UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA

Os fatores de risco associados aos nascidos vivos com baixo peso em Porto Alegre, estudados a partir do SINASC.

Vânia Naomi Hirakata

Orientadora: Marilene Bandeira

Trabalho apresentado para obtenção do grau de Bacharel em Estatística, Universidade Federal do Rio Grande do Sul.

UFRES
SISTEMAS DE BIBLIOTECAS
BIBLIOTECA SETORIAL DE MATEMÁTICA

Porto Alegre, janeiro de 1993.

Agradecimentos

À profa. Marilene que, com seu conhecimento e dedicação orientou-me na realização desta monografia.

A epidemiologista Denise que, além do incentivo, com sua competência, me prestou orientação técnica na área da saúde.

A minha família e ao Eduardo, pelo apoio e compreensão.

Aos colegas e amigos, pelo companheirismo e amizade, que se estenderam ao longo de todo este curso.

A Secretaria Municipal da Saúde e Serviço Social, pela concessão das informações utilizadas neste trabalho.

Sumário

1	Introd	ıção	4
	1.1	SINASC	6
	1.2	Objetivos	8
		1.2.1 Geral	8
		1.2.2 Específicos	8
2	Metodo	logia	9
	2.1	Fonte	9
	2.2	Variáveis	9
	2.3	Regressão Logística 1	2
		2.3.1 Univariada	2
		2.3.2 Múltipla 2	0
3	Resulta	ados e Discussão 2	7
	3.1	Análise Univariada 2	7
	3.2	Análise Bivariada 3	7
	3.3	Análise Multivariada 4	0
4	Conclus	5ão 4	3
5	Biblio	grafia	4
6	Anexos	4	6
	6.1	Declaração de Nascido Vivo 4	6
	6-2	Resultados nas saídas de computador 4	8

UFROS SISTEMAS DE BIBLIOTECAS BIBLIOTECA SETORIAL DE MATEMATICA

1 INTRODUCÃO

O presente trabalho foi realizado para a conclusão do curso de Bacharelado em Estatística, da Universidade Federal do Rio Grande do Sul.

Este trabalho utiliza as informações disponíveis na Secretaria Municipal da Saúde e Serviço Social do município de Porto Alegre e que fazem parte do Sistema de Informações sobre os Nascidos Vivos (SINASC). O objetivo principal é mostrar como os dados constantes na Declaração de Nascido Vivo podem ajudar a compreender melhor as razões do baixo peso nos recém nascidos deste município, durante os meses de março a dezembro de 1992.

Segundo a Organização Mundial da Saúde (OMS), todos os nascidos vivos que apresentem peso inferior a 2500g devem ser classificados como de baixo peso ao nascer (OMS, 1986).

O interesse no baixo peso ao nascer deve-se à sua relação com a mortalidade infantil (morte de crianças menores de um ano), visto ser ele (baixo peso ao nascer) um dos indicadores de risco para a mesma, juntamente com idade da mãe e idade gestacional, entre outros disponíveis (TESCH, MACHADO & CARVALHO, 1993).

Também o peso ao nascer determina a sobrevida da criança no primeiro ano de vida e, principalmente, no primeiro mês (TESCH, MACHADO & CARVALHO, 1993). A OMS reconhece o peso ao nascer como fator isolado mais importante para a sobrevivência infantil (OMS, 1986).

Como o evento de interesse deste trabalho é o baixo peso ao nascer, resolveu-se trabalhar apenas com as variáveis do SINASC que fossem fatores de risco para o mesmo. Por este motivo, trabalha-se apenas com as variáveis sexo, idade e instrução maternas, idade gestacional, tipo de gravidez, filhos mortos e vivos de gestações anteriores, e, evidentemente, o peso ao nascer.

Este estudo é feito por meio de estatísticas descritivas (análise univariada) e regressão logística simples (análise bivariada) e múltipla (análise multivariada).

É importante lembrar que na Declaração de Nascido Vivo não se encontram todas as causas que podem determinar o baixo peso ao nascer de um nascido vivo.

Por outro lado, as informações pertencentes ao SINASC poderiam ser, e certamente serão, a base de outros estudos relacionados, principalmente, com a mortalidade infantil e, consequentemente, com o baixo peso ao nascer, entre muitos outros fatores de risco para a mesma.

1.1 SINASC

A partir da necessidade de se obter dados sobre nascidos vivos direto da principal fonte, o registro hospitalar, o Grupo de Estatísticas Vitais do Ministério da Saúde (GEVIMS) recomendou a implantação do Sistema de Informação sobre Nascidos Vivos, SINASC, em 1989. Estas informações deveriam percorrer três níveis: o municipal, o estadual e o federal.

A Declaração de Nascido Vivo (DN) é o documento básico do SINASC. Sua emissão é feita em três vias carbonadas de igual teor. A 1ª via, branca, é destinada à Secretaria Municipal da Saúde e Serviço Social (SMSSS), a 2ª, amarela, é destinada à família, sendo indispensável para o registro civil do recém nascido, e a 3ª via, rosa, é enviada à Secretaria de Saúde e Meio Ambiente do Estado do Rio Grande do Sul (SSMA-RS). A DN pode ser preenchida no hospital, se foi prestada assistência hospitalar, ou no cartório caso o parto tenha sido domiciliar.

Em Porto Alegre, a implantação definitiva do SINASC ocorreu em janeiro de 1992 com a coordenação da SSMA-RS, ficando sob sua responsabilidade até março do mesmo ano, quando a SMSSS passou a coordená-lo.

Juntamente ao SINASC foi criado em Porto Alegre um programa pertencente ao Sistema de Vigilância à Saúde da Criança,

conhecido como Prá Nenê.

Atualmente, o programa acompanha todos os recém nascidos de risco que residem nas áreas de abrangência das unidades sanitárias. Com este programa, a SMSSS pretende reduzir a mortalidade neonatal (morte de crianças com menos de um mês de vida), que corresponde a mais de 50% dos óbitos de menores de um ano em Porto Alegre (Aerts, 1992).

O SINASC pode ser considerado, por isso, uma importante fonte de informações, não apenas do ponto de vista epidemiológico, como também para as ações de vigilância da saúde das crianças.

1.2 OBJETIVOS

1.2.1 Geral

Analisar os fatores de risco para o baixo peso ao nascer a partir do SINASC, considerando as suas distribuições e suas relações com a variável de interesse, nos recém nascidos de Porto Alegre, RS, durante os meses de março a dezembro de 1992.

2.2.2 Específicos

- 1 Descrever e analisar a distribuição dos nascidos vivos de Porto Alegre segundo sexo, peso ao nascer, idade getacional, tipo de gravidez, idade e instrução materna, filhos tidos vivos e mortos.
- 2 Estudar a relação de cada variável citada no item anterior com o baixo peso ao nascer por meio de regressão logística.
- 3 Estudar a relação de todas as variáveis que puderam ser consideradas fatores de risco no item 2 com a variável peso ao nascer.

2 METODOLOGIA

2.1 Fonte

O presente trabalho teve como fonte a Declaração de Nascido Vivo (DN), documento primordial do SINASC. As informações encontradas aqui referem-se aos meses de março a dezembro de 1992. Foram consideradas todas as DNs que chegaram à SMSSS até março de 1993. Em anexo, pode ser encontrada uma cópia deste documento.

2.2 Variáveis

As variáveis encontradas na DN que se mostraram mais interessantes para este estudo puderam ser divididas **em três** grandes grupos de informações:

- sobre o recém nascido;
- sobre a gestação e o parto;
- sobre a mãe.

Relacionadas ao recém nascido estão as seguintes variáveis:

PESO - indica o peso ao nascer da criança, podendo 'ser identificado até a 5º hora após o nascimento. Na DN, o peso deve ser informado da maneira mais exata possível.
SEXO - diz respeito ao sexo da criança.

No que diz respeito à gestação e ao parto, podemos encontrar as variáveis:

- GESTACAO informa a duração da gestação, um dos fatores que determinam o crescimento intra-uterino. As categorias em que esta variável encontra-se estratificada na DN seguem a orientação proposta para a 10º Revisão da Classificação Internacional de Doenças, e são, 0 a 21, 22 a 27, 28 a 36, 37 a 41, 42 e mais semanas de gestação (JORGE et al., 1992).
- TIPOGRAV fornece informações sobre o tipo de gravidez. Existem estudos que apontam um risco maior de morte nas crianças nascidas de gestações múltiplas, já que estas são, também, as que apresentam em média menor peso ao nascer (JORGE et al., 1992).

As variáveis que informam sobre a mãe são:

IDADEMAE - refere-se à informação sobre a idade materna. Esta

variável é muito importante, não só para estudos

demográficos, mas também como um fator de risco para o

baixo peso ao nascer. Segundo Jorge, estudos têm demonstrado que este risco é maior entre as mães mais jovens e, da mesma forma, entre as mães com 35 anos e mais.

- INSTRMAE indica o grau de instrução da mãe. Constitui-se de uma informação sócio-econômica muito relevante e de fácil obtenção.
- FILVIVOS e FILMORTO fornece informações sobre as gestações anteriores. De acordo com Jorge, há evidências indicando a existência de maior risco de mortalidade perinatal entre as mulheres que estão tendo o primeiro filho e as que têm cinco ou mais filhos anteriores.

2.3 Regressão Logística

A regressão logística é uma técnica estatística de análise de dados que tem sido utilizada com bastante freqüência quando se deseja descrever a relação entre uma variável resposta (dependente) e um ou mais fatores de risco (variáveis independentes), principalmente se esta variável resposta for discreta, podendo ter duas ou mais categorias.

O principal objetivo da regressão logística é, como a de muitas outras técnicas de elaboração de modelos, a procura do melhor ajuste que explique a relação entre a variável resposta (dependente) e o conjunto de variáveis independentes (fatores de risco).

2.3.1 O Modelo de Regressão Logística

Seja x a variável independente e Y a variável dependente dicotômica. A +orma específica do modelo de regressão logística a ser usada é:

$$\pi(x) = \frac{e^{\beta o + \beta i x}}{1 + e^{\beta o + \beta i x}}$$
 (1.1)

0 valor $\pi(x) = E(Y/x)$ representa a média condicional de

Y dado x quando a distribuição logística é utilizada. A **transformação logit** é uma transformação de $\pi(x)$ que será o centro do estudo de regressão logística. Esta transformação é definida em termos de $\pi(x)$ como:

$$g(x) = \ln \left[\frac{\pi(x)}{1 - \pi(x)} \right] = \beta o + \beta i x$$
 (1.2)

O logit g(x) é linear em seus parâmetros, pode ser contínuo, e pode se estender de $-\infty$ a $+\infty$, dependendo apenas da extensão de x.

A distribuição condicional da variável resposta dado por ∞ pode ser expressa como:

$$y = \pi(x) + \varepsilon$$

onde o valor ε pode assumir um de apenas dois valores possíveis. Se y=1, então $\varepsilon=1-\pi(\varkappa)$ com probabilidade $\pi(\varkappa)$ e, se y=0, então $\varepsilon=-\pi(\varkappa)$ com probabilidade $1-\pi(\varkappa)$. Logo, ε possui uma distribuição com média zero e variância $\pi(\varkappa)[1-\pi(\varkappa)]$. Ou seja, a distribuição condicional da variável resposta segue uma distribuição binomial com probabilidade dada pela média condicional $\pi(\varkappa)$.

O Ajuste do Modelo de Regressão Logística

Suponha que se tivesse uma amostra de n observações independentes do par (z_i,y_i) , $i=1,\ 2,\ \dots,\ n$, onde y_i é o valor de uma variável resposta e z_i é o valor da variável independente

para o i-ésimo sujeito. Além disso, deve-se assumir que a variável resposta tenha sido codificada como zero ou um indicando a ausência ou a presença da característica, respectivamente. Para o ajuste do modelo de um conjunto de dados, deve-se estimar os valores dos parâmetros desconhecidos β_0 e β_1 .

O modelo de estimação utilizado aqui é semelhante ao método de mínimos quadrados utilizado na regressão linear e denomina-se método de máxima verossimilhança. De um modo geral, este método produz valores para os parâmetros desconhecidos, que maximizam a probabilidade de se obter o conjunto observado de dados. Antes que se possa aplicar o método de máxima verossimilhança deve-se construir uma função, chamada função de verossimilhança, que expressa a probabilidade dos dados observados como uma função dos parâmetros desconhecidos. Os estimadores de máxima verossimilhança destes parâmetros são escolhidos como sendo os valores que maximizem esta função.

Se y estiver codificada como 0 ou 1, então a expressão para $\pi(x)$ dada na equação (1.1) fornece (para um valor arbitrário de ß' = $(\beta o, \beta i)$, o vetor de parâmetros) a probabilidade condicional de Y ser igual a 1 dado x, e será denotado como P(Y=1/x). Consequentemente, o valor $1-\pi(x)$ dá a probabilidade de Y ser igual a 0 dado x, P(Y=0/x). Então, para aqueles pares (x_i,y_i) , onde $y_i=1$ a contribuição para a função de verossimilhança é $\pi(x_i)$ e, para aqueles onde $y_i=0$, a contribuição para a função de verossimilhança é $\pi(x_i)$ calculado por meio de x_i . Uma

maneira conveniente de expressar a contribuição do par (z_i,y_i) para a função de verossimilhança é através do termo:

$$\zeta(x_i) = \pi(x_i)^{y_i} [1 - \pi(x_i)]^{1-y_i}$$
 (1.3)

Desde que se assuma a independência das observações, a função de verossimilhança é obtida pelo produto dos termos dados na expressão (1.3), como se segue:

$$I(B) = \prod_{i=1}^{n} \zeta(x_i)$$
 (1.4)

O princípio da máxima verossimilhança especifica que seja utilizado como estimador de ß o valor que maximize a expressão na equação (1.4). Porém, é matematicamente mais fácil trabalhar como o logaritmo natural (que, a partir de agora denominaremos apenas de log) da equação (1.4). Esta expressão, o log da verossimilhança, é definida como

$$L(B) = \ln[I(B)]$$

$$= \sum_{i=1}^{n} \{y_i \ln[\pi(x_i)] + (1 - y_i) \ln[1 - \pi(x_i)]\}$$
 (1.5)

Para encontrarmos o valor de B que maximize L(B), deve-se calcular a derivada de L(B) em relação a B0 e B1 e a expressão resultante deve ser igualada a zero. Estas equações são as seguintes

$$\sum_{i=1}^{n} [y_i - \pi(z_i)] = 0 {(1.6)}$$

0

$$\sum_{i=1}^{n} \times_{i} \left[y_{i} - \pi(z_{i}) \right] = 0 \tag{1.7}$$

e são denominadas **equações de verossimilhança**. Estas equações não são lineares em βο e β1 e, por isso, requerem métodos especiais para sua solução. Estes métodos são iterativos por natureza e já estão programados em softwares estatísticos. Por ora estes métodos não serão estudados.

O valor de ß dado pela solução das equações (1.6) e (1.7) é chamado estimador de máxima verossimilhança e será denotado como $\hat{\bf S}$. Do mesmo modo, $\hat{\pi}(z)$ é o estimador de máxima verossimilhança de $\pi(z)$. Uma conseqüência interessante da equação (1.6) é que

$$\sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} \widehat{\pi}(x_{i})$$

Isto é, a soma dos valores observados de y é igual à soma dos valores estimados (esperados).

Teste de significância dos coficientes

Depois de estimados os coeficientes, o primeiro olhar para o modelo ajustado concentra-se na avaliação da significância das variáveis no modelo. Isto geralmente envolve a formulação e o teste de uma hipótese estatística para determinar se a variável independente no modelo é relacionada significativamente com a variável resposta. O método para a realização deste teste é

completamente geral e difere do modelo com somente uma variável independente para o modelo multivariado apenas em detalhes específicos. Será discutido agora, somente a aplicação do método no primeiro modelo.

O princípio para a realização do teste de significância na regressão logística é: "Comparar os valores observados da variável resposta com os valores estimados obtidos de modelos com e sem a variável em questão" (HOSMER & LEMESHOW, 1989). Esta comparação é baseada na função log da verossimilhança definida na equação (1.5). Para entender melhor esta comparação, pode-se pensar que um valor observado da variável resposta é também um valor estimado resultante de um modelo saturado.

