore, electric signal properties are estimated from the point

where the signal is released (start point) to the point where the signal is captured (end

point). Start points are primary inputs or register outputs. End points are primary outputs

or register inputs. Pins, ports, and pads, which are external circuit interfaces are primary

inputs and outputs.

In STA, properties of electric signals are estimated using formal methods. Electric

signals propagate simultaneously from start points to end points in parallel paths. Electric

signal propagation can be modeled with the aid of a graph. Each start point is the root

node of an N-ary tree. Therefore, the number of start points is equal to the number of

trees. End points are leaf nodes of trees. Combinational cells are intermediate nodes.

Each edge between two nodes represents a connection between two pins of the net. In the

tree, each intermediate node has input and output connections. The root has only output

connections, and sink nodes have only input connections. In Figure 2.9 and 2.10, a part

of a digital circuit and its representative graph are presented, respectively.

Electric signals do not arrive at the same time in end points. Arrival Timing (AT) is

the total time that is necessary for electric signals to propagate from a starting point to an

ending point. Path AT is associated with the end points. Required Arrival Timing (RAT)

49

Figure 2.9: An example of a part of a digital circuit

Source: Author (2019).

Figure 2.10: Representative STA graph of the circuit in Figure 2.9

Source: Author (2019).

determines a time window which electric signals must arrive at end points. Usually, the

RAT is computed for the best and worst scenarios that give the minimum and maximum

RAT window (minRAT and maxRAT), as shown in Figure 2.11. A path is a sequence

of nodes from the timing graph. The nodes of the paths are connected with net edges.

In paths, the first and the last nodes are start and end points, respectively. The timing

graph can have several timing paths. A path is free of timing violation if AT is higher than

minimum RAT and lower than maximum RAT (minRAT ≤ AT ≤ maxRAT).

Electric signals that arrive at end points earlier than the minimum RAT have tim-

ing violations which are denominated early (hold) timing violations. The uncertainty in

clock transitions is one of the main reasons for early timing violations. The early timing

violation occurs due to the following conditions: 1) electric signal delay (AT) is lower

than uncertainty timing; 2) the launch clock is triggered at the latest moment of the uncer-

tainty window; 3) the capture clock is triggered at the earliest moment of the uncertainty

window. On the other hand, electric signals that arrive at end points later than the max-

imum RAT have timing violations which are denominated late (setup) timing violations.

Late timing violations occur mainly due to the cumulative delay to electric signals that

propagate through metal wire segments and combinatorial cells. Moreover, these paths

with timing violations usually have a considerable number of combinatorial cells and wire

segments or longer wire segments.

50

Launch clock is the trigger to receive and to release data at start points. Capture

clock is the trigger to receive and to release data at end points. Both triggers of launch

and capture clocks are the same clock edge. The clock transition arrives approximately

at the same time at launch and capture points. In Figure 2.11, the launch clock triggers

the start point register to capture input data and to release output data. At the same time,

the capture clock triggers the end point register to capture input data and to release output

data. The data at the input interface of the end point register was captured and released

at the start point register in the previous clock cycle. The released data at the start point

register must arrive at the input pin of the end point register later than minRAT and

earlier than maxRAT .

Figure 2.11: Required arrival timing window. A data signal must arrive at the end point
after the minimum (early) and before the maximum (late) required arrival timings

Source: Author (2019).

Slack is the difference between AT and RAT, as presented in (2.1). The slack

is computed in the same fashion for early and late timing violations. In early timing

slack, the mathematical signal (positive or negative) of slack value is inverted. Inverting

the signal of early slack is a convention to indicate timing violations with negative slack

values. Negative slack values indicate that electric signals arrive at end points before

minRAT or after maxRAT . Positive slack values indicate the following condition is

valid minRAT ≤ slack ≤ maxRAT . Negative slacks indicate circuit paths with timing

violations.

slack = RAT− AT (2.1)

51

In digital circuits, the most critical timing path is the one that has the lowest neg-

ative slack value. The negative slack of the critical path with the lowest value is denom-

inated Worst Negative Slack (WNS). The WNS is computed as presented in (2.2). Total

Negative Slack (TNS) is the summation of all negative slacks. WNS and TNS are com-

puted in the same fashion for early and late timing violations. Therefore, digital circuits

have early and late WNS and TNS timing metrics. The TNS is the summation of negative

slack of all critical timing paths, as shown in (2.3).

WNS = min(∀p∈paths slack(p), 0) (2.2)

TNS =
∑

p∈paths

min(0, slack(p)) (2.3)

2.4 Electrical Wire Models

Electric signals propagate in wire segments which have resistors, capacitors, and

inductors. These components affect electric signal delay, voltage, and current. As a con-

sequence of these effects, circuit performance, power consumption, and reliability can be

severely affected. Resistors, capacitors, and inductors are also called parasitic elements

in digital circuit design. Propagation characteristics of electric signals in metal wires

are estimated based on electrical wire models. Electrical wire models may vary from

very simple to very complex models depending on the electric effects to estimate and the

required accuracy (RABAEY; CHANDRAKASAN; NIKOLIC, 2003). Available and ac-

curate data of circuit layout and runtime budget may restrict which electrical wire models

can be used to estimate wire parasitics. In the early stages of circuit synthesis, the data

of the circuit layout is imprecise. Therefore, using precise wire models have no practical

effect on obtaining accurate timing characteristics of the circuit. In the later stages of the

circuit synthesis, the data of the circuit layout is more accurate. Consequently, precise

wire models can be used to estimate wire parasitics with high precision.

52

2.4.1 Traditional Electrical Wire Models

The common and the most known wire models are 1) ideal wire, 2) lumped C,

3) lumped RC, 4) π model, and 5) T model. The ideal wire model is free of associated

parasitic elements in wire segments. Electric signals propagate instantaneously from the

driver to the sink pins without voltage variation or delay caused by parasitic elements

on wire segments. In the lumped C model, wire capacitance is modeled as a capacitor

attached to the output pin of the driver cell. Wire resistance has no significant effect

on the delay of electric signals in wire segments. Therefore, the wire capacitance is the

dominant parasitic element compared to wire resistance. In the lumped C wire model, the

delay of electric signals is mainly due to the load time of wire capacitance (RABAEY;

CHANDRAKASAN; NIKOLIC, 2003).

Lumped RC model addresses wire capacitance and resistance as a single resistor

(R) and a single capacitor (C). In this wire model, the electric signal delay is inaccurate

and pessimistic for long wires.

In the π wire model, half of the wire capacitance is a capacitor associated with

the driver pin. The remaining half capacitance is a capacitor associated with the sink pin.

A resistor is connected to the source and the sink pins. In Figure 2.12, π wire model is

presented.

Figure 2.12: π wire model. Electric properties of wire segments are modeled with two
capacitors that are connected by resistor

Source: Author (2019).

In the T wire model, the total wire capacitance is modeled by a capacitor connected

to the middle node of the wire. The wire resistance is split into two resistors. The first

resistor is connected to the driver pin and to the middle node. The second resistor is

connected to the middle node and to the sink pin. In Figure 2.13, T wire model is shown.

Elmore (ELMORE, 1948) is a simple method to estimate delay in a structured RC

wire tree. In the Elmore model, only capacitance and resistance is considered for com-

puting the electric signal delay. Estimated electric signal delay with the Elmore model is

imprecise and fast to compute. However, for sub-nanometric CMOS technologies, elec-

53

Figure 2.13: T wire model. Electric properties of wire segments with two resistors and
one capacitor. One terminal of each resistor is connected to the capacitor

Source: Author (2019).

tric effects in propagation properties of electric signals are ignored. The Elmore equation

to compute delay of electric signals is presented in (2.4).

τDi =
N∑
k=1

Ck

k∑
j=1

Rj (2.4)

where, τDi is the delay in the node i of the structured RC tree network. N is the number

of nodes in the structured RC tree network. Rj is the resistance in the node j (1 ≤ j ≤ k).

Ck is the capacitance associated with node k.

In Figure 2.14, an example of a structured RC tree network is presented. Delay

of the electric signal from source to P5 is estimated using (2.4) as follows: τD_p5 =

R1(C1 + C2) + (R1 +R3)(C3 + C4) + (R1 +R3 +R5)C5.

Figure 2.14: Example of a structured RC tree network. Electric signal delay is computed
from source to P5 points with Elmore model

Source: Author (2019).

In the aforementioned simplified wire models, inductance is neglected. It is as-

sumed that inductance has no significant impact on the delay properties of electric signals.

In placement, especially in nodes older than 14nm, structured RC tree network,

Elmore and π wire model are considered adequate methods to estimate the delay of elec-

54

tric signals. These methods are relatively precise, fast to compute, and can be used in

STA at the placement step to evaluate circuit timing. Frequently, the length of routed

wires are estimated using a fast global router or by building rectilinear Steiner trees (e.g.,

Flute (CHU; WONG, 2008)). However, the fast estimation of routed wires can have an

enormous gap between the wire length of estimated and routed nets. Besides, the metal

layer assignment can significantly change the delay properties of electric signals.

Computing precise wire capacitance, resistance, and delay can become very so-

phisticated in digital circuits. Notably, in digital circuits that have a large number of

these elements require a significant runtime to estimate the signal delay. There are several

methods to estimate the properties of electric signals that are more precise than the wire

models, as mentioned above, and Elmore. Some of these more precise wire models are 1)

PRIMA (ODABASIOGLU; CELIK; PILEGGI, 1998), 2) (CHUNG et al., 1992), 3) (PIL-

LAGE; ROHRER, 1990), and 4) SPICE (NAGEL; PEDERSON, 1973). Some of these

methods also address the effects of electric signals in nanometric CMOS technologies.

However, accurate methods to estimate properties of electric signals require significantly

more computational resources. There is a trade-off between the accuracy of the timing

properties of electric signals and the required computational resources.

2.5 Digital Design Flow

Digital design flow is a top-down sequence of procedures to elaborate and to syn-

thesize digital circuits. Circuit features are described in natural language and processed

following several synthesis and optimization steps of the digital design flow. The result

of digital circuit synthesis and optimization is a circuit layout which is ready to tape-out.

Data of circuit layout becomes more precise after each synthesis step in the digital design

flow. New data regarding circuit geometry and electric characteristics are included in the

circuit design during the synthesis steps.

2.5.1 Design flow

Digital design flow is composed of three main flows which are operated in parallel.

These design flows are 1) circuit design, 2) test structures and 3) simulation & formal

verification, as shown in Figure 2.15. Each parallel flow is composed of several sequential

55

steps. Digital design flow can be split into three levels of abstractions. These abstraction

levels are 1) System, 2) Logic and 3) Layout. At the system level, the circuit design is

defined and characterized in natural language and diagram of blocks. At the logic level,

the circuit design is defined and characterized by optimized-Boolean functions. At the

layout level, the circuit layout is defined with regular geometries. These geometries are

representations of rules from the manufacturing process.

Figure 2.15: Digital design flow comprises of three main parallel flows that are split
into several steps. The circuit implementation starts with requirement documents. After
several synthesis, optimization, verification, simulation steps, the circuit layout is ready
to be manufactured

Source: Author (2019).

In circuit design flow, several steps are performed to optimize and to synthesize

the digital circuit. The result is a circuit layout ready to be manufactured. At the system

level, circuit requirements, features, behaviors, and restrictions are described in specifica-

tion documents using natural language. The microarchitecture step is to organize circuit

features in a diagram of blocks. In each block, specific circuit operations are performed.

Communication protocols and bus connections among blocks are also designed at the mi-

croarchitecture level. In logic level, circuit features of each circuit block are coded in RTL

using a Hardware-Description Language (HDL). At the logic synthesis step, Boolean

functions are optimized. These functions have been coded in RTL to describe the circuit

behavior. Optimized logic functions are mapped to standard-cells from a library cell of

a particular CMOS technology node. At the layout level, the floorplan of the circuit is

determined, cells are placed in optimized positions, and nets are routed. Finally, in the

sign-off step, circuit metrics are estimated, and restrictions are verified if they adhere to

56

the circuit requirements. Circuit metrics are measured using high precision methods and

algorithms. The results of the synthesis and the optimization steps are a circuit layout that

is ready for the manufacturing process.

2.5.2 Test Structure Flow

In test structure flow, extra logic for testing is added to circuit design and layout.

Test structure facilitates checking the correctness of circuit operations after the fabrication

process. Manufacturing problems, such as short circuit or open connections, are detected

with the aid of the test structures. Digital circuits are tested by applying a set of stimulus

vectors in circuit inputs and evaluating if output data are the expected values. Test struc-

tures also aid to expose internal results to the circuit output interface. The typical test

structures are scan chain and Built-In Self-Test (BIST).

In scan chain, registers store combinational logic results or data of previous regis-

ters. An external signal controls and synchronizes which data are stored in registers. In

this approach, internal logic results are exposed to the output interface and compared to

expected results.

BIST is a protocol to perform circuit autotest. In BIST, the circuit generates in-

ternal stimulus and evaluates expected results to detect errors. BIST can be automatically

performed when the circuit is turned on.

2.5.3 Formal Verification and Simulation

Formal verification and simulation flow are two stages to verify and simulate cir-

cuit netlist. In the formal verification stage, circuit netlists are verified with formal meth-

ods to detect errors. Pre-optimized and post-optimized netlists are verified using formal

methods if they are logically equivalent. In the simulation stage, circuit behavior is simu-

lated using EDA simulation software. Simulation is frequently used to estimate dynamic

power consumption, to detect power hot-spot areas, to address regions with voltage drop

or voltage bounce. Circuits are simulated in parallel with flows for the optimization, and

test structures. Simulation is a process to evaluate circuit behavior and characteristics

using a set of distinct input vectors. A set of stimulus is applied in circuit inputs, and

the outputs are evaluated. The circuit is also simulated to estimate circuit metrics and to

57

detect logic errors. Errors in optimization and synthesis algorithms can cause logic er-

rors. Logic errors can also be caused by digital designers who have misunderstood circuit

restrictions and features in design specification documents. These errors may modify cir-

cuit functionalities. Therefore, formal verification and simulation are stages in the flow to

detect unwanted changes in circuit logic.

2.5.4 Physical Synthesis Flow

The circuit layout is optimized in the physical synthesis flow. Physical synthesis

can be divided in a flow composed of four stages: 1) Floorplan, 2) Placement, 3) CTS, and

4) Routing, as presented in Figure 2.16. During physical synthesis flow, circuit metrics

are estimated and evaluated in parallel.

Layout evaluation flow is composed of 1) parasitic extraction, 2) timing analysis,

3) signal integrity, 4) power analysis, 5) routing congestion, and 6) design rules check.

The initial step of physical synthesis flow is to determine the circuit floorplan. During

floorplanning, the following procedures are performed.

1. Circuit shape is defined.

2. Power rings are designed and routed.

3. IO pins’ or pads’ positions are assigned.

4. Usually, macroblocks are placed.

During the placement step, optimized cell positions are computed to achieve circuit ob-

jectives subject to certain restrictions. Typical placement objective is to optimize the total

wire length. Placement relevant restrictions are design rules, maximum area density uti-

lization, power consumption, and timing violations.

Clock tree synthesis is the next step in the physical synthesis flow. Clock tree has

unique objectives and constraints compared to the routing process of interconnections of

data signals.

In the routing step, specialized algorithms route only interconnections of data sig-

nals. After the routing step, the circuit layout is finished. The circuit layout is ready to

estimate and to evaluate precise circuit metrics. Circuit requirements and objectives are

verified if they have been achieved.

Parallel to physical synthesis flow, specialized algorithms are used to evaluate de-

sign metrics such as timing propagation, power consumption, signal integrity, and voltage

58

drop. In some cases, when a physical synthesis step has many intermediate steps, circuit

metrics may be evaluated after the execution of intermediate steps. These metrics aid

synthesis and optimization algorithms to focus the layout improvement in regions with

bottlenecks. Evaluated metrics can also be used to estimate rough layout results of the

following physical synthesis optimization algorithms.

Figure 2.16: The physical synthesis flow that is part of the digital design flow is split into
several sequential optimization steps and parallel stages to estimate design metrics

Source: Author (2019).

2.6 Summary

In this chapter, concepts and definitions associated with digital circuit design have

been introduced. The main circuit conventions have been presented to avoid misunder-

standings regarding the semantics of circuit terms. Circuit timing metrics and evaluation

methods have been introduced. Timing analysis should be fast in order to be efficiently

computed during the synthesis process. Reliable timing information aims to improve the

quality of the circuit layout. The timing data is used to guide synthesis and optimization

algorithms to reduce bottlenecks in the synthesized circuit solutions. Reliable models are

essential for estimating circuit timing and power metrics. Available wire models have a

trade-off between required computing resources and the accuracy to estimate properties

of electric signals. During placement, the Elmore delay model is widely used due to fast

delay estimation and its relative accuracy.

Digital circuits are designed, optimized, simulated, and verified using EDA algo-

rithms and tools intensively. These tools and algorithms are organized in a digital design

flow. This design flow is composed of several parallel and sequential synthesis, optimiza-

59

tion, simulation, and verification steps. In the first stage of the digital design flow, circuit

requirement documents are elaborated. Based on requirement documents, circuit microar-

chitecture is designed. Circuit requirements and microarchitecture are coded in RTL with

a HDL in a netlist. The logic netlist is optimized and mapped to standard-cells of a li-

brary cell from a CMOS technology node. Circuit cells are distributed in the predefined

core die. Heuristics and formal optimization techniques are fundamental to determine

optimized cells’ positions. Finally, connections of pins are routed, and circuit metrics are

precisely estimated. Circuit requirements and restrictions are evaluated if they have been

achieved. The result of synthesis, optimization, verification, and simulation procedures in

the digital design flow is a circuit layout ready for the CMOS manufacturing process.

In digital design, test structure flow and simulation & formal verification flow

are sequences of steps to implement test structures, to simulate and to verify the circuit

netlist. Test structures are specified, designed, and synthesized to detect circuit issues

that can be caused during the manufacturing process. Digital circuits are simulated and

formally verified. Digital circuits are simulated to estimate circuit metrics and to detect

logic errors. In formal verification, the logical equivalence of circuit netlists is verified to

detect if synthesis and optimization algorithms have caused logic errors.

60

61

3 ELECTRONIC DESIGN AUTOMATION

3.1 Introduction

In the 1960s, the first EDA tools started to appear to assist circuit designers (KAHNG

et al., 2011). Ever since, CMOS fabrication technology and EDA tools have significantly

evolved. The process of designing, implementing, and verifying integrated circuits have

been significantly automated with EDA tools. The evolution of CMOS fabrication tech-

nology imposes complex design rules to manufacture modern digital circuits. Especially

in sub-nanometric technology nodes, the number of design rules has grown exponentially.

Circuit optimization techniques require extensive use of heuristics. The formulation of

circuit optimization problems is very complicated. Several optimization techniques de-

pend on formal models to optimize circuit objectives. Moreover, circuit optimization is

subject to several circuit and design restrictions.

The first EDA tools were placement algorithms. These placement algorithms were

developed to automatize the distribution of a small number of blocks on circuit boards.

More advanced EDA tools to visualize and implement circuit layout have been developed.

In the 1970s, EDA tools were developed to aid circuit design synthesis and optimization

(KAHNG et al., 2011). In the 1980s, independent software companies started developing

EDA tools. Nowadays, EDA tools have become very complicated. Modern EDA tools

have to handle a large number of restrictions in digital circuits composed of thousands

to millions of cells. Digital circuit requirements, features, and restrictions have also in-

creased significantly. In digital circuits, obtaining feasible optimized circuit solutions is

a challenging procedure. Digital circuits are synthesized, optimized, verified, and simu-

lated with the heavy use of EDA tools. These EDA tools are integrated into digital design

flows to implement digital circuits.

By the middle of the 2000s, analytical placement algorithms had significantly im-

proved. These placement algorithms provided similar placement solutions compared to

partitioning-based and stochastic techniques. However, the analytical placement algo-

rithms of the mid-2000s required less runtime to provide similar placement solutions

compared to other placement techniques. Partitioning-based and stochastic techniques

became hard to scale because of the rapid growth of the number of cells and restrictions

in modern digital circuits.

This chapter is organized as follows: In Section 3.2, algorithm definitions are

62

introduced. In Section 3.3, graph definitions are shown. In Section 3.4, optimization

techniques including network flow and branch and cut are shortly presented. In Sec-

tion 3.5, models to decompose hyperedge nets into nets with only two-points connections

are shown. In Section 3.6, metrics are introduced to evaluate and to estimate layout op-

timization in physical synthesis flow. In Section 3.7, construction of the graph of grid

bins for cell spreading algorithms that are based on network flow technique is presented.

In Section 3.8, formulation of EDA algorithms in physical synthesis flow is highlighted.

Finally, the chapter summary is given in Section 3.9.

3.2 Algorithm Definitions

An algorithm is a finite sequence of instructions well-defined in a formal language.

Algorithm instructions are executed in a finite amount of time and space. Algorithms may

or may not receive input data. Algorithms must produce at least one output data. An

algorithm must have the following properties (HOROWITZ; SAHNI; RAJASCKARAN,

1996):

• Finiteness: An algorithm must terminate after a finite number of operations.

• Definiteness: Each step of an algorithm must be precise, rigorously, and unambigu-

ously specified.

• Input: An algorithm may have external data input.

• Output: An algorithm must provide at least one data output.

• Effectiveness: Algorithm operations must be sufficiently basic so that algorithm

instructions may be precisely executed in a finite amount of time.

Algorithms may be classified into 1) deterministics, or 2) nondeterministics. De-

terministic algorithms always produce the same output passing through the same states

for the same input. Nondeterministic algorithms produce different output solutions which

depend on external input data (e.g., a random value, or user input data) passing through

different states for the same input.

Algorithms are also classified as 1) iterative or 2) direct. Iterative algorithms suc-

cessively provide an approximate solution in each iteration. The new solution is closer to

the optimum solution compared to the previous solution. Direct algorithms try to provide

the problem solution by a finite sequence of iterations.

An algorithm requires a certain amount of computational resources (e.g., mem-

63

ory space, or timing) to provide a solution. Required computational resources depends

on problem type. Problem types are related to class and size of input data of computa-

tional problems. Computational problems are classified into 1) Polynomial Time (P) and

2) Nondeterministic Polynomial Time (NP) problem classes (HOROWITZ; SAHNI; RA-

JASCKARAN, 1996). Formal definitions of class P and NP problems are presented in

Definitions 3.1, and 3.2, respectively.

Definition 3.1 P is the set of all decision problems solvable by deterministic algorithms

in polynomial time.

Definition 3.2 NP is the set of all decision problems solvable by nondeterministic algo-

rithms in polynomial time.

It is not known if deterministic polynomial time algorithms can provide the optimum so-

lution of NP problems. There is no formal proof the P and NP classes are equal. If P

and NP classes are equal, then NP problems have deterministic polynomial time algo-

rithms which provide the optimum solution. Nowadays, optimized solutions for several

NP problems are obtained in polynomial time with intensive use of heuristics in determin-

istic algorithms. Definitions of NP-hard and NP-complete problem classes are not given

in this section. These class problems have not known deterministic polynomial time algo-

rithms to provide the optimum solution. In Figure 3.1, the diagram of intersection among

classes P, NP, NP-complete and NP-hard problems is presented.

Figure 3.1: Diagram of intersection among classes P, NP, NP-complete and NP-hard
problems

Source: Author (2019).

Algorithm runtime can be roughly estimated with asymptotic analysis (big-O no-

tation) by assuming a large data input (SIPSER, 1996). In Definition 3.3, formal definition

of asymptotic analysis is presented (SIPSER, 1996).

64

Definition 3.3 Let f and g be two functions f, g : N → R+ that f(n) = O(g(n)) if

positive integers c and n0 exist for every integer n ≥ n0 in f(n) ≤ cg(n).

The function g(n) is asymptotic upper bound of function f(n). Asymptotic functions are

given as the following f(n) = O(g(n)). Constant factors are suppressed to emphasize

only the asymptotic upper bound.

3.3 Graph Definitions

A graph G is a tuple (V,E,R) (WEST, 2001) where V ∈ G is a nonempty set

of vertices or nodes, E ∈ G is a set of edges, and R ∈ G is a set relations that connects

vertices to edges. Vertices vi, vj ∈ V are connected through edge e ∈ E in graph G. In

hypergraph, vertices v1, . . . , vn ∈ V (n > 2) are connected though a hyperedge e ∈ E. A

multigraph has multiple edges connecting the same pair of vertices. A directed graph or

digraph is a graph where edges have direct connections, instead of non-direct connections.

A walk in a graph G is a finite non-null sequence of vertices and edges whose

terms are alternately vertices and edges (v0e1v1e2v2 . . . envn ∈ G). A path in a graph

G is a sequence of adjacent vertices (v0 . . . vn ∈ G), where each vertex is connected to

the subsequent vertex by an edge with only distinct vertices (BONDY, 1976). A cycle

is a path where adjacent vertices are connected in a circle. In cycles, the last and the

first vertices are connected (v0 . . . vnv0 ∈ G) with an edge e ∈ E. A graph composed

of several disjoint trees and free of cycles is a forest (WEST, 2001). A tree is a graph

free of cycles with which two vertices are connected by only one path. In a tree, vertices

are connected to parent and children vertices, except root and leaf vertices. Root vertex

has connections only to children vertices. Leaf vertex has only a connection to the parent

vertex. A tree branch is a path with which the first and the last vertices are root and leaf,

respectively. In Figure 3.2, an example of a graph tree is presented.

Graphs may be represented with adjacency lists, adjacency matrices or incidence

matrices. In the adjacency list, each vertex stores a list of neighboring vertices. In the

adjacency matrix, graphs are represented in a two-dimensional matrix where rows and

columns represent vertices. Each matrix position p(i,j) (0 ≤ i ≤ numRows, 0 ≤

j ≤ numColumns) represents a possible edge. Marked positions indicate edge connec-

tions between two vertices. In the incidence matrix, a two-dimensional matrix represents

vertices and edges in rows and columns, respectively. A marked matrix position p(i,j)

65

Figure 3.2: An example of a graph tree

Source: Author (2019).

(0 ≤ i ≤ numRows, 0 ≤ j ≤ numColumns) indicates the vertex in row i is connected

to the edge in column j.

In EDA, netlist describes net connections among pins of circuit cells, modules,

macroblocks, IO pins and pads. The circuit netlist can be modeled as a graphG = (V,E).

The set of vertices V represent pins. Pins are the input and output interfaces of circuits,

cells, macroblocks, and pads. The set of edges E represent circuit nets. Vertices are

connected with edges (nets) or hyperedges (hypernets). Each net ei ∈ E is electrically

connected to a subset of circuit pins of V (ALPERT; MEHTA; SAPATNEKAR, 2008).

3.4 Optimization Algorithms

In 3.1, a standard formulation of an optimization problem is presented.

Minimize f(x)

Subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(3.1)

where f : Rn → R is the objective function to be optimized over a n-variable vector x.

gi(x) are inequality restrictions. hj(x) are equality restrictions. m ≥ 0 and p ≥ 0. The

optimization problem is unconstrained if m = 0 and p = 0.

In an optimization problem, the objective is to find the best solution among feasi-

66

ble solutions. Optimization problems can be classified into discrete or continuous types.

In discrete optimization problems, feasible solutions are searched in discrete sets (inte-

gers, graphs, and permutations). In continuous optimization problems, feasible solutions

are searched with continuous variables (e.g., R).

Optimization problems have an enormous variety of techniques to compute feasi-

ble solutions. In this section, network flow and branch and cut techniques are discussed.

These techniques are relevant to the proposed algorithms in this thesis. Based on these

techniques, optimized circuit solutions are provided with the proposed algorithms.

3.4.1 Network Flow

Network flow (transportation network or flow network) problem is a class of com-

binatorial optimization problems. Network flow can be used to model elements which

can be transported through edges and vertices of graphs. A network flow is a graph where

edges have transportation capacity and can receive and provide flow. The flow amount

must not exceed the capacity of the edges. Network flow N(G(V,E), s, t, c) is defined as

follows (EVEN, 2011):

• A finite digraph G(V,E) where V is the set of vertice and E is the set of edges.

• Source (s ∈ V) and sink (t ∈ V) vertices.

• Edge capacity function c(e) : E → R+.

The result is a flow which inflow is equal to outflow in vertices, except for source and sink

vertices.

The set of edges that enter and emanate from a vertex v ∈ V is denoted as α(v)

and β(v), respectively (EVEN, 2011). The flow function f : E → R is the assignment of

a real number f(e) which indicates the flow associated with an edge. The flow f(e) must

be higher than or equal to 0 and lower than or equal to the edge capacity (e ∈ E, 0 ≤

f(e) ≤ c(e)). Inflow must be equal to Outflow in each vertex as introduced in 3.2.

Inflow is the summation of the flow for input edges in each vertex. Outflow is the total

flow of output edges in each vertex.

∑
e∈α(v)

f(e) =
∑
e∈β(v)

f(e) (3.2)

In the network flow literature, the common algorithms to obtain maximum flow are 1)

67

Ford-Fulkerson (FORD; FULKERSON, 1987), 2) (DINIC, 1970), 3) Edmonds-Karp (ED-

MONDS; KARP, 1972), 4) (MALHOTRA; KUMAR; MAHESHWARI, 1978), and 5)

(ORLIN, 2013).

The network flow problem has several minimum cost flow models such as, 1)

shortest path, 2) maximum flow problem, 3) assignment problem, 4) transportation prob-

lem, 5) convex cost flow, 6) generalized flow, and 7) multicommodity flow (AHUJA; MAG-

NANTI; ORLIN, 1993). In shortest path problem, the objective is to find the path with

the minimum cost or minimum length from source vertex s to sink vertex t. Each edge

e(i, j) ∈ G has the cost or length cij associated with it. In the maximum flow problem, the

objective is to find a solution in which the maximum flow from a source vertex s can be

sent to a sink vertex t. Each edge e(i, j) ∈ G has the maximum flow uij associated with

it. In the assignment problem, the minimum cost flow problem consists of two equal size

sets’ S1 and S2 . Pairs (P ∈ S1×S2) indicate possible assignment. Cost (cij) is associated

with the pair Pij . The objective is to obtain the pair with the minimum cost where objects

in S1 ∈ P have respective objects in S2 ∈ P . In the transportation problem, the set of

vertices N is partitioned in two subsets N1 ∈ N and N2 ∈ N . N1 is the set of supply

vertices. N2 is the set of demand vertices. Supply and demand vertices can provide and

receive flows, respectively. Each edge between vertices Ni and Nj has Ni ∈ N1 and

Nj ∈ N2. In the convex cost flow, the cost of each edge has a linear convex cost function.

In generalized flow, flow can be consumed or generated in intermediate edges. A flow can

enter in an edge, and part of this flow can be consumed by this edge. On the other hand,

additional flow can be added to the flow that has entered in the edge. In multicommod-

ity flow, several commodities can share the same edge. Their characteristics, origins, or

destinations can be different for different commodity types. Commodity constraints may

also be different.

3.4.2 Branch and Cut

Linear Programming (LP) is a formal method to optimize objectives of constrained

linear functions. In LP, objectives and constraints are linear functions. In Integer Linear

Programming (ILP) problems, some or all variables are integer values. The objective and

constraint functions are linear.

Branch and bound (LAND; DOIG, 1960) is an algorithm that systematically enu-

merates candidate solutions. This algorithm explores candidate solutions in branches of

68

an n-ary tree. In each branch, the candidate solution is compared to the lower and upper

bounds of the estimated optimal solutions. The algorithm opens branches only if a branch

candidate solution is better than the lower and the upper bounds. Otherwise, the branch

solution is discarded.

In cutting plane (GOMORY, 1958), new constraints are added to the linear prob-

lem formulation. The objective is to find feasible solutions with integer values. These

extra constraints are called cut. Cuts related to fractional solutions must satisfy the fol-

lowing criteria: 1) integer solutions are feasible for cut constraints and 2) noninteger

solutions are not feasible for cut constraints.

Branch and cut (PADBERG; RINALDI, 1991) is a method to solve ILP problems

when some or all unknown variables are integers. The branch and cut algorithm consists

of the branch and bound with cutting plane methods to generate candidate solutions. N-

ary tree branches are pruned if candidate solutions are lower or upper than existing lower

and upper bound solutions. Branch strategies can be classified into 1) most infeasible

branching, 2) pseudo cost branching, 3) strong branching, and 4) full strong branching

(ACHTERBERG; KOCH; MARTIN, 2005). In most infeasible branching, the variable

with fractional part closest to 0.5 is chosen to open. In pseudo cost branching, the change

in the objective function in each variable is tracked for the variables which were previ-

ously chosen to branch on. The variable which is predicted to have the most change in

past changes is chosen to branch on. In strong branching, candidate variables are tested to

obtain the one which gives the best improvement before branch procedure. In full strong

branching, all candidate variables are tested before branch procedure.

3.5 Models to Decompose Hyperedge Nets

In global placement, quadratic placement algorithms can compute optimized place-

ment only in a circuit with nets that have only two pin connections. Therefore, hyperedge

nets must be decomposed into a set of edges that connect only two pins. Hyperedge nets

are decomposed using a net model that evenly addresses some net characteristics, such as

wire length. Common net models to decompose hyperedge nets are 1) clique, 2) star, 3)

hybrid, and 4) Bound to Bound (B2B). In Figure 3.3, a hyperedge net is presented. This

hyperedge has connected five cells. The hyperedge net, as mentioned above, is decom-

posed with clique, star, hybrid, and B2B net models.

In the clique net model, hyperedge nets that connect k-pins are decomposed into

69

Figure 3.3: Hyperedge nets must be decomposed into a set of pair connections between
only two points using a net model. In this example, the net with five pins is decomposed
into clique, star, hybrid and B2B net models

Source: Author (2019).

k(k−1)
2

pair connections. In Figure 3.4, a five-pins hyperedge decomposed with the clique

net model net is presented.

Figure 3.4: All net pins are connected to each other when hyperedge nets are decomposed
with the clique net model

Source: Author (2019).

In the star net model, each hyperedge net has a central star node to connect all pins

of the net via pair connections. In each pair connection, each pin of the net is connected

to the star node. Nets with k-pins have k pair connections to star node. In Figure 3.5, a

five-pins hyperedge net decomposition with the star net model is presented.

In Figure 3.6, the hybrid net model is presented. Hyperedge nets that have up to

k pins are decomposed using the clique net model, and the remaining hyperedge nets are

decomposed using the star net model. Usually, k is limited to three pins.

In the B2B net model (SPINDLER; SCHLICHTMANN; JOHANNES, 2008b),

hyperedge nets are decomposed into pair connections inside of the net bound box. In

B2B, pins of hyperedge nets are sorted by their positions in independent vectors of pins for

abscissa and ordinate axis. These pins are classified into outer and inner pins for abscissa

and ordinate axis. Outer pins establish boundaries of the net-bound box. Therefore,

70

Figure 3.5: All net pins of hyperedge nets are connected to a central point in the star net
model

Source: Author (2019).

Figure 3.6: In the hybrid net model, hyperedge nets that have up to 3 pins are decomposed
using the clique net model. Remaining hyperedge nets are decomposed using the star net
model

Source: Author (2019).

outer pins have the lower and upper positions of the bound box in each Cartesian axis.

The remaining pins are classified as inner pins. In each Cartesian axis, all net pins are

connected only to the lower and upper boundaries of the net bound-box, as shown in

Figure 3.7. In the B2B net model, boundaries for Cartesian abscissa and ordinate are

independently defined.

In analytical placement formulation, weights are associated with nets. Weight

values indicate the relevance of nets regarding objectives to optimize or restrictions to be

attended. Net weight indirectly and evenly prioritizes some circuit characteristics (e.g.,

wire length, or timing delay) to be optimized using numerical methods. Global placement

common net weights to linearize quadratic wire length are introduced in (3.3) (VYGEN,

1997) and (3.4) (KLEINHANS et al., 1991; EISENMANN; JOHANNES, 1998).

net(w) =
1

k − 1
(3.3)

71

Figure 3.7: In the B2B net model, net pins are classified into inner and outer pins. All
pins of each net are connected to boundaries of net bound box. Two independent B2B net
models are built for abscissa and ordinate axis of each net

Source: Author (2019).

net(w) =
2

k
(3.4)

where k is the number of net pins.

In the B2B model, net weight can be computed as presented in (3.5).

W b2b
x,pq =

0, if p and q are inner pins

2
P−1

1

|xpinp −xpinq |
, else

(3.5)

where p and q are two pins of the net. P is the number of net pins. xp and xq are positions

of pins p and q in abscissa, respectively. In ordinate, net weight is computed in the same

fashion.

3.6 Circuit Evaluation Metrics

In digital circuit optimization, circuit metrics are essential to evaluate the quality

of the optimized circuit solution. Moreover, circuit metrics are used to guide the opti-

mization and synthesis algorithms to prioritize optimization of specific characteristics.

Circuit metrics may also be used to guide optimization algorithms to minimize certain

circuit violations. Circuit metrics may be used to estimate rough circuit solutions when

following physical synthesis steps. Common metrics to evaluate circuit solutions are 1)

wire length, 2) area density utilization, 3) routing congestion, 4) timing violations and 5)

cell displacement. In the rest of this section, these metrics will be briefly introduced.

72

3.6.1 Wire Length

In digital circuits, wire segments must be routed in vertical or horizontal direc-

tions. The Manhattan or norm one distance is a fast and straightforward method to com-

pute the distance between two points. The Manhattan distance is the summation of ver-

tical and horizontal distances between two points p0(x0, y0) and p1(x1, y1). In (3.6), the

equation to compute the Manhattan distance is presented.

dM(p0, p1) = |x1 − x0|+ |y1 − y0| (3.6)

where, x0 and y0 are abscissa and ordinate positions of point p0, respectively. x1 and y1

are abscissa and ordinate positions of point p1, respectively.

The Euclidean distance or norm two, is another approach to compute the distance

between two points. Euclidean distance is the length of a straight line between two points

p0(x0, y0) and p1(x1, y1). In (3.7), the Euclidean equation is shown.

dE(p0, p1) =
√

(x1 − x0)2 + (y1 − y0)2 (3.7)

where, x0 and y0 are abscissa and ordinate positions of point p0, respectively. x1 and y1

are abscissa and ordinate positions of point p1, respectively.

In placement, a common metric to measure circuit wire length is the Half Perime-

ter Wire Length (HPWL). Total circuit HPWL is the summation of the Manhattan distance

for all net-bound boxes. In (3.8), the HPWL equation is presented.

HPWL(~x, ~y) =
∑
e∈nets

[max
i∈e

xi −min
i∈e

xi] +
∑
e∈nets

[max
i∈e

yi −min
i∈e

yi] (3.8)

where, HPWL(~x, ~y) is the total circuit wire length. e ∈ nets is a circuit net. In Cartesian

abscissa, max xi and min xi are the maximum and minimum abscissa positions of cells

of net e, respectively. In Cartesian ordinate, max yi and min yi are the maximum and

minimum ordinate positions of cells of net e, respectively.

The HPWL metric is easy and fast to compute. However, HPWL is inaccurate

when estimating wire length for hyperedge nets. HPWL is convex, continuous and it is

not always differentiable (MARKOV; HU; KIM, 2015). In global quadratic placement,

HPWL cannot be used to estimate wire length because HPWL is not always differentiable.

Circuit wire length may also be estimated with monotone chain, clique and star

73

net models, or Steiner tree. In the monotone chain model, all pins of the net are connected

using a Hamiltonian path. In the clique net model, wire length is the summation of the

length of all pair connections. In the star model, the source pin is connected to all sink pins

with pair connections. The source pin is the central node of the star net model. Wire length

is the summation of the length of all pin connections of nets. In the Steiner tree model,

wire length is estimated by building the Rectilinear Minimum Spanning Tree (RMST),

Rectilinear Steiner Minimum Tree (RSMT), Rectilinear Steiner Arborescence (RSA) or

Single-Trunk Steiner Tree (STST) (KAHNG et al., 2011). The Steiner tree method to

estimate wire length requires significantly more computational resources compared to the

HPWL model.

3.6.2 Area Density Utilization

In global placement, area density utilization is an important metric to measure the

quality of the placement solution. Area density utilization indicates cell concentration.

Moreover, the area density utilization metric can provide relevant insight into placement

algorithms, to find optimized-solutions in regions that have high-cell concentration. Re-

ducing the peak of the area density utilization can also contribute to minimizing cell dis-

placement. Cells must be moved out from high-density regions to minimize area density

violations. Several cells must be moved out from high-density regions to alleviate area

density violation. Moved cells can be placed far away from the initial position. Therefore,

a global placement solution can be significantly modified to fix area density violations.

Placement solutions with high-cell concentration can result in infeasible circuit solutions

in the CTS or routing steps. Circuit designers limit area density utilization for a maximum

ratio utilization between zero and one (0 < ratio ≤ 1.0). Usually, the area density ratio

is limited to 90% of the total area utilization. Therefore, at least 10% of the circuit area is

available to be used to insert buffers, tie off cells, tie on cells, and cells in the following

physical synthesis steps.

Average Bin Utilization (ABU) (KIM et al., 2012) is a simple and fast metric to

estimate area density utilization. ABU is a metric to measure the average of the ratio of

area density utilization from overfilled bins. In the ABU, circuit core is split into a grid

of regular and uniform bins. By default, the bin size is defined as nine times the height

of standard-cells. Bins are sorted by the highest to lowest ratio area utilization, excluding

bins that are almost entirely covered by fixed cells or macroblocks.

74

ABU of overfilled bins is presented in (3.9).

ABUγ =
1

n

n∑
i=0

CAi
PAi

(3.9)

where ABUγ is the average area utilization of γ% of the highest overfilled bins. γ is a set

of only overfilled bins defined as 2%, 5%, 10%, and 20% of the valid bins. A bin is valid

if its placeable area is at least 20% of the total bin area. n is the number of γ% overfilled

bins. CAi is the cell area of bin i (0 ≤ i ≤ n). PAi is the area of bin (i (0 ≤ i ≤ n)

which can be used to place movable cells.

In (3.10), the ratio of average overfilled area for γ% bins and maximum area den-

sity utilization threshold is presented.

ABUγOF = max
(ABUγ

Γtarget
− 1.0, 0.0

)
(3.10)

where Γtarget is the maximum bin area utilization threshold (0 < Γtarget ≤ 1.0).

Weighted arithmetic mean area utilization is a representative value to indicate high

cell concentration. A high value indicates the circuit placement has regions with high cell

concentration. In (3.11), weighted arithmetic mean area utilization (i.e., ABU_penalty)

formula is shown.

ABU_penalty =

∑
(Kγ × ABUγOF)∑

Kγ

(3.11)

where, Kγ is the ratio weight of overfilled bins as presented in Table 3.1. ABU penalty is

a representative weighted arithmetic mean of the exceeded area on overfilled bins. ABU

penalty is zero if all bins are free of high-density violation. Otherwise, the ABU penalty

is higher than zero to indicate that circuit placement has bins with area density violations.

Table 3.1: Weights of average area utilization of γ highest overfilled bins
Kγ Weight
K2 10
K5 4
K10 2
K20 1

75

3.6.3 Routing Congestion

Routing congestion is an important metric to measure regions which have high

routing resource requirements. Placement algorithms can use routing congestion metrics

to move cells out from regions with routing violations. The common methods to estimate

routing congestion are 1) congestion map, 2) fast global routing, 3) pin density, 4) Rent’s

rule, and 5) probabilistic methods. Routing congestion may arise from intra-bin nets,

inter-bin nets which one pin is inside of a Global Cell (GCell), and routed nets which just

cross GCells (SAXENA; SHELAR; SAPATNEKAR, 2007). Routing congestion met-

rics have a significant difference between estimated and routed circuit nets (SAXENA;

SHELAR; SAPATNEKAR, 2007). Usually, conventional methods to estimate routing

congestion use metrics that are fast to compute (SAXENA; SHELAR; SAPATNEKAR,

2007). In Figure 3.8, an example of a GCell grid is presented.

Figure 3.8: An example of GCells. A GCell grid is a grid of bins which covers the circuit
core. Each GCell has on each border routing capacity. Routed wires cross GCell border.
A GCell grid is a simple and fast way to estimate routing congestion

Source: Author (2019).

A Routing congestion map is determined from a grid of regular and uniform

GCells. The circuit core is split into a 2-D m × n mesh GCells. For each GCell, the

maximum allowed number of routed wires to each boundary is computed. Each GCell

has routing resource capacity and usage. The GCell capacity indicates the number of

wires which can be routed without violations of design rules. GCell capacity is the total

routing tracks. GCell usage is the total number of used routing tracks. Routed wires use

GCell capacity. GCells have routing congestion if GCell usage is higher than GCell ca-

pacity. Routing usage is computed by counting the number of routed wires which cross

76

GCell boundaries. However, local GCell connections are ignored when computing GCell

usage. Routed wires in horizontal that cross vertical GCell boundaries are computed as

H-edge. Routed wires in vertical that cross horizontal GCell boundaries are computed as

V-edge. Routing overflow is the ratio of GCell usage by GCell capacity . GCells have

routing congestion when the ratio is higher than one (LIN; CHU, 2014; WEI et al., 2012).

In GCells, routing usage, capacity and congestion are computed as introduced in

(3.12), (3.13), and (3.14) equations, respectively.

Ug(x, y) =max(Uhe(x, y), Che(x, y))+

max(Uhe(x− 1, y), Che(x− 1, y))+

max(Uve(x, y), Cve(x, y))+

max(Uve(x, y − 1), Cve(x, y − 1))+

(3.12)

Cg(x, y) =Che(x, y)) + Che(x− 1, y)+

Cve(x, y)) + Cve(x, y − 1)
(3.13)

Congg(x, y) =
Ug(x, y)

Cg(x, y)
(3.14)

where Uhe(x, y), Che(x, y) are routing usage and capacity in horizontal edge at (x, y),

respectively. Uve(x, y), and Cve(x, y) indicate routing usage and capacity in vertical edge

at (x, y), respectively. If any edge (horizontal or vertical) in a GCell located at (x, y) is

congested, then this GCell has routing congestion (Congg(x, y) > 1.0). Congestion maps

can be generated using fast global routers or Steiner trees algorithms.

In global routing, nets are routed using global routing algorithms. The objective

is to obtain routed net segments to provide a congestion map in relatively low runtime.

Global routing techniques are slower than probabilistic methods in generating congestion

maps, but they are less pessimistic than probabilistic techniques (SAXENA; SHELAR;

SAPATNEKAR, 2007). Global routers such as NCTUgr (HUANG et al., 2015b) can be

used to route the circuit and to provide congestion maps.

In the placement algorithms, the pin density metric can be used to estimate routing

congestion. Pin Density is the ratio between the number of pins and the area of GCells.

In the pin density metric, internal and external pin connections in GCells are captured.

On the other hand, the pin density metric fails to capture nets that only cross GCells

77

(SAXENA; SHELAR; SAPATNEKAR, 2007).

Rent’s rule (LANDMAN; RUSSO, 1971) is an empirical routing congestion met-

rics. The number of IO pins is related to the number of circuit cells, as shown in (3.15).

NumPins = CellP ins×NumCellsr (3.15)

where, NumPins is the number of IO pins. CellP ins is the average number of pins of

circuit cells. NumCells is the total number of circuit cells. r (0 ≤ r ≤ 1) is the constant

Rent’s rule that depends on circuit characteristics.

