Universidade Federal do Rio Grande do Sul Instituto de Matemática Programa de Pós-Graduação em Matemática

A RECÍPROCA DE UM TEOREMA BEM CONHECIDO SOBRE ANÉIS NOETHERIANOS

por

WAGNER DE OLIVEIRA CORTÊS

Porto Alegre, fevereiro de 2000

Dissertação submetida por WAGNER DE OLIVEIRA CORTÊS* como requisito parcial para a obtenção do grau de Mestre em Matemática pelo Programa de Pós-Graduação em Matemática do Instituto de Matemática da Universidade Federal do Rio Grande do Sul.

Professor Orientador:

Dra. Ada Maria de Souza Doering

Banca Examinadora:

Dr. Alveri Alves Sant'Ana (IMAT/UFRGS)

Dra. Cydara Cavedon Ripoll (IMAT/UFRGS)

Dra. Neuza Kasuko Kakuta (Depto.de Matemática-UNESP)

Data de Defesa: 28 de fevereiro de 2000.

^{*} Bolsista do Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq

AGRADECIMENTOS

Primeiramente agradeço à Deus, pois se não fosse por Ele nada disso teria sido possível.

Agradeço a Ada pela orientação, aos meus amigos e professores da pós-graduação, aos meus pais pelo incentivo e carinho em todos os momentos, e também a minha queridíssima noiva Susana Ramires Machado pelo amor e companherismo.

Também quero agradecer aos professores Hamilton Prado Bueno(UFMG), Erminia de Lourdes Campelo Fanti, Maria Gorete Carreira Andrade, Adalberto Spezamglio, Sebatião Antonio Izar, Hélia, Neuza Kazuko(Unesp-Ibilce) e a todos os meus amigos que sempre me deram apoio.

Resumo

É bem conhecido que dados R,S anéis tais que $R\subset S$ e S um R módulo finitamente gerado, se R é um anel noetheriano então S é um anel noetheriano. O objetivo deste trabalho será de apresentar a recíproca desse teorema feito por Paul M. Eakin Jr., isto é, se S é um anel noetheriano então R é um anel noetheriano.

Abstract

It's well known for R, S rings such that $R \subset S$ and S is finitely generated module R, if R is a noetherian ring then S is a noetherian ring. The objective this job will be to present a converse this theorem that it was done by Paul M. Eakin Jr. He told that if S is a noetherian ring then R is a noetherian ring.

Indice

Introdução	01
Exemplos de aneis RMX	05
Teorema 1	20
Resultado principal	22
Questão de Gilmer	26
Apêndice	33
Bibliografia	. 39

Introdução

Um teorema muito conhecido de álgebra comutativa afirma que, sendo R e S anéis comutativos com unidade tais que $R \subset S$ e S é um R-módulo finitamente gerado, então se R for um anel noetheriano, S também será uma anel noetheriano [apêndice proposição 1].

Paul Eakin mostrou que a recíproca deste resultado é também verdadeira, isto é, sendo válidas as mesmas hipóteses, se S for um anel noetheriano R também será um anel noetheriano. O objetivo desta dissertação é o de apresentar a bonita prova desta recíproca feita por Eakin.

Neste trabalho sempre que falarmos em anéis estaremos supondo que tais anéis são anéis comutativos com unidade. O teorema 2, que é o principal deste trabalho, é devido a Eakin e para prová-lo precisaremos introduzir uma classe de anéis que são muito próximos dos anéis noetherianos e que Eakin chamou de anéis RMX(restricted maximum condition). Um anel R é um anel RMX se para todo ideal primo próprio P de R o anel R/P for um anel noetheriano. Decorre imediatamente da definição de anel RMX que todo anel noetheriano é um anel RMX. O contrário é falso e os exemplos 1,2 e 3 desta dissertação ilustram esse fato.

Para podermos provar o teorema 2 precisaremos provar antes um caso partic-

ular dele que afirma que, sendo R e S domínios tais que $R \subset S$, S é um R-módulo finitamente gerado e R é um anel RMX então, se S for um domínio noetheriano, R também será um domínio noetheriano. Os exemplos 5 e 6 deste trabalho mostram que a hipótese de finitude da extensão é de fato necessária mesmo no caso em que R e S tenham o mesmo corpo de frações.

Gilmer em[2], propõe a seguinte questão: Sejam R um domínio inteiramente fechado em seu corpo de frações K, L uma extensão finita separável de K e S o fecho inteiro de R em L. Se S for um domínio noetheriano, R também será um domínio noetheriano? Apresentaremos a resposta parcial que Eakin deu a esta questão. Mostraremos primeiramente que se o discriminante da extensão for um elemento inversível em R então R será necessariamente um domínio noetheriano. No outro caso, isto é, quando o discriminante não for inversível em R, mostra-se que R é uma intersecção de anéis de Krull noetherianos com uma intersecção finita de anéis de valorizações discreta de posto 1.

Apresentaremos ainda um exemplo que mostra que nem sempre a intersecção de anéis noetherianos é um anel noetheriano.

Proposição 1: Seja R um anel comutativo com unidade. São equivalentes:

- i) R é um anel RMX.
- ii) Se $A_1 \subset A_2 \subset ...$ é uma cadeia de ideais de R na qual um dos ideais contém um ideal primo próprio de R então a cadeia é estacionária.
- iii) Se Ψ é um conjunto não vazio de ideais de R, tal que existe um ideal $A \in \Psi$ que contém um ideal primo próprio de R, então Ψ tem elemento máximo com respeito à inclusão.
- iv) Se A é um ideal de R e P um ideal primo próprio de R então (P+A)/P é um ideal finitamente gerado do anel R/P.

Prova:

$$i) \Rightarrow ii)$$

Considere a cadeia de ideais de R, $A_1 \subset A_2 \subset$, e $k \in \mathbb{N}$ tal que $A_k \supset P$ onde P é um ideal primo próprio de R. Temos assim que $P \subset A_k \subset A_{k+1} \subset A_{k+2} \subset ...$. Como R/P é um domínio noetheriano, a cadeia $A_k/P \subset A_{k+1}/P \subset A_{k+2}/P \subset ...$ é estacionária, logo existe $j \in \mathbb{N}$, $j \geq k$, tal que $A_j/P = A_{j+n}/P$ para todo n natural. Portanto $A_j = A_{j+n}$ para todo n natural e a cadeia $A_1 \subset A_2 \subset$ é uma cadeia estacionária.

$$ii) \Rightarrow iii)$$

Suponhamos que Ψ não possua elemento máximo, e seja A_1 o ideal de Ψ que contém um ideal primo próprio de R. Como Ψ não possui elemento máximo existe $A_2 \in \Psi$ tal que A_2 contém propriamente A_1 . Da mesma maneira existe $A_3 \in \Psi$ tal que A_3 contém propriamente A_2 . Procedendo assim obtemos uma cadeia de ideais $A_1 \subset A_2 \subset A_3 \subset ...$ na qual há um elemento que contém um ideal primo próprio de R e que não é estacionária, o que contraria a hipótese. Logo Ψ possui elemento máximo.

$$iii) \Rightarrow iv$$

Dado P um ideal primo próprio de R, queremos mostrar que R/P é um anel noetheriano. De fato, seja $J_1/P \subset J_2/P \subset ...$ uma cadeia de ideais em R/P. Em R teremos $P \subset J_1 \subset J_2...$ Seja $\Psi = \{J_1, J_2, ...\}$. Como $P \subset J_1$, por hipótese existe $k \in \mathbb{N}$ tal que J_k é o elemento máximo de Ψ , daí $J_k = J_{k+n}$, para todo n natural. Logo a cadeia $J_1/P \subset J_2/P \subset ...$ é estacionária e, portanto, R/P é um anel noetheriano. Dessa maneira concluímos que (A+P)/P é ideal finitamente gerado do anel R/P.

$$iv) \Rightarrow i)$$

Seja P um ideal primo próprio de R. Queremos mostrar que todo ideal de R/P é finitamente gerado. Com efeito, dado $\mathcal F$ um ideal qualquer de R/P, existe I um ideal de R tal que $I\supset P$ e $\mathcal F=I/P$. Como $\mathcal F=I/P=(I+P)/P$ é um ideal

finitamente gerado de R/P, podemos concluir que R/P é um anel noetheriano. Portanto R é um anel RMX.

Agora veremos alguns exemplos de anéis RMX.

Exemplo 1) Todo anel de valorização discreta de dimensão 2 (por exemplo, o anel de valorização associado a um prolongamento da valorização p-ádica sobre \mathbb{Q} a $\mathbb{Q}(\mathbb{X})$) é um anel RMX que não é um anel noetheriano.