A comparação dos valores observados para com os estimados a partir da função de verossimilhança baseia-se na seguinte expressão:

$$D = -2 \ln \left[\frac{\text{verossimilhança do presente modelo}}{\text{verossimilhança do modelo saturado}} \right] (1.8)$$

O valor no interior dos colchetes é chamado de razão de verossimilhança. Utiliza-se o seu logaritmo natural e ainda multiplicado por -2 pela necessidade de se obter um valor cuja distribuição fosse conhecida e, assim, pudesse ser usada para testar hipóteses. Este teste é chamado teste da razão de verossimilhança. Das equações (1.5) e (1.8), temos:

$$D = -2 \sum_{i=1}^{n} \left[y_{i} \ln \left(\frac{\hat{\pi}_{i}}{y_{i}} \right) + (1 - y_{i}) \ln \left(\frac{1 - \hat{\pi}_{i}}{1 - y_{i}} \right) \right]$$
 (1.9)

onde $\hat{\pi}_{i} = \hat{\pi}(x_{i})$.

Esta estatística D é chamada por alguns autores de "deviance", sendo muito importante em algumas aproximações para avaliar a bondade do ajuste (goodness-of-fit). O "deviance" para a regressão logística é semelhante à soma dos quadrados devido ao erro da regressão linear.

Com o objetivo de avaliar a significância de uma variável independente, deve-se comparar os valores de D com e sem a variável em questão. A alteração em D devido à sua inclusão no modelo é obtida através de:

 $G = D(p/o \mod 2 \mod 2 \mod 2)$ — $D(p/o \mod 2 \mod 2 \mod 2)$ Esta estatística exerce o mesmo papel que o numerador do teste F parcial na regressão linear. Pelo motivo de que a verossimilhança do modelo saturado é o mesmo para os dois valores de D, que, por sua vez são diferentes no cálculo de G, este pode ser expresso como:

$$G = -2 \ln \left[\frac{\text{verossimilhança sem a variável}}{\text{verossimilhança com a variável}} \right]$$
 (1.10)

Para o caso específico da presença de apenas uma variável independente, pode se mostrar que, quando a variável não está no modelo, o estimador de máxima verossimilhança de β o é o $\ln(n_4/n_0)$ onde $n_1 = \sum y_i$ e $n_0 = \sum (1-y_i)$ e que o valor estimado

é constante n_1/n . Neste caso, G pode ser escrito como:

$$G = -2 \ln \left[\frac{\left[\frac{n_{i}}{n} \right]^{n_{i}} \left[\frac{n_{o}}{n} \right]^{n_{c}}}{\prod_{i=1}^{n} \hat{\pi}_{i}^{n_{i}} (1 - \hat{\pi}_{i}^{n_{i}})^{(1-y_{i})}} \right]$$
 (1.11)

ou

$$G = 2 \left\{ \sum_{i=1}^{n} [y_i \ln(\hat{\pi}_i) + (1 - y_i) \ln(1 - \hat{\pi}_i)] - [n_i \ln(n_i) + n_o \ln(n_o) - n \ln(n)] \right\}$$
(1.12)

Sob a hipótese de que eta1 é igual a zero, a estatística a2 segue uma distribuição a2 com 1 grau de liberdade.

Serão apresentados, também, outros testes estatisticamente equivalentes: o teste de Wald e o teste Score. As suposições necessárias para estes testes são as mesmas necessárias para o teste da razão de verossimilhança na equação (1.11).

O teste de Wald é obtido pela comparação do estimador de máxima verossimilhança do parâmetro $\hat{\beta}_1$, com a estimação do seu Erro Padrão (SE). A razão resultante,

$$W = \frac{\hat{\beta}_1}{\widehat{SE}(\hat{\beta}_1)}$$

sob a hipótese de que $eta_1^{}=0$, segue uma distribuição normal padrão.

O teste Score univariado é baseado na distribuição

condicional das derivadas, equação (1.7), dadas as derivadas na equação (1.6). Este teste utiliza o valor da equação (1.7), calculada usando β o= $\ln(n_1/n_0)$ e β_1 = 0. Sob o valor destes parâmetros, $\hat{n} = n_1/n = \bar{y}$. Assim, o lado direito da equação (1.7) fica sendo $\sum z_i (y_i - \bar{y})$. Pode-se demonstrar que sua variância estimada é $\bar{y}(1-\bar{y})\sum(z_i-\bar{z})^2$. A estatística de teste para o teste Score é

$$ST = \frac{\sum_{i=1}^{n} z_{i} (y_{i} - \overline{y})}{\sqrt{\overline{y}(1-\overline{y})} \sum_{i=1}^{n} (z_{i} - \overline{z})^{2}}$$

que segue uma distribuição normal padrão.

2.3.2 O Modelo de Regressão Logística Múltipla

Deve-se considerar um conjunto de p variáveis independentes x_1, x_2, \ldots, x_p representadas pelo vetor x'. Seja a probabilidade condicional quando a variável independente está presente, denotada por $P(Y = 1 \mid x) = \pi(x)$. Então, o logit do modelo de regressão logística múltipla é dado pela equação:

$$g(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$
em qualquer caso, (2.1)

$$\pi(x) = \frac{e^{g(x)}}{1 + e^{g(x)}}$$
 (2.2)

Se algumas das variáveis independentes estiverem em

escala nominal, recomenda-se não usá-las da maneira em que estiverem. Nesta situação, o método indicado é o uso de variáveis dummy.

Em geral, se uma variável categórica tiver k valores possíveis, então serão necessárias k-1 variáveis dummy. Isto é verdade desde que, exceto se houver declaração diferente, o modelo possua um termo constante.

Suponha que a j-ésima variável independente ∞_j tenha k_j níveis. A variável dummy k_j — 1 será denotada por D_{ju} e os coeficientes para estas variáveis serão denotados por β_{ju} , $u=1,\ 2,\ \ldots,\ k_j-1$. Então, o logit para um modelo com p variáveis e a j-ésima variável sendo discreta, é expressa por:

$$g(x) = \beta_0 + \beta_1 x_1 + ... + \sum_{u=1}^{k_j-1} \beta_{ju} D_{ju} + \beta_p x_p$$
 (2.3)

O Ajuste do Modelo de Regressão Logística Múltipla

É assumida a existência de uma amostra de n observações independentes do par (x_i,y_i) , i= 1, 2, ..., n. O ajuste do modelo exige que se obtenha a estimação do vetor $B' = (\beta_0, \beta_1, \ldots, \beta_p)$. O método de estimação a ser usado é o de máxima verossimilhança. Existem p + 1 equações de verossimilhança obtidas por meio da diferenciação da função log da verossimilhança que dizem respeito aos p + 1 coeficientes. A equação de verossimilhança resultante

pode ser expressa da seguinte maneira:

$$\sum_{i=1}^{n} [y_i - \pi(x_i)] = 0 (2.4)$$

0

$$\sum_{i=1}^{n} x_{ij} [y_i - \pi(x_i)] = 0, \text{ para } j = 1, 2, \dots, p$$
 (2.5)

A solução desta equação requer um software com este propósito, que pode ser encontrado em vários programas estatísticos. Seja $\hat{\mathbf{g}}$ a solução destas equações. Então, os valores ajustados para o modelo de regressão logística múltipla são $\hat{\pi}(\mathbf{x}_i)$, o valor da expressão na equação (2.2) calculada usando $\hat{\mathbf{g}}$ e \mathbf{x}_i .

O método de estimação de variâncias e covariâncias dos coeficientes estimados segue a mesma teoria dos estimadores de máxima verossimilhança. Esta teoria especifica que os estimadores são obtidos da matriz da derivada segunda parcial da função log da verossimilhança. Estas derivadas parciais têm a seguinte forma geral:

$$\frac{\partial^2 L(\beta)}{\partial \beta_j^2} = -\sum_{i=1}^n z_{ij}^2 \pi_i (1 - \pi_i)$$
 (2.6)

e ,

$$\frac{\partial^{2}L(\beta)}{\partial \beta_{i}\partial \beta_{u}} = -\sum_{i=1}^{n} x_{ij} x_{iu} \pi_{i} (1 - \pi_{i})$$
 (2.7)

para j,u = 0, 1, 2, ..., p, onde π_i denota $\pi(x_i)$. Seja a matriz (p+1) x (p+1) contendo o negativo dos termos dados nas equações (2.6) e (2.7) denotada como I(8). Essa matriz é chamada **matriz de**

informação. As variâncias e covariâncias dos coeficientes estimados são obtidos da inversa desta matriz que denota-se por $\Sigma(B)=\Gamma^{-1}(B)$. Exceto em casos muito especiais, não é possível escrever uma expressão explícita para os elementos desta matriz. Por isso, usa-se a notação $\sigma^2(\beta_j)$ para denotar o j-ésimo elemento da diagonal desta matriz, que será a variância de $\hat{\beta}_j$, e $\sigma(\beta_j,\beta_u)$ para denotar um elemento arbitrário que não pertença à diagonal, que será a covariância de $\hat{\beta}_j$ e $\hat{\beta}_u$. Os estimadores das variâncias e covariâncias, que serão denotados por $\hat{\Sigma}(\hat{B})$, são obtidos pela estimação do valor de $\Sigma(B)$ para cada \hat{B} . Usa-se $\hat{\sigma}^2(\hat{\beta}_j)$ e $\hat{\sigma}(\hat{\beta}_j,\hat{\beta}_u)$, $j,u=0,1,2,\ldots,p$, para denotar os valores nesta matriz. Na maior parte das vezes, utiliza-se somente os erros padrões estimados dos coeficientes estimados, os quais denota-se por:

$$\widehat{SE}(\widehat{\beta}_{j}) = \sqrt{\widehat{\sigma}^{2}(\widehat{\beta}_{j})}$$

para j = 0, 1, 2, ..., p. Será usada esta notação no desenvolvimento dos métodos para testar os coeficientes e estimação do intervalo de confiança.

Uma formulação possível da matriz de informação, útil na discussão sobre o ajuste do modelo e avaliação do ajuste, pode ser $\hat{\mathbf{I}}(\hat{\mathbf{S}}) = \mathbf{X'VX}$ onde \mathbf{X} é uma matriz n por p+1 contendo os dados de cada sujeito, e \mathbf{V} é uma matriz diagonal n \times n com elemento geral $\hat{\pi}_i$ (1 - $\hat{\pi}_i$). Então, a matriz \mathbf{X} será dada por:

$$X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & & & & \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix}$$

e a matriz V por:

$$\mathbf{X} = \begin{bmatrix} \hat{\pi}_{1} (\mathbf{1} - \hat{\pi}_{1}) & 0 & \dots & 0 \\ 0 & \hat{\pi}_{2} (\mathbf{1} - \hat{\pi}_{2}) & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \hat{\pi}_{n} (\mathbf{1} - \hat{\pi}_{n}) \end{bmatrix}$$

Teste de significância dos coeficientes

Deseja-se ajustar um modelo de regressão logística múltipla particular, por isso deve-se iniciar com o processo de avaliação do modelo. O 1º passo neste processo é, geralmente, o cálculo da significância das variáveis no modelo. O teste da razão de verossimilhança para a significância geral dos p coeficientes para as variáveis no modelo é baseado em:

G = D(p/o modelo sem a variável) - D(p/o modelo com a variável) onde

$$D = -2 \sum_{i=1}^{n} \left[y_i \ln \left(\frac{\hat{\pi}_i}{y_i} \right) + (1 - y_i) \ln \left(\frac{1 - \hat{\pi}_i}{1 - y_i} \right) \right]$$

e, $\hat{\pi}$ será o vetor contendo p+1 parâmetros $\hat{\mathbf{g}}$.

Compara-se os valores de D com e sem a variável independente na equação para podermos avaliar a significância de uma variável independente. O valor de G indica a variação em D devido à inclusão da variável independente no modelo. A

estatística G representa, na regressão logística, o mesmo que o numerador do teste F parcial, na regressão linear. Pode-se calcular G da seguinte maneira:

$$G = -2 \text{ ln} \left[\frac{\text{verossimilhança sem a variável}}{\text{verossimilhança com a variável}} \right]$$

Sob a hipótese nula de que os coeficientes de inclinação das covariáveis no modelo são iguais a 0, a distribuição de G será χ^2 com p graus de liberdade.

Antes de concluir que um ou mais coeficientes não são iguais a 0, ou seja, que rejeita-se Ho, pode-se olhar a estatística de teste Wald univariada, $W_j = \hat{\beta}_j/\hat{SE}(\hat{\beta}_j)$. Sob a hipótese de que um coeficiente é zero, esta estatística segue uma distribuição normal. Assim, o valor desta estatística pode nos dar uma indicação de quais das variáveis no modelo podem ou não ser significativas.

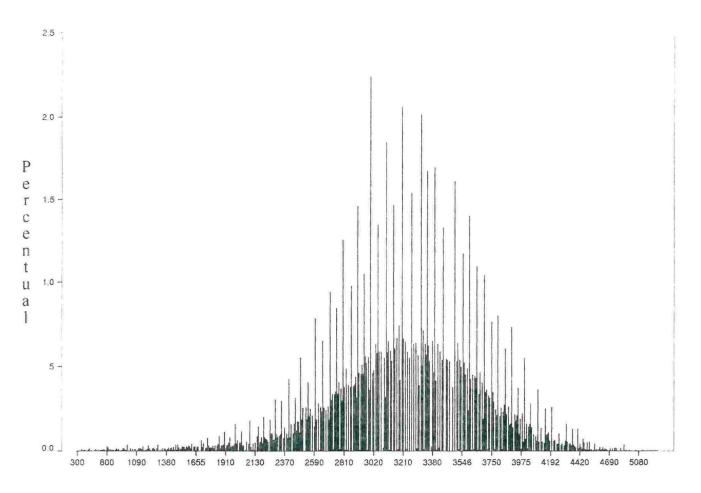
Quando uma variável independente categórica for incluída (ou excluída) de um modelo, todas as suas dummys devem ser incluídas (ou excluídas); caso contrário, deve-se recodificar a variável. Em razão dos múltiplos graus de liberdade, é necessário cautela no uso da estatística Wald (W) para avaliar a significância dos coeficientes. Por exemplo, se a estatística W de dois coeficientes excedem o valor 2, então pode-se concluir que as variáveis dummy são significativas. Se, de outro modo, um coeficiente tiver o valor de Wald superior a 2, e outro inferior, então não se tem certeza da contribuição da variável no modelo.

Neste caso, a decisão de incluir ou excluir esta variável deve ser feita em conjunto com pesquisadores que conheçam o assunto em questão.

3 RESULTADOS E DISCUSSÃO

Apresenta-se agora, os resultados deste estudo. Todas as análises foram feitas no software SPSS (Statistical Package for Social Sciences) versão 5.0.2 (de 11/01/93), para Windows. Este pacote estatístico era o único dentro do nosso alcance, que possuía o módulo de regressão logística e que suportava uma quantidade tão grande de informações (21980 registros).

3.1 Análise Univariada


Pode-se observar a distribuição dos recém nascido segundo o peso ao nascer na Figura 1. Os picos que se sobressaem correspondem aos pesos terminados em dígitos 00 e 50, também denominados dígitos de preferência. Eles aparecem devido à facilidade de sua identificação na balança.

Esta variável foi codificada para que pudesse ser utilizada na regressão logística. Esta nova distribuição pode ser encontrada na Tabela 1.

Foram considerados recém nascidos de baixo peso aqueles que apresentaram peso abaixo de 2500g.

Challed to a second plant of the

A prevalência de baixo peso ao nascer nas crianças nascidas em Porto Alegre, 1992, se aproxima à da apresentada para a região Sul (9,5%) pela Pesquisa Nacional sobre Saúde e Nutrição (PNSN) realizada em 1989, pelo IBGE, em todo o território nacional (MONTEIRO et al., 1992).

Peso ao Nascer (em gramas)

Figura 1: Distribuição dos nascidos vivos segundo a variável peso ao nascer, Porto Alegre, 1992.

TABELA 1 - DISTRIBUIÇÃO DOS NASCIDOS VIVOS SEGUNDO O PESO AO NASCER, 1992, PORTO ALEGRE, RS.

PESO AO NASCER	N	%	
Baixo	1952	8,9	
Normal	20008	91,0	
Ignorado	20	0,1	
TOTAL	21980	100,0	

A informação sobre sexo confirma os resultados de alguns estudos que têm mostrado haver um diferencial em relação ao sexo, com a ocorrência de mais nascimentos do sexo masculino do que do feminino (JORGE et al., 1992). Esta distribuição pode ser vista na Tabela 2.

TABELA 2 - DISTRIBUIÇÃO DOS NASCIDOS VIVOS SEGUNDO O SEXO, 1992, PORTO ALEGRE, RS.

SEXO	N	%	
Masculino	11227	51,1	
Feminino	10741	48,9	
Ignorado	12	0,1	
TOTAL	21980	100,0	

A distribuição dos recém nascidos de Porto Alegre, segundo a idade gestacional, da forma em que é encontrada na DN é apresentada na Figura 2. Vale a pena comentar o fato de que. 91%

das crianças nascidas em Porto Alegre se encontravam em sua idade gestacional adequada, entre 37 e 41 semanas.

