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Memory Performance Analysis Strategies at Runtime Level for Task-Based

Applications over Heterogeneous Platforms

ABSTRACT

Programming parallel applications for heterogeneous High Performance Computing plat-
forms is easier when using the task-based programming paradigm, where a Direct Acyclic
Graph (DAG) of tasks models the application behavior. The simplicity exists because a
runtime, like StarPU, takes care of many activities usually carried out by the application
developer, such as task scheduling, load balancing, and memory management. This mem-
ory management refers to the runtime responsibility for handling memory operations,
like copying the necessary data to the location where a given task is scheduled to exe-
cute. Poor scheduling or lack of appropriate information may lead to inadequate memory
management by the runtime. Discover if an application presents memory-related perfor-
mance problems is complex. The task-based applications’ and runtimes’ programmers
would benefit from specialized performance analysis methodologies that check for possi-
ble memory management problems. In this way, this work proposes methods and tools to
investigate heterogeneous CPU-GPU-Disk memory management of the StarPU runtime,
a popular task-based middleware for HPC applications. The base of these methods is
the execution traces that are collected by the runtime. These traces provide information
about the runtime decisions and the system performance; however, a simple application
can have huge amounts of trace data stored that need to be analyzed and converted to
useful metrics or visualizations. The use of a methodology specific to task-based applica-
tions could lead to a better understanding of memory behavior and possible performance
optimizations. The proposed strategies are applied on three different problems, a dense
Cholesky solver, a CFD simulation, and a sparse QR factorization. On the dense Cholesky
solver, the strategies found a problem on StarPU that a correction leads to 66% perfor-
mance improvement. On the CFD simulation, the strategies guided the insertion of extra
information on the DAG and data, leading to performance gains of 38%. These results in-
dicate the effectiveness of the proposed analysis methodology in problems identification

that leads to relevant optimizations.

Keywords: HPC. Performance analysis. Task-Based programming. Heterogeneous plat-

forms. Memory behavior.






Estratégias para analise do desempenho de memoria em nivel de runtime para

aplicacoes baseadas em tarefas sobre plataformas heterogéneas

RESUMO

A programacdo de aplicacdes paralelas para plataformas heterogéneas de Computagao de
alto desempenho € mais fécil ao usar o paradigma baseado em tarefas, em que um Grafo
Aciclico Dirigido (DAG) de tarefas descreve o comportamento da aplicagdo. A simplici-
dade existe porque um runtime, como o StarPU, fica responsdvel por diversas atividades
normalmente executadas pelo desenvolvedor da aplicagdo, como escalonamento de tare-
fas, balanceamento de carga e gerenciamento de memoria. Este gerenciamento de memo-
ria refere-se as operacdes de dados, como por exemplo, copiar os dados necessarios para
o local onde uma determinada tarefa estd escalonada para execugdo. Decisdes ruins de
escalonamento ou a falta de informacdes apropriadas podem levar a um gerenciamento de
memoria inadequado pelo runtime. Descobrir se uma aplicagio esta apresentando proble-
mas de desempenho por erros de memoria é complexo. Os programadores de aplicagdes
e runtimes baseadas em tarefas se beneficiariam de metodologias especializadas de ana-
lise de desempenho que verificam possiveis problemas no gerenciamento de memoria.
Desta maneira, este trabalho apresenta métodos para investigar o gerenciamento da me-
moéria entre CPU-GPU-disco de recursos heterogéneos do runtime StarPU, um popular
middleware baseado em tarefas para aplicacoes HPC. A base desses métodos € o rastre-
amento de execucdo coletado pelo StarPU. Esses rastros fornecem informagdes sobre as
decisoes do escalonamento e do desempenho do sistema que precisam ser analisados e
convertidos em métricas ou visualizagdes uteis. O uso de uma metodologia especifica
para aplicacOes baseadas em tarefas pode levar a um melhor entendimento do comporta-
mento da memdria e para possiveis otimizacdes de desempenho. As estratégias propostas
foram aplicadas em trés diferentes problemas, um solucionador da fatoragdao de Cholesky
denso, uma simulagdo CFD, e uma fatoracdo QR esparsa. No caso do Cholesky denso, as
estratégias encontraram um problema no StarPU que a correcdo levou a ganhos de 66%
de desempenho. No caso da simulacdo CFD, as estratégias guiaram a inser¢ao de infor-
magdo extra no DAG levando a ganhos de 38%. Estes resultados mostram a efetividade

dos métodos propostos na identificacdo de problemas que levam a otimizacoes.

Palavras-chave: HPC, Programacao baseada em Tarefas, Anélise de Desempenho, Pla-

taformas Heterogéneas, Comportamento de Memoria.
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1 INTRODUCTION

A challenge found in the High Performance Computing (HPC) domain is the com-
plexity of programming parallel applications. The task-based programming paradigm
presents numerous benefits, and many researchers believe this is currently the optimal
approach to program for modern machines (Dongarra et al., 2017). The tasking related
extensions to the OpenMP (in 4.0 and 4.5 version (OpenMP, 2013)), and the upcoming
5.0 standard (OpenMP, 2018) with even more features confirm this trend. In general,
a task-based approach is efficient for load-balancing and intelligently using all the re-
sources’ computational power in heterogeneous platforms. It transfers to a runtime some
activities that are usually carried out by programmers, such as mapping compute kernels
(tasks) to resources, data management, and communication. Task-based applications use
a Direct Acyclic Graph (DAG) of tasks as the main application structure to schedule them
on resources, considering tasks dependencies and data transfers. Among many alterna-
tives like Cilk (BLUMOEFE et al., 1996), Xkaapi (GAUTIER et al., 2013), and OmpSs
(DURAN et al., 2011); StarPU (AUGONNET et al., 2011) is one example of runtime us-
ing this paradigm and is used as the task-based runtime for this work. Its features include
the use of distinct tasks’ implementations (CPU, GPU), different tasks schedulers, and
automatically managing data transfers between resources.

The performance analysis of task-based parallel applications is complicated due
to its inherently stochastic nature regarding variable task duration and their dynamic
scheduling. Different performance analysis methods and tools can be used to aid on
this matter, including analytical modeling of the task-based application theoretical bounds
(AGULLO et al., 2015) and the application-runtime simulation which allows reproducible
performance studies in a controlled environment (STANISIC et al., 2015a; STANISIC et
al., 2015b). StarPU can also collect execution traces that describe the behavior of the ap-
plication to provide a framework for performance analysis. Possible uses of the informa-
tion provided by the runtime can be in the form of performance metrics (number of ready
and submitted tasks, GFlops rate, etc.), signaling poor behavior (i.e., absence of work in
the DAG critical path), or visualization techniques (panels that illustrate the application
and the runtime behavior over time). The visualization-based approach can combine all
these investigation methods to facilitate the analysis with graphical elements. The StarVZ
workflow (PINTO et al., 2018) is an example of a tool that leverages application/run-

time traces. It employs consolidated data science tools, most notably specific-tailored R
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scripts, to create meaningful views that enable the identification of performance problems
and testing what-if scenarios.