Seja R um anel de valorização de um corpo K cujo grupo de valores seja $\mathbb{Z} \times \mathbb{Z}$. Como $\mathbb{Z} \times \mathbb{Z}$ possui somente três subgrupos isolados, sabemos que em R existem apenas três ideais primos, o ideal nulo, o ideal máximo de R e um terceiro ideal primo que denotaremos por P [apêndice, proposição 12]

Queremos mostrar que R não é um anel noetheriano, embora seja um anel RMX.

Observe que se R fosse um anel noetheriano, então R seria um domínio de ideais principais [apêndice, proposição 5] e com isso, dim R=1 o que contraria o fato de dim R=2. Logo R não é um anel noetheriano. Para ver que R é um anel RMX, basta ver que R/P é um anel noetheriano, o que decorre do fato de R/P ser um anel de valorização com dimensão de krull 1.

Exemplo 2) Seja D um domínio e K seu corpo de frações com $D \neq K$.

Sejam K[[X]] o anel das séries de potências formais e $\langle X \rangle$ o seu ideal máximo. Seja $T(D) = D + \langle X \rangle = \{ d + X f(X), d \in D, f(X) \in K[[X]] \}$. Então T(D) não é um domínio noetheriano e se D for noetheriano então T(D) é um anel RMX .

É fácil ver que T(D) com as operações restritas de K[[X]] é um domínio. Suponhamos que D é um anel noetheriano e vamos mostrar que T(D) é um anel RMX.

Mostraremos inicialmente que $\langle X \rangle$ é o único ideal primo de altura 1 de T(D). É imediato que $\langle X \rangle$ é um ideal de T(D). Além disto, $\langle X \rangle$ é um ideal primo de T(D), pois $\langle X \rangle$ é um ideal primo de K[[X]]. Resta mostrar que $\langle X \rangle$ é o único ideal primo de altura 1 de T(D). Para isso, mostraremos que se I é um ideal próprio qualquer de T(D) então $\langle X \rangle \subseteq \sqrt{I}$. De fato, dado I um ideal próprio de T(D) e $f \in I$ um elemento não nulo, sejam $d \in D$, $\alpha \in K[[X]]$, tais que $f = d + X\alpha$. Se $d \neq 0$ então f é inversível em K[[X]]. Neste caso, $1 = ff^{-1} = df^{-1} + Xf^{-1}\alpha$. Como $Xf^{-1}\alpha \in \langle X \rangle \subset T(D)$ e $1 \in D \subset T(D)$ temos que $df^{-1} \in T(D)$, logo $d = df^{-1}f \in fT(D) \subseteq I$ e, consequentemente, $X\alpha \in I$. Se d = 0 então $d \in I$ e $X\alpha = f \in I$. Logo nos dois casos temos que se $f = d + X\alpha$ é um elemento de I, com $d \in D$ e $\alpha \in K[[X]]$ então d, $X\alpha \in I$. Em particular se I é um ideal de T(D) então $I = I \cap D + \langle X \rangle \cap I$ e se $I \supset \langle X \rangle$ então $I = I \cap D + \langle X \rangle$.

Mostremos que $\langle X \rangle \subseteq \sqrt{I}$ para todo ideal $I \neq \langle 0 \rangle$ de T(D). Observemos

inicialmente que sendo $I \neq \langle 0 \rangle$ existe um elemento $g \in I \backslash D$, caso contrário I estaria contido em D, e neste caso I não seria um ideal de T(D), pois XI não estaria contido em I. Seja $g \in I \backslash D$, $g = d + \alpha X$ com $d \in D$, $\alpha \in K[[X]]$ e $\alpha \neq 0$. Temos que $\alpha = \sum\limits_{i=j}^{\infty} a_i X^i$ com $a_i \in K$ e $a_j \neq 0$. Seja $\alpha_1 = \sum\limits_{i=j}^{\infty} a_i X^{i-j}$. Observe que α_1 é inversível em K[[X]] e que $\alpha = \alpha_1 X^j$. Daí temos que $X^{j+1}\alpha_1\alpha_1^{-1}X = X^{j+2}$. Como $\alpha_1^{-1}X \in \langle X \rangle \subset T(D)$ e $\alpha_1 X^{j+1} = \alpha X$ temos que $X^{j+2} \in \langle \alpha X \rangle \subset I$. Logo $X \in \sqrt{I}$, de onde se conclui que $\langle X \rangle$ é o único ideal primo de altura 1.

Dado P um ideal primo próprio de T(D), temos que $P \supset \langle X \rangle$ logo $P = (P \cap D) + \langle X \rangle$. Considere $i:D \hookrightarrow T(D)$ e $\pi:T(D) \hookrightarrow T(D)/P$ onde i é a aplicação inclusão e π a projeção canônica. Mostraremos que $\pi \circ i$ é sobrejetivo. Dado $f+P \in T(D)/P$, temos que $f=d+X\alpha$ para algum $d \in D$ e $\alpha \in K[[X]]$. Logo, como $X \in P$, $f+P=d+P=(\pi \circ i)(d)$ com isso $\pi \circ i$ é sobrejetivo. Portanto, pelo teorema dos isomorfismos, temos $T(D)/P \simeq D/\ker(\pi \circ i) = D/P \cap D$ que é um anel noetheriano. Sendo assim T(D) é um anel RMX.

Mostraremos agora que T(D) não é um anel noetheriano. Caso contrário, escolhendo z um elemento não nulo e não inversível de D, teríamos que os primos mínimos do ideal zT(D) teriam que ter altura 1, e portanto $\langle X \rangle$ seria o único primo mínimo de zT(D) o que implicaria que $z \in \langle X \rangle$, contrariando a escolha de z.

Observação: No exemplo acima, a função $h:T(D)\to D$ definida por $h(d+x\alpha)=d \text{ \'e um homomorfismo sobrejetor, logo todo domínio noetheriano}$ \'e imagem homomórfica de um domínio não noetheriano RMX.

Exemplo 3) todos os anéis noetherianos e anéis de dimensão 1 são anéis RMX.

Lema 1: Sejam $R \subset S$ anéis tais que R é um anel RMX e S um R-módulo finitamente gerado. Se P é um ideal primo de S tal que $P \cap R \neq \langle 0 \rangle$ enta \tilde{o} S/P é um anel noetheriano.

Prova:

Considere $i:R\to S$ a aplicação inclusão, $f:S\to S/P$ projeção canônica então $f\circ i:R\to S/P$ definida por $(f\circ i)(x)=x+P$ é um homomorfismo de anéis. Afirmamos que seu nucleo é $P\cap R$. Com efeito, se $z\in P\cap R$ então $(f\circ i)(z)=z+P=P$, pois $z\in P$, logo z é um elemento do núcleo de $f\circ i$, a outra inclusão é trivial. Pelo teorema dos isomorfismos de anéis temos $R/P\cap R\simeq {\rm Im}\, f\circ i\subset S/P$ e portanto $R/P\cap R\subset S/P$. Agora mostraremos que S/P é um $R/P\cap R$ —módulo finitamente gerado. De fato, como S é um R-módulo finitamente gerado, existem $a_1,...,a_k\in S$ tais que $S=Ra_1+...+Ra_k$. Afirmamos que $S/P=(R/P\cap R)\overline{a_1}+..+(R/P\cap R)\overline{a_k}$. É claro que $S/P\supseteq (R/P\cap R)\overline{a_1}+...+(R/P\cap R)\overline{a_k}$. Por outro lado dado $\overline{x}=x+P, x\in S$ podemos

escrever $x=b_1a_1+\ldots+b_ka_k$, com $b_i\in R$ para todo $i=1\ldots k$ e dessa maneira $\overline{x}=x+P=(b_1a_1+\ldots+b_ka_k)+P=(b_1+P)(a_1+P)+\ldots+(b_k+P)(a_k+P)$. Pela identificação $h:R/P\cap R\hookrightarrow S/P$ definida por $h(z+P\cap R)=z+P$, podemos escrever $\overline{x}=(b_1+P\cap R)(a_1+P)+\ldots+(b_k+P\cap R)(a_k+P)$, o que implica que $\overline{x}\in (R/P\cap R)\overline{a_1}+\ldots+(R/P\cap R)\overline{a_k}$. Como $R/P\cap R$ é um anel noetheriano, pois R é um anel RMX, e $S/P=(R/P\cap R)\overline{a_1}+\ldots+(R/P\cap R)\overline{a_k}$ temos por [apêndice, proposição 1] que S/P é um anel noetheriano.

Corolário 1: Sejam D e R domínios de integridade, $D \subset R$ e R um Dmódulo finitamente gerado. Se D é um anel RMX então R é um anel RMX.