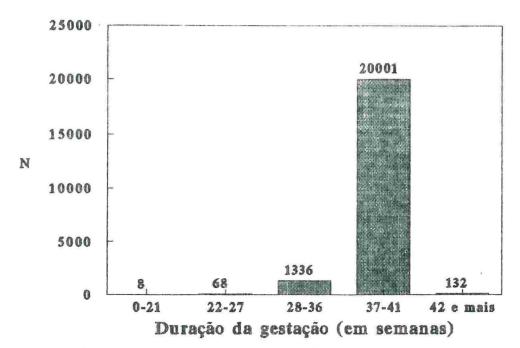


Figura 2: Distribuição dos nascidos vivos segundo a idade gestacional, 1992, Porto Alegre, RS.

Na Tabela 3, esta mesma variável aparece recodificada conforme a maneira em que será utilizada nas análises posteriores.

Os nascidos vivos prematuros são aqueles que nasceram

antes da 37ª semana de gestação, ou seja, correspondentes às 1ª, 2ª e 3ª categorias visualizadas no gráfico.

TABELA 3 - DISTRIBUIÇÃO DOS NASCIDOS VIVOS SEGUNDO A IDADE GESTACIONAL, 1992, PORTO ALEGRE, RS.

IDADE GESTACIONAL	N	%	
Prematuro	1412	6,4	
A termo	20436	93,0	
Ignorado	132	0,6	
TOTAL	21980	100,0	

A distribuição dos nascidos vivos segundo o tipo de gravidez se encontra na Tabela 4. A categoria de gravidez múltipla inclui as crianças que tiveram 1 ou mais irmãos gêmeos envolvendo, assim, as categorias 2, 3 e 4 da codificação original (Figura 3). Chama a atenção o fato de que as gestações únicas constituíram quase a totalidade (98,3%) dos partos ocorridos no município de Porto Alegre.

TABELA 4 - DISTRIBUIÇÃO DOS NASCIDOS VIVOS SEGUNDO O TIPO DE GRAVIDEZ, 1992, PORTO ALEGRE, RS.

TIPO DE GRAVIDEZ	N	7.
Única	21607	98 ,3
Múltipla	355	1,6
Ignorado	18	0,1
TOTAL	21980	100,0

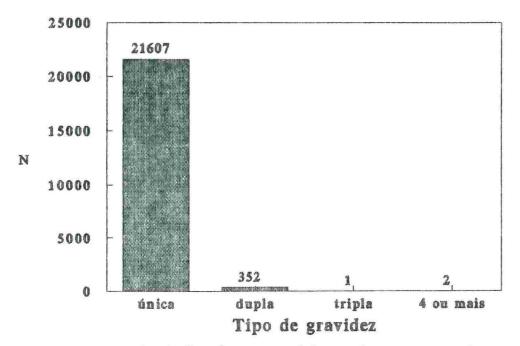


Figura 3: Distribuição dos nascidos vivos segundo o tipo de gravidez, 1992, Porto Alegre, RS.

A distribuição dos nascidos vivos segundo a idade

materna pode ser observada na Figura 4. Para que pudesse ser melhor aproveitada nas análises posteriores, esta variável foi codificada. Esta nova distribuição é apresentada na Tabela 5, onde as mães foram dividas em três faixas etárias.

Cabe salientar o pequeno percentual de mães com menos de 18 anos, quando comparado com os resultados encontrados em estudos semelhantes realizados em outros Estados (aproximadamente 25%) (JORGE et al., 1992).

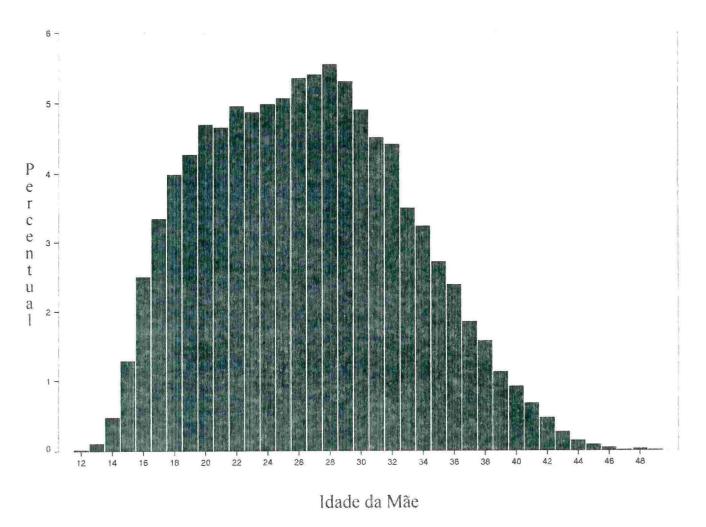


Figura 4: Distribuição dos nascidos vivos segundo a idade materna, Porto Alegre, 1992.

TABELA 5 - DISTRIBUIÇÃO DOS NASCIDOS VIVOS SEGUNDO A IDADE MATERNA, 1992, PORTO ALEGRE, RS.

FAIXA ETÁRIA	N	7/.	
< 18 anos	1700	7,7	
18 a 34 anos	17519	79,7	
35 anos o u mais	2714	12,3	
Ignorado	47	0,2	
TOTAL	21980	100,0	

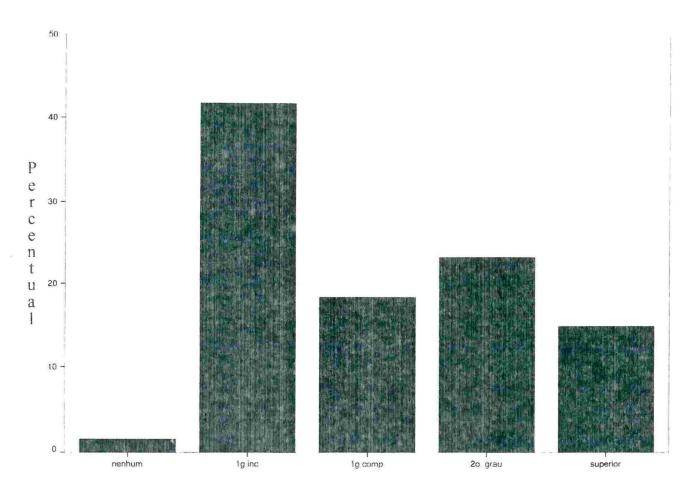

Na Tabela 6, observamos a distribuição dos recém nascidos de acordo com a variável referente ao grau de intrução materna.

TABELA 6 - DISTRIBUIÇÃO DOS NASCIDOS VIVOS SEGUNDO O GRAU
DE INSTRUÇÃO DA MÃE, 1992, PORTO ALEGRE, RS.

GRAU DE INSTRUÇÃO	N	7.
Nenhum e 1º grau inc.	7839	35,6
1º grau comp. e 2º grau	7516	34,2
Superior	2694	12,3
Ignorado	3931	17,9
Total	21980	100,0

Originalmente, esta variável é apresentada em 6 categorias (incluindo a categoria de ignorados), como mostra a Figura 5. Sua recodificação foi feita mantendo as mães analfabetas e com o 1º grau incompleto num grupo, as com 1º grau

completo e 2º grau em outro e as com nível de instrução superior em um terceiro. Chama a atenção o alto número de DNs com este campo ignorado (17,9%).

Grau de Instrução

Figura 5: Distribuição dos nascidos vivos segundo o grau de instrução da mãe, Porto Alegre, 1992.

A Tabela 7 apresenta a distribuição dos nascidos vivos de acordo com os filhos vivos de gestações anteriores àquela

constante na DN. A quantidade de filhos tidos vivos superior a 4 foram agrupadas para facilitar as análises posteriores.

Cabe comentar a pequena quantidade de DNs com este campo ignorado, visto que em Rondônia, este valor foi de 38,9% durante todo o ano em que o SINASC foi implantado naquele Estado (JORGE et al., 1992).

TABELA 7 - DISTRIBUIÇÃO DOS NASCIDOS VIVOS SEGUNDO OS FILHOS TIDOS VIVOS, 1992, PORTO ALEGRE, RS.

FILHOS VIVOS	N	7.	
Nenhum	9110	41,4	
Um	6241	28,4	
Dois	3212	14,6	
Três ou mais	3130	14,2	
Ignorado	287	1,3	
	named the second part of the sec		
TOTAL	21980	100,0	

A distribuição dos recém nascidos segundo filhos mortos de gestações anteriores é apresentada na Tabela 8. Podemos observar que quase a totalidade (89%) dos nascidos vivos não haviam tido irmãos mortos em gestações anteriores. Nota-se, a exemplo do que ocorreu com filhos tidos vivos, a boa qualidade do preenchimento das DNs, em comparação aos dados de Rondônia, cujos ignorados neste campo foram em torno de 88,8% (JORGE et al., 1992).

TABELA 8 - DISTRIBUIÇÃO DOS NASCIDOS VIVOS SEGUNDO OS FILHOS TIDOS MORTOS, 1992, PORTO ALEGRE, RS.

FILHOS MORTOS	N	%	
Nenhum	19584	89,1	
Um	1465	6,7	
Dois ou mais	500	2,3	
Ignorado	431	2,0	
TOTAL	21980	100,0	

3.2 Análise Bivariada

A relação de cada um dos fatores de risco com a variável dependente, peso ao nascer, analisadas por meio da regressão logística univariada será apresentada agora. Nesta seção, podemos encontrar os principais resultados e, em anexo, as saídas de computador que deram origem a eles.

As regressões logísticas apresentadas neste trabalho que envolviam variáveis com mais de duas categorias foram realizadas utilizando como contraste a opção indicator do SPSS, que equivale à utilização de variáveis dummy.

Na Tabela 9 observa-se a razão de chances, a significância do Teste de Wald e o intervalo de confiança com 95% de confiança dos fatores de risco em relação ao peso ao nascer.

TABELA 9 - RAZÃO DE CHANCES (RC), SIGNIFICÂNCIA E INTERVALO DE CONFIANÇA (IC) REFERENTES ÀS REGRESSÕES LOGÍSTICAS UNIVARIADAS DOS FATORES DE RISCO EM RELAÇÃO À VARIÁVEL PESO AO NASCER, 1992, PORTO ALEGRE, RS.

VARIAVEL	RC	sig.*	IC (95%)
SEX0			
Masculino	1		
Feminino	1,24	0,0000	(1,13; 1,36)
FILHOS TIDOS MORTOS			
Nenhum	1		
Um	1,28	0,0048	(1,08; 1,52)
Dois ou mais	1,12	0,4767	(0,83; 1,51)
FILHOS TIDOS VIVOS			
Nenhum	1,46	0,0000	(1,29; 1,64)
Um	1		
Dois	1,25	0,0053	(1,07; 1,47)
Três ou mais	1,71	0,0000	(1,47; 1,98)
IDADE GESTACIONAL			
A termo	1		
Prematuro	32,40	0,0000	(28,59;36,71)
IDADE MATERNA			
< 18 anos	1,44	0,0000	(1,23; 1,69)
>= 18 e < 35 anos	1		
>= 35 anos	1,38	0,0000	(1,21; 1,58)
GRAU DE INSTRUÇÃO			
Nenhum e 1º g. inc.	1,68	0,0000	(1,41; 2,00)
1º g. comp. e 2º g.	1,24	0,0197	(1,03; 1,48)
Superior	1		
TIPO DE GRAVIDEZ			
Única	1		
Múltipla	15,72	0,0000	(12,66;19,52)

^{*} Significância do Teste de Wald

Todas as Razões de Chances cujo intervalo de confiança não contenha a unidade devem ser consideradas estatisticamente significativas.

A razão de chances (RC) para sexo, 1,24, é o risco que os recém nascidos do sexo feminino têm de apresentarem baixo peso ao nascer em relação aos do sexo masculino. Em outras palavras, pode-se dizer que a ocorrência de baixo peso ao nascer é 1,24 vezes mais frequente em recém nascidos do sexo feminino.

A ocorrência de baixo peso ao nascer nos recém nascidos que tinham tido um irmão morto é 1,28 vezes mais freqüente do que naqueles que não o tiveram.

Com relação à variável filhos tidos vivos, todas as outras categorias apresentaram risco em relação à categoria referente aos recém nascidos com um irmão anterior. Isto quer dizer que a presença de apenas um irmão anterior "protege" a criança de ter baixo peso ao nascer.

Para os recém nascidos prematuros a chance de apresentar baixo peso ao nascer é 32,4 vezes maior do que nas crianças nascidas a termo.

Quando se estuda a variável idade materna, pode-se dizer que a ocorrência de baixo peso ao nascer é 1,44 vezes mais frequente nas mães com idade inferior a 18 anos do que naquelas com idade entre 18 e 34 anos. A chance da mãe com idade superior a 34 anos gerar um recém nascido com baixo peso é 1,38 vezes maior do que aquela com idade entre 18 e 34 anos.

As mães sem grau de instrução ou com apenas o 1º grau

incompleto apresentaram 1,68 vezes mais chance de ter crianças com baixo peso ao nascer do que as mães com nível de instrução superior. Já as mães com 1º grau completo ou 2º grau possuem um risco de 1,24 de apresentarem recém nascidos com baixo peso do que as mães com grau de instrução superior.

Em relação aos nascidos vivos de gravidez múltipla, estes têm 15,72 vezes mais chance de terem baixo peso ao nascer do que os que não têm irmão gêmeo.

3.3 Análise Multivariada

Podemos observar na Tabela 10, os resultados da regressão logística múltipla de uma forma resumida.

O modelo final inclui todas as variáveis, pois não houve nenhum fator de risco que tenha sido completamente não significativo. A única variável que poderia ocasionar alguma dúvida quanto à sua inclusão no modelo é a referente a filhos tidos mortos. Resolvemos incluí-la, pois além de sua importância do ponto de visto epidemiológico, uma de suas Razões de Chances foi estatisticamente significativa.

A interpretação dos coeficientes na análise de regressão logística múltipla é semelhante à da análise univariada. O que deve ser levado em conta é que, neste caso, cada fator de risco está ajustado, estatisticamente, pelas outras variáveis.

40

TABELA 10 - RAZÃO DE CHANCES (RC), SIGNIFICÂNCIA E INTERVALO DE CONFIANÇA (IC) REFERENTES À REGRESSÃO LOGÍSTICA MÚLTIPLA DOS FATORES DE RISCO EM RELAÇÃO À VARIAVEL PESO AO NASCER, 1992, PORTO ALEGRE, RS.

VARIAVEL	RC	SIG.*	IC (95%)
SEXO			
Masculino	1		
Feminino	1,43	0,0000	(1,26; 1,62)
FILHOS TIDOS MORTOS			
Nenhum	1		
Um	1,20	0,1097	(0,96; 1,51)
Dois ou mais	1,22	0,2867	(0,84; 1,77)
FILHOS TIDOS VIVOS			
Nenhum	1,61	0,0000	(1,36; 1,89)
Um	1		
Dois	1,11	0,3459	(0,89; 1,38)
Três ou mais	1,25	0,0456	(1,004; 1,57)
IDADE GESTACIONAL			
A termo	1		
Prematuro	33,00	0,0000	(28,56;38,13)
IDADE MATERNA			
< 18 anos	1,02	0,8839	(0,80; 1,30)
>= 18 e < 35 anos	1		
>= 35 anos	1,33	0,0033	(0,10; 1,62)
GRAU DE INSTRUÇÃO			
Nenhum e 19 g. inc.	1,82	0,0000	(1,45; 2,28)
1∘ g. comp. e 2∘ g.	1,49	0,0004	(1,20; 1,85)
Superior	1		
TIPO DE GRAVIDEZ			
Única	1		
Múltipla	12,43	0,0000	(9,16;16,86)

^{*} Significância do Teste de Wald

De um modo geral, os riscos não se alteraram muito da análise anterior para esta. Observa-se apenas, uma mudança maior na Razão de Chances apresentada para as variáveis idade materna, filhos vivos e filhos mortos.

A variável idade da mãe passa a ser não significativa quando há a comparação das mães pertencentes à faixa de menores de 18 anos com a faixa que vai de 18 a 34 anos. Isto é, quando há o ajuste pelas demais variáveis, as mães pertencentes à faixa de menores de 18 anos se igualam àquelas pertencentes à faixa de 18 a 34 anos, em relação ao baixo peso ao nascer. Isto pode ser explicado, talvez, pelo fato de que mães com idade inferior tenham tido, em geral, menos filhos do que as outras mães (principalmente aquelas com 35 anos e mais). Há, também, uma relação de idade materna com grau de instrução, já que mães com menos de 18 anos dificilmente poderiam ter grau de instrução superior.