Interleaving data transfers with computational tasks (data prefetching) is another
technique that has a significant impact on performance (AUGONNET et al., 2010). The
goal is to efficiently manage data transfers among different memory nodes of a platform:
main (RAM), accelerator (GPUs), and out-of-core (hard drive) memories. Factors like
the reduction of data transfers between heterogeneous devices and hosts, better use of
cache, and smarter block allocation strategies play an essential role for performance. Si-
multaneously, many applications require an amount of memory greater than the available
RAM. These applications require the use of out-of-core methods, generally because disk
memory is much larger than main memory (TOLEDO, 1999). Correctly selecting which
data blocks to stay on each resource memory is a challenge. The complexity of evaluating
these memory-aware methods at runtime level motivates the design of visualization-based
performance analysis techniques tailored explicitly for data transfers and general memory

optimizations.

1.1 Motivation

Task-based parallel programming is an adopted paradigm for using multiple het-
erogeneous resources. However, conducting a performance analysis of these applications
is a challenge. The creation of specific methods, considering the paradigm particulari-
ties, can benefit the programmers of these applications and runtimes. Although some re-
cent tools were proposed on this topic (HUYNH et al., 2015; MUDDUKRISHNA et al.,
2016; PINTO et al., 2018), these tools lack techniques to investigate the memory behav-
ior (transfers, presence, allocation) of the runtime and application. Memory is a crucial
factor in the performance of parallel applications and can be analyzed to find improve-
ments. The StarPU developers and the StarPU applications’ programmers can benefit
from specific methods of memory analysis. Features like verify the memory access, flow,
and management at runtime level would facilitate the programming, at the same time to

enable the discovery of problems that impact performance.
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1.2 Contributions

This work focus on the analysis of the StarPU’s memory management perfor-
mance using trace visualization. It enables a general correlation among all factors that
can impact the overall performance: application algorithm, runtime decisions, and mem-

ory utilization. The main contributions are the following.

* The extension of the StarVZ workflow by adding new memory-aware visual ele-
ments that help to detect performance issues in the StarPU runtime and the task-
based application code.

* The augmentation of StarPU with extra trace information about the memory man-
agement operations, such as new memory requests, additional attributes on memory
blocks and actions, and data coherency states.

* Experiments on three different applications with the appliance of the proposed
strategies. (I) The first application is the dense linear algebra solver Chameleon
(AGULLO et al., 2010). The proposed strategies are used in four cases. In the
first case, the methodology identified a problem inside the StarPU software. A fix
is proposed, and a comparison of the application performance before and after the
correction patch is conducted, leading to ~66% of performance improvement. The
second case analyzes idle times when using out-of-core. The third case explains
the performance difference when the application allocate blocks differently using
out-of-core memory. The fourth scenario studies the memory/application behavior
between the DMDAS and DMDAR schedulers. The last case shows a proof-of-concept
on the use of the strategies on multi-node execution. (II) The second application is
a task-based CFD simulation over StarPU (NESI; SCHNORR; NAVAUX, 2019),
where the strategies are applied specifically on a method for decomposing the sub-
domain. The methodology found memory residency problems that lead to possible
optimizations thanks to the behavior observed, resulting in 38% performance im-
provement. (III) The third application is QR_Mumps, a sparse QR factorization
(BUTTARI, 2012). The strategies found a behavior related to memory transfers,

that may be disadvantageous in executions that have high transfer rates.

The combination of these contributions provides multi-level performance analysis
strategies of data management operations on a heterogeneous multi-GPU and multi-core

platform. The strategies offer a high-level view with the information of application DAG
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with the low-level runtime memory decisions, which can guide the application and run-
time programmers to identify performance problems. Instead of only using low-level
metrics and comparing them with multiple executions, this work focus on the behavior
understanding of representative executions. This work presents visualization elements
specifically for the performance analysis of memory in a DAG-based runtime, enriching

the perception of task-based applications running on heterogeneous platforms.

1.3 Structure

This document is structured as follows. Chapter 2 provides the context and the
background about heterogeneous platforms, task-based programming, and the StarPU
runtime. Chapter 3 presents related work on the performance analysis and visualization
of general HPC applications, task-based applications, and memory management. It also
discusses this work’s strategies against the state-of-the-art. Chapter 4 presents the strate-
gies and the methodology to investigate the performance of memory operations in the
StarPU runtime, employing visualizations and a modern data science framework. Chap-
ter 5 details the experiments conducted in three applications. First, the Chameleon/Morse
application using the Cholesky operation. Second, a simple CFD application that the
strategies are applied on a partitioning method. Third, a solver for sparse QR factoriza-
tion, called QR_Mumps. Also, it provides a discussion of the limitations of the proposed

strategies. Chapter 6 ends this document with the conclusions and future work.
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2 TASK-BASED PROGRAMMING PARADIGM FOR HETEROGENEOUS HPC

PLATFORMS AND THE STARPU RUNTIME

This chapter provides background concepts on heterogeneous platforms, the task-
based programming, and the StarPU runtime. First, Section 2.1 offers some information
on the current adoption of heterogeneous platforms on supercomputers and the general
problems on programming them. Second, Section 2.2 explains the task-based program-
ming model, some general advantages, some projects that are using it and how it is be-
coming popular. Third, Section 2.3 gives a brief overview of how StarPU works, a source

code example, and its internal data management system related to this work.

2.1 Heterogeneous Platforms

The adoption of diverse accelerators on HPC is vastly increasing. Statistics from
the TOP500! list of supercomputers on Tables 2.1 and 2.2 offer the accelerations’ infor-
mation of November 2017 and 2018 respectively. The data show an increase of 7.2%
in one year. Moreover, the top two supercomputers as of November 2018, Summit and
Sierra, are both using GPGPUs. A broad set of applications can benefit from the SIMD
architecture present on many accelerators to have their execution time reduced (HEN-
NESSY; PATTERSON, 2011). In addition to the accelerators, the presence of multiple
computational nodes with different hardware configurations increases heterogeneity. In
these situations where the application performance over heterogeneous nodes is different,
robust programming methods must be deployed to use these resources efficiently.

The construction of applications for these heterogeneous platforms is complex
because many APIs or programming paradigms are available to deal with specific com-
ponents of a supercomputer. OpenMP (DAGUM; MENON, 1998) can be applied to use
all the cores of a CPU. MPI (GROPP; LUSK; SKJELLUM, 1999) to coordinate the exe-
cution of the application and transfer data in different nodes. CUDA (NVIDIA, 2019) and
OpenCL (STONE; GOHARA; SHI, 2010) can be used to program GPGPUs. Moreover,
not all problems apply to all kinds of architectures. For example, many dense linear al-
gebra operations are desirable on GPUs. When running applications on supercomputers’

nodes, it is desirable to take most of it and use all the computational power it has, includ-

Thttps://www.top500.org/
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Table 2.1: Accelerators on TOP500 List - November 2017

Accelerator/Co-Processor Count System Share (%) Cores
NVIDIA Tesla P100 42 8.4 1,564,028
NVIDIA Tesla K40 12 2.4 312,456
NVIDIA Tesla K80 7 1.4 332,130
NVIDIA Tesla K20x 6 1.2 758,976
NVIDIA Tesla P100 NVLink 5 1 204,188
PEZY-SC2 500Mhz 3 0.6 2,351,424
NVIDIA Tesla P40 3 0.6 422,000
Intel Xeon Phi 7120P 3 0.6 172,994
NVIDIA 2050 3 0.6 360,256
Intel Xeon Phi 31S1P 2 04 3,294,720
NVIDIA Tesla K20m 2 0.4 36,892
Intel Xeon Phi 5120D 2 04 122,512
Intel Xeon Phi 5110P 2 0.4 272,136
Others (With Count = 1) 10 2.0 -
Total 102 20.4 -

Source: TOP500 (2018).