Prova:

Como R é um D-módulo finitamente gerado então R é uma extensão inteira sobre D. Logo sendo R um domínio, se P for um ideal primo próprio de R então por [apêndice, proposição 8], $P \cap D \neq \langle 0 \rangle$. O resultado segue agora do lema 1.

Observação: A recíproca desse corolário é verdadeira e seguirá do teorema 2.

Definição 1: Sejam $R \subset S$ anéis. Dizemos que um ideal A de R é um ideal contraído, se existir um ideal B de S tal que $A = B \cap R$, neste caso denota-se

 $A = B^c$. Dizemos que um ideal B de S é um ideal estendido, se existir um ideal A de R tal que B = AS, neste caso denota-se $B = A^e$.

Lema 2: Sejam $R \subset S$ anéis tais que S seja um R-módulo finitamente gerado. Suponhamos que

- i) A é um ideal próprio contraído de R.
- ii) S é um anel noetheriano.
- iii) Nenhum ideal primo próprio de S se contrai ao ideal nulo de R. Então há ideais primos próprios de R, $P_1,...,P_k$ tais que $(P_1...P_k)^{ec} \subset A$. Prova:

Como S é um anel noetheriano, existem $Q_1,...,Q_k$ ideais primos próprios de S, tais que $(Q_1...Q_k) \subset A^e$ [apêndice, proposição 2]. Seja $P_i = Q_i \cap R$. Por hipótese $P_i \neq \langle 0 \rangle$. Observe que $(P_1....P_k) \subset (P_1....P_k)^{ec} = (P_1^e....P_k^e)^c \subset (Q_1....Q_k)^c \subset A^{ec}$. Sendo A um ideal contraído então $A^{ec} = A$ [apêndice, proposição16], logo $(P_1...P_k)^{ec} \subset A$.

Lema 3: Suponha que R seja um anel RMX, S um anel noetheriano tal que $R \subset S$ e S é um R-módulo finitamente gerado. Se $P_1, ..., P_k$ são ideais primos próprios de R então $R/(P_1...P_k)^{ec}$ é um anel noetheriano.

Prova:

A prova será feita por indução no número de ideais primos.

Para k=1, como P_1 é um ideal primo de R e S é uma extensão inteira de R, $P_1^{ec}=P_1[\text{apêndice, proposição 8}] \text{ portanto, sendo } R \text{ um anel } RMX, \text{ temos que}$ $R/P_1^{ec} \text{ é um anel noetheriano.}$

Agora suponha que o lema seja verdadeiro se tivermos o produto de k-1 ideais primos e mostremos que o anel $R/(P_1...P_k)^{ec}$ é um anel noetheriano. Seja $\mathcal P$ um ideal primo de $R/(P_1...P_k)^{ec}$ e Q um ideal primo de R que contém $(P_1...P_k)^{ec}$ tal que $\mathcal P=Q/(P_1...P_k)^{ec}$. Mostraremos que o ideal $\mathcal P$ é finitamente gerado, de onde decorrerá que $R/(P_1...P_k)^{ec}$ é um anel noetheriano, pelo teorema de Cohen [apêndice, proposição 3]. Como $Q\supset (P_1...P_k)^{ec}\supset (P_1...P_k)$ e Q é um ideal primo, existe $i\in\{1,...,k\}$ tal que $Q\supset P_i$. Podemos supor sem perda de generalidade que i=k, isto é, que $Q\supset P_k$. Como R/P_k é um anel noetheriano e $Q/P_k\simeq Q/(P_1...P_k)^{ec}/P_k/(P_1...P_k)^{ec}$, para mostrar que $Q/(P_1...P_k)^{ec}$ é um ideal finitamente gerado, basta mostrar que $P_k/(P_1...P_k)^{ec}$ é ideal finitamente gerado, isto é, que $P_k/(P_1...P_k)^{ec}$ é ideal finitamente gerado.

Sendo S um anel noetheriano, o ideal P_k^e é um ideal de S finitamente gerado portanto P_k^e é um S-módulo finitamente gerado [apêndice, proposição 13]. Além disto $(P_1...P_{k-1})^e$ está contido no anulador do S-módulo $P_k^e/(P_1...P_k)^e$, pois $(P_1...P_{k-1})^eP_k^e$ =

 $(P_1...P_k)^e\log_o P_k^e/(P_1...P_k)^e \in \operatorname{um} S/(P_1...P_{k-1})^e\operatorname{-m\'odulo} \text{ finitamente gerado [apêndice, proposição 4]}. Por outro lado, sendo <math>S$ um R m\'odulo finitamente gerado, $S/(P_1...P_{k-1})^e$ \acute{e} um R-m\'odulo finitamente gerado cujo anulador \acute{e} $(P_1...P_{k-1})^{ec}$, pois $(P_1...P_{k-1})^{ec}S=(P_1...P_{k-1})^{ece}=(P_1...P_{k-1})^e$. Logo $S/(P_1...P_{k-1})^e$ \acute{e} um $R/(P_1...P_{k-1})^{ec}$ -m\'odulo finitamente gerado. Como $P_k^e/(P_1...P_k)^e$ \acute{e} $S/(P_1...P_{k-1})^e$ -m\'odulo finitamente gerado e $S/(P_1...P_{k-1})^e$ \acute{e} $R/(P_1...P_{k-1})^{ec}$ -m\'odulo finitamente gerado, então $P_k^e/(P_1...P_k)^e$ \acute{e} um $R/(P_1...P_{k-1})^{ec}$ -m\'odulo finitamente gerado. Sendo $R/(P_1...P_{k-1})^{ec}$ um anel noetheriano, $P_k^e/(P_1...P_k)^e$ \acute{e} $R/(P_1...P_k)^{ec}$ -m\'odulo noetheriano [apêndice, proposição 1]. Por outro lado, $P_k = P_k^{ec} \supset (P_1...P_k)^{ec}$, logo $P_k/(P_1...P_k)^{ec}$ \acute{e} um R-m\'odulo cujo anulador contém $(P_1...P_{k-1})^{ec}$, pois $(P_1...P_{k-1})^{ec}P_k = (P_1...P_{k-1})^{ec}P_k^{ec} = (P_1...P_k)^{ec}$. Logo $P_k/(P_1...P_k)^{ec}$ \acute{e}

 $R/(P_1...P_{k-1})^{ec}$ -módulo finitamente gerado. De fato, como $P_k/(P_1...P_k)^{ec}$ é um submódulo de $P_k^e/(P_1...P_k)^e$ que é um $R/(P_1...P_{k-1})^{ec}$ -módulo noetheriano, logo $P_k/(P_1...P_k)^{ec}$ é um $R/(P_1...P_{k-1})^{ec}$ -módulo finitamente gerado. Daí, como $R/(P_1...P_{k-1})^{ec}$ é um R-módulo cujo anulador contém $(P_1...P_k)^{ec}$ podemos concluir que $R/(P_1...P_{k-1})^{ec}$ é $R/(P_1...P_k)^{ec}$ -módulo finitamente gerado e portanto $P_k/(P_1...P_k)^{ec}$ é um $R/(P_1...P_k)^{ec}$ -módulo finitamente gerado o que conclui a prova do lema.

Lema 4: Se R é um anel comutativo com unidade, então R é um anel noethe-

riano se, e somente se, R/A é um anel noetheriano para todo ideal próprio A de R

Prova:

Se R é um anel noetheriano e I um ideal de R, então R/I é um anel noetheriano. [apêndice, proposição 14]

Se R não é um anel noetheriano então existe uma cadeia de ideais de R, $I_1 \subset I_2 \subset I_3 \subset ...$ que não é estacionária. É claro que existe um número natural k tal que I_k é um ideal próprio de R. Em R/I_k a cadeia $I_{k+1}/I_k \subset I_{k+2}/I_k \subset I_{k+3}/I_k \subset ...$ é uma cadeia de ideais que não é estacionária o que contradiz a hipótese de R/I_k ser um anel noetheriano.

Corolário 2: Seja R um domínio RMX com corpo quociente K. Seja S um anel tal que $R \subset S \subset K$ e S um R-módulo finitamente gerado. Então S é um anel noetheriano se, e somente se, R é um anel noetheriano.

Prova:

Suponhamos que S é um anel noetheriano. Como S é um R-módulo finitamente gerado, então existem $s_1, ..., s_n \in S$ tais que $S = Ra_1 + + Ra_n$. Como $S \subset K$, onde K é o corpo de frações de R, então cada $s_i = \frac{x_i}{x}$ com $x_i, x \in R$. Decorre dai que $xS \subset R$. Seja I um ideal próprio de R e $IS = I^e$. Afirmamos que

 I^e é um ideal próprio em S. De fato, como I é ideal próprio de R existe um ideal máximo M de R tal que $M \supset I$. Como M^e é um ideal próprio de S [apendice, th6] e $I^e \subset M^e$ então I^e é um ideal próprio de S. Além disso, $xI^e = xIS$ é um ideal de S que é próprio, pois $I^ex \neq 0$. Afirmamos que I^ex é um ideal de R contido em I. De fato, como $xI^e = xIS$ e $xS \subset R$ temos $xI^e \subset IR = I$. Logo $xI^e = xI^e \cap R$ é um ideal próprio de R que está contido em I.