Com relação aos filhos tidos vivos, pode-se notar que, quando há o ajuste pelas outras variáveis, a categoria que se refere à presença de dois filhos anteriores passa a apresentar Razão de Chance não significaticaem relação à categoria de referência (que apresenta menor risco).

Na análise multivariada, a variável filhos tidos mortos, se apresentou não sgnificativa. No anexo, pode ser encontrada um modelo encontrado quando foi realizada uma regressão logística com o método Stepwise Forward (LR) no SPSS, onde esta variável foi excluída.

4 CONCLUSÃO

A regressão logística se mostrou uma técnica de análise estatística bastante adequada para este tipo de estudo.

Os resultados indicam que, de um modo geral, nossas crianças estão nascendo saudáveis. No entanto, deve-se tomar cuidado, principalmente, com aqueles recém nascidos de gravidez múltipla e prematura (fatores que mostraram maiores chances de determinar o baixo peso de um nascido vivo).

Com relação às outras variáveis, apesar de terem apresentado razões de chances relativamente baixas, foram significativas. Por isso, os recém nascidos do sexo feminino, sem nenhum irmão vivo anterior ou mais de 2, cuja mãe possua 35 anos ou mais e grau de instrução inferior (nenhum ou 1º grau incompleto) ou intermediário (1º grau completo e 2º grau), além das características citadas acima, merecem mais cuidados dos órgãos responsáveis pela vigilância à saúde da criança.

Espera-se que os resultados deste tipo de estudo possam auxiliar no combate à mortalidade infantil, melhorando, assim, a qualidade de vida de nossa população.

5 BIBLIOGRAFIA

- AERTS, Denise R.G. de C.. Polígrafo referente ao Sistema de Informação sobre os Nascidos Vivos em Porto Alegre. Secretaria Municipal da Saúde e Serviço Social, 1992.
- DELGADO, H. et al.. Use and Interpretation of Anthropometric indicators of nutritional status. Reviews Analyses, Bulletin of the World Health Organization, 64 (6): 929-941, 1986.
- HOSMER, David W., Jr. & LEMESHOW, Stanley. Applied Logistic Regression. Ed. John Wiley & Sons, Inc., USA, 1989.
- KLEINBAUM, David G., KUPPER, Laurence L. & MULLER, Keith E..

 Applied Regression Analysis and Other Multivariable Methods.

 Ed. PWS-KENT, Boston, 2 ed., 1987.
- JORGE, Maria Helena P. de M. et al.. O Sistema de Informação sobre nascidos vivos SINASC. Centro da OMS para a Classificação de Doenças em Português, NEPS/USP, série divulgação nº 7, São Paulo, 1992.
- JORGE, Maria Helena P. de M. et al.. Sistema de Informação sobre nascidos vivos SINASC. Informe Epidemiológico do SUS, nº 4, Brasília, FNS/CENEPI, 1992.
- MONTEIRO, Carlos A. et al.. Perfil Estatístico de Crianças e Mães

no Brasil: Aspectos de Saúde e Nutrição de Crianças no Brasil, 1989. IBGE, Departamento de Estatísticas e Indicadores Sociais, convênio IBGE/UNICEF/INAN. Rio de Janeiro, 1992

TESCH, Lenira C., MACHADO, Maria Élida e CARVALHO, Rodney F..

Configuração epidemiológica dos nascidos vivos do município de

Cachoeira do Sul: um estudo a partir do SINASC. Porto Alegre,

Escola de Saúde Pública, Secretaria de Saúde e Meio Ambiente

do Rio Grande do Sul/UFRGS, 1993.

- 6 ANEXOS
- 6.1 Declaração de Nascido Vivo

I	01 - DECLARAÇÃO DE NASCIDO VIVO № 1277365	
н	REPÚBLICA FEDERATIVA DO BRASIL. MINISTÉRIO DA SAÚDE 2º VIA - CARTÓRIO II OZ - CARTÓRIO DE O3 - Nº DO REGISTRO O5 - MUNICIPIO O6 - UF 07 - CÓDIGO	4 – DATA DO REGISTRO
ш	08 - INDICAR COM UM "X" NO QUADRO 09 - ENDEREÇO 1 HOSPITAL 10 - MUNICIPIO 2 OUTRO ESTAB. DE SAÚDE 3 DOMICÍLIO 11 - UF 12 - CÓDIGO 4 OUTRO LOCAL SE OCORRIDO EM ESTABELECIMENTO 13 - NOME DO ESTABELECIMENTO 14 - C	ODIGO
IV	15 - NASCIMENTO DATA DIA MÉS ANO 16 - SEXO (MARCAR COM "X" NO QUADRO) 17 - PESO AO NASCER (ATÉ A 5ª HORA) 18 - INDICE D MASCULINO 2 FEMININO	19 MINUTO
٧	19 DURAÇÃO DA GESTAÇÃO (EM SEMANAS) (INDICAR COM "X" NO QUADRO) 10 0 21	10 QUADROI 4 QUTRO 5 IGNORADO
VI	22 - NOME 24 - GRAU DE INSTRUÇÃO (INDICAR COM "X" NO QUADRO) 1 NENHUMA 4 2º GRAU 25 - ENDEREÇO 26 - BAIRRO 2 INCOMPLETO 5 SUPERIOR 27 - MUNICÍPIO 3 COMPLETO 6 IGNORADO 28 - UF 29 - CÓDIGO	30 - FILHOS TIDOS IINDICAR QUANTOS) NÃO INCLUIR ESTA GESTAÇÃO NASC VIVOS NASC MORTOS
VII	₹ 31 - NOME	
VIII	PARA REGISTRAR ESTA CRIANÇA (OBRIGATÓRIO POR LEI), O PAI OU RESPONSÁVEL DEVE DOCUMENTO AO CARTÓRIO DE REGISTRO CIVIL. ATENÇÃO: FSTE DOCUMENTO NÃO SUBSTITUI A CERTIDÃO DE NASCIMENTO	RA LEVAR ESTE

6.2 Resultados nas Saídas de Computador

Sexo

Total number of cases: 21980 (Unweighted) Number of selected cases: 21980 Number of unselected cases: 0

Number of selected cases:

Display rejected because of missing data 31

Timber of cases included in the analysis: 21949

represent Variable Encoding

Uridinal Internal Value Value 0 0 1 1

Dependent Variable.. PESO

Beginning Block Number 0. Initial Log Likelihood Function

- -2 Log Likelihood 13172,175
- * Constant is included in the model.

Beginning Block Number 1. Method: Enter

Variable(s) Entered on Step Number 1.. SEXO

Estimation terminated at iteration number 4 because Log Likelihood decreased by less than .01 percent.

-2 Log Likelihood 13152.322 Goodness of Fit 21948.306

Chi-Square df Significance

Model Chi-Square 19.853 1 .0000 Improvement 19.853 1 .0000

Classification Table for PESO

Predicted
0 1 Percent Correct
0 1
0 0 1

0 0 19997 0 100.00% 1 1 1952 0 .00%

Overall 91,11%

------ Variables in the Equation -----

Variable B S.E. Wald df Sig P Exp(B) .0475 19.7860 .0347 4927.067 .0367 SEXO . 2115 .0000 1,2355 -2.4347 Constant .0000

Filhos Tidos Mortos

Total number of cases: 21980 (Unweighted) Number of selected cases: 21^{980} Number of unselected cases: 0

Number of selected cases: 21980 Number rejected because of missing data 444 Number of cases included in the analysis: 21536

Dependent Variable Encoding:

Original	Internal
Value	Value
0	D
1	1

	Value	Freq	Farame Coding	
FILMOPTO			(11	123
I I LHOF TO	0	19573	, ហ្គ្	, ouo
	1	1463 500	1.000 .000	. 000 1. 000

Dependent Variable PESO

Beginning Block Number 0. Initial Log Likelihood Function

-2 Log Likelihood 12390.4F

Beginning Block Number 1. Method: Enter

Variable(s) Entered on Step Number 1 FILMOPTO

Estimation terminated at iteration number 4 because Log Likelihood decreased by less than .Ul percent

-3 Log Likelihood 12882 571 Goodness of Fit 21535 453

Chi-Square If Significance
Model Chi-Square 7 889 2 0194
Improvement 7 889 2 0194

Classification Table for PESO

		Variables	in the Ed	quation		22 222 200	
Variable	В	S.E	Wald	d f	Sig	R	Emp(B)
FILMOPTO FILMOPTO(1) FILMOPTO(2) Constant	.2477 1005 -2 3520	.0877 1539 ,0254	9 3030 7 9783 .5063 8592.140	.3 I 1 1	.0157 0048 .4767 .0000	.0183 0215 0000	1 2*11 1 1157

^{*} Constant is included in the model

Filhos Tidos Vivos

Total number of cases: 21980 (Unweighted) Number of selected cases: 21980 Number of unselected cases: 0

Number of selected cases. 21980 Number rejected because of missing data: 300 Number of cases included in the analysis: 21680

Dependent Variable Encoding:

Original	Internal
Value	Value
0	0
1	1

	Value	Freq	Parame		
FILVIVOS		,	(1)	(2)	(3)
11141400	Ũ	9108	1,000	,000	.000
	1	6237	.000	,000	.000
	2	3208	.000	1,000	.000
	3	3127	nnn	nnn	1 000

Dependent Variable. PESO

beginning Block Number 0 Initial Log Likelihood Function

2 lag Likelihood '12987,101

* Constant is included in the model.

Beatharing Block Number 1 Method: Enter

Variable of Entered on Step Number 1 FILVIVOS

tatamential terminated at iteration number 4 because ...q ...relihord decreased by less than .01 percent

1 1s of 1.1Problemed 1.7926.554 (1 s discover of Fet 21-78,576

chi-Square di Significance M. tol Chi Cquare Improvement 60.547 60.547 0000 0000

Maswification Table for PESO

Predicted U Percent Corract Y . -: 7ed 19757 0 100.00% Ú 1923

Overall 91,13%

Vari-ble	B	S.E	Wald	df	Sig	R	Exp(B)
			7				
FILTIMS			58,8019	3	.0020	114 118	
FILVIVOSTIT	.3763	.0615	37,4632	1	0(0)1:	0.33	1 4563
E11.A1A02(T)	. 2258	.0810	7.7705	1	.0053	4211	1 2534
FILVIVOS(3)	. 5352	.0758	49,7952	1	.0000	.0607	1.7078
DAIL PORTS	-2 6128	.0502	2710.166	1	.0000		

Idade Gestacional

Total number of cases 21980 (Unweighted) Number of selected cases 21980 Number of unselected cases. U Dejemient Vaciable Encoring Interna. Palue : - - - re-nt Variable PESO Begunning Elect Number 0 Initial Log Likelihood Function - . I.na ".(kelihood 13063 035 t constant is included in the model. Fortinging Plack Number 1 Method, Enter Talumbie(s) Entered on Step Number ! GESTACAO F. fination terminated at iteration number 5 because the LiPelihood decreased by less than .01 percent -3 Fing Likelihood 10064.047 The district of Fit df Significance Chi-Square 2+48 988 Stand Charlegarter Ing i vement 1998.988 0000 a calication Table for FESO Fredicted Percent Correct i. or wed 19390 515 97.41% 894 1 1059 46.25% h F E. Wald di Sid b Expili 3 478 ± -3 9265 0+38 3988.997 1 0318 8445 843 1 noni 4"-7 32.14: OF TEATAON 0600 · SAFART

Idade Materna

Total number of cases 21980 (Unweighted) Number of selected cases 21980 Number of unselected cases 0 Number of selected cases. Number rejected because of missing data 6% Number of cases included in the analysis 21915 Secondent Variable Encouring 1.715-1 3114 Internal Value Ü Entramedor VALUE Freq Coding (1) 121 LIAI-EMAE 1649 1.000 171.27 000 2709 000 000 000 ,000 000 1 000 lesembent Weilable FERO a Handing Black Number 0 Initial Log Likelihood Function ' I a Likelihood | 1511 - 28 * Constant is included in the model. Region of Block Mamber 1 Method Enter niblins" Entered on Step Number IDADEMAE Estimats in terminated at iteration number 4 because Fig ElPelihoca decreused by less than .01 percent -1 Lea Likelihood 1.382.809 Goodness of Fit 21914.242 Cai-Square di Significance M fel Chi-Squara 36 471 .0000 Improvement .0000 36.471 Clargification Table for PESO Predicted Percent Correct 0 1 open rand 19973 1 0 100.00% 1942 0 .00% Overall 91.14% ----- Variables in the Equation -----Variable Sig 5 SE Wald df R Exp(B) 38.2066 0809 20.2290 0671 23.2623 .0274 7689.473 .0000 IDADEMAE 2 0511 TDADEMAE(1) IDADEMAE(2) 3639 .0000 . 6373 1.4389 3236 .0000 .0403 1.3821

Grau de Instrução

Total number of cases 21980 (Unweighted)
Number of selected cases 0

Number of selected cases 21980
Number rejected because of missing data 3943
Number of cases included in the analysis. 18037

Dependent Variable Encoding

Value

Value

1

1

1

1

Dependent Variable . PESO

Beginning Block Number 0 Initial Log Likelihood Function

- -2 Log Likelihood 10385,243
- * Constant is included in the model.

Beginning Block Number 1. Method: Enter

Variable(s) Entered on Step Number 1 INSTEMAE

Estimation terminated at iteration number 4 because Log Likelihood decreased by less than .01 percent

-2 Log Likelihood 10234.943 Granthes- of Fit 18935.184

Chi-Square of Significance

Heal Chr-Square 50,299 2 .0000 Functioners 50,299 2 .0000

The literation Table for PESO

Overall 91.52%

E Variable SE. Wald Sig R Exp(B) ,0000 .0660 49.1975 INSTRMAE .0886 34.4909 .0913 5.4369 .0000 0559 5201 .2128 -2 7220 1,6821 1 2372 INSTRMAE(1) INSTRMAE(2) Constant

Tipo de Gravidez

Number of cases: 21980 (Unweighted)
Number of referred cases: 21980
Number of unselected cases 0 Number of selected cases: 21980 Number rejected because of missing data 33 Number of cares included in the analysis 21947 Dependent Variable Encading. transal Interpol v'alue Value Ü Deposite to Variable. PESO Pentinging Block Number at Initial Log Likelihood Function . Lo: Likelihood 1316/.149 * constant is included in the model. Beginning Block Number 1. Method: Enter Variable(s) Entered on Step Number TIFOGRAV Estimation terminated at iteration number 4 because Log Likelihood decreased by less than .01 percent. -2 Log Likelihood 12607,290 Gaodness of Fit 21945,380 Chi-Square df Significance .0000 559,859 Mouel Chi-Square Improvement 559,859 .0000 Classification Table for PESO Predicted Percent Correct Ô Observed 198.7 149 99,25% 206 10,56% 1745 Overall 91.37% ----- Variables in the Equation -----Variable B S E. Wald di Sig F Exp(B) ,0000 | 21/1 | 15.7237 ,0000 2,7552 .1104 622.7597 1 -2,4312 ,0250 9481,441 1 **TIFOGRAV** Constant

Penressan Londstira Multipla

Regressão	Logistica	Múltipla				
	Value Freq	Parameter Coding				
KILVIVOZ			Ĭ. ž. j.	Mary a h	1.1000 P. F. 5.5	of Sandy (Silverson as Ferrana)
	n 7699 L 5169	1.000 .005 200 .70°	0.48 U.M	Number	number of cases of relected cases of unselected cases	21986
A TOWNSHIP CARGOS AND	1 151 <i>s</i> 1 1298	. our four	a Booklati Jir 114	M and or a	to with the discovery of	jawa jawajng data 4 mg
HAMAIR	3 7386	1 1000 arm 000 1 000		11111011151	oi cases included in	. the analysis .7%~
Althor						
FILMOFTO	2 14199	000 1 001				
	15873 1 1346 458	1.000 000 1.000 000 1.00 1.00				
te-pendent Mar	rable PESO					
neginning Bio	ck themer 0	Initial Log Like	elihemal ram	* 0.89		
L-j Lif+li	h = = 10130. ~	, i.e.				
· Constant is	included in t	he model.				
beginning blo	ek Ummbér 1.	Method: Enter				
: . SEX FILL FILL GES IDA INS	ntered on Step O MOPTO VIVOS TACAO DEMAE TRMAE OGPAV	Number				
		eration number 5 less than .01 pe				
in; Lihel Goodnear ni						
	Chi-Sq	uare di Signii	icance			
Model Chi sq Improvement	udi 2864 2864		our. pere			
Člassificatio	n Table for PE: Fredicted U 1	Percent Coir	ect			
toger vid e e	15*17 33	97 67%				
1, 1	6.3 l 6.4	44.19%				
	Over	tall 93 15%				
-9		rables in the Equ				
Brisble		S E Wald				
. FMO FILMUSTO		.0656 29 736. 3 4756	3 17	.50 0000 59 0000		
FILMORTO(1) FILMOFTO(2)	1861 2013	1163 0.5565 1289 1.1350	1	ç (trish).		
FILVIVOS	47/3	35 2769 0033 N. 9011	1 4	60 U 1003 643	1 6.07.4	*
FILMIVOS (3 FILMIVOS (3)	2169	1120 88% 1135 3 995%	Ĭ 94	4140	2547	
GESTACAC LDADEMAE	4965	,0737 2248 679 8.6570		ne 4109 : 32 :::14	3.2.9995	
IDALEMAE(1)	.0181 .2885	.1241 0313 0981 8 6544	1 50	39 0000	1.0183	
INSTEMAE INSTEMAE(1)	5981	27.9221 .1148 27.1299	2 01	gir 0.486 gir 1448		
INSTRMAE(2) INSTRMAE(2) TIFOGRAV Constant	.3974 2.5198	.1115 12.7112 .1556 262.1430 .1263 1050.354		04 0325 00 150. 1	1 4830	
conditions	. 200				UFRES	