Table 2.2: Accelerators on TOP500 List - November 2018

Accelerator/Co-Processor Count System Share (%) Cores
NVIDIA Tesla P100 60 12 2,441,572
NVIDIA Tesla V100 41 8.2 1,645,796
NVIDIA Tesla K20x 4 0.8 731,712
NVIDIA Tesla K80 4 0.8 271,870
NVIDIA Tesla K40 3 0.6 201,328
NVIDIA Tesla P100 NVLink 3 0.6 176,868
NVIDIA Tesla V100 SXM2 3 0.6 609,840
Intel Xeon Phi 5110P 2 04 272,136
Intel Xeon Phi 5120D 2 0.4 122,512
NVIDIA 2050 2 0.4 307,008
NVIDIA Volta GV100 2 0.4 3,970,304
Others (With Count = 1) 12 2.4 -
Total 138 27,6 -

Source: TOP500 (2018).

ing both CPUs and accelerators. In the current situation with different APIs, programming
languages, and paradigms, programmers are overwhelmed by the number of responsibil-
ities that they should take care of, including the communication of data between different
resources’ memory, guaranteeing the correctness application behavior, and yet, to achieve
the maximum parallel performance that the hardware is capable to deliver. The task-based

programming parading is one programming model that can reduce the complexity by pro-
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viding a abstraction layer that controls the resources, scheduling tasks, and managing the

data. Using this paradigm, the programmer transfers all these responsibilities to a runtime.

2.2 Task-Based Programming Paradigm

The task-based programming, or data flow scheduling, is a concept (BRIAT et al.,
1997) that uses a more declarative strategy to transfer some responsibilities to a runtime
system, facilitating the application coding and reducing the programmer control over the
execution (Dongarra et al., 2017). This paradigm is becoming more popular since the
2000 decade, where different projects started to use it (THIBAULT, 2018; Dongarra et
al., 2017). Furthermore, the runtime system can apply several automatic optimizations
with the information inherited from the Task and Data declarations (THIBAULT, 2018).

The structure of a program following the task-based programming paradigm con-
sists of a collection of tasks (usually a sequential code region) that have a specific purpose
over a collection of data. Therefore, the interaction between tasks occurs primarily by the
use of the same data fragments in different tasks, causing implicit dependencies among
them to guarantee computation coherence. Usually, a DAG represents a task-based ap-
plication, where nodes are tasks, and edges are dependencies. Such dependencies are
inherited by data reuse or explicitly inserted by the programmer. Figure 2.1 offers an
example of DAG, with four different tasks (each one do a different computation over a
data region). The DAG starts with a Task A, with ID 1, that generates Data 1 and
Data 2 and will be used by two B Tasks. Each Task B will process its data that
will be used by a Task B and a Task C respectively. In the end, a Task D, with ID
6, will use both the results of the Task B and Task C (Data 1 and Data 2)toend
the computation. Each data represents a fragment of the problem data. Although multiple
tasks use the same data fragment, the tasks usually modify their content. For example,
four tasks used Data 1, it started empty, then with "A," after that "AB," and it finished
"ABC" when it was read by Task D with ID 6.

One of the benefits of adopting the task-based model is that the programming
of HPC applications is much more abstract and declarative (Dongarra et al., 2017), far
from the details of the heterogeneous execution platform. So, instead of an explicit map-
ping of tasks to resources by the programmer, the parallelism is obtained by letting a
middleware take such decisions. Tasks are submitted sequentially to the middleware in-

terface, and the runtime determines where tasks execute. For the example of Figure 2.1,
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Figure 2.1: Example of DAG for a task-based application

_,| DataID:1 Data ID: 1 DatalD:1|
Data: A Data: AB Data: ABB

|,| Data ID: 2 Data ID: 2 DatalD:2| |
Data: A Data: AB Data: ABC

Source: The Author.

Task A would be declared using two fragments of data (Data 1 and 2), while Task
C would be declared only using one (it would read and write over Data 2. Because of
the uncertain and irregular state of the system environment, the tasks’ execution order is
stochastic. Many runtimes act like this middleware, for example, PARSEC (BOSILCA
et al., 2012), OmpSs (DURAN et al., 2011), OpenMP (in 4.0 and 4.5 version (OpenMP,
2013)), XKaapi (GAUTIER et al., 2013), and StarPU (AUGONNET et al., 2011).

The runtimes can work on heterogeneous platforms, as any resource is just a com-
putation unit. The tasks can have multiple implementations to a variety of accelerators
and are scheduled to different devices. One example of runtime that supports the use of
CPUs and GPUs is XKaapi. Its support was done by Lima (2014), that also study sched-
ulers for this combination of resources. Although there are similarities among them, this
work only details the StarPU runtime, since the strategies use it as the main experimental

runtime.

2.3 The StarPU runtime

StarPU is a general-purpose task-based runtime system that provides an interface
for task-based applications use to submit jobs over resources. Figure 2.2 presents the soft-
ware stack and the location of the runtime over an architecture while all the applications
and its tasks, kernels, and components are over it. StarPU uses the Sequential Task Flow
(STF) model (AGULLO et al., 2016), where the application sequentially submits tasks
during the execution and the runtime dynamically schedule them to workers. In such a
model, there is no need to unroll the whole DAG of tasks before starting tasks execution,
and the application can dynamically create tasks and submit them during the execution.

The dependencies among tasks that would structure the DAG are inherited by data that is
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shared between tasks. The data used by a task needs to be declared into a data handle,
and the reuse of the handles turn possible the creation of dependencies among the tasks
and defining a DAG. Therefore, in StarPU, the dependencies among tasks are explicit.
This characteristic is simpler and different from other approaches like OpenMP tasks and
MPI, where the programmer has to inform the dependencies or communications manu-
ally. For example, using OpenMP 4.0, the programmer has the ability to define memory

dependencies with the depend clause.

Figure 2.2: Software stack when using the StarPU task-based runtime

application
tasks submission tasks implementations
algorithms skeletons routines
compilation : compilation
binary kernels libraries components
runtime
architecture

Source: Thibault (2018).

Moreover, StarPU tasks might have multiple implementations, one for each type
of device (such as x86 CPUs, CUDA GPUs, and OpenCL devices). The runtime will
decide, base on scheduling heuristics, on which resource each task will execute, selecting
the correct implementation. StarPU can manage most of the controlling aspects of these
devices, creating modules for each one. For example, for CUDA GPU devices, StarPU is
responsible for initializing the GPU, selecting the correct streams, and using the CUDA
API for registering and transferring the data handles. However, StarPU still enables the
programmer control over these devices. As each CUDA task implementation is essentially
one common sequential CPU task that calls a CUDA kernel, it is possible to use any
CUDA API that is required. For example, these CUDA tasks usually need to wait for any
CUDA asynchronous calls that it make, and do it using the appropriate API calls.

An example of StarPU usage code is present in Figures 2.3 and 2.4. The definition

of tasks is present in Figure 2.3 and can be done by defining a starpu_codelet struc-
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ture and informing the CPU implementation (in this case task_cpu, the name of the
task, the number of data handles, the access modes of these handles, and the performance
model. Figure 2.4 presents the structure of the main function of a StarPU application,

responsible for submitting tasks sequentially.