Pelo lema 2 existem $P_1, ..., P_k$, ideais primos próprios de R tais que $(P_1....P_k)^{ec} \subset xI^e \subset I$. Pelo lema 3, temos que $R/(P_1...P_k)^{ec}$ é um anel noetheriano. Como $R/(P_1...P_k)^{ec}/I/(P_1....P_k)^{ec} \simeq R/I$, R/I é imagem homomórfica de um anel noetheriano, logo R/I é um anel noetheriano e, pelo lema 4, podemos concluir que R é um anel noetheriano.

O exemplo a seguir , mostra que no corolario 2, a hipótese de S ser uma extensão inteira de R não pode ser dispensada.

Exemplo 5: Seja K um corpo e v uma valorização de K cujo grupo de valores é $\mathbb{Z} \times \mathbb{Z}$ com a ordem lexicográfica. Seja R o anel de valorização de v em K. Sabemos que a dimensão de Krull de R é 2 [apêndice, proposição 12] e que, em virtude disto, R não é um anel noetheriano [apêndice, proposição 5]. Sejam $\langle 0 \rangle \subset P \subset M$ os ideais primos de R. Observe que R/P é um anel de valorização de seu corpo de

frações, cujo grupo de valores é \mathbb{Z} [apêndice, proposição 12], portanto R/P é um anel noetheriano [apêndice, proposição 5]. Como R/M é um corpo e R/P é um anel noetheriano, então R é um anel RMX. Seja $x \in M|P$ e $S = R[\frac{1}{x}]$. S é um anel de valorização de K que contém propriamente R; de fato $S = R_P$. Assim S é um anel de valorização de K cujo grupo de valores é \mathbb{Z} , logo noetheriano. Note que S não é de fato um R módulo finitamente gerado

Queremos salientar ainda que no corolário 2, não podemos substituir a hipótese de S ser um R módulo finitamente gerado, pela hipótese mais fraca de S ser apenas uma extensão inteira de R, como mostra o exemplo a seguir.

Exemplo 6: Seja K um corpo que é uma extensão algébrica e infinita de \mathbb{Q} , o corpo dos números racionais. Seja X um elemento transcendental sobre K e R = K[[X]] o anel das séries formais sobre K. Sejam L o corpo de frações de R, $\langle X \rangle$ o ideal máximo de R e $D = \mathbb{Q} + \langle X \rangle$. Como D e R têm o ideal $\langle X \rangle$ em comum então o corpo de frações de D é igual ao corpo de frações de R. Temos assim $D \subset R \subset L$. Mostraremos que R é uma extensão inteira de D. Dada $f(X) = \sum\limits_{i=j}^{\infty} a_i X^i \in R = K[[X]]$. Temos $f(X) = a_0 + Xg(X)$ onde $a_0 \in K$ e $Xg(X) \in \langle X \rangle$. Como $a_0 \in K$ temos que a_0 é algebrico sobre \mathbb{Q} , portanto a_0 é inteiro sobre $D = \mathbb{Q} + \langle X \rangle$. O elemento $Xg(X) \in D$, logo f(X) é inteiro

sobre D. Logo R é uma extensão inteira de D. Por outro lado, sendo K um corpo, R=K[[X]] é um anel noetheriano [apêndice, proposição 15] que possui um só ideal máximo, que é $\langle X \rangle$, e que portanto, pelo teorema do ideal principal [apêndice, proposição 17], tem altura 1. Logo R é um anel local noetheriano com dimensão de Krull igual a 1. Como R é uma extensão inteira de D, pelo teorema do $lying\ over,\ D$ possui apenas dois ideais primos, a saber $\langle 0 \rangle$ e $\langle X \rangle$. Como $D/\langle X \rangle$ é um corpo, temos que D é um anel RMX. Mostraremos que D não é um anel noetheriano. Consideremos M um D submódulo de L gerado por $\frac{1}{X}$, isto é $M=D\frac{1}{X}$. É facil ver que $R=K[[X]]\subseteq M$ pois $f(X)=(Xf(X))\frac{1}{X}\in D\frac{1}{X}$. Se D fosse um anel noetheriano, M seria um D módulo noetheriano, portanto R sendo um D submódulo de M, seria um D módulo finitamente gerado.

Se R fosse um D módulo finitamente gerado, $R/\langle X \rangle$ seria um $D/\langle X \rangle$ -módulo finitamente gerado, isto é, K seria um $\mathbb Q$ módulo finitamente gerado, o que contraria o fato de K ser uma extensão algébrica de $\mathbb Q$ de grau infinito. Logo D não é um anel noetheriano.

Observação: O que foi feito neste exemplo nos permite concluir que se $K_1 \subset K_2$ são corpos de característica zero, K_2 é uma extensão infinita de K_1 , $R = K_2[[X]]$, X trancendente sobre K_2 e $\langle X \rangle$ é o seu ideal máximo, então $D = K_1 + \langle X \rangle$ não

é um anel noetheriano.

Lema 5: Sejam D um domínio com corpo de frações K e R um anel que contém D tal que $R \cap K = D$. Então todo ideal próprio de D contém um ideal próprio contraído.

Prova:

Mostraremos que todo ideal principal de D é a contração de um ideal de R. Seja $a \in D$. É claro que $aD \subset (aR) \cap D$. Por outro lado dado $c \in (aR) \cap D$ existe $s \in R$ tal que c = as. Como $s = \frac{c}{a}$ temos que $s \in R \cap K = D$, logo $c \in aD$. Logo $aD = (aR) \cap D$.

Lema 6: Sejam D um domínio RMX com corpo quociente K, R um anel que contém D que é um D-módulo finitamente gerado e $D^* = R \cap K$. Se D^* é um anel RMX então R é um anel noetheriano se, e somente se, D^* é um anel noetheriano. Se D *é um D-módulo finitamente gerado então R é um anel noetheriano se, e somente se, D é um anel noetheriano.

Prova:

Mostraremos primeiramente que se D^* é um anel RMX então R é um anel noetheriano se, e somente se, D^* é um anel noetheriano. Seja D^* um anel RMX e R

um anel noetheriano; como R é um D-módulo finitamente gerado e $D \subset D^* \subset R$, é claro que R é um D^* -módulo finitamente gerado. Como $D \subset D^* \subset K$ e K é o corpo de frações de D então K é o corpo de frações de D^* . Por outro lado, $D^* \subset R$ e $R \cap K = D^*$ logo, pelo lema 5, todo ideal próprio de D^* contém a contração de um ideal próprio de R. Sejam I um ideal próprio de D^* então I contém um ideal próprio A de D^* que é a contração de um ideal de R. Como são satisfeitas as hipóteses do lema 2, para D^* e R existem $P_1, ..., P_k$ ideais primos próprios de D^* tais que $(P_1...P_k)^{ec} \subset A \subset I$. Pelo lema 3, $D/(P_1...P_k)^{ec}$ é um anel noetheriano. Pelo teorema dos isomorfismos $D^*/(P_1...P_k)^{ec}/I/(P_1...P_k)^{ec} \simeq D^*/I$; portanto D^*/I é um anel noetheriano para todo ideal próprio I de D^* . Logo, pelo lema 4, D^* é um anel noetheriano. Reciprocamente, se D^* é um anel noetheriano e R é um D^* -módulo finitamente gerado, então R é um anel noetheriano[apêndice, proposição1].

Agora mostraremos que se D^* é um D-módulo finitamente gerado então R é um anel noetheriano se, e somente se, D é um anel noetheriano.

Sendo D^* um D-módulo finitamente gerado e D um anel RMX, pelo corolário 1, D^* é um anel RMX. Se R é um anel noetheriano, podemos concluir pelo que foi visto acima D^* é um anel noetheriano. Do corolário 2 segue que D é um anel noetheriano.

Reciprocamente, se D é um anel noetheriano, como R é um D-módulo finitamente gerado então R é um anel noetheriano [apendice, proposição 1].