UFKGS SISTEMAS DE BIBLIOTEGAS BIBLIOTECA SETORIAL DE MATEMATICA

Regressão Logística Múltipla (Método Stepwise Forward - LR)

400							
	Value Fr	Faramet eq Coding		(3)			
LITALAGE							
INLYTPMAE		69 .00a 13 .000	1 000	.000 .000 non 1.000			
THE I PAINE		54 1.000 86 .000 2 .00	1.000				
LOADFILL	1, 1.3	65 1 000 99 .000	angan Dari				
(FIRE)	1 3	73 taon 46 taon 58 non	11/24 %				
Dependent Var	iable P	ESO					
regarding Ele	A Himber	0 Inplia	Lag La	relined	$M_{\rm h} \epsilon_{\rm pl} = \epsilon_{\rm h}$	-14	
len Likel	hood 101 t	0.80%					
· Constant is	included i	n the mode.	Ļ.				
Matamation te Log Eikelihoo					*1		
Classification	Predict	ed	cent Coi	crect			
(then) find (i)		1					
4 1	.471	0	. 0035				
		Overall 9:	l eti				
	V	ariables i	the Ed	sation -			
Valuatie	£	SE	Wald	·lf	. 14	F'	Exp(E)
Chel thi	2 3 194	,0372 776	1 46	1	(11.3)		
Beginning Blo	ck Number	1 Method	Friwar	d Stepwi	se (LF)		
Postinal Chi	Malable Tquare 54	2 met in 11 27 545 with	ne Byrat 1 12	d f	71g -	10.440:	
Valiable	<i>ತೆರ</i> ೦	re di	31g	F:			
JENC FILMOFTO FILMOFTO FILMOFTO(2) FILMOFT	20.15 11 h9 10 12 1 39 44 94 9.90 .75 17.01 4796 32 32 94 12 69 16 81 46.14 41.37 10.84 911.04	19	.0000 0015 0015 2379 0000 0017 3855 0000 0004 0004 0004 0000 0004 0000 0000 0000	.94.33 0279 025- .0000 .06.30 .0279 .0000 .0379 .0305 .0325 .0382 .03645 .0325 .0325 .0325			

```
Variable(s) Entered on Step Number CESTACAC
Refination ferminated at iteration number 5 because tog Likelihood decreased by less than 101 percent
 . Log LiFelihood 7594,212
Seedness of Fit 17676,948
                      Chi-Square df Significance
                        2536.592
2536.592
 Model Chi-Square
                                     1
 lmordvement
 Lawritz atten Intl- for FESO
                  bredicted 1
                                 Percent Correct
Old rei Ved
               197 97 417
                                  97 -40
                          275
                7 79
                                  49 4 4
   1
                         Overall 93 30%
 ----- Variables in the Equation -----
                           S E Wald df
                                                      Jud F Emp(B)
Vailable
GESTACAD 3 5558 .0709 2518 749 1 .0000 .49%4 .5.0161 .0081aht -3.0812 .0377 6608.434 1 .0000
....- Model if Term Removed -----
                                                Signification 6
THETT
           LIT
Removed Likelihood =2 Log LF df of Log LF
                                         1
HESTACAO
                                                      , a ! (i) (i) (
             -5065 402
                            2536,592
karideal Charage 342 096 with 11 df (14 mm)
Variable
                                        Sig
                      Score
SENO
FILMORIO
FILMOPTO(1,
FILMOPTO(2)
                    30.7907
3.3871
2.5084
.7340
28.4874
                                       J000 0523
                                              000.
                                  2
                                        1839
                                       .1132
3916
FILVIVOS
FILVIVOS(1)
                                                .0471
                                       .0000
                    12.2452
                                       .0005
                                                .0318
                    12.2452
1.2833
5.1544
12.5758
3.1789
8.0582
FILVIVOS(2)
FILVIVOS(3)
IDADFMAE
                                       . 2573
                                                . uuuu
                                        0132
                                                0176
02 1
0108
 IDADEMAE(1)
                                        0746
 IDADEMAF(2)
                                       .0045
                                                .0345
INSTRMAE
                     22.3791
                                        0600
                                                .0426
INSTRMAE(1)
INSTRMAE(2)
                                                .0364
                    15.4418
                                       .0001
                                        2033
                                                ,0000
                      1.3903
                   240.4668
TIPOGFAV
```

Variable(s) Entered on Step Number 2 TIPOGRAV							
	terminated at						
-2 Log Lik Goodness o	elihood 7 f Fit 17	370,218 655.979					
	Chi	-Square	df Sigi	nifican	(c)		
Model Chi- Improvemen	Square 2 t	760.587 223,994	2	. 000	10		
	ion Table for Fredict 0 0	ed 1 1	Percent Co	orrect			
Observed U U	15759	447	97.24%				
1 1	738	733	49.83%				
		Overall	93.30%				
	V	ariables	in the Ed	quation			
Variable	В	S.E.	Wald	df	Sig	P	Exp(B)
GESTACAO TIPOGRAV Constant	3.4908 2.4590 -3.1362	.0725 23 .1538 25 .0390 6	320.938 55.6330 456.655	1 1 1	.0000 .0000 .0000	.4784 .1582	32,8109 11.6930
1 (14 24 24 24 24 24 24	Model	if Term I	Removed -			¥	
Term Removed	Log Likelihood	-2 Log	LR df	Sign of L			
JESTACÃO TIPOGRAV	-4835.812 - 797 106	2301 4 223,5	407 1 994 1		13031 111 ₂	ic No	
Residual Ch.	Variable i Square 1	02.414 W	ith 10	df	Sig		
Milable	Sec	re df	Sig	7			
SEXO FILMOPTO(1 FILMOPTO(2 FILMOPTO(2 FILMOPTO(3 FILMOP	30 18 4.34 3.03 1.11 32 92 17 79 1 59 3 25 11.01 5.06 4.68 25.96 16.82	45 1 60 4 5 1 6 6 5 1 6 6 5 1 6 6 5 1 6 4 1 1 1 2 2 2 1 1 4 2 8 8 2 2 1 5 4 1 5 5 4	0000 1138 0815 2938 0010 0000 5070 0713 0041 0245 0304 0000 2866	0.627 0058 0101 0516 0247 0011 0111 0163 0464 0383 0000			

```
anialio(u) Entered on ster Number
 "If inction tenant odd at Iteration number ' become and L. Reighood decreased by less than "11 percent
            Take to the second control of the second con
                                                                                                                                                                                     Chil-Pquatr
                                                                                                                                                                                                                                                                                             di Santite e. .
        *Rest. 10. "Species with 10.50 g 17th 1000 g 17th 1000
         . Communication of the property of the second secon
        THE SET WAR
                                                                                                                                                                                                           447 97 24%
                                                                                                                                                                                                                8 11
                                                                                                                                                                                                                                                                                     49 30 16
                                                                                                                                                                                                                Overall 93.37%
     ----- Variables in the Equation -----
                                                                                                                                                                                                                       S E
                                                                                                                                                                                                                                                                                                Wald
                                                                                                                                                                                                                                                                                                                                                                                       \text{df} \qquad \text{Sig} \qquad \mathbb{R} \quad \text{Exp}(\mathbb{B})
        ärlable
                                                                                                                                                                                                    .0653 29.9626 1 0000
.0730 2313.607 1 0000
.1543 254.4709 1 0000
.0539 3804,759 1 0000
  SENO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    05.4 1 4298
4717 :3 5074
1579 11.7293
                                                                                                                                       15/75
                                                                                                           5 5118
3.4621
GESTA 'AC
11PCGRAV
 Constant
                                                                                                               -3.0000
                                                                                   Model if Term Removed ----
  Term Log Significance
 Term
                                                                                                                                                                                                                                     30 246
2311 917
223 385
  1.118 v.a. 11- 17.a.
1851, 1511, 11-7.a.
1451 17-
                                                                                                 46.1 91
46.1 91
-3761 673
hesida d Chi Square 72.403 with i II ... g
 Variable
                                                                                                                                                                               Score
                                                                                                                                                                                                                                                                 dí
                                                                                                                                                                                                                                                                                                                                   Sid
                                                                                                                                                                                                                                                                                                                                                                                         . 0054
 FILMOF TO
                                                                                                                                                                          4 7155
                                                                                                                                                                                                                                                                                                                          .6946
  FILMOFTO(1)
FILMOFTO(2)
FILMOFTO(2)
FILMIVOS(1)
FILMIVOS(2)
                                                                                                                                                                       3.3897
                                                                                                                                                                                                                                                                                                                                                                                                 . 9117
                                                                                                                                                                                                                                                                                                                               0656
                                                                                                                                                                    1 1197
12 7229
18 1253
1 5456
                                                                                                                                                                                                                                                                                                                                                                                                 0000
051
```

0399

0164

0248 0140 0467

0.379

. 0000

.0000

a cha

2138

0060

0278 .0402

0000.

.0000

.3171

. 4783

1

2

1

3 0991

10 2306 4 3421 4 2091

26.0842

16,5693

1 6009

FILVIVOS(3)

IDADEMAE (1)
IDADEMAE(2)

INSTEMAE(1)

INSTRMAE(2)

INSTRMAE

```
Allester or Entered on Step Humber
Estimation terminated at iteration number & because los fixed thoud decreased by less than '01 percent
 2 head fill-line on 2201,554
3. Sport of Fit 17300 - 5
                      Chi-Square
                                    di Jiguriiran e
Meder itil opråre
impletament
                        2014 200
1. 416
Characterist Table for PESO Predicted
                                  Percent Chirect
 1.95% - 201
                                  90 100
                11016
                         - 5 7
                         655
                                  44 - 130
                815
                         Overall bt. S.
 ---- Variables in the Equation -- - ---
                     B
                              SE.
of table
                                      Wald
                                                O. f.
                                                                 F Emp(B)
EIIO
EIIO
                                                       100° s
                                                                15. 4
06 11
                    357 to
                              0654 37 363
                                                                       1.4.10
                                     32 4949
                                                               อริโ
.สาฮิ
 FILVIVOS(1)
                   4362
                              0817
                                    28 5314
                                                                        1:5468
                            .1108
 FILVIVOS(2)
                 .1841
                                     2 7582
                                                       .0968
                                                                       1,2021
 FILVIVOS(3)
                  . 4229
                             .1072 15.5575
                                                 1
                                                        UUUL
                                                               . 4306
                                                                       1.5264
                3,5089
2,4947
-3,6119
                                                       .0000
                                                               .4/52 33,4129
.1594 12.1184
GESTALAU
                            .0733 2289,801
                                                 1
                            1549 259,3383
.0802 2029,904
TIPOGRAV
                                                      .0000
Constant
                                                1
----- Model if Term Pemoved -----
Term
                                              Significance of Leg LE
          Log
Likelihood
                         -2 Log LR df
Penuved
EXO.
             -3868.352
                             30,149
FILVIVOS
             -2669.985
                              33,416
                          2296.318
             -4801.136
-5 67.393
(ESTACA)
. IPCCHA
                             328 233
F
arrable
                     Score di
                                       z'1 g
PTIMI
                    5.3870
                                      1676 ,011?
                     ...793н
                                              .01 -:
                                      : 14
::517
 Filhkan i,
PILMUS TAN AT
LDADEMAE
                     1 31 va
6 6426
                                               01+2
 IDADEMAE(1)
                    1 7326
                                      1881
                                               no un
 TDAGEMARILEY
                    4 4908
                                      , 0341
                                              .0157
                                              .0479
INSTRUAL
                    27.2599
                                      .0000
                    16,6/16
7451
 INSTRMAE(1)
                                      , t-Out
                                               336.
 IME"BMAR(L)
```

Após as análises, seis causas gerais se apresentam como fatores decisivos para a evasão do aluno da UFRGS. Elas atuam em grupos diferenciados de estudantes, segundo as características inerentes ao corpo discente evadido.

Mercado de Trabalho" e "Falta de Aptidão para o Curso" foram as causas que contribuíram para a evasão de alunos jovens, solteiros e do sexo feminino. Uma diferenciação constatada entre estas duas causas gerais, está em torno da modalidade de evasão, ou seja, os estudantes ligados à causa incompatibilidade com o mercado de trabalho se evadem no final do curso; enquanto os relacionados à segunda, abandonam o curso na metade do período de duração do mesmo. A elas se deve o fato de um mercado de trabalho saturado; do curso não estar voltado para o mercado de trabalho e de não proporcionar um trabalho bem remunerado; por outro lado, o desconhecimento prévio a respeito do curso e a falta de aptidão para o mesmo, além de uma indecisão quanto à escolha da profissão, geraram o descontentamento do estudante em relação ao curso e sua consequente evasão.

Conseguimos verificar também que a "Escolha de Outro Curso" é preponderante para a evasão dos estudantes solteiros, do sexo feminino com idade entre 17 e 27 anos, que ingressaram via

62

vestibular e que abandonaram o curso entre o primeiro e terceiro semestre. Verificamos que esta causa geral constituída por alguns pontos importantantíssimos apontados pelos alunos evadidos, como: entraram na UFRGS em curso de 2a opção e desejarem experimentar um novo curso superior; além de terem sido aprovados em novo vestibular. Mediante esta situação, tudo nos leva a crer que estas pessoas, pelo simples fato de terem passado no concorrido vestibular da UFGRS, entraram no curso, mesmo sendo de segunda opção, procurando experimentá-lo. Como viram que o curso não era condizente com as suas expectativas, decidiram evadir-se no início do curso.

"Pressões Familiares" se evidenciaram na decisão estudantes mais velhos, do sexo feminino; evasão dos solteiros e que ingressaram na UFRGS através de algum tipo de transferência ou outra modalidade de ingresso. Para estes alunos, as responsabilidades familiares estão intrínsecas no seu perfil e família se evidenciam através referentes à relacionamento destes com os filhos, com o cônjuge e com a própria casa. Constatamos que, para as pessoas entre 28 e 37 anos e do sexo feminino, estes problemas são preponderantes na decisão de evasão, possivelmente devido ao fato de que as mulheres levam uma vida muito ativa, pois além de trabalhar fora, muitas vezes têm que cuidar de filhos, marido e casa; tornando inviável a

continuidade de um curso superior.

Outra causa ligada ao aluno não solteiro é a "Necessidade de Trabalhar". Ela está intimamente ligada a decisão de evasão do estudante mais velho, cuja forma de ingresso é via diplomado ou algum tipo de transferência ou outra modalidade de ingresso. Para este tipo de aluno a colisão de horários entre o curso e atividade profissional e o não oferecimento de disciplinas à noite são fatores que influenciaram na sua evasão. Estes estudantes já devem ter uma atividade profissional definida, da qual dependam para sustentar a família. Portanto, entre abandonar o curso ou atividade profissional, este tipo de aluno optou pelo abandono de curso.

Quanto à causa geral "Precariedade Material e Docente do Curso" está associada à evasão do aluno que estava frequentando o curso do quarto semestre em diante. Para estes alunos a pouca eficiência de professores, a precariedade de aparelhagem e de material disponível, assim como a dificuldade de relacionamento com professores, geraram a decepção destes com o curso, culminando em sua evasão.

BIBLIOGRAFIA:

AGRESTI, A. (1990) Categorical Data Analysis. New York, Wiley.