Probabilistic methods are used to measure routing congestion by approximating

global routing results. However, probabilistic methods can be inaccurate for estimating

the length of nets that are difficult to route. Probabilistic methods also have issues in ad-

equately addressing routing results around complicated routing regions that have routing

blockages and macroblocks (SAXENA; SHELAR; SAPATNEKAR, 2007).

3.6.4 Timing Violations

In (KIM; HUJ; VISWANATHAN, 2014; KIM et al., 2015), a metric to mea-

sure placement optimization regarding timing violations is presented. The Timing Qual-

ity of the Results (TQoR) is a weighted arithmetic mean to compute improvement on

timing and area density violations. TQoR metric has been used in the 2014 and 2015

International Conference on Computer Aided Design (ICCAD) contests (KIM; HUJ;

VISWANATHAN, 2014; KIM et al., 2015) to evaluate circuit solutions of contest teams.

In (3.16), the formula to compute the improvement of timing and area density violations

is presented. The improvement in the area density utilization is measured by computing

the ABU metric.

TQoR = 100× ωABU∆ABU ×
∑

i∈{tns, wns}

ωi Qi (3.16)

where ωABU is ABU (KIM et al., 2012) weight, ∆ABU is ABU penalty change from

initial placement (i.e., initial minus current ABU penalties). ωi is the weight for WNS

and TNS violations. Qi is the timing quality score for TNS and WNS. In (3.17), the

78

equation to compute TNS and WNS improvement from the initial solution is presented.

Qi∈{tns, wns} =
∑

j∈{early, late}

ωj

(
1−

i′j
ij

)
(3.17)

where Qi∈{tns, wns} is TQoR for improvement on TNS and WNS violations, respectively.

ωj is the weight for early and late violations of TNS and WNS. i′j is the current placement

TNS and WNS violations while ij is the initial placement TNS and WNS violations.

In Table 3.2, the 2014 and 2015 ICCAD contests weight factors are presented. The

maximum achievable quality score is 1800 points. This score indicates the 2014 and 2015

ICCAD benchmarks are free of timing and area density violations.

Table 3.2: 2014 and 2015 ICCAD contest weights to compute the Timing Quality of the
Results

Weight Value
ωabu 1
ωearly 1
ωlate 5
ωtns 2
ωwns 1

3.6.5 Driver Strength, Criticality and Centrality

In this section, driver strength, criticality, and centrality metrics are introduced.

In circuits with timing violations, driver strength metric aids to determine the direction

of cell movement to optimize negative slack. Criticality and centrality are essential to

classify critical timing cells by the relevance in the critical timing paths. These metrics

are introduced in (FLACH et al., 2016).

3.6.5.1 Driver strength

The driver strength metric indirectly indicates the resistance of the driver cell. In

other words, driver resistance can be used to indicate the required time to load the cell

output capacitance and the size of the cell. Big cells can load big capacitors faster than

small cells.

79

3.6.5.2 Criticality

Criticality {criticality ∈ R|0 ≤ criticality ≤ 1} is a normalized representative

number of the critical timing pins. This number indicates the relevance of the negative

slack in the pin compared to the circuit WNS. In Equation 3.18, the pin criticality com-

putation is presented.

criticality(pini) =
slack(pini)

WNS
(3.18)

3.6.5.3 Centrality

Normalized centrality {centrality ∈ R|0 ≤ centrality ≤ 1} of a pin is a rep-

resentative number of the pin’s influence in the critical timing paths. Pins with high

centrality indicates that worst critical timing paths are passing through these pins.

In Figure 3.9, an example of the centrality computation is presented. the output

(out) pin of the nand cell is affected by two critical timing paths (p1 and p2). The centrality

of the output pin is the summation of the centrality of the sink pins of the net. The

centrality of the input pins (A and B) from the nand cell is the multiplication of the pin

criticality and the centrality of the output pin from the nand cell. Pin centralities are

normalized in terms of the highest centrality value.

Figure 3.9: Example to compute centrality of critical timing pins

Source: Author (2019).

80

3.6.6 Cell Displacement

Legalization and detailed placement algorithms may move cells far away from

cell positions computed on the global placement solution. These cell movements can

significantly impact the quality of the placement solution. Cell displacement may be

evaluated using 1) linear, 2) quadratic or 3) the relative history cell displacement models.

In linear cell displacement, the distance of current and target positions is computed. In

quadratic cell displacement, the quadratic distance between current and target positions

is computed. However, these cell displacement models fail to address the history and

direction of cell movements regarding initial cell positions. Therefore, it is infeasible

to indicate if cell movements are going to increase or to decrease cell displacement by

considering only current and target cell positions.

In the model to compute the relative history of the cell displacement (PUGET et

al., 2015), the difference of cell displacement is computed considering both current and

target positions in terms of the initial position. The difference between both cell displace-

ments gives the relative history of cell displacement. This cell displacement can be a

positive or negative value. A negative value indicates the distance between the target and

initial positions is lower than the distance between the current and initial positions. Nega-

tive values also indicate cells are going to be moved closer to initial positions. These cells

have been previously moved away from initial positions Positive values indicate target

cell positions are farther away than current positions regarding initial positions. Positive

values also indicate cells are going to be moved farther away from initial positions. These

cells have been previously moved away from initial positions.

In (PUGET et al., 2015), a cell displacement cost function, which can indicate

the history and direction of cell movement, is presented. Equation (3.19) is designed to

compute the relative history cell displacement cost as:

cost(.) = |target(.)− init(.)| − |current(.)− init(.)| (3.19)

where, (.) ∈ {x, y}. target(.) is the position which the cell is going to be moved to.

init(.) is the cell position in the global placement solution. current(.) is the actual cell

position. The total cell displacement cost is computed as totalCost = cost(x) + cost(y).

In (3.19), the signal (negative or positive) of cost value indicates the history and direction

of cell movements.

81

3.7 Grid of Bins for Network Flow-based Cell Spreading Algorithms

In the proposed legalization and detailed placement algorithms, network flow-

based cell spreading algorithms rely on a graph which is a grid of bins. A bin is a rectangle

which covers a small part of the circuit core. Cells are moved out from high-density re-

gions through optimized cost paths. In the graph of the grid of bins, bins are nodes and

edges are connections to neighboring bins. Bins which are limited by macroblocks are

connected to bins on the opposite side of these macroblocks. Bin connections through

macroblocks allow paths outside of regions surrounded by macroblocks. These regions

can have area density violations, which only can be solved by moving cells to other re-

gions. In Figure 3.10, two grids of bins are presented. Bins may or may not have overlap

with macroblocks or fixed cells.

Figure 3.10: Grids of bins which do not have overlap and have overlap with macroblocks
and fixed cells

Source: Author (2019).

The circuit core is split into a grid of bins. This grid can be modeled to over-

lap or not to overlap macroblocks and fixed cells, as presented in Figure 3.10. In non

overlapping grid of bins, bin boundaries are limited to row, macroblocks, or fixed cell

boundaries. In this model, the bin area is usually small, and bins are free of the fixed

area from macroblocks or fixed cells. Bins have the same height and width. Some bins

can have width wider than the standard bin width (standardWidth ≤ binWidth <

82

2 × standardWidth). In overlapping grid of bins, bin boundaries are limited to mini-

mum and maximum row positions in abscissa and ordinate axis. In this model, bins can

have overlap to the fixed area from macroblocks and fixed cells. These bins may also have

boundaries entirely or partially outside of row boundaries. Bins have the same width and

height, except for bins in right and upper circuit core corners. Cells must be placed inside

row boundaries. Therefore, some bins may have part or total of the area blocked to place

cells because these bins are partially or entirely outside row boundaries.

Area overlap between cells and bins is added to bins as cell area component. Fixed

area is the total area of fixed components which have overlap with bins. Fixed area can

also be the bin area that is outside of row boundaries. Bin area is the total area of the

bin. Place-able area is the available area to place movable cells inside bins without area

density violation. Target area density constraint (0 < targetAreaDensity ≤ 1) is set

by the designer to ensure a percentage of the circuit area is always empty. In (3.20), the

equation to compute place-able area of bins is presented.

placeableArea = (binArea− fixedArea)× targetAreaDensity (3.20)

In non overlapping grid of bins, target area density utilization is defined as 1.0.

Demand and supply values are available and overfilled area components in bins,

respectively. Therefore, bins with area density violation have the supply value higher than

zero. Otherwise, the bin demand area component is higher than zero. Bin demand and

supply are computed in terms of area as shown in equations (3.21) and (3.22), respectively.

demand = max{0, placeableArea− cellArea} (3.21)

supply = max{0, cellArea− placeableArea} (3.22)

3.8 Physical Synthesis

In digital design flow, physical synthesis is composed of several challenging con-

strained optimization problems. In physical synthesis, objectives and constraints can con-

flict with each other while optimizing circuit solutions. Usually, optimizing total wire

length has a conflict with area density and routability restrictions. Determining a trade-off

among conflicting objectives and restrictions can be very challenging. In (3.23), formula-

83

tion of constrained optimization problems is introduced.

Minimize f(x)

Subject to gi(x) ≤ bi, 1 ≤ i ≤ m.
(3.23)

where, f(x) is the objective function to optimize. gi(x) is the set of circuit constraints. bi

is the set of constraint upper limits.

In physical synthesis, common objectives to optimize are total wire length, path

delay, routability, manufacturability, and area density utilization. On the other hand, com-

monly addressed constraints are technology design rules, electric constraints, and layout

geometry restrictions (KAHNG et al., 2011). Constraints in CMOS technology nodes

are geometry rules that ensure the correct manufacturing process of circuit layouts. Elec-

tric constraints ensure that performance and correct operation of manufactured circuits

are achieved. Geometry restrictions are introduced to reduce optimization and synthe-

sis complexity during physical synthesis optimization. These geometric restrictions can

include preference direction of routed wires and equal cell heights. Moreover, technol-

ogy constraints and geometry restrictions also aid minimizing circuit defects during the

manufacturing process.

Physical synthesis flow is composed of 1) floorplan, 2) placement, 3) CTS and 4)

routing stages. In physical synthesis, a wide range of heuristics and formal methods are

used to provide optimized circuit solutions. Several formal methods, such as the system

of linear equations, Lagrange, Network flow, ILP, LP, and Mixed Integer Programming

(MIP) are used to optimize circuit solutions. Heuristics such as area density utilization,

maximum arrival timing of paths, delay of cells, paths and nets topologies, paths and nets

characteristics, and wire length are used to guide optimization algorithms.

3.9 Summary

In this chapter, the main concepts, models and optimization techniques related to

EDA, and physical synthesis are given. Algorithm and graph definitions are presented.

Network flow and branch and cut optimization algorithms are introduced. Methods are

highlighted to decompose Hyperedge nets. Metrics to evaluate design quality are pre-

sented. The graph of grid bins for network flow-based cell spreading algorithms is shown.

Physical synthesis optimization objectives and algorithms are presented.

84

Digital circuits require a considerable effort to design, synthesize, and optimize.

The circuit synthesis and optimization depends on heavily formal methods and heuristics.

Computing appropriate heuristic data depends on circuit metrics. Circuit metric estima-

tion is very challenging in EDA. Estimation of circuit metrics, heuristics and formal

methods are fundamental to optimized circuits.

85

4 DIGITAL CIRCUIT PLACEMENT

4.1 Introduction

Placement is the physical synthesis step that provides optimized cell positions to

achieve objectives and to satisfy constraints. Placement can have a significant impact on

the quality of the circuit solution. Circuit placement is one of the most critical optimiza-

tion stages (NAM; CONG, 2007) in physical synthesis. The formulation of the placement

problem is NP-hard class. Therefore, obtaining the optimum solution in a reasonable

time is infeasible. Besides, advances in CMOS technology processes have introduced a

considerable number of complex restrictions to compute optimized cell positions.

Placement stage is divided into 1) global placement, 2) legalization and 3) de-

tailed placement. In Figure 4.1, placement flow is presented. During global placement,

approximated cell positions are optimized while cells are allowed to overlap. During le-

galization, cells are aligned to allocated sites within row boundaries. Cells are also free of

cell overlapping. In detailed placement, placement solution is further optimized locally.

Usually, detailed placement objectives include minimizing wire length, power consump-

tion, detailed routing violations, and timing violations.

Figure 4.1: Placement optimization flow is composed of global placement, legalization,
and detailed placement stages

Source: Author (2019).

Placement algorithms significantly modify cell locations after each algorithm iter-

ation. Therefore, circuit metrics are usually required to be updated for the entire circuit.

86

Placement strongly relies on heuristics to achieve optimized solutions. Designing place-

ment heuristics is a challenging task. Appropriate heuristic values are strongly related to

circuit metrics. Measuring circuit metrics has a trade-off between accuracy and required

computational resources. Circuit metrics must be evaluated in a short runtime, be rela-

tively accurate and use the minimum possible computational resources. Also, estimating

accurate metrics and heuristics of estimated CTS and routing circuit solutions may be

very challenging. The quality of placement solution directly impacts on effort and quality

of circuit solutions in CTS and routing steps.

In this thesis, solutions for the proposed legalization and detailed placement algo-

rithms are impacted by the quality of the global placement solution. Therefore, in this

thesis, global placement techniques and algorithms are discussed. This chapter is orga-

nized as follows: In Section 4.2, global placement optimization objective, and restrictions

are presented. In this section, placement algorithms are also highlighted. In Section 4.3,

legalization stage and network flow-based legalization algorithms are given. In this sec-

tion, relevant legalization algorithms are discussed. In Section 4.4, detailed placement

optimization objectives and restrictions are given. In this section, detailed placement al-

gorithms are also presented. Finally, in Section 4.5, the chapter summary is given.

4.2 Global Placement

Global placement is a constrained optimization problem. In (4.1), the general

formulation of global placement problem is presented.

Minimize
∑

e ∈ nets

we × le

Subject to ri < ti

i ∈ {constraints}

(4.1)

where, we is weight associated with wire length le. e ∈ nets is a net of circuit. ri is place-

ment constraint. ti is constraint upper limit. i ∈ constraints is placement constraint.

Placement problem formulation is NP-hard class. Therefore, obtaining the opti-

mum solution in a reasonable time is infeasible. Besides, advances in CMOS technology

processes have introduced a high number of complex restrictions to comply with during

optimization of cell positions. Cell overlapping and alignment to site and row boundaries

are relaxed to reduce the complexity of obtaining feasible placement solutions. More-

87

over, the density of cell area utilization indirectly addresses overlap among cells. Hence,

area density indirectly and roughly indicates the total number of cells that are going to be

placed in a circuit region. The typical global placement formulation is to optimize total

wire length subject to maximum area density utilization. In some formulations routing vi-

olations and timing delay are included as part of the placement restrictions. It is assumed

that optimized wire length in placement solutions indirectly improves routability, circuit

delay, power consumption and violations in design rules.

Global placement algorithms may be categorized as 1) stochastic, 2) partitioning-

based, and 3) analytical. Stochastic algorithms rely on non-deterministic optimization

techniques such as, the Simulated-Annealing (SA) (KHACHATURYAN; SEMENOVSOVSKAYA;

VAINSHTEIN, 1981) technique to iteratively improve an initial placement solution. In

partitioning-based algorithms, the circuit netlist is recursively split into smaller circuit

netlists and assigned to circuit regions. Analytical algorithms rely on numerical opti-

mization methods to provide placement solutions. Analytical placement algorithms may

be classified into 1) non linear and 2) quadratic types. The classification of analytical

placement algorithms depends on the numerical method used to compute optimized cell

positions. In the quadratic placement, usually, the circuit netlist is modeled as a mass-less

spring system. Placement solution is obtained by iteratively minimizing the difference

between wire length and density of the upper and lower bound placement solutions.

4.2.1 Stochastic Global Placement

Stochastic placement methods rely on non-deterministic optimization of the con-

strained objective functions to obtain feasible solutions. SA is a probabilistic method for

approximating the global optimum solution in an ample search space for a given objec-

tive function. The most used and known stochastic placement algorithms are based on

the Simulated-Annealing (SA) (KIRKPATRICK; GELATT; VECCHI, 1983) technique.

In Figure 4.2, an example of the SA solution space is presented. In this figure, the SA

algorithm is based on navigating through many local solutions trying to reach the global

optimum solution. The SA algorithm accepts solutions with high cost to avoid being stuck

in a local minimum solution.

The SA algorithm is based on the annealing process from the metallurgy. The

SA optimization procedure starts with an initial temperature that has a high value. A

cooling function reduces the temperature. An acceptance function determines if worst

88

Figure 4.2: Solution space of the Simulated Annealing algorithm

Source: (KAHNG et al., 2011)

cell movements are accepted based on temperature value. Cells are randomly chosen to

be moved to new positions. Cells are placed in new positions if the objective function is

optimized. Cell positions that worsen objective function may be accepted expecting future

cell movements to achieve better positions, which further improves the objective function.

The SA algorithm accepts some cell movements that worsen the objective expecting to

avoid being stuck in a local minimum placement solution. Theoretically, SA may reach an

optimal placement solution if it is run for a long time. In the SA approach, the continuous

growing in circuit size causes the runtime to become excessive. The excessive runtime

prevents SA algorithms to be used in modern circuits (SPINDLER; JOHANNES, 2007).

SA algorithms also have poor scalability to optimize circuits. One of the most prominent

SA placement algorithms is Timberwolf (SUN; SECHEN, 1993).

In Algorithm 1, a pseudo code of global placement using SA is presented. The

SA algorithm receives a mapped netlist and the initial placement solution. The output of

the algorithm is a placed netlist with the optimized objective. Usually, the objective is to

minimize the total wire length. Temperature, and the number of iterations are initialized

in Lines 1, and 2, respectively. The best placement solution is initialized with the initial

placement solution (Line 3). In Line 4, the cost of best placement solution is computed.

Temperature is commonly initialized with a very high value. The SA algorithm iterates

while the maximum number of iterations or the minimum temperatures are not reached

(Line 5). At a certain temperature, the SA algorithm iterates over a certain number of

cells while a stop condition is not reached (Line 6). This stop condition can be defined as

an upper limit of the number of cell movement, an achieved objective value or the number

of iterations. A pair of movable cells are randomly selected (Line 7). Cells are temporally

switched (Line 8). The cost of switched cells is computed (Line 9). Delta cost of switched

cells and current solution is computed (Line 10). A random number (0 < number < 1)

is found (Line 11). Swapped cells solution is accepted if placement solution is improved

89

Algorithm 1: Simulated Annealing Placement Algorithm
Data: mapped netlist, initial placement solution
Result: global placement solution

1 temp = initTemperature();
2 it = 0;
3 bestPlace = initialPlacement;
4 minCost = cost(bestPlace);
5 while it ≤ maxIts and temp > minTemp do
6 while !condition do
7 pair = selectPair(bestPlace);
8 sol = move(bestPlace, pair);
9 cost = cost(sol);

10 ∆ = cost - minCost;
11 val = random(0, 1);
12 if ∆ < 0 or val < e−∆/temp then
13 minCost = cost;
14 bestPlace = sol;
15 end
16 end
17 temp = α× temp; /* 0 < α < 1 */
18 end
19 return bestPlace;

(Line 12). Swapped cells which worsen placement solution have a higher chance of being

accepted in high temperature. This approach helps SA to avoid getting stuck in local

optimum placement solutions. If switched cells solution is accepted, then cost (Line 13)

is updated. The best placement solution (Line 14) is also updated. Temperature is reduced

by an alpha (α) factor (Line 17). The alpha factor is experimentally determined. The SA

algorithm returns the best placement solution (Line 19).

4.2.2 Partitioning-based Placement

In partitioning-based placement algorithms, the circuit netlist is recursively di-

vided into partitions with partitioning algorithms such as Kernighan-Lin (KERNIGHAN;

LIN, 1970), Fiduccia-Mattheyses (FIDUCCIA; MATTHEYSES, 1982) or hMetis (KARYPIS;

KUMAR, 1998). The objective is to obtain small cell partitions where cells have high

connectivity. A cut line function in the circuit graph determines the location to split par-

titions to evenly distribute cell and circuit areas (SPINDLER; JOHANNES, 2007). The

partitioning process stops when the partition reaches the established threshold of the max-

90

imum number of cells inside partitions.

In Algorithm 2, a pseudo code of the partitioning-based placement method is pre-

sented. The partitioning-based algorithm receives mapped netlist, circuit floorplan, and

Algorithm 2: Min-Cut Placement Algorithm
Data: netlist, floorplan, minimum number of cells per region
Result: global placement solution

1 place = NIL;
2 regions.insert(netlist, floorplan);
3 while !regions.empty() do
4 region = regions.pop();
5 if region.getNumCells() > min_cell then
6 (r1, r2) = bisection(region);
7 regions.insert(r1);
8 regions.insert(r2);
9 else

10 placeCells(region);
11 place.insert(region);
12 end
13 end

the minimum number of cells per partition. The algorithm output is a placed netlist.

Placed netlist is initialized with an invalid solution (Line 1). In the partitioning-based

algorithm, regions are composed of a set of cells and part of the circuit core. The first

region, which is the netlist and floorplan, is inserted in the list of regions (Line 2). The

partitioning-based algorithm iterates while there are regions which have the number of

cells higher than the threshold (Line 3), i.e., the list of regions is not empty. The next

region to partition or place cells is retrieved from the list of regions (Line 4). If this re-

gion has more cells than the minimum cell limit (Line 5) then the region is partitioned

(Line 6). These partitioned regions are inserted in the list of regions (Lines 7, and 8).

Otherwise, cells in this region are placed (Line 10) and the placed region is inserted into

the placement solution (Line 11).

4.2.3 Analytical Global Placement

In the global analytical placement, the placement problem is formulated as an ana-

lytical cost function to be optimized using numerical methods (SPINDLER; JOHANNES,

2007). Analytical placement algorithms may be categorized into 1) nonlinear or 2)

quadratic depending on the cost function formulation. Nonlinear placement algorithms

91

rely on nonlinear functions (e.g., log-sum-exp) to optimize placement solution. Non-

linear algorithms may require high computational resources to converge the placement

solution. These algorithms may be numerically unstable. Usually, nonlinear placement

algorithms use a multilevel optimization approach to reduce the complexity to obtain a

solution. Some relevant nonlinear placement algorithms are APlace (KAHNG; WANG,

2006), mPL6 (CHAN et al., 2006), NTUPlace3 (CHEN et al., 2008), NTUPlace4 (HSU et

al., 2011). Circuit cells and placement area are modeled as electric charges in the ePlace

(LU et al., 2014) algorithm. In the ePlace, cells are spread to reach the electrostatic equi-

librium.

In the quadratic global placement, the placement optimization problem is modeled

as a quadratic cost function. Total wire length optimization is addressed as a quadratic

function in quadratic global placement. Quadratic functions are everywhere, differenti-

ated, continuous, and convex. Quadratic function solutions can be obtained by solving

the system of linear equations. The force-directed formulation is a category of quadratic

placement. In force-directed placement, the netlist is modeled as a spring system from

classical mechanics (Hooke’s law) (KAHNG et al., 2011). Circuit nets and cells are mod-

eled as springs and mass-less objects, respectively. Hyperedge nets are decomposed into

sets of pair connections. Each connection (spring) attracts connected cells. The attraction

force is proportional to the quadratic of the distance of cells (KAHNG et al., 2011). The

minimum global energy of the spring system is the solution that gives the minimum total

wire length in placement. However, this placement solution has a high-cell concentration

in small circuit regions. Therefore, repelling or spreading forces must be added to the

system of linear equations to minimize high-cell concentration. Quadratic force-directed

placement algorithms iteratively optimize cell positions by solving the system of linear

equations and adding repelling or spreading the force.

The quadratic force-directed placement approach provides dual placement solu-

tions. Lower bound placement is the placement solution obtained by solving the system of

linear equations. Upper bound placement is the placement solution obtained by spreading

out cells from high-density regions. In the quadratic force-directed algorithms, optimized

placement solution is obtained when the difference in dual placement solutions is lower

than a threshold. Usually, total wire length is the metric which is used to measure the

threshold difference of dual placement solutions.

Optimized wire length placement solutions are obtained by solving the system of

linear equations. The system of linear equations is formulated as: let n be the number

92

of movable cells. Each movable cell is placed in a Cartesian position (x, y). Placement

solution is obtained by solving the system of linear equations to determine optimized po-

sitions for movable cells. Cell positions are split into two independent position vectors

~x = (x1, x2, x3, ..., xn) and ~y = (y1, y2, y3, ..., yn). Hyperedge nets are decomposed into

sets of pair connections. Each pair connects two movable cells i and j. The connection

between cells i and j is associated with weight Wij . Weight Wij depends on decompo-

sition net models. Some weight formulations are discussed in (3.3), (3.4), and (3.5) at

Section 3.5. In (4.2), pair connection cost in quadratic global placement algorithms is

presented.

pairCostij =
1

2
Wij[(xi − xj)2 + (yi − yj)2] (4.2)

where, Wij is the weight of a pair connection. xi and xj are pin positions in the Cartesian

abscissa of cells i and j, respectively. yi and yj are pin positions in the Cartesian ordinate

of cells i and j, respectively.

In global quadratic placement, the system of linear equations is modeled with

matrix notation. In (4.3), the matrix notation to optimize quadratic placement is presented.

The matrix notation is presented only for Cartesian abscissa (X-axis) coordinate.

Φ(x) =
1

2
xTQx + dTxx+ constant (4.3)

where Qx is an n×n symmetric positive definite matrix. dx is a n−dimensional vector. n

is the total number of movable cells in the circuit. Let qij be row i and column j of matrix

Qx for cells a and b, respectively. The negative weight value of pair connection between

movable cells a and b are added to matrix Qx in the positions qi,j and qj,i. The positive

weight value is added to matrix diagonals qi,i and qj,j . If cell a is fixed, the positive

weight of pair connection is added to diagonal position qj,j of matrix Qx. The weight is

multiplied by the abscissa coordinate (x position) of cell a, and the multiplication result

is added to position j in vector dx. Nothing is done if both cells are fixed. The matrix Qy

is built in the same fashion.

Matrices Qx and Qy are symmetric, sparse, and positive definite. Therefore, al-

gorithms to solve the system of linear equations can exploit these matrix properties to

provide a fast solution with minimal usage of computational resources. Movable cells

which are mapped to rows and columns results in a symmetric matrix. Matrices Qx and

Qy are highly sparse because of the local cell connections between a few cells.

In (4.4), the derivative equation from (4.3) is presented. The solution of the system

93

of linear equations is a placement solution with optimized total wire length.

Qx + dx = 0 (4.4)

The system of linear equations to optimize movable cell positions in the abscissa

and ordinate axis may be solved in parallel. The solution of the system of linear equations

is independent for the abscissa and ordinate axis. Qx and Qy matrices are equal if hyper-

edges are decomposed with the clique, star and hybrid net models. However, matrices Qx

and Qy are different for decomposed hyperedge nets with B2B net model.

In the force-directed placement algorithms, spreading forces are added to reduce

overlap between cells and to move cells out from high-density regions. Spreading forces

may be categorized into 1) constant spreading force, and 2) fixed point force. In constant

spreading force, a constant force is added to each cell in the respective index on matrix

b after each algorithm iteration. Therefore, the Hessian matrix Q is constant, except if

weights of cell connections are updated. In fixed point force, the extra weight (force)

is associated with an extra connection between a cell and a fixed point is added to the

Hessian matrix Q.

Quadratic placement algorithms have been the subject of research for several

years. Several quadratic placement algorithms focus on optimizing total wire length

subject to area density utilization. Other quadratic placement algorithms also address

routability and timing violations constraints.

4.2.4 Wire Length-driven Global Placement

In wire length-driven quadratic global placement algorithms, the objective is to

minimize total wire length subject to area density utilization. Several relevant global

placement algorithms are presented as follows. In (QUINN JR., 1975), the first force-

directed quadratic placement algorithm is presented. FastPlace (VISWANATHAN; CHU,

2005) is the first quadratic placement algorithm which has significantly outperformed

in runtime with practically the same placement quality of the SA and partitioning-based

placement algorithms. mFAR (HU; MAREK-SADOWSKA, 2005) addresses fixed points

(i.e., pseudo cell positions) as anchors to spread out cells from high-density regions.

Kraftwerk2 (SPINDLER; JOHANNES, 2007) relies on the gradient of Poisson potential

to determine movable cell positions. In Kraftwerk2, the cell forces are divided into two

94

categories: 1) hold and 2) move force components. RQL (VISWANATHAN et al., 2007)

explores a linearization technique called force-vector modulation to restructure global

placement aiming to minimize wire length. RQL also explores density-aware module and

wire length-driven local cell spreading techniques to distribute cells evenly in the circuit

core. BonnPlace (BRENNER; STRUZYNA; VYGEN, 2008) spreads cells using recur-

sive partitioning of the circuit core. DPlace2.0 (LUO; PAN, 2008) uses cell anchors and

wire length linearization strategy to star net model. ITOP (VISWANATHAN et al., 2010)

optimizes wire length and timing in global and detailed placement stages. SimPl (KIM;

LEE; MARKOV, 2012) iteratively spreads cells by performing fast rough legalization

called Look Ahead Legalization (LAL) after solving the system of linear equations. In

Polar (LIN et al., 2013), cells are spread with the LAL approach by considering relative

cell positions. Polar also splits the LAL regions that have a significant difference be-

tween width and height into smaller regions closer to square shapes. In Maple (KIM et

al., 2012), the objective is to improve the correlation of placement solution between suc-

cessive placement optimization steps. Maple combines an unclustering technique with

two-tier progressive local refinement. Complx (KIM; MARKOV, 2012) relies on a sub-

gradient primal-dual Lagrange to optimize global placement. In Eh?Placer (DARAV et

al., 2016), the target is to optimize the placement solution subject to fence regions, max-

imum area density, and detailed routing constraints for complex rules in modern CMOS

technology nodes.

4.2.5 Timing-driven Global Placement

In modern circuit designs, interconnection delays dominate timing propagation

in timing paths (NAM; CONG, 2007). The placement solution can significantly impact

the maximum signal delay required to achieve high-performance (NAM; CONG, 2007).

Global placement algorithms can place cells in any position of circuit core since objec-

tives are reached and constraints are attended. The focus of wire length-driven placement

algorithms is to optimize total wire length without considering timing path characteristics.

In the timing-driven placement algorithms, the objective is to minimize the total

wire length subject to area density utilization and circuit timing. Nets of critical timing

paths are prioritized during the placement optimization. Critical timing paths and nets are

identified with the STA algorithm (MARKOV; HU; KIM, 2015). Timing-driven place-

ment algorithms may also be targeted to optimize WNS, TNS or both timing metrics.

95

Circuit timing may be optimized during global placement relying on 1) net-based,

2) path-based or 3) hybrid techniques. In net-based techniques, the STA algorithm is used

to estimate the timing propagation of electric signals. Net delays are modeled as timing

weights (MARKOV; HU; KIM, 2015). Static timing weights remain constant during the

entire placement optimization. Dynamic timing weights are updated after each iteration

of the placement algorithm. Dynamic weights are gradually updated to reflect path de-

lay changes based on slack or net criticality. Critical timing nets with dynamic weights

may oscillate between critical and non-critical timing nets. In path-based methods, the

objective is to eliminate timing violations in the entire critical timing paths. However,

listing all circuit paths is infeasible. Path-based algorithms are hard to scale when there

are several critical timing paths. However, path-based algorithms achieve better results

than net-based algorithms (MARKOV; HU; KIM, 2015). In hybrid techniques, circuit

delay is optimized with both net-based and path-based techniques.

Some timing-driven global placement algorithms are highlighted as follows. (KONG,

2002; TSAY; KOEHL, 1991; BURSTEIN; YOUSSEF, 1985) are net-based timing-driven

placement algorithms. Path-based timing-driven placement algorithms are presented in

(PAPA et al., 2008) (WANG; LILLIS; SANYAL, 2005), and (SWARTZ; SECHEN, 1995).

In (VISWANATHAN et al., 2010), a quadratic timing-driven placement algorithm is pre-

sented. In this technique, critical timing nets are addressed using timing weights. Extra

weights are added to the system of linear equations for each critical timing net. These ex-

tra weights keep critical timing cells closer when solving the system of linear equations.

Critical timing nets can also be addressed in the system of linear equations by adding

extra two-pins virtual connections between critical timing cells. In (WU; CHU, 2017), a

Lagrangian relaxation timing-driven global placement algorithm is presented.

4.2.6 Routing-driven Global Placement

In routing-driven global placement, the objective is to minimize total wire length

subject to area density utilization and routing violations. Routing violations are mea-

sured with routed nets and congestion map. Routing-driven placement algorithms can

also incorporate static or probabilistic techniques to estimate circuit routing congestion.

Common techniques to minimize routing congestion are 1) white space injection and 2)

cell boating techniques.

In global placement, several algorithms optimize the total wire length subject to

96

routability. In SimPLR (KIM et al., 2011), cell boating with dynamic cell width adjust-

ment is presented. In Ripple (HE et al., 2011; HE et al., 2013), cells are independently

inflated in vertical and horizontal directions. In Ripple 2.0 (HE et al., 2013), cells are

moved out from congested regions using paths aware of routability. In NTUPlace4 (HSU

et al., 2011), pin density, routing overflow optimization, and porosity of macroblocks are

considered to optimized placement solution. In (CONG et al., 2013), large placement re-

gions inside of the circuit, which are free of macroblocks, are identified, and dummy cells

are inserted to improve routability. In Polar 2.0 (LIN; CHU, 2014), routing demand is dis-

tributed in the rough legalization stage. Routing congestion is independently addressed on

the vertical and horizontal directions. In (HUANG et al., 2015b), a clustering algorithm

aware of fence regions is presented. A white space insertion for pre-placed pins is shown.

In Eh?Placer (DARAV et al., 2016), a global placement algorithm aware of fence regions

is shown.

4.3 Legalization

In legalization, cells are placed inside rows and aligned to site boundaries. Legal

cell positions are free of cell overlap. During global placement, cell overlap and align-

ment to row (power rails) and site boundaries are relaxed. Legalization algorithms must

modify the placement solution to provide a legal placement solution with minimized cell

displacement. Legalization is performed using global placement solutions as the initial

placement solution. These solutions need to be evenly distributed and have relatively

small cell overlapping (MARKOV; HU; KIM, 2015). In Figure 4.3, examples of global

and legalized placement solutions are presented.

Figure 4.3: Examples of global and legalized placement solutions

Source: Author (2019).

97

Legalization techniques may be classified in terms of 1) heuristics or 2) formal ap-

proaches. Most of the legalization algorithms fall in the heuristic group, such as (HILL,

2002; VISWANATHAN et al., 2007; SPINDLER; SCHLICHTMANN; JOHANNES,

2008a; PUGET et al., 2015), where greedy cell spreading and cell legalization approaches

are used. In these algorithms, the objective is to search for the nearest free space from

high-density regions to place cells in legal positions. Cells are sorted in a specific or-

der. Cells are placed in legal positions following this ordering. Heuristic legalization

algorithms can lead to large cell displacements, which can significantly disturb the global

placement solution. High cell displacement can increase wire length, which can degrade

circuit performance (VISWANATHAN et al., 2010). Circuit routability can also be ad-

versely impacted by significant cell displacement.

In the formal approaches, legalization algorithms rely on formal methods such

as minimum-cost formulations (BRENNER, 2013; CHO et al., 2010; DARAV et al.,

2017) or force-directed movements (REN; PAN; KUNG, 2005). Usually, in minimum

cost formulation, optimized paths are computed to move cells out from high-density re-

gions. These formal legalization algorithms may have two stages: 1) cell spreading and 2)

cell legalization. During the cell spreading stage, cells are moved out from high-density

regions with minimized cost. Also, cell overlap and alignment to site boundaries are re-

laxed. Cells are only aligned to row boundaries. In the cell legalization stage, cells are

placed in legal positions. Cells are placed in aligned positions to row and site boundaries.

These placed cells are free of cell overlapping. Formal legalization techniques tend to

take a global view of global placement solution.

Legalization algorithms may also be classified as 1) local and 2) global methods

(MARKOV; HU; KIM, 2015). In the local legalization method, cells are legalized in the

nearest available positions of the global placement solution. One cell or a small group of

cells are legalized in each algorithm iteration. Legalization algorithms have only the stage

that directly legalizes cells. High-density regions are eliminated during cell legalization

by legalizing cells in the closest positions which have available space to place cells. Some

legalization algorithms move already legalized cells to open the required space to legalize

a new cell. Cells from regions that have area density violations are moved to neighbor

regions that may accommodate these cells free of area density violations. In global le-

galization methods, usually, legalization algorithms have two stages. Initially, cells are

moved out from high-density regions with optimized cell displacement cost formulation.

In this stage, cell overlapping and alignment to site boundaries are relaxed. Some legaliza-

98

tion algorithms rely on the network flow technique to move cells out of the high-density

regions. In the second stage, cells are placed in legal positions. In this stage, circuit

placement is free of high-density regions, which aids to improve the quality of legalized

placement solution. In global approach methods, cell displacements are generally shorter

compared to the local legalization approach.

Heuristic-based and local method legalization algorithms are presented as follows.

Tetris (HILL, 2002) is one of the first legalization algorithms. Tetris legalizes cells in

the current position or the nearest available right position without moving already legal-

ized cells. Abacus (SPINDLER; SCHLICHTMANN; JOHANNES, 2008a) is similar to

Tetris. However, Abacus moves already legalized cells to minimize total cell displace-

ment. Jezz (PUGET et al., 2015) extends Abacus to support mixed-size circuits with

blockage regions. Jezz also incrementally legalizes cells. Incremental legalization fea-

tures can be helpful for detailed placement algorithms.

Obstacle-aware Legalization (OAL) (CHOU; HO, 2009) is a legalization algo-

rithm to minimize cell displacement using an exact linear wire length model and obstacle-

aware cell insertion. In (HO; LIU, 2010), fast row selection and exact linear wire length

model to minimize cell displacement and HPWL techniques are explored. HiBinLegal-

izer (LEE; WU; CHIANG, 2010) searches appropriate positions to legalize cells in limited

area spaces instead of searching in the entire circuit core. HiBinLegalizer also keeps the

relative order of cells inside rows. Moreover, HiBinLegalizer uses a weighted sum of

Manhattan distance movements to minimize cell displacement. (HU et al., 2013) shows

a legalization algorithm that sort cells based on 1) width, 2) pin, and 3) center in the dis-

tribution, invalid relocation, and overlap removal steps, respectively. The objective is to

minimize total wire length. In (NETTO et al., 2016b), standard-cells are legalized rely-

ing on fast queries on multidimensional trees. In (NETTO et al., 2016a), a legalization

algorithm that explores parallelism to reduce legalization runtime is shown. In (CHOW;

PUI; YOUNG, 2016), a multi-deck legalization technique is presented. In (WANG et al.,

2017), a legalization algorithm that explores the difference of cell heights in multi-deck

legalization to minimize dead space is shown.

4.3.1 Network Flow-based Legalization Algorithms

Network flow-based legalization algorithms rely on a network flow technique to

provide legalized placement solution. Network flow-based legalization algorithms are

99

split into 1) cell spreading, and 2) cell legalization stages. In the cell spreading stage,

cells are moved out from high-density regions with minimized cell displacement cost.

Therefore, cell distribution in the placement area is smoother. In the cell legalization

stage, cells are placed in legal positions and aligned to site and row boundaries without

cell overlapping.

In the cell spreading stage, a grid of bins is built. Bin connections may be modeled

as a graph, where nodes represent bins and edges represent connections to neighbor bins.

Rows are divided into segments which are limited by row boundaries or by row blockages.

Row segments are split into bins which have the same width. Bins are merged with the

left bin if bin width is lower then the default bin width. Bin width can be computed as

introduced in (BRENNER, 2013). A Bin is connected to all neighbor bins and bins on the

opposite side of macroblocks or placement blockages. In Figure 4.4, the grid of bins and

the representative graph are presented. All movable cells are partially or entirely inserted

to respective bins that have cell overlap.

Figure 4.4: Bins are connected to their immediate neighbors or the bins on the opposite
side of macroblocks or blockages. Connected bins are modeled as a graph

Source: Author (2019).

Demand and supply values are computed in terms of area for each bin. Demand is

the amount of available area to place cells in bins before bin capacity is reached. Supply

is the amount of area that exceeds bin capacity. Bin capacity is the total area of the bin. In

(3.21) and (3.22) (Section 3.7), demand and supply equations are introduced, respectively.

In the grid of bins, optimized cost paths are computed to move cells out from

high-density regions. In Algorithm 3, a pseudo code of network flow-based legalization

algorithm is presented. The algorithm inputs are netlist, global placement solution and

circuit floorplan. Legalized placement solution is the algorithm output. The first algo-

rithm procedure is to build the grid of bins and to compute demand and supply areas

100

Algorithm 3: Network Flow-based Legalization Algorithm
Data: circuit netlist, global placement solution, and circuit floorplan
Result: legalized placement solution

1 buildGridOfBins();
2 OFBins = computeOverfilledBins();
3 while !OFBins.empty() do
4 for bin ∈ OFBins do
5 path = pathAugmentation(bin);
6 if valid(path) then
7 moveCells(path);
8 end
9 end

10 OFBins = computeOverfilledBins();
11 end
12 legalize();

(Line 1). The list of overfilled bins is obtained (Line 2). The path augmentation algorithm

is iterated while there are overfilled bins (Line 3). For each overfilled bin, the path aug-

mentation algorithm is executed (Lines 4 and 5). The path augmentation procedure may

be implemented with Dijkstra (DIJKSTRA, 1959) or Breadth-First Search (BFS) (COR-

MEN et al., 2009) techniques. In valid paths (Line 6), cells are moved (Line 7) between

bins. In generalized network flow, optimized paths can be infeasible. Outflow may be

higher than bin capacity for all leaf nodes of candidate paths. After all overfilled bins

are visited, remaining overfilled bins are obtained (Line 10). Only one iteration of the

path augmentation algorithm may be enough to fix the area density violation in bins. The

last procedure is to place cells in legal positions and align cells inside of the site and row

boundaries.

In the network flow-based legalization algorithms, the cost function is essential

to select cells to move out from high-density regions. Appropriate cost function has an

influence on cell displacement. Cell displacement can be modeled with linear or quadratic

functions. However, both cost functions are unable to address the history and direction

of cell movements based on the signal of cost values. The history and direction of cell

movements are essential to determine if moved cells are going to increase or decrease cell

displacement.

Network flow-based legalization algorithms are presented as follows. Domino

(DOLL; JOHANNES; SIGL, 1991; DOLL; JOHANNES; ANTREICH, 1994) is one of

the first network flow-based legalization algorithms. Domino legalizes the circuit by solv-

ing a network flow formulation of same-size sliced-cells. In the final step of the Domino

101

algorithm, cell pieces are reassembled. In (CHO et al., 2010), history-based in the network

flow formulation to legalize cells is integrated. In (BRENNER, 2012) and BonnPlace

Legalization (BRENNER, 2013), a network flow technique is developed to reduce cell

displacement and to move cells out from regions that have area density violations. Bon-

nPlace Legalizer computes the path of bins to move precise cell flow area from source to

sink bins. The BonnPlace algorithm computes path flow bins from a source bin using the

shortest path Dijkstra (DIJKSTRA, 1959) algorithm. Eh?Legalizer (DARAV et al., 2017)

algorithm computes path augmentation using the BFS (CORMEN et al., 2009) technique.

4.4 Detailed Placement

In detailed placement, the placed netlist is locally optimized. Usually, the focus

of detailed placement algorithms is to optimize a single objective at a time. The typical

optimization objectives are 1) wire length, 2) timing violations, 3) power consumption,

4) routability, and 5) manufacturability. Recently, detailed placement algorithms also

minimize violations of design rules from detailed routing.

In the detailed placement algorithms, a single cell or a small group of cells are

moved to optimized positions in each iteration. Usually, the input of the detailed place-

ment algorithm is a legalized placement solution. The placed netlist may be legalized

after detailed placement optimization. In this approach, detailed placement algorithms

optimize circuit objectives in an illegal placement solution. A legalization algorithm is

required to legalize placement circuit afterward. Therefore, the legalization procedure can

have adverse side effects on the optimized placement solution. On the other hand, legaliz-

ing each cell movement in detailed placement algorithms requires a dedicated legalization

procedure in the optimization algorithm or an incremental legalization algorithm.

Detailed placement algorithms rely on heuristics and formal methods to compute

optimized cell positions. Formal methods include mathematical techniques such as La-

grange multipliers, the system of linear equations, analytic equations, linear program-

ming, ILP, LP, and MIP. Characteristics of paths, nets, and cells are also considered

when optimizing placement solution in detailed placement. Path characteristics can be

buffer chain, fixed cells, and macroblocks. Net characteristics may be the number of sink

cells, and critical timing sink cells. Cell characteristics can be driver strength, criticality,

and centrality.

Several detailed placement algorithms have been proposed to optimize the place-

102

ment solution in modern circuit designs. The objective of these algorithms is to optimize

the placement solution subject to complex design rules. In (DU; WONG, 2014), the

objective is to optimize detailed placement for complex 16 nm FinFET design rules. DF-

Placer (HAN; KAHNG; LEE, 2015) algorithm optimizes the detailed placement solution

subject to complex sub-14 nm constraints. In (DOBRE; KAHNG; LI, 2015), the objec-

tive is to improve the physical design layout by addressing mixed cell height in advanced

technology nodes. The MrDP (LIN et al., 2016) algorithm moves heterogeneous-sized

cells to optimize positions where is improved bot wire length and area density utilization.

In (WU; CHU, 2016), wire length is optimized by transforming mixed-height cells into

cells with the same height.

4.4.1 Wire Length-driven Detailed Placement

The focus of wire length-driven detailed placement algorithms is to minimize total

wire length. Cells are moved to optimized positions where the total wire length of con-

nected nets can be minimized. Usually, wire length is measured with the HPWL metric.

Detailed placement algorithms that minimize wire length are presented as follows.

In (PAN; VISWANATHAN; CHU, 2005), several local optimization techniques to

minimize wire length are presented. The techniques are 1) to move cells to the optimum

region with a global swap algorithm, 2) vertical cell swap, 3) local cell reorder, and 4) cell

cluster in single segments. In (CONG; XIE, 2006; CONG; XIE, 2008), a three-step opti-

mization flow called XDP is presented. The objective is to minimize wire length in mixed-

size detailed placement. In the (CONG; XIE, 2006; CONG; XIE, 2008) approach, a

combination of constraint graph and linear programming to legalize macros, an enhanced

greedy method to legalize standard cells and a sliding-window-based cell swapping to

further reduce wire length are presented. ECO-System (ROY; MARKOV, 2007a; ROY;

MARKOV, 2007b) integrates several incremental techniques to minimize wire length.

ECO-System feature is white space redistribution in the circuit with fixed cells and mac-

roblocks. ECO-System relies on cell swapping, greedy legalization, linear programming,

network flow, and sliding window techniques to minimize total wire length. In (CAULEY

et al., 2011), MIP and branch-and-cut strategies to minimize wire length and cell displace-

ment are presented. In (LI; KOH, 2012), two MIP models to minimize wire length and

via count are shown. In (WARD et al., 2013), the optimized alignment of embedded

data paths at global and detailed placement stages are given. BraveDP (POPOVYCH et

103

al., 2014) presents an aggressive cell swapping technique to minimize wire length. In

(CHOW et al., 2014), global and local cell movements to minimize wire length subject

to preserving global placement solution, cell displacement constraint, and maximum cell

density area are presented. In (ZHOU; HU; ZHOU, 2014), a cell swapping technique to

minimizing wire length subject to maximum cell density is shown.