Figure 2.3: Example of code to define tasks using StarPU

enum starpu_data_access_mode task_modes[1] = {
STARPU_RW

}s

void task_cpu(void =buffers[], void =xcl_arg){
struct params par;
starpu_codelet_unpack_args(cl_arg, &par);

0NN Nk~ W

9 intx data = (int x)STARPU_VECTOR_GET PTR(buffers[0]);

11 //DO SOMETHING

12 }

13

14 static struct starpu_perfmodel task_perf_model = {
15 .type = STARPU_HISTORY_BASED,

16 .symbol = "task"

17}

18

19 struct starpu_codelet cl_task_arrow =
20 {

21 .cpu_funcs = { task_cpu 1},

22 .cpu_funcs_name = { "task_cpu" },
23 .name = "task",

24 .nbuffers = 1,

25 .dyn_modes = task_modes,

26 .model = &task_perf_model

27}

Source: The Author.

StarPU employs different heuristics to allocate tasks to resources. Depending
on resource availability and the heuristic, the scheduler dynamically chooses one of the
task versions and places it to execute. Classical heuristics are LWS (local work steal-
ing), EAGER (centralized deque), DM (deque model) based on the HEFT (TOPCUOGLU;
HARIRI; WU, 2002) algorithm. More sophisticated schedulers consider additional in-
formation. The DMDA (deque model data aware) scheduler, for example, uses estimated
task completion time and data transfer time to take its decisions (AUGONNET et al.,
2010). Another example is the DMDAR (deque model data-aware ready) scheduler; that
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Figure 2.4: Example of main application code using StarPU

1 #include <stdio .h>

2 #include <starpu.h>

3

4 #define SIZE 100

5

6 int main(int argc, charsx argv){

7 starpu_init (NULL);

8

9 int data[SIZE]

10

11 starpu_data_handle_t h_data;

12 starpu_vector_data_register(&h_data,

13 STARPU_MAIN_RAM,
14 (uintptr_t)data,
15 SIZE, sizeof(int));
16

17 starpu_data_handle_t handles[1];

18

19 handles[0] = h_data;

20

21 starpu_insert_task (cl_task ,

22 STARPU_VALUE, &par,

23 sizeof (struct params),
24 STARPU_DATA_ARRAY,

25 handles ,

26 cl task.nbuffers ,

27 0);

28

29 starpu_task_wait_for_all ();

30 starpu_free (h_data);

31 starpu_shutdown ();

32 return O;

33 }

Source: The Author.

additionally considers data handles already present on the workers.

The DM schedulers use performance models of the tasks to predict how much time
will take on each resource to calculate the best option. StarPU uses prior executions to
creates these models, saving the mean execution time, the standard deviation, the imple-
mentation used, and the data sizes. Also, the transfers times of data between resources
are calculated at the initialization of StarPU, if not yet done, to estimate the bandwidth

transfer ratio for each possible combination of transfer links between resources.



30

The runtime is also responsible for transferring data between resources, for con-
trolling the presence and the coherence of the data handles. StarPU creates one memory
manager for each different type of memory. For example, there is one memory man-
ager for the RAM associated with one NUMA node (shared by all CPU cores on that
socket), one for each GPU, and so on. StarPU adopts the MSI protocol, with the states
Modified/Owned, Shared, and Invalid, to manage the state of each data han-
dle on the different memories. At a given moment, each memory block can assume one
of the three states on the memory managers (AUGONNET et al., 2011). When StarPU
schedules a task, it will internally create a memory request for one of the tasks memory
dependencies to the chosen resource. These requests are handled by the memory man-
agers that are responsible for allocating the block of data and issuing the data transfer.
When tasks are scheduled well in advance, StarPU prefetches data, so the transfers get
overlapped with computations of the ongoing tasks (SERGENT et al., 2016).

When no memory is available for allocating that data handle, StarPU presents
different behaviors depending on the request type (Idle Prefetch/Prefetch/Fetch). In case
the handle is a fetch for tasks that can be executed right away, StarPU will cope and
remove another data handle. Furthermore, recent versions of StarPU support the use of
out-of-core memory (disk i.e., HDD, SSD) when RAM occupation becomes too high. The
runtime employs a Least-Recently-Used (LRU) algorithm to determine which data blocks
should be transferred to disk to make room for new allocations on RAM. Interleaving such
data transfers with computation and respecting data dependencies on the critical path is
fundamental to better performance.

StarPU is able to use multiple computational nodes by using its MPI module (AU-
GONNET et al., 2012). The application developer, to use this module, follows similar
principles of the MPI, where the programmer must do the distribution of data. The main
difference from a regular StarPU application is that the data handles have an owner node.
Tasks that conduct write operations on handles must be performed on the nodes where
the data is owned, restricting the scheduler. Also, each node must unfold the whole DAG
to check which tasks it should perform by the ownership of memory blocks that the tasks
write. Read-only data handles (not modified) can be automatically transferred by the
StarPU-MPI runtime. In that way, this StarPU module presents a distributed scheduling
system. Moreover, in StarPU version 1.3, another approach is introduced to handle dis-
tributed executions called master-slave (StarPU, 2019). In this approach, a master node

will centralize the scheduling, and all other slaves nodes have their resources available for
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the master node control. In this master-slave approach, the data distribution is carried by
the runtime and not the application developer because the other nodes behave similarly to
intra-node resources.

StarPU offers feedback on the application performance in two styles, on-the-fly
statistics, and execution traces containing runtime events. Both feedback features need to
be specified during the compilation of StarPU because they are optional. The on-the-fly
statistics should not degrade the application performance and thus are limited to simple
metrics over a set of measurements, like total time running a task, total memory transfers,
and scheduling overhead. Differently, the execution traces can contain an accurate, de-
tailed view of the application and the runtime behavior. The trace format used by StarPU
is FXT (DANJEAN; NAMYST; WACRENIER, 2005), that aims to trace information dur-
ing the execution reducing the intrusion. The total overhead caused by the trace system
intrusion is low (THIBAULT, 2018). Furthermore, this work concentrates on how to pro-
cess the trace information while leaving the overhead analysis to StarPU developers. At
the end of the application execution, StarPU generates one FXT file per process. In the
case of StarPU-MPI usage, it will create one file per computational node. Furthermore,
the FXT file can be converted for other more commonly used trace formats in HPC, like
Paje (SCHNORR; STEIN; KERGOMMEAUX, 2013), to investigate the application be-
havior. Such traces contain various internal StarPU events that can be correlated using
many approaches to retrieve useful insights.

This work relies on the use of these FXT traces provided by the StarPU runtime,
and the use of phase 1 of the StarVZ workflow. The StarPU has an auxiliary tool to
convert the FXT traces to Paje, then, StarVZ phase 1 prune, clean and organize these
Paje files and save the R structures into an intermediate file. The proposed strategies then
rely on reading functions of the StarVZ to load these files and are built around these data

structures.
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3 TOOLS TO ANALYZE HPC APPLICATIONS

The analysis of HPC applications is an essential step for improving their perfor-
mance. Many aspects can interfere with the performance, like resources scheduling, plat-
form configuration, and related to this work, memory management. When using the task-
based programming model, the runtime will be responsible for many memory operations,
like transferring data between resources, deciding when a data fragment is no longer nec-
essary and guarantee coherency between copies. Execution traces can be used to check
if there are any problems in these steps. Moreover, tools to help application’s and run-
time’s developers are desirable. Consequently, visualization techniques are employed on
the analysis of these applications, and many tools were created to fulfill these needs.

The structure of the chapter is the follow. Section 3.1 describes traditional tools for
analyzing the performance of HPC applications. Moreover, Section 3.2 presents tools that
are designed for task-based applications. Although memory operations at an architectural
level can be a factor in a performance loss of task-based applications (PERICAS et al.,
2014), this work focus at the runtime level and its decisions on the memory management

of application data.