AGUAYO, N. T. V. (1993) Análise de Correspondência e Modelos Log-Lineares: Um Enfoque Integrado para a Análise Exploratória de Dados Categóricos. Dissertação de Mestrado. Departamento de Estatística - Instituto de Matemática, Estatística e Ciência da Computação - Universidade Estadual de Campinas.

CALLEGARI-JACQUES, S. M. (1991) Análise de Correspondência:
Aplicações em Genética. Cadernos de Matemática e Estatística,
Série F, nº 2. Porto Alegre, Instituto de Matemática - UFRGS.

DPI-PROPLAN (1991) Evasão dos Cursos de Graduação da UFRGS em 1985, 1986 e 1987. Série Estudos e Projetos, nº 15. Porto Alegre, Departamento de Pesquisa Institucional - Pró-Reitoria de Planejamento - UFRGS.

FURTADO, F. J. F. (1992) Coeficiente de Fidedignidade e Análise de Itens. Monografia, Bacharelado em Estatística, Instituto de Matemática - UFRGS.

GREENACRE, M. J. (1984) Theory and applications of correspondense analysis. Academic Press, New York.

HULL, C. H. & NIE, N. H. (1981) SPSS UPDATE 7 - 9: New Procedures and Facilities for Releases 7 - 9: 248 - 257.

SILVA, N. V. (1990) Introdução à Análise de Dados Qualitativos.

São Paulo: Vértice, Editora Revista dos Tribunais, 1990 (Vértice Universitário: 8).

POSSOLI, S. (1992). Análise Multivariada, Cadernos de Matemática e Estatística, Série B: Trabalho de Apoio Didático, Porto Alegre, UFRGS.

SOUZA, N. M. (1990) Análise de Correspondência. Monografia, Bacharelado em Estatística, Instituto de Matemática - UFRGS. ANEXOS

ANEXO 1:

QUESTIONÁRIO SOBRE EVASÃO

	ABANDONO - DESISTÊNCIA I_I_I 1_I_I 1_I_I
1.	SEXO: () MASCULINO () FEMININO 2. ESTADO CIVIL: () SOLTEIRO () SOLTEIRO () CASADO OU OUTRA FORMA DE UNIXO () DESQUITADO, DIVORCIADO, OUTRO
9.1	MODALIDADE DE INGRESSO NO CURSO DO QUAL SE EVADIU: () VESTIBULAR () INGRESSO DE DIPLOMADO/REINGRESSO () TRANFERÊNCIA VOLUNTÁRIA () TRANSFERÊNCIA COMPULSÓRIA () TRANSFERÊNCIA INTERNA () OUTRA (ESPECIFICAR):
5.	TENDO EM VISTA A SERIAÇÃO ACONSELHADA ASSINALE, COM A MAIOR APROXIMAÇÃO POSSÍVEL, QUANDO EVADIU-SE: () DO PRIMEIRO AO TERCEIRO SEMESTRE () DO QUARTO AO SEXTO SEMESTRE () DO SÉTIMO SEMESTRE EM DIANTE
6.	CURSO DO QUAL SE EVADIU: COD:
7.	ASSINALE EM TODAS AS CAUSAS O QUANTO CADA UMA DELAS FOI IMPORTANTE, A SEU JUÍZO, PARA SUA EVASÃO DA UFRGS, UTILIZANDO A SEGUINTE ESCALA: O. NÃO INFLUENCIOU 1. POUCO IMPORTANTE 2. IMPORTANTE 3. MUITO IMPORTANTE
	() DESCONHECIMENTO PRÉVIO A RESPETTO DO CURSO () INDECISÃO OUANTO A ESCOLHA DA PROFISSÃO () MODIFICAÇÃO DE INTERESSES PESSOAIS () FALTA DE PREPARO PARA ACOMPANHAR O CURSO () FALTA DE APTIDÃO PARA A PROFISSÃO ESCOLHIDA () CURSO COM IMAGEM POUCO POSITIVA () CURSO COM IMAGEM POUCO POSITIVA () OLISÃO DE HORÁRIOS ENTRE CURSO E ATIVIDADE PROFISSIONAL () NECESSIDADE DE TRABALHAR E SENTIR-SE CANSADO(A) PARA ESTUDAR () O CURSO NÃO PROPORCIONARIA OPORTUNIDADE DE TRABALHO BEM REMUNERADO () MERCADO DE TRABALHO MUITO SATURADO () MUDANÇA DE RESIDÊNCIA () DESEJO DE EXPERIMENTAR UM NOVO CURSO () PRESSÕES FAMILIARES () CURSO NÃO COMBINAVA COM A ATIVIDADE PROFISSIONAL () DECEPÇÃO COM O CURSO () FALTA DE CONDIÇÕES FINANCEIRAS PARA CUSTEAR O CURSO () DIFICULDADES DE RELACIONAMENTO COM PROFESSOR(ES) () PRECARIEDADE DE APPRELHAGEM E DE MATERIAL DISPONÍVEL () LONGO PERCURSO ATÉ O LOCAL DAS AULAS. () MOTIVO DE SAÓDE () NÃO COMPARECIMENTO NA ÉPOCA DA MATRÍCULA () APROVAÇÃO EM CURSO DE 2a. OPCÃO () JÁ ESTAR FAZENDO OUTRO CURSO SUPERIOR () A INSTITUIÇÃO NÃO OFERECEU CURSO OU DISCIPLINAS À NOITE () PRECARIEDADE DO ENSINO () POUCA EFICIÊNCIA DE PROFESSOR(ES) () MUDANCA DE CURRÍCULO DURANTE O CURSO () VIAGEM DE ESTUDOS AO EXTERIOR () PROBLEMAS COM CASA, MARIDO, ESPOSA OU FILHOS () PROBLEMAS COM CASA, MARIDO, ESPOSA OU FILHOS () APROVAÇÃO EM NOVO VESTIBULAR NESTE CASO ESPECIFIQUE: CURSO: UUTRAS CAUSAS. OUAIS?

ANEXO 2:
RESULTADOS FINAIS DA TÉCNICA DE COMPONENTES PRINCIPAIS

in the second second

Variable	Communality	96	Factor	Caracter.	Pct	Cum
		, H	*	.Eigenvalue	of.Var	Pct
CAU1	.51740	Ħ	í.	4.63118	14.5	14.5
CAU2	.61264	*	2	2.92457	9.1	23.6
CAU3	.59193	H	3	2.20696	6.9	30.5
CAU4	.60363	H	. 4	1.80212	5.6	36.1
CAU5		Æ	5	1.43067	4.5	40.6
CAU6	.49914	H	6	1.35169	4.2	44.8
CAUZ	.73183	¥	7	1.29852	4 . i.	48.9
CAU8	.53373	*	8	1.22449	3.8	52.7
CAU9	.73742	¥	9 .	1.03460	3.2	56.0
CAU10	.66255	Ð÷				30 30 30
CAU11	.64130	¥				
CAU12	.52884	96				
CAU13	.52538	æ				
CAU14	.54743	99:	2.3			
CAU15	.36303	96				
CAU16	.67625	96				
CAU17	.31492	÷				
CAU18	.45572	96				
CAU19	.52861	14:				
CAU20	.49651	æ				
CAU21	.50675	英				
CAU22	.52234	96				
CAU23	. 40771	æ				
CAU24	.51620	36				
CAU25	.46376	36				
CAU26	.61548	96				
CAU27	.73372	36				
CAU28	.78616	96				
CAU29	.33500	Ħ				
CAU30	.61410	Ħ				
CAU31	.66122	¥				
CAU32	.58523	96				

Varimax Rotation 1, Extraction 1, Analysis 1 - Kaiser Normalization

Varimax converged in 14 iterations.

Rotated Factor Matrix:

,	PREĊ	MERCT	FAAPCUR	NETRAB	ESOUCUR
CAU1	.17978	.06583	.63858	04480	.09373
CAU2	.00652	.16425	.63176	10430	.24085
CAU3	.00542	.10687	.22739	09434	.11007
CAU4	.06778	.00101	-71180	14795	08764
CAU5	.08495	.18767	-71702	1 3791	.06580
CAU6	. 27796	-61736	.00069	04755	.16794
CAUZ	06562	01195	18413	.78836	19318
CĄU8	.02910	.12407	.05540	.53690	33093
CAUP	.09477	-82722	.11726	.11429	.05755
CAU10	.04430	<i>₌7</i> 9033	.15031	.04240	01208
- CAU11	07101	05357	06683	02240	13096
CAU12	.08075	.12373	.31766	08042	.52674
CAU13	.01984	.03554	01088	.02209	.09271
CAU14	.38685	.61765	.08405	.05700	02724
CAU15	.00730	.25795	.17370	.27417	.i1688
CAU16	-71832	.21407	.23908	12206	.04629
CAU17	.08772	.04740	.10922	.35572	- . 01492
CAU18	-60402	02667	.21510	.03450	01829
CAU19	.7051A	.13895 ⁻	05904	.0468 <i>7</i>	.06622
CAU20	.08206	.04561	.04268	.51837	.08850
CAU21	08782	.03191	.06139	17674	08307
CAU22	06278	00523	01663	.12384	.02489
CAU23	09167	.24744	01998	04375	.51652
CAU24	.00828	06761	04519	.02410	.58427
CAU25	04250	.11808	27777	03317	29406
CAU26	.08199	.04336	06459	.76033	.05934
CAU27	.8323i	.17669	.00395	. 06509	05958
CAU28	.86722	.13685	.07085	.03527	07073
CAU29	.37242	02447	01745	.12010	07084
CAU30	.03361	00046	01894	05951	.09837
CAU31	01281	.02060	.00645	.10354	12162
CAU32	03949	.02483	.14861	09638	.70617

. ...

· ·				
	PRESFAM	OUINPES	NCOMEP	MUDANC
CAU1	02647	.14892	12548	15347
CAU2	.01081	.33820	02739 .	04866
CAUS	.17451	.68330	07299	.07121
CAU4	.14091	18466	.08309	.04414
CAU5	07760	.03193	.02730	.03390
CAU6	.07708	.04988	03338	02700
CAU7	01882	.13477	.12404	02732
CĄU8	.26186	.12764	.15093	09483
CAU9	.06110	.07299	06912	01396
CAU10	00688	.10607	.01034	00509
- CAU11	.21170	.09051	19432	.72146
CAU12	.17487	.28100	09989	05161
CAU13	-71327	.04145	.01949	.06058
CAU14	-1.00545	.01581	.06751	01990
CAU15	06665	.39198	.12179	06718
CAU16	01604	.15020	03859	12621
CAU17	.33143	20248	03247	.12000
CAU18	.03388	20200	.00642	.01950
CAU19	00626	01417	00363	.04199
CAU20	.25507	17283	33972	.04620
CAU21	.37608	34453	.37799	23044
CAU22	.09427	02911	.70ii8	.02737
CAU23	01686	22163	.09429	.10335
CAU24	15183	.17937	.33321	.03618
CAU25	15304	. 45820	.21423	.06348
CAU26	07232	05663	.09569	05910
CAU27	00285	.03245	02998	00170
CAU28	01979	.01206	04673	03706
CAU29	.08459	.14873	.36990	.09928
CAU30	11316	02022	.22004	.73332
CAU31	.78962	.05974	.08807	01601
CAU32	.00168	.03640	20501	09824

H 18 18 18

ANEXO 3:

COEFICIENTE DE FIDEDIGNIDADE DAS VARIÁVEIS INDICADORAS

RELIABILITY /VARIABLES CAU16 CAU18 CAU19 CAU27 CAU28 /SCALE (PREC) CAU16 CAU18 CAU19 CAU27 CAU28 /MODEL ALPHA /SUMMARY ALL /STATISTICS CORRELATION SCALE DESCRIPTIVES.

****** METHOD 2 (COVARIANCE MATRIX) WILL BE USED FOR THIS ANALYSIS ******

****** 488 BYTES OF SPACE REQUIRED FOR RELIABILITY ******

TRELIABILITY ANALYSIS - SCALE (PREC)

- 1. CAU16
- 2. CAU18
- 3. CAU19
- 4. CAU27
- 5. CAU28

		MEAN	STD DEV	CASES
1	CAU16	1.0456	1.1744	1205.0
2.	CAU18	.3245	.7438	1205.0
3.	CAU19	.5469	8848	1205.0
4.	CAU27	.9320	1.0892	1205.0
5.	CAU28	.8946	1.0743	1205.0

CORRELATION MATRIX

	CAU16	CAU18	CAU19	CAU27	X (9)	CAU28
CAU16	1.0000					
CAU18	.3662	10000				
CAU19	.4212	.3056	1.0000			
CAU27	.5654	.3533	.5523	1.0000		
CAU28	.6095	.4970	.5133	"78í7-	≅	1.0000

OF CASES =

1205.0

STATISTICS FOR SCALE	MEAN 3.7436	VARIANCE 15.1942			LES 5	
ITEM MEANS	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	.7487	.3245	1.0456	.7212	3.2225	.0909
ITEM VARIANCES	MEAN	MUMINIM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	1.0112	8888.	1.3791	.8259	2.4927	.1121
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
COVARIANCES	.5069	.2011	"9147	.7136	4.5479	"0502
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
CORRELATIONS	.4965	.3056	.7817	.4761	2.5579	.0191

ITEM-TOTAL STATISTICS

	SCALE MEAN IF ITEM DELETED	SCALE VARIANCE IF ITEM DELETED	CORRECTED ITEM- TOTAL CORRELATION	SQUARED MULTIPLE CORRELATION	ALPHA IF ITEM DELETED
CAU16	2.6979	9.3157	.6276	.4054	.8071
CAU18	3.4191	12.2320	.4630	.2632	.8425
CAU19	3.1967	11.0933	.5629	.3352	.8198
CAU27	2.8116	9.0949	.7478	.6529	.766í
CAU28	2.8490	8.9024	.8014	.6931	.7490

RELIABILITY COEFFICIENTS 5 ITEMS

ALPHA = .8341 STANDARDIZED ITEM ALPHA = .8314

RELIABILITY /VARIABLES CAU6 CAU9 CAU10 CAU14 /SCALE (MERCT) CAU6 CAU9 CAU10 CAU14 /MODEL ALPHA /SUMMARY ALL /STATISTICS CORRELATION SCALE DESCRIPTIVES.

***** METHOD 2 (COVARIANCE MATRIX) WILL BE USED FOR THIS ANALYSIS *****

***** 344 BYTES OF SPACE REQUIRED FOR RELIABILITY *****

RELIABILITY ANALYSIS - SCALE (MERCT)

- 1. CAU6
- 2. CAU9
 - 3. CAU10
 - 4. CAU14

		MEAN	STD DEV	CASES
í. "	CAU6	.5395	.8848	1214.0
~ n	CAU9	.8509	1.0596	1214.0
3.	CAU10	.6203	.9116	1214.0
4.	CAU14	.6507	.9946	1214.0

CORRELATION MATRIX

70 6

	CAU6	CAU9	CAU10	CAU14
CAU6	1.0000			
CAU9	.4358	1.0000		
CAU10	.3309	.6472	1.0000	
CAU14	.3989	.4817	.3992	1.0000
			2.4	

RELIABILITY ANALYSIS - SCALE (MERCT)

OF CASES =

1214.0

STATISTICS FOR SCALE	MEAN 2.6614	VARIANCE 8.7682	STD DE 2.961		_ES 4	
ITEM MEANS	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	.6654	.5395	.8509	.3114	1.5771	.0175
ITEM VARIANCES	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	.9315	.7829	1.1228	.3400	1.4343	.0241
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
COVARIANCES	.4202	.2669	.6251	.3582	2.3423	.0148
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
CORRELATIONS	.4489	.3309	.6472	.3163	1.9558	.0108

	SCALE MEAN IF ITEM DELETED	SCALE VARIANCE IF ITEM DELETED	CORRECTED ITEM- TOTAL CORRELATION	SQUARED MULTIPLE CORRELATION	ALPHA IF ITEM DELETED
CAU6	2.1219	5.9324	.4763	.2377	.7559
CAU9	1.8105	4.5626	.6810	.5064	.6442
CAU10	2.0412	5.4295	. 5903	.4298	7002
CAU14	2.0107	5.3379	.5312	.2861	"Z31Ø

RELIABILITY COEFFICIENTS 4 ITEMS

ALPHA = .7668 STANDARDIZED ITEM ALPHA = .7652

RELIABILITY /VARIABLES CAU1 CAU2 CAU4 CAU5 /SCALE (FAAPCUR) CAU1 CAU2 CAU4 CAU5 /MODEL ALPHA /SUMMARY ALL /STATISTICS CORRELATION SCALE DESCRIPTIVES.