4.4.2 Timing-driven Detailed Placement

The focus of timing-driven detailed placement algorithms is to compute optimized

timing positions to move cells to minimize timing violations. Circuit timing and critical

timing paths are evaluated using STA technique. Detailed placement algorithms prioritize

critical timing cells in critical timing paths and nets to compute optimized positions.

Several timing-driven detailed placement algorithms are presented as follows. RUM-

BLE (PAPA et al., 2008) is a linear-programming-based timing-driven placement. RUM-

BLE improves timing propagation by enhancing the location of buffers and latches for

optimum timing propagation. Quadratic placement techniques (VISWANATHAN et al.,

2010; MONTEIRO et al., 2015; FOGAçA et al., 2016) can also optimize timing viola-

tions. Extra weights are added to the system of linear equations for each critical net. Extra

weights keep critical timing cells closer when solving the system of linear equations. Crit-

ical nets can also be addressed in the system of linear equations by adding extra virtual

connections of two-pins between critical cells in critical timing paths and nets.

Several timing-driven detailed placement algorithms have been proposed using the

infrastructure that has been provided in two contest editions in incremental timing-driven

placement (KIM; HUJ; VISWANATHAN, 2014; KIM et al., 2015). In these techniques,

wire load capacitance is balanced by placing cells nearest to the local optimum positions

to reduce path delay locally. The focus of timing-driven placement algorithms is to bal-

ance wire load capacitance in nets that contain the driver and sink cells of critical timing

nets.

Some timing-driven placement algorithms explore useful clock skew in local clock

networks to optimize timing propagation in critical timing paths. In (GUTH et al., 2015),

timing violations are optimized with a relaxed Lagrangian formulation. In this formu-

lation, Lagrangian multipliers indicate weights of critical timing nets. In (BOCK et al.,

2015), timing violations are optimized with timing path straightening and cell cluster-

ing movement techniques. In (BOCK et al., 2015), Euclidean distance of outer pins in

104

critical nets is shortened to reduce wire length and timing propagation in critical timing

nets. In (LIVRAMENTO et al., 2015), Steiner tree branches which are free of timing

violations are shortened to minimize wire load capacitance of critical timing nets. In

(FLACH et al., 2015), a timing-driven detailed placement flow composed of a quadratic

timing-driven placement algorithm and useful clock skew optimization is presented. In

(LIVRAMENTO et al., 2016), optimized timing positions of registers are computed to

explore useful clock skew in critical timing paths. In (FLACH et al., 2016), several tech-

niques to optimize circuit delay incrementally are presented. These techniques rely on net

and path topologies and driver cell strength characteristics to compute optimized-timing

positions for critical timing cells. In (HUANG et al., 2016), the objective is to minimize

early timing violations with slack compression. In (JUNG et al., 2016), a timing-driven

detailed placement algorithm with gate sizing and layer assignment flow is shown to op-

timize circuit timing violations.

Recently, several discrete cell selection algorithms (FLACH, 2015; REIMANN,

2016; FLACH et al., 2014; LIVRAMENTO et al., 2014) have been presented. These

algorithms are based on Lagrangian relaxation to optimize circuit timing violations and

power consumption. In discrete cell selection, library-cells associated with circuit cells

are changed to a different library-cell version that improves the objective. In placement,

discrete cell selection requires, in some cases, to open horizontal space to legalize wider

cell instances than the previous ones. In buffer insertion, long wires are split into segments

by inserting buffers (HU; LI; ALPERT, 2009). The objective is to reduce resistance and

capacitance in long wires.

4.4.3 Routing-driven Detailed Placement

Routability is an essential requirement to be addressed in detailed placement. In

advanced CMOS technology nodes, routability has become a challenging objective to

be achieved. Especially in detailed routing, reduced technology geometry dimensions

impose a high number of complex rules to route nets. Common detailed routing violations

can be summarized as pin access, short circuit, proximity metal geometry violations, and

Non Default Rule (NDR) violations. Neighboring cells can also be affected if pins of

cells have routing violations. Nowadays, routing-driven detailed placement algorithms

must optimize placement solutions subject to complex design rules to route circuits.

Routing-driven detailed placement algorithms are presented as follows. CROP

105

(ZHANG; CHU, 2009; ZHANG; CHU, 2013) addresses routing-driven detailed place-

ment via refined and directional module shifting. CROP also assigns weights to wires in

congested regions. In (CHOW et al., 2014), circuit routability is indirectly optimized with

pin and cell density maps. In (KENNINGS; DARAV; BEHJAT, 2014), detailed routabil-

ity issues (e.g., pin shorts, pin access, and the minimum spacing requirement) are opti-

mized. In (LI; KOH, 2014), wire length and via count are optimized for detailed routing

using large sliding windows with modified MIP. In (HUANG et al., 2015a), a detailed-

routing-aware white space allocation technique to minimize detailed routing violations is

presented. In (HUANG et al., 2015a), the routability is also optimized with a multi-stage

congestion-aware cell spreading technique. The DrDp (TABRIZI et al., 2015) algorithm

is a detailed routing-aware detailed placement algorithm with the focus of minimizing

detailed routing violations.

4.5 Summary

Placement is a challenging optimization stage. Placement problem formulation

and the considerable number of design constraints make the problem very hard to obtain

optimized placement solutions. The quality of placement solution has a significant impact

on the effort and the quality of solutions during the CTS and routing stages. Placement

optimization is split into global placement, legalization and detailed placement. In global

placement, optimized cell positions are computed with relaxed cell overlapping and cell

alignment to site and row boundaries. In legalization, cells are placed in positions which

cells are free of overlap and aligned to site and row boundaries. In detailed placement,

placement is locally optimized by moving a single or a small set of cells to optimized

positions.

In placement, several formal techniques are used to compute optimized place-

ment solutions. Placement algorithms also depend heavily on circuit heuristics. Place-

ment heuristics are obtained by estimating circuit metrics. Placement algorithms and

techniques provide optimized placement solutions subject to numerous restrictions from

circuit, design, and CMOS technology node.

106

107

5 ROUTING-AWARE INCREMENTAL TIMING-DRIVEN PLACEMENT

5.1 Introduction

Usually, in detailed placement, timing and routability optimization are indepen-

dently addressed. Timing-driven placement algorithms can move cells to optimized po-

sitions. These optimized-positions can be in regions with Routing Overflow (RO). The

improvement in timing violations can be reversed to minimize routing violations. On

the other hand, routing-driven detailed placement algorithms can optimize routability by

severely worsening delay of paths. A detailed placement flow which alternately addresses

timing and routability can have cases where optimizing one objective revert improved

results of another objective and vice versa.

In this chapter, the routing-aware incremental timing-driven placement contribu-

tion is presented. The objective in the contribution is to ensure that the timing require-

ments of all critical timing nets are met while also ensuring that the routability is not

affected. The proposed Routing-aware Incremental Timing-driven Placement (RAITDP)

algorithm moves critical timing cells to local optimized positions, which are in regions

free of RO. The proposed algorithm relies on net and path topologies to compute op-

timized timing positions. In each optimized position, timing propagation is locally im-

proved. The summation of local timing improvements minimizes delay violations in crit-

ical timing paths. The main contributions in this chapter can be summarized as follows:

• Developing a timing-driven placement optimization flow where the cell movements

are subject to routability.

• Determining the optimized maximum cell displacement constraint while consider-

ing RO and timing violations.

• Conducting a comprehensive set of experiments by modifying the maximum cell

displacement constraint and available routing resources to analyze different aspects

of RO and timing violations.

The work presented in this chapter has been published in conference 2016 IEEE Com-

puter Society Annual Symposium on VLSI (ISVLSI) with title Routing-Aware Incremen-

tal Timing-Driven Placement.

This chapter is organized as follows: The proposed RAITDP algorithm and Incremental

Timing-Driven Placement (ITDP) algorithm are summarized in Section 5.2. In Sec-

108

tion 5.3, experimental setup and numerical results are presented. Final remarks are given

in Section 5.4.

5.2 The Proposed Routing-aware Incremental Timing-driven Placement Optimiza-

tion Algorithm

In this section, the proposed RAITDP algorithm is presented. The objective of

the proposed algorithm is to optimize timing violations in detailed placement, subject to

routability, and maximum cell displacement constraints. In the proposed algorithm, the

first procedure is to compute optimized positions to minimize the local delay of critical

timing cells. The next procedure is to evaluate the RO in optimized-timing positions.

These procedures are performed for each optimized-timing position. A cell is moved to

the optimized position if this position is in a region with lower RO than RO in the current

cell position. Routability restrictions are relaxed if the current and optimized positions

are inside of the same GCell.

In Figures 5.1 and 5.2, the insight of the proposed RAITDP algorithm is presented.

The cell movement to the target position is accepted if the timing violation is minimized

and the position is in a region free of RO (Figure 5.1). Cell movements are also accepted

if both current and target positions are inside of the same GCell. On the other hand, all

cell movements are rejected if the target position is in regions which the RO is higher than

the RO in the current positions, as shown in Figure 5.2.

Figure 5.1: In the proposed RAITDP algorithm, timing critical cells are moved to posi-
tions which timing violation is improved and RO is lower than the RO in current positions

Source: Author (2019).

109

Figure 5.2: In the proposed RAITDP algorithm, cell movements are rejected if target
positions have RO. Routability restriction is relaxed if both optimized and current cell
positions are inside of the same GCell

Source: Author (2019).

The proposed RAITDP algorithm relies on a set of incremental timing-driven

placement algorithms to optimize early and late negative slacks and high-density regions

subject to routability. The RAITDP optimization flow is composed of three stages: 1)

early optimization (Section 5.2.2), 2) late optimization (Section 5.2.3), and 3) area den-

sity optimization (Section 5.2.4), as shown in Figure 5.3 with dashed rectangles. In the

optimization flow, the first two stages are to optimize early and late timing violations, re-

spectively. The last stage is to optimize area density violation. In the proposed RAITDP,

optimization algorithms are interleaved with global routing. In late optimization flow,

three optimization algorithms are aggregated in a local optimization flow. In this local

optimization flow, RO is evaluated only after each iteration of this local optimization

flow. The result of the proposed RAITDP is a placement solution with improvement in

timing and routing violations.

Placement solution is routed with a global router after each algorithm iteration.

Each algorithm iteration moves a set of cells to optimized-timing positions subject to

routability and maximum cell displacement constraints. If the placement solution after

the algorithm iteration has worsened the Quality of Results (QoR) or RO, then the current

placement solution is reverted to the previous placement solution. The algorithm iteration

is stopped if the QoR is worsened or the QoR improvement is lower than a threshold value.

Iteration of the optimization algorithm is stopped if RO is increased over a threshold.

This rollback approach avoids making the placement solution worse and stacks up in an

110

Figure 5.3: The Proposed Routing-aware Incremental Timing-Driven Placement Flow.
Critical timing cells are moved to the local timing-optimized positions subject to routabil-
ity and maximum cell displacement constraints

Adapted from: (MONTEIRO et al., 2016).

algorithm for a long time without significant placement improvement.

In the proposed RAITDP flow, the circuit is kept legal during critical timing cell

optimization. The nearest space which can accommodate a cell is searched from the target

position. Legal cell position must be inside of the maximum cell displacement boundaries.

In the legal position, the routability constraint must be attended. Legalization procedure

is performed with the Jezz (PUGET et al., 2015) algorithm.

In the rest of this Section, these three stages of placement improvement are further

discussed. The outline of the proposed RAITDP algorithm is given in Section 5.2.1.

In Section 5.2.2, early incremental timing-driven placement algorithms are presented.

Late incremental timing-driven placement algorithms are shown in Section 5.2.3. The

algorithm to optimize area density utilization is highlighted in Section 5.2.4. Finally, the

algorithm to search the nearest white spaces from optimized-timing positions is presented

in Section 5.2.5.

111

5.2.1 Algorithm Outline

In the proposed RAITDP algorithm, critical timing cells are moved to optimized

timing positions subject to routability and maximum cell displacement constraints. Cell

movements are accepted only if, in the target positions, RO is lower than RO in the current

cell positions. The routability restriction is relaxed if both current and target positions are

inside of the same GCell. In Algorithm 4, the outline of the proposed RAITDP algorithm

is presented. In (FLACH et al., 2016; FLACH, 2015), the flow ITDP to optimize only

timing violations is presented. In this work, the objective is to optimize timing violations

subject to routability. Therefore, optimized-timing cell positions which are computed

by this optimization flow are also subject to RO restriction. RO is also evaluated in the

placement solution. The proposed RAITDP algorithm receives a legal placement solu-

tion with timing and routing violations. The output is a legal placement solution with

minimized timing and routing violations. Optimization algorithms are iterated while the

timing violation improves by at least 0.5%, and the RO is lower than 500 thousand ROs.

Otherwise, the algorithm iteration is stopped. The placement solution is reverted to the

previous placement solution if timing or routability violations are worsened.

In Line 1, STA timer and Jezz are initialized. During initialization, the initial QoR

and RO are computed. In this stage, the initial placement solution is stored as the previous

placement solution. In Lines 3, 6, 9, 12, 15, 18, 19, 20 and 23, optimization Algorithms 5,

6, 7, 8, 9, 12, 13, 14 and 15 of the proposed RAITDP flow are executed. In Lines 4, 7, 10,

13 and 16 QoR and RO are evaluated for each iteration of optimization algorithms 5, 6, 7,

8 and 9, respectively. In Line 21, QoR and RO are evaluated for each iteration of the flow

composed of Algorithms 12, 13 and 14. Finally, in Line 24, QoR and RO are evaluated

for each iteration of Algorithm 15. If QoR or RO are degraded, then placement solution is

reverted to the previous placement solution. Otherwise, the previous placement solution

is updated to the current placement solution.

5.2.2 Early Optimization

The objective of early optimization is to minimize early negative slack subject to

maximum cell displacement and routability constraints. Data signals arrive in end points

before the early RAT. Therefore, in these end points, early slack is negative. In the early

optimization flow, data signals are delayed by increasing wire capacitance and resistance

112

Algorithm 4: RAITDP Outline
Data: Legal placement solution with timing and routability violations
Result: Legal placement solution with improvement in timing, area density

utilization and routability
1 initialize();
2 do
3 clockSkewOpto(); /* Call to Algorithm 5 */
4 while improvedPlacementSolution();
5 do
6 iterativeCellSpreading(); /* Call to Algorithm 6 */
7 while improvedPlacementSolution();
8 do
9 registerSwap(); /* Call to Algorithm 7 */

10 while improvedPlacementSolution();
11 do
12 reg-to-regPathFix(); /* Call to Algorithm 8 */
13 while improvedPlacementSolution();
14 do
15 clusteredCellMovement(); /* Call to Algorithm 9 */
16 while improvedPlacementSolution();
17 do
18 bufferBalancing(); /* Call to Algorithm 12 */
19 cellBalancing(); /* Call to Algorithm 13 */
20 driverLoadCapOpto(); /* Call to Algorithm 14 */
21 while improvedPlacementSolution();
22 do
23 areaDensityOpto(); /* Call to Algorithm 15 */
24 while improvedPlacementSolution();

in critical timing nets. Wire capacitance and resistance are increased by moving away

from critical timing cells with early timing violation. In this optimization flow, useful

clock skew is explored to minimize early timing violation in registers of critical timing

paths. Early optimization flow is composed of a set of four algorithms: 1) Clock Skew

Optimization (Section 5.2.2.1), 2) Iterative Cell Spreading (Section 5.2.2.2), 3) Register

Swap (Section 5.2.2.3), and 4) Register-to-Register Path Fix (Section 5.2.2.4).

5.2.2.1 Clock Skew Optimization

In the Clock Skew Optimization algorithm, the objective is to move end point reg-

isters with early negative slacks closer to the Local Clock Buffer (LCB) of the local clock

network to reduce clock latency. Early timing violations can be minimized if the clock

latency to capture data signal in the end point register is reduced. However, there might be

113

timing adverse side effects on other data paths when clock latency is changed in registers.

Usually, a register is the start and the end points for different data paths. Improving early

timing violation in a data path can worse early timing violation in other data paths. Data

path timing propagation is locally updated after each register movement to detect timing

violation issues in other data paths. Only cell movements which do not have adverse side

effects on third party paths are accepted.

In Figure 5.4, an example of the clock skew optimization to minimize early timing

violation is presented. Register B (Reg B) is an end point cell which has early timing

violation. This cell is moved (dashed rectangle) closer to its LCB to reduce clock latency.

As the clock latency is reduced, the clock capture transition occurs early in register B.

Therefore, the data signal in the input of register B can be correctly captured.

Figure 5.4: Exploring clock skew to minimize early timing violation. End point register
which is the end point of an early timing violation path is moved closer to its LCB. In this
approach, clock latency is reduced in the end point register

Source: Author (2019).

In Algorithm 5, the pseudo code of clock skew optimization algorithm is pre-

sented. In (FLACH et al., 2016), this algorithm is presented only to optimize timing

violation. In this work, the objective is to optimize timing violations subject to routabil-

ity. Therefore, optimized-timing cell positions which are computed by this algorithm are

also subject to RO restriction. This algorithm receives a legal placement solution with

timing violation. The algorithm returns a legal placement solution with optimized early

negative slack. In this algorithm, end point registers of early timing violation paths are

moved closer to their LCB.

In Line 1, end point registers of paths with early timing violation are queried. An

end point is a 1) register or a 2) primary output. All end points are visited (Line 2). An

end point is valid if 1) it is a register, 2) it is movable, and 3) the clock pin is connected

to a local clock network (Line 3). The local clock network is obtained from the valid end

point (Line 4). In ICCAD 2015 contest benchmarks, the clock signal of end point registers

is provide by LCBs. A LCB is limited to connect up to 50 registers. LCB is the driver

114

Algorithm 5: Clock Skew Optimization
Data: Legal placement solution with early timing violation in end point

registers
Result: Legal placement solution with minimized early negative slack

1 endpoints = queryCriticalTimingEndpoints();
2 for endpoint ∈ endpoints do
3 if isValid(endpoint) then
4 net = getClockNet(endpoint);
5 lcb = getLcb(net);
6 moveCell(endpoint, lcb.pos(), NEAR); /* Call to Algorithm

16 */
7 end
8 end

cell of the local clock network. In Line 5, LCB is obtained. The target optimized-timing

position is the position of LCB. In Algorithm 16, the end point register is attempted to be

moved closer to the target position (Line 6).

5.2.2.2 Iterative Cell Spreading

In the Iterative Cell Spreading algorithm, combinatorial cells with early timing

violation are tentatively moved away from the initial position to increase data signal delay.

These combinatorial cells are moved in the four directions (North, South, East, West) from

the current position. The target position is computed over Cartesian axes with increasing

step length of {5, 10, 25, 50, 100} percent of the maximum cell displacement constraint.

The algorithm places the cell in the nearest position of the optimized-timing position.

In Figure 5.5, an example of the iterative cell spreading algorithm is presented.

The combinatorial cell (red) is in a path with early timing violation. This combinatorial

cell can be moved away from its driver and sink cells (blue registers). In this approach,

wire capacitance and resistance are increased in the input and output nets of the combi-

natorial cell. Therefore, data signal propagation is delayed. The best timing improvement

position is searched in North, East, South, and West directions. In this figure, the black

circle is the current cell position, and red circles are the target positions.

In Algorithm 6, pseudo code of the iterative cell spreading method is presented.

In (FLACH et al., 2016), this algorithm is presented only to optimize timing violation. In

this work, the objective is to optimize timing violations subject to routability. Therefore,

optimized-timing cell positions which are computed by this algorithm are also subject

115

Figure 5.5: Early timing violation is minimized by increasing wire capacitance and resis-
tance in the combinatorial critical timing cell

Source: Author (2019).

to RO restriction. This algorithm receives a legal placement solution with combinatorial

cells that have early timing violation. The algorithm output is a legal placement solution

with minimized early timing violation. The cell spreading algorithm computes optimized-

timing positions to combinatorial cells with early timing violation.

All circuit cells are iterated (Line 1). Only valid cells (Line 2) are stored in the

list (Line 3). A cell is valid only if 1) it is a combinatorial cell, 2) it has negative early

116

Algorithm 6: Iterative Cell Spreading
Data: Legal placement solution with early timing violation
Result: Legal placement solution with minimized early timing violation

1 for cell ∈ cells do
2 if isValid(cell) then
3 list.insert(cell);
4 end
5 end
6 for cell ∈ list do
7 bestCost = computeCostPosition(cell, cell.pos());
8 bestPos = INVALID;
9 currentPos = cell.pos();

10 for step ∈ {0.05, 0.1, 0.25, 0.5, 1.0} do
11 for direction ∈ {N,E, S,W} do
12 targetPos = computeTargetPos(currentPos, step, direction);
13 success = moveCell(cell, targetPos, NEAR); /* Call to

Algorithm 16 */
14 if sucess then
15 cost = computeCost(cell, targetPos);
16 if cost < bestCost then
17 bestCost = cost;
18 bestPos = targetPos;
19 end
20 end
21 moveCell(cell, currentPos, EXACT);
22 end
23 end
24 if bestPos! = INV ALID then
25 moveCell(cell, bestPos, EXACT); /* Call to Algorithm 16

*/
26 end
27 end

slack, and 3) it is a movable cell. All cells in the list are visited (Line 6). The best cost is

initialized with the cost of the current cell position (Line 7). The best position is initialized

as an invalid position (Line 8). In Line 9, the current cell position is initialized. Target

position steps and cell movement directions are iterated in Lines 10 and 11, respectively.

The target position is computed from the current position in terms of displacement step

of the maximum cell displacement and direction of cell movement (Line 12). The critical

timing cell is attempted to be moved to the target position (Line 13) using Algorithm

16. If the move cell algorithm can successfully move the cell to the closest position of the

target position (Line 14), then the cost is computed (Line 15). The cost is a pair composed

117

of QoR and the difference of RO between current and target positions. If the timing QoR

and RO costs are improved (Line 16), then best cost and best position is updated in Lines

17 and 18, respectively. The cell is moved back to the initial position (Line 21). If a valid

position is found (Line 24), then the cell is moved to the best cost position (Line 25) using

Algorithm 16.

5.2.2.3 Register Swap

In the Register Swap algorithm, the objective is to swap registers which have com-

mon LCB to minimize early timing violations with useful clock skew. This swap al-

gorithm also minimizes timing adverse side effects of the aforementioned iterative cell

spreading algorithm. Registers are assumed to be equals. Therefore, the clock tree and

clock timing characteristics are assumed not to change when registers are swapped. More-

over, the latency in each end point of the clock tree can be considered as constant. Register

swap is modeled as an assignment problem similar to the problem introduced in (HELD;

SCHORR, 2014). Register assignment can be obtained in polynomial time with the Hun-

garian algorithm (KUHN, 1955). All register positions are assumed to be available posi-

tions to assign a register.

In Figure 5.6, an example of the register swap method is presented. Register swap

is computed using the Hungarian algorithm. In the new positions, registers have different

clock latency compared to the previous positions. Clock latency impacts on the time of

the launch and capture clock transitions. Therefore, early timing violation is minimized

by optimizing clock latency in the register of critical timing paths.

Figure 5.6: Registers that have the same local clock network are swapped to minimize
early timing violation

Source: Author (2019).

In Algorithm 7, pseudo code of the register swap method is presented. In (FLACH

et al., 2016), this algorithm is presented only to optimize timing violation. In this work,

118

the objective is to optimize timing violations subject to routability. Therefore, optimized-

timing cell positions which are computed by this algorithm are also subject to RO restric-

tion. The register swap algorithm receives a legal placement solution with registers that

have paths with early timing violation. This algorithm returns a legal placement solution

with optimized early timing violation. Register swap positions are computed using the

Hungarian algorithm.

All LCBs with data paths which have early timing violation are visited (Line 1).

The local clock network of the LCB is obtained (Line 2). Registers connected to the local

clock network are visited (Line 3). These registers are inserted in the list (Line 4). It is

assumed that registers have the same width. Each register location is available to swap

with another register. In Line 6, the number of slots are obtained. A matrix n× n is built

(Line 7), where n is equal to the number of slots. The register in the list index i is mapped

to the matrix column i and row i. Source and target matrix indexes are the position of

the respective registers in the list. The objective is to compute the lowest cost to place

associated register with the source index in the location of the associated register with

the target index. In Lines 8 and 9, all source and target indexes are visited, respectively.

Associated registers with the source and target indexes are obtained from the list in Lines

10 and 11. Cell displacement of the source register (Line 12) is computed using the initial

register position and the position of the target register. The initial cell position is the cell

position when the circuit is loaded from the file. If the cell displacement of the source

register is higher than the maximum cell displacement constraint (Line 13), then the cost

to move the source register to the position of the target register is infinite (Line 14). The

algorithm continues to iterate the next source-target pair of registers (Line 15). On the

other hand, the cell displacement of the source register to the target position is lower than

the maximum cell displacement constraint. The clock pin of the target register is obtained

(Line 17). In Lines 18 and 19, early and late ATs at the clock pin are obtained. These

ATs are early and late latency of the clock network associated with the clock pin of the

target register. In 2015 ICCAD contest benchmarks, the clock network which connects the

circuit clock pin to the input pins of LCBs is ideal. Therefore, the signal delay of the ideal

clock network is zero. The criticality of the data pin from the source register is obtained

(Line 21). In Section 3.6.5, the computation of criticality has been introduced. The cost to

move the source register to the position of the target register is equal to criticalitydataP in×

lateATclkP in − critcalitydataP in × earlyATclkP in (Line 22). The cost is assigned to row

and column indexes of the source and target registers. In Line 26, optimized positions of

119

Algorithm 7: Register Swap
Data: Legal placement solution with early timing violation
Result: Optimized timing placement solution by swapping registers

1 for lcb ∈ lcbs do
2 clockNet = getLocalClockNet(lcb);
3 for reg ∈ clockNet do
4 list.insert(reg);
5 end
6 numSlots = list.size();
7 matrix.build(numSlots, numSlots);
8 for source ≤ numSlots do
9 for target ≤ numSlots do

10 regSrc = list[source];
11 regTarget = list[target];
12 disp = computeDisplacement(regSrc, regTarget.pos());
13 if disp > maxDisp then
14 matrix(source, target) =∞;
15 continue;
16 end
17 clkPin = regTarget.clockPin();
18 earlyAT = getEarlyAT(clkPin);
19 lateAT = getLateAT(clkPin);
20 dataPin = getDataPin(regSrc);
21 criticality = getEarlyCriticality(dataPin);
22 cost = (criticality × lateAT) - (criticality × earlyAT);
23 matrix(source, target) = cost
24 end
25 end
26 HungarianOptimization(matrix);
27 for source ≤ numSlots do
28 reg = list[source];
29 for target ≤ numSlots do
30 if matrix(source, target) == 0 then
31 pos = list[target].pos();
32 moveCell(reg, pos, EXACT) ; /* Call to Algorithm

16 */
33 break;
34 end
35 end
36 end
37 end

registers are computed using the Hungarian algorithm as introduced in (KUHN, 1955).

All source indexes are iterated (Line 27). The source register is obtained from the source

index in the list (Line 28). All target indexes are iterated (Line 29). The target position

120

is the position of the target register when the first pair of source-target indexes is equal to

zero (Line 30). The target position is obtained from the register associated with the target

index (Line 31). The register which is associated with the source index is moved to the

target position (Line 32). Algorithm iteration in the target index is broken (Line 33). This

target index is the optimized-position to move the register.

5.2.2.4 Register-to-Register Path Fix

In the Register-to-Register Path Fix, the objective is to compute analytically shift

displacement to move away from the end point register from the start point register. Mov-

ing apart from the end point register increases wire capacitance and resistance, which

increases signal delay that minimizes early timing violation. A common source of early

negative slacks are paths composed of two registers directly connected. These paths have

no combinational cells. The early negative slack can be further improved by comput-

ing the optimized-timing position for the end point register. The path delay is composed

mainly of the wire delay. In Figure 5.7, the example of the register-to-register path fix

algorithm is presented.

Figure 5.7: End point register of early timing violation paths are moved away from the
data driver cell

Source: Author (2019).

In Algorithm 8, pseudo code of the register-to-register path fix method is pre-

sented. In (FLACH et al., 2016), this algorithm is presented only to optimize timing

violation. In this work, the objective is to optimize timing violations subject to routabil-

ity. Therefore, optimized-timing cell positions which are computed by this algorithm are

also subject to RO restriction. End point registers of early critical timing paths are moved

away from the data driver cell. The target cell position is computed using an analytical

formulation. In this approach, the driver strength of the driver cell, wire capacitance, and

wire resistance are used to compute the optimized cell position. The Register-to-register

path fix algorithm receives a legal placement solution with registers that have early timing

violation. The output of this algorithm is a legal placement solution with minimized early

121

timing violation.

Algorithm 8: Register-to-Register Path Fix
Data: Legal placement solution with early timing violation
Result: Optimized timing placement solution by moving away registers in

critical timing paths
1 paths = queryEarlyCriticalTimingPaths();
2 for path ∈ paths do
3 end = path.endpoint();
4 driver = end.getDataDriver();
5 if isV alid(end) and isV alid(driver) then
6 disp = min(maxDisp, computeOptoDisp(end, driver));
7 targetPos = computeTargetPos(end, disp);
8 moveCell(end, targetPos, NEAR) ; /* Call to Algorithm 16

*/
9 visited.insert(end);

10 visited.insert(driver);
11 end
12 end

Early critical timing paths are queried (Line 1). Only early critical timing paths

with movable end point registers are queried. All critical timing paths are visited (Line

2). The end point register is obtained from the path (Line 3). The data driver cell is

obtained from the end point register (Line 4). The end point and driver cells are valid

only if they are sequential cells, and these cells were not visited previously (Line 5). Cell

displacement of registers is the minimum length between maximum cell displacement

and optimized cell displacement (Line 6). Optimized cell displacement to minimize early

timing violation is computed as introduced in (FLACH et al., 2016). The target position

is computed (Line 7). The end point register is moved near the target position (Line 8).

In Lines 9 and 10, the end point register and data driver cell are inserted in the visited list,

respectively.

5.2.3 Late Optimization

In late RAITDP algorithms, the objective is to reduce local signal delay. Data

signals arrive in end points after late RAT. In critical timing paths, the delay of data signals

is reduced by balancing wire capacitance and resistance of the input and output nets based

on driver strength of the driver and moved cells. Critical timing cells are moved toward

the driver or sink to change wire capacitance and resistance in input and output cells’ nets.

122

The direction of cell movement depends on the driver strength and net characteristics. The

late RAITDP flow is composed of a set of four algorithms: 1) Clustered Cell Movement

(5.2.3.1), 2) Buffer Balancing (5.2.3.2), 3) Cell Balancing (5.2.3.3), and 4) Driver Load

Capacitance Optimization (5.2.3.4).

5.2.3.1 Clustered Cell Movement

In the Clustered Cell Movement, a cluster of critical timing cells are moved to-

wards the center of mass of the optimized timing position. Moving one cell at a time may

lead to a suboptimal solution (BOCK et al., 2015). In this algorithm, a cluster of critical

neighboring cells is built. This cluster is built from a given critical timing cell. Cells in

the cluster are topological neighbors of the critical timing cell.

In Figure 5.8, an example of the clustered cell movement is presented. The cell

cluster is built in topological order from a pin which has late timing violation. The center

position of the cluster is computed (black circle). This position is the average position of

cluster cell positions. The target cluster center position is a weighted position of late neg-

ative slack (dashed black circle) of pins from clustered cells. Cluster cells are moved to-

ward the optimized-timing position. Each cluster cell is shifted by the difference between

the center and the target positions. Cell shift is subject to the maximum cell displacement

constraint.

In Algorithm 9, pseudo code of the clustered cell movement method is presented.

In (FLACH et al., 2016), this algorithm is presented only to optimize timing violation. In

this work, the objective is to optimize timing violations subject to routability. Therefore,

optimized-timing cell positions, which are computed by this algorithm, are also subject

to RO restriction. In this algorithm, neighboring topological cells from late critical tim-

ing pins are clustered. These cells are moved towards the cluster center optimized timing

position. This algorithm receives a legal placement solution with late negative slack vi-

olations. The output is a legal placement solution with minimized late negative timing

violation.

All combinatorial cells are visited (Line 1). Pins of the cell are visited (Line 2).

Only pins with late negative slack (Line 3) are inserted in the list (Line 4). In the list,

pins are sorted from the lowest to the highest negative slack (Line 8). Each pin in the

list is visited (Line 9). The cell which is associated with the current pin is retrieved

(Line 10). Cell cluster procedure is performed only in cells which were not moved in an

early iteration of the cell cluster movement method (Lines 11 and 12). In Line 14, cells

123

Figure 5.8: Cluster of late critical timing cells is built. Critical timing cells are moved
towards optimized-timing positions. In this approach, late timing violation is minimized

Source: Author (2019).

are clustered in topological order from the cell associated with the critical timing pin.

The procedure for clustering cells is introduced in Algorithm 10. In Line 15, the center

position of cluster cells and the optimized-timing center position are computed. Clustered

cells are moved toward the optimized-timing position. In Algorithm 11, the procedure to

compute the center position of the cluster, the optimized-timing position and to move

cells toward the optimized-timing position is introduced. Moved cells are inserted in the

visited list (Line 16).

In Algorithm 10, pseudo code of the method to cluster cells is presented. In this

algorithm, neighboring topological cells from the cell of critical timing pin are clustered.

This algorithm receives a late negative slack pin. The output is a cluster (set) of cells.

124

Algorithm 9: Clustered Cell Movement
Data: Placement solution and critical timing cell
Result: Cluster of cells that are neighboring of the critical timing cell

1 for cell ∈ cells do
2 for pin ∈ cell do
3 if getSlack(pin) < 0 then
4 list.insert(pin);
5 end
6 end
7 end
8 list.sort();
9 for pin ∈ list do

10 cell = pin.getCell();
11 if visited[cell] then
12 continue;
13 end
14 cells = clusterCells(pin) ; /* Call to Algorithm 10 */
15 moveClusterCells(cells); /* Call to Algorithm 11 */
16 visited.insert(cells);
17 end

In Line 1, the topological depth variable is initialized. In Line 2, the net is inserted

in the list within respective cell topological depth. This net is associated with the pin

that has negative slack. Topological neighboring cells are clustered until the list has nets

and the topological depth is lower than ten (10) cells (Line 3). The topological depth

was experimentally determined considering the trade-off between runtime and QoR. A

pair of net and topological depth is obtained from the list (Line 4). In Lines 5 and 6,

net and topological depth value are retrieved from the pair, respectively. Associated pins

with the net are visited (Line 7). Associated cell with the pin of the net is obtained (Line

8). This procedure does not continue if the cell has displacement higher than ten times

the row height (Lines 9 and 10). This cell displacement threshold avoids to cluster cells

with massive cell displacement. Only movable cells (Line 12) are inserted in the cell

cluster (Line 13). Associated pins with the cell are visited (Line 15). Slack of the visited

pin is obtained (Line 16). Associated net with this pin is retrieved (Line 17). Nets of

neighboring cells are inserted in the list only if 1) the net is not associated with a pin with

positive slack, 2) nets are not the same and 3) net has not been visited yet (Lines 18 and

19). Associated net with this pin is inserted in the visited list (Line 21). This net and the

incremented topological depth are inserted in the list (Line 22). This algorithm continues

to iterate while there are nets in the list. Finally, the cluster of critical timing cells is

125

Algorithm 10: Cluster topological neighboring cells from a late negative slack
pin.

Data: Late Critical Timing Pin
Result: Cluster of cells

1 depth = 0;
2 list.insert(pin.getNet(), depth);
3 while list.size() > 0 and depth < 10 do
4 pair = list.pop();
5 net = pair.first();
6 depth = pair.second();
7 for pinNet ∈ net do
8 cell = pinNet.getCell();
9 if computeDisp(cell) > (10× rowHeight) then

10 continue;
11 end
12 if cell.isMovable() then
13 cells.insert(cell);
14 end
15 for pinCell ∈ cell do
16 slack = getSlack(pinCell);
17 netCell = pinCell.getNet();
18 if slack ≥ 0 or pinCell == pinNet or netVisited[netCell] then
19 continue;
20 end
21 netVisited.insert(netCell);
22 list.insert(netCell, depth+1);
23 end
24 end
25 end
26 return cells;

returned (Line 26).

In Algorithm 11, pseudo code of the method to compute cluster cell center posi-

tion, optimized-timing position and to move cells toward the optimized-timing position

is presented. The cluster center position is the average position of all cells in the cluster.

The optimized-timing position is a weighted position of all pins of cells in the cluster and

the pin negative slack. The distance between both cluster center and optimized-timing

positions is the displacement in which cluster cells must be moved toward the optimized-

timing position. The algorithm receives a cluster of cells and the legal placement solution.

The output is a legal placement solution which late critical timing cells are moved to min-

imize timing violation.

In Line 1, all cells in the cluster are visited. Clustered cell positions are accumu-

126

Algorithm 11: Move Clustered Cells
Data: Cluster of Cells and legal placement solution
Result: Moved cells towards optimized timing position

1 for cell ∈ cells do
2 cellPos += cell.pos();
3 for pin ∈ cell do
4 net = pin.getNet();
5 for neighbor ∈ net.pins() do
6 slack = neighbor.getSlack();
7 nbCell = neighbor.getCell();
8 if slack > 0 or cell.has(nbCell) then
9 continue;

10 end
11 totalSlack += slack;
12 pinPos += slack × nbCell.pos();
13 end
14 end
15 end
16 pinCenter = pinPos / totalSlack;
17 cellCenter = cellPos / cells.size();
18 disp = pinCenter - cellCenter;
19 for cell ∈ cells do
20 if cell.isRegister() then
21 continue;
22 end
23 targetPos = cell.pos() + disp;
24 moveCell(cell, targetPos, NEAR) ; /* Call to Algorithm 16

*/
25 end

lated in the cellPos variable (Line 2). Pins of the cell are visited (Line 3). Associated

net with the pin is obtained (Line 4). All pins in the net are visited (Line 5). Late slack

and cell of the net pin are retrieved (Lines 6 and 7, respectively). If the slack is positive

or the cell is in the cluster (Line 8), then the procedure goes to iterate the next pin of the

net (Line 9). Late negative slack is accumulated in the variable totalSlack (Line 11). The

multiplication of the cell position with slack is accumulated in the pinPos variable (Line

12). In Lines 16 and 17, cluster center and weighted-timing positions are computed, re-

spectively. The displacement to move cluster cells is the difference between these two

positions (Line 18). Critical timing cells are moved toward the weighted-timing position

by the displacement distance. In Line 19, all cells in cluster are again visited to move

these cells toward the optimized-timing position. Registers are not moved to avoid ad-

verse side effects on the clock network and remaining data paths (Lines 20 and 21). The

127

target cell position is computed (Line 23). The critical timing cell is moved closer to the

target position (Line 24) using Algorithm 16.

5.2.3.2 Buffer Balancing

In the Buffer Balancing method, optimized-timing positions are computed in the

tuple driver-buffer-sink cells to minimize signal delay locally. Optimized-timing posi-

tions are computed using an analytical equation based on the Elmore model. Usually, the

circuit contains several paths with buffer chains. The required time to load output capac-

itance is modeled with a representative drive strength value. Optimized buffer shifting is

computed considering the pin resistance of driver and buffer cells. Buffer shift is subject

to maximum cell displacement constraint. The buffer must also be connected only to one

driver and one sink. Both driver and sink cells are considered fixed cells.

In Figure 5.9, an example of the buffer balancing method is presented. The opti-

mized position for the critical timing buffer (red cell) is computed. Moving the critical

timing cell (dashed triangle) closer to its sink cell minimizes local signal delay in the

output net of the critical timing cell. However, the signal delay is increased in the input

net. In this case, the driver cell has a higher driver strength than the critical timing cell.

Therefore, the sum of the signal delay in the input and output nets of the critical timing

buffer may be reduced. The time to load capacitance in large cells is less affected by

capacitance changing when comparing the time to load the capacitance by small cells.

Figure 5.9: Critical timing buffer is moved to optimized position. In this position, the
total signal delay is locally minimized in input and output nets of the buffer

Source: Author (2019).

In Algorithm 12, pseudo code of the method to compute and to move the buffer to

the local optimized-timing position is presented. In (FLACH et al., 2016), this algorithm

is presented only to optimize timing violation. In this work, the objective is to optimize

timing violations subject to routability. Therefore, optimized-timing cell positions which

128

are computed by this algorithm are also subject to RO restriction. Pin capacitance of the

driver and the buffer cells and wire capacitance and resistance of the input and output nets

of the buffer are used to compute the optimized-timing position. The algorithm receives a

legal placement solution with buffers that have late timing violation. The output is a legal

placement solution with minimized late timing violation.

Algorithm 12: Buffer Balancing
Data: Legal placement solution
Result: Legal placement solution with minimized late timing violation

1 for cell ∈ cells do
2 slack = cell.getSlack();
3 if cell.isBuffer() and slack < 0 then
4 list.insert(cell);
5 end
6 end
7 list.sort();
8 for buffer ∈ list do
9 driver = buffer.getDriver();

10 sink = bufffer.getSink();
11 pos = computePos(driver, buffer, sink);
12 moveCell(cell, targetPos, NEAR) ; /* Call to Algorithm 16

*/
13 end

All circuit cells are visited (Line 1). The slack of the cell is obtained (Line 2).

Only buffers with negative slack (Line 3) are inserted in the list (Line 4). The buffer’s

driver must have only one sink, which is the buffer, and the buffer must be connected to

only one sink. Otherwise, the buffer balancing algorithm is not useful to minimize timing

violation. In the list, buffers are sorted from the highest to the lowest criticality (Line

7). Criticality is introduced in Section 3.6.5. In the sorted list, buffers are visited (Line

8). In Lines 9 and 10, the driver and sink cells from the buffer are obtained, respectively.

Optimized timing position to place the buffer is computed as introduced in (FLACH et

al., 2016) (Line 11). Finally, the buffer is moved closer to the optimized-timing position

(Line 12) using Algorithm 16.

5.2.3.3 Cell Balancing

In the Cell Balancing, the same approach to computing optimized-timing positions

to buffers is extended to cells. Cells may have several input pins. Moreover, cells may

have several nets connected to the input and output pins. Each of these nets may have

129

several cells. In this approach, driver and sink positions of the cell are weighted positions

of cells in input and output nets. An optimized-timing position is computed between

input and output equivalent positions. The optimized-timing position is computed using

an analytical formulation. The analytic formulation of cell balancing is modeled in the

same fashion as the buffer balancing formulation.

In Figure 5.10, an example of the cell balancing method is presented. In the cell

balancing algorithm, optimized timing positions are computed for critical timing cells,

which may have input and output nets with several cells. The source and sink points may

be Steiner tree points of the input and output nets or the position of driver cells in input

nets and sink cells in output net. The optimized timing position is computed in terms of

driver strength of the drivers from input nets and the driver strength of the critical timing

cell. In the optimized timing position, the summation of the signal delay in the worst

timing path passing through the critical timing cell is reduced.

Figure 5.10: Late critical timing cells are moved to optimized-timing positions

Source: Author (2019).

In Algorithm 13, pseudo code of the method to move late critical timing cells

to optimized-timing positions is presented. In (FLACH et al., 2016), this algorithm is

presented only to optimize timing violation. In this work, the objective is to optimize

timing violations subject to routability. Therefore, optimized-timing cell positions which

are computed by this algorithm are also subject to RO restriction. The optimized-timing

position is a weight position considering driver and sink cells in input and output nets of

the critical timing cell. This algorithm has two versions. In the first version, driver and

130

sink positions are positions of driver and sink cells of input and output nets, respectively.

In the second version, driver and sink positions are positions of Steiner points of input

and output nets. The algorithm input is a legal placement solution with cells that have late

timing violation. The output is a legal placement solution where the timing violation is

minimized in late critical timing paths.

Algorithm 13: Cell Balancing
Data: Legal placement solution with cells that have late timing violation
Result: Legal placement solution with minimized late timing violation

1 for cell ∈ cells do
2 if isV alid(cell) then
3 list.insert(cell);
4 end
5 end
6 list.sort();
7 totalPos = 0;
8 totalWeight = 0;
9 for cell ∈ list do

10 for outP in ∈ cell.outP ins() do
11 outNet = outPin.getNet();
12 for inP in ∈ cell.inputP ins() do
13 inNet = inPin.getNet();
14 driver = inNet.getDriverPin();
15 wDriver = 2×centrality(driver)+criticality(driver)

3
;

16 for sink ∈ outNet.getSinkP ins() do
17 wSink = 2×centrality(sink)+criticality(sink)

3
;

18 pos = computeTargetPos(cell, inPin, sink);
19 totalPos += (wSink + wDriver) * pos;
20 totalWeight += wSink + wDriver;
21 end
22 end
23 end
24 targetPos = totalPos / totalWeight;
25 moveCell(cell, targetPos, NEAR) ; /* Call to Algorithm 16

*/
26 end

All circuit cells are visited (Line 1). Only valid cells (Line 2) are inserted in the

list (Line 3). A cell is valid if it is movable and it has late negative slack. Registers and

LCBs are not inserted in the list. In Line 6, cells are sorted from the highest to the lowest

gain on timing violation improvement. Cell gain is a weighted mean value to estimate

the timing violation improvement that can be obtained in a cell. In (5.1), the equation to

131

estimate timing improvement gain for a cell is presented.

gain(cell) =
1

A

pin∈cell∑
pin

∑
TA

DR×OC × 2× centrality(pin) + criticality(pin)

3
(5.1)

where A is the number of timing arcs in all output pins of the cell. pin is an output pin of

the cell. TA is a timing arc associate with an output pin. DR is the driver resistance. OC

is the output load capacitance associated with the output pin. Centrality and criticality are

computed as introduced in Section 3.6.5.

Variables to accumulate the summation of positions and weights are initialized

in Lines 7 and 8, respectively. In the list, all critical timing cells are visited (Line 9).

In this stage, all cell paths composed of the driver-cell-sink tuple are listed. For each

path, a weighted timing position is computed. All output pins associated with the cell

are visited (Line 10). Net associated with the output pin is obtained (Line 11). All input

pins associated with the cell are visited (Line 12). The input net associated with the input

pin is retrieved (Line 13). The driver pin of the input net is obtained (Line 14). The

timing weight of the driver pin is computed (Line 15). All sink pins associated with the

output net are visited (Line 16). The timing weight of the sink pin is computed (Line 17).

Target position of the path driver-cell-sink is computed as introduced in (FLACH et al.,

2016) (Line 18). In Lines 19 and 20, total weight positions and total timing weights are

accumulated, respectively. The target position is the weighted timing mean position for

all driver-cell-sink paths (Line 24). The cell is moved closer to the target position (Line

25) using Algorithm 16.