Lema 7: Sejam D um domínio com corpo de fracões K, L um corpo que contém K e q um elemento de L inteiro sobre D. Então há um domínio $D^* \subset K$ que satisfaz

- a) $D^* \supset D$ e D^* é um D-módulo finitamente gerado.
- b) $D^*[q]$ é um D[q]-módulo finitamente gerado.
- c) $D^*[q] \cap K = D^*$

Prova:

Seja $t_0+t_1X+...+X^{k+1}$ o polinômio mínimo de q sobre K. O conjunto $\{1,q,...,q^k\}$ é uma base de K(q) como K-espaço vetorial. Como q é inteiro sobre D, então $t_0,...,t_k$ são inteiros sobre D [apêndice, proposição 6]. Sejam $D^*=D[t_0,...,t_k]$ e $R=D^*[q]=D[t_0,...,t_k,q]$. Como $t_0,...,t_k$ e q são inteiros sobre D, temos que D^* é um D-módulo finitamente gerado e que R é um D[q]-módulo finitamente gerado. Resta ver que $D^*=R\cap K$. É claro que $D^*\subseteq K\cap R$. Para mostrar que $K\cap R\subseteq D^*$, mostraremos primeiramente que $\{1,q,...,q^k\}$ é um conjunto gerador de R como D^* -módulo. Para tanto, como todo elemento g0 de g1 pode ser escrito como g2 como g3 de g4 como g5 e g5.

basta mostrar que q^{k+1}, q^{k+2}, \dots pertencem a $D^* + D^*q + \dots + D^*q^k$. Observe que $q^{k+1} = -t_0 - t_1 q - \dots - t_k q^k \in D^* + D^*q + \dots + D^*q^k$. Se $q^{k+i} \in D^* + D^*q + \dots + D^*q^k$ então existem $c_0, c_1, \dots, c_k \in D^*$ tais que $q^{k+i} = c_0 + c_1 q + \dots + c_k q^k$, segue daí que $q^{k+i+1} = c_0 q + c_1 q^2 + \dots + c_k q^{k+1} = c_0 q + c_1 q^2 + \dots + c_{k-1} q^k + c_k (-t_0 - t_1 q - \dots - t_k q^k) = 0$ $q^{k+i+1} = c_0 q + c_1 q^2 + \dots + (c_{k-1} - t_k c_k) q^k \in D^* + D^*q + \dots + D^*q^k$. Logo, por indução, temos que $q^k \in \mathbb{R}$ é um $q^k \in \mathbb{R}$ base do por $q^k \in \mathbb{R}$ base que $q^k \in \mathbb{R}$ tais que $q^k \in \mathbb{R}$ base de $q^k \in \mathbb{R}$ tais que $q^k \in \mathbb{R}$ base de $q^k \in \mathbb{R}$ tais que $q^k \in \mathbb{R}$ tais que $q^k \in \mathbb{R}$ base de $q^k \in \mathbb{R}$ base de $q^k \in \mathbb{R}$ tais que $q^k \in \mathbb{R}$ base de $q^k \in \mathbb{R}$ tais que $q^k \in \mathbb{R}$ base de $q^k \in \mathbb{R}$ tais que $q^k \in \mathbb{R}$ base de $q^k \in \mathbb{R}$ base de $q^k \in \mathbb{R}$ tais que $q^k \in \mathbb{R}$ base de $q^k \in \mathbb{R}$ base de $q^k \in \mathbb{R}$ tais que $q^k \in \mathbb{R}$ base de $q^k \in$

Teorema 1: Seja D um domínio RMX. Suponha que S é um domínio tal que $D \subset S$ e S é um D-módulo finitamente gerado. Então S é um anel noetheriano se, e somente se, D é um anel noetheriano.

Prova:

Sejam $q_1, ..., q_n$ elementos de S inteiros sobre D tais que $S = D[q_1, ..., q_n]$. Se D é um anel noetheriano então S também é um anel noetheriano[apêndice, proposição 1]. A recíproca será mostrada por indução em n. Suponha n=1, isto é, $S=D[q_1]$. Sejam K e L o corpo quociente de D e S respectivamente. Pelo lema 7, existe D^* um domínio com corpo quociente K, tal que, $D^* \supset D$, D^* é um D-módulo finitamente gerado e $D^*=D^*[q_1]\cap K$. Como $S=D[q_1]$ é um anel noetheriano e $D^*[q_1]$ é um S-módulo finitamente gerado, então $D^*[q_1]$ é um anel noetheriano. Além disto, $D^*[q_1]$ é um D-módulo finitamente gerado, D é um anel RMX, D^* é um D-módulo finitamente gerado e $D^*[q_1]$ é um anel noetheriano, segue do lema 6, que D é um anel noetheriano. Suponha que n>1 e que o resultado vale para n-1. Como, pelo corolário 1, $D[q_1]$ é um domínio RMX, e $S=D[q_1][q_2,...,q_n]$ é um domínio noetheriano que é uma extensão inteira de $D[q_1]$ então, por indução $D[q_1]$ é um anel noetheriano. Decorre do caso n=1 que D é um anel noetheriano.

Lema 8: Suponha $R \subset S$ anéis, com S uma extensão inteira de R. Então se a condição da cadeia ascendente para ideais primos vale em S também valerá para R.

Prova:

Dado uma cadeia de ideais primos em $R, P_1 \subset P_2 \subset P_3 \subset ...,$ como S é uma extensão inteira de R, teremos que existem ideais primos Q_i em S tais que

 $Q_i \cap R = P_i$ e $Q_1 \subset Q_2 \subset ...,$ [apêndice, proposição8]. Mas, S satisfaz a condição da cadeia ascendente para ideais primos, com isto existe $j \in \mathbb{N}$ tal que $Q_j = Q_{j+n}$ para todo n natural. Logo, podemos concluir que $P_j = P_{j+n}$ para todo n natural [apêndice, proposição 8].

Teorema 2: Sejam $R \subset S$ anéis com S um R-módulo finitamente gerado então S é um anel noetheriano se, e somente se, R é um anel noetheriano.

Prova:

A suficiencia é bem conhecida [apêndice, proposição 1].

Sendo S um anel noetheriano, S satisfará a condição da cadeia ascendente para ideais primos; pelo lema 8, R também satisfará a condição da cadeia ascendente para ideais primos. Queremos mostrar que R é um anel RMX de onde decorrerá, pelo teorema 1, que R é um anel noetheriano. Suponha o contrário, isto é, que R não seja um anel RMX, então $F = \{P \mid P \text{ \'e} \text{ ideal primo pr\'oprio de } R \text{ e } R/P \text{ um}$ anel não noetheriano} é, claramente, não vazio. O fato de R satisfazer a condição da cadeia ascendente para os ideais primos é equivalente a R satisfazer a "condição do máximo" para os ideais primos. Logo F possui um elemento máximo. Seja M esse elemento máximo. Afirmamos que o anel R/M é um anel RMX. De fato, para todo ideal primo próprio \overline{J} de R/M existe J, um ideal primo de R tal que,

 $M\subset J\subset R,\,\overline{J}=J/M,\,R/M/J/M\simeq R/J.$ Se R/J não fosse anel noetheriano, contradiria o fato de M ser o elemento máximo de F. Logo R/J é um anel noetheriano. Concluimos assim que R/M é um anel RMX

Pelo teorema do lying over existe Q um ideal primo de S tal que $Q \cap R = M$. Como R/M é um domínio RMX, $R/M \hookrightarrow S/Q$, S/Q é um R/M-módulo finitamente gerado e S/Q é um anel noetheriano. Então, pelo teorema 1, temos que R/M é um anel noetheriano, o que contradiz o fato que $M \in F$. Logo $F = \emptyset$ e R é um anel RMX.

Se S é domínio, aplicando o teorema 1, então obtemos que R é um anel noetheriano.

Se S não for um domínio temos dois casos a considerar. No primeiro caso suponhamos que exista um ideal primo Q de S que se contraia ao ideal nulo de R. Neste caso temos $R \hookrightarrow S/Q$ e aplicando o teorema 1, obtemos que R é um anel noetheriano. No outro caso, temos que todo ideal primo próprio de S se contrai a um ideal primo próprio de R. Como S é um anel noetheriano que não é um domínio, $\langle 0 \rangle = Q_1...Q_k$ onde $Q_1,...,Q_k$ são ideais primos próprios de S. Os ideais $Q_1^c,...,Q_k^c$ são ideais primos próprios de S. Como S é um anel RMX, S é um anel noetheriano que é um S-módulo finitamente gerado, S0 ideais primos próprios de S1 e um anel noetheriano. Por outro próprios de S2 e um anel noetheriano. Por outro

lado, $(Q_1^c...Q_k^c)^{ec} = (Q_1^{ce}...Q_k^{ce})^c \subseteq \langle 0 \rangle^c = \langle 0 \rangle$, logo $R/\langle 0 \rangle \simeq R/(Q_1^c...Q_k^c)^{ec}$, portanto R é um anel noetheriano.