***** METHOD 2 (COVARIANCE MATRIX) WILL BE USED FOR THIS ANALYSIS ******

******* 344 BYTES OF SPACE REQUIRED FOR RELIABILITY ******

RELIABILITY ANALYSIS - SCALE (FAAPCUR)

- 1. CAU1
- 2. CAU2
 - 3. CAU4
 - 4. CAU5

		MEAN	STD DEV	CASES
í	CAU1	.4554	.8192	1212.0
2.,	CAU2	.7195	1.0371	1212.0
3.	CAU4	.3515	.7417	1212.0
4.	CAU5	.4117	.8075	1212.0

CORRELATION MATRIX

	CAU1	CAU2	CAU4	CAU5
CAUi	1.0000			
CAU2	.4528	1.0000		
CAU4	.2840	.2356	1.0000	
CAU5	.3854	.4368	.3579	1.0000

RELIABILITY ANALYSIS - SCALE (FAAPCUR)

OF CASES =

1212.0 .-

DFR03 SISTEMAS DE MINE DISCURS BIBLIDIECA SETORIAL DE MATEMATICA

STATISTICS FOR SCALE	MEAN 1.9381	VARIANCE 6.0961	STD DE	EV VARIABI 90	_ES -4	
ITEM MEANS	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	. 4845	.3515	.7195	.3680	2.0469	"0263
ITEM VARIANCES	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	.7372	.5502	1.0757	.5255	1.9551	.0537
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
COVARIANCES	.2623	.1726	.3847	.2121	2.2292	.0078
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
CORRELATIONS	.3588	2356	.4528	.2172	1.9217	.0066

	SCALE MEAN IF ITEM DELETED	SCALE VARIANCE IF ITEM DELETED	CORRECTED ITEM- TOTAL CORRELATION	SQUARED MULTIPLE CORRELATION	ALPHA IF ITEM DELETED
CAU1	1.4827	3.8007	.5086	.2647	.6010
CAU2	1.2186	3.1569	.5056	.2869	.6100
CAU4	1.5866	4.4095	.3648	.1545	.6840
CAU5	1.5264	3.7739	.5324	.2853	.5871

RELIABILITY COEFFICIENTS 4 ITEMS

ALPHA = .6884 STANDARDIZED ITEM ALPHA = .6912

RELIABILITY /VARIABLES CAUZ CAU8 CAU20 CAU26 /SCALE (NETRAB) CAUZ CAU8 CAU20 CAU26 /MODEL ALPHA /SUMMARY ALL /STATISTICS CORRELATION SCALE DESCRIPTIVES.

***** METHOD 2 (COVARIANCE MATRIX) WILL BE USED FOR THIS ANALYSIS *****

344 BYTES OF SPACE REQUIRED FOR RELIABILITY ******

RELIABILITY ANALYSIS - SCALE (NETRAB)

- 1. CAUZ
- 2. CAU8
- 3. CAU20
- 4. CAU26

	2	MEAN	STD DEV	CASES
1.	CAU7	1.8470	1.3108	1216.0
2.	CAU8	1.0962	1.1539	1216.0
З.	CAU20	.9038	1.1945	1216.0
4.	CAU26	1.3092	1.3535	1216.0

CORRELATION MATRIX --

	CAU7	CAU8		CAU20	 CAU26
CAU7	1.0000				,
CAU8	.4755	1.0000			
CAU20	.2014	.2038		1.0000	
CAU26	.5514	.2281	3	.2511	1.0000

RELIABILITY ANALYSIS - SCALE (NETRAB)

OF CASES =

1216.0 -

STATISTICS FOR SCALE	MEAN 5.1563	VARIANCÉ 12.4200	STD DE 3.524		_ES 4	
ITEM MEANS	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	1.2891	.9038	1.8470	.9433	2.0437	.1658
ITEM VARIANCES	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	1.5771	1.3315	1.8319	.5004	1.3758	.0559
INTER-ITEM	MEAN	MINIMUM 2	MAXIMUM	RANGE	MAX/MIN	VARIANCE
COVARIANCES	.5093		.9782	.6973	3.4827	.0705
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
CORRELATIONS	.3185	.2014	.5514	.3500	2.7381	.0215

	SCALE MEAN IF ITEM DELETED	SCALE VARIANCE IF ITEM DELETED	CORRECTED ITEM- TOTAL CORRELATION	SQUARED MULTIPLE CORRELATION	ALPHA IF ITEM DELETED
CAU7	3.3092	6.6763	.5943	.4332	.4687
CAU8	4.0600	8.3758	.4062	.2420	.6087
CAU20	4.2525	8.9889	.2798	.0858	.6854
CAU26	3.8470	7.1074	.4823	.32 <i>77</i>	.5552

RELIABILITY COEFFICIENTS 4 ITEMS

ALPHA = .6561 STANDARDIŽED ITEM ALPHA = .6515

RELIABILITY /VARIABLES CAU12 CAU23 CAU24 CAU32 /SCALE (ESOUCUR) CAU12 CAU23 CAU24 CAU32 /MODEL ALPHA /SUMMARY ALL /STATISTICS CORRELATION SCALE DESCRIPTIVES.

***** METHOD 2 (COVARIANCE MATRIX) WILL BE USED FOR THIS ANALYSIS *****

******* 344 BYTES OF SPACE REQUIRED FOR RELIABILITY ******

RELIABILITY ANALYSIS - SCALE (ESOUCUR)

- i. CAU12
- 2. CAU23
- 3. CAU24
- 4. CAU32

			MEAN	STD DEV	CASES
		** T(
1	CAU12	* .	.6893	1.0923	1178.0
2 .	CAU23		.1537	.6232	1178.0
3.	CAU24		.5348	1.0714	1178.0
4.	CAU32		.5730	1.1447	1178.0

* .

CORRELATION MATRIX

	CAU12	CAU23	CAU24	CAU32
CAU12	1.0000			
CAU23	.1638	1.0000		
CAU24	.1203	.1415	1.0000	
CAU32	.3926	.2183	. 2279	1.0000

RELIABILITY ANALYSIS - SCALE (ESGUCUR)

. .

OF CASES =

1178.0

STATISTICS FOR SCALE	MEAN 1.9508	VARIANCE 6.5855	STD DE 2.566		LES-	
ITEM MEANS	MEAN . 4877	MINIMUM :	MAXIMUM .6893	RANGE .5357	MAX/MIN 4.4862	VARIANCE .0539
ITEM VARIANCES	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	1.0099	.3884	i.3103	19219	3.3733	.1764
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
COVARIANCES	.2121	.0945	.4908	.3964	5.1953	.0208
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
CORRELATIONS	.2107	.1203	.3926	.2722	3.2626	.0088

	SCALE MEAN IF ITEM DELETED	SCALE VARIANCE IF ITEM DELETED	CORRECTED ITEM- TOTAL CORRELATION	SQUARED MULTIPLE CORRELATION	ALPHA IF ITEM DELETED
CAU12	1.2615	3.9061	.3442	.1611	.4068
CAU23	1.7971	5.4737	.2481	.0632	.4994
CAU24	1.4160	4.4080	.2289	.0614	.5159
CAU32	1.3778	3.4230	.4373	.2053	.3039

RELIABILITY COEFFICIENTS 4 ITEMS

ALPHA = .5154 | STANDARDIZED ITEM ALPHA = .5164

RELIABILITY /VARIABLES CAU13 CAU31 /SCALE (PRESFAM) CAU13 CAU31 /MODEL ALPHA /SUMMARY ALL /STATISTICS CORRELATION SCALE DESCRIPTIVES.

***** METHOD 2 (COVARIANCE MATRIX) WILL BE USED FOR THIS ANALYSIS *****

****** 128 BYTES OF SPACE REQUIRED FOR RELIABILITY *****

RELIABILITY ANALYSIS - SCALE (PRESFAM)

ė ·

1. CAU13

2. CAU31

		3	MEAN	STD DEV	CASES
í. "	CAU13		.1641	.5690	1213.0
2	CAU31		.4089	.9052	1213.0

CORRELATION MATRIX

CAU13 CAU31

CAU13 1.0000

CAU31 .3983 1.0000

RELIABILITY ANALYSIS - SCALE (PRESFAM)
OF CASES = 1213.0

STATISTICS FOR SCALE	MEAN .5730	VARIANCE 1.5535	STD DE 1.248		LES 2	
ITEM MEANS	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	.2865	.1641	.4089	.2448	2.4925	.0300
ITEM VARIANCES	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	"5716	.3237	.8195	.4957	2.5314	"1229
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
COVARIANCES	.2051	.2051	.2051	.0000	1.0000	0000
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
CORRELATIONS	.3983	"3983	.3983	.0000	1.0000	"0000

	SCALE MEAN IF ITEM DELETED	SCALE VARIANCE IF ITEM DELETED	CORRECTED ITEM- TOTAL CORRELATION	SQUARED MULTIPLE CORRELATION	ALPHA IF ITEM DELETED
CAU13	.4089	.8195	.3983	.1586	u
CAU31	.1641	.3237	.3983	.1586	11

RELIABILITY COEFFICIENTS 2 ITEMS

ALPHA = .5282 STANDARDIZED ITEM ALPHA = .5697

DERMAS DE RIEL OTRUAS BIBLIOTECA SETORIAL DE MATEMÁTICA RELIABILITY /VARIABLES CAUS CAUS /SCALE (OUINPES) CAUS CAUSS /MODEL ALPHA /SUMMARY ALL /STATISTICS CORRELATION SCALE DESCRIPTIVES.

***** METHOD 2 (COVARIANCE MATRIX) WILL BE USED FOR THIS ANALYSIS *****

******* 128 BYTES OF SPACE REQUIRED FOR RELIABILITY ******

RELIABILITY ANALYSIS - SCALE (OUINPES)

í. CAU3

2. CAU25

		MEAN	STD DEV	CASES
1	CAU3	1.6491	1.2167	1197.0
2.	CAU25	.6717	1.0995	1197.0

CORRELATION MATRIX

CAU3

CAU25

CAU3 CAU25 1.0000

.0907

1.0000

RELIABILITY ANALYSIS - SCALE (OUINPES)

OF CASES =

1197.0

STATISTICS FOR SCALE	MEAN 2.3208	VARIANCE 2.9321	STD DE . 1.712		.ES . 2,,	
ITEM MEANS	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	1.1604	.6717	1.6491	.9774	2.4552	"4777
ITEM VARIANCES	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
	1.3447	1.2090	1.4805	.2715	1.2245	.0368
INTER-ITEM	MEAN	MINIMUM	MAXIMUM	RANGE	MAX/MIN	VARIANCE
COVARIANCES	.1213	.1213	"1213	.0000	1.0000	.0000
INTER-ITEM CORRELATIONS	MEAN .0907	MINIMUM .0907	MAXIMUM .0907	RANGE	MAX/MIN 1.0000	VARIANCE

	SCALE MEAN IF ITEM DELETED	SCALE VARIANCE IF ITEM DELETED	CORRECTED ITEM- TOTAL CORRELATION	SQUARED MULTIPLE CORRELATION	ALPHA IF ITEM DELETED
CAU3	.6717	1.2090	.0907	.0082	п
CAU25	1.6491	1.4805	.0907	.0082	u

RELIABILITY COEFFICIENTS 2 ITEMS

ALPHA = .1655 STANDARDIZED ITEM ALPHA = .1663

RELIABILITY /VARIABLES CAU22 /SCALE (NCOMEP) CAU22 /MODEL ALPHA /SUMMARY ALL /STATISTICS SCALE DESCRIPTIVES.

***** METHOD 2 (COVARIANCE MATRIX) WILL BE USED FOR THIS ANALYSIS *****

****** 56 BYTES OF SPACE REQUIRED FOR RELIABILITY *****

SCALE (NCOMEP) HAS LESS THAN TWO NON-ZERO VARIANCE ITEMS; CANNOT BE PROCE

RELIABILITY /VARIABLES CAU11 CAU30 /SCALE (MUDANC) CAU11 CAU30 /MODEL ALPHA /SUMMARY ALL /STATISTICS CORRELATION SCALE DESCRIPTIVES.

***** METHOD 2 (COVARIANCE MATRIX) WILL BE USED FOR THIS ANALYSIS *****

****** 128 BYTES OF SPACE REQUIRED FOR RELIABILITY ******

RELIABILITY ANALYSIS - SCALE (MUDANC)

. .

1. CAU11

i

2. CAU30

		MEAN	STD DEV	CASES
1.	CAU11	.4587	1.0341	1212.0
2.	CAU30	.1601	.6419	1212.0

CORRELATION MATRIX

CAU11 CAU30
CAU11 1.0000
CAU30 .2165 1.0000

RELIABILITY ANALYSIS - SCALE (MUDANC)

OF CASES = 1212.0-

STATISTICS FOR SCALE		MEAN .6188	VARIANCE 1.7687	STD DE 1.329		ES 2	
ITEM MEANS		MEAN .3094	MINIMUM- .1601	MAXIMUM .4587	RANGE .2987	MAX/MIN 2.8660	VARIANCE .0446
ITEM VARIANCES		MEAN .7407	MINIMUM .4120	MAXIMUM 1.0693	RANGE 6573	MAX/MIN 2.5953	VARIANCE .2160
INTER-ITEM COVARIANCES	^	MEAN .1437	MINIMUM "1437	MAXIMUM .1437	RANGE .0000	MAX/MIN 1.0000	VARIANCE 0000
INTER-ITEM . CORRELATIONS		MEAN .2165	MINIMUM .2165	MAXIMUM .2165	RANGE .0000	MAX/MIN 1.0000	VARIANCE .0000

ITEM-TOTAL STATISTICS

	SCALE MEAN IF ITEM DELETED	SCALE VARIANCE IF ITEM DELETED	CORRECTED ITEM- TOTAL CORRELATION	SQUARED MULTIPLE CORRELATION	ALPHA IF ITEM DELETED
CAU11	.1601	.4120	.2165	.0469	at .
CAU30	.458 <i>7</i>	1.0693	.2165	.0469	25

RELIABILITY COEFFICIENTS 2 ITEMS

ALPHA = .3250 STANDARDIZED ITEM ALPHA = .3559

ANEXO 4:

TABELAS CRUZADAS ENTRE AS VARIÁVEIS INDICADORAS E AS VARIÁVEIS INDEPENDENTES

Crosstabulat	ion=	SEXO
	Ву	PREC

PREC->	Count Std Res	 0	1 1 1	2 !	Row Total
Sel has PV to	í	478	196	50 7	724 60.1%
	2	285 -1.1	153 1.2	42 .9	480 39.9%
	Column Total	763 63.4%	349 29.0%	92 7.6%	1204 100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F. (5
	**** **** ****			THE RESIDENCE OF A STATE OF THE SECOND STATE O
5.59402	2	.0610	36.678	None

Crosstabulation: ESCIV
By PREC

PREC->	Count	}						į.	Row
	Std Res	1	Ø	1	1.	1	2	1	Total
ESCIV	1.	1	423 0	:	189 2	. L	54 .4	1 1 1	666 55.8%
	2	1	336 .0	1	154 .2	 	37 - . 5	1	527 44.2%
	Column Total	.ý	759 63.6%	··· ·• <u></u> •• ···	343 28.8%		91 7.6%	. 4.	1193 100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F. 5
	*** *** ****			
.53149	2	.7666	40.199	Non∈

Crosstabulation: IDADE
By PREC

PREC->	Count	1						i	Row
	Std Res	1	0	I I	1.	1	2	1	Total
IDADE	Ø		375 6		192 1.0	1	44		611 54.2%
į	í.		281		121 5	1	32		434 38.5%
	2	1	58 .8	! ! !	16 -1.7	! !	9	1 1	83 7.4%
	Column Total	ф	714 63.3%		329 29.2%		85 7.5%	·{·	1128 100.0%

Chi-Square D.F. Significance Min E.F. Cells with E.F. (5 6.47664 4 .1663 6.254 None

Crosstabulation: INGR
By PREC

P. C. P. C.	Count	1					1	D
PREC->	Std Re	s !	0	.1	í	1 2	1	Row Total
INGR	1	! !	563 5	1	270	74 6	1	907 75.5%
	2	-{ 	104		39 9	+ 11 2	1	154 12.8%
	3		95 . 6		40 i	+	1	141. 11.7%
	Colum Tota	n	762 63.4%	∤	349 29.0%	91 7.6%	- +-	1202 100.0%

Chi-Square D.F. Significance Min E.F. Cells with E.F. 5
4.43693 4 .350i 10.675 None

.