5.2.3.4 Driver Load Capacitance Optimization

In the Driver Load Capacitance Optimization method, the objective is to reduce

the capacitance in the non-critical timing branches of the critical timing nets. In critical

nets with more than two cells, sink cells with positive slack may be moved closer to their

driver cells. Therefore, the required time to load the output capacitance (wire capacitance)

is reduced. This approach directly minimizes local timing delay. Each cell movement is

evaluated if the moved cell is free of timing violation. Cell delay is updated locally and

incrementally. If a new timing violation is created, then cell movements are undone.

In Figure 5.11, an example of the driver load capacitance optimization method is

presented. In critical timing nets, non-critical timing cells are moved closer to their driver

132

cells. In this approach, wire capacitance is reduced by minimizing wire length in critical

timing nets. Therefore, the time to load output capacitance (wire and port capacitance) is

reduced, and the signal delay is minimized. In the example, non-critical timing cell B is

moved closer (dashed space) to its driver cell. Therefore, the wire length to connect cell

B to the net is reduced.

Figure 5.11: In late critical timing nets, non critical timing sink cells are moved closer
to their driver cells. In this approach, wire capacitance of branches is reduced in critical
timing nets

Source: Author (2019).

In Algorithm 14, pseudo code of the method to move non-critical timing sink cells

near their critical timing driver cells is presented. In (FLACH et al., 2016), this algorithm

is presented only to optimize timing violation. In this work, the objective is to optimize

timing violations subject to routability. Therefore, optimized-timing cell positions which

are computed by this algorithm are also subject to RO restriction. The algorithm receives

a legal placement solution with cells that have late critical timing violation. The output is

a legal placement solution that late critical timing violation is minimized.

All circuit nets are visited (Line 1). Only nets which have the driver pin with

negative late slack (Line 2) are inserted in the list (Line 3). In the list, nets are sorted

from the highest to the lowest cost (Line 6). The net cost is computed as follows:

critically(net) × wireCapacitance(net). Criticality is introduced in Section 3.6.5. In

the list, all nets are visited (Line 7). Associated cell driver with the net is obtained (Line

8). Sink pins of the net are visited (Line 9). Sink cells which are fixed or that have late

negative slack are not moved closer to their driver cells (Lines 10 and 11). Target posi-

tions are computed for cells that may be moved closer to their driver cells (Line 13). This

133

Algorithm 14: Driver Load Capacitance Optimization
Data: Legal placement solution with late timing violation
Result: Legal placement solution with minimized late timing violation

1 for net ∈ nets do
2 if getSlack(net) < 0 then
3 list.insert(net);
4 end
5 end
6 list.sort();
7 for net ∈ list do
8 driver = net.getDriver();
9 for sink ∈ net do

10 if sink.getSlack() < 0 or sink.isF ixed() then
11 continue;
12 end
13 pos = computeTargetPos(driver, sink);
14 moveCell(sink.getcell(), pos, NEAR) ; /* Call to Algorithm

16 */
15 end
16 end

method has two versions: 1) target position is the position of the driver cell in the critical

timing net and 2) target position is the position of Steiner point of the wire segment con-

nected to the input pin of the sink cell. The target position is subject to the maximum cell

displacement constraint. The sink cell is moved closer to the target position (Line 14) as

presented in Algorithm 16.

5.2.4 Area Density Optimization

In the Area Density Optimization method, the objective is to minimize area vi-

olations in high-density regions. Late incremental timing-driven placement algorithms

tend to accumulate critical timing cells in small regions. This cell concentration may

cause violation in area density utilization. The area density optimization is a simplified

cell spreading algorithm. Cells are moved out from high-density regions subject to late

negative slack, maximum cell displacement constraint, and routability.

The area density utilization is evaluated with the ABU metric. ABU is introduced

in Section 3.6.2. The placement area is modeled as a graph of regular bins. A bin has area

density violation if the total cell area divided by bin capacity is higher than the maximum

134

area density constraint. In the area density optimization algorithm, overfilled bins are

flagged. In each flagged bin, the algorithm searches if a neighboring bin has white space

to receive cells. Cells are ranked by the lowest to highest late slack in flagged bins. Cells

with the highest positive slack are moved first. Only cells with positive late slack can be

moved. One cell at a time is moved to a neighbor bin with the free area while the neighbor

bin has space and bin remains with area overfill. Cell slack is incrementally updated. Cell

movements which cause cell timing violations are undone.

In Figure 5.12, an example of the area density optimization method is presented.

In the example, non critical timing cell H is moved out from bin 3 to bin 4. In bin 3, the

area density violation is minimized by moving out cell H.

Figure 5.12: Moving non critical late timing cells from overfilled bins to a neighboring
bin with white space. In this approach, area density violation is minimized by moving out
non critical timing cell

Source: Author (2019).

In Algorithm 15, pseudo code of the method to move cells out from high-density

regions is presented. In (FLACH et al., 2016), this algorithm is presented only to opti-

mize timing violation. In this work, the objective is to optimize area density and timing

violations subject to routability. Therefore, optimized-timing cell positions which are

computed by this algorithm are also subject to RO restriction. Only non-critical late tim-

ing cells are moved out from overfilled bins. The algorithm searches only in neighboring

bins from the cell bin with area density violation. This algorithm receives a legal place-

ment solution with area density violation. The output is a legal placement solution with

minimized area density violation.

All circuit cells are visited (Line 1). for each bin with area density violation, only

135

Algorithm 15: Area Density Optimization
Data: Legal placement solution with area density violation
Result: Legal placement solution with area density optimization

1 for cell ∈ cells do
2 if cell.getSlack() > 0 and hasAreaV iolation(cell) then
3 list.insert(cell);
4 end
5 end
6 for cell ∈ list do
7 bin = getNeighboringBin(cell);
8 if bin! = INV ALID then
9 pos = computeTargetPosition(bin, cell);

10 moveCell(cell, pos, NEAR) ; /* Call to Algorithm 16 */
11 end
12 end

cells that have positive late timing slack (Line 2) are inserted in the list (Line 3). In the

list, all cells are visited (Line 6). In Line 7, the neighboring bin which is free of area

density violation is returned. Otherwise, this procedure returns an invalid reference to

indicate that there is no neighboring bin with the available area to receive the cell. In

this procedure, only the first topological level of neighboring bins is searched. The target

position is computed (Line 9), only for valid bins (Line 8) . In the target position, the

cell must be entirely placed inside of the neighboring bin. The cell is moved to the target

position (Line 10) as presented in Algorithm 16.

5.2.5 Cell Movement Algorithm

In Algorithm 16, the pseudo code of the method to move cells to target positions

or near target positions is presented. In (FLACH et al., 2016), this algorithm is presented

only to optimize timing violation. In this work, the objective is to compute optimized-

timing positions subject to routability and cell displacement restrictions. This algorithm

operates in two modes. In the first mode, cells are placed in target positions. In the

second mode, legal white spaces near the target positions are searched to place cells. In

some incremental timing-driven techniques, the exact position to place cells is known.

Therefore, it is not necessary to search white spaces again for these optimized-positions.

The algorithm receives the cell to be placed, the target position and the mode (mode ∈

{NEAR,EXACT}). The output is the cell placed in the target position or near to the

136

target position and an indication that cell movement was executed. The algorithm also

indicates that it is not possible to move the cell closer to the target position.

Algorithm 16: Move Cell Algorithm
Data: Cell, Target Position and mode ∈ {NEAR,EXACT}
Result: Fail or placed cell in target position or in the nearest position from

the target position
1 if mode == EXACT then
2 placeCell(cell, pos);
3 return true;
4 end
5 if mode == NEAR then
6 for step ∈ {5, 10, 25, 50, 100} do
7 width = step× cell.width();
8 region = computeSearchRegion(cell, targetPos, width, maxDisp);
9 pos = findNearestWhitespacePosition(cell, targetPos, region);

10 if isValid(pos) and checkRoutingOF (cell.pos(), pos) then
11 placeCell(cell, pos);
12 return true;
13 end
14 end
15 end
16 return false;

In Line 1, the cell movement mode is checked if it is exact mode. In exact mode,

the cell is placed in the target position (Line 2) and the algorithm returns indicating that

the cell was moved to the target position (Line 3). In exact mode, the move cell algorithm

assumes that the target position is a legal and valid position in terms of routability and

maximum cell displacement constraints.

In Line 5, the cell movement mode is checked if it is near mode. In this mode, a

legal white space to move the cell is searched from the target position up to five restricted

search regions (Line 6). The maximum width of the search area is computed (Line 7). The

search region is determined using the cell, target position, the cell width and maximum

cell displacement constraint (Line 8). The region boundaries are limited by maximum

cell displacement and maximum region width. In Line 9, the nearest white space location

from the target position is searched in the region. This search procedure returns a valid

position if it has found a white space. Otherwise, this search procedure returns an invalid

position. The position is checked if it is valid. In this position, the RO in the target

position is verified if it is lower than the RO in the current cell position (Line 10). Cell

movement can be accepted if the current and target cell positions are inside of the same

137

GCell. If the cell movement is valid, the cell is placed in the target position (Line 11)

Therefore, this algorithm returns true to indicate the cell has been successfully moved to

the target position (Line 12). The default return of the cell move algorithm is false, to

indicate that the cell has not been successfully moved to the target position (Line 16).

5.3 Experimental Results

In this section, experimental setup and numerical results are presented. First, the

circuit delay and RO improvements are discussed. The algorithm has been evaluated with

ten corner cases. In each corner case, cell displacement constraint and routing resources

are changed. Experimental results are compared to the top three teams from the 2015

ICCAD contest (KIM et al., 2015) and (FLACH et al., 2016) solutions.

5.3.1 Experimental Setup

The proposed RAITDP algorithm has been developed in C++-11 and compiled

with GCC 4.8.3. Experimental evaluations are conducted on a CentOS 6.5 server with

two Intel Xeon E5-2620 processors running at 2.00 GHz and 64 GB of RAM. All experi-

ments have been performed on 2015 ICCAD benchmarks (KIM et al., 2015). The RO is

evaluated using the global router NCTUgr (LIU et al., 2013). The circuit delay is stati-

cally measured using the Golden Timer (HUANG; WONG, 2015) from the 2015 ICCAD

contest (KIM et al., 2015). The timing propagation in nets connected to moved cells is

incrementally updated after each cell movement using a built-in timer. The RO is updated

for the entire circuit after each iteration of timing optimization algorithms, as NCTUgr

only routes the entire circuit. It has no feature to reroute a small set of nets incrementally.

A comprehensive set of experiments are conducted to analyze different aspects of

RO and timing violations improvement on the proposed algorithm. The maximum cell

displacement constraint and the wire width and spacing of routing layers are modified

from the 2015 ICCAD benchmarks. This approach changes the search space to move

a cell and the routing resources. The cell displacement constraint limits the maximum

cell movement, which impacts on the improvement of timing violations. Wire width and

spacing are modified to reduce the GCell capacity. The routing constraint becomes more

challenging to achieve when the routing resources are reduced. In Figure 5.13, the exper-

138

imental configuration to evaluate the proposed algorithms is presented. In the ordinate,

two GCell capacities are presented. In the abscissa, five maximum cell displacement

constraints are addressed. The entire evaluation setup is composed of ten corner cases.

Two corner cases are taken from the 2015 ICCAD benchmarks. In the remaining corner

cases, the GCell capacity and the cell displacement constraints are changed from the 2015

ICCAD benchmarks.

Figure 5.13: Cell displacement constraint and GCell capacity corner cases to comprehen-
sively evaluated timing violations and RO improvement from the ICCAD benchmarks

Source: (MONTEIRO et al., 2016)

The Original GCell capacity is the available routing resources from the 2015

ICCAD benchmarks. In this case, the wire spacing and width are kept the same as defined

in the contest benchmarks. In the Half GCell capacity, the available routing resources in

GCells are reduced by half. The wire width and spacing are increased twice from the

original value. This approach reduces the available routing resources by half, which leads

to a challenging routability circuit while optimizing timing delay. The cell displacement

constraints are adjusted based on short (S) and long (L) restrictions which have been es-

tablished in the 2015 ICCAD benchmarks. The medium large (mL), medium very large

(mV L) and very Large (V L) displacement constraints are computed as shown in Equa-

tions 5.2, 5.3, and 5.4, respectively.

mL =
S + L

2
(5.2)

139

mV L =
3× L

2
(5.3)

V L = 2× L (5.4)

In the 2015 ICCAD benchmarks, there is no significant RO. The main RO is pri-

marily around the macroblocks. Therefore, the proposed optimization algorithm is hard

to evaluate adequately. In Figures 5.14 and 5.15, examples of RO in original and half

GCell capacities for Superblue16 are presented. The RO violations are the colorized re-

gions. When the routing resources are reduced by half, the RO has increased significantly.

In this case, the proposed RAITDP algorithm can be adequately evaluated.

Figure 5.14: In the original GCell capacity, there is no significant RO from the 2015
ICCAD benchmarks

Source: (MONTEIRO et al., 2016)

The improvement on timing and routing violations are compared to the top three

teams from the 2015 ICCAD contest and (FLACH et al., 2016). The RO from the final

solution of the ICCAD contest teams are evaluated with NCTUgr. The improvement of

timing violation is obtained from the contest award presentation. Timing and routing

results for (FLACH et al., 2016) are obtained by running the binary and evaluating the

140

Figure 5.15: In the half GCell capacity, there is more RO to properly evaluate the proposed
RAITDP

Source: (MONTEIRO et al., 2016)

RO of the final solution.

5.3.2 Numerical Results

In Table 5.1, the timing violations and RO improvements are presented. The exper-

imental results from the proposed RAITDP algorithm are compared to the top three teams

from the 2015 ICCAD contest and (FLACH et al., 2016). Timing and routing results are

analyzed only for (Original, S) and (Original, L) corners. In Table 5.1, columns 1 and

2 indicate the benchmarks (BM) and maximum cell displacement constraints (Dis). The

TQoR is presented from column 3 to 7 to the top three contest teams, ITDP, and RAITDP

algorithms. The initial total Global Routing Overflow (GRO) (GP #OF) is shown in col-

umn 8. The total GRO improvement for the top three teams, ITDP and RAITDP solutions

are highlighted in columns 9 to 13. The runtime, in seconds, to optimize timing in place-

ment (ITDP and RAITDP algorithms) and to execute the global router (NCTUgr) are

indicated in columns 14 to 16, respectively.

141

Table 5.1: Results comparing the developed RAITDP with the top 3 teams from the 2015 ICCAD contest and ITDP (FLACH et al., 2016) for the
set Original GCell capacity of Fig. 5.13

BM D
is TQoR Improvement

GP #OF
#GRO Improvement Runtime (s)

1st 2nd 3rd ITDP RAITDP 1st 2nd 3rd ITDP RAITDP ITDP RAITDP Routing
sb1

Sh
or

t

448 234 411 392 391 109,925 -180 -144 -1 -3,162 -3,511 715 695 +752
sb3 243 160 214 351 360 5,541 -6 -85 -41 -514 -584 836 840 +1,097
sb4 288 80 179 276 266 61,969 28 24 -11 -326 -329 573 541 +527
sb5 41 98 148 149 149 41,631 -59 -154 -31 -1,765 -2,742 685 654 +926
sb7 98 43 70 141 140 3,289 -165 -8 -14 -195 -194 845 867 +953

sb10 112 61 146 143 138 1,451,260 -600 -480 -170 -13,700 -15,440 1,202 1,210 +1,654
sb16 525 370 386 735 736 16,044 -200 208 -213 -2,490 -2,237 669 700 +738
sb18 365 180 258 302 302 3 -3 -2 -3 -3 -3 471 484 +569
Avg. 265 153 227 311 310 - -148 -80 -61 -2,769 -3,130 749 749 +902
sb1

L
on

g

347 164 0 508 499 109,925 -272 -287 0 -2,245 -3,429 508 585 +475
sb3 552 428 404 756 474 5,541 24 18 65 -283 -406 756 825 +1,084
sb4 507 209 0 666 598 61,969 -74 -7 0 -1,042 -633 666 574 +580
sb5 180 249 247 470 358 41,631 -771 -583 -91 -3,507 -5,724 470 377 +345
sb7 201 39 130 264 254 3,289 -294 -38 -31 -198 -168 264 823 +832

sb10 181 232 162 493 403 1,451,260 -550 10 160 -16,300 -30,560 493 938 +955
sb16 895 394 559 1,209 1,069 16,044 -972 862 -260 -3,684 -3,787 1,209 440 +439
sb18 613 355 484 781 686 3 -3 -3 -3 -3 -3 781 364 +354
Avg. 434 259 248 643 543 - -364 -4 -20 -3,408 -5,589 643 616 +633

142

For the short cell displacement constraint, the RAITDP algorithm achieves similar

TQoR compared to (FLACH et al., 2016), on average. The proposed algorithm improves

GRO by 13% compared to (FLACH et al., 2016), on average. The top three teams have

no significant improvement in RO. The RO restrictions can effectively help to improve

routability without penalizing circuit timing. The required runtime to route the circuit is

higher than the runtime of the timing-driven placement optimization algorithms. The extra

runtime can significantly help to improve the quality of the placement solution. Therefore,

an improved placement solution can significantly minimize runtime and routing issues in

the following physical synthesis stages.

In Table 5.2, the numerical results of the proposed algorithm for the set of corner

cases shown in Figure 5.13 are presented. Columns 1 and 2 indicate the benchmarks (BM)

and maximum cell displacement constraints (Dis). The TQoR is presented from column

3 to 7 when the cell displacement constraint is changed. The short (S) corner case is the

baseline to evaluate TQoR. The remaining TQoR is the representative timing violation

improvement achieved by relaxing the cell displacement constraint. The positive values

indicate the improvement in timing violations. The initial total GRO (GP #OF) is shown

in column 8. The total GRO improvement by changing the cell displacement constraint

is highlighted from column 9 to 13. Negative values indicate the reduction in the total

violations in the global routing.

143

Table 5.2: Timing violation and routing overflow improvement by changing cell displacement constraint and GCell capacity as introduced in
Figure 5.13.

BM

D
im

. TQoR Improvement
GP #OF

#GRO Improvement
S mL L mVL VL S mL L mVL VL

sb1

H
al

fG
C

el
lC

ap
.

359 +64 +80 +93 +102 636,961 -4,962 594 2,290 1,549 2,692
sb3 305 +175 +169 +179 +168 481,199 -1,715 402 1,081 768 727
sb4 251 +315 +347 +364 +365 448,119 -270 15,653 19,233 20,095 20,962
sb5 141 +116 +217 +490 +224 319,619 -4,815 -4,353 326 1,471 935
sb7 132 +103 +122 +132 +145 226,349 -989 -208 -151 140 -124

sb10 125 +257 +278 +283 +280 3,675,000 -10,590 -27,940 -25,110 -23,940 -22,670
sb16 660 +378 +409 +470 +457 431,425 -6,257 -15,405 -17,742 -19,633 -18,447
sb18 301 +307 +385 +393 +396 73,502 147 1,381 925 1,045 1,134
Avg. 284 +214 +251 +301 +267 - -3,681 -3,735 -2,394 -2,313 -1,849
sb1

O
ri

gi
na

lG
C

el
C

ap
. 391 +90 +108 +113 +112 109,925 -3,511 -2,719 -3,429 -3,014 -3,070

sb3 360 +359 +423 +411 +426 5,541 -584 -488 -406 -544 -540
sb4 266 +353 +401 +426 +442 61,969 -329 -565 -633 -681 -819
sb5 149 +202 +314 +325 +341 41,631 -2,742 -3,717 -5,724 -5,602 -5,810
sb7 140 +105 +122 +136 +141 3,289 -194 -202 -168 -157 -188

sb10 138 +293 +310 +320 +308 1,451,260 -15,440 -31,870 -30,560 -30,960 -29,110
sb16 736 +405 +474 +484 +489 16,044 -2,237 -3,297 -3,787 -3,589 -3,657
sb18 302 +401 +479 +483 +490 3 -3 -3 -3 -3 -3
Avg. 310 +276 +329 +337 +344 - -3,130 -5,358 -5,589 -5,569 -5,400

144

In the corner cases with half GCell capacity, the TQoR improvement increases.

On the other hand, the improvement in GRO is reduced when the cell displacement con-

straint is less restrictive. The reduction of RO improvement is mainly due to the long

cell movements, which must cross several GCells. These cell movements can cross some

GCells which have RO. The global router is only able to route the entire circuit.

In the original GCell capacity corners, the timing violation, and RO are improved

when the cell displacement constraint is relaxed. The primary RO improvement is ob-

tained by moving critical timing cells away from macroblocks. In this corner case, the

most critical RO is in the macroblock boundaries.

In both GCell capacities, half and original, the TQoR improves significantly in

the mL cell displacement constraint compared to the S cell displacement constraint. The

local optimum cell displacement for most of the critical timing cells is between these

two displacement constraints. Moreover, in the half GCell capacity, there is a small RO

improvement in the mL compared to S cell displacement constraints.

In Figures 5.16 and 5.17, the timing violations and RO improvement for the half

and original GCell corner cases are presented. In the abscissa, the variation of cell dis-

placement constraint is shown. In the left and right ordinates, the TQoR and GRO (#OF)

are presented, respectively.

Figure 5.16: The average RO and quality scores for the set Half GCell capacity

Source: (MONTEIRO et al., 2016)

In circuits that have RO near macroblocks, the proposed algorithm can signifi-

145

Figure 5.17: The average RO and quality scores for the set Original GCell capacity

Source: (MONTEIRO et al., 2016)

cantly improve timing and routability as demonstrated in Figure 5.17. In this case, the

optimized-timing cell movements which move cells distant from macroblocks have a

higher chance to be accepted. The target position has a higher chance to be free of RO. By

moving cells distant from the RO regions, the routability violations can be significantly

improved.

5.4 Summary

In this chapter, the proposed RAITDP algorithm has been presented. The objec-

tive is to optimize the circuit delay subject to routability. Optimized-local positions are

computed for critical timing cells. The optimized-timing position is evaluated if it is free

of RO. A cell is moved to the optimized position only if both timing and routability are

improved. The improvement of routability and timing is analyzed by changing the cell

displacement constraint and routing resources. The proposed algorithm improves tim-

ing and routability in circuits that have soft and hard constraints in terms of timing and

routing.

In detailed placement, cell spreading can be a tricky optimization. Cells can be

directly moved to a position in a region with available space. However, this procedure

can have adverse side effects on moved cells. For example, some cells which did not have

146

timing violation can have timing violation in the target position. Another adverse side

effect is the significant increase in wire length of cell’s nets when the cell is moved far

away. A better approach would be to move the cell to an intermediate and closed position.

In the intermediate position, a chosen cell is moved to another intermediate position. This

procedure can be repeated while a moved cell does not reach a region free of constraint

violation. In this procedure, a flow (set of cells) is moved, and a path of cells associated

with target positions is created.

The second benefit of this approach is to open space in high-density regions with

minimal adverse side effects on moved cells. Optimization algorithms can explore these

spaces in detailed placement, which can find better positions. Therefore, the quality of the

placement solution can be further improved. A cell spreading algorithm with minimized

adverse side effects on moved cells can further improve the QoR in ITDP and RAITDP

algorithms. Moreover, this procedure could be inserted at the beginning of the timing-

driven placement optimization flow to open space in high-density regions. These opened

spaces could be used by the ITDP algorithms to further improve timing violations.

147

6 THE PROPOSED NETWORK FLOW-BASED CELL SPREADING ALGORITHM

6.1 Introduction

In this chapter, the proposed network flow-based cell spreading algorithm is pre-

sented. This algorithm is applied in legalization and detailed placement optimization.

Application and experimental results of the proposed cell spreading algorithm in legaliza-

tion and detailed placement are given in Chapters 7 and 8, respectively.

The proposed cell spreading algorithm is a hybrid technique. Branch and cut and

network flow techniques are combined. The hybrid cell spreading algorithm provides an

optimized placement solution which may not be obtained using separated techniques.

The objective of the proposed cell spreading algorithm is to move cells out from

high-density regions. Cells are moved with minimized cell displacement cost. Optimized-

cost paths are computed to move sets of cells between neighboring intermediate bins.

The proposed cell spreading algorithm searches optimized-cost paths in n-ary trees. The

root bin of each tree is an overfilled bin. Neighboring bins are inserted in a priority

queue. In the priority queue, the bin with the lowest cell displacement cost is opened first.

Neighboring bins are inserted in the children list of the opened bin. Therefore, the branch

of the search tree increases one level. Each branch of the tree is a candidate path. Tree

branches which have higher cell displacement cost than the upper limit bound are pruned.

The upper limit cost is the cell displacement cost of the minimum cost path. Every time

a new path with lower cost is found, then the minimum cost path is replaced. Therefore,

the upper limit cost is reduced. In each algorithm iteration, an n-ary tree is built for each

overfilled bin.

A cell displacement cost model, which provides the direction and history of cell

movement is integrated into the proposed cell spreading algorithm. Cell movements are

subject to cell displacement constraint. Other restrictions (e.g., timing, and routability)

may be included in the proposed cell spreading algorithm. Several cells can be moved

with reduced runtime and minimized adverse side effects during area density optimiza-

tion. Spaces in high-density regions are available with minimized cell displacement cost.

These newly available spaces can then be used in legalization and detailed placement to

further improve wire length, cell displacement, timing, power, and routability.

The main contributions of the proposed cell spreading algorithm can be summa-

rized as follows:

148

• A cell spreading algorithm that integrates network flow and branch and cut tech-

niques.

• A max-flow min-cost technique to compute optimized-cost paths to spread cells

from high-density regions.

• New constraints can be easily integrated into the cost function.

• Using a cell cost displacement model which indicates the direction and history of

cell movement to compute cell displacement cost.

• Cell displacement is optimized by exploring the direction and history of cell move-

ments.

• A network flow-based cell spreading algorithm which can be used in legalization

and detailed placement stages.

This chapter is organized as follows: In Section 6.2, the overview, and insights of

the proposed algorithm are presented. In Section 6.3, the grid graph of the proposed cell

spreading algorithm is addressed. In Section 6.4, the proposed network flow-based cell

spreading algorithm is given. In Section 6.5, the summary of this chapter is shown.

6.2 Overview of the Proposed Network Flow-based Cell Spreading Technique

Usually, greedy cell spreading algorithms move cells directly to low-density re-

gions. In this approach, moved cells may have severe adverse side effects. Adverse side

effects may be excessive power consumption, routability issues, timing violation, and

increasing wire length. On the other hand, an amount of cell area can be moved to an in-

termediate region. A cell area may be moved out from the intermediate region to another

region. Intermediate regions may be inside or outside high-density regions. In this second

approach, adverse side effects are minimized in moved cells.

6.2.1 An Example of Cell Spreading

Placement core may be divided into a set of bins. A bin is a rectangular area which

covers a small piece of the placement area. Neighboring bins are connected to establish

a grid graph. In each bin, the total cell overlap area is added. A bin has area density

violation (overfilled bin) when the total cell area is higher than the maximum placeable

149

area constraint. Therefore, supply is higher than zero.

In Figure 6.1, two examples of cell spreading from an overfilled bin are presented.

Initial placement solution is given in Figure 6.1a. Bin 0 has area density violation. There-

fore, one cell must be moved out to alleviate area density violation. In Figure 6.1b, a

greedy cell spreading procedure is presented. Cell Inst 4 is moved out from Bin 0 directly

to Bin 2. Bin 2 has available white space to receive the incoming cell without causing or

increasing area density violation. On the other hand, Inst 4 may have severe adverse side

effects because of high cell displacement.

In Figure 6.1c, an optimized cell spreading approach is presented. In this ap-

proach, cells are moved out from high-density regions to intermediate regions. In inter-

mediate regions, the second group of cells is moved out to another intermediate region.

This procedure is iterated until an intermediate region may receive incoming cells without

causing or increasing area density violation.

Cell Inst 4 may be moved out from Bin 0 to Bin 1. Bin 1 is an intermediate bin.

If Inst 4 is moved to Bin 1, then area density violation will be created. A cell must be

moved out from Bin 1 to open space to receive Inst 4. In Bin 1, Inst 8 may be moved to

Bin 2. Therefore, enough space is opened in Bin 1 to receive Inst 4. This sequence of bins

and flagged cells to be moved is a path. In this procedure, cells are moved out from high-

density regions with reduced adverse side effects. Optimized cost paths to move cells

out from high-density regions are challenging to compute. The proposed cell spreading

algorithm searches optimized-cost paths based on this approach.

6.2.2 Overview of the N-ary Tree to Search Optimized-Cost Paths

In the proposed network flow-based cell spreading technique, cells are moved out

from regions with area density violations by moving cells between neighboring bins. For

each overfilled bin, a search tree is built to compute an optimized-cost path to move cells.

The proposed algorithm iterates while bins have area density violation. In each algorithm

iteration, a search tree is built for each overfilled bin. A new search tree is built in each

algorithm iteration if the bin has area density violation.

In legalization and detailed placement, the proposed network flow-based cell spread-

ing algorithm uses non-overlapping and overlapping grid graphs, respectively. Non-

overlapping and overlapping grid graphs are introduced in Section 3.7. Search trees are

computed in the same fashion in grid graphs of non-overlapping and overlapping modes.

150

Figure 6.1: Cell spreading approaches are presented. Cells can be directly moved to the
nearest white space location. Optimized-cost paths can be computed to move cells out
from high-density regions through intermediate regions to a low-density region.

(a) Initial placement solution

(b) Move cell to the nearest white space

(c) Optimized-cost path to move cells

Source: Author (2019).

In Figure 6.2, an example of visiting neighboring bins and flagged cells are pre-

sented. Bin B1 is an overfilled bin. Therefore, one cell must be moved out to fix area

density violation. There are four candidate paths from B1: 1) B1-A1, 2) B1-B2, 3) B1-

C1, and 4) B1-B0. For each path, there is a flagged cell which can be moved out from B1.

Cells which have the lowest cost (displacement) are flagged first. For each neighboring

bin, a different set of cells are flagged as presented as follows:

• Cell 0 (blue) can be moved from B1 to A1.

151

• Cell 1 (pink) can be moved from B1 to B0.

• Cell 2 (purple) can be moved from B1 to B2.

• Cell 3 (red) can be moved from B1 to C1.

This procedure is repeated for each bin in the search tree, which is not a leaf bin. A bin is

a leaf if it has enough space to receive the inflow cell area without creating area density

violation. In the search tree, if neighboring bins have not been visited before, then they

are visited. Bin B1 may be the root (overfilled) bin or an intermediate bin. This procedure

is used to flag cells and to compute the outflow area. Each set of flagged cells to be moved

to a neighboring bin provides an outflow area of bin B1 to each neighboring bin.

Figure 6.2: Example of flagging cells and computing outflow area

Source: Author (2019).

In Figure 6.3, an example of search tree is presented. In Step 1 of Figure 6.3, root

152

is an overfilled bin. Root bin is inserted in the priority queue. Bins are sorted by the lowest

to the highest cell displacement cost of the path. In the root bin, a different set of cells are

flagged to be moved out from root to each neighboring bin (an example is presented in

Figure 6.2). Cell displacement cost is computed as introduced in Section 3.6.6. Bin cost

to move cells from a bin to a neighboring bin is the summation of cell displacement of

flagged cells. Each pair (source bin and neighboring bin) may have a different bin cost.

The path cost is the summation of costs from the bin and ancestor’s bins.

Figure 6.3: Example of search tree to compute optimized-cost path

Source: (MONTEIRO; JOHANN; BEHJAT, 2019)

In Figure 6.3, properties of each bin are defined as follows:

• S is the supply.

• D is the demand.

• AF is the area flow.

• C is the cost.

Supply and demand area spaces are the overfilled area and the available area that are

evaluated to receive incoming cells. Area flow is the amount of area which is moved out

from a bin to a neighboring bin. Cost is the cell displacement cost of the path.

In Step 1, an overfilled bin is obtained from the list of overfilled bins. This bin

153

is the root node of the search tree. The outflow area of the root bin is computed. This

computed outflow area must be moved to a neighboring bin.

In Step 2 of Figure 6.3, the root bin is retrieved from the priority queue. All

neighboring bins (n1 to n4) are visited. Sets of cells and cell displacement costs from root

to each neighboring bin are computed. Each neighboring bin is inserted in the priority

queue alongside its cost. In each neighboring bin, it is verified if there is enough space to

receive the incoming inflow area.

In Step 3 of Figure 6.3, the bin in priority queue with the lowest cost is retrieved.

Bin n4 has the lowest cost. Root bin has an output flow of four area units to bin n4. Bin

n4 has two area units of demand. Therefore, bin n4 can absorb two area units. However,

two area units must be opened in the n4 to avoid creating area density violation.

In Step 4 of Figure 6.3, neighboring bins (n5 to n7) of bin n4 are visited. Bin n4

has a path with the lowest cell displacement cost. For each neighboring bin, a set of cells

is flagged. The total cell displacement cost of this set of cells is computed. Neighboring

bins of bin n4 are inserted in the priority queue.

In Step 5 of Figure 6.3, the bin with the lowest cost is retrieved. Bin n7 has the

lowest cost. Bin n7 has four area units of demand (available area to receive inflow area).

This bin will receive two area units from bin n4. Therefore, bin n7 can receive the inflow

area without causing area density violation. This bin is flagged as the leaf bin of the best

cost path. Remaining bins in the priority queue must be visited to verify if there is a path

with lower cost.

In Step 6 of Figure 6.3, remaining bins in the priority queue are retrieved. In this

example, all remaining bins have cost higher than the cost of the best path. Therefore,

these bins are not visited. Otherwise, if the bin cost is lower than the best path, this bin is

visited, and neighboring bins are inserted in the priority queue.

In Step 7 of Figure 6.3, the optimized cost path is presented. This path is composed

of root, n4, and n7 bins. Searching path algorithm returns the reference of the leaf bin (n7)

of the minimum cost path. This algorithm may fail to find a leaf bin which can receive

the inflow area without causing area density violation. In this case, this algorithm returns

an invalid reference to the leaf bin.

The invalid reference indicates that the searching path algorithm has failed to find

an optimized cost path for the root (overfilled) bin. In a future iteration of the cell spread-

ing algorithm, a valid path to this overfilled bin may be found. Available cells to be

flagged in intermediate bins may be different in each algorithm iteration, which may al-

154

low the path augmentation algorithm to find a valid path. Therefore, in the modified

circuit placement, the cell spreading algorithm may find sets of cells to move between

neighboring bins, which can find a valid path.

In this search procedure, cells are only flagged to later be moved. This procedure

does not move cells between neighboring bins. In this procedure, the optimized-cost paths

with flagged cells are computed. A specialized algorithm receives the optimized-cost path

and moves flagged cells from parent to child bins. In Section 6.2.3, the cell movement

algorithm is presented.

6.2.3 Cell Movement

In the valid optimized-cost paths, cells are moved only between neighboring bins.

Paths are iterated in backtrack order. In the first iteration of the algorithm, flagged cells

are moved out from bin n4 to bin n7. Therefore, the required white space is opened in bin

n4. In the end of the first iteration in bin n4, there are four area units available to receive

the incoming cell area from root bin. Two area units are already available, and two area

units have been opened by moving out a set of flagged cells. In the second iteration, cells

are moved out from root bin to bin n4. Therefore, area density violation is minimized in

the root bin.

In Figure 6.4, an example of cell movement between neighboring bins is presented.

In this example, cell 0 (red) is moved out from bin 0 to bin 1. Cell 0 is placed in the

closed position where the cell is entirely inside the bin. The cell movement algorithm is

performed in the same fashion for overlapping and non-overlapping grid graphs.

6.3 Grid Graph

In the proposed cell spreading algorithm, non-overlapping and overlapping grid

graphs are used to search optimized-cost paths. These grid graphs are introduced in Sec-

tion 3.7. In non-overlapping, the grid graph has no overlapping with macroblocks and

fixed cells. In overlapping, bins of the grid graph may have overlap with macroblocks and

fixed cells.

In legalization, the non-overlapping type of grid graphs is used. The bin height

is equal to row height, and cells are aligned to rows. Moved cells may be placed only

155

Figure 6.4: Example of cell movement between neighboring bins

Source: Author (2019).

partially in neighboring horizontal bins. In vertical cell movements, cells must be moved

entirely to the top or bottom bin.

In detailed placement, the overlapping type of grid graphs is used. The bin height

is higher than the row height, and cells may not be aligned to rows. Moved cells must

be placed entirely inside of bins. Cells are placed in the closest position from the current

position where the cell is entirely inside of the bin.

The root node of the search tree is a bin which has area density violation. The

order to visit overfilled bins has no significant impact on placement solution. An amount

of cell area is computed to be moved to a neighboring bin. Neighboring bins are visited

in the left, right, top, and bottom order. In each visited bin, it is evaluated if the bin has

enough space to receive incoming cell area without causing or increasing area density

violation. Otherwise, the algorithm searches for several cells to be moved out to open the

required space to receive the incoming cell area. This procedure is iterated while the bin

which has enough area to receive the incoming cell area is not found.

6.4 The Proposed Cell Spreading Algorithm

In the proposed network flow-based cell spreading algorithm, branch and cut tech-

nique and an enhanced cell displacement cost model is integrated. The enhanced cost

156

model is introduced in Section 3.6.6. Branch and cut technique is used to prune candidate

paths which have total cell displacement cost higher than the upper limit bound. In the

cost model, the direction of cell movement from the initial cell position is computed. Cell

movements away from initial positions have positive cost values. On the other hand, neg-

ative cost values indicate that cells are going to be moved closer to the initial positions.

The same cell can belong to different paths in the same or different iterations of the cell

spreading algorithm. Cells which have been moved away from their initial positions in a

previous optimized-cost path can be moved closer to the initial position in a future path.

In the cost model, it is easy to identify and prioritize cells, which may be moved closer

to the initial position. The cost signal, positive or negative, indicates the direction of cell

movements away from or closer to the initial positions, respectively. In this approach, cell

displacement cost can be further optimized.

In the circuit core, a grid of bins is built. Bins may or may not have overlap with

fixed cells. In Section 3.7, the two types of grid graphs (non-overlapping and overlapping)

are presented. In legalization, the grid graph is built with the non-overlapping mode. In

this approach, bins are small. Regions with a massive cell density are very hard to opti-

mize area density utilization with the non-overlapping grid graph. In detailed placement,

the grid graph is built with the overlapping approach. In this approach, bins are bigger

compared to bins in non-overlapping mode. Therefore, it is easier to move cells out from

regions which have massive area density utilization.

An optimized-cost path is a sequence of neighboring bins. Bins in optimized-cost

paths may be classified into: 1) root bin, 2) intermediate bin, and 3) leaf bin. Root is the

bin which is overfilled. Intermediate bins are a sequence of neighbor bins between the

root and leaf bins. Intermediate bins can have overfilled (supply) or available (demand)

areas. The available (demand) area of intermediate bins is always lower than the inflow

area. Intermediate bins always have inflow and outflow areas. The leaf bin is a bin

which has enough space (demand) to receive inflow area without creating an overfilled

bin (demand ≥ inflow).

In Algorithm 17, the outline of the proposed network flow-based cell spreading

algorithm is presented. The algorithm’s input is a circuit netlist, a placement solution,

and a circuit floorplan. The output is a placement solution which area density utilization

is optimized.

In Line 1, the grid graph is initialized. Overlap area and cells are assigned to bins.

Cells may have overlap with more than one bin. Therefore, these cells and partial cell area

157

Algorithm 17: Network Flow-based Cell Spreading Algorithm
Data: Circuit netlist, placement solution, and circuit floorplan
Result: Placement solution with optimized area density utilization

1 InitGridGraph();
2 OFBins = computeOverfilledBins();
3 while !OFBins.empty() and numIts ≤ maxIts do
4 updateMaxDisplacement();
5 for bin ∈ OFBins do
6 if getSupply(bin) == 0 then
7 continue;
8 end
9 inflow = computeInflow(bin); /* Computed as introduced

in (6.1) */
10 leaf = pathAugmentation(bin, inflow); /* Call to Algorithm

18 */
11 if isV alid(leaf) then
12 moveCells(leaf); /* Call to Algorithm 20 */
13 end
14 end
15 OFBins = computeOverfilledBins();
16 numIts = numIts + 1;
17 end

overlap are assigned to overlapping bins. The demand and supply of bins are computed

as presented in Section 3.7.

In legalization, the grid graph is built as introduced in Section 3.7. Bin height

is equal to the row height. Bin width is computed as introduced in (BRENNER, 2013).

Neighboring bins are connected. Bins on the opposite side of macroblocks are also con-

nected. This grid graph may not be regular because of the macroblocks. Bin boundaries

are limited to boundaries of rows and boundaries of macroblocks.

In detailed placement, the grid graph is built as introduced in Section 3.7. Bin

width and height are computed in the same fashion (BRENNER, 2013). The grid graph

is a regular grid of bins. Bins may have overlap to macroblock and circuit area outside of

row boundaries.

In Line 2, overfilled bins are obtained. Bins in the grid graph are visited in the

following order: from the left to the right and the bottom to the top. Overfilled bins are

inserted in the back of a list. An overfilled bin has the supply value higher than 0. A

non-overfilled bin has the supply equal to zero and demand equal to or higher than zero.

In (3.22) and (3.21), supply and demand equations are presented.

In legalization, area density constraint is defined as equal to 100% of the area

158

utilization. Therefore, a bin is overfilled if the cell area is higher than the bin area. Bins

in the non-overlapping grid graph do not have bins with the fixed area. All fixed areas

are outside of these bins. In detailed placement, area density constraint is defined by the

digital designer. This area constraint is the maximum area utilization that is lower than

or equal to 100%. Bins of the overlapping grid graph may have part or all of their area

occupied by fixed macroblocks or fixed cells. These bins may also have part or all of their

area outside of row boundaries. Row boundaries on the left or right sides of the circuit

placement may not be aligned.

Optimized-cost paths are searched while there are bins with area density viola-

tion. This procedure may be stopped when the maximum number of iterations is reached.

The maximum number of iteration is defined to be equal to 1000. It is assumed that the

cell spreading procedure will not converge (infinite lopping) if the maximum number of

iterations is reached. The circuit may have regions with massive cell concentration. More-

over, high-density regions may be surrounded by macroblocks, which make the solution

infeasible or extremely expensive.

In Lines 3 to 17, optimized-cost paths are searched. If valid paths have been found,

cells are moved. In Line 4, maximum cell displacement constraint is computed. This cell

displacement constraint avoids moving cells far away from initial positions. These cells

may have considerable cell displacement. Imposing this limit minimizes adverse side ef-

fects on placement solution. In legalization, cell displacement constraint is a function of

the bin width, number of iterations, α (0.6) factor and β (0.05) factor as introduced in

(DARAV et al., 2017). In detailed placement, cell displacement constraints are computed

for bin width and height. Detailed placement displacement constraints are computed in

the same fashion of the cell displacement for bin height in legalization. The maximum

cell displacement constraint is the summation of width and height cell displacement con-

straints.

In Lines 5 to 14, overfilled bins in the list are visited. Overfilled bins are obtained

from the front of the list. The retrieved bin is checked if it has area density violation

(Line 6). In Figure 6.5, an example of an intermediate bin which has fixed area density

violation is presented. The optimized-cost path which is composed of bin 0, bin 1, and

bin 2 and flagged cells A, B, and C fixes area density violation in bin 0 and bin 1. Bin

0 is the root bin, bin 1 is the intermediate bin, and bin 2 is the leaf bin. Flagged cells B

and C provide space in bin 2, which is higher than the required space to receive cell A. In

bin 2, the overfilled area is a small value. Therefore, the difference between outflow and

159

inflow area in bin 2 is higher than or equal to the overfilled area in bin 2. In the proposed

network flow-based cell spreading algorithm, usually, the outflow area is higher than the

required space to be opened in the bin. The flow is the generalized type as introduced in

Section 3.4.

Figure 6.5: Area overfill in bin 1 may be fixed by computing the path composed of bin
0, bin 1 and bin 2 to spread cells. Cells B and C will be moved to bin 2 to open space to
receive cell A from bin 0

Source: Author (2019).

The overfilled bin is the root bin of the search tree. Therefore, an "inflow" area of

the root bin must be computed. Inflow area is used in the path augmentation algorithm

(Section 6.4.1) to compute outflow and to flagged cells in the root bin. The inflow area

must be higher than zero and lower than or equal to the bin supply. The inflow area must

also be lower than the placeable area of the neighboring bin. An inflow area, which is

higher than the placeable area of the neighboring bin, will create or increase area density

violation in the neighboring bin. Therefore, this inflow area automatically imposes an

infeasible cost path. Computing the inflow area of the root bin is a trade-off between

finding valid paths and runtime. A low inflow area in root bin increases the chances of

finding valid paths, but it requires more iterations of the cell spreading algorithm, which

increase runtime. The inflow area of the root bin also affects the increase of area flow in

candidate paths. In intermediate bins, the outflow area is usually higher than the inflow

area (generalized flow area). Therefore, while candidate paths are augmented, inflow, and

outflow areas also tend to increase. On the other hand, a high inflow area decreases the

chances of finding valid paths, but it reduces the number of iterations, which may decrease

runtime. However, the optimized-cost path may be longer because there are bins with the

capacity to receive inflow area with lower cost.

The inflow area of the root bin is computed (Line 9). The inflow area is the mini-

mum area which must be moved out of the overfilled bin. The inflow area of the overfilled

(root) bin is a way to indicate the minimum amount of area which must be moved out from

160

the root bin. Overfilled bins can have exceeded area which varies from residual area to an

immense amount of overfilled area. Inflow area of the root bin is computed as introduced

in (6.1).

rootInflow = min
(totalCellArea
numOfCells

, binSupply
)

(6.1)

where, totalCellArea is the total area of the overlap between cells and the bin. numOfCell

is the total number of cells which have overlap in the bin. binSupply is computed as in-

troduced in (3.22). The inflow of the root bin is a heuristic to estimate the area flow,

which is the average cell area. Therefore, at least one cell will be moved out of the root

bin. Another advantage of this approach is to address multi-deck cells.

In bins with massive cell concentration, an optimized cost path is computed in

each iteration of the cell spreading algorithm. In this approach, the first advantage is

to increase the chances of finding optimized-cost paths. The second advantage is that

optimized paths may be computed in different directions.

In Line 10, the algorithm to search the optimized-cost path is called. The path

augmentation algorithm is introduced in Section 6.4.1. The path augmentation algorithm

returns the leaf bin of the minimum cost path. However, path augmentation may fail to

find an optimized cost path to move cells. Therefore, an invalid reference is returned.

In Line 11, it is checked if the leaf bin of the optimized-cost path is valid. In

invalid-cost paths, the algorithm goes to search the optimized-cost path in the next over-

filled bin. In Line 12, cells are moved between neighboring bins in the optimized cost

path. The cell movement algorithm is presented in Section 6.4.3. In Line 15, the list of

overfilled bins is updated. In Line 16, the number of iterations is incremented.

6.4.1 Path Augmentation Algorithm

In the path augmentation algorithm, optimized-cost paths are searched, and cells

are flagged to be moved to neighboring bins. This algorithm receives an overfilled bin,

circuit netlist, and grid graph. The path augmentation algorithm returns the leaf bin of

the minimum cost path. In the valid paths, area density violation is minimized. On the

other hand, this algorithm returns an invalid bin reference to indicate that it has failed to

compute an optimized cost path.