3.1 Traditional Tools

This section presents some traditional performance analysis tools that focus on
OpenMP, MPI, MPI/OpenMP, and MPI/CUDA programming paradigms. The tools usu-
ally focus on traditional events like communications and resources utilization, information
present on any parallel programming paradigm. Their objective is often to present the us-
age of the resources over time for the analysis of the application on a resource-oriented
view. The visualization techniques usually employed are space/time methods where ap-
plication’s states or events are correlated to a specific time represented as an axis, and the

resource that they are associated.

3.1.1 Paraver

Paraver was one of the first visualization tools for performance analysis that can

be used to different programming models and paradigms (PILLET et al., 1995). It is
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currently developed in the Barcelona Supercomputing Center. Paraver trace files can
be generated with the runtime measurement system Extrac (GELABERT; SANCHEZ,
2011), that supports MPI, OpenMP, pthreads, OmpSs and CUDA. Moreover, the Paraver
trace format is open source and can be included in other systems or translated from other
trace formats. Paraver focus on being flexible, where the user can create semantics to
work on which data should be visualized. Moreover, recent studies with Paraver aims to
include energy-aware metrics and visualizations into the tool (MANTOVANI; CALORE,
2018). Figure 3.1 presents an example of visualization of an application running over
twelve nodes each one with a single CPU using Paraver. Two panels are displayed. The
left panel presents the Instructions per Cycle (IPC) over time for each one of the threads.

The right panel presents the power usage by each one of the CPUs.

Figure 3.1: Example of visualization using Paraver
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Source: Mantovani e Calore (2018).

3.1.2 Paje

Paje is an open-source visualization tool that enables interactive visualization of
execution traces of HPC applications (KERGOMMEAUX; STEIN; BERNARD, 2000).
Very similar to Paraver, the tool has a trace file format (SCHNORR; STEIN; KERGOM-
MEAUX, 2013) to describe the hierarchical structure of the platform; including states,
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events, variables, and communications that each resource have. Paje was the first tool
capable to hierarchically describe the platform. Two examples of visualizations that Paje
provide are the Space/Time View and the Statistical View. Figure 3.2 presents an exam-
ple of visualization using Paje, presenting four nodes on the Y-axis and their states a long
time (X-axis). There are also communications displayed with arrows between nodes. Paje
was originally written in Objective-C that is no longer supported, and today it has been
replaced by the PajeNG (SCHNORR, 2012) implementation using C++. Although, Pa-
jeNG does not have a visualization module, it recommends the use of R+ggplot2 to create

plots. Both implementations, Paje and PajeNG, follow a modular philosophy.

Figure 3.2: Example of visualization using Paje
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Source: Kergommeaux, Stein e Bernard (2000).

The creation of a Paje trace file can be done manually, by transforming any cus-
tom event format into the Paje format or using other tools like Poti (SCHNORR, 2017).
Five types of objects can be declared in the Paje file format, Container, States, Events,
Variables, and Links (SCHNORR; STEIN; KERGOMMEAUX, 2013), described as fol-
lows. (I) The Container is an entity that can be associated with events. This entity can be
a hardware resource (Processor, Accelerator, Network), a part of an operational system

(Process, thread) or high-level software item (Worker, Memory Node). The containers are
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hierarchically organized. Therefore, each one can have multiple inner containers. All the
other objects are associated with a container. Moreover, for any hierarchy, there must be
a type hierarchy first so semantic checks can be carried out by Paje, identifying possible
problems on the structure. (II) The State is an action always associated with only one
container that has a start and an end time. (III) The Event is any activity that is affiliated
with a container and has only one time informing when it happened. (IV) Variable is an
object that represents the evolution of a variable associated with only one container. (V)
The Link is an object that represents information associated with two containers, that have

a start and an end time. It is primarily used to describe communications.

3.1.3 ViTE

Visual Trace Explorer (ViTE) is an open-source visualization tool for analyzing
execution’s traces in Pajé or OTF2 format (COULOMB et al., 2009). It aims to provide
a fast Gantt visualization of the resources states by directly using OpenGL elements and
drawing all data without any aggregation, that is, not grouping events to reduce the num-
ber of elements drawn. It provides a simple faithful representation of the traces without
computing extra information. The application is a Gantt chart that in the Y-axis it con-
structs the hierarchical resources and the X-axis is the time. When using StarPU traces,
it presents information about the execution of tasks on the resources and internal StarPU
actions, like scheduling or idle/sleeping resources. Moreover, communications are arrows
between memory nodes, the events appear as dots on a line of the container, and provided
metrics are on a line plot. The states can have a color.

Figure 3.3 presents the visualization of the Chameleon Cholesky with StarPU-
MPI running over two machines with 14 cores and one GPU each one. The workload
is a 9600 x 9600 matrix, with block size 960, DMDAS scheduler, and partition 2 x 2.
In the visualization, the red states are idle times, and there is communication between
nodes and intra-nodes between the memory ram and the GPU represented by the white
arrows. There is no information available of specific memory blocks. If multiple events
over the same entity occur, it is difficult to distinguish them, because there may be a lot of
events for a small space. Moreover, the order of how the elements are in the trace file, or
programming decisions of how ViTE renders the elements can change the visualization.

This situation can result in different possible interpretations of the different visualizations.
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Figure 3.3: Example of visualization using ViTE
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Source: The Author.

3.1.4 Vampir

Vampir is a closed-source visualization tool for parallel applications traces, avail-
able as a commercial product (KNUPFER et al., 2008). The Vampir visualization tool
can read trace in different formats, including the OTF2. Moreover, it has the Vampir-
Trace capture trace system that is available with a BDS license. The trace is generated
by instrumentation of the application and internal libraries and can be done automatically
for MPI, OpenMP, and MPI/OpenMP programming paradigms. There are four ways that
VampirTrace instruments the application, via the compiler, source-to-source, library, and
manually. Also, Vampir can use OTF2 traces generated by Score-P (KNUPFER et al.,
2012) trace system.

The visualization of traces can be done using the Vampir tool and opening trace
files or using the VampirServer system where it can access files on the computation nodes
to generate the visualizations on the analyst client side. This approach provides some
advantage like scalability, where the trace data is kept on the computational nodes and
only accessed when needed. The visualization of large trace files can be done remotely
and interactively. Figure 3.4 presents one of the timeline views, the visualization of the
global timeline of Vampir, where it uses a Gantt Chart to present information about the
states of the processes. The visualization includes MPI events and uses arrows to show

communications between the MPI processes. Figure 3.5 presents one of the Statistics
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Displays, the Message Statistics, that provides information about how much data was
sent and received between pairs of processes. This visualization can also be summarized
with a thumbnail to express larger traces visualization.

Figure 3.4: Example of visualization using the global timeline of Vampir
" Wampir - Timeline T HER

Source: Kniipfer et al. (2008).

Figure 3.5: Example of visualization using the Message Statistics of Vampir
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Source: Kniipfer et al. (2008).

Brendel et al. (2016) provides an extension for Vampir visualization focusing on

the communication among processes. Using the traditional Vampir visualizations, the
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communication is represented by lines among processes, and it can become very satu-
rated if a lot of communication is done in a short period. To overcome this issue, the
extension proposes the use of edge bundling that joins lines that have near destinations
to form groups, bundles. This strategy is interesting because it reduces lines that in great
quantity hides the image, and the notion of communication is lost. Figure 3.6a presents
an example of the original master timeline of Vampir while Figure 3.6b presents the same
visualization with the edge bundling method.
Figure 3.6: Master timeline of Vampir with and without edge bundling

(a) Original master timeline (b) Master timeline with edge bundling
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Source: Brendel et al. (2016).