10, 0

SERAC By PREC

	Count	1		**	
PREC->	Std Res	0	1 1	! 2	Row Total
SERAC	1	1 407	160	39	606
;	2	1 258	134	39	431
	3	83	54 1.6	12	1 149
	Column Total	748 63.1	348	90	1186

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F. 5
	,	*** *** *** *** *** *** *** *** *** ***		
10.55976	A	.0320	11.307	None

Crosstabulation:

SEXO

By MERCT

MERCT->	Count Std Res	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	:	í	¦	2]] !	Row Total
SEXO	í.	1	515 1.3	1	187 7	1 1 2	25 -2.8	1 1	727 60.0%
	2	!	296 -1.6	1	142 .9	1	47 3.4	1	485 40.0%
	Column Total	•	811 66.9%	•	329 27.1%	•	72 5.9%		1212 100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F. < 5
24.67911	2	.0000	28.812	None

ESCIV By MERCT

		1	3 H	LIER C. I		
	Col	ınt	1			
>			1			
	Std	Res	1	0	}	:
			4		4	
		4	1	100	1	4. 0

MERCT->		i						1	Row
	Std Res	1	Ø	1	1.	;	2	1	Total
ESCIV				4	**** **** **** **** ****				
	í.	I.	428	1	193	1	54	1	675
		1	1 1.	1	7	1	2.1	1	56.1%
		·• ···		þ		 		···· • { -	
	2	1	375	1	135	1	18	1	528
,		1	1.2	1		1	-2.4	1	43.9%
		·}· ···				· 			
	Column		803		328		72		1203
	Total		66.7%		27.3%		6.0%		100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F.< 5
14.00069	2	.0009	31.601	None

Crosstabulation:

IDADE By MERCT

MERCT->	Count	!				. Row
	Std Res		0 :	i I	2 1	Total
IDADE	0		388	185 1.5	42 1.0	615 54.1%
	1.	1	307 .8	108 9	21 9	436 38.4%
	2		69 1.6	13	3 l 9 l	85 7.5%
	Column Total		764 67.3%	306	 66 5.8%	1136 100.0%

Chi-Square	D.F.	Significance	Min E.F.		vith E.F.(5
14.57853	4	.0057	4.938	i OF	9 (11.1%)

Crosstabulation: INGR By MERCT

	Cou	ınt	1							
MERCT->			ì						1	Row
TAICAD	Std	Res	i	0		í.	l	2	1	Total
INGR		í	1	611		 252	 	E. X	······································	04.4
		.1.	!	*0		.2	1	51 5	1	914 75.5%
ř		2	·{· ···· ·	100	 	44		11		155
			1	4		.3	1		1	12.8%
		3	1	99		33	1	10	1	142
		•	¦ 	.4		9	¦ 	.5		11.7%
		umn		810		329		72		1211
	Τc	otal		66.9%	2	7 . 2%		5.9%		100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F. 5
**** **** **** **** **** *** *** ***				
2.08514	4	.7201	8,443	None

Crosstabulation: SERAC By MERCT

MERCT->	Col	ınt	1				,		1	Row	
	Std	Res	1	0	! !	1	1 .x	2	! ! !	Total	
SERAC		1		418	! !	155 9	1 1 1	39 .5	1	612 51.3%	
		2		283 - . 2	; ;	127 .9	! .	19 -1.2	1	429 35.9%	
		3		97 5		44 .3	; ;	12 1.0		153 12.8%	16
		lumn otal	· ·····	798 66.8%	··· ·{· ···	326 27.3%		70 5.9%	. .	1194 100.0%	

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F.< 5
	**** **** ****			
5.14035	4	.2732	8.970	Non∈

SEXO By FAAPCUR

		· · · · · · · · · · · · · · · · · · ·			
FAAPCUR-> SEXO -	Count 	Ø	1 1	2 1	Row. Total
SEXU -	í. i	588 .9	127 -1.5	1.4	729 60.2%
÷	2	351 -1.2	113 1.8	17 1.3	481 39.8%
	Column Total	939 77.6%	240 19.8%	3i 2.6%	1210 100.0%
Chi-Square 	D.F. 2		ficance 0051	Min E. 12.3	

Crosstabulation: ESCIV

ESCIV By FAAPCUR

FAAPCUR->	Count Std Res	Ø	1 1	2 ;	Row Total
E301V	1 1	483 -1.7	165 2.7	25 1.8	673 56.1%
	2	447 1.9	74 -3.0	6 -2.1	527 43.9%
	Column Total	930 77.5%	239 19.9%	31 2.6%	1200 100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F. 5
30.37353	2	.0000	13.614	None

IDADE By FAAPCUR

	Count	}								
FAAPCUR->	Std Res	; ;	0	1 } 	1.	1	2	1 1	Row Total	
J. LATILAL.	. Ø	 	436	, 	159 3.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 1.1	1	615 54.2%	
7	í	1	366 1.6	! !	61 -2.8	 	8 <u>.</u> 9	1 1 1	435 38.3%	
	2	1	78 1.5	1	-2.7	1	i 8	1 1	85 7.5%	
	Column Total	•	880 7.5%		226 19.9%	y	29 2.6%		1135 100.0%	

Chi-Square	D.F.	Significance	Min E.F.	C	ells	with	E	.F.(5
	****************			••••					
36.37057	4	.0000	2.172	Í.	OF	9	(j. j	1%)

Crosstabulation:

INGR By FAAPCUR

FAAPCUR->	Count Std Res	Ø 1	1 1	2	Row Total
INGR	1 1	682 -,9	205 1.8		911 75.4%
	2 1	138 1.6	14 -3.0	3	155 12 . 8%
	3	118	21	4 1 2 1	143 11.8%
	Column Total	938 77.6%	240 19.9%	31 2.6%	1209 100.0%

Chi-Square	D.F.	Significance	Min E _. F.	.Cells with E.F.< 5	
	**** **** ****				
18.51151	4	.0010	3.667	2 OF 9 (22.2%)	ĺ

.

. .

SERAC By FAAPCUR

FAAPCUR->	Count !			1	Row
SERAC	Std Res !	0 !	í. l	2	Total
OLIV PLO	1 1	452 -1.1	138 1.5	22 1.5	612 51.3%
;	2	352 1.0	72 -1.4	5 -1.8	429 36.0%
	3 1	121	26 7	.0	151 12.7%
	Column Total	925 77.6%	236 19.8%	31 2.6%	1192 100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells w	ith E.F.(5

12.86634	4	.0119	3.927	i OF	9 (11.1%)

Crosstabulation:

SEXO By NETRAB

NETRAB->	Count Std Res	!	Ø	} 1	í.	¦ 	2	! ! !	Row Total
OLAU	í	; ; ;	266 1	; 	328 .6		137 8	- 1	731 60.2%
	2	; ;	178	1	199 8	1	107 1.0	1	484 ^{**} 39.8%
	Column Total		444 36.5%		527 43.4%		244 20.1%		1215 100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F.< 5
2.60115	2	.2724	97.198	None

. .

. . .

Crosstabulation: ESCIV

By NETRAB

	Count	1							
NETRAB->		1						1	Row
pro 200, 200, 100 1 1	Std Res	i	0	1	í.	ł	2	!	Total
ESCIV			~~~				7 75 75	··· ·	,,
	1.	i	299	i	255	i	122	i	676
		1	3.4	ì	-2.3	1	-1.i	1	56.1%
,		-\$	/ 25.25					·····	pro 200, 200,
1	2	i	139	i	270	i	119	i	528
		1	-3.8	1	2.6	1	i.3	i	43.9%
		·\$· ···		∳				···· -∳·	
	Column		438		525		241		1204
	Total		36.4%		43.6%		20.0%		100.0%
	~				75				

Chi-Square Significance ... Cells with E.F. < 5 D.F. Min ElF. .0000 --41.34545 2 105.688 None

Crosstabulation:

IDADE By NETRAB

	Count	}			
NETRAB->	Std Res	0	i i i	2	Row Total
IDADE	Ø	263 2.5	235 -1.6	115 -1.0	613 53.9%
	1.	133	1 202 1	105 1.5	440 38.7%
	2	23 1 -1.5	1 48 1	14 8	85 7.5%^
	Column Total	419 36.8%	485 42.6%	234 20.6%	1138 100.0%

Cells with E.F. 5 Significance Min E.F. D.F. Chi-Square 4 17.478 None 25.13093 .0000

INGR By NETRAB

			A1785		
NETRAB->	Count	1			D
RETKHE-7	Std Res	. 0	1 1 1	2 1	Row Total
INGR	í.	1 352 1 1.0	379	183	914 75.4%
Å.	2	1 46 1 -1.4	80 1.5	29 -,4	155 12.8%
	3	1 44 1 -1.2	68 1	32 .6	144 11.9%
	Column Total	442 36.4%	527 43.4%	244 20.1%	1213
Chi-Squar			ificance	Min E.	
8.5415			.0736	28.9	

Crosstabulation:

SERAC By NETRAB

	Count !		* *		
NETRAB-> Row Std Res Ø 1 2 Tota SERAC	Row Total				
SERAC	1 l	•	246 -1.0	131 .6	613 51.3%
	2 1		199	86 1	430 36.0%
	3	59 .4	68 .3	26 9	153 12.8%
			513	243	1196 100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F.< 5
	**** **** ****		**** **** **** **** **** **** ****	
5.23198	4	.2643	31.086	None

Crosstabulation:		SEXO
	Ву	ESOUCUR

	Count	;				• •				
ESOUCUR->	Std Res	:	0	ł	1.	i i	2	1	Row Total	
SEX0	í	1	576 .4	1	117 1	i i	15 -1.8	1	708 60.2%	
î	2	 	365 5	¦ ¦	79 .1	 	2.3 2.3	1	469 39.8%	
	Column Total		94i 79.9%		196 16.7%	e.	40 3.4%	•	1177 100.0%	

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F.(5
	*** *** ***			,
9.02072	2	.0110	15.939	None

Crosstabulation: ESCIV By ESOUCUR

	Count	1						
ESOUCUR->		1					1	Row
¥	Std Res	1 0	4	í.	1	2	1	Total
ESCIV		4			·∳· ····		·}·	
	í	1 473	1	1.52	1	29	1	654
		1 -2.2	i i	4.1	i	1 4	1	56.0%
		+· ··· ··· ··· ··· ··· ··· ··· ··· ··			∤			
	2	1 459	1	43	1	1 . 1 .	1	513
		2.4	1	-4.6	1	-1.6	1	44.0%
		· ··· ··· ··· ··· ··· ··· ··· ··· ···						
	Column	932		195		40		1167
	Total	79.93	%	16.7%		3.4%		100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells with E.F. (5
	****		··· ··· ··· ··· ··· ··· ··· ···	
52.97587	2	0000	17.584	None

Crosstabulation: IDADE
By ESOUCUR

	Col	ınt	1							
ESOUCUR->			1						1	Row
*** I'V. A I'V. V-1	Std	Res	1	0	1	1.	1	2	1	Total
IDADE				A (2) A				~~~~		EOO
		0	1	424	1	145	i	29	i	598
			i	-2.4	1	4.5	i	1 7	i	54.3%
			4		·· · · · · · · · · · · · · · · · · · ·		·· ·• ···			
Ť		1.	1	373	ì	37	1	9	1	419
			1	2.1	1	-3.9	I	-1.5	1	38.1%
			·\$· ····							
		2	1	81	1	2	i	í.	1	84
			1	1 7	1	-3.2	1	1. n 1.	1	7.6%
		^	·{····			· ••• ••• ••• ••• ••• ••• ••• ••	···		·· ·{·	
	Co	lumn		878		184		39		1.1.01
	T	otal		79.7%		16.7%		3.5%		100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells w	ith E.F.< 5
	**** **** ****				
66.02743	4	.0000	2.975	i OF	9 (11.1%)

Crosstabulation: INGR
By ESOUCUR

recentioning A	Count	1 1 1		1	F)
ESOUCUR->	Std Res	 0	i	2	Row Total
INGR	í	+ 676 -1.2	173 ! 2.1 !	37 1.2	886 75.4%
	2	t	5 i -4.0 i	1 l	151 12.9%
	3	†	17 -1.2	2 -1.2	138 11.7%
	Column Total	↓ 940 80.0%	195 16.6%	40 3.4%	1175 100.0%

Chi-Square	D.F.	Significance '	Min E.F.	Cells with E.F. 5
··· ··· ··· ··· ··· ··· ··· ··· ··· ··				THE RESIDENCE OF THE SECOND SECTION SE
35.63259	4	.0000	4.698	-i OF 9 (11.1%)

SERAC By ESOUCUR

	Count	1						
ESOUCUR->	Std Res	1	Ø ¦	í.	1	2	1	Row Total
SERAC					4		4.	
	1	1 4	438	126	1	23	1	587
		1 -:	4	2.7	1	9	1	50.7%
					· ···· ··· ·· ·· ·· ·· ··		{-	
i	2	1 3	355	56	1	13	1	424
		1	.9 1	-1.9	1	2	1	36.6%
		·\$· ··· ·· ·· ·				· · · · · · · · · · · · · · · · · · ·		
	3	1 :	131 1	14	1	2	1	147
		1 :	1.3	-2.2	: 1	1.3	1	12.7%
	^	·ф· ···· ··· ···	4					
	Column	9	724	196	,	38		1158
	Total	79	7.8%	16.9	%.	3.3	%.	100.0%

Significance Min E.F. Cells with E.F. < 5 Chi-Square D.F. i OF 9 (ii.i%) .0002 22.20046 4 4.824

Crosstabulation:

SEXO

SEXO By PRESFAM

PRESFAM->	Count Std Res		0	1	1.	2	1	Row Total
SEX0	1	: :	636 1.0	1 1	82 · ¦		1	729 60.1%
	2	1	380 -1.2	1	82 2.1	21 2.3	!	483 39.9%
	Column Total		1016 83.8%		164 13.5%	32 2.6%		1212 100.0%

Min E.F. Cells with E.F. 5 D.F. Significance Chi-Square ------12.752 None 2 .0001 18.45869

Crosstabulation: ESCIV
By PRESFAM

	Col	ınt	1							•	
PRESFAM->			1						1	Row	
	Std	Res	1	0	i	1.		2 .	-1	Total	
ESCIV			··· ·• ···						···· · · · ·		
		1	1	619	1	- 48	1	5	i	672	
			1	2.4	ì	-4.5	1	-3.0	1	56.0%	
			·• ···				· ··· · · · ·		∤		
i		22	1	387	1	115	1	27	1	529	
			1	-2.7	1	5.1	1	3.4	1	44.0%	
			·• ···		··· ·		· ·		···· ·†·		
	Co	lumn		1006		163	* 1	32		1201	
	T	otal		83.8%		13.6%	,	2.7%		100.0%	

 Chi-Square
 D.F.
 Significance
 Min E.F.
 Cells with E.F.
 5

 80.27933
 2
 .0000
 14.095
 None

Crosstabulation: IDADE
By PRESFAM

PRESFAM->	Coun	t	1						!	Row
	Std R	es	1	0	1	í.	!	2	1	Total
IDADE		0	⊹ · ¦ ¦	538 .9		66 -1.6	1	9 -1.7	1	613 54.0%
		í.	₩ 	352 9		68 1.4	} }	17 1.7	1	437 38.5%
		2	-{	67 6		15 1.1	1	3	1	85 7.5%
	Colu	mn	·• ···· ····	957 84.3%	· [149 13.1%	·{· ····	29 2.6%	•∳•	1135 100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells w	ith E.F. < 5
	**** **** ****	*** *** *** *** *** *** *** *** *** *** ***			
13.99867	4	.0073	2.172	i OF	9 (11.1%)

INGR By PRESFAM

	Cor	unt	i					***	
PRESFAM->	Std	Res	1 2 2	Ø	1	1] 2	1	Row Total
INGR		i.		774	 	116 7	1 22	1 1	912 75.4%
1		2	} }	130	 -	2i 0	. 4 !0	¦ ¦	155 12.8%
		3	1	110 9	1	27 1.7	1 6	1	143 11.8%
		lumn otal	4	1014 83.8%		164 13.6%	32 2.6%	Y	1210 100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells w	ith E.F.K 5
	***************************************	***************************************			
5.88383	4	.2080	3.782	2 OF	9 (22.2%)

Crosstabulation:

SERAC By PRESFAM

PRESFAM->	Count !			1	Row
	Std Res i	0 !	í. l	2	Total
SERAC	í l	514	78 6	16	608 51.0%
	2 1	360	61	11	432 36.2%
	3 1	125	24	4 1	153 12.8%
	Column Total	999 83.7%	163 13.7%	31 2.6%	1193 100.0%

Chi-Square	D.F.	Significance	Min E.F.	Cells w	ith E _T F.K 5
	*** *** *** ***	*** *** *** *** *** *** *** *** *** *** ***			
.97238	4	.9140	3.976	. i OF	9 (11.1%)