In the search tree, each bin (node) has inflow and outflow cell areas, except leaf

bins, which only have inflow cell area. In network flow, inflow and outflow definitions are

161

introduced in Section 3.4. In the path augmentation algorithm, the area flow is provided by

the set of flagged cells. For each neighboring bin, unique set of flagged cells is computed.

Restrictions in the path augmentation algorithm are presented as follows:

• Leaf bins in candidate paths must have enough free area to receive inflow area.

• Inflow cell area of a bin must be lower or equal to the placeable bin area.

• Outflow area of intermediate bins in paths must not violate inequality outflow ≥

max(inflow − demand, 0).

In Algorithm 18, the proposed path augmentation algorithm is presented. Branches

in the search tree are pruned with branch and cut techniques. Only bins in the candidate

paths which have total cell displacement lower than upper limit bound are opened. In this

approach, optimized-cost paths are obtained without creating or increasing area density

violation in intermediate bins. Moreover, the search space region shrinks every time a

new path is found that has a lower cost than the upper limit bound.

In Line 1, the overfilled bin is inserted in the priority queue. The overfilled bin is

the root bin (node) of the search tree. Each branch of the search tree is a candidate path.

In the priority queue, bins are sorted by the lowest to the highest displacement cost. In the

search tree, the cost of the bin is the cumulative cell displacement cost of ancestors bins.

Each neighboring bin has unique set of cells to receive from the source bin. Therefore,

each set of cells has a different cost.

In Line 2, the variable bestPathBin is initialized with null reference. Null reference

of bestPathBin has a positive infinite cost. The reference of the leaf bin of the best path is

stored in this variable. The algorithm searches an optimized-cost path while the priority

queue has bins (Lines 3 to 28). The source bin is retrieved from the priority queue (Line 4).

This algorithm searches a path if and only if the cost of the source bin is lower than the

bestPathBin cost (Lines 5 and 6).

The source bin is inserted in the visited list (Line 8). Neighboring bins from the

source bin are visited (Lines 9 to 18) only if these bins have not been previously visited

(Lines 10 and 11). Outflow area is computed as shown in Section 6.4.2 and in Algo-

rithm 19 (Line 13). Occasionally, the source bin cannot provide sufficient space to receive

the inflow area. Therefore, the source bin may not provide a valid path (Line 14). An out-

flow area equal to zero indicates that this path is infeasible. The total cell displacement

cost for a candidate path is obtained (Line 15). The tuple composed of a neighboring bin,

cost of the candidate path and outflow area is inserted in the children list of the source bin

162

Algorithm 18: Path Augmentation Algorithm
Data: Overfilled Bin, Grid Graph, and Circuit Netlist
Result: null or valid leaf bin

1 priorityQueue.insert(overfilled bin);
2 bestPathBin = null; /* Leaf bin of the best path */
3 while !empty(priorityQueue) do
4 src = priorityQueue.top();
5 if getCost(bestPathBin) < getCost(src) then
6 continue;
7 end
8 visitedBins.insert(src);
9 for neighbor ∈ neighbors(src) do

10 if visited(neighbor) then
11 continue;
12 end
13 outflow = computeOutflow(src, neighbor); /* Call to

Algorithm 19 */
14 if outflow > 0 then
15 cost = getCost(src);
16 src.addChildrenNode(neighbor, cost, outflow);
17 end
18 end
19 for bin ∈ children(src) do
20 if getCost(bin) < getCost(bestPathBin) then
21 if inflow(bin) ≤ demand(bin) then
22 bestPathBin = bin;
23 else
24 priorityQueue.insert(bin);
25 end
26 end
27 end
28 end

(Line 16).

In Lines 19 to 27, the algorithm iterates in children list of the source bin. Bins

are only visited if they have the ancestor’s cell displacement cost lower than the upper

limit cost (Line 20). Visited bins may have a path with a lower cell displacement cost

than the current best path. The upper limit cost is the cell displacement cost of the current

best path. If a child bin has available space to receive inflow area (Line 21), then the

leaf bin of the best path is replaced by this child bin (Line 22). Otherwise, this child bin

is inserted in the priority queue (Line 24). A bin in the priority queue may belong to a

path which has the minimum cell displacement cost. Bins with cell displacement cost

163

higher than upper limit cost are not visited. These bins belong to candidate paths that

have cell displacement cost higher than the upper limit cost. Therefore, these candidate

paths (branches) are pruned from the search tree.

6.4.2 Compute Outflow Area from Source Bin

In Algorithm 19, the procedure to compute the outflow area from the source bin

is presented. The algorithm receives the circuit netlist, the grid of bins, the source bin,

and sink (neighboring) bin. This algorithm returns the area flow to be moved out from the

source bin. Otherwise, the algorithm returns zero, to indicate this algorithm has failed to

find a set of cells which provide the required open space in the source bin.

Inflow area is the amount of cell area which must be available in the source bin.

This area space is the minimum area necessary to receive cells without causing or increas-

ing area density overflow. The outflow area is the amount of cell area which is going to be

opened in the source bin. Outflow area of the source bin is the inflow area of the neigh-

boring bin. Each neighboring bin has a unique outflow area and a set of flagged cells.

Providing the outflow area opens enough space to receive inflow area without causing or

increasing area density violation.

In legalization, the outflow area with the partial cell area is accepted to horizontal

cell movements. Cells can be moved partially to a neighboring horizontal bin. In this

approach, cell movement provides exact cell area space, which is required to be opened

in the source bin. Horizontal cell movement in legalization is a particular case which can

accurately provide the required area flow. In vertical cell movements, cells are entirely

moved to the neighboring bin. In detailed placement, all moved cells out from the source

bin must be placed entirely inside of the neighboring bins.

This algorithm iterates in all cells of the source bin (Lines 1 to 6). For each cell,

cell displacement is computed (Line 2). Other cell restrictions may be included in this

part of the code. Cell displacement cost is computed as introduced in Section 3.6.6. In the

horizontal cell movement of legalization, the target position is the closest position from

the current position, which gives the required area flow. Otherwise, the target position

is the closest position in the neighboring bin from the source bin where the cell can be

entirely placed inside of the bin boundaries. Only cells which have displacement cost

lower than the maximum cell displacement restriction are inserted in the list (Lines 3 and

4). Therefore, there may not be enough cells to open the required area in the source bin.

164

Algorithm 19: Compute Outflow Area from Source Bin
Data: Circuit netlist, grid graph, source bin, and neighboring bin
Result: Outflow area of source bin

1 for cell ∈ listOfCells(source bin) do
2 displacement = computeDisplacement(source, neighbor bin, cell);
3 if displacement < maxDisplacement then
4 cellList.insert(cell);
5 end
6 end
7 inflow = getInflow(sourceBin);
8 reqFlow = max(inflow - demand(src), 0);
9 sortCells(cellList);

10 overlapArea = 0;
11 outflow = 0;
12 for cell ∈ cellList do
13 if reqF low ≤ overlapArea then
14 return outflow;
15 end
16 overlapArea += source.getAreaOverlap(cell);
17 outflow += getArea(cell) - neighboring.getAreaOverlap(cell);
18 end
19 return 0;

In Line 7, the inflow of the source bin is obtained. The source bin can keep part

of the inflow area if the source bin has available space. Required flow (reqFlow) is the

minimum amount of cell area which must be opened in the source bin (Line 8). In this

algorithm, the outflow area is usually higher than the required flow. Therefore, an addi-

tional area is commonly opened in the source bin. In some overfilled bins, this additional

outflow area is enough to fix area density violation. In Figure 6.5, an example which the

overfilled area is fixed by the additional outflow area of the source bin is presented.

In the list, cells are sorted from the lowest to the highest cell displacement cost

(Line 9). The cell displacement cost is a negative value when the cell is going to be

moved closer to the initial position. Otherwise, the cost is positive. Cells which have

negative cell displacement cost have priority to be flagged. Only cells which have been

moved previously may have a negative cell displacement cost.

In Lines 10 and 11, overlap area and outflow variables are initialized, respectively.

All cells in the list are visited (Lines 12 to 18). Total cell area in the source bin is eval-

uated if it is equal to or greater than the required area flow to be opened in the source

bin (Line 13). If the area mentioned above condition is valid, this algorithm returns the

outflow area of the source bin (Line 14).

165

In the list, cells are iterated to accumulate the area overlap between these cells and

the source bin (Line 16). This area overlap is the area which is going to be opened in

the source bin when these cells will be moved to the neighboring bin. In horizontal cell

movement of legalization, the area overlap provided by each cell is adjusted as follows:

CellAreaOverlap = min(areaOverlap(cell, sourceBin), reqF low − overlapArea).

The latest cell can be partially moved to the neighboring bin.

The outflow area is accumulated (Line 17). Outflow area is the area which must be

available in the neighboring bin to receive these cells without causing or increasing area

density violation. Outflow area from the source bin is the inflow area of the neighboring

bin.

Finally, if there are not enough cells to provide white space to receive an inflow

area, then this algorithm returns the zero value to indicate that it is infeasible to open the

required space in the source bin (Line 19).

6.4.3 Cell Movement Algorithm

Once a path is found in Algorithm 18, selected cells must be moved between

neighboring bins. The outcome of these cell movements is the reduction of area density

utilization in the overfilled bin (root vertex). This area reduction in the root bin may be

enough to fix the area density violation. The procedure to move cells between neighboring

bins is presented in Algorithm 20. This algorithm iterates in a backtrack order. The

algorithm receives the leaf bin of the valid path, grid graph, and circuit netlist. This

algorithm provides a placement solution with the minimized area density violation in

overfilled (root) bins.

In Line 1, the target bin variable is initialized with sink bin reference. The parent

bin of the target bin is retrieved (Line 2). Outflow and inflow areas are initialized in

Lines 3 and 4, respectively. Bins of the path are iterated until the root bin is reached

(Lines 5 to 14). In Line 6, the inflow area of the target bin is retrieved. The previous

outflow area is verified if it is lower than the computed inflow area. In neighboring bins,

outflow area in the source bin must be equal to the inflow area in the target bin. Otherwise,

there are shared cells which provide area flow for different pairs of source-target bins in

this path.

In Figure 6.6, shared cells between neighboring bins are presented. In the path

augmentation algorithm, A0, A1 and B1 bins are intermediate bins of a valid path. The

166

Algorithm 20: Move Cells in Minimized Cell Displacement Cost Path
Data: Leaf Bin, Grid Graph, and Netlist
Result: Moved cells in the path

1 target = sink;
2 source = getParent(target);
3 outflow = 0;
4 inflow = 0;
5 while source ! = null do
6 flow = getInflowArea(target);
7 if outflow < inflow then
8 flow -= (inflow - outflow);
9 end

10 outflow = moveCells(source, target, flow);
11 inflow = getInflowArea(target);
12 target = source;
13 source = getParent(source);
14 end

same cell X0 provides area flow for A0-A1 and A1-A2 pairs of bins. In the cell movement

algorithm, cell X0 is moved out from bin A1 to bin B1 to provide part of the area flow. In

the next iteration, the cell movement algorithm tries to move cell X0 out from bin A0 to

bin A1. However, cell X0 is no longer available. The cell movement procedure operates

in the backtrack order in the optimized-cost path.

The current area flow is adjusted (Line 8) to avoid creating or increasing area

overfill in intermediate bins. Selected cells are moved to the target bin to provide outflow

area (Line 10). The inflow area of the target bin is updated (Line 11). The sink bin is

updated. The current source bin is the target bin in the next algorithm iteration (Line 12).

The parent bin of the current source bin is updated (Line 13).

6.5 Summary

In this chapter, the proposed network flow-based cell spreading algorithm has been

presented. The objective is to move cells out from high-density regions with reduced cell

displacement cost. Optimized-cost paths are computed to move sets of cells between

neighboring bins. The proposed cell spreading algorithm searches optimized-cost paths

in n-ary trees. A search tree is built for each overfilled bin in each algorithm iteration. The

root bin of the tree is an overfilled bin. Neighboring bins are inserted in a priority queue.

In the priority queue, the bin with the lowest cell displacement cost is opened first. Each

167

Figure 6.6: The same cell is shared in two pairs of neighboring bins. The shared cell will
cause mismatch in the inflow and outflow in the pairs of neighboring bins

Source: Author (2019).

branch of the tree is a candidate path. Tree branches which have cell displacement cost

higher than the upper limit bound are pruned. The upper limit cost is the cell displacement

cost of the minimum cost path. Every time a new path with a lower cost is found, then the

minimum cost path is replaced. Therefore, the upper limit cost is reduced.

The proposed algorithm can be used to optimize area density utilization in legal-

ization and detailed placement. In Chapter 7, the proposed cell spreading algorithm in

legalization is shown. In Chapter 8, the proposed cell spreading algorithm in detailed

placement is given. Experimental results for the proposed legalization and detailed place-

ment cell spreading algorithms are discussed in Chapters 7 and 8, respectively.

168

169

7 THE PROPOSED NETWORK FLOW-BASED CELL SPREADING APPLIED

IN LEGALIZATION

The proposed network flow-based cell spreading algorithm is presented in Chapter

6. In this chapter, the application of the proposed cell spreading algorithm in legalization

is presented.

7.1 Introduction

Legalization is an essential and fundamental stage of the placement flow. Dur-

ing the legalization stage, cells are placed in positions that are aligned to boundaries of

sites and rows. In these positions, cells are also free of cell overlapping. In legalization,

the challenge is to move cells out from high-density regions with minimized cell dis-

placement cost. Usually, global placement solutions have regions with high-density cell

concentration. In high-density regions, legal positions may be found far away from their

initial positions. Therefore, cell displacement cost can be high, which leads to significant

disruption in the global placement solution.

In this chapter, the proposed Network Flow-based Legalization (NFL) algorithm

is presented. The proposed NFL is a cell spreading and legalization flow. In the proposed

NFL algorithm, network flow and branch and cut formal methods are integrated into the

spreading cell algorithm to optimize area density utilization in legalization flow. A cost

model with the history and direction of cell movements is used in the cell spreading and

legalization stages. In this approach, cell displacement cost can be further optimized.

In the proposed NFL algorithm, the main contributions are summarized as follows:

• Searching optimized-cost paths with network flow and branch and cut formal meth-

ods.

• Computing cell displacement cost with a cost model, which history and direction

of cell movement are easily obtained.

• Determining the direction of cell movement based on the signal (positive or nega-

tive) of displacement cost value.

• Searching legal positions in neighboring rows to minimize cell displacement cost.

• Minimizing cell displacement with both global and local view of placement solu-

tion.

170

• Optimizing both the average and the maximum cell displacements.

This chapter is organized as follows: In Section 7.2, the key differences to the

correlated legalization algorithm are highlighted. In Section 7.3, the proposed NFL al-

gorithm is presented. Experimental results and discussions are given in Section 7.4. In

Section 7.5, the main conclusions are provided.

7.2 Correlated Network Flow-based Legalization Algorithms

The proposed NFL algorithm is in the same class of (DARAV et al., 2017; BREN-

NER, 2013), and BonnPlace Legalization (BRENNER, 2013) formal legalization meth-

ods. The proposed NFL has several key differences compared to the correlated legaliza-

tion algorithms. In this section, the key differences are presented and discussed.

In BonnPlace Legalization, the optimized-cost paths to move cells out from high-

density regions are computed with Dijkstra’s algorithm (DIJKSTRA, 1959). The cost

model of cell displacement only considers the current and target positions to compute cell

displacement. In this cost model, It is not possible to obtain the history and direction of

cell movements.

In (DARAV et al., 2017), optimized cost paths are computed using network flow

and BFS techniques. Several cost paths can be computed starting from the same overfilled

bin in one iteration of the search path algorithm. Different paths can share a set of the

same cells in the intermediate bins to provide outflow area. If at least two of these paths

are selected to provide area flow, the outflow of some paths must be adjusted. This outflow

adjustment is required because the original cells are no longer available to be moved to

the neighboring bins. These cells have been moved out to another location in previous

paths. Iterative adjustment of path flow can easily lead to infeasible paths.

In BonnPlace Legalization and (DARAV et al., 2017), cell displacement cost

model is a linear positive cell displacement cost model. In this model, the distance be-

tween the current and target positions are computed. The history and direction of cell

displacements are hard to obtain. Therefore, in this cost model, cells can be moved far

away from the initial positions in cumulative cell movements. In each cell movement,

cell displacement cost between current and target positions can be small. Cumulative cell

displacement cost can lead to substantial cell displacement. This issue arises because

this cost model cannot detect if cells are going to be moved away or closer to the initial

171

positions.

In the legalization stage of (DARAV et al., 2017), cells are legalized only inside

current rows. Legal cell positions are not searched in neighboring rows. Therefore, some

cells can have significant horizontal cell displacement, even if there are legal positions in

neighboring rows with lower cell displacement cost.

7.3 The Proposed Network Flow-based Legalization Algorithm

In this section, the proposed NFL algorithm is presented. This proposed algorithm

combines the proposed network flow-based cell spreading and cell legalization (PUGET

et al., 2015) procedures. The proposed network flow-based cell spreading algorithm is

presented in Chapter 6.

In legalization, the cell spreading procedure uses the non-overlap grid graph. the

non-overlap grid graph is introduced in Section 3.7. During grid graph initialization, cells

which have overlap with macroblocks are placed in the closest bins. Placed cells outside

of row boundaries are moved to the closest bins inside of row boundaries. Cells are moved

out from high-density regions using the proposed cell spreading algorithm that has been

presented in Chapter 6. The proposed cell spreading algorithm is a generic technique that

is applied in the legalization stage. Cell spreading and cell legalization stages have global

and local views of the placement solution.

In Algorithm 21, the outline of the proposed NFL procedure is presented. The

proposed algorithm receives the circuit netlist, an illegal placement solution, and circuit

floorplan. NFL provides a legal placement solution with minimized cell displacement.

In Line 1, the proposed network flow-based cell spreading algorithm is executed. The

proposed network flow-based cell spreading has been introduced in Chapter 6. In Line

2, the legalization algorithm is executed. The cell legalization algorithm is presented in

Section 7.3.1.

Algorithm 21: Circuit Legalization with the Proposed Network Flow-based
Legalization Algorithm

Data: Circuit netlist, illegal placement solution, and circuit floorplan
Result: Legalized Placement Solution

1 cellSpreading() ; /* Introduced in Chapter 6 */
2 cellLegalization() ; /* Call to Algorithm 22 */

172

7.3.1 Cell Legalization

During the cell legalization stage, cells are aligned to site boundaries. Legal cell

positions must be free of cell overlapping. In Algorithm 22, the cell legalization al-

gorithm is presented. This algorithm is based on Jezz (PUGET et al., 2015) and Aba-

cus (SPINDLER; SCHLICHTMANN; JOHANNES, 2008a) legalization techniques. The

legalization algorithm receives the circuit floorplan, circuit netlist, and placement solu-

tion. The output from the legalization algorithm is a legalized circuit (i.e., cells are free

of cell overlapping, and these cells are aligned to site and row boundaries). In Line 1,

cells are sorted by x-axis. This procedure keeps the relative order of cells. All cells in the

sorted list are iterated (Line 2). The legal-optimized position is searched in the current,

upper, and lower neighboring rows (Line 3). The procedure to search for legal positions

continues as long as the displacement cost is reduced. The best position is a legal position

which has the lowest cell displacement cost. The best cell position is always replaced

when a new position with a lower cell displacement cost is found. Finally, the cell is

placed in the legal position (Line 4).

Algorithm 22: Legalize Circuit Cells
Data: Circuit floorplan, circuit netlist, and placement solution
Result: Legalized Circuit

1 list = sortCellsByX();
2 for cell ∈ list do
3 pos = computeOptimizedLegalPosition(cell);
4 placeCell(cell, pos);
5 end

7.4 Experimental Results

In this section, experimental results of the proposed NFL algorithm are presented.

The proposed NFL algorithm is evaluated using placement solutions from different global

placement algorithms and distinct benchmarks. The proposed NFL algorithm has been de-

veloped in C++11 in the Rsyn framework (FLACH et al., 2017). Rsyn has been compiled

with the GNU Compiler Collection (GCC). Experimental results have been conducted on

an i7-4790K CPU with 32GB of memory.

The proposed NFL algorithm was evaluated from the 2006 International Sym-

173

posium on Physical Design (ISPD) contest and the 2015 ICCAD contest benchmarks.

The proposed algorithm is compared with Jezz (PUGET et al., 2015), FastPlace Le-

galizer (FPL) (VISWANATHAN; CHU, 2005) and Eh?Legalizer (Eh?L) (DARAV et

al., 2017) techniques. The 2006 ISPD benchmarks have been placed using FastPlace

(VISWANATHAN et al., 2007), Eh?Placer (DARAV et al., 2016) and RePlace (CHENG

et al., 2018) global placement algorithms. The 2015 ICCAD benchmarks have been placer

using the Eh?Placer (DARAV et al., 2016) global placement algorithm. These circuits

have a significant amount of fixed macroblocks and a wide range of area density con-

straints. Macroblocks and area density utilization are challenges to improve the legal

placement solution.

In Section 7.4.1, characteristics from the 2006 ISPD contest and the 2015 ICCAD

contest benchmarks are introduced. In Section 7.4.2, results of the global placement so-

lution with RePlace, FastPlace and Eh?Placer in benchmarks from the 2006 ISPD contest

and the 2015 ICCAD contest are presented. In Section 7.4.3, experimental results of the

proposed NFL and correlated legalization algorithms are shown. Complementary results

of global placement solutions and legalization are given in Appendix A.

7.4.1 Characteristics of the Circuits in the Contest Benchmarks

In this section, circuits characteristics are shown. The 2006 ISPD contest and the

2015 ICCAD contest circuits are presented.

7.4.1.1 Characteristics from the 2006 ISPD Benchmarks

The 2006 ISPD contest is composed of 24 circuits. Four circuits (Bigblue3inf,

Bigblue3, Newblue1, and Newblue2) have movable macroblocks. Circuits with movable

macroblocks are not used to evaluate the proposed legalization algorithm. The remaining

20 circuits have from 200 thousand to 2.1 million cells. These circuits also have from 32

to 23 thousand macroblocks. In the 2006 ISPD contest benchmarks, circuits have area

density constraints from 50% and 100%.

In Table 7.1, circuit characteristics from the 2006 ISPD contest benchmarks are

presented. In columns 1 and 2, names and circuit acronyms are shown, respectively. In

columns 3 to 7, the total number of cells (#Cells), macroblocks (#Macros), movables

cells (#Movables), nets (#Nets) and IOs (#IOs) are given, respectively. In columns 8 to

174

10, the total area of circuit core (DA), area of fixed cells and macroblocks (FA) and area

of movable cells (CA) are presented, respectively. In columns 11 and 12, the percentage

of area density utilization for fixed and movable cells are presented, respectively. Metrics

of fixed and movable cell area density utilization are computed by dividing fixed and

movable areas by the circuit area, respectively. In column 13, the area density constraint

in percentages is given. The area density constraint was established in the 2006 ISPD

contest.

On average, the 2006 ISPD contest benchmarks have 658 thousand of cells and

four thousand macroblocks. Area density utilization of fixed and movable cells are 56%

and 22%, on average, respectively. On average, fixed area density utilization is 2.5 times

higher than the movable area density utilization. In the 2006 ISPD contest benchmarks,

sixteen of twenty (80%) circuits had higher fixed area density utilization than cell area

density utilization. On average, the area density constraints are equal to 79%.

175

Table 7.1: Chracteristics of the 2006 ISPD contest circuit bechmarks

Circuits Acronyms
#Cells
×103 #Macros

#Movable
×103

#Nets
×103

#IOs DA
(mm2)

FA
(mm2)

CA
(mm2)

FA
DA

(%) CA
DA

(%)
Density

(%)
Adaptec1inf AD1i 211 63 211 221 480 114 49 53 43 47 100
Adaptec2inf AD2i 255 159 254 266 407 197 121 48 62 25 100
Adaptec3inf AD3i 452 723 451 467 0 541 333 100 62 18 100
Adaptec4inf AD4i 496 1,329 495 516 0 541 263 108 49 20 100
Bigblue1inf BB1i 278 32 278 284 528 114 20 61 17 53 100
Bigblue2inf BB2i 558 23,084 535 577 0 351 135 117 38 33 100
Bigblue4inf BB4i 1,097 1,293 1,096 1,123 0 770 514 205 67 27 100

Adaptec1 AD1 2,177 8,170 2,169 2,230 0 1,041 391 415 38 40 100
Adaptec2 AD2 211 63 211 221 480 114 49 37 43 33 60
Adaptec3 AD3 255 159 254 266 407 197 121 34 62 17 60
Adaptec4 AD4 452 723 451 467 0 541 333 70 62 13 60
Adaptec5 AD5 496 1,329 495 516 0 541 263 75 49 14 60
Bigblue1 BB1 843 646 842 868 0 541 309 115 57 21 50
Bigblue2 BB2 278 32 278 284 528 114 20 42 17 37 60
Bigblue4 BB4 558 23,084 535 577 0 351 135 82 38 23 60

Newblue3 NB3 1,097 1,293 1,096 1,123 0 770 514 144 67 19 60
Newblue4 NB4 2,177 8,170 2,169 2,230 0 1,041 391 288 38 28 60
Newblue5 NB5 330 0 330 339 337 125 0 88 0 71 80
Newblue6 NB6 442 1,277 440 465 0 642 409 143 64 22 90
Newblue7 NB7 494 11,178 483 552 0 1,951 1,545 106 79 5 80

Avg. - 658 4,140 654 680 158 530 296 117 56 22 79

176

7.4.1.2 Characteristics from the 2015 ICCAD Benchmarks

The 2015 ICCAD contest is composed of eight benchmarks. This set of bench-

marks has circuits with 800 thousand to 1.9 million of movable cells. The number of

macroblocks is from one hundred to 4.9 thousand. Area density constraint is defined

from 80% to 90% of the area utilization.

In Table 7.2, characteristics from the 2015 ICCAD contest benchmarks are pre-

sented. In columns 1 and 2, names and circuit acronyms are shown, respectively. In

columns 3 to 7, number of cells (#Cells), macroblocks (#Macros), movable cells (#Mov-

ables), nets (#Nets) and IOs (#IOs) are given, respectively. In columns 8 to 10, the total

area of circuit core (DA), area of fixed cells and macroblocks (FA) and the area of movable

cells (CA) are presented, respectively. In columns 11 and 12, the area density utilization

of fixed macroblocks and movable cells are presented, respectively. Metrics of these area

density utilizations are computed by dividing fixed and movable areas by the circuit area.

In column 13, area density constraint in percent is given. The area density constraint is

established in the 2015 ICCAD contest.

On average, the 2015 ICCAD contest benchmarks have 1.2 million cells and 2.3

thousand macroblocks, respectively. On average, the area density utilization of fixed and

movable cells are 52% and 24%, respectively. Fixed area density utilization is 2.1 times

higher than movable area density utilization, on average. In the 2015 ICCAD contest

benchmarks, all circuits have fixed area density utilization higher than movable cell area

density utilization. On average, area density constraint is equal to 86%.

177

Table 7.2: Chracteristics of the 2015 ICCAD contest circuit bechmarks

Circuits Acronyms
#Cells
×103 #Macros

#Movable
×103

#Nets
×103

#IOs DA
(mm2)

FA
(mm2)

CA
(mm2)

FA
DA

(%) CA
DA

(%)
Density

(%)
Superblue1 SB1 1,210 3,787 1,206 1,216 6,528 27 14 6 54 24 80
Superblue3 SB3 1,213 2,074 1,211 1,225 6,528 31 17 7 55 21 87
Superblue4 SB4 796 3,471 792 803 6,528 18 9 5 50 30 90
Superblue5 SB5 1,087 1,872 1,085 1,101 6,528 41 24 6 59 14 85
Superblue7 SB7 1,932 4,910 1,927 1,934 6,528 33 14 11 43 33 90

Superblue10 SB10 1,876 1,696 1,874 1,898 6,528 49 26 10 54 21 87
Superblue16 SB16 982 101 981 1,000 6,528 17 8 6 47 33 85
Superblue18 SB18 768 653 767 772 6,528 14 5 4 37 30 85

Avg. - 1,233 2,321 1,231 1,243 6,528 29 15 7 52 24 86

178

7.4.2 Global Placement Results

In this section, the global placement results are presented. The global placement

solution of circuits from the 2006 ISPD contest and the 2015 ICCAD contest are shown.

These circuits have been placed with the RePlace, FastPlace, and Eh?Placer algorithms.

7.4.2.1 RePlace Solution from the 2006 ISPD Benchmarks

All 2006 ISPD contest benchmarks, which only have fixed macroblocks have been

placed with the RePlace global placement algorithm. These circuits are placed subject

to area density constraints, as presented in Table 7.1. The area density constraints of

inflated (inf) circuits have been set to 90% area utilization. RePlace fails to provide global

placement solution for inflated circuits when the area density utilization is set to 100%.

In Table 7.3, ABU, Non Placeable Area (NPA) and area density constraints of the

2006 ISPD circuits are presented. ABU, NPA and area density constraints are presented

in percentages. In column 1, circuit acronyms are given. In columns 2 to 6, ABU of 1%,

2%, 5%, 10%, and 20% of valid bins with the highest area density violation are shown.

The ABU of overfilled (Overfilled (OF)) bins is given in column 7. In column 8, ABU

penalty is presented. ABU metric is computed as introduced in Section 3.6.2. In columns

9 and 10, the average and maximum NPAs are presented, respectively. NPA is the area

of movable cells that have been placed inside invalid bins. A bin is invalid if it is filled

by more than 80% of the fixed area. In column 11, area density constraints used in global

placement are given.

On average, in ABU 1%, RePlace provides the global placement solution with

11% higher area density utilization than the average of the area density constraint. On

average, ABU of all OF bins is 3% higher than the average of the area density constraint.

On average, three percent (3%) of the cell area is inside of invalid bins. Invalid bins are

mainly composed of the fixed area. Therefore, NPA area indirectly indicates movable

cells that have overlap with macroblocks.

In Figure 7.1, ABU distributions of the global placement solutions are presented.

In abscissa, circuit acronyms are given. In ordinate, ABU in percentages is presented. In

this figure, ABU 1%, ABU 2%, ABU 5%, ABU 10%, ABU 20%, ABU of overfilled bins

(OF), ABU penalty (Penalty), average NPA (Avg. NPA), maximum NPA (Max. NPA),

and global placement maximum area density utilization constraint (Density) are shown.

ABU metrics are evaluated only for valid ABU bins.

179

Table 7.3: ABU, NPA and area density constraints of the 2006 ISPD circuit benchmarks
are given. These circuits have been placed with the RePlace global placement algorithm.
ABU, NPA and area density constraints are presented in percentages.

Circuits
ABU (%) Avg.

NPA
Max.
NPA

Density
(%)1% 2% 5% 10% 20% OF Penalty

AD1i 103 101 99 97 95 93 11 5 24 90
AD2i 108 105 102 99 96 95 15 3 25 90
AD3i 102 101 98 96 94 94 10 3 22 90
AD4i 102 100 97 95 93 94 9 3 24 90
BB1i 101 99 97 96 94 93 9 4 18 90
BB2i 99 98 96 94 93 92 7 4 25 90
BB3i 98 97 95 94 93 92 7 3 20 90
AD1 72 69 67 65 64 62 13 3 17 60
AD2 74 71 69 67 65 63 16 2 16 60
AD3 69 68 66 64 63 63 11 2 13 60
AD4 69 67 65 64 62 63 10 2 14 60
AD5 59 58 56 55 54 52 14 2 12 50
BB1 68 67 65 64 63 62 10 3 12 60
BB2 67 65 64 63 62 62 8 3 14 60
BB4 66 65 64 63 62 62 8 2 14 60
NB5 62 60 58 56 55 53 17 2 14 50
NB6 95 93 89 87 84 84 13 3 26 80
NB7 91 89 86 85 83 83 9 3 22 80
Avg 84 82 80 78 77 76 11 3 18 73

Figure 7.1: ABU distributions from the 2006 ISPD benchmarks are presented. Circuits
have been placed with the RePlace global placement algorithm

Source: Author (2019).

180

Circuits may be classified into two distinct groups based on ABU of overfilled

bins. The first group is composed of inflated (inf) Adaptec (1 to 4), inflated Bigblue (1, 2,

and 4), and Newblue (6 and 7) circuits. On average, in the first group, ABU of overfilled

bins is 91%. The second group is composed of Adaptec (1 to 5), Bigblue (1, 2, and 4),

and Newblue 5. On average, in the second group, ABU of overfilled bins is 60%.

In Figure 7.2, distribution of bins is presented. Bins are classified into eight cat-

egories: 1) invalid bins (Invalid), 2) non overfilled bins (Free of OF), 3) overfilled bins

(OF), 4) ABU 20%, 5) ABU 10%, 6) ABU 5%, 7) ABU 2%, and 8) ABU 1%. In the

abscissa, circuit acronyms are shown. In the ordinate, the percentage of the number of

bins for each type are presented.

Figure 7.2: Distribution of bins with area density violation, free of area density violation
and invalid bins. The 2006 ISPD contest benchmarks are placed with the RePlace global
placement algorithm

Source: Author (2019).

Several circuits have a considerable amount of invalid bins (e.g., AD2i, AD3i,

AD2, and AD3). This metric indicates these circuits have macroblocks which cover a

significant part of the circuit core area. In Table 7.1, these circuits have 62% of the circuit

area that is filled by macroblocks. Several circuits have more than 25% of the valid bins

with area density violation (e.g., AD1i, BB1i, AD1, BB1, BB4, and NB5). Other circuits

have less than 20% of the bins with area density violation (e.g., AD3i, AD4i, AD3, and

AD4). On average, circuits have more bins which are free of overfill area than overfilled

bins.

181

7.4.2.2 FastPlace Solution from the 2006 ISPD Benchmarks

In this section, global placement characteristics of the 2006 ISPD contest bench-

marks are presented. These circuits have been placed with the FastPlace global placement

algorithm. Circuits with movable macroblocks have been removed from the set of circuits

used to evaluate the proposed NFL algorithm. All circuits have been placed with the max-

imum area density utilization established in the 2006 ISPD contest.

In Table 7.4, ABU results of the global placement solution are presented. In col-

umn 1, circuit acronyms are presented. In columns 2 to 6, ABU 1%, ABU 2%, ABU

5%, ABU 10%, and ABU 20% are shown, respectively. ABU is computed for bins with

the highest area density utilization. ABU of overfilled bins (OF) and the ABU penalty

are given in columns 7 and 8, respectively. ABU metric is computed as introduced in

Section 3.6.2. In columns 9 and 10, the average and maximum NPAs are presented, re-

spectively. The NPA is the average of movable cell area that is inside invalid ABU bins.

An ABU bin is invalid if its area is covered by more than 80% of the fixed area. In column

11, area density constraint that was established in the 2006 ISPD contest is given.

On average, in bins of ABU 1%, FastPlace provides global placement solutions

which have 82% higher cell concentration than the average area density constraint. On

average, OF bins have 21% higher area density utilization compared to the average of the

constraint of area density utilization. ABU of average and maximum NPAs are 5% and

45% of bin area, on average, respectively. On average, inflated bins have 45% higher

area density utilization than the average maximum area density constraint. On average,

non-inflated bins have 10% higher ABU than the average of the maximum area density

utilization. FastPlace provides the global placement solution with significant cell concen-

tration.

In Figure 7.2, distribution of ABU bins is presented. In abscissa, circuit acronyms

are given. In ordinate, ABU in percentages is presented. In this figure, ABU 1%,

ABU 2%, ABU 5%, ABU 10%, ABU 20%, ABU of overfilled bins (OF), ABU penalty

(Penalty), average NPA (Avg. NPA), maximum NPA (Max. NPA), and global place-

ment maximum area density utilization constraint (Density) are shown. ABU metrics are

evaluated only for valid ABU bins.

Global placement solutions with the FastPlace algorithm have significant high-

cell concentration from the global placement solutions from FastPlace. Area density con-

straint is not effective to establish the upper bound area density utilization. ABU penalty

and maximum NPA have a high value in several circuits. These metrics indicate that sev-

182

Table 7.4: ABU, NPA and area density constraints of the 2006 ISPD circuit benchmarks
are presented. These circuits have been placed with the FastPlace global placement algo-
rithm. ABU, NPA and area density constraints are presented in percentages.

Circuits
ABU (%) Avg.

NPA
Max.
NPA

Density
(%)1% 2% 5% 10% 20% OF Penalty

AD1i 215 194 169 152 135 126 80 8 56 100
AD2i 170 157 140 128 114 120 47 4 38 100
AD3i 185 168 147 131 115 124 56 5 38 100
AD4i 159 146 128 115 99 120 35 4 46 100
BB1i 157 146 132 122 111 116 38 3 21 100
BB2i 171 157 138 124 110 120 46 4 49 100
BB4i 163 151 135 123 111 117 41 4 50 100
AD1 159 144 126 113 99 83 123 3 26 60
AD2 141 129 113 102 90 82 99 5 40 60
AD3 159 143 123 109 93 87 119 5 43 60
AD4 130 118 103 91 77 80 82 4 33 60
AD5 163 147 127 112 97 78 170 10 120 50
BB1 138 123 107 97 86 77 90 4 33 60
BB2 129 119 107 97 85 79 86 4 31 60
BB4 151 135 117 104 91 81 108 5 51 60
NB3 120 108 93 81 68 97 25 3 26 80
NB4 159 142 121 106 92 75 159 4 40 50
NB5 184 164 139 122 105 80 199 8 73 50
NB6 152 139 123 111 98 100 62 6 42 80
NB7 154 140 124 111 99 99 63 3 50 80
Avg. 158 143 126 112 99 97 86 5 45 76

Figure 7.3: ABU, and NPA from the 2006 ISPD benchmarks are presented. These circuits
have been placed with the FastPlace global placement algorithm

Source: Author (2019).

183

eral circuits have a significant cell concentration. Therefore, more cells must be moved

out from high-density regions, which may increase cell displacement.

In Figure 7.4, distribution of ABU bins is presented. Bins are classified into eight

categories: 1) invalid bins (Invalid), 2) non overfilled bins (Free of OF), 3) overfilled bins

(Overfilled), 4) ABU 20%, 5) ABU 10%, 6) ABU 5%, 7) ABU 2%, and 8) ABU 1%. In

the abscissa, circuit acronyms are shown. In the ordinate, the percentage of the number

of bins are presented.

Figure 7.4: Distribution of bins with area density violation, free of area density violation
and invalid ABU bins. The 2006 ISPD contest benchmarks are placed with the FastPlace
global placement algorithm

Source: Author (2019).

Half of the circuits (50%) have less than 20% of the valid bins which have area

density violation. Therefore, area overfill is concentrated in a small set of bins. Only four

of twenty circuits have more than 25% of the total bins which have area density violation.

7.4.2.3 Eh?Placer Solution from the 2006 ISPD Benchmarks

Newblue circuits 3 to 7 from the 2006 ISPD contest benchmarks have been placed

with the Eh?Placer global placement algorithm. Eh?Placer is a polar-based algorithm.

Area density constraints are defined to be equal to 100%.

In Table 7.5, ABU, NPA and area density constraints are presented. ABU, NPA

and area density constraints are presented in percentage. In Column 1, circuit acronyms

are given. In Columns 2 to 6, ABU 1%, ABU 2%, ABU 5%, ABU 10%, and ABU 20%

184

of overfilled-valid bins are shown. ABU of OF bins is given in column 7. In column 8,

ABU penalty is presented. The ABU metric is computed as introduced in Section 3.6.2.

In columns 9 and 10, average and maximum NPAs are presented, respectively. NPA is the

area of movable cells that is inside invalid bins. A bin is invalid if its area is composed

more than 80% of the fixed area. In column 11, area density constraints used in global

placement are given.

Table 7.5: ABU, NPA and area density constraints of the 2006 ISPD circuit benchmarks
are presented. These circuits have been placed with the Eh?Placer global placement algo-
rithm. ABU, NPA and area density constraints are presented in percentages.

Circuits
ABU (%) Avg.

NPA
Max.
NPA

Density
(%)1% 2% 5% 10% 20% OF Penalty

NB3 133 122 110 101 89 113 15 6 47 100
NB4 151 137 121 111 104 112 28 9 50 100
NB5 135 126 117 110 105 108 21 10 60 100
NB6 136 126 115 108 102 109 20 8 56 100
NB7 130 122 113 108 103 107 17 8 41 100
Avg. 137 127 115 108 100 110 20 8 51 100

On average, Eh?Placer provides the global placement solution with 37% higher

area density utilization in ABU 1% of bins compared to the maximum area density con-

straint. On average, ABU of OF bins is 10% higher than the average of area density

constraints. On average, 8% of the cell area is placed in invalid bins.

In Figure 7.5, ABU of overfilled and NPA bins are presented. In abscissa, circuit

acronyms are given. In ordinate, ABU in percentage is presented. In this figure, ABU

1%, ABU 2%, ABU 5%, ABU 10%, ABU 20%, ABU of overfilled bins (Overfilled),

ABU penalty (Penalty), average NPA (Avg. NPA), maximum NPA (Max. NPA), and

global placement maximum area density utilization constraint (Density) are shown. ABU

metrics are evaluated only for valid bins.

In Figure 7.6, the bin’s distribution is presented. In this figure, invalid bins (In-

valid), bins free of area density violation (Free OF), bins with area density violation (Over-

filled), ABU 20%, ABU 10%, ABU 5%, ABU 2%, and ABU 1%) are given. In abscissa,

circuit acronyms are shown. In ordinate, distribution of bins in percentage is presented.

In these circuits, the maximum area density utilization is 100%.

7.4.2.4 Eh?Placer Solution from the 2015 ICCAD Benchmarks

The 2015 ICCAD contest benchmarks have been placed with the Eh?Placer (DARAV

et al., 2016) global placement algorithm. In the global placement algorithm, the area den-

185

Figure 7.5: ABU from the 2006 ISPD benchmarks is presented. These circuits have been
placed with the Eh?Placer global placement algorithm

Source: Author (2019).

sity constraints are the same as the ones that are defined in the contest circuits. Except in

Superblue3, area density constraint is defined as 100%. In Superblue3 circuit, the global

placement algorithm fails to provide a placement solution with the area density utilization

constraint lower than 100%.

In Table 7.6, ABU, NPA and area density constraints of the 2015 ICCAD circuits

are presented. ABU, NPA and area density constraints are presented in percentage. In

column 1, circuit acronyms are given. In columns 2 to 6, ABU of the 1%, 2%, 5%,

10%, and 20% of the bins with the highest area density violation are shown. ABU of

overfilled bins is given in column 7. In column 8, ABU penalty is presented. ABU

metric is computed as introduced in Section 3.6.2. In columns 9 and 10, the average

and maximum NPAs are presented, respectively. NPA is the area of movable cells that

is inside invalid bins. A bin is invalid if its area is composed of more than 80% of the

fixed area. In column 11, the maximum area density utilization used in global placement

is given.

In Figure 7.7, ABU of overfilled bins and NPA bins are presented. In abscissa,

circuit acronyms are given. In ordinate, ABU in percentage is presented. Eh?Placer

provides global placement solutions which are not constant in terms of area density uti-

lization. Moreover, maximum and average NPAs indicate global placement solutions with

186

Figure 7.6: Distribution of bins with area density violation, free of area density violation
and invalid ABU bins. The 2006 ISPD contest benchmarks have been placed with the
Eh?Placer global placement algorithm

Source: Author (2019).

Table 7.6: ABU, NPA and area density constraints of the 2015 ICCAD circuit benchmarks
are presented. These circuits have been placed with the Eh?Placer global placement algo-
rithm. ABU, NPA and area density constraints are presented in percentages.

Circuits
ABU (%) Avg.

NPA
Max.
NPA

Density
(%)1% 2% 5% 10% 20% OF Penalty

SB1 121 103 87 78 71 101 19 4 73 80
SB3 139 128 118 112 106 108 23 5 85 100
SB4 148 125 103 92 83 113 26 5 64 90
SB5 145 116 89 76 66 126 23 4 104 85
SB7 162 127 100 87 79 135 27 5 121 90

SB10 87 81 74 69 64 104 0 4 49 87
SB16 106 97 88 83 79 96 9 4 118 85
SB18 120 101 84 75 68 116 11 4 56 85
Avg. 129 110 93 84 77 112 17 4 84 88

high-cell concentration in invalid bins.

In Figure 7.8, distribution of bins in terms of area utilization from global placement

solution is presented. In this figure, invalid ABU bins (Invalid), bins free of ABU violation

187

Figure 7.7: ABU from the 2015 ICCAD benchmarks is presented. These circuits have
been placed with the Eh?Placer global placement algorithm

Source: Author (2019).

(Free OF), bins with ABU violation (Overfilled), ABU 20%, ABU 10%, ABU 5%, ABU

2%, and ABU 1% are given. In the abscissa, circuit acronyms are shown. In the ordinate,

the percentage of the number of bins are presented. Essentially, circuits have a small

number of bins with violation in the area density utilization.

7.4.3 Experimental Results of Legalization

7.4.3.1 Legalization Results of the RePlace placement solutions from the 2006 ISPD con-

test benchmarks

In this Section, legalization results of the proposed NFL algorithms in the 2006

ISPD contest benchmarks are presented. Only circuits with fixed macroblocks are used

to evaluate the proposed NFL algorithm. These circuits have been placed with the Re-

Place global placement algorithm. Legalization results of the proposed NFL algorithm

are compared with FPL (VISWANATHAN et al., 2007) and Jezz (PUGET et al., 2015)

legalization techniques.

In Table 7.7, legalization results are presented. In columns 1 and 2, circuit acronyms

(BK) and global placement HPWL are presented, respectively. Legalization results are

presented for FPL, Jezz, and the proposed NFL algorithms. In columns 3 to 5, increased

HPWL in percentage from the legalization process are given. Average cell displacements

188

Figure 7.8: Distribution of bins with area density violation, free of area density violation
and invalid ABU bins. The 2015 ICCAD contest benchmarks have been placed with the
Eh?Placer global placement algorithm

Source: Author (2019).

for evaluated algorithms are presented in columns 6 to 8. Maximum cell displacements

are shown in columns 9 to 11. Average and maximum cell displacements are measured

in terms of row heights. The runtime of legalization techniques is given in columns 12 to

14. In columns 15 to 17, the runtime of initialization (Init.), cell spreading (CS) and cell

legalization (CL) stages of the proposed NFL algorithm are presented.

The proposed NFL algorithm achieves improvement of 10% and 3.4 times in

HPWL compared to Jezz and FPL algorithms, on average, respectively. On average cell

displacement, the proposed NFL obtains 10% and 5.4 times improvement compared to

Jezz and FPL algorithms, respectively. In maximum cell displacement, NFL algorithm

legalizes cells with 90% and 3.3 times less cell displacement than Jezz and FPL algo-

rithms, respectively. The proposed NFL algorithm consumes 30% less runtime than FPL

to legalize circuits. On the other hand, NFL requires 60% more runtime to legalize cir-

cuits compared to Jezz. On average, FPL, Jezz and the proposed NFL algorithms require

32 ms, 10 ms, and 24 ms to legalize 100 thousand cells, respectively.

189

Table 7.7: Experimental Results of the proposed NFL algorithm are compared with FastPlace Legalizer (FPL) and Jezz. The 2006 ISPD circuit
benchmarks have been placed with RePlace algorithm.