3.1.5 Ravel

Ravel is another example of tool for visualizing parallel applications using ex-
ecution traces (ISAACS et al., 2014). Instead of using timestamps of the exactly events
provided by the trace, the tool uses a logical time, that is calculated considering the sender
and receiver communications of the events using the Lamport clock (LAMPORT, 1978).
In that way, if process A occurs before B, and A send data to B, the Lamport Clock will
attribute a sequence number in A lesser than the number attributed to B. This process is
used to improve the visualization of communication between processes and check rela-
tionships between them.

Figure 3.7 shows an example of view using Ravel. The upper panel presents the
logical timeline of the processes; it is possible to check the behavior of communication
among them and the progression of the steps. The structured behavior of communications
appears because of the use of the logical time. The second panel presents a selected
Cluster of the first visualization and a sequence of tasks and communications. The third
panel presents the traditional view using real time. It is possible to notice the difference

between the original time and the logical time presented in the upper plot. Moreover, the
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last panel presents metric plots, in this case, the lateness of all timesteps.

Figure 3.7: Example of visualization using Ravel
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3.2 Task-Based Tools

Task-based applications are structured following relationships between the tasks
and organized using a DAG, as previously detailed in Chapter 2. Performance analysis
can use the DAG structure because it provides extra information about the application, and
in most cases, it can impact the performance. Different from traditional parallel applica-
tions where the notion of computation steps cannot be very defined, and dependencies are
correlated with communications, task-based applications provide a defined structure. The
benefits of using these structures to analyze the performance lead to the creation of an-
other category of tools for performance analysis, specially design for these applications.
These tools can accommodate a series of programming methods, including OpenMP tasks

and task-based runtimes.

3.2.1 Grain Graphs

Grain Graphs (MUDDUKRISHNA et al., 2016) is a visualization tool designed
for OpenMP that focus on the visualization of computational chunks, called grains by the

authors, that come from tasks or parallel for-loops. The graph of grains is a DAG that
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depicts the grains and the fork and join events. Figure 3.8 shows a visualization made
with Grain Graphs. Each square task represent a grain, that the legend indicate the source
file and line position. Also, the size, color or shapes represent performance metrics in the
visualization. For example, the size of the rectangle is related to the execution time of
that chunk. Also, the fork and join points are represented by the circle states. The system

also derives some metrics related to the Graph.

Figure 3.8: Example of visualization using Grain Graphs
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3.2.2 DAGViz

DAGViz is a tool to visualize execution’s traces that focus on the task-based ap-
plication DAG (HUYNH et al., 2015). It currently supports the OpenMP, Cilk Plus, Intel
TBB, Qthreads, and MassiveThreads systems. DAGViz provides a model with three prim-

itives to create an application DAG that can be converted to a parallel version using one of
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the five supported systems. All applications start as a task, its main function and can use
one of the following primitives. (I) CreateTask, the current task creates a child task; (II)
WaitTasks, the current task wait for all tasks in the section; (III) MakeSection, create a
section from the macro until a WaitTasks. DAGViz extracts the application DAG using a
wrapper on the primitives and creates a visualization focusing on the DAG structures and
the relationships among tasks without a timeline. Figure 3.9 presents the visualization
provided by DAGViz. The squares are a hidden part of the DAG. The upper triangles rep-
resents tasks. The down triangles are wait points. Moreover, the red circle marks the end
of the application. The color of each component represents the resource that executed it,

where multi-color components represent that they were executed by multiple resources.

Figure 3.9: Example of visualization using DAGViz
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Source: Huynh et al. (2015).

3.2.3 Temanejo

Temanejo is a toolset that contains an online graphical debugger designed for
the task-based programming parading (KELLER et al., 2012). Runtimes that support
Temanejo include OmpSs (DURAN et al., 2011), StarPU (AUGONNET et al., 2011),
OpenMP (OpenMP, 2013), and Parsec (BOSILCA et al., 2012). It relies on the Ayudame
library, part of the toolset, to collect and process information while being the connection
with the task-based runtime. The main GUI permits to visualize the application DAG

during execution as tasks are being submitted to the runtime. Also, it provides infor-



43

mation about the current states of the tasks and other custom information provided by
the runtime. Moreover, it permits interaction with the runtime to give some actions like
initiating gdb for some task. Figure 3.10 provides an example of visualization using

Temanejo, where each component in the main window is a task, and the links represent

dependencies among them.

Figure 3.10: Example of visualization using Temanejo
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3.2.4 TaskInsight

TaskInsight is a tool to evaluate how data reuse among application tasks might af-
fect application performance (CEBALLOS et al., 2018). They quantify the variability of
task execution by measuring data-aware hardware counters of some tasks when another
task scheduling is being carried out. They focus on low-level architectural metrics that
may change based on the order of scheduling of tasks, and this difference would cause
performance loss. Some metrics that they analyze are the number of instructions, cycles,
cache misses, CPI (cycles-per-instruction), and data reuse by different tasks. Figure 3.11
provides a comparison of a Cholesky factorization execution using two difference sched-
ulers, naive on the left, smart on the right. A naive scheduler that uses BFS policy, sorting
the tasks by creation order, while the smart prioritizes tasks children first. The Figure

presents the difference in tasks’ L3 miss ratio and the impact on the performance (CPI)



44

when using the two schedulers. The horizontal axis is the L3 miss ratio of the tasks, and

the vertical one is the CPI. Each dot represents a different task.

Figure 3.11: Example of visualization using TaskInsight
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3.2.5 StarVZ

More recently, StarVZ (PINTO et al., 2018) has been proposed as an extensible
R-based framework for the performance analysis of task-based HPC applications. It is a
open source project and is available as an R package'. StarVZ includes several visualiza-
tion panels enriched with theoretical bounds and task-dependencies delays that correlate
observed performance with the DAG and is divided in two phases. In the first one, it reads
a Paje trace file and conduct a series of data cleaning and organization saving the results
in feather files. In the second phase, it reads the feather and a configuration file
and generates the desirable plots. Furthermore, the data generated after the first phase can
be manually worked in an R and reproducible environment to check some specific details
of the visualization.

Figure 3.12 presents the visualization of Chameleon Cholesky execution using
StarPU over two machines with two GPUs each one. All the panels have in the X-axis
the time in ms. The first panel, Cholesky iteration, presents the iteration of the tasks in
the Y-axis. The Application workers panel offers an extended Gantt chat of application
tasks over the resources in the Y-axis. Extra information is present like resource idleness

(the % in the left side), the boundaries (gray rectangles), and the identification of outlier

Thttps://github.com/schnort/starvz/
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Figure 3.12: Example of visualization using StarVZ
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tasks (states with strong coloring). The submitted tasks, ready tasks, GFlops, GPUs, and
MPI transfers are panels displaying some variables over time. The StarPU workers panel

displays internal StarPU states on the resources.