Proposição 2: Seja R um anel que não é um domínio, no qual, para todo ideal próprio I tem-se que R/I é um anel artiniano, então R é um anel artiniano.

Prova:

Como para todo ideal próprio I de R, R/I é um anel artiniano então R/I é um anel noetheriano e todo ideal primo de R/I é um ideal máximo. Se R/I é um anel noetheriano, para todo ideal próprio I de R então, pelo lema 4, temos que R é um anel noetheriano. Por outro lado, se P é um ideal primo de R, R/P é um anel artiniano logo R/P é um corpo e P é um ideal máximo de R. Assim R é um anel noetheriano no qual todo ideal primo é um ideal máximo, logo R é um anel artiniano.

Proposição 3: Sejam S e R anéis, $R \subset S$ e S um R-módulo finitamente gerado. Então S é um anel artiniano se, e somente se, R é um anel artiniano.

Prova:

É bem conhecido que se R é um anel artiniano, então S é um anel artiniano [apêndice, proposição 1].

Se S é um anel artiniano então S é um anel noetheriano no qual todo ideal primo é um ideal máximo. Sendo S um R-módulo finitamente gerado e S um anel noetheriano, pelo teorema 2, concluimos que R é um anel noetheriano. Por outro lado, como S é uma extensão inteira sobre R, logo dim S = dim R = 0. Portanto R é um anel artiniano.

Neste exemplo veremos uma aplicação basicamente técnica do teorema 2.

Exemplo 7: Seja K um corpo e $X_1,...,X_k$ um número finito de váriaveis sobre K. Seja $K[X_1,...,X_k]$, o anel de polinômios sobre K, $n \in \mathbb{N}$ e $\langle X_1,...,X_k \rangle^n$ um ideal de $K[X_1,...,X_k]$. Seja $D=K+\langle X_1,...,X_k \rangle^n$. Então D é um anel noetheriano, mostrando que $K[X_1,...,X_k]$ é um D-módulo finitamente gerado e usando o teorema 2. Para mostrar que $K[X_1,...,X_k]$ é um D-módulo finitamente gerado, basta verificar que $K[X_1,...,X_k]=D[X_1,...,X_k]$ e que $X_1,...,X_k$ são inteiros sobre D [apêndice, proposição 7]. Para cada $i \in \{1,...,k\}$, considere o polinômio mônico $h_i(Z) \in D[Z]$, definido por $h_i(Z) = Z^n - X_i^n$. Observe que $h_i(X_i) = X_i^n - X_i^n = 0$. Logo X_i é inteiro sobre D. Como $K \subseteq D$, tem-se $K[X_1,...,X_k] \subseteq D[X_1,...,X_k]$. Por outro lado $D \subseteq K[X_1,...,X_k]$, logo $D[X_1,...,X_k] \subseteq K[X_1,...,X_k]$, portanto $K[X_1,...,X_k] = D[X_1,...,X_k]$.

Proposição 4: Sejam D um domínio inteiramente fechado e K o corpo quociente e L uma extensão finita separável de K. Seja J o fecho inteiro de D em L. Então existe $\alpha \in J$ tal que $L = K(\alpha)$.

Prova:

Pelo teorema do elemento primitivo[apêndice, proposição 11] existe $l \in L$ tal que L = K(l). Afirmamos que podemos escolher $l \in J$. Para tanto considere $X^n + k_{n-1}X^{n-1} + \ldots + k_1X + k_0$ o polinômio mínimo de l sobre K. Sejam $d_0, \ldots, d_{n-1}, d \in D$ tal que $k_i = \frac{d_i}{d}$. Seja $\alpha = dl$. Observe que $(dl)^n + (dl)^{n-1}d_{n-1} + \ldots + (dl)d_1d^{n-2} + d_0d^{n-1} = d^n(l^n + \frac{d_{n-1}}{d}l^{n-1} + \ldots + \frac{d_1}{d}l + \frac{d_0}{d}) = 0$. Logo dl é inteiro sobre D, portanto $dl \in J$. Como K(l) = K(dl), pois $d \in K$ então L = K(dl) com $dl \in J$.

Gilmer em[2], perguntou se, com as mesmas hipóteses da proposição 4, se J for um anel noetheriano podemos garantir que D é um anel noetheriano?

A pergunta não será respondida inteiramente, mas faremos duas observações. Pela proposição 4, existe $\alpha \in J$ tal que $L = K(\alpha)$. Seja $\{1, \alpha, ..., \alpha^{n-1}\}$ uma base de L sobre K. Se T é o traço[apêndice, definição], seja $\varphi = \{\beta \in L \ / \ T(\beta J) \subseteq D\}$. Afirmamos que φ é um J-módulo. De fato, dados $\beta_1, \beta_2 \in \varphi$, temos que $T((\beta_1 + \beta_2)J) = T(\beta_1J + \beta_2J) = T(\beta_1J) + T(\beta_2J) \subseteq D + D = D$, o que implica $\beta_1 + \beta_2 \in \varphi$. Além disso, $\beta \in \varphi$ e $\zeta \in J$ então $T(\zeta\beta J) \subseteq T(\beta J) \subset D$, podemos concluir que $\zeta\beta \in \varphi$. Logo φ é um J-módulo. Além disto, $J \subseteq \varphi$ pois dado

 $x\in J,\, T(x)$ é um dos coeficientes do pôlinomio mínimo de x sobre K, que é um polinômio que pertence a D[X]. Logo $J\subseteq \varphi.$

Mostraremos que se Δ é o discriminante de L sobre K,onde $\Delta = \det(T(\alpha^i\alpha^j))$, então $\varphi \subset D\frac{1}{\Delta} + D\frac{\alpha}{\Delta} + ... + D\frac{\alpha^{n-1}}{\Delta}$. Em particular, se $\frac{1}{\Delta} \in D$ então $\varphi \subset D\frac{1}{\Delta} + D\frac{\alpha}{\Delta} + ... + D\frac{\alpha^{n-1}}{\Delta}$ logo $J \subseteq \varphi \subseteq D\frac{1}{\Delta} + D\frac{\alpha}{\Delta} + ... + D\frac{\alpha^{n-1}}{\Delta} \subset J$, portanto $J = D\frac{1}{\Delta} + D\frac{\alpha}{\Delta} + ... + D\frac{\alpha^{n-1}}{\Delta}$. Desta maneira J é um D-módulo finitamente gerado e pelo teorema 2, D é um anel noetheriano. Se $z \in \varphi$, $z = \sum\limits_{i=0}^{n-1} a_i\alpha^i$, com $a_i \in K$, então $z\alpha^j = \sum\limits_{i=0}^{n-1} a_i\alpha^{i+j}$ e daí $T(z\alpha^j) = \sum\limits_{i=0}^{n-1} a_iT(\alpha^i\alpha^j)$. Como L é uma extensão sepáravel de K, $\Delta = \det(T(\alpha^i\alpha^j))$ não é nulo[apêndice, proposição 18]. Como $T(\alpha^i\alpha^j) \in D$ para todo i,j obtemos, aplicando a regra de Cramer, que $\Delta a_i \in D$, para todo i = 1, ..., n. Dessa maneira podemos escrever $z = \sum\limits_{i=0}^{n-1} (\Delta a_i)\frac{1}{\Delta}\alpha^i = \sum\limits_{i=0}^{n-1} d_i\frac{\alpha^i}{\Delta} \in D\frac{1}{\Delta} + ... + D\frac{\alpha^{n-1}}{\Delta}$. Logo $\varphi \subseteq D\frac{1}{\Delta} + ... + D\frac{\alpha^{n-1}}{\Delta}$.

Como foi falado anteriormente se o discriminante é um elemento inversível de D, conseguimos mostrar que D é um anel noetheriano. No outro caso se $\frac{1}{\Delta} \notin D$, não conseguimos mostrar que D é um anel noetheriano, mas mostraremos que D é a intersecção de um domínio de Krull noetheriano com um número finito de anéis de valorização discreta de posto 1.

Considere $J[\frac{1}{\Delta}]$ que é uma extensaõ inteira de $D[\frac{1}{\Delta}]$. Como $\frac{1}{\Delta} \in D[\frac{1}{\Delta}]$ então, pelo que vimos anteriormente, podemos concluir que $J[\frac{1}{\Delta}]$ é $D[\frac{1}{\Delta}]$ -

módulo finitamente gerado. Como J é um anel noetheriano, então $J[\frac{1}{\Delta}]$ é um anel noetheriano e pelo teorema 2, $D[\frac{1}{\Delta}]$ é um anel noetheriano.

Por outro lado J é domínio inteiramente fechado e é um domínio noetheriano, logo J é um domínio de Krull[apendice, proposição 9]. Como $D=J\cap K$, então D é um domínio de Krull.