BK HPWL
(m)

HPWL
(%)

Avg. Disp.
#Rows

Max. Disp.
#Rows

Runtime (s)

FPL Jezz
NFL

FPL Jezz NFL FPL Jezz NFL FPL Jezz NFL Total Init. CS CL
AD1inf 84 9.6 1.9 2.0 3.8 0.9 0.9 331 73 52 4.4 2.5 4.9 1.4 1.1 2.4
AD2inf 93 12.7 3.7 3.6 4.9 1.7 1.6 529 265 198 5.4 3.4 7.6 2.3 2.4 2.9
AD3inf 215 6.3 2.4 2.3 3.6 1.4 1.3 657 301 291 10.2 5.6 12.6 4.6 2.9 5.1
AD4inf 186 10.4 2.5 2.5 3.8 1.0 1.0 382 120 87 12.7 6.1 12.7 4.5 2.6 5.5
BB1inf 104 19.4 2.1 2.3 6.0 0.9 0.9 294 187 125 4.5 3.5 5.9 1.4 1.3 3.2
BB2inf 145 9.8 4.2 3.6 3.1 1.1 1.0 231 290 56 20.0 8.4 19.6 6.6 6.0 7.0
BB4inf 802 8.8 2.1 2.2 39.7 0.8 0.8 2305 428 127 67.9 26.9 51.8 16.6 10.5 24.7

AD1 86 2.6 0.8 0.9 1.4 0.5 0.6 88 52 52 0.4 1.0 2.5 1.4 0.1 1.0
AD2 94 3.9 2.3 1.9 2.3 1.3 1.1 252 250 197 4.2 1.3 3.7 2.3 0.2 1.2
AD3 220 2.1 1.2 1.2 1.7 0.9 0.8 298 299 299 8.4 2.3 6.8 4.4 0.3 2.1
AD4 188 2.4 1.2 1.2 1.4 0.7 0.6 257 94 87 9.0 2.5 7.1 4.5 0.2 2.4
AD5 389 1.7 1.3 1.0 1.4 0.8 0.7 297 298 291 17.6 4.0 11.0 7.0 0.2 3.7
BB1 106 1.9 0.8 0.9 1.3 0.5 0.5 93 82 36 4.3 1.2 2.6 1.4 0.1 1.2
BB2 147 3.0 2.2 1.5 1.4 0.7 0.6 153 253 51 13.7 4.2 10.1 6.6 0.3 3.2
BB4 809 1.7 1.2 1.0 1.2 0.6 0.5 401 432 127 57.6 10.9 27.8 17.1 0.6 10.1
NB5 483 2.2 1.6 1.3 1.4 0.8 0.7 552 445 128 30.4 6.0 16.8 10.6 0.5 5.7
NB6 456 7.7 1.8 1.8 2.9 0.8 0.8 561 104 55 31.4 10.4 25.9 10.7 5.4 9.8
NB7 940 5.2 2.4 1.9 2.4 1.0 0.9 636 938 287 80.8 23.0 56.6 25.7 10.0 20.8

Norm. - 3.4 1.1 1.0 5.4 1.1 1.0 3.3 1.9 1.0 1.3 0.4 1.0 0.5 0.2 0.4

190

In Figure 7.9, cell displacement of the proposed NFL algorithm from the 2006

ISPD contest benchmarks is presented. In the abscissa, circuit acronyms are given. In

the ordinate, the percentage of cells for each cell displacement range is shown. Cells are

classified into five cell displacement groups: 1) zero cell displacement (No Disp.), 2) cell

displacement higher than zero and lower than one row height (0-1), 3) cell displacement

between one and two row heights (1-2), 4) cell displacement higher than two and lower

than three-row heights (2-3) and 5) cell displacement higher than 3 row heights (3+).

Circuits with high cell density utilization (AD1i, AD2i, AD3i, AD4i, BB1i, BB2i, and

BB3i) have more legalized cells with displacement higher than 2-row heights. On the

other hand, circuits with lower maximum cell density utilization have more cells legalized

up to cell displacement of one-row height. Area density constraint has an impact on cell

displacement in the proposed NFL algorithm.

Figure 7.9: Cell displacement from the 2006 ISPD contest benchmarks is presented.
These circuits have been placed with the RePlace global placement algorithm

Source: Author (2019).

7.4.3.2 Legalization Results of the FastPlace placement solutions from the 2006 ISPD

contest benchmarks

In this Section, legalization results of the proposed NFL algorithms from the 2006

ISPD contest circuits are presented. Global placement solutions are provided by FastPlace

(VISWANATHAN et al., 2007) algorithm. Legalization results of the proposed NFL

191

algorithm are compared with FPL (VISWANATHAN et al., 2007) and Jezz (PUGET et

al., 2015) legalization techniques.

In Table 7.8, experimental results of the legalization stage are presented. In columns

1 and 2, circuit acronyms (BK) and HPWL of the global placement solution are presented,

respectively. In columns 3 to 5, increased HPWL in percentage of FPL, Jezz and the pro-

posed NFL algorithms are shown, respectively. Average cell displacements of legalization

algorithms are given in columns 6 to 8. Maximum cell displacements after legalization

techniques are shown in columns 9 to 11. Average and maximum cell displacements

are measured in terms of row heights. In columns 12 to 14, runtime to legalize circuits

with FPL, Jezz and NFL techniques are presented, respectively. In column 15, runtime to

spread cells (CS) using the network flow-based technique in the proposed NFL algorithm

is given.

The proposed algorithm achieves similar improvement on HPWL and average cell

displacement compared to Jezz, on average. In HPWL and average cell displacement, the

proposed NFL algorithm achieves 30% and 2.9 times improvement compared to FPL, on

average, respectively. In maximum cell displacement, the proposed NFL algorithm ob-

tains 54% and 19% improvement compared to FPL and Jezz, on average. On runtime, the

proposed NFL is 10 and 25 seconds slower than FPL and jezz, on average. On average,

FPL, Jezz and the proposed NFL require 42 ms, 20 ms and 57 ms to legalize 100 thousand

cells, respectively. The huge runtime in NFL is mainly caused by the legalization process

of Adaptec 5 and Newblue 5. These circuits have bins with a huge NPA and ABU penalty.

Therefore, cells that have overlap with macroblocks are moved to the closest valid bins of

the NFL graph. Circuits with high maximum NPA and ABU penalty require significantly

more runtime for all legalization algorithms. The proposed NFL algorithm is more sen-

sitive to circuits that have high-cell concentration. The cell spreading stage will require

more runtime and effort to move cells out from regions with area density violation. Com-

puting optimized cost paths to move cells will be much more challenging in regions with

high-cell concentration.

192Table 7.8: Experimental Results of the proposed NFL algorithm are compared with FastPlace Legalizer (FPL) and Jezz. The 2006 ISPD benchmarks
are placed with the FastPlace algorithm.

BK HPWL
(m)

HPWL
(%)

Avg. Disp.
#Rows

Max. Disp.
#Rows

Runtime (s)

FPL Jezz
NFL

FPL Jezz NFL FPL Jezz NFL FPL Jezz NFL Total CS
AD1i 92 12.2 14.6 11.6 6.9 3.6 3.5 285 431 150 6.9 3.0 8.7 6.7
AD2i 108 15.7 9.0 8.2 8.2 3.5 3.3 452 367 394 6.0 2.2 5.7 3.6
AD3i 241 16.2 28.1 41.1 11.0 10.1 13.6 905 1083 992 21.5 20.3 46.6 42.2
AD4i 225 17.4 4.9 4.5 7.1 1.7 1.7 408 210 239 11.5 3.1 6.8 3.9
BB1i 118 41.3 5.3 4.5 13.0 1.6 1.6 370 213 159 4.4 2.0 3.7 1.9
BB2i 179 8.2 6.9 6.0 4.4 1.8 1.7 490 261 81 19.0 3.9 7.5 4.2
BB4i 940 14.0 4.3 3.9 112.0 1.4 1.5 1628 231 139 68.3 15.4 32.9 18.3
AD1 93 10.8 3.1 2.9 4.3 1.1 1.1 153 70 53 3.9 0.5 1.1 0.5
AD2 101 13.8 5.4 6.3 8.3 5.1 3.8 295 317 274 4.7 0.8 3.3 2.3
AD3 224 16.9 19.0 19.8 12.2 9.4 9.0 915 822 748 17.6 12.5 24.6 21.4
AD4 214 10.2 4.4 5.0 4.9 1.8 2.1 446 300 261 12.4 1.9 4.3 2.6
AD5 377 42.1 83.9 68.8 29.1 29.2 26.5 895 1086 953 40.9 112.0 295.5 287.2
BB1 112 13.9 2.4 2.5 4.7 0.9 1.0 237 133 80 4.6 0.6 1.2 0.5
BB2 170 7.6 4.1 3.3 3.3 1.2 1.1 147 232 84 14.3 2.6 3.7 1.5
BB4 898 13.2 5.5 5.4 5.3 1.7 2.0 638 374 439 73.4 11.5 38.2 28.8
NB3 302 4.8 1.5 1.5 3.5 0.8 0.9 198 51 30 8.0 1.7 2.4 0.8
NB4 288 8.7 5.0 6.3 4.6 1.8 2.2 431 258 203 17.8 3.3 8.6 6.3
NB5 476 26.5 34.0 39.5 11.0 8.9 10.9 837 751 839 74.2 36.1 185.0 176.4
NB6 530 19.0 8.5 7.9 7.1 2.2 2.4 793 515 543 41.9 10.4 38.1 28.4
NB7 1113 9.2 4.4 4.9 4.4 1.7 1.8 633 931 571 97.4 15.6 38.0 24.6

Norm. - 1.3 1.0 1.0 2.9 1.0 1.0 1.5 1.2 1.0 0.7 0.3 1.0 0.9

193

In Figure 7.10, cell displacement of the proposed NFL algorithm from the 2006

ISPD contest benchmarks is presented. In the abscissa, circuit acronyms are given. In the

ordinate, the percentage of cells for each cell displacement range are shown. Cells are

classified into five cell displacement groups: 1) zero cell displacement (No Disp.), 2) cell

displacement higher than zero and lower than one row height (0-1), 3) cell displacement

between one and two row heights (1-2), 4) cell displacement higher than two and lower

than three-row heights (2-3) and 5) cell displacement higher than 3 row heights (3+).

Circuits with higher maximum cell density utilization (AD1i, AD2i, AD3i, AD4i,

BB1i, BB2i, and BB3i) have more cells with cell displacement higher than 2-row heights.

On the other hand, circuits with lower maximum cell density utilization have more legal-

ized cells up to one-row height cell displacement. Maximum area density utilization has

an impact on cell displacement.

The placement solution has a considerable cell concentration. The area density

utilization is concentrated in a few bins. On the other hand, several bins have low area

density utilization, which leads to several cells being legalized in the same positions from

the global placement solution.

Figure 7.10: Cell displacement from the 2006 ISPD contest benchmarks is presented.
These circuits have been placed with the FastPlace global placement algorithm

Source: Author (2019).

194

7.4.3.3 Legalization Results of the Eh?Placer placement solutions from the 2006 ISPD

contest benchmarks

In this Section, legalization results of the proposed NFL algorithm in the 2006

ISPD contest circuits are presented. Only Newblue circuits 3 to 7 are used to evaluate

the proposed NFL legalization algorithms. These circuits have the same global placement

solutions used in (DARAV et al., 2017) to evaluate the Eh?Legalizer (Eh?L) algorithm.

Legalization results of the proposed NFL algorithm are compared with Eh?L (DARAV et

al., 2017) and Jezz (PUGET et al., 2015) legalization techniques.

In Table 7.9, experimental results of the legalization stage are presented. Eh?L

results are obtained directly from the author’s paper (DARAV et al., 2017). In columns 1

and 2, circuits (BK) and global placement HPWL are presented, respectively. In columns

3 to 5, increased HPWL in percentage after the legalization stage are given. Average cell

displacements are shown in columns 6 to 8. Maximum cell displacements are presented in

columns 9 to 11. Average and maximum cell displacements are measured in terms of row

heights. In columns 12 and 13, the runtime for Jezz and NFL algorithms are presented.

The runtime to initialize (init.), cell spreading (CS) and cell legalization (CL) stages of

the proposed NFL algorithm are presented in columns 14 to 16, respectively. The runtime

of Eh?L is not comparable with Jezz and NFL runtimes because machines are not equals.

The proposed NFL algorithm obtains similar HPWL compared to Eh?L and Jezz

techniques. In average cell displacement, the proposed NFL algorithm achieves 30%

improvement and similar average cell displacement compared to the Eh?L and Jezz al-

gorithms. The proposed NFL algorithm increases 10% the maximum cell displacement

compared to the Eh?L technique. However, the proposed technique obtains 4.5× im-

provement on maximum cell displacement compared to the Jezz algorithm. On average,

Jezz and the proposed NFL algorithms require 8.3 ms and 13 ms to legalize 100 thousand

cells, respectively.

Table 7.9: The proposed NFL algorithm is evaluated from the 2006 ISPD benchmarks.
The 2006 ISPD benchmarks have been placed with the Eh?Placer algorithm. Experimen-
tal results of the proposed NFL algorithm are compared with Jezz and Eh?L algorithms.

BK HPWL
(m)

HPWL (%)
Avg. Disp.

#Rows
Max. Disp.

#Rows
Runtime (s)

Jezz
NFL

Jezz Eh?L NFL Jezz Eh?L NFL Jezz Eh?L NFL Total Init. CS CL
NB3 268 3.1 2.7 2.2 1.8 2.1 1.5 1153 197 197 2.5 3.3 0.6 1.1 1.7
NB4 245 2.8 2.9 2.7 1.3 1.8 1.3 219 70 83 4.1 6.5 0.6 2.7 3.2
NB5 413 3.1 3.2 3.7 1.2 1.7 1.4 426 55 92 10.4 18.1 1.2 8.9 8.1
NB6 479 2.6 2.8 2.6 1.2 1.7 1.2 161 46 46 10.6 15.2 1.1 5.9 8.2
NB7 1000 2.7 2.1 2.8 1.2 1.6 1.3 900 212 212 23.3 36.5 2.6 14.8 19.1

Norm. - 1.0 1.0 1.0 1.0 1.3 1.0 4.5 0.9 1.0 0.6 1.0 0.1 0.4 0.5

195

In Figure 7.11, cell displacement of the proposed NFL algorithm from the 2006

ISPD contest benchmarks is presented. In the abscissa, circuit acronyms are given. In

the ordinate, the percentage of cells for each cell displacement range is shown. Cells are

classified into five cell displacement groups: 1) zero cell displacement (No Disp.), 2) cell

displacement higher than zero and lower than one row height (0-1), 3) cell displacement

between one and two row heights (1-2), 4) cell displacement higher than two and lower

than three-row heights (2-3) and 5) cell displacement higher than 3 row heights (3+).

Figure 7.11: Cell displacement of Newblue 3 to 7 circuits from the 2006 ISPD contest
benchmarks. These circuits have been placed with the Eh?Placer global placement algo-
rithm

Source: Author (2019).

7.4.3.4 Legalization Results of the Eh?Placer placement solutions from the 2015 ICCAD

contest benchmarks

In this Section, legalization results of the proposed NFL algorithms in the 2015

ICCAD contest circuits are presented. Legalization results of the proposed NFL algorithm

are compared with Eh?L (DARAV et al., 2017) and Jezz (PUGET et al., 2015) legalization

techniques.

In Table 7.10, legalization results from the 2015 ICCAD contest benchmarks are

presented. Legalization results of the proposed NFL algorithm are compared with the Jezz

196

algorithm. In columns 1 and 2, circuits (BK), and global placement HPWL are given, re-

spectively. In columns 3 and 4, increased HPWL in percentage after the legalization stage

are presented. Average cell displacements are shown in columns 5 and 6. Maximum cell

displacements are given in columns 7 and 8. Average and maximum cell displacements

are presented in terms of row heights. In columns 9 and 10, the runtime is presented for

Jezz and NFL algorithms. The runtime of the cell spreading stage of the proposed NFL

algorithm is shown in column 11.

On average, the proposed NFL algorithm achieves the same HPWL and average

cell displacement compared to the Jezz algorithm. In maximum cell displacement, the

proposed NFL obtains two times the improvement compared to Jezz. On the other hand,

NFL requires 63% more runtime to legalize circuits. On average, Jezz and the proposed

NFL algorithm require 5.3 ms and 8.7 ms to legalize 100 thousand cells, respectively.

Table 7.10: Experimental Results of the proposed NFL algorithm are compared with the
Jezz legalizer. The 2015 ICCAD benchmarks are placed with the Eh?Placer algorithm.

BK HPWL
(m)

HPWL
(%)

Avg. Disp.
#Rows

Max. Disp.
#Rows

Runtime (s)

Jezz
NFL

Jezz NFL Jezz NFL Jezz NFL Total CS
SB1 92 0.8 0.8 0.8 0.8 324 248 2.6 4.6 0.6
SB3 91 2.3 3.1 1.7 2.0 780 288 32.8 50.1 21.6
SB4 68 1.0 0.8 1.1 1.0 435 126 2.1 4.2 1.3
SB5 103 0.8 0.6 1.0 0.9 619 297 2.2 4.7 1.2
SB7 137 1.0 1.0 0.9 0.9 329 308 5.2 9.5 2.2

SB10 177 0.6 0.4 0.8 0.7 502 237 4.1 7.1 0.9
SB16 87 0.9 0.7 1.0 0.9 295 111 2.1 3.7 0.4
SB18 57 0.8 0.7 0.8 0.8 253 128 1.4 2.6 0.4

Norm. - 1.0 1.0 1.0 1.0 2.0 1.0 0.6 1.0 0.3

In Figure 7.12, cell displacement is presented. In the abscissa, circuit acronyms

are given. In the ordinate, cell displacements in percentages are shown. Cells are clas-

sified into five cell displacement groups: 1) zero cell displacement (No Disp.), 2) cell

displacement higher than zero and lower than one row height (0-1), 3) cell displacement

between one and two row heights (1-2), 4) cell displacement higher than two and lower

than three-row heights (2-3) and 5) cell displacement higher than 3 row heights (3+).

In all circuits, except Superblue3, nearly 75% of cells are legalized within 1-row height

displacement.

197

Figure 7.12: Cell displacement of the proposed NFL from the 2015 ICCAD contest
benchmarks is presented. Circuits have been placed with the Eh?Placer global placement
algorithm

Source: Author (2019).

7.5 Summary

In this chapter, the proposed NFL algorithm is presented. The proposed cell

spreading technique is applied in legalization to minimize area density violation. The

objective is to legalize global placement solutions with minimized cell displacement cost.

This algorithm is composed of two stages: 1) cell spreading and 2) cell legalization. In

the cell spreading stage, cells are moved out from high-density regions with optimized

cost paths. Optimized cost paths are computed relying on network flow and branch and

cut techniques. In the cell legalization stage, cells are placed inside of boundaries of row

sites. Optimized-legal positions are computed relying on a cost model which the direc-

tion and history of cell movements are easily obtained. Optimized-legal positions are also

searched in neighboring rows.

The cell spreading algorithm contributes significantly to minimizing the cell dis-

placement cost. This algorithm opens area spaces in high-density regions with minimized

adverse side effects on moved cells. However, the effectiveness of this algorithm is lim-

ited by the size of bins in the grid graph. The grid graph is built with non-overlapping

198

bins (overlapping and non-overlapping grid graphs are introduced in Section 3.7). Re-

gions with a large cell concentration can be very challenging to optimize area density

utilization. Therefore, a cell spreading algorithm with larger bins can be more useful to

minimize cell concentration in very high-density utilization regions.

7.5.1 Summary of Global Placement Solutions

RePlace, Eh?Place and FastPlace algorithms provide global placement solutions.

RePlace provides global placement solutions with the lowest area density violation. On

average, RePlace solutions have 3% of the area density violation. On the other hand,

FastPlace provides global placement solution with the highest area density violation. On

average, FastPlace solutions have 21% of the area density violation. Eh?Placer provides

global placement solutions for Newblue 3 to 7 circuits and the 2015 ICCAD circuits with

10% and 24% of the area density violation.

7.5.2 Summary of Legalization Solutions

The proposed NFL algorithm has been evaluated with global placement solutions.

Three different global placement algorithms provide global placement solutions. The

proposed NFL algorithm improves HPWL in global placement solutions that have cells

evenly distributed. The proposed legalization algorithm improves also the average and

maximum cell displacements compared to the state of the arts legalization algorithms.

On the other hand, NFL achieves improvement in maximum cell displacement in global

placement solutions which have regions with high-density utilization violations. Avail-

able space is an essential resource to the proposed NFL legalization algorithm to provide

optimized-legal placement solutions. In circuits that have high-density regions, available

spaces are scarce resources. The lack of white space in high-density regions and cell

concentration have a significant impact on the quality of the legalization solution.

199

8 THE PROPOSED NETWORK FLOW-BASED CELL SPREADING APPLIED

IN DETAILED PLACEMENT

In this chapter, the experimental results of the proposed spreading algorithm ap-

plied in detailed placement are presented. The proposed cell spreading algorithm is dis-

cussed in Chapter 6.

8.1 Introduction

In Very Large-Scale Integration (VLSI) physical design, placement is a challeng-

ing and critical step in the physical design flow. Placement is a crucial circuit optimization

stage to achieve the required quality and performance of the circuit. Placement solution

may have a considerable impact on the quality of CTS and routing solutions. Regions

with high-cell concentration may cause adverse side effects in CTS and routing solutions.

The proposed NFCS has been designed using a hybrid of different algorithms to

obtain the best results that are not achievable using a single method. Branch and cut and

network flow formal methods have been combined. High-quality placement solutions in

terms of area density utilization can be achieved in a reasonable runtime with these com-

bined formal methods. The proposed NFCS algorithm has several advantages compared

to existing cell displacement algorithms. Cells are moved out from high-density regions

by computing optimized cell displacement cost paths. These cells are only moved locally

between neighboring bins. Cells are flagged to be moved out of the parent’s bin to the

neighboring bin. These moved cells are subject to maximum cell displacement. Several

cells can be moved at each algorithm iteration. The outcome of the proposed algorithm is

a placement solution with reduced high-density regions. Moreover, the NFCS algorithm

opens area spaces in high-density regions. These spaces may be used by optimization

detailed placement algorithms to improve power consumption, timing, and routability.

The main contributions in the proposed NFCS algorithm are summarized as fol-

lows:

• A cell spreading algorithm based on network flow and branch and cut formal meth-

ods.

• A generalized flow algorithm to compute optimized cell spreading paths subject to

cell displacement constraint.

200

• Optimizing area density utilization by moving out cells from high-density regions

with minimized cost paths.

• Computing optimized paths using a cell displacement cost model which indicates

the history and direction of cell movements.

• Exploring direction and the history of cell movements to further minimize cell dis-

placement.

• Optimizing area density utilization with minimized adverse side effects on moved

cells.

The work presented in this chapter has been published in ACM Transactions on

Design Automation of Electronic Systems, Vol. 24, No. 3, Article 35. May 2019 with the

title An Optimized Cost Flow Algorithm to Spread Cells in Detailed Placement.

This chapter is organized as follows: In Section 8.2, the proposed NFCS algorithm

is presented. In Section 8.3, experimental results in academic and commercial environ-

ments are presented. In Section 8.4, the chapter summary is given.

8.2 The Proposed Network Flow-based Cell Spreading Algorithm

In this section, the proposed NFCS algorithm is presented. Essentially, the NFCS

algorithm is the proposed network flow-based cell spreading algorithm. The proposed

network flow-based cell spreading algorithm is presented in Chapter 6.

In the proposed NFCS algorithm, the grid graph is built using bin overlap mode.

Grid graph modes are introduced in Section 3.7. Width and height of bins in the grid

graph are computed as introduced in Section 3.7. In the first experiment, ABU and cell

spreading grid graphs are not aligned. Dimensions of bins in both grid graphs are not

equal. In the second experiment, the width and height of bins in the cell spreading grid

graph are equal to nine times the row height (introduced in Section 3.6.2). Therefore, both

NFCS and ABU grid graphs are aligned.

In Algorithm 23, the proposed NFCS algorithm is presented. This algorithm re-

ceives circuit netlist, a placement solution with area density violation, circuit floorplan,

and area density constraint. The algorithm’s output is a placement solution with opti-

mized area density utilization. Output placement solution is not legalized. In Line 1, cell

spreading procedure which have been introduced in Chapter 6 is executed. The discussion

of the proposed cell spreading algorithm has been presented in Chapter 6.

201

Algorithm 23: The Proposed Network Flow-based Cell Spreading Algorithm
Data: Circuit netlist, placement solution, circuit floorplan, and area density

constaint
Result: Placement solution with optimized area density utilization

1 cellSpreading() ; /* Introduced in Chapter 6 */

8.3 Experimental Results

The proposed NFCS algorithm has been developed in C++. This algorithm has

been evaluated in commercial and academic environments. The proposed NFCS algo-

rithm has been analyzed with the 2006 ISPD contest and the 2014 and 2015 ICCAD

contest benchmarks in the academic environment.

8.3.1 Evaluation of the proposed NFCS algorithm in Commercial Environment

The proposed NFCS algorithm has been implemented into a commercial optimiza-

tion flow. Width and height of bins have been computed as introduced in Section 3.7. Bins

of grid graph have overlap with fixed cells and macroblocks. The area density constraint

is established to be equal to ABU 2%.

In Figure 8.1, optimization flow with the proposed NFCS algorithm in a commer-

cial flow is presented. The proposed algorithm is inserted into two different points of the

detailed placement flow. In this flow, cell movements are subject to the maximum cell

displacement constraint and negative slack restrictions. The objective is to move cells out

from bins which have area density utilization higher than ABU 2%. Place Opto 1, 2, and

3 are sets of detailed placement algorithms.

Figure 8.1: The optimization flow of the proposed NFCS algorithm in commercial flow

Source: Author (2019).

Experimental results in commercial flow are presented in Table 8.1. In this flow,

202

ABU, cell displacement, timing, power consumption, wire length (WL) and runtime met-

rics have been analyzed. In columns 1 to 4, circuit names (BK), the number of cells

(#Cells), the number of fixed cells (#Fixed), and ABU are shown, respectively. Relative

cell displacement (Disp.), WNS and TNS, leakage (LKG) and dynamic (DNC) powers,

wire length (WL) and runtime are presented in columns 5 to 12, respectively.

Table 8.1: Experimental results in the commercial environment. The proposed NFCS
algorithm is inserted in two stages of the commercial detailed placement flow. The two
flows (with and without) the proposed NFCS algorithm are compared.

BK
#Cells
x103 #Fixed ABU

Disp. (µm) Slack (%) Power (%) WL
(%)

RT
(%)Avg Max WNS TNS LKG DNC

c0 124 3 0.40 0.01 0.09 0.28 4.70 9.01 -0.96 -0.43 0.00
c1 58 0 2.73 0.01 3.13 1.14 19.46 -1.08 -2.90 0.16 0.00
c2 389 40 1.27 0.00 17.71 0.60 2.63 -0.77 0.36 -0.12 -7.72
c3 75 28 1.51 0.00 0.70 6.50 -2.14 0.09 0.45 0.16 0.00
c4 1,226 0 0.66 0.00 -0.27 1.16 -4.70 0.45 -1.00 0.06 1.20
c5 859 109 1.06 -0.01 1.27 -2.62 -6.58 -2.18 -0.06 -0.20 -0.76
c6 473 17 0.45 0.00 -0.14 0.16 0.37 0.64 -0.27 -0.20 1.18
c7 317 0 0.74 0.00 -2.95 -0.25 -5.16 2.71 1.27 -0.20 -5.08
c8 201 0 0.60 0.00 -1.49 0.19 7.42 0.15 0.18 -0.12 -1.67
c9 105 0 0.98 0.00 0.37 -0.73 -9.94 2.11 5.38 0.28 -1.94

c10 855 22 0.74 0.03 -0.14 0.97 25.57 0.33 0.48 -0.17 5.01
c11 1,846 1,091 0.74 -0.02 -0.39 -0.22 11.34 0.10 -0.49 0.08 3.76
c12 372 0 0.07 0.00 0.92 0.17 -1.55 -1.85 -0.31 -0.22 -3.79
c13 155 242 0.14 0.00 -0.43 -18.89 1.91 0.88 -0.41 -0.20 0.00
c14 748 0 1.00 0.00 -0.55 0.67 11.33 3.96 -0.95 -1.53 -0.71
c15 1,408 192 0.47 0.00 4.04 1.96 5.50 0.33 2.55 -0.21 -13.02
c16 99 24 2.62 0.00 0.61 1.68 29.66 1.53 -2.20 0.01 0.00
c17 36 0 0.54 0.00 0.91 -1.20 -5.99 -0.45 -0.04 0.33 0.00
c18 836 127 0.79 0.00 2.38 -0.66 -15.28 0.09 0.46 -0.11 -0.02
c19 387 72 0.90 -0.01 -0.38 -0.78 -3.09 -1.24 0.13 -0.36 -4.34
c20 278 0 0.45 0.00 0.62 -0.97 10.69 1.07 -0.14 0.05 -10.63
c21 849 0 0.81 0.01 4.76 0.96 5.72 -0.35 -0.30 -0.12 -6.16
c22 800 120 2.75 -0.01 1.37 0.44 12.08 -0.19 1.49 0.31 -1.14
c23 583 76 1.53 0.00 -0.68 0.45 20.06 0.11 0.08 0.10 0.14
c24 629 508 1.08 0.00 -0.10 -0.48 1.09 -0.07 3.28 -0.16 4.68
c25 753 113 2.64 0.00 -0.02 -0.39 -8.70 0.35 0.13 0.00 3.25
c26 644 48 1.26 0.00 -2.09 -0.30 6.23 -0.22 -0.14 0.05 -3.17
c27 573 0 0.43 0.00 -2.64 -1.29 -6.32 15.18 0.08 0.20 1.40
c28 921 15 1.05 0.00 -1.67 0.51 8.49 0.41 -0.40 -0.38 -3.12
c29 38 434 1.98 -0.03 0.27 0.91 -0.83 -0.10 0.06 0.10 0.00
c30 117 0 0.43 0.01 0.00 0.02 2.48 -2.24 -1.18 0.30 0.00
c31 42 1 1.05 0.00 0.08 0.26 -1.27 2.67 1.60 1.23 0.00
avg 525 103 1.06 0.00 0.79 -0.30 3.60 0.98 0.19 -0.04 -1.33

On average, an improvement of 1.06, in ABU, leads to the detailed placement al-

gorithm’s improvement by 3.6% of TNS and 0.98% on leakage power. TNS and WNS are

improved on 19 (60%) of 32 circuits. Detailed placement algorithms may find improved

positions to move cells inside of the high-density regions. The requirement for bigger

203

and more cells and buffers to achieve circuit performance is alleviated. The impact on

the runtime of the entire detailed placement flow is not significant. In several circuits, the

runtime of the flow has been reduced.

8.3.2 Evaluation of the proposed NFCS algorithm in academic circuits

In academic environment, the proposed NFCS algorithm has been developed in

C++-11 in the Rsyn framework (FLACH et al., 2017). Circuits from the 2006 ISPD

contest, 2014 ICCAD contest and 2015 ICCAD contest are used to evaluate the pro-

posed NFCS algorithm. The 2006 ISPD contest and the 2015 ICCAD contest have been

placed with FastPlace (VISWANATHAN et al., 2007) and Eh?Placer (DARAV et al.,

2016) (Polar-based(LIN et al., 2013)) global placement algorithms, respectively. In the

2006 ISPD contest, only circuits that have fixed macroblocks have been removed. Global

placement solution of circuits from the 2006 ISPD contest are shown in Chapter 7 in Sec-

tion 7.4.2.2. In these academic circuits, area density constraint is defined in the contest

benchmarks. These circuits have been placed considering the area density constraint.

The proposed NFCS algorithm is evaluated in an optimization flow with the Jezz

(PUGET et al., 2015) legalization algorithm. In Figure 8.2, the evaluation flow of the

proposed cell spreading in the academic environment is presented. In this flow, cells are

moved out from high-density regions using the proposed NFCS algorithm. Then, circuits

are legalized with the Jezz algorithm. This flow is named Cell Spreading Jezz (CSJ). Le-

galization results of this flow are compared with legalization results only from the Jezz al-

gorithm. Jezz is very sensitive to white space in high-density regions. Therefore, Jezz can

further explorer spaces that have been opened by the proposed NFCS algorithm. The Jezz

algorithm highlights that opening white spaces in high-density regions improve place-

ment solution. In the CSJ flow, Jezz may be replaced by detailed placement algorithms to

optimize wire length, timing violations, power consumption, and routability.

The proposed NFCS algorithm is also evaluated considering aligned and non-

aligned cell spreading and ABU grid graphs. In the non-aligned grid graph, the width

and height of bins are computed as introduced in Chapter 6. In the ABU grid, the width

and height of bins are equal to nine (9) times row height. In Figure 8.3, non-aligned cell

spreading and ABU grid graphs are shown. In aligned grid graphs, the width and height

of bins in cell spreading and ABU grid graphs are equal to nine (9) times row height.

In aligned and non-aligned grid graphs, experimental results of the proposed NFCS

204

Figure 8.2: Experimental configuration of the proposed cell spreading algorithm in aca-
demic environment

Source: Author (2019).

Figure 8.3: Non-aligned cell spreading and ABU grid graphs

Source: Author (2019).

from the 2006 ISPD benchmarks are evaluated. Experimental results with non-aligned

and aligned cell spreading and ABU grid graphs are presented in Sections 8.3.2.1 and

8.3.2.2, respectively. The area density restriction is defined to be equal to 100% due to

the high-cell concentration in global placement solution. In non-aligned grid graphs, ABU

205

improvement, Average Cell Displacement (ACD), and legalization results are presented.

In aligned grid graphs, only ACD and legalization results are shown.

8.3.2.1 Experimental Results in benchmarks from the 2006 ISPD contest in non-aligned

grid graphs

In Table 8.2, ABU improvement is presented. Placement improvements of ABU

are obtained by executing the proposed NFCS algorithm in non-aligned ABU and cell

spreading grid graphs. ABU and NPA results are evaluated after executing NFCS in

benchmarks from the 2006 ISPD contest. In column 1, circuit acronyms are given. In

columns 2 to 6, ABU of the valid bins with the highest area density violation are shown.

ABU of the overfilled (OF) bins is presented in column 7. In column 8, ABU penalty

is highlighted. ABU is computed as introduced in Section 3.6.2. In columns 9 and 10,

average and maximum NPA are given. NPA is the cell area inside of invalid bins. A bin

is invalid if it has more than 80% of its area covered by fixed macroblocks or fixed cells.

Area density constraints are presented in column 11.

In Table 7.4 from Chapter 7, ABU of the global placement solution with FastPlace

is presented. In this experiment, area density restriction is set to 100% of bins area for

all circuits. ABU results achieved with the proposed NFCS algorithm are compared with

ABU from global placement solutions. On average, in ABU 1%, area density violation has

been reduced by 23% compared with global placement solution (Table 7.4 from Chapter

7). ABU of OF bins and ABU penalty have been minimized by 7% and 16%, on average,

respectively. ABU is computed using the area density constraint established in the 2006

ISPD contest.

In Figure 8.4, ABU distributions of the proposed NFCS algorithm are presented.

In abscissa, circuit acronyms are given. In ordinate, ABU in percentage is presented.

In the figure, ABU 1%, ABU 2%, ABU 5%, ABU 10%, ABU 20%, ABU of OF bins

(Overfilled), ABU penalty (Penalty), average NPA (Avg. NPA), maximum NPA (Max.

NPA), and global placement maximum area density utilization constraints (Density) are

shown. ABU metrics are evaluated only for valid ABU bins.

In Table 8.3, ACD of the proposed NFCS algorithm in non-aligned grid graphs

is presented. Cell displacement is presented in the number of row heights. In column 1,

circuit acronyms are presented. ACD of cells with the highest cell displacements are given

in columns 2 to 5. In columns 6 and 7, the average and maximum cell displacements are

shown, respectively. The number of moved cells and the total number of cells are given in

206

Table 8.2: ABU improvement from the proposed NFCS algorithm in non-aligned ABU
and cell spreading grid graphs. ABU, NPA and area density restriction (density) are
presented in percentage.

Circuits
ABU (%) Avg.

NPA
Max.
NPA

Density
(%)1% 2% 5% 10% 20% OF Penalty

AD1i 185 169 150 137 125 118 58 10 67 100
AD2i 100 100 100 100 100 0 0 5 19 100
AD3i 170 155 137 126 114 118 45 8 77 100
AD4i 135 127 117 108 98 112 21 5 35 100
BB1i 138 133 123 116 108 112 27 3 21 100
BB2i 140 132 121 113 105 111 25 4 49 100
BB4i 100 100 100 100 100 126 0 4 19 100
AD1 132 125 115 107 97 82 98 3 18 60
AD2 130 121 110 102 92 82 91 4 32 60
AD3 160 143 124 111 97 89 120 6 65 60
AD4 123 114 102 92 78 81 77 5 54 60
AD5 159 146 136 124 110 84 177 7 55 50
BB1 119 111 102 94 85 77 76 4 25 60
BB2 119 112 103 95 85 79 77 4 31 60
BB4 130 121 109 101 90 80 90 6 35 60
NB3 113 104 92 81 68 95 22 3 26 80
NB4 133 123 111 102 90 75 132 4 44 50
NB5 146 138 127 116 105 81 162 7 51 50
NB6 138 128 115 106 97 96 50 6 41 80
NB7 125 119 110 104 95 94 42 4 32 80
Avg. 135 126 115 107 97 90 70 5 40 76

Figure 8.4: ABU distributions from the 2006 ISPD circuits are presented. The cell spread-
ing and ABU grid graphs are not aligned. Circuits have been placed with the FastPlace
global placement algorithm

Source: Author (2019).

columns 8 and 9, respectively. In column 10, the percentage of moved cells are presented.

On average, the 2% of cells with the highest cell displacement have the displace-

207

Table 8.3: The ACD of the proposed NFCS algorithm in non-aligned ABU and cell
spreading grid graphs. The ACD is presented in number of row heights.

Circuits
ACD (Row Heights) Avg.

Disp.
Max.
Disp.

Cells (×103)
%

2% 5% 10% 20% Moved Total
AD1i 6.2 4.0 2.6 1.5 0.3 47.7 33 211 15.8
AD2i 41.9 18.2 9.6 4.9 1.0 195.4 35 254 13.9
AD3i 146.1 83.4 48.7 26.9 5.6 443.0 150 451 33.3
AD4i 4.3 2.4 1.3 0.6 0.1 86.8 37 495 7.5
BB1i 2.9 1.7 0.9 0.4 0.1 37.0 17 278 6.0
BB2i 4.0 2.2 1.2 0.6 0.1 53.0 41 535 7.7
BB4i 3.5 2.0 1.1 0.5 0.1 124.0 158 2,169 7.3
AD1 2.7 1.3 0.6 0.3 0.1 45.7 8 211 3.7
AD2 87.3 44.4 22.7 11.4 2.3 197.0 27 254 10.6
AD3 159.4 88.5 49.3 25.9 5.2 443.6 105 451 23.3
AD4 30.3 13.6 6.9 3.4 0.7 163.7 31 495 6.3
AD5 309.1 216.5 149.0 89.1 18.6 747.0 339 842 40.3
BB1 5.0 2.0 1.0 0.5 0.1 78.3 6 278 2.1
BB2 9.0 3.7 1.9 0.9 0.2 52.8 19 535 3.6
BB4 27.5 13.6 7.1 3.6 0.7 147.4 195 2,169 9.0
NB3 0.4 0.2 0.1 0.0 0.0 26.0 4 483 0.8
NB4 24.1 11.4 5.9 3.0 0.6 113.2 51 643 7.9
NB5 156.5 98.8 60.6 33.3 6.8 447.3 349 1,228 28.4
NB6 36.0 17.7 9.5 4.8 1.0 293.8 150 1,248 12.0
NB7 26.0 11.2 5.8 2.9 0.6 241.5 205 2,481 8.3
Avg. 54.1 31.8 19.3 10.7 2.2 199.2 98 786 12.4

ment of 54 row heights. The average and maximum cell displacements are 2.2 and 199

row heights, on average, respectively. On average, 12% of all movable cells are moved

to minimize area density violations. Adaptec 5 (AD5) has a huge cell displacement. This

circuit has a huge NPA (Table 7.1).

In Table 8.4, Legalization results of Jezz and CSJ flows are presented. The impact

of the proposed NFCS in legalization is evaluated with the Jezz algorithm. In column

1, circuit acronyms (BK) are presented. HPWL of global placement solutions are given

in column 2. Increased HPWL of CSJ and Jezz flows are presented in columns 3 and

4, respectively. In columns 5 to 8, average and maximum cell displacements are shown.

Runtime of Jezz and CSJ flows are highlighted in columns 9 and 10, respectively. In

columns 11 and 12, the runtime of cell spreading and legalization stages of the proposed

NFCS are presented, respectively.

The CSJ flow achieves 19% improvement on HPWL compared to Jezz, on average.

In average and maximum cell displacement, CSJ flow minimizes cell displacement by

16% and 10% compared to Jezz, on average, respectively. Achieved improvement is

208

Table 8.4: Legalization results from Jezz and CSJ flows in non-aligned ABU and cell
spreading grid graphs.

BK HPWL
(m)

HPWL
(%)

Avg. Disp.
#Rows

Max. Disp.
#Rows

Runtime (s)

Jezz
NFL

Jezz CSJ Jezz CSJ Jezz CSJ Total CS Legal
AD1i 92 14.6 14.1 3.6 3.6 423 340 8.4 23.3 15.2 8.1
AD2i 108 8.9 8.6 3.5 2.9 366 557 6.4 22.4 15.1 7.3
AD3i 241 27.7 23.5 10.1 9.2 1032 991 51.0 142.0 115.9 26.0
AD4i 225 4.9 4.4 1.7 1.6 208 154 8.8 19.9 11.6 8.4
BB1i 118 5.4 4.7 1.6 1.5 209 194 5.7 13.6 8.1 5.5
BB2i 179 6.9 6.3 1.8 1.7 284 260 9.7 22.7 13.6 9.1
BB4i 940 4.3 4.0 1.4 1.4 231 206 39.9 94.3 55.6 38.6
AD1 93 3.0 3.0 1.1 1.1 74 61 1.7 3.4 1.8 1.6
AD2 101 5.4 6.6 5.1 3.5 316 480 2.6 12.2 8.8 3.5
AD3 224 19.0 14.6 9.4 7.6 823 659 32.6 69.8 57.0 12.8
AD4 214 4.4 4.1 1.8 1.7 298 274 5.4 14.7 9.9 4.8
AD5 377 83.1 60.2 29.1 22.1 1078 904 283.3 793.3 731.7 61.5
BB1 112 2.4 2.4 0.9 0.9 143 125 2.0 3.4 1.5 1.9
BB2 170 4.1 3.4 1.2 1.1 232 72 6.1 13.3 7.7 5.6
BB4 898 5.5 4.9 1.7 1.8 376 415 30.3 129.7 102.0 27.7
NB3 302 1.5 1.5 0.8 0.8 52 38 4.0 6.4 2.7 3.7
NB4 288 5.0 4.4 1.8 1.7 250 202 9.3 34.6 27.2 7.4
NB5 476 34.3 30.2 8.9 9.2 753 751 89.0 480.7 438.7 42.0
NB6 530 8.5 7.0 2.2 2.3 522 640 27.5 147.4 119.6 27.8
NB7 1113 4.5 4.6 1.7 1.7 931 518 39.0 111.4 78.2 33.2

Norm. - 1.19 1.00 1.15 1.00 1.10 1.00 0.31 1.00 0.84 0.16

obtained by opening white space in high-density regions. Therefore, Jezz in CSJ flow

smartly explores these newly opened space.

8.3.2.2 Experimental Results in benchmarks from the 2006 ISPD contest in aligned grid

graphs

In Table 8.5, ABU improvement of the NFCS algorithm in aligned grid graphs

is presented. Placement improvements of ABU are obtained by executing the proposed

NFCS algorithm in aligned ABU and cell spreading grid graphs. ABU and NPA results are

evaluated after executing NFCS in benchmarks from the 2006 ISPD contest. In column

1, circuit acronyms are given. In columns 2 to 6, ABU of valid bins with the highest area

density violation are shown. ABU of the overfilled (OF) bins is presented in column 7.

In column 8, ABU penalty is highlighted. ABU is computed as introduced in Section

3.6.2. In columns 9 and 10, average and maximum NPA are given. NPA is the cell area

inside invalid bins. A bin is invalid if it has more than 80% of its area covered by fixed

209

macroblocks or fixed cells. Area density constraints are presented in column 11.

Table 8.5: ABU improvement from the proposed NFCS algorithm in aligned ABU and
cell spreading grid graphs. ABU, NPA and area density restriction (density) are presented
in percentage.

Circuits
ABU (%) Avg.

NPA
Max.
NPA

Density
(%)1% 2% 5% 10% 20% OF Penalty

AD1i 100 100 100 100 100 0 0 9 19 100
AD2i 100 100 100 100 100 0 0 5 19 100
AD3i 100 100 100 100 100 0 0 5 19 100
AD4i 100 100 100 100 96 0 0 5 19 100
BB1i 100 100 100 100 100 0 0 3 16 100
BB2i 100 100 100 100 99 170 0 5 53 100
BB4i 100 100 100 100 100 126 0 4 19 100
AD1 100 100 100 99 95 81 66 4 17 60
AD2 100 100 100 99 92 82 66 4 19 60
AD3 100 100 100 100 96 88 66 4 18 60
AD4 100 100 99 91 79 80 62 5 19 60
AD5 102 101 100 100 100 84 101 6 70 50
BB1 100 100 99 94 85 77 63 5 18 60
BB2 100 100 99 94 85 79 64 4 19 60
BB4 100 100 100 99 91 81 65 4 19 60
NB3 100 99 90 80 68 92 17 2 12 80
NB4 100 100 100 99 90 75 98 4 19 50
NB5 100 100 100 100 99 81 100 7 20 50
NB6 100 100 100 100 96 95 25 5 19 80
NB7 100 100 100 100 95 94 25 3 20 80
Avg. 100 100 99 98 93 69 41 5 23 76

In Table 7.4 from Chapter NFL, ABU of the global placement solution with Fast-

Place is presented. In this experiment, area density restriction is set to 100% of bin’s area

for all circuits. ABU results achieved with the proposed NFCS algorithm are compared

with ABU from global placement solutions. On average, in ABU 1%, ABU 2%, ABU 5%

and ABU 10%, the area density utilization has been reduced equal to or lower than 100%.

ABU of the proposed NFCS algorithm is compared with global placement solution (Table

7.4 from Chapter NFL). ABU of OF bins and ABU penalty have been minimized by 28%

and 45%, on average, respectively. ABU is computed using the area density constraint

established in the 2006 ISPD contest.

In Figure 8.5, ABU distributions of the proposed NFCS algorithm are presented.

In abscissa, circuit acronyms are given. In ordinate, ABU in percentage is presented.

In this figure, ABU 1%, ABU 2%, ABU 5%, ABU 10%, ABU 20%, ABU of OF bins

(Overfilled), ABU penalty (Penalty), average NPA (Avg. NPA), maximum NPA (Max.

NPA), and global placement maximum area density utilization constraints (Density) are

210

shown. ABU metrics are evaluated only for valid ABU bins.