3.3 Discussion about Memory Features and Summary of Tools

All discussed tools concentrate on the overall application behavior, where the
computation or tasks being processing are the focus and are organized on the compu-
tational resources. Information about memory is usually expressed by metrics, like the
total amount of communication, and events related to data are displayed within other
ones (unrelated to memory) based on which resource they occur and not on which mem-
ory block. Even if some of these tools provide DAG-oriented support, they generally lack
a specific methodology to analyze the impact of different memory block operations on ap-
plication performance or to correlate the memory behavior of the application with other
information. For example, the application memory of linear algebra problems is usually

associated with a memory block coordinate, that a performance analysis tool can correlate
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with processing aspects and possible optimizations. If an analyst wants to check where a
particular memory block is at a specific point in the execution because maybe it is using
space on a critical resource, none of the presented tools can provide such information
easily. Moreover, all memory blocks are associated with application information. If the
runtime copies a memory block to the GPU, most of the tools usually show the communi-
cation between the resources, but not specific details on the memory block that is related
to the application (the block coordinate for example). An analyst can use this information
to correlate performance, memory behavior, and application design. The problem is that
the presented tools are unable to provide such actions or deeply investigate the memory
at the runtime level.

The proposed strategies of this work are designed to provide a more memory-
oriented analysis, based on the information from where the memory blocks are and which
tasks they are related to, forming dependencies. The approach provides a multi-level per-
formance analysis of data management operations on a heterogeneous multi-GPU and
multi-core platform. This work combines a high-level view of the application DAG with
the low-level runtime memory decisions, which guides the analyst in identifying and fix-
ing performance problems. Instead of only using architectural low-level memory met-
rics and comparing them with multiple executions, this work focus on the behavior un-
derstanding of representative executions. This work also designs visualization elements
specifically for the performance analysis of memory in a DAG-based runtime, enriching
the perception of task-based applications running on heterogeneous platforms. Table 3.1
shows a summary of the presented related works, comparing with this work, informing

the type of applications that the tool was designed for and one of the notable contributions.

Table 3.1: Presented tools to analyze HPC applications

Related Work/Tool Type Notable Contribution
Kergommeaux et al. (2000) Traditional  Generic tool

Pillet et al. (1995) Traditional ~ Generic tool

Coulomb et al. (2009) Traditional  Fast rendering

Kniipfer et al. (2008) Traditional = Scalable

Isaacs et al. (2014) Traditional  Logical time
Muddukrishna et al. (2016) Task-Based  Fork/Dag oriented
Huynh et al. (2015) Task-Based Fork/Dag oriented
Keller et al. (2012) Task-Based  Online DAG GDB
Ceballos et al. (2018) Task-Based  Tasks memory reuse analysis
Pinto et al. (2018) Task-Based  Enriched visualizations
This Work Task-Based Memory-oriented

Source: The Author.
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Moreover, the tools can be compared by how they present information related
to memory. More specificaly about communications and general memory information.
Table 3.2 presents such comparison using the following two attributes, communication

and memory information.

Table 3.2: Comparison of tools to analyze HPC applications

Related Work/Tool Communications = Memory Information

Kergommeaux et al. (2000) Programmable Programmable

Pillet et al. (1995) Programmable Programmable

Coulomb et al. (2009) Between resources  Metrics

Kniipfer et al. (2008) Between resources  Metrics

Isaacs et al. (2014) Between resources  No

Muddukrishna et al. (2016) No No

Huynh et al. (2015) No No

Keller et al. (2012) DAG-oriented GDB-oriented

Ceballos et al. (2018) No Metrics

Pinto et al. (2018) Metrics Metrics

This Work Memory blocks Individual memory blocks
Oriented events/locations

Source: The Author.

Communications: How the tool displays information about communications,
with the following list. (1) Between resources, focusing that a transfer happened between
resource A to B without specifying the memory. (ii) Memory blocks oriented, where the
information about which block was transferred is used as the main aspect. For example,
block A was on resource A on a specific moment and moved to another one. (iii) Metrics,
where all the information is summarized. (iv) Programmable, where the tool permits cus-
tomization of the events. (v) DAG-oriented, where the communications can be inferred by
the displayed DAG. (vi) No information about communication is presented or possible.

Memory Information: The aspects of memory information/behavior that the tool
displays, a list of values follows. (i) Programmable, where the tool permits customization
of the events. (ii) Metrics, where all the information is summarized. (iii) GDB-oriented,
where the application can be stopped and opened using GDB so that all information can
be checked out. (iv) Individual memory blocks events/locations, where the information is

primarily given for each memory block. (v) No information about memory is presented.
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4 CONTRIBUTION: STRATEGIES FOR ANALYZING TASK-BASED APPLICA-

TIONS MEMORY AT RUNTIME LEVEL

The management of an application’s memory is an essential factor to be analyzed,
as it can negatively impact on the overall application’s performance. This situation is espe-
cially true on task-based applications running on heterogeneous platforms, as the DAG is
structured using memory dependencies, and the multiple hybrid devices have distributed
memory. Tools that can provide insights about the memory management’s behavior and
performance are desirable to facilitate the analysis of both task-based applications and
runtimes. This chapter presents the main contribution of this work, the methodology and
strategies to investigate the memory manager behavior and individual memory blocks’
events/locations on the heterogeneous CPU/GPU resources.

The memory-aware visualization panels are designed to leverage the behavioral
about memory activities. The presence of memory blocks on each memory manager
is used to understand the general behavior of the application. The general objective of
these new panels is to analyze the behavior both in a broad vision of the execution, using
visualizations that summarize and give a footprint of the memory, as also to deeply verify
the details of where each memory blocks are and how they impact in the tasks’ execution.

StarPU’s data management module is responsible for all actions involving the ap-
plication’s memory. Although the trace system of StarPU already had some events about
the data management, detailed information about the memory blocks are still absent from
the original trace system. We add or modify in the StarPU’s trace system events to track
the data allocation on resources, the data transfers between nodes, and extra data blocks
identification. All this information now provide individual characteristics for each mem-
ory block.

The structure of this chapter follows. All the extensions of the StarPU trace sys-
tem are present on Section 4.1. Then, five strategies are proposed to improve memory
performance analysis. Section 4.2 presents a memory-aware space/time view to under-
stand the activities that the memory managers are conducting and the related memory
blocks. Section 4.3 depicts a strategy to have a fast visualization of the presence of a data
handle on the resources correlating to the application memory information. Section 4.4
presents a comprehensive temporal behavior of a memory block, presenting several events
that affected it during the application execution. Section 4.5 shows a visualization used

to track the situation of the memory at a specific point of the application execution. This
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visualization can be used with multiple timestamps to generate animations. Section 4.6

presents a heatmap to create a footprint of the presence of the handles on the resources.

4.1 Extra Trace Information added in StarPU to Track Memory Behavior

The capture of traces is a feature already present in the StarPU runtime, and this
work only extends it to add new information. Section 2.3 provides some explanation about
the StarPU and presents some information about its trace system. This Section describes
the modifications done on the trace module of StarPU. Essentially, to include all the nec-
essary information, this work conducts three major modifications. The first modification
is to include the events’ memory identification on all related events with extra information
to allow correlations between runtime activities and to understand the decisions behind it.
Second, a modification to trace the memory’s coherence update function to keep track of
the whereabouts of a memory block during the execution. Third, a modification to track
all memory requests (prefetch, fetch, allocation) carried out by the runtime.

Table 4.1 presents the new events added in the StarPU trace system. The first three
new events are added to track the modifications on the MSI protocol and added to the
StarPU function _starpu_update_data_state. These events are the base for all
strategies, as they are faithful records of the state of the data handles. With these events,
there is no need to infer the location of the handles based on the DAG or transfer events,
as the internal MSI protocol of the runtime system provides the correct location.