Seja $\Im = \{1, \Delta, \Delta^2, ...\}$, é fácil ver que $D[\frac{1}{\Delta}] = D_{\Im} = \bigcap_{altP=1e\Delta\notin P} D_P$, portanto $D[\frac{1}{\Delta}]$ é um domínio de krull noetheriano. Sejam $P_1, ..., P_n$ primos de altura 1 de D que contém Δ , logo $D = (\bigcap D_P) \cap D_{P_1} \cap D_{P_2} \cap \cap D_{P_n} = D[\frac{1}{\Delta}] \cap D_{P_1} \cap D_{P_2} \cap \cap D_{P_n}$ [apêndice, proposição 10], onde D_{P_i} (i = 1, ..., n) são anéis de valorização discreta de dimensão 1.

Observação: No caso em que D tem dimensão de Krull igual a 1, poderemos concluir que D é um domínio noetheriano. Isto é claro, pois, quando o discriminante não é um elemento inversível de D, vimos que D é um domínio de Krull, mas todo domínio de Krull de dimensão 1 é um domínio noetheriano.

O próximo exemplo mostra que nem sempre intersecção de anéis noetherianos é um anel noetheriano.

Exemplo 8: Seja K um corpo de característica zero, X transcendente sobre K. Considere D = K(X)[[Y]] o anel das séries formais com coeficientes em

K(X), e $\langle Y \rangle$ o seu único ideal máximo. É fácil ver que $D = K(X) + \langle Y \rangle$. Sejam $R = K(X^2) + \langle Y \rangle$ e $J = K(X^2 + X) + \langle Y \rangle$ subanéis de D. Neste caso, veremos que R e J são anéis noetherianos e $R \cap J$ não é um anel noetheriano. Como $[K(X):K(X^2)]=2$, $\{1,X\}$ é um conjunto gerador de K(X) como $K(X^2)$ -módulo. Mostraremos que $\{1,X\}$ gera D como R-módulo. É claro que $R+RX \subseteq D$. Por outro lado $f \in D$, temos f = g + h com $g \in K(X)$ e $h \in \langle Y \rangle$. Como $\{1,X\}$ é uma base de K(X) como $K(X^2)$ -espaço vetorial, logo podemos escrever $g = 1g_1 + Xg_2$ onde g_1 e $g_2 \in K(X^2) \subset D$. Temos assim $f = 1(g_1 + h) + g_2X0$ onde $g_1 + h \in K(X^2) + \langle Y \rangle = R$ e $g_2 \in K(X^2) \subset R$. Daí D é um R-módulo gerado por $\{1,X\}$. Logo, pelo teorema 2, R é um anel noetheriano. Analogamente, como $[K(X):K(X^2+X)]=2$, mostra-se que $\{1,X\}$ é um conjunto gerador de D como J-módulo. Pelo teorema 2, podemos concluir que J é um anel noetheriano.

Mostraremos que $R\cap J=K+\langle Y\rangle$. Decorrerá da observação que segue o exemplo 2 que $R\cap J$ não é um anel noetheriano. Para mostrar que $R\cap J=K+\langle Y\rangle$, basta mostrar que $K(X^2)\cap K(X^2+X)=K$ e o faremos através de várias afirmações.

Afirmação 1: $K(X^2) \cap K[X] = K[X^2]$. É imediato que $K(X^2) \cap K[X] \supseteq K[X^2]$. Suponha que a outra inclusão seja falsa e escolha $f(X) = \sum_{j=0}^n a_j X^j \in K(X^2) \cap K[X] \setminus K[X^2]$. Como $f(X) \notin K[X^2]$ existe j impar tal que $a_j \neq 0$. Seja $i = \max\{j\}$

/ j ímpar e $a_j \neq 0$ }. Sejam $g(X^2) = \sum_{i=0}^t b_{2i} X^{2i}$, $h(X^2) = \sum_{i=0}^m c_{2i} X^{2i} \in K[X^2]$ não nulos, com $b_{2t} \neq 0$ e $c_{2m} \neq 0$ tais que $f(X) = \frac{g(X^2)}{h(X^2)}$. Como i é impar o coeficiente de X^{2m+i} em $g(X^2)$ é nulo. Por outro lado $g(X^2) = h(X^2)f(X)$ logo $0 = b_{2m+i} = c_{2m}a_i + c_{2m-2}a_{i-2} + ... + c_0a_{2m+i}$.

Pela escolha de i, se j é impar e j>i então $a_j=0$. Logo $0=b_{2m+i}=c_{2m}a_i$; como $a_i\neq 0$ temos $c_{2m}=0$ contrariando a escolha de h(X). Logo não existe $f(X)\in K(X^2)\cap K[X]\backslash K[X^2]$, daí $K(X^2)\cap K[X]\subseteq K[X^2]$. Portanto $K(X^2)\cap K[X]=K[X^2]$.

Afirmação 2: $K[X^2] \cap K(X^2 + X) = K$. É claro que só precisa ser verificado que $K[X^2] \cap K(X^2 + X) \subseteq K$.

Suponhamos que $K[X^2] \cap K(X^2+X) \neq K$. Seja $h(X^2) = a_0 + a_2 X^2 + \dots + a_{2n} X^{2n}$ um polinômio de $K[X^2] \setminus K$ que pertença a $K(X^2+X)$ e que tenha grau mínimo dentre os polinômios que têm esta propriedade. Sejam $f(X^2+X)$ e $g(X^2+X) \in K(X^2+X)$ tais que $h(X^2) = \frac{g(X^2+X)}{f(X^2+X)}$ isto é, $f(X^2+X)h(X^2) = g(X^2+X)$. Podemos escrever $f(X^2+X) = b_0 + b_1(X^2+X) + \dots + b_k(X^2+X)^k$ com $b_k \neq 0$ e $g(X^2+X) = c_0 + c_1(X^2+X) + \dots + c_{n+k}(X^2+X)^{n+k}$ com $c_{n+k} \neq 0$. O único monômio de $f(X^2+X)h(X^2)$ de grau 2n+2k, é $a_{2n}b_kX^{2n+2k}$ que deve ser igual ao único monômio de $g(X^2+X)$ de grau 2n+2k, que é $c_{n+k}X^{2n+2k}$. Do mesmo modo, o único monômio de $f(X^2+X)h(X^2)$ de grau 2n+2k, que é $c_{n+k}X^{2n+2k}$.

 $a_{2n}b_kkX^{2n+2k-1}$ que deve ser igual ao monômio de $g(X^2+X)$ de grau 2n+2k-1, que é $(n+k)b_kX^{2n+2k-1}$. Temos assim que $a_{2n}b_k=c_{n+k}$ e $ka_{2n}b_k=(n+k)c_{n+k}$. Daí $kc_{n+k}=(n+k)c_{n+k}$. Como $n\geq 1$ e característica de K igual a zero então $c_{n+k}=0$ o que contraria a escolha de $g(X^2+X)$. Logo $K[X^2]\cap K(X^2+X)\subseteq K$. Observe que $(K(X^2+X)\cap K(X^2))\cap K[X]=K(X^2+X)\cap (K(X^2)\cap K[X])=K(X^2+X)\cap K[X^2]=K$. Segue da afirmação 3, a seguir, que $K(X^2+X)\cap K(X^2)=K$.

Afirmação 3: Se L é um corpo tal que $K\subseteq L\subseteq K(X)$ e tal que $L\cap K[X]=K$ então $[K(X):L]=\infty$ e L=K.

Se [K(X):L] fosse finito, X seria algébrico sobre L. Seja $f(Z)=Z^n+l_{n-1}Z^{n-1}+\ldots+l_1Z+l_0\in L[Z]$ o polinômio mínimo de X sobre L. Como $L\neq K(X)$, pois $L\cap K[X]=K$, então n>1. Mostraremos que $l_1,\ldots,l_{n-1}\in K$ de onde concluiremos que $-l_0=l_1X+\ldots+l_{n-1}X^{n-1}+X^n\in K[X]\cap L$. Como $K[X]\cap L=K$ teremos que $l_1X+\ldots+l_{n-1}X^{n-1}+X^n\in K$, o que não pode acontecer, pois X é transcendente sobre K. Logo [K(X):L] não pode ser finito. Seja $s=\min\{j\mid j>1\ e\ l_j\neq 0\}$. Como $l_sX^s+\ldots+l_{n-1}X^{n-1}+X^n\in L[X]\subset K(X)$, temos que existem $g(X)=\sum\limits_{i=i_0}^t a_iX^i\in K[X]$ com $a_{i_0}\neq 0$ e $h(X)=\sum\limits_{j=j_0}^m b_jX^j\in K[X]$ com $b_{j_0}\neq 0$ tais que $(b_{j_0}X^{j_0}+\ldots+b_mX^m)(l_sX^s+\ldots+l_{n-1}X^{n-1}+X^n)=a_{i_0}X^{i_0}+\ldots+a_tX^t$.