Figure 8.5: ABU distributions from the 2006 ISPD circuits are presented. Cell spreading
and ABU grid graphs are aligned. Circuits have been placed with the FastPlace global
placement algorithm

Source: Author (2019).

In Table 8.6, ACD of the proposed NFCS algorithm in aligned cell spreading and

ABU grid graphs is presented. Cell displacement is presented in the number of row

heights. In column 1, circuit acronyms are presented. ACD of cells with the highest

cell displacements are given in columns 2 to 5. In columns 6 and 7, average and maxi-

mum cell displacement are shown, respectively. The number of moved cells and the total

number of cells are given in columns 8 and 9, respectively. In column 10, the percentage

of moved cells are presented.

On average, the ACD 2% has displacement of 50 row heights. The average and

maximum cell displacement are 2.1 and 194 row heights, on average, respectively. On

average, 12% of all movable cells are moved to minimize area density violations.

In Table 8.7, legalization results of Jezz and CSJ flows in aligned grid graphs are

presented. In column 1, circuit acronyms (BK) are presented. HPWL of global placement

solutions are given in column 2. Increased HPWL in the percentage of CSJ and Jezz flows

are presented in columns 3 and 4, respectively. In columns 5 to 8, average and maximum

cell displacements for Jezz and CSJ flows are shown. The runtime of Jezz and CSJ flows

are highlighted in columns 9 and 10, respectively. In columns 11 and 12, the runtime of

cell spreading and legalization stages of the proposed NFCS are presented, respectively.

The CSJ flow achieves 23% improvement on HPWL compared to Jezz, on average.

In average and maximum cell displacement, CSJ flow minimizes cell displacement by

18% and 12% compared to Jezz, on average, respectively. Achieved improvement is

211

Table 8.6: ACD of the proposed NFCS algorithm in aligned ABU and cell spreading grid
graphs. ACD is presented in number of row heights.

Circuits
ACD (Row Heights) Avg.

Disp.
Max.
Disp.

Cells (×103)
%

2% 5% 10% 20% Moved Total
AD1i 10.8 6.7 4.5 2.8 0.6 51.0 51 211 24.1
AD2i 41.9 18.2 9.6 4.9 1.0 195.4 35 254 13.9
AD3i 139.4 83.9 49.7 27.3 5.6 446.2 151 451 33.6
AD4i 4.7 2.6 1.5 0.8 0.2 86.8 44 495 8.9
BB1i 3.7 2.2 1.3 0.6 0.1 73.0 24 278 8.5
BB2i 4.1 2.3 1.3 0.7 0.1 54.0 45 535 8.4
BB4i 3.5 2.0 1.1 0.5 0.1 124.0 158 2,169 7.3
AD1 2.5 1.3 0.6 0.3 0.1 45.7 8 211 3.9
AD2 86.9 43.9 22.2 11.1 2.2 197.3 21 254 8.3
AD3 151.3 83.9 47.1 24.7 4.9 400.7 98 451 21.7
AD4 29.6 13.3 6.6 3.3 0.7 136.6 28 495 5.7
AD5 276.3 203.0 142.4 85.8 17.9 676.4 320 842 37.9
BB1 4.8 1.9 1.0 0.5 0.1 78.3 5 278 2.0
BB2 8.7 3.5 1.8 0.9 0.2 51.4 14 535 2.5
BB4 25.4 12.2 6.2 3.1 0.6 194.0 153 2,169 7.1
NB3 0.7 0.3 0.1 0.1 0.0 26.0 6 483 1.3
NB4 24.2 11.1 5.6 2.8 0.6 111.9 44 643 6.8
NB5 122.4 79.4 49.7 27.6 5.6 419.8 318 1,228 25.9
NB6 34.0 16.1 8.4 4.2 0.8 225.4 126 1,248 10.1
NB7 24.0 10.2 5.1 2.6 0.5 280.5 138 2,481 5.6
Avg. 49.9 29.9 18.3 10.2 2.1 193.7 89 786 12.2

obtained by opening white space in high-density regions. Therefore, Jezz in CSJ flow

effectively explores these newly opened space.

8.3.2.3 Experimental Results in benchmarks from the 2014 and 2015 ICCAD contests

In Table 8.8, experimental results from the ICCAD 2015 benchmarks are pre-

sented. Cell spreading and ABU grid graphs are not aligned. In column 1, circuit

acronyms (BK) are presented. Initial and increased legalized-wire length in percentage

(WL) for Jezz and CSJ flows are presented in columns 2 to 4. In columns 5 to 8, the

average and maximum cell displacement of the legalized circuit for Jezz and CSJ flows

are presented. Initial ABU is shown in column 9. In columns 10 to 15, ABU, ABU 2%

and ABU 5% for Jezz and CSJ flows are given. The runtime (Time) of the cell spreading

stage is presented in column 16.

The CSJ flow achieves 12% improvement on HPWL compared with Jezz, on av-

erage. Average and maximum cell displacements are improved by 7.4% and 46% in CSJ

212

Table 8.7: Legalization results from Jezz and CSJ flows in aligned ABU and cell spreading
grid graphs.

BK HPWL
(m)

HPWL
(%)

Avg. Disp.
#Rows

Max. Disp.
#Rows

Runtime (s)

Jezz
NFCS

Jezz CSJ Jezz CSJ Jezz CSJ Total CS Legal
AD1i 92 14.6 12.0 3.6 3.4 423 343 8.4 22.7 15.2 7.5
AD2i 108 8.9 8.6 3.5 2.9 366 557 6.4 22.4 15.1 7.2
AD3i 241 27.7 23.4 10.1 9.0 1032 1015 51.0 139.7 115.9 23.8
AD4i 225 4.9 4.4 1.7 1.6 208 158 8.8 20.0 11.6 8.4
BB1i 118 5.4 4.6 1.6 1.5 209 197 5.7 13.6 8.1 5.5
BB2i 179 6.9 6.3 1.8 1.7 284 269 9.7 22.9 13.6 9.3
BB4i 940 4.3 4.0 1.4 1.4 231 206 39.9 94.5 55.6 38.9
AD1 93 3.0 3.0 1.1 1.1 74 65 1.7 3.4 1.8 1.6
AD2 101 5.4 6.7 5.1 3.6 316 453 2.6 12.3 8.8 3.5
AD3 224 19.0 14.1 9.4 7.4 823 672 32.6 69.8 57.0 12.8
AD4 214 4.4 4.1 1.8 1.7 298 285 5.4 14.7 9.9 4.8
AD5 377 83.1 58.1 29.1 22.2 1078 950 283.3 812.6 731.7 80.9
BB1 112 2.4 2.4 0.9 0.9 143 128 2.0 3.4 1.5 1.9
BB2 170 4.1 3.4 1.2 1.1 232 110 6.1 13.2 7.7 5.5
BB4 898 5.5 4.8 1.7 1.7 376 373 30.3 129.1 102.0 27.1
NB3 302 1.5 1.5 0.8 0.8 52 38 4.0 6.5 2.7 3.8
NB4 288 5.0 4.4 1.8 1.7 250 232 9.3 34.6 27.2 7.3
NB5 476 34.3 28.1 8.9 8.2 753 644 89.0 482.6 438.7 43.9
NB6 530 8.5 7.0 2.2 2.2 522 500 27.5 145.5 119.6 25.9
NB7 1113 4.5 4.6 1.7 1.6 931 515 39.0 112.4 78.2 34.3

Norm. - 1.23 1.00 1.18 1.00 1.12 1.00 0.30 1.00 0.84 0.16

compared with Jezz, on average, respectively. In both CSJ and Jezz, ABU is reduced

23%, on average.

In Table 8.9, two flows with and without the proposed algorithm before MDP (LIN

et al., 2016) are evaluated. In MDP, only the binary of (LIN et al., 2016) is run while,

in CS, the proposed NFCS algorithm is executed before MDP. This experiment was con-

ducted in the modified circuits from the 2014 ICCAD benchmarks. In columns 1, circuit

acronyms (BK) are presented. In columns 2 to 4, initial, MDP, and CS wire lengths

(HPWL) are presented, respectively. In columns 5 and 6, the average cell displacement

for MDP and CS flows are presented. The initial ABU is presented in column 7. In

columns, 8 to 15, ABU, ABU 2%, ABU 5%, and ABU penalty for MDP and CS flows

are presented. The runtime (Time) of the cell spreading stage is presented in column 16.

MDP and the proposed NFCS algorithm have optimization objectives which con-

flict with each other. The proposed NFCS algorithm minimizes high-density regions sub-

ject to minimum cell displacement, which can increase wire length. On the other hand,

213

MDP focus on minimizing wire length with a relaxed restriction to area density utiliza-

tion. Therefore, area spaces which were opened by NFCS algorithm are used by MDP to

improve wire length. Improvements achieved individually by MDP and NFCS algorithms

are degraded when both algorithms are executed in the same optimization flow.

8.4 Summary

In commercial and academic flows, the proposed NFCS algorithm moves cells out

from high-density regions to open area spaces with minimized cell displacement cost.

Opened spaces are available for detailed placement optimization algorithms to improve

the quality of the circuit solution. In high-density regions, optimization algorithms can

use spaces that have been opened previously by using the NFCS algorithm to place cells.

In this approach, the placement solution can be improved. The outcome of the proposed

NFCS algorithm is a placement solution with optimized area density utilization.

A cell spreading algorithm based on branch and cut, and network flow techniques

is presented. The proposed cell spreading algorithm is applied in the detailed placement to

optimize area density utilization. Cell movements are subject to maximum cell displace-

ment constraint. Within the proposed NFCS algorithm, area spaces are opened in high-

density regions. Detailed placement algorithms may explore these newly opened spaces.

Notably, timing-driven algorithms can improve signal delay by exploring these spaces

opened by the proposed NFCS algorithm. The proposed algorithm searches optimized-

cost paths. In the grid graph, bins are opened only if ancestor bins have the displacement

cost lower than the upper limit cost. In cell displacement cost model, the signal of cost

value indicates the direction of cell movements. Positive cost value indicates that cells

are going to be moved away from initial positions. These cell movements increase cell

displacement. On the other hand, negative cost value indicates that cells are going to be

moved closer to initial positions. Cell movements closer to initial positions lead to min-

imize cell displacement cost. In commercial circuits, improvement in timing and power

consumption are achieved when the NFCS algorithm is used. Moreover, the improve-

ment of wire length and area density utilization is achieved in academic and commercial

circuits. In academic circuits, the proposed NFCS algorithm contributes to improve wire

length and area density utilization that improves placement solution.

214Table 8.8: Experimental results on academic circuits. The proposed NFCS algorithm is evaluated in two legalization flows. The first flow is
composed only of the legalizer while the second flow is composed of the proposed algorithm and the legalizer.

BK WL
Init.

WL (%) Avg. Disp. Max. Disp. ABU
Init.

ABU ABU 2% ABU 5% Time
(s)Jezz CSJ Jezz CSJ Jezz CSJ Jezz CSJ Jezz CSJ Jezz CSJ

SB1 92.34 0.75 0.74 0.79 0.78 324 248 0.94 78.99 78.56 82.40 81.82 76.52 76.26 3.34
SB3 91.19 2.29 2.24 1.67 1.63 780 288 1.23 99.98 99.99 100.00 100.00 100.00 100.00 2.22
SB4 68.03 1.01 0.84 1.11 1.01 435 326 1.13 87.55 87.36 90.63 90.39 85.56 85.42 2.70
SB5 102.80 0.81 0.60 1.01 0.87 619 299 0.92 78.28 77.55 83.51 82.52 74.32 73.83 2.76
SB7 136.96 1.04 1.00 0.89 0.87 329 308 1.13 85.06 84.85 88.77 88.48 82.28 82.17 5.18

SB10 176.72 0.63 0.44 0.82 0.72 502 490 0.77 71.37 70.74 74.09 73.25 69.52 69.10 2.98
SB16 87.07 0.89 0.69 0.96 0.84 295 272 0.92 84.24 83.67 86.57 85.81 82.64 82.24 2.67
SB18 57.19 0.80 0.74 0.81 0.77 253 191 1.02 76.96 76.26 80.69 79.74 74.18 73.74 1.12
Avg. 101.54 1.03 0.91 1.01 0.94 442 303 1.01 82.80 82.37 85.83 85.25 80.63 80.34 2.87

Table 8.9: Experimental results of the proposed algorithm in academic benchmarks. The proposed NFCS algorithm is evaluated in two flows. In
one flow, MDP (LIN et al., 2016) binary is executed before NFCS algorithm. In the second flow, only MDP is executed.

BK
WL (um)

Init.
WL (%) Avg. Disp. ABU

Init.
ABU ABU 2% ABU 5% ABU P. Time

(s)MDP CS MDP CS MDP CS MDP CS MDP CS MDP CS
b19 3.32 3.14 3.14 1.87 1.87 79.28 77.26 77.30 77.76 77.82 77.02 77.04 1.71 1.76 0.14
dist 5.06 4.82 4.82 2.16 2.15 72.90 71.86 71.66 72.16 71.92 71.67 71.49 0.00 0.00 0.05

leon2 31.97 31.22 31.22 2.07 2.07 74.16 72.95 72.91 73.12 73.07 72.87 72.82 4.21 4.15 0.56
leon3mp 15.19 14.30 14.30 1.82 1.82 72.63 70.22 70.18 70.44 70.39 70.08 70.05 0.39 0.34 0.42

matrix 2.95 2.75 2.75 1.50 1.50 67.94 66.82 66.85 67.09 67.14 66.66 66.67 2.80 2.84 0.05
netcard 41.13 40.25 40.24 1.53 1.53 75.77 74.81 74.82 75.12 75.12 74.59 74.60 3.91 3.92 0.71
vga lcd 4.19 4.02 4.02 1.61 1.60 73.29 72.31 72.18 72.51 72.35 72.20 72.09 3.31 3.11 0.06

Avg. 14.83 14.36 14.36 1.79 1.79 73.71 72.32 72.27 72.60 72.55 72.15 72.11 2.33 2.30 0.28

215

9 CONCLUSIONS

In this thesis, two contributions are presented. The first contribution is an in-

cremental timing-driven placement algorithm to optimize timing violations subject to

routability. The second contribution is a generic cell spreading algorithm to move cells

out from high-density regions with minimized adverse side effects on moved cells. The

proposed cell spreading algorithm relies on network flow and branch and cut formal meth-

ods to provide optimized placement solutions. A cost model is integrated into the pro-

posed cell spreading algorithm that can quickly provide the history and direction of cell

movements. The proposed cell spreading technique is applied in legalization and detailed

placement stages.

In RAITDP flow, a simplified cell spreading stage that minimizes area density

violation is used. However, this approach may not handle regions with high cell con-

centration or high-density regions, which are very large. Moreover, the maximum cell

displacement restriction limits the distance to move cells out from high-density regions.

The RAITDP flow can benefit from the proposed network flow-based cell spreading al-

gorithm. Cells could be moved out from high-density regions subject to maximum cell

displacement constraint.

The traditional placement flow (global placement, legalization, and detailed place-

ment) can be restrictive to optimize placed netlist in detailed placement. Moreover, legal-

ization algorithms may cause adverse side effects in the placement solution. Legalization

algorithms’ primary focus is to fix cell overlapping instead of moving cells out from high-

density regions. On the other hand, detailed placement algorithms may further explore the

optimization space to provide improved placement solutions if legalization restriction is

relaxed. Placement solution can be improved if legalization and detailed placement flows

could be interleaved. The main issue of this mixed flow is cell concentration generated by

detailed placement optimization algorithms. In traditional flow, legalization algorithms

will spread these cells far away. Therefore, achieved placement improvement could be

reverted. An algorithm which can spread cells with minimized adverse side effects can

mitigate drawbacks on placement solution after legalization.

The proposed network flow-based cell spreading algorithm can fix area density

violation with minimized side effects. In the proposed algorithm, restrictions such as tim-

ing, routing overflow, and power consumption, can be addressed when cells are selected

to be moved out from high-density regions. The proposed algorithm can be inserted in

216

several stages of mixed legalization and detailed placement flow. The cell spreading al-

gorithm can adequately minimize area density violations generated by detailed placement

algorithms. The legalization algorithm can also benefit from the placement solution pro-

vided by the proposed cell spreading algorithm. The legalization stage will require less

effort to provide optimized placement solution. Adverse side effects are also minimized

on the legal placement solution.

9.1 Summary of Contributions

The summary of thesis contributions are listed as follows:

• Designing a detailed placement flow to move critical timing cells to optimized-

timing positions subject to routabiliy. Cell movements are accepted only if target

positions have a lower routing violation than the current position or target positions

are free of routing violations. Cell displacement constraint is evaluated to determine

the trade-off between cell displacement restriction and improvements on timing

violations. Routing overflow aspects are evaluated by reducing the available routing

resources.

• A cell spreading algorithm with network flow and branch and cut techniques is pro-

posed. The objective is to optimize area density violation with minimized adverse

side effects on moved cells. Optimized cost paths are computed from the overfilled

bin. Cells are moved between neighboring bins to provide area flow to be moved

out from high-density regions. Optimized cost paths are computed with network

flow and branch and cut techniques. Branch and cut technique is used to restrict the

search in the tree to open only branches which have the cost path lower than the up-

per limit cost. The upper limit cost is iteratively reduced every time a new path with

lower cost is found. This path that has the cost lower than the upper limit establishes

the new reduced upper limit cost. The algorithm stops to augment paths as soon as

there are no more bins which can be opened with ancestor cost lower than the upper

limit. Therefore, the path with the lowest cost is obtained. A cost model with the

history and direction of cell movements is integrated in the proposed cell spreading

technique. Cells which are placed inside or close to regions with the high-density

area can be moved in several paths. These cells can be moved to any direction re-

lated to initial positions. In some paths, these cells can be moved back to initial

217

positions. On the other side, in other paths, these cells can be moved distant from

initial positions. The direction of cell movement can significantly impact the total

cell displacement cost. In the cost model of the proposed network flow-based cell

spreading, the signal of the cost (positive or negative) indicates the direction of cell

movement. Negative cost values indicate cell movements closer to initial positions.

Otherwise, cell movements distant from initial positions have positive cost values.

In the proposed cell spreading algorithm, cells are ranked by the lowest to the high-

est costs. Cells are selected from the lowest to the highest cost while the required

area flow to be moved out is not achieved. Paths can have sets of cell movements

between neighbor bins with negative cost values. These negative values indicate

cells will be moved closer to initial positions that minimize cell displacement cost.

• In legalization, the proposed network flow-based cell spreading technique is ap-

plied to move cells out of high-density regions. The proposed algorithm reduces

cell concentration in high-density regions. Therefore, legal spaces to place cells are

found with minimized cell displacement. The legalization flow is composed of the

cell spreading and legalization stage. In the cell spreading stage, cells are moved

out of high-density regions with the proposed cell spreading algorithm. In the legal-

ization stage, cells are placed in legal positions with Jezz (that is an abacus-based)

algorithm. The total cell displacement of legal placement solution is improved with

the proposed cell spreading algorithm.

• In detailed placement, the proposed network flow-based cell spreading technique

is applied to move cells out from high-density regions. In high-density regions,

opened white spaces with the proposed algorithm may be used by optimization

algorithms to improve wire length, power consumption, timing violations, and

routability. The proposed cell spreading algorithm opens white space in high-

density regions with minimized adverse side effects. The opened spaces are avail-

able to be used by optimization detailed placement algorithms. Therefore, opti-

mization algorithms may further improve the placement solution by placing cells in

these newly opened positions.

218

9.2 Future Works

In the network flow-based legalization, the proposed algorithm can be extended to

legalize multi-deck cells. However, graph grid and path augmentation must be redesign to

address cells which cover several rows. Multi-deck cells are very challenging to legalize

because these cells require white space in several rows. The white space must be con-

secutive in adjacent rows. Each multi-deck cell movement may require to move cells in

several rows to open necessary space. Another challenge is that rows will have different

heights. Therefore, some standard-cells will be possible to place in a row, but these cells

will not fit in neighboring rows because of the difference in row height.

In the network flow-based cell spreading, the proposed algorithm can be designed

to move cells to neighbor bins subject to keeping circuit legalized. In the proposed cell

spreading algorithm, the optimized placement solution is illegal. This placement solu-

tion must be legalized after optimizing area density with the proposed algorithm. This

approach can have some adverse side effects because of the legalization process. On the

other hand, these adverse side effects can be avoided by moving cells to legal positions.

In this approach, the challenge is to compute cells to be moved considering legal posi-

tions. A legal position can be inside of white spaces or overlapping cells which will be

moved to a neighboring bin. Moreover, computing area flow to be moved out considering

legal positions is more restrictive than computing area flow in an illegal placement. Both

versions of detailed placement cell spreading algorithms can be integrated into the mixed

legalization and detailed placement flow.

The network flow-based cell spreading algorithm can be integrated into the analyt-

ical global placement flow to provide the upper bound placement solution. In the global

placement, lower and upper bound placement solutions are obtained by solving a system

of linear equations and by spreading cells in the circuit core, respectively. In the lower

bound placement solution, cell concentration is very high in a considerable number of

small regions. Therefore, these cells must be spread to regions with low-density area uti-

lization. In the conventional upper bound placement solution, cells can have a significant

placement displacement, which negatively affects the optimality of the global placement

solution.

219

9.3 Publications, Awards, and Open-Source Framework

9.3.1 Journal Publication

1. J. Monteiro, M. Johann and L. Behjat, "An Optimized Cost Flow Algorithm to

Spread Cells in Detailed Placement", ACM Transactions on Design Automation of

Electronic Systems, 2019.

9.3.2 Conferences, Symposiums and Workshops

1. G. Flach, M. Fogaça, J. Monteiro, M. Johann, and R. Reis, "Rsyn: An Extensible

Physical Synthesis Framework", In Proceedings of the 2017 ACM on International

Symposium on Physical Design (ISPD ’17), ACM, New York, NY, USA, 33-40.

2. M. Fogaça, G. Flach, J. Monteiro, M. Johann and R. Reis, "Quadratic timing ob-

jectives for incremental timing-driven placement optimization", 2016 IEEE Inter-

national Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo,

2016, pp. 620-623.

3. J. Monteiro, N. K. Darav, G. Flach, M. Fogaça, R. Reis, A. Kennings, M. Jo-

hann, L. Behjat, "Routing-Aware Incremental Timing-Driven Placement", 2016

IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, PA,

2016, pp. 290-295.

4. G. Flach, M. Fogaça, J. Monteiro, M. Johann, and R. Reis, "Drive Strength Aware

Cell Movement Techniques for Timing Driven Placement", In Proceedings of the

2016 on International Symposium on Physical Design (ISPD ’16), ACM, New

York, NY, USA, 73-80.

5. G. Flach, J. Monteiro, M. Fogaça, J. Puget, P. Butzen, M. Johann and R. Reis, "An

Incremental Timing-Driven flow using quadratic formulation for detailed place-

ment", 2015 IFIP/IEEE International Conference on Very Large Scale Integration

(VLSI-SoC), Daejeon, 2015, pp. 1-6.

6. J. Monteiro, G. Flach, M. Johann and J. L. A. Güntzel, "An analytical timing-

driven algorithm for detailed placement", 2015 IEEE 6th Latin American Sympo-

sium on Circuits & Systems (LASCAS), Montevideo, 2015, pp. 1-4.

220

9.3.3 Awards

1. 2019 Association for Computing Machinery (ACM) Ph.D. Forum at Design Au-

tomation Conference (DAC).

2. 2018 ISPD contest on Initial Detailed Routing. 4th place.

3. 2016 Emerging Leaders of the Americas Program (ELAP) to attend the University

of Calgary as visiting researcher student.

4. 2016 A. Richard Newton Young Student Fellow.

5. 2015 ICCAD contest on Incremental Timing-driven Placement. 2nd place.

6. 2014 ICCAD contest on Incremental Timing-driven Placement. 1st place.

9.3.4 Open-source Framework in EDA

• RsynDesign Open-source Framework available at GitHub <https://github.com/RsynTeam>

repository.

https://github.com/RsynTeam

221

REFERENCES

ACHTERBERG, T.; KOCH, T.; MARTIN, A. Branching rules revisited. Operations
Research Letters, v. 33, n. 1, p. 42 – 54, 2005. ISSN 0167-6377. Available from
Internet: <http://www.sciencedirect.com/science/article/pii/S0167637704000501>.

ACM/SIGDA benchmarks. 2017. Available from Internet: <https://people.engr.ncsu.edu/
brglez/CBL/benchmarks/Benchmarks-upto-1996.html>.

AHUJA, R. K.; MAGNANTI, T. L.; ORLIN, J. B. Network Flows: Theory,
Algorithms, and Applications. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.
ISBN 0-13-617549-X.

ALPERT, C. et al. Placement: Hot or not? In: Proceedings of ICCAD. [S.l.: s.n.], 2012.
p. 283–290. ISSN 1092-3152.

ALPERT, C. J.; MEHTA, D. P.; SAPATNEKAR, S. S. Handbook of Algorithms for
Physical Design Automation. 1st. ed. Boston, MA, USA: Auerbach Publications, 2008.
ISBN 0849372429, 9780849372421.

BOCK, A. et al. Local search algorithms for timing-driven placement under
arbitrary delay models. In: Proceedings of DAC. New York, NY, USA: ACM,
2015. (DAC ’15), p. 29:1–29:6. ISBN 978-1-4503-3520-1. Available from Internet:
<http://doi.acm.org/10.1145/2744769.2744867>.

BONDY, J. A. Graph Theory With Applications. Oxford, UK, UK: Elsevier Science
Ltd., 1976. ISBN 0444194517.

BOOKSHELF. 2017. Available from Internet: <http://vlsicad.eecs.umich.edu/BK/
ISPD06bench/BookshelfFormat.txt>.

BORKAR, S. Design perspectives on 22nm cmos and beyond. In: 2009 46th ACM/IEEE
Design Automation Conference. [S.l.: s.n.], 2009. p. 93–94. ISSN 0738-100X.

BORKAR, S. et al. Parameter variations and impact on circuits and microarchitecture.
In: Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).
[S.l.: s.n.], 2003. p. 338–342.

BRENNER, U. Vlsi legalization with minimum perturbation by iterative augmentation.
In: Proceedings of the Conference on Design, Automation and Test in Europe.
San Jose, CA, USA: EDA Consortium, 2012. (DATE ’12), p. 1385–1390. ISBN
978-3-9810801-8-6.

BRENNER, U. Bonnplace legalization: Minimizing movement by iterative
augmentation. IEEE Trans. on CAD, v. 32, n. 8, p. 1215–1227, Aug 2013.

BRENNER, U.; STRUZYNA, M.; VYGEN, J. Bonnplace: Placement of leading-edge
chips by advanced combinatorial algorithms. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, v. 27, n. 9, p. 1607–1620, Sept 2008. ISSN
0278-0070.

BURSTEIN, M.; YOUSSEF, M. N. Timing influenced layout design. In: Proceedings of
DAC. [S.l.: s.n.], 1985. p. 124–130. ISSN 0738-100X.

http://www.sciencedirect.com/science/article/pii/S0167637704000501
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/Benchmarks-upto-1996.html
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/Benchmarks-upto-1996.html
http://doi.acm.org/10.1145/2744769.2744867
http://vlsicad.eecs.umich.edu/BK/ISPD06bench/BookshelfFormat.txt
http://vlsicad.eecs.umich.edu/BK/ISPD06bench/BookshelfFormat.txt

222

CALDWELL, A. E.; KAHNG, A. B.; MARKOV, I. L. Can recursive bisection alone
produce routable placements? In: Proceedings of DAC. New York, NY, USA: ACM,
2000. p. 477–482. ISBN 1-58113-187-9.

CAULEY, S. et al. A parallel branch-and-cut approach for detailed placement. ACM
Trans. Des. Autom. Electron. Syst., ACM, New York, NY, USA, v. 16, n. 2, p.
18:1–18:19, abr. 2011. ISSN 1084-4309.

CHAN, T. F. et al. Multilevel optimization for large-scale circuit placement. In:
IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000.
IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140). [S.l.: s.n.], 2000. p.
171–176. ISSN 1092-3152.

CHAN, T. F. et al. mpl6: Enhanced multilevel mixed-size placement. In: Proceedings of
the 2006 International Symposium on Physical Design. New York, NY, USA: ACM,
2006. (ISPD ’06), p. 212–214. ISBN 1-59593-299-2.

CHANG, C.-C.; CONG, J.; PAN, Z. D. Physical hierarchy generation with routing
congestion control. In: Proceedings of the 2002 International Symposium on Physical
Design. New York, NY, USA: ACM, 2002. (ISPD ’02), p. 36–41. ISBN 1-58113-460-6.

CHANG, C.-C. et al. Optimality and scalability study of existing placement algorithms.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
v. 23, n. 4, p. 537–549, April 2004. ISSN 0278-0070.

CHEN, T. C. et al. Ntuplace3: An analytical placer for large-scale mixed-size designs
with preplaced blocks and density constraints. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, v. 27, n. 7, p. 1228–1240, July 2008. ISSN
0278-0070.

CHENG, C. et al. Replace: Advancing solution quality and routability validation in
global placement. IEEE Trans. on CAD, p. 1–1, 2018. ISSN 0278-0070.

CHO, M. et al. History-based vlsi legalization using network flow. In: Proceedings of
DAC. [S.l.: s.n.], 2010. p. 286–291.

CHOU, S.; HO, T. Y. Oal: An obstacle-aware legalization in standard cell placement with
displacement minimization. In: 2009 IEEE International SOC Conference (SOCC).
[S.l.: s.n.], 2009. p. 329–332. ISSN 2164-1676.

CHOW, W.-K. et al. Cell density-driven detailed placement with displacement
constraint. In: Proceedings of ISPD. New York, NY, USA: ACM, 2014. p. 3–10. ISBN
978-1-4503-2592-9.

CHOW, W.-K.; PUI, C.-W.; YOUNG, E. F. Y. Legalization algorithm for multiple-row
height standard cell design. In: Proceedings of DAC. New York, NY, USA: ACM, 2016.
p. 83:1–83:6. ISBN 978-1-4503-4236-0.

CHU, C.; WONG, Y. C. Flute: Fast lookup table based rectilinear steiner minimal
tree algorithm for vlsi design. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 27, n. 1, p. 70–83, Jan 2008. ISSN 0278-0070.

223

CHUNG, E.-Y. et al. Advanced delay analysis method for submicron asic technology.
In: [1992] Proceedings. Fifth Annual IEEE International ASIC Conference and
Exhibit. [S.l.: s.n.], 1992. p. 471–474.

CONG, J. et al. Optimizing routability in large-scale mixed-size placement. In: 2013
18th Asia and South Pacific Design Automation Conference (ASP-DAC). [S.l.: s.n.],
2013. p. 441–446. ISSN 2153-6961.

CONG, J.; XIE, M. A robust detailed placement for mixed-size ic designs. In: Asia and
South Pacific Conference on Design Automation, 2006. [S.l.: s.n.], 2006. p. 7 pp.–.
ISSN 2153-6961.

CONG, J.; XIE, M. A robust mixed-size legalization and detailed placement algorithm.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
v. 27, n. 8, p. 1349–1362, Aug 2008. ISSN 0278-0070.

CORMEN, T. H. et al. Introduction to Algorithms, Third Edition. 3rd. ed. [S.l.]: The
MIT Press, 2009. ISBN 0262033844, 9780262033848.

DARAV, N. K. et al. A fast, robust network flow-based standard-cell legalization method
for minimizing maximum movement. In: Proceedings of ISPD. [S.l.: s.n.], 2017. p.
141–148. ISBN 978-1-4503-4696-2.

DARAV, N. K. et al. The impact of industry-organized contests on eda education.
In: 2015 IEEE International Conference on Microelectronics Systems Education
(MSE). [S.l.: s.n.], 2015. p. 21–24.

DARAV, N. K. et al. Eh?placer: A high-performance modern technology-driven placer.
Trans. of ACM TODAES, v. 21, n. 3, abr. 2016.

DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numerische
Mathematik, v. 1, n. 1, p. 269–271, 1959. ISSN 0945-3245.

DINIC, E. A. Algorithm for Solution of a Problem of Maximum Flow in a Network with
Power Estimation. Soviet Math Doklady, v. 11, p. 1277–1280, 1970.

DOBRE, S.; KAHNG, A. B.; LI, J. Mixed cell-height implementation for improved
design quality in advanced nodes. In: 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). [S.l.: s.n.], 2015. p. 854–860.

DOLL, K.; JOHANNES, F. M.; ANTREICH, K. J. Iterative placement improvement by
network flow methods. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, v. 13, n. 10, p. 1189–1200, Oct 1994. ISSN 0278-0070.

DOLL, K.; JOHANNES, F. M.; SIGL, G. DOMINO: deterministic placement
improvement with hill-climbing capabilities. In: VLSI. [S.l.: s.n.], 1991. p. 91–100.

DU, Y.; WONG, M. D. F. Optimization of standard cell based detailed placement for
16 nm finfet process. In: Proceedings of the Conference on Design, Automation &
Test in Europe. 3001 Leuven, Belgium, Belgium: European Design and Automation
Association, 2014. (DATE ’14), p. 357:1–357:6. ISBN 978-3-9815370-2-4.

224

EDMONDS, J.; KARP, R. M. Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM, ACM, New York, NY, USA, v. 19, n. 2, p. 248–264,
abr. 1972. ISSN 0004-5411. Available from Internet: <http://doi.acm.org/10.1145/
321694.321699>.

EISENMANN, H.; JOHANNES, F. M. Generic global placement and floorplanning.
In: Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat.
No.98CH36175). [S.l.: s.n.], 1998. p. 269–274.

ELMORE, W. C. The transient response of damped linear networks with particular
regard to wideband amplifiers. Journal of Applied Physics, v. 19, n. 1, p. 55–63, 1948.

ENVISIA ultra placer reference, QPlace Version 5.1.55: Cadence Design Systems Inc.
1999.

EVEN, S. Graph Algorithms. 2nd. ed. New York, NY, USA: Cambridge University
Press, 2011. ISBN 0521736536, 9780521736534.

FIDUCCIA, C. M.; MATTHEYSES, R. M. A linear-time heuristic for improving
network partitions. In: 19th Design Automation Conference. [S.l.: s.n.], 1982. p.
175–181. ISSN 0146-7123.

FLACH, G. et al. Drive strength aware cell movement techniques for timing driven
placement. In: Proceedings of ISPD. New York, NY, USA: ACM, 2016. p. 73–80. ISBN
978-1-4503-4039-7.

FLACH, G. et al. Rsyn: An extensible physical synthesis framework. In: Proceedings of
ISPD. [S.l.: s.n.], 2017. p. 33–40. ISBN 978-1-4503-4696-2.

FLACH, G. et al. An incremental timing-driven flow using quadratic formulation for
detailed placement. In: 2015 IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC). [S.l.: s.n.], 2015. p. 1–6. ISSN 2324-8432.

FLACH, G. et al. Effective method for simultaneous gate sizing and v th assignment
using lagrangian relaxation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 33, n. 4, p. 546–557, April 2014. ISSN 0278-0070.

FLACH, G. A. Discrete gate sizing and timing-driven detailed placement for the
design of digital circuits. Thesis (PhD) — Universidade Federal do Rio Grande do Sul,
12 2015.

FOGAçA, M. et al. Quadratic timing objectives for incremental timing-driven placement
optimization. In: ICECS. [S.l.: s.n.], 2016. p. 620–623.

FORD, L. R.; FULKERSON, D. R. Maximal flow through a network. In:
. Classic Papers in Combinatorics. Boston, MA: Birkhäuser Boston,

1987. p. 243–248. ISBN 978-0-8176-4842-8. Available from Internet: <https:
//doi.org/10.1007/978-0-8176-4842-8_15>.

GOMORY, R. E. Outline of an algorithm for integer solutions to linear programs. Bull.
Amer. Math. Soc., American Mathematical Society, v. 64, n. 5, p. 275–278, 09 1958.

http://doi.acm.org/10.1145/321694.321699
http://doi.acm.org/10.1145/321694.321699
https://doi.org/10.1007/978-0-8176-4842-8_15
https://doi.org/10.1007/978-0-8176-4842-8_15

225

GUTH, C. et al. Timing-driven placement based on dynamic net-weighting for efficient
slack histogram compression. In: Proceedings of ISPD. New York, NY, USA: ACM,
2015. p. 141–148. ISBN 978-1-4503-3399-3.

HAN, K.; KAHNG, A. B.; LEE, H. Scalable detailed placement legalization for complex
sub-14nm constraints. In: Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design. Piscataway, NJ, USA: IEEE Press, 2015. (ICCAD ’15), p.
867–873. ISBN 978-1-4673-8389-9.

HE, X. et al. Ripple 2.0: High quality routability-driven placement via global router
integration. In: DAC. [S.l.: s.n.], 2013. p. 1–6. ISSN 0738-100X.

HE, X. et al. Ripple: An effective routability-driven placer by iterative cell movement. In:
2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
[S.l.: s.n.], 2011. p. 74–79. ISSN 1092-3152.

HE, X. et al. Ripple: A robust and effective routability-driven placer. TCAD, v. 32, n. 10,
p. 1546–1556, Oct 2013. ISSN 0278-0070.

HELD, S.; SCHORR, U. Post-routing latch optimization for timing closure. In: DAC.
[S.l.]: ACM, 2014. p. 7:1–7:6. ISBN 978-1-4503-2730-5.

HILL, D. Method and system for high speed detailed placement of cells within an
integrated circuit design. [S.l.]: Google Patents, 2002. US Patent 6,370,673.

HO, T.-Y.; LIU, S.-H. Fast legalization for standard cell placement with simultaneous
wirelength and displacement minimization. In: 2010 18th IEEE/IFIP International
Conference on VLSI and System-on-Chip. [S.l.: s.n.], 2010. p. 369–374. ISSN
2324-8432.

HOROWITZ, E.; SAHNI, S.; RAJASCKARAN, S. Computer Algorithms: C++. New
York, NY, USA: W. H. Freeman & Co., 1996. ISBN 0716783150.

HSU, M. K. et al. Routability-driven analytical placement for mixed-size circuit
designs. In: 2011 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). [S.l.: s.n.], 2011. p. 80–84. ISSN 1092-3152.

HU, B.; MAREK-SADOWSKA, M. Multilevel fixed-point-addition-based vlsi
placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 24, n. 8, p. 1188–1203, Aug 2005. ISSN 0278-0070.

HU, J. et al. An effective legalization approach based on multiple ordering. In: 2013
International Conference on Communications, Circuits and Systems (ICCCAS).
[S.l.: s.n.], 2013. v. 2, p. 514–518.

HU, S.; LI, Z.; ALPERT, C. J. A fully polynomial time approximation scheme for timing
driven minimum cost buffer insertion. In: Proceedings of the 46th Annual Design
Automation Conference. New York, NY, USA: ACM, 2009. (DAC ’09), p. 424–429.
ISBN 978-1-60558-497-3.

HUANG, C. C. et al. Detailed-routing-driven analytical standard-cell placement. In:
ASP-DAC. [S.l.: s.n.], 2015. p. 378–383. ISSN 2153-6961.

226

HUANG, C. C. et al. Detailed-routability-driven analytical placement for mixed-size
designs with technology and region constraints. In: ICCAD. [S.l.: s.n.], 2015. p.
508–513.

HUANG, C. C. et al. Timing-driven cell placement optimization for early slack histogram
compression. In: 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC). [S.l.: s.n.], 2016. p. 1–6.

HUANG, T. W.; WONG, M. D. F. Opentimer: A high-performance timing analysis tool.
In: Proceedings on ICCAD. [S.l.: s.n.], 2015. p. 895–902.

ICCAD - International Conference On Computer Aided Design. 2017. Available from
Internet: <https://iccad.com/>.

INTEL Core i7. 2018. Available from Internet: <https://www.intel.com/content/www/us/
en/products/processors/core/i7-processors.html>.

ISPD - International Symposium on Physical Design. 2017. Available from Internet:
<http://www.ispd.cc/>.

JUNG, J. et al. Owaru: Free space-aware timing-driven incremental placement. In:
Proceedings of the 35th International Conference on Computer-Aided Design. New
York, NY, USA: ACM, 2016. (ICCAD ’16), p. 8:1–8:8. ISBN 978-1-4503-4466-1.

KAHNG, A. B. et al. VLSI Physical Design: From Graph Partitioning to Timing
Closure. 1st. ed. [S.l.]: Springer London, Limited, 2011. ISBN 9789048195916.

KAHNG, A. B.; WANG, Q. A faster implementation of aplace. In: Proceedings of the
2006 International Symposium on Physical Design. New York, NY, USA: ACM, 2006.
(ISPD ’06), p. 218–220. ISBN 1-59593-299-2.

KARYPIS, G.; KUMAR, V. A hypergraph partitioning package. ACM Transactions on
Architecture and Code Optimization - TACO, 01 1998.

KENNINGS, A.; DARAV, N. K.; BEHJAT, L. Detailed placement accounting for
technology constraints. In: 2014 22nd International Conference on Very Large Scale
Integration (VLSI-SoC). [S.l.: s.n.], 2014. p. 1–6. ISSN 2324-8432.

KERNIGHAN, B. W.; LIN, S. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal, v. 49, n. 2, p. 291–307, Feb 1970. ISSN 0005-8580.

KHACHATURYAN, A.; SEMENOVSOVSKAYA, S.; VAINSHTEIN, B. The
thermodynamic approach to the structure analysis of crystals. Acta Crystallographica
Section A, v. 37, n. 5, p. 742–754, Sep 1981.

KIM, M. C. et al. A simplr method for routability-driven placement. In: ICCAD. [S.l.:
s.n.], 2011. p. 67–73. ISSN 1092-3152.

KIM, M. C. et al. Iccad-2015 cad contest in incremental timing-driven placement and
benchmark suite. In: Proceedings of ICCAD. [S.l.: s.n.], 2015. p. 921–926.

KIM, M. C.; HUJ, J.; VISWANATHAN, N. Iccad-2014 cad contest in incremental
timing-driven placement and benchmark suite: Special session paper: Cad contest. In:
ICCAD. [S.l.: s.n.], 2014. p. 361–366. ISSN 1092-3152.

https://iccad.com/
https://www.intel.com/content/www/us/en/products/processors/core/i7-processors.html
https://www.intel.com/content/www/us/en/products/processors/core/i7-processors.html
http://www.ispd.cc/

227

KIM, M. C.; LEE, D. J.; MARKOV, I. L. Simpl: An effective placement algorithm.
IEEE Trans. on CAD, v. 31, n. 1, p. 50–60, Jan 2012. ISSN 0278-0070.

KIM, M. C.; MARKOV, I. L. Complx: A competitive primal-dual lagrange optimization
for global placement. In: DAC Design Automation Conference 2012. [S.l.: s.n.], 2012.
p. 747–755. ISSN 0738-100X.

KIM, M.-C. et al. Maple: Multilevel adaptive placement for mixed-size designs.
In: Proceedings of ISPD. New York, NY, USA: ACM, 2012. p. 193–200. ISBN
978-1-4503-1167-0.

KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. Optimization by simulated
annealing. Science, American Association for the Advancement of Science, v. 220,
n. 4598, p. 671–680, 1983. ISSN 0036-8075.

KLEINHANS, J. M. et al. Gordian: Vlsi placement by quadratic programming and
slicing optimization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, v. 10, n. 3, p. 356–365, Mar 1991. ISSN 0278-0070.

KONG, T. A novel net weighting algorithm for timing-driven placement. In: Proceedings
of ICCAD. [S.l.: s.n.], 2002. p. 172–176. ISSN 1092-3152.

KUHN, H. W. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, Wiley Subscription Services, Inc., A Wiley Company, v. 2, n. 1-2,
p. 83–97, 1955.

KURD, N. A. et al. Westmere: A family of 32nm ia processors. In: 2010 IEEE
International Solid-State Circuits Conference - (ISSCC). [S.l.: s.n.], 2010. p. 96–97.
ISSN 2376-8606.

LAND, A. H.; DOIG, A. G. An automatic method of solving discrete programming
problems. Econometrica, The Econometric Society, v. 28, n. 3, p. pp. 497–520, 1960.
ISSN 00129682.

LANDMAN, B. S.; RUSSO, R. L. On a pin versus block relationship for partitions of
logic graphs. IEEE Transactions on Computers, C-20, n. 12, p. 1469–1479, Dec 1971.
ISSN 0018-9340.

LEE, Y. M.; WU, T.-Y.; CHIANG, P.-Y. A hierarchical bin-based legalizer for
standard-cell designs with minimal disturbance. In: 2010 15th Asia and South Pacific
Design Automation Conference (ASP-DAC). [S.l.: s.n.], 2010. p. 568–573. ISSN
2153-6961.

LI, S.; KOH, C.-K. Mixed integer programming models for detailed placement.
In: Proceedings of the 2012 ACM International Symposium on International
Symposium on Physical Design. New York, NY, USA: ACM, 2012. (ISPD ’12), p.
87–94. ISBN 978-1-4503-1167-0.

LI, S.; KOH, C.-k. Mip-based detailed placer for mixed-size circuits. In: Proceedings
of the 2014 on International Symposium on Physical Design. New York, NY, USA:
ACM, 2014. (ISPD ’14), p. 11–18. ISBN 978-1-4503-2592-9.

228

LIN, T.; CHU, C. Polar 2.0: An effective routability-driven placer. In: 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.], 2014. p. 1–6.
ISSN 0738-100X.

LIN, T. et al. Polar: Placement based on novel rough legalization and refinement. In:
2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
[S.l.: s.n.], 2013. p. 357–362. ISSN 1092-3152.

LIN, Y. et al. Mrdp: Multiple-row detailed placement of heterogeneous-sized cells
for advanced nodes. In: Proceedings of the 35th International Conference on
Computer-Aided Design. New York, NY, USA: ACM, 2016. (ICCAD ’16), p. 7:1–7:8.
ISBN 978-1-4503-4466-1.

LIU, W. H. et al. Nctu-gr 2.0: Multithreaded collision-aware global routing with
bounded-length maze routing. TCAD, v. 32, n. 5, p. 709–722, May 2013. ISSN
0278-0070.

LIVRAMENTO, V. et al. Exploiting non-critical steiner tree branches for post-placement
timing optimization. In: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. Piscataway, NJ, USA: IEEE Press, 2015. (ICCAD ’15), p.
528–535. ISBN 978-1-4673-8389-9.

LIVRAMENTO, V. et al. Clock-tree-aware incremental timing-driven placement.
ACM Trans. Des. Autom. Electron. Syst., ACM, New York, NY, USA, v. 21, n. 3, p.
38:1–38:27, abr. 2016. ISSN 1084-4309.

LIVRAMENTO, V. S. et al. A hybrid technique for discrete gate sizing based on
lagrangian relaxation. ACM Trans. Des. Autom. Electron. Syst., ACM, New York, NY,
USA, v. 19, n. 4, p. 40:1–40:25, aug. 2014. ISSN 1084-4309.

LU, J. et al. eplace: Electrostatics based placement using nesterov’s method. In: 2014
51st ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.], 2014.
p. 1–6. ISSN 0738-100X.

LUO, T.; PAN, D. Z. Dplace2.0: A stable and efficient analytical placement based on
diffusion. In: 2008 Asia and South Pacific Design Automation Conference. [S.l.: s.n.],
2008. p. 346–351. ISSN 2153-6961.

MALHOTRA, V.; KUMAR, M.; MAHESHWARI, S. An o(|v|3) algorithm for finding
maximum flows in networks. Information Processing Letters, v. 7, n. 6, p. 277 – 278,
1978. ISSN 0020-0190.

MARKOV, I. L.; HU, J.; KIM, M. C. Progress and challenges in vlsi placement research.
Proceedings of the IEEE, v. 103, n. 11, p. 1985–2003, Nov 2015. ISSN 0018-9219.

MARTINS, M. et al. Open cell library in 15nm freepdk technology. In: Proceedings of
the 2015 Symposium on International Symposium on Physical Design. New York,
NY, USA: ACM, 2015. (ISPD ’15), p. 171–178. ISBN 978-1-4503-3399-3.

MONTEIRO, J. et al. Routing-aware incremental timing-driven placement. In:
Proceedings of ISVLSI. [S.l.: s.n.], 2016. p. 290–295.

229

MONTEIRO, J. et al. An analytical timing-driven algorithm for detailed placement. In:
2015 IEEE 6th Latin American Symposium on Circuits Systems (LASCAS). [S.l.:
s.n.], 2015. p. 1–4.

MONTEIRO, J.; JOHANN, M.; BEHJAT, L. An optimized cost flow algorithm to spread
cells in detailed placement. ACM Transactions on Design Automation of Electronic
Systems (TODAES), ACM, New York, NY, USA, v. 24, n. 3, p. 35:1–35:16, abr. 2019.
ISSN 1084-4309. Available from Internet: <http://doi.acm.org/10.1145/3317575>.

NAGEL, L. W.; PEDERSON, D. SPICE (Simulation Program with Integrated
Circuit Emphasis). [S.l.], 1973. Available from Internet: <http://www2.eecs.berkeley.
edu/Pubs/TechRpts/1973/22871.html>.

NAM, G.; CONG, J. Modern Circuit Placement: Best Practices and Results. [S.l.]:
Springer US, 2007. (Integrated Circuits and Systems). ISBN 9780387687391.

NANGATE FreePDK45 Generic Open Cell Library. 2017. Available from Internet:
<http://projects.si2.org/openeda.si2.org/projects/nangatelib>.

NETTO, R. et al. Exploiting parallelism to speed up circuit legalization. In: 2016 IEEE
International Conference on Electronics, Circuits and Systems (ICECS). [S.l.: s.n.],
2016. p. 624–627.

NETTO, R. et al. Speeding up incremental legalization with fast queries to
multidimensional trees. In: 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). [S.l.: s.n.], 2016. p. 36–41.

ODABASIOGLU, A.; CELIK, M.; PILEGGI, L. T. Prima: passive reduced-order
interconnect macromodeling algorithm. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, v. 17, n. 8, p. 645–654, Aug 1998. ISSN
0278-0070.

ORLIN, J. B. Max flows in o(nm) time, or better. In: Proceedings of the Forty-fifth
Annual ACM Symposium on Theory of Computing. New York, NY, USA: ACM,
2013. (STOC ’13), p. 765–774. ISBN 978-1-4503-2029-0. Available from Internet:
<http://doi.acm.org/10.1145/2488608.2488705>.

PADBERG, M.; RINALDI, G. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM Rev., v. 33, n. 1, p. 60–100,
feb. 1991.

PAN, M.; VISWANATHAN, N.; CHU, C. An efficient and effective detailed placement
algorithm. In: Proceedings of ICCAD. [S.l.: s.n.], 2005. p. 48–55. ISSN 1092-3152.

PAPA, D. A. et al. Rumble: An incremental timing-driven physical-synthesis
optimization algorithm. TCAD, v. 27, n. 12, p. 2156–2168, Dec 2008. ISSN 0278-0070.

PILLAGE, L. T.; ROHRER, R. A. Asymptotic waveform evaluation for timing analysis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
v. 9, n. 4, p. 352–366, Apr 1990. ISSN 0278-0070.

http://doi.acm.org/10.1145/3317575
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
http://projects.si2.org/openeda.si2.org/projects/nangatelib
http://doi.acm.org/10.1145/2488608.2488705

230

POPOVYCH, S. et al. Density-aware detailed placement with instant legalization. In:
2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.],
2014. p. 1–6. ISSN 0738-100X.

PUGET, J. C. et al. Jezz: An effective legalization algorithm for minimum displacement.
In: Proceedings of SBCCI. [S.l.: s.n.], 2015. p. 19:1–19:5.

QUINN JR., N. R. The placement problem as viewed from the physics of classical
mechanics. In: Proceedings of DAC. Piscataway, NJ, USA: IEEE Press, 1975. (DAC
’75), p. 173–178.

RABAEY, J.; CHANDRAKASAN, A.; NIKOLIC, B. Digital integrated circuits: a
design perspective. [S.l.]: Pearson Education, 2003. (Prentice Hall electronics and VLSI
series).

REIMANN, T. J. Cell selection to minimize power in high-performance industrial
microprocessor designs. Thesis (PhD) — Universidade Federal do Rio Grande do Sul,
08 2016.

REN, H.; PAN, D. Z.; KUNG, D. S. Sensitivity guided net weighting for placement-
driven synthesis. IEEE Trans. on CAD, v. 24, n. 5, p. 711–721, May 2005.

ROY, J. A.; MARKOV, I. L. Eco-system: Embracing the change in placement. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 26,
n. 12, p. 2173–2185, Dec 2007. ISSN 0278-0070.

ROY, J. A.; MARKOV, I. L. Eco-system: Embracing the change in placement. In: 2007
Asia and South Pacific Design Automation Conference. [S.l.: s.n.], 2007. p. 147–152.
ISSN 2153-6961.

SAXENA, P.; SHELAR, R.; SAPATNEKAR, S. Routing Congestion in VLSI Circuits:
Estimation and Optimization. [S.l.]: Springer US, 2007. (Integrated Circuits and
Systems). ISBN 9780387485508.

SIPSER, M. Introduction to the Theory of Computation. 1st. ed. [S.l.]: International
Thomson Publishing, 1996. ISBN 053494728X.

SPINDLER, P.; JOHANNES, F. M. Fast and accurate routing demand estimation for
efficient routability-driven placement. In: 2007 Design, Automation Test in Europe
Conference Exhibition. [S.l.: s.n.], 2007. p. 1–6. ISSN 1530-1591.

SPINDLER, P.; SCHLICHTMANN, U.; JOHANNES, F. M. Abacus: Fast legalization
of standard cell circuits with minimal movement. In: Proceedings of the 2008
International Symposium on Physical Design. New York, NY, USA: ACM, 2008.
(ISPD ’08), p. 47–53. ISBN 978-1-60558-048-7.

SPINDLER, P.; SCHLICHTMANN, U.; JOHANNES, F. M. Kraftwerk2: A fast
force-directed quadratic placement approach using an accurate net model. IEEE Trans.
on CAD, v. 27, n. 8, p. 1398–1411, Aug 2008.

SUN, W. J.; SECHEN, C. Efficient and effective placement for very large circuits. In:
Proceedings of ICCAD. [S.l.: s.n.], 1993. p. 170–177.

231

SWARTZ, W.; SECHEN, C. Timing driven placement for large standard cell circuits.
In: Proceedings of DAC. New York, NY, USA: ACM, 1995. p. 211–215. ISBN
0-89791-725-1.

TABRIZI, A. F. et al. A detailed routing-aware detailed placement technique. In:
Proceedings of ISVLSI. [S.l.: s.n.], 2015. p. 38–43. ISSN 2159-3469.

TAU - ACM International Workshop on Timing Issues in the Specification and Synthesis
of Digital Systems. 2018. Available from Internet: <www.tauworkshop.com>.

TSAY, R.-S.; KOEHL, J. An analytic net weighting approach for performance
optimization in circuit placement. In: Proceedings of DAC. [S.l.: s.n.], 1991. p.
620–625.

VISWANATHAN, N.; CHU, C. C. N. Fastplace: efficient analytical placement using cell
shifting, iterative local refinement,and a hybrid net model. IEEE Transactions on CAD
of Integrated Circuits and Systems, v. 24, n. 5, p. 722–733, May 2005.

VISWANATHAN, N. et al. RQL: Global placement via relaxed quadratic spreading and
linearization. In: Proceedings of DAC. [S.l.: s.n.], 2007. p. 453–458.

VISWANATHAN, N. et al. ITOP: Integrating timing optimization within placement. In:
Proceedings of ISPD. [S.l.: s.n.], 2010. p. 83–90.

VYGEN, J. Algorithm for large-scale flat placement. In: Proceedings of the 34th
Design Automation Conference. [S.l.: s.n.], 1997. p. 746–751. ISSN 0738-100X.

WANG, C. H. et al. An effective legalization algorithm for mixed-cell-height standard
cells. In: 2017 22nd Asia and South Pacific Design Automation Conference
(ASP-DAC). [S.l.: s.n.], 2017. p. 450–455.

WANG, M.; YANG, X.; SARRAFZADEH, M. Dragon2000: standard-cell placement
tool for large industry circuits. In: IEEE/ACM International Conference on Computer
Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat.
No.00CH37140). [S.l.: s.n.], 2000. p. 260–263. ISSN 1092-3152.

WANG, Q. B.; LILLIS, J.; SANYAL, S. An lp-based methodology for improved
timing-driven placement. In: Proceedings of ASP-DAC. [S.l.: s.n.], 2005. v. 2, p.
1139–1143 Vol. 2. ISSN 2153-6961.

WARD, S. I. et al. Structure-aware placement techniques for designs with datapaths.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
v. 32, n. 2, p. 228–241, Feb 2013. ISSN 0278-0070.

WEI, Y. et al. Glare: Global and local wiring aware routability evaluation. In: DAC
Design Automation Conference 2012. [S.l.: s.n.], 2012. p. 768–773. ISSN 0738-100X.

WEST, D. B. Introduction to Graph Theory. [S.l.]: Prentice Hall, 2001. (Featured
Titles for Graph Theory Series). ISBN 9780130144003.

WU, G.; CHU, C. Detailed placement algorithm for vlsi design with double-row height
standard cells. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 35, n. 9, p. 1569–1573, Sept 2016. ISSN 0278-0070.

www.tauworkshop.com

232

WU, G.; CHU, C. Two approaches for timing-driven placement by lagrangian relaxation.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
PP, n. 99, p. 1–1, 2017. ISSN 0278-0070.

ZHANG, Y.; CHU, C. Crop: Fast and effective congestion refinement of placement. In:
Proceedings of the 2009 International Conference on Computer-Aided Design. New
York, NY, USA: ACM, 2009. (ICCAD ’09), p. 344–350. ISBN 978-1-60558-800-1.

ZHANG, Y.; CHU, C. Fast and effective placement refinement for routability. IEEE
Trans. on VLSI Systems, v. 21, n. 9, p. 1751–1756, Sept 2013. ISSN 1063-8210.

ZHAO, W.; CAO, Y. New generation of predictive technology model for sub-45nm
design exploration. In: 7th International Symposium on Quality Electronic Design
(ISQED’06). [S.l.: s.n.], 2006. p. 6 pp.–590. ISSN 1948-3287.

ZHOU, Q.; HU, J.; ZHOU, Q. An effective iterative density aware detailed placement
algorithm. In: Proceedings of ISCAS. [S.l.: s.n.], 2014. p. 1444–1447. ISSN 0271-4302.

233

APPENDIX A — EXTRA EXPERIMENTAL RESULTS OF THE PROPOSED

NETWORK FLOW-BASED LEGALIZATION ALGORITHM

A.1 Global Placement Results

In this Section, complementary results of the global placement solutions are pre-

sented. The number of bins and the distribution of bins by bin types are given in this

Section.

A.1.1 RePlace Solution from the 2006 ISPD Benchmarks

In Table A.1, the distribution of bins is presented. In column 1, circuit acronyms

are given. In columns 2 to 6, the number of valid bins with the highest 1%, 2%, 5%, 10%,

and 20% area density violation are presented, respectively. The total number of overfilled

(OF) bins and free of area density violation (Free OF) are given in columns 7 and 8,

respectively. In columns 9 and 10, the number of NPA and invalid bins are presented,

respectively. The total number of bins is presented in Column 11.

Table A.1: Distribution of bins with ABU violation (ABU 1% to 20%), OF bins, bins free
of OF, NPA, invalid and total bins.

Circuit
Number of Bins

Area Density Violation
OF Free

OF NPA Invalid Total
1% 2% 5% 10% 20%

AD1i 63 126 317 634 1,268 2,780 3,562 983 3,459 9,801
AD2i 76 153 383 767 1,535 2,310 5,367 1,887 9,353 17,030
AD3i 221 443 1,109 2,219 4,439 4,955 17,241 4,948 24,244 46,440
AD4i 288 577 1,443 2,887 5,001 5,001 23,875 3,611 17,564 46,440
BB1i 85 170 426 852 1,705 2,816 5,710 368 1,275 9,801
BB2i 215 431 1,078 2,157 4,314 5,439 16,135 2,112 8,702 30,276
BB3i 620 1,241 3,103 6,206 12,413 19,095 42,970 4,891 27,635 89,700
AD1 63 126 317 634 1,268 2,853 3,489 1,035 3,459 9,801
AD2 76 153 383 767 1,535 2,466 5,211 1,950 9,353 17,030
AD3 221 443 1,109 2,219 4,439 5,189 17,007 4,611 24,244 46,440
AD4 288 577 1,443 2,887 5,294 5,294 23,582 3,557 17,564 46,440
AD5 234 468 1,170 2,340 4,680 10,923 12,478 5,947 23,039 46,440
BB1 85 170 426 852 1,705 2,915 5,611 361 1,275 9,801
BB2 215 431 1,078 2,157 4,314 5,746 15,828 2,122 8,702 30,276
BB4 620 1,241 3,103 6,206 12,413 21,626 40,439 6,396 27,635 89,700
NB5 338 676 1,691 3,382 6,764 16,596 17,225 6,818 22,111 55,932
NB6 510 1,021 2,552 5,105 10,210 11,011 40,040 4,062 15,255 66,306
NB7 722 1,445 3,612 7,225 14,450 20,041 52,210 12,212 58,431 130,682
Avg. 274 550 1,375 2,750 5,430 8,170 19,332 3,771 16,850 44,352

234

On average, only 274 bins (3.3%) of the overfilled bins (OF) have 11% of the

area density utilization violation. On average, 30% and 18% of bins have area density

violation compared to the number of valid bins and the total number of bins, respectively.

Cells are placed inside 8.5% of invalid bins, on average. On average, bins free of OF are

43.6% of the total number of bins.

A.1.2 FastPlace Solution from the 2006 ISPD Benchmarks

In Table A.2, the distribution of ABU bins is presented. Bins are classified into

ABU bins with the highest violation in area density utilization of 1%, 2%, 5%, 10% and

20%, overflowed bins (OF), free of area density violation (Free OF), NPA bins, invalid

bins, and total bins. In column 1, circuit acronyms are given. In columns 2 to 6, the num-

ber of bins with ABU 1%, ABU 2%, ABU 5%, ABU 10%, and ABU 20% of overfilled

bins are presented, respectively. The total number of bins with the overfilled area (OF)

and free of the overfilled area (free OF) are given in columns 7 and 8, respectively. In

columns 9 and 10, the number of NPA bins and invalid bins are presented, respectively.

The total number of bins is presented in column 11.

On average, only 279 of the valid bins have ABU 1% area density violation. On

average, 13% of the total bins have an area density violation. NPA bins are 5% of the total

ABU bins, on average. On average, 43% of the total bins are free of the ABU violation.

A.1.3 Eh?Placer Solution from the 2006 ISPD Benchmarks

In Table A.3, distribution of ABU bins based on area density violation, invalid

ABU bins and total ABU bins are presented. In column 1, acronyms of benchmarks are

given. In columns 2 to 6, the number of bins with the highest ABU 1%, ABU 2%, ABU

5%, ABU 10%, and ABU 20% are presented, respectively. The total number of bins

with area density violation (OF) and free of area density violation (Free OF) are given in

columns 7 and 8, respectively. In columns 9 and 10, the number of NPA bins and invalid

bins are presented, respectively. The total number of ABU bins is presented in column

11.

In the Eh?Placer placement solutions, 10% of valid bins have area density viola-

tion, on average. On average, NPA bins are 4.3% of the total bins. The total of overfilled

235

Table A.2: The number of bins with area density violations, free of overfill and invalid
ABU. The 2006 ISPD contest benchmarks are placed with the FastPlace global placement
algorithm.

Circuit
Number of Bins

Area Density Violation
OF Free

OF NPA Invalid Total
1% 2% 5% 10% 20%

AD1i 63 126 317 634 1,268 1,859 4,483 669 3,459 9,801
AD2i 76 153 383 767 1,172 1,172 6,505 1,134 9,353 17,030
AD3i 221 443 1,109 2,219 3,088 3,088 19,108 3,699 24,244 46,440
AD4i 288 577 1,443 2,212 2,212 2,212 26,664 1,490 17,564 46,440
BB1i 85 170 426 852 1,213 1,213 7,313 206 1,275 9,801
BB2i 215 431 1,078 2,157 2,609 2,609 18,965 890 8,702 30,276
BB4i 620 1,241 3,103 6,206 8,659 8,659 53,406 1,697 27,635 89,700
AD1 63 126 317 634 1,268 2,775 3,567 518 3,459 9,801
AD2 76 153 383 767 1,535 2,334 5,343 1,866 9,353 17,030
AD3 221 443 1,109 2,219 4,439 5,521 16,675 4,826 24,244 46,440
AD4 288 577 1,443 2,887 4,947 4,947 23,929 2,700 17,564 46,440
AD5 234 468 1,170 2,340 4,680 10,588 12,813 9,749 23,039 46,440
BB1 85 170 426 852 1,705 2,860 5,666 311 1,275 9,801
BB2 215 431 1,078 2,157 4,314 5,992 15,582 1,366 8,702 30,276
BB4 620 1,241 3,103 6,206 12,413 20,637 41,428 4,133 27,635 89,700
NB3 426 852 1,695 1,695 1,695 1,695 40,954 206 124,751 167,400
NB4 207 415 1,038 2,077 4,155 8,322 12,456 2,778 7,952 28,730
NB5 338 676 1,691 3,382 6,764 16,946 16,875 5,995 22,111 55,932
NB6 510 1,021 2,552 5,105 9,432 9,432 41,619 2,036 15,255 66,306
NB7 722 1,445 3,612 7,225 14,157 14,157 58,094 4,615 58,431 130,682
Avg. 279 558 1,374 2,630 4,586 6,351 21,572 2,544 21,800 49,723

Table A.3: The total number of bins are presented. These bins are classified into area
density violation, free of overfill area and invalid types. In the 2006 ISPD contest bench-
marks, Newblue circuits from 3 to 7 have been placed with the Eh?Placer global place-
ment algorithm.

Circuit
Number of Bins

Area Density Violation
OF Free

OF NPA Invalid Total
1% 2% 5% 10% 20%

NB3 342 685 1,317 1,317 1,317 1,317 32,956 1,828 99,647 133,920
NB4 249 499 1,249 2,321 2,321 2,321 22,664 2,801 9,355 34,340
NB5 478 957 2,394 4,789 6,032 6,032 41,858 5,112 36,008 83,898
NB6 607 1,214 3,035 5,375 5,375 5,375 55,344 2,955 18,745 79,464
NB7 1,038 2,077 5,193 10,387 11,031 11,031 92,846 9,898 91,965 195,842
Avg. 543 1,086 2,638 4,838 5,215 5,215 49,134 4,519 51,144 105,493

bins is equal to the number of bins which have ABU 20% area density violation. There-

fore, area density violation is concentrated in a few bins.

236

A.1.4 Eh?Placer Solution from the 2015 ICCAD Benchmarks

In Table A.4, distribution of bins based on area density violation, invalid bins and

total bins are presented. In column 1, circuit acronyms are given. In columns 2 to 6, the

number of bins that have ABU 1%, ABU 2%, ABU 5%, ABU 10%, and ABU 20% area

density violation are presented, respectively. The total number of bins with area density

violation (OF) is given in column 7. In column 8, the total number of bins free of area

density violation (Free OF) are shown. In columns 9 and 10, the number of NPA bins and

invalid bins are presented, respectively. The total number of bins is presented in column

11. In column 8, the total number of bins free of area density utilization is shown. In

column 9, the total number of invalid bins to compute ABU are presented. A bin is valid

to compute ABU only if it has more than 20% of its area available to place movable cells.

Table A.4: The total number of bins are presented. These bins are classified into area
density violation, free of overfill area and invalid types. The 2015 ICCAD contest circuit
benchmarks are placed with the Eh?Placer global placement algorithm.

Circuit
Number of Bins

Area Density Violation
OF Free

OF NPA Invalid Total
1% 2% 5% 10% 20%

SB1 586 1,172 1,267 1,267 1,267 1,267 57,379 3,466 54,574 113,220
SB3 636 1,272 3,180 6,361 10,218 10,218 53,396 3,152 65,741 129,355
SB4 444 888 1,420 1,420 1,420 1,420 43,024 3,511 30,996 75,440
SB5 643 990 990 990 990 990 63,313 5,990 107,388 171,691
SB7 856 1,420 1,420 1,420 1,420 1,420 84,266 4,865 52,650 138,336

SB10 255 255 255 255 255 255 97,340 4,530 107,921 205,516
SB16 443 886 925 925 925 925 43,401 2,231 28,707 73,033
SB18 395 458 458 458 458 458 39,095 1,535 20,147 59,700
Avg. 532 918 1,239 1,637 2,119 2,119 60,152 3,660 58,516 120,786

A.2 Legalization Experimental Results

A.2.1 Legalization Results in the RePlace placement solutions from the 2006 ISPD

contest benchmarks

In Tables A.5 and A.6, distribution of the total number and percentage of cells by

row height displacement are presented, respectively. Cell displacements are ranked from

0 (no displacement) to 5 or higher row heights. In column 1, row height displacements

are given. In columns 2 to 19 of Tables A.5 and A.6, the total number and percentage

of cell displacements in row heights are presented. Circuits, which have the high-density

237

utilization, have a lower number of legalized cells up to one-row height displacement.

On average, inflated circuits (Adaptec 1 to 4 and Bigblue 1, 2, and 3) have twice more

cells legalized with the cell displacement of two or more row heights. The maximum

area density utilization which impacts ABU (Table 7.3) has a strong correlation with cell

displacement (Table A.6). Circuits with high ABU have higher cell displacement.

A.2.2 Legalization Results in the FastPlace placement solutions from the 2006 ISPD

contest benchmarks

In Tables A.7 and A.8, the total number of cells and percentage of cells by row

height displacement are presented, respectively. In column 1, row height displacements

are given. Cell displacements are ranked from 0 (no displacement) to 5 or higher row

heights. In this column, left and right numbers indicate the minimum and maximum row

height displacement for each range, respectively. In columns 2 to 19, the total number of

cells by row height displacement (Table A.7) and percentage of cells by row height dis-

placement (Table A.8) are presented. More cells are legalized with high cell displacement

in circuits that have high-density utilization of fixed cells and high maximum NPA. In

these circuits, cell displacement is evenly distributed up to two-row heights.

238Table A.5: Distribution of total cells by row height displacement for circuits from the 2006 ISPD benchmarks.

Disp.
The number of Cells by Row Height Displacement (×103)

AD1i AD2i AD3i AD4i BB1i BB2i BB4i AD1 AD2 AD3 AD4 AD5 BB1 BB2 BB4 NB5 NB6 NB7
No 3.2 3.2 6.4 7.8 4.7 8.3 36.5 8.6 8.3 17.0 18.9 34.5 11.0 20.6 82.4 44.2 25.6 55.3
0-1 123.9 137.3 256.6 287.9 170.7 317.0 1446.0 171.6 197.6 362.4 398.8 706.9 228.9 439.6 1889.1 993.1 826.7 1814.5
1-2 69.9 85.4 147.6 160.3 87.2 167.4 604.1 29.0 42.5 63.5 69.7 92.0 36.2 68.1 185.9 176.1 336.9 544.8
2-3 11.2 19.2 26.6 28.3 12.1 28.9 65.2 0.9 2.8 2.5 2.8 2.4 1.0 3.2 3.7 5.8 45.1 43.8
3-4 1.4 3.8 4.8 4.3 1.3 5.8 8.1 0.1 0.5 0.6 0.5 0.5 0.1 0.5 0.7 1.1 6.5 5.4
4-5 0.4 1.1 1.8 1.3 0.4 2.2 2.5 0.1 0.3 0.4 0.4 0.5 0.1 0.3 0.6 0.8 1.9 2.2
5+ 0.8 4.5 7.1 4.8 1.2 5.1 6.8 0.6 2.6 4.5 3.5 5.6 0.3 2.4 6.7 7.0 5.4 15.4

Table A.6: Distribution of cells by row height displacement for circuits from the 2006 ISPD benchmarks.

Disp.
Cell Distribution by Disp. (%)

AD1i AD2i AD3i AD4i BB1i BB2i BB4i AD1 AD2 AD3 AD4 AD5 BB1 BB2 BB4 NB5 NB6 NB7
No 1.5 1.3 1.4 1.6 1.7 1.6 1.7 4.1 3.3 3.8 3.8 4.1 4.0 3.9 3.8 3.6 2.0 2.2
0-1 58.8 54.0 56.9 58.2 61.5 59.3 66.7 81.3 77.6 80.4 80.6 83.9 82.4 82.2 87.1 80.9 66.2 73.1
1-2 33.1 33.6 32.7 32.4 31.4 31.3 27.9 13.7 16.7 14.1 14.1 10.9 13.0 12.7 8.6 14.3 27.0 22.0
2-3 5.3 7.5 5.9 5.7 4.4 5.4 3.0 0.4 1.1 0.6 0.6 0.3 0.4 0.6 0.2 0.5 3.6 1.8
3-4 0.7 1.5 1.1 0.9 0.5 1.1 0.4 0.1 0.2 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.5 0.2
4-5 0.2 0.4 0.4 0.3 0.1 0.4 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.2 0.1
5+ 0.4 1.7 1.6 1.0 0.4 1.0 0.3 0.3 1.0 1.0 0.7 0.7 0.1 0.4 0.3 0.6 0.4 0.6

239

Table A.7: Distribution of total cells by row height displacement

Disp.
Total of Cells by Row Height Displacement of Each Circuit (×103)

AD1i AD2i AD3i AD4i BB1i BB2i BB4i AD1 AD2 AD3 AD4 AD5 BB1 BB2 BB4 NB3 NB4 NB5 NB6 NB7
No 12.9 28.6 43.0 79.2 43.5 73.3 304.4 46.3 51.4 71.1 121.6 107.3 80.0 118.8 462.1 142.4 148.9 174.4 204.7 434.8
0-1 40.6 70.8 77.6 128.0 78.3 137.5 693.0 68.0 90.3 119.3 168.7 201.1 101.9 188.7 847.3 134.9 215.1 365.5 417.1 930.5
1-2 57.8 77.1 101.5 158.4 91.7 174.5 693.1 62.9 66.4 108.3 131.3 159.7 69.9 156.8 532.2 150.6 165.5 258.1 356.1 692.1
2-3 34.0 32.9 50.1 62.0 33.3 72.2 248.5 19.0 19.5 39.1 32.3 56.4 15.0 41.8 134.4 36.8 46.1 84.7 115.2 211.3
3-4 19.3 14.7 26.7 26.3 12.6 31.0 95.4 6.7 6.9 18.6 10.8 27.5 4.3 13.1 46.8 10.2 16.8 39.2 44.8 76.3
4-5 11.1 7.6 16.7 13.2 5.7 15.2 43.9 2.9 3.5 11.1 5.0 17.5 1.8 5.3 23.7 3.6 8.3 24.8 22.9 35.3
5+ 35.2 22.8 135.3 27.6 12.5 31.1 90.9 5.1 16.6 83.5 25.0 273.1 4.7 10.3 122.7 4.5 42.2 281.6 87.4 101.0

Table A.8: Distribution of cells by row height displacement for circuits from the 2006 ISPD benchmarks.

Disp.
Cell Distribution by displacement in terms of row height (%)

AD1i AD2i AD3i AD4i BB1i BB2i BB4i AD1 AD2 AD3 AD4 AD5 BB1 BB2 BB4 NB3 NB4 NB5 NB6 NB7
No 6.1 11.2 9.5 16.0 15.7 13.7 14.0 22.0 20.2 15.8 24.6 12.7 28.8 22.2 21.3 29.5 23.2 14.2 16.4 17.5
0-1 19.2 27.8 17.2 25.9 28.2 25.7 31.9 32.2 35.5 26.5 34.1 23.9 36.7 35.3 39.1 27.9 33.5 29.8 33.4 37.5
1-2 27.4 30.3 22.5 32.0 33.0 32.6 32.0 29.8 26.1 24.0 26.5 19.0 25.2 29.3 24.5 31.2 25.7 21.0 28.5 27.9
2-3 16.1 12.9 11.1 12.5 12.0 13.5 11.5 9.0 7.7 8.7 6.5 6.7 5.4 7.8 6.2 7.6 7.2 6.9 9.2 8.5
3-4 9.1 5.8 5.9 5.3 4.6 5.8 4.4 3.2 2.7 4.1 2.2 3.3 1.6 2.4 2.2 2.1 2.6 3.2 3.6 3.1
4-5 5.3 3.0 3.7 2.7 2.0 2.8 2.0 1.4 1.4 2.5 1.0 2.1 0.6 1.0 1.1 0.7 1.3 2.0 1.8 1.4
5+ 16.7 9.0 30.0 5.6 4.5 5.8 4.2 2.4 6.5 18.5 5.1 32.4 1.7 1.9 5.7 0.9 6.6 22.9 7.0 4.1

240

A.2.3 Legalization Results in the Eh?Placer placement solutions from the 2006 ISPD

contest benchmarks

In Tables A.9 and A.10, the total number and percentage of cells by row height

displacement are presented, respectively. Cell displacements are ranked from 0 (no dis-

placement) to 5 or higher row heights. In column 1, row height displacements are given.

In columns 2 to 6, the total number and percentage of cell displacements given in row

heights are presented.

Table A.9: Distribution of total cells by row height displacement for Newblue 3 to 7
circuits from the 2006 ISPD benchmarks.

Disp.
Cell Displacement Distribution (×103)
NB3 NB4 NB5 NB6 NB7

No 8.0 8.4 10.0 12.3 33.7
0-1 226.0 334.8 622.5 647.7 1340.7
1-2 138.2 194.1 377.3 401.7 745.1
2-3 53.8 57.2 114.8 112.3 202.4
3-4 24.9 21.3 42.7 37.3 68.9
4-5 13.9 10.2 20.4 16.4 30.3
5+ 18.0 16.7 40.4 20.4 60.2

Table A.10: Distribution of cells by row height displacement for Newblue 3 to 7 circuits
from the 2006 ISPD benchmarks.

Disp.
Cell Distribution by Disp. (%)

NB3 NB4 NB5 NB6 NB7
No 1.7 1.3 0.8 1.0 1.4
0-1 46.8 52.1 50.7 51.9 54.0
1-2 28.6 30.2 30.7 32.2 30.0
2-3 11.1 8.9 9.3 9.0 8.2
3-4 5.2 3.3 3.5 3.0 2.8
4-5 2.9 1.6 1.7 1.3 1.2
5+ 3.7 2.6 3.3 1.6 2.4

A.2.4 Legalization Results in the Eh?Placer placement solutions from the 2015 ICCAD

contest benchmarks

In Tables A.11 and A.12, the total number and percentage of cells by row height

displacement are presented, respectively. Cell displacements are ranked from 0 (no dis-

placement) to 5 or higher row heights. In column 1, row height displacements are given.

In columns 2 to 9, the total number and percentage of cell displacements in terms of row

241

heights are presented. More cells are legalized with high cell displacement in circuits that

have high-density utilization of fixed cells and high maximum NPA.

Table A.11: Distribution of total cells by row height displacement for circuits from the
2015 ICCAD benchmarks.

Disp.
Total of Cells by Row Height Disp. (×103)

SB1 SB3 SB4 SB5 SB7 SB10 SB16 SB18
No 0.2 0.0 0.1 0.1 0.1 0.1 0.0 0.1
0-1 878.9 463.0 517.5 803.1 1334.7 1418.0 683.6 565.1
1-2 264.6 383.6 196.2 212.5 467.4 379.7 245.8 164.9
2-3 40.5 171.7 45.5 35.7 79.7 56.6 38.9 24.2
3-4 9.9 75.1 14.6 11.6 18.9 10.8 6.8 5.8
4-5 4.2 37.8 6.4 6.1 7.9 3.7 2.2 2.6
5+ 7.7 80.0 11.9 15.8 18.0 5.4 4.1 4.7

Table A.12: Percentage of cell distribution by row height displacement for circuits from
the 2015 ICCAD benchmarks.

Disp.
Cell Distribution by Disp. (%)

SB1 SB3 SB4 SB5 SB7 SB10 SB16 SB18
No 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0-1 72.9 38.2 65.3 74.0 69.3 75.7 69.7 73.6
1-2 21.9 31.7 24.8 19.6 24.3 20.3 25.0 21.5
2-3 3.4 14.2 5.7 3.3 4.1 3.0 4.0 3.2
3-4 0.8 6.2 1.8 1.1 1.0 0.6 0.7 0.8
4-5 0.3 3.1 0.8 0.6 0.4 0.2 0.2 0.3
5+ 0.6 6.6 1.5 1.5 0.9 0.3 0.4 0.6

242

243

APPENDIX B — ELECTRONIC DESIGN AUTOMATION CONTESTS

EDA contests provide an environment for the academy and industry to collabo-

rate and achieve innovations in challenging and complex design problems (DARAV et

al., 2015). Over the past twelve years, a set of EDA contests were promoted by ISPD

(ISPD. . . , 2017), ICCAD (ICCAD. . . , 2017) and International Workshop on Power And

Timing Modeling, Optimization and Simulation (PATMOS)/International Workshop on

Timing Issues in the Specification and Synthesis of Digital Systems (TAU) (TAU. . . ,

2018) conferences. These contests mainly address physical synthesis subjects, such as

placement, routing, CTS, timing closure, and so forth. Usually, leading industrial compa-

nies propose the contest topic and organize it.

In each contest, the specification of a relevant EDA problem, circuit benchmarks,

and evaluation metric are provided. Usually, each contest edition takes up to 9 months

from the subject announcement to the submission of the final tool or solution.

In Appendix B.2, a detailed list of contest subjects promoted by ISPD, ICCAD

and PATMOS/TAU is presented. The focus of the ISPD and ICCAD contests is on the

physical synthesis of the ASICs. Recently, ISPD promoted two contest editions targeted

to FPGAs placement optimization. PATMOS/TAU focuses is on power and timing mod-

eling, optimization and simulation for ASICs.

B.1 Circuit Benchmarks

Benchmarks provide a standard field to measure and compare algorithms develop-

ment (NAM; CONG, 2007). However, one may focus on tuning the algorithm to provide

the best solution instead of focusing on a general purpose solution. Therefore, the pro-

posed algorithm becomes problematic to provide a proper solution for any circuits.

On the other hand, usually, the contest benchmarks are limited to the proposed

EDA problem. It is very uncommon to have benchmarks that provide extra data. There-

fore, there is a lack of circuits that comprise the entire physical synthesis flow, i.e., bench-

marks have only the required files for the target optimization problem.

In the nineties, the best known benchmarks were International Symposium on

Circuits and Systems (ISCAS)-85 and ISCAS-89 that are available at (ACM/SIGDA. . . ,

2017) and ISPD-98 (ALPERT; MEHTA; SAPATNEKAR, 2008). In 2004, (CHANG et

al., 2004) built Placement Examples with Known Optimal (PEKO) circuits where the opti-

244

mum placement solutions are know. They have evaluated Dragon (WANG; YANG; SAR-

RAFZADEH, 2000), Capo (CALDWELL; KAHNG; MARKOV, 2000), mPL (CHAN et

al., 2000), mPG (CHANG; CONG; PAN, 2002) and QPlace (ENVISIA. . . , 1999) place-

ment algorithms using PEKO. Evaluated placement algorithms had significant variations

in the placement solution and an enormous gap in the optimum solution. On the other

hand, PEKO benchmarks have only local connections and may not reflect the structures

found in real circuits. The results from (CHANG et al., 2004) have highlighted the ur-

gency to have relevant benchmarks and standard metrics to evaluated EDA algorithms.

Therefore, several contest editions were made to target specific physical synthesis state-

of-the-arts problems. Each edition released its set of circuits.

Usually, circuits have been released using Bookshelf format (BOOKSHELF, 2017).

Recently, benchmarks have been released using industrial formats (e.g., Layout Exchange

Format (LEF), Design Exchange Format (DEF), Verilog, Standard Parasitic Exchange

Format (SPEF), and Liberty). The circuits in the industrial file format are mainly built

using NanGate FreePDK45 Generic Open Cell Library (NANGATE. . . , 2017). The cell

library is synthetic and built based on 45nm Predictive Technology Model (PTM) (ZHAO;

CAO, 2006). A 15nm library cell was recently released (MARTINS et al., 2015) similar

to FreePDK45 library.

B.2 List of Contest Subjects

In Tables B.1, B.2, B.3, andB.4, a detailed list of the EDA contests promoted by

ISPD, PATMOS/TAU, DAC, and ICCAD conferences are presented, respectively.

DAC promoted only one edition of the EDA contest. In Table B.3 is presented the

subject of the contest.

245

Table B.1: The EDA contests in past years hosted by ISPD
Year Subject
2005 Placement
2006 Placement
2007 Global Routing
2008 Global Routing
2009 Clock Network Synthesis
2010 High Performance Clock Network Synthesis
2011 Routability-Driven Placement
2012 Discrete Gate Sizing Contest
2013 Discrete Gate Sizing Contest
2014 Detailed Routing-Driven Placement Contest
2015 Blockage-Aware Detailed Routing-Driven Placement Contest
2016 Routability-Driven FPGA Placement Contest
2017 Clock-Aware FPGA Placement
2018 Initial Detailed Routing
2019 Initial Detailed Routing

Table B.2: The EDA contests in past years hosted by TAU and PATMOS
Year Subject
2011 Timing Analysis Contest (PATMOS)
2013 Variation Aware Timing Analysis Contest
2014 Removing Pessimism during Timing Analysis
2015 Incremental Timing and Common Path Pessimism Removal (CPPR)

Analysis
2016 Timing Macro Modeling
2017 Timing Macro Modeling
2018 Efficient generation of timing reports from an STA graph with updated

arrival and required times
2019 Timing-driven optimization

Table B.3: The EDA contests in past years hosted by DAC
Year Subject
2012 Routability-Driven Placement Contest and Benchmark Suite

246

Table B.4: The EDA contests in past years hosted by ICCAD
Year Subject

2012
Finding the minimal logic difference for functional ECO
Design hierarchy aware routability-driven placement
Fuzzy pattern matching for physical verification

2013
Technology Mapping for Macro Blocks contributed
Placement Finishing – Detailed Placement and Legalization contributed
Mask Optimization

2014
Simultaneous CNF Encoder Optimization with SAT solver Setting Se-
lection
Incremental Timing-driven Placement
Design for Manufacturability Flow for Advanced Semiconductor Nodes

2015
3D-ICON: 3D Interlayer Cooling Optimized Network
Large-Scale Equivalence Checking and Function Correction
Incremental Timing-driven Placement

2016
Identical Fault Search
NP3: Non-exact Projective NPNP Boolean Matching
Pattern Classification for Integrated Circuit Design Space Analysis

2017
Resource-aware Patch Generation
Net Open Location Finder with Obstacles
Multi-Deck Standard Cell Legalization

2018
Smart EC: Program-Building for Name Mapping
Obstacle-Aware On-Track Bus Routing
Timing-Aware Fill Insertion

2019
Logic Regression on High Dimensional Boolean Space
System-level FPGA Routing with Timing Division Multiplexing Tech-
nique
LEF/DEF Based Open-Source Global Router

	Acknowledgement
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Digital Circuit Design
	2.1 Introduction
	2.2 Digital Circuit Definitions
	2.2.1 Library Cells
	2.2.2 Digital Circuit
	2.2.3 Manufacturing Process
	2.2.4 Clock Signal
	2.2.5 Memory Components
	2.2.6 Combinational and Sequential Circuits
	2.2.7 Digital Circuit Designs
	2.2.8 Circuit Power and Timing Characterization
	2.2.9 Digital and Analogical Circuits

	2.3 Static Timing Analysis
	2.4 Electrical Wire Models
	2.4.1 Traditional Electrical Wire Models

	2.5 Digital Design Flow
	2.5.1 Design flow
	2.5.2 Test Structure Flow
	2.5.3 Formal Verification and Simulation
	2.5.4 Physical Synthesis Flow

	2.6 Summary

	3 Electronic Design Automation
	3.1 Introduction
	3.2 Algorithm Definitions
	3.3 Graph Definitions
	3.4 Optimization Algorithms
	3.4.1 Network Flow
	3.4.2 Branch and Cut

	3.5 Models to Decompose Hyperedge Nets
	3.6 Circuit Evaluation Metrics
	3.6.1 Wire Length
	3.6.2 Area Density Utilization
	3.6.3 Routing Congestion
	3.6.4 Timing Violations
	3.6.5 Driver Strength, Criticality and Centrality
	3.6.5.1 Driver strength
	3.6.5.2 Criticality
	3.6.5.3 Centrality

	3.6.6 Cell Displacement

	3.7 Grid of Bins for Network Flow-based Cell Spreading Algorithms
	3.8 Physical Synthesis
	3.9 Summary

	4 Digital Circuit Placement
	4.1 Introduction
	4.2 Global Placement
	4.2.1 Stochastic Global Placement
	4.2.2 Partitioning-based Placement
	4.2.3 Analytical Global Placement
	4.2.4 Wire Length-driven Global Placement
	4.2.5 Timing-driven Global Placement
	4.2.6 Routing-driven Global Placement

	4.3 Legalization
	4.3.1 Network Flow-based Legalization Algorithms

	4.4 Detailed Placement
	4.4.1 Wire Length-driven Detailed Placement
	4.4.2 Timing-driven Detailed Placement
	4.4.3 Routing-driven Detailed Placement

	4.5 Summary

	5 Routing-aware Incremental Timing-driven Placement
	5.1 Introduction
	5.2 The Proposed Routing-aware Incremental Timing-driven Placement Optimization Algorithm
	5.2.1 Algorithm Outline
	5.2.2 Early Optimization
	5.2.2.1 Clock Skew Optimization
	5.2.2.2 Iterative Cell Spreading
	5.2.2.3 Register Swap
	5.2.2.4 Register-to-Register Path Fix

	5.2.3 Late Optimization
	5.2.3.1 Clustered Cell Movement
	5.2.3.2 Buffer Balancing
	5.2.3.3 Cell Balancing
	5.2.3.4 Driver Load Capacitance Optimization

	5.2.4 Area Density Optimization
	5.2.5 Cell Movement Algorithm

	5.3 Experimental Results
	5.3.1 Experimental Setup
	5.3.2 Numerical Results

	5.4 Summary

	6 The Proposed Network Flow-based Cell Spreading Algorithm
	6.1 Introduction
	6.2 Overview of the Proposed Network Flow-based Cell Spreading Technique
	6.2.1 An Example of Cell Spreading
	6.2.2 Overview of the N-ary Tree to Search Optimized-Cost Paths
	6.2.3 Cell Movement

	6.3 Grid Graph
	6.4 The Proposed Cell Spreading Algorithm
	6.4.1 Path Augmentation Algorithm
	6.4.2 Compute Outflow Area from Source Bin
	6.4.3 Cell Movement Algorithm

	6.5 Summary

	7 The Proposed Network Flow-based Cell Spreading Applied in Legalization
	7.1 Introduction
	7.2 Correlated Network Flow-based Legalization Algorithms
	7.3 The Proposed Network Flow-based Legalization Algorithm
	7.3.1 Cell Legalization

	7.4 Experimental Results
	7.4.1 Characteristics of the Circuits in the Contest Benchmarks
	7.4.1.1 Characteristics from the 2006 ISPD Benchmarks
	7.4.1.2 Characteristics from the 2015 ICCAD Benchmarks

	7.4.2 Global Placement Results
	7.4.2.1 RePlace Solution from the 2006 ISPD Benchmarks
	7.4.2.2 FastPlace Solution from the 2006 ISPD Benchmarks
	7.4.2.3 Eh?Placer Solution from the 2006 ISPD Benchmarks
	7.4.2.4 Eh?Placer Solution from the 2015 ICCAD Benchmarks

	7.4.3 Experimental Results of Legalization
	7.4.3.1 Legalization Results of the RePlace placement solutions from the 2006 ISPD contest benchmarks
	7.4.3.2 Legalization Results of the FastPlace placement solutions from the 2006 ISPD contest benchmarks
	7.4.3.3 Legalization Results of the Eh?Placer placement solutions from the 2006 ISPD contest benchmarks
	7.4.3.4 Legalization Results of the Eh?Placer placement solutions from the 2015 ICCAD contest benchmarks

	7.5 Summary
	7.5.1 Summary of Global Placement Solutions
	7.5.2 Summary of Legalization Solutions

	8 The Proposed Network Flow-based Cell Spreading Applied in Detailed Placement
	8.1 Introduction
	8.2 The Proposed Network Flow-based Cell Spreading Algorithm
	8.3 Experimental Results
	8.3.1 Evaluation of the proposed NFCS algorithm in Commercial Environment
	8.3.2 Evaluation of the proposed NFCS algorithm in academic circuits
	8.3.2.1 Experimental Results in benchmarks from the 2006 ISPD contest in non-aligned grid graphs
	8.3.2.2 Experimental Results in benchmarks from the 2006 ISPD contest in aligned grid graphs
	8.3.2.3 Experimental Results in benchmarks from the 2014 and 2015 ICCAD contests

	8.4 Summary

	9 Conclusions
	9.1 Summary of Contributions
	9.2 Future Works
	9.3 Publications, Awards, and Open-Source Framework
	9.3.1 Journal Publication
	9.3.2 Conferences, Symposiums and Workshops
	9.3.3 Awards
	9.3.4 Open-source Framework in EDA

	References
	Appendix A — Extra Experimental Results of the Proposed Network Flow-based Legalization Algorithm
	A.1 Global Placement Results
	A.1.1 RePlace Solution from the 2006 ISPD Benchmarks
	A.1.2 FastPlace Solution from the 2006 ISPD Benchmarks
	A.1.3 Eh?Placer Solution from the 2006 ISPD Benchmarks
	A.1.4 Eh?Placer Solution from the 2015 ICCAD Benchmarks

	A.2 Legalization Experimental Results
	A.2.1 Legalization Results in the RePlace placement solutions from the 2006 ISPD contest benchmarks
	A.2.2 Legalization Results in the FastPlace placement solutions from the 2006 ISPD contest benchmarks
	A.2.3 Legalization Results in the Eh?Placer placement solutions from the 2006 ISPD contest benchmarks
	A.2.4 Legalization Results in the Eh?Placer placement solutions from the 2015 ICCAD contest benchmarks

	Appendix B — Electronic Design Automation Contests
	B.1 Circuit Benchmarks
	B.2 List of Contest Subjects