Decorre daí que $l_s b_{j_0} = a_{i_0}$, logo $l_s \in K$. Suponhamos que $l_s, l_{s+1}, ..., l_i \in K$ e mostremos que $l_{i+1} \in K$. Sabemos que $a_{j_0+i+1} = l_s b_{j_0+i+1-s} + l_{s+1} b_{j_0+i-s} + ... + l_{i+1} b_{j_0}$, logo $b_{j_0} l_{i+1} = a_{i+j_0+1} - l_s b_{j_0+i+1-s} - l_{s+1} b_{j_0+i-s} - ... - l_i b_{j_0+1} \in K$. Logo $l_{i+1} \in K$ pois $b_{j_0} \neq 0$.

Mostremos que L=K. Se $L\neq K$ então existiria $\alpha\in K(X)\backslash K$, $\alpha\in L$. Sejam $f(X),g(X)\in K[X]$ tal que $\alpha=\frac{f(X)}{g(X)}$. Considere $f(Z)-\alpha g(Z)\in L[Z]$ que é um polinomio que anula X, pois, $f(X)-\alpha g(X)=f(X)-\frac{f(X)}{g(X)}f(X)=0$. Além do mais $f(Z)-\alpha g(Z)\neq 0$, pois $f(0)-\alpha g(0)\neq 0$ caso contrário $\alpha\in K$. Concluimos daí que X é algébrico sobre L e portanto [K(X):L] é finito, o que não pode acontecer. Logo L=K.

APÊNDICE

Proposição 1[1, VI, th5]:Se A é um anel noetheriano(artiniano) e M um A-módulo finitamente gerado, então M é um A-módulo noetheriano(artiniano).

Proposição 2[7, IV, pg 200]:Se A um anel noetheriano, todo ideal I de A conterá um produto de um número finito de ideais primos.

Proposição 3(Cohen)[5, III, th4]:Se todos os ideais primos do anel A são finitamente gerados então A é um anel noetheriano.

Proposição 4[1, II, pg19]:Se A um anel, M um A-módulo e I um ideal de A contido no anulador de M como A-módulo, então M é um A/I-módulo(com as operações usuais).

Proposição 5[5, IV, th11.1]:Seja R um anel de valorização. Então as seguintes condições são equivalentes:

a) R é um anel de valorização discreta de posto 1.

- b) R é um domínio de ideais principais.
- c) R é um anel noetheriano.

Proposição 6[7, IV, th4]:Sejam A um domínio e K o corpo de frações de A. Seja x um elemento de alguma extensão de K tal que x é um elemento inteiro sobre A. Então x é algébrico sobre K e os coeficentes do polinômio mínimo de x sobre K são inteiros sobre A.

Proposição 7[7, V, th1]: Sejam A, B anéis tal que $A \subset B$. Sejam $x_1, ..., x_n \in B$ tais que $x_1, ..., x_n$ são inteiros sobre A. Então $A[x_1, ..., x_n]$ é A-módulo finitamente gerado.

Proposição 8[1, I, th44]: Sejam R, T anéis tais que $R \subset T$ e T é uma extensão inteira de R. Então valem os seguintes resultados:

- a) Dado P um ideal primo de R, existe um ideal primo Q de T tal que $Q \cap R = P$.
- b) Dados ideais primos P_1 e P_2 de R tais que $P_1 \subset P_2$. Se Q_1 é um ideal primo de T tal que $Q_1 \cap R = P_1$, então existe um ideal primo Q_2 de T tal que $Q_1 \subset Q_2$ e $Q_2 \cap R = P_2$.

c) Dado um ideal primo P de R tais que existem Q_1 , Q_2 ideais primos de T tais que $Q_1 \cap R = P_1$ e $Q_2 \cap R = P_2$. Então os ideais primos P_1 e P_2 não são comparáveis.

Proposição 9[6, V, th33.4]:Seja D um domínio. Se D for um domínio noetheriano e se além disso for inteiramente fechado então D é um domínio de krull.

Proposição 10[6, V, th33.5]:Sejam R um domínio, K o seu corpo de frações. Suponha que um conjunto F de anéis de valorizações noetherianos de K satisfaça as seguintes condições:

a) R é a intersecção de todos $V \in F$.

b)Se $a \in R$, $a \neq 0$ então há somente um número finito de $V \in F$ tais que a não é inversível em V.

Seja S um subconjunto multiplicativo fechado de R tal que $0 \notin S$ e seja $F' \subset F$ consistindo de todos os anéis V nos quais todo elemento de S é uma unidade . $Então \ R_S = \bigcap_{V \in F'} V.$

Proposição 11[7, II, th19]:Seja K um corpo e L uma extensão separável e

finita de K, então existe $\alpha \in L$ tal que $L = K(\alpha)$.

Proposição 12[1, V, exercício 32]: Seja Γ um grupo abeliano totalmente ordenado. Seja A um anel de valorização de um corpo K, cujo grupo de valores é Γ . Então existe um correspondencia biunívoca entre os ideais primos de A e os subgrupos isolados de Γ . Além disso, dado P um ideal primo de A, se H é o subgrupo isolado de Γ correspondente então os grupos de valores de A/P e A_P são H e G/H respectivamente.

Proposição 13[1, VI, th2]: Sejam A um anel e M um A-módulo. M é um A-módulo noetheriano se, e somente se, todo submódulo de M é finitamente gerado.

Proposição 14(1, VI, th6]: Se A é um anel noetheriano (artiniano) e I um ideal qualquer de A então A/I é um anel noetheriano (artiniano).

Proposição 15[5, I, th3.3]: $Se\ A\ \'e\ um\ anel\ noetheriano\ ent\~ao\ A[[X]]\ \'e\ um$ anel noetheriano.

Seja L uma extensão finita de K, de grau n. Para cada $x \in L$ considere a

função K-linear $F_x: L \to L$ definida por $F_x(l) = xl$. Seja $p_x(X) \in K[X]$ o polinômio característico de F_x . É claro que $p_x(X)$ tem grau n.

Definição: A função $T: L \to K$ que a cada $x \in L$ associa o coeficiente de X^{n-1} do polinômio $p_x(X)$ é chamado o traço da extensão e denotada $T_{L|K}$.

Quando não houver confusão quanto a extensão costuma-se omitir o índice o traço simplesmente por T. È fácil ver que [7, II, pg88] que T(x+y) = T(x) + T(y) e T(kx) = kT(x) para todo $x, y \in L$ e $k \in K$.

Proposição 16[1, I, prop.17]: Sejam $R \subset S$ anéis. São válidos os seguintes resultados:

- a) Para todo ideal I de R e todo ideal J de S temos que $I \subseteq I^{\operatorname{ec}}$ e $J \supseteq J^{\operatorname{ce}}$
- b) Se $C=\{I, ideal\ de\ R\ /\ I^{ec}=I\ \}$ o conjunto dos ideais contraídos de R e se $E=\{I, ideal\ de\ R\ /\ J^{ce}=J\ \}$ o conjunto de ideais estendidos de S, então há uma aplicação $\vartheta:C\to E$ tal que para cada $I\in C$ aplica em I^e é uma aplicação bijetiva.

Proposição 17[4, III, th142]: $Se\ R$ é um anel noetheriano, I um ideal principal de R e P um ideal primo mínimo do ideal I então alt $P \leq 1$.

Proposição 18[7, II, th22]:Sejam $K \subset L$ corpos. O corpo discriminante da extensão $L|_K$ é zero se e somente se L é uma extensão insepáravel de K.

BIBLIOGRAFIA

- [1] Atiyah, M.F. e Macdonald, I.G., Introduction to commutative Algebra, 1969.
- [2] Gilmer, Robert W., Contracted Ideals With Respect To Integral Extensions, Duke Math. J., vol.34, pg561-572,1967.
- [3]Jr,Paul M. Eakin, The Converse to a Well Known Theorem on Noetherian rings, Math.Annalen, 177, pg278-282,1968.
 - [4] Kaplansky, I., Commutative rings, Chicago, 1970.
 - [5] Matsumura, H., Commutative ring theory, Nova York 1986.
 - [6] Nagata, Masayosh, Local Rings, Nova York, 1962.
 - [7] Zariski, O. e Samuel, P., Commutative Algebra Volume I, Prince-

 $ton,\,1958.$

[8] Zariski, O. e Samuel, P., Commutative Algebra Volume II, Princeton, 1958