Moreover, a new event to track the internal memory management transfer request
was created and added to the function _starpu_create_data_request. The ob-
jective with this event is to show exactly when the runtime acknowledges that the data is
needed somewhere, the time of this event to the end of the transfer implies on how much
time the runtime is losing processing other memory operations. Also, this event can as-
sume a prefetch or a fetch mode, changing the priorities when the runtime process all the
requests. The last added event tracks an identification for the MPI communications to the
original data handles. This event is important because it makes it possible to correlate the
transfers between nodes to an individual memory block.

Table 4.2 shows the already existing FXT events that were modified to include
some extra information as follows. The first four events, Driver Copies, were modified to
include the thread identification that called the event. The thread identification is recurrent

information in other events, however, wasn’t included in the Driver copies. The other
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Table 4.1: New FXT events created to extend the StarPU trace system

New FXT Event Description Function where applied

DATA_STATE_INVALIDATE Track the invalidate state of _update_data_state
the MSI protocol

DATA_STATE_OWNER Track the owner state of the _update_data_state
MSI protocol

DATA_STATE_SHARED Track the shared state of the _update_data_state
MSI protocol

DATA REQUEST_CREATED Track the creation of transfers _ create_data_request
requests

MPI_DATA_SET_TAG Track the TAG for MPI com- _mpi_data_register_comm
munications

Source: The Author.

events, allocation, free, and write back were originally tracing when they occurred and not
informing which handle they were working on, so the main modification was to include
the handle identification in all these events. The identification is the pointer of the data
handle structure that other events also use to associate more information, like application
block coordinates. Also, at the start of the allocation events, one modification is to add
information if the event is a prefetch or a fetch. In the same way, at the end of these
allocation events, the modifications add the result of the action, if it was successfully or

not.

Table 4.2: Modified FXT events to extend the StarPU trace system

Modified FXT Event Modification

START_DRIVER_COPY Include StarPU thread that called it
END_DRIVER_COPY Include StarPU thread that called it

START DRIVER_COPY_ASYNC Include StarPU thread that called it
END_DRIVER_COPY_ ASYNC Include StarPU thread that called it

START_ALLOC Include Handle identification and type (prefetch/fetch)
END_ALLOC Include Handle identification and allocation result
START_ALLOC_REUSE Include Handle identification and type (prefetch/fetch)
END_ALLOC_REUSE Include Handle identification and allocation result
START_FREE Include Handle identification

END_FREE Include Handle identification

START_WRITEBACK Include Handle identification

END_WRITEBACK Include Handle identification

Source: The Author.

After the addition and modification of the FXT events, the converter of FXT
StarPU traces to Paje was modified to reflect the changes. Also, this program could
write direct Paje files or use Poti; both approaches were modified to incorporate the new

memory events. All these modifications, with the exception of the MPI one, were added
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to the StarPU main repository'.

4.2 Enriched Memory-Aware Space/Time View

Employing Gantt-charts to analyze parallel application behavior is very common,
as seen previously in Section 3.1. It is used to show the behavior of observed entities
(workers, threads, nodes) along time. This work adapts and enriches such kind of view
to inspect the memory manager behavior, as shown in the example of Figure 4.1. On the
Y-axis, the figure lists the different memory managers associated to different device mem-
ories: RAM, different accelerators (memory of GPU and OpenCL devices). This example
only has three memory managers: RAM, GPU1, and GPU2. The memory managers can
perform different actions like allocating and moving the data over a specific data handle.
Each handle can have an extra information provided by the application. In this case, the

block coordinates from the Cholesky factorization.

Figure 4.1: The behavior of three memory managers (RAM, GPU1, GPU2) showing allo-
cations states for different memory blocks
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Figure 4.1 presents the actions of each manager over time with colored rectangles
tagged with block coordinates (i.e., for GPU2: 1x3, 0x2, and so on) from the application
problem. The rectangles in this figure mainly represent different A11ocat ing states car-
ried out by those managers, except for the RAM manager that had no registered behavior in
the depicted 10ms interval. In the right of each manager line, the panel describes the per-
centage of time of the most recurring state, using the same color. For instance, the GPU2

manager spent 75.15% of the time of this specific time interval in the Al 1ocat ing state.

!Available on https://scm.gforge.inria.fr/anonscm/git/starpu/starpu.git, commits 784095d, e097aa8,
f068631, and 756e365.
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This plot provides an overview of the actions of the memory managers, also informing on

which block they are applying such actions.

4.3 Block Residency in Memory Nodes

A given block coordinate of an HPC application (i.e., Cholesky factorization) may
reside in multiple memory nodes over the execution. For example, there can be many
copies of a given block if workers executing on different devices perform read operations
only. This situation is due to the adoption of the MSI protocol by StarPU, where multiple
memory nodes have copies of the same memory block (see Section 2 for details). Figure
4.2 represents the location of a given memory block over the execution. Each of the
five facets of the Figure represents one memory block with the coordinates 0x0, 0x1,
0x2, 0x3, and 0x4 of the input matrix. For each block, the X-axis is the execution time,
discretized in time intervals of 20ms. This interval is sufficiently large for the visualization
and small enough to show the application behavior evolution. However, other values could
be selected for different situations based on the total duration of the application execution.
At each time interval, the Y-axis shows the percentage of time that this block is on each
memory node (color). For example, if a block is first owned by RAM for 18ms and then
for 2ms by GPU2, the bar will be 90% blue and 10% yellow. Since each block can be
shared and hence present on multiple memory nodes, the maximum residency percentage
on the Y-axis may exceed 100%. The maximum depends on how many memory nodes
there are on the platform. Moreover, if the memory resides for only a portion of the time

interval, the percentage would be less than 100%.

Figure 4.2: The location of memory blocks along time
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Source: The Author.

With this new visualization, it is possible to check a summarized evolution of data

movement and resource’s memory utilization. For example, Figure 4.2 details that the
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memory block with coordinates 0x0 stayed in RAM throughout the execution. StarPU
transferred it to both GPUs at time ~80ms and kept it in all resources until the end of the
execution. The other blocks, however, remained in RAM only until ~80ms of the execution
and were transferred to both GPUs. An analyst is capable to quickly spot anomalies by
correlating the block coordinates residence with the application phases. Very frequently
in linear algebra, a lower block coordinate is only used at the beginning of the execution,
so it should be absent after some time (which would be demonstrated as 0% occupancy

of that block after it is no longer needed).

4.4 Detailed Temporal Behavior of Memory Blocks

The previous panel (Section 4.3) shows where a given block is located (on which
memory node) throughout the execution, however, it does not provide details of when
transfers occurred and what events of StarPU are influencing the data handles. To track
these issues, a complete history of events for each data handle would be desirable for un-
derstanding specific situations. This is present in Figure 4.3, showing the memory block
location with the MSI state, and additionally depicts all the runtime and application tasks
activities that affect the block behavior. These activities include runtime transfers be-
tween resources, internal runtime memory manager events such as transfer and allocation
requests, and task-related information like last dependency and task on the same worker
times.

The strategy employs the traditional Gantt-chart as a basis for the visualization,
where the X-axis is the time in milliseconds, and the Y-axis represents the different mem-
ory managers. There are two types of states, depicted as colored rectangles. The ones
shown in the background with a more considerable height represent the residency of
the memory block on the managers: the red color expresses when a memory node is
an owner, while the blue color indicates the block is shared among different managers.
The inner rectangles represent the Cholesky tasks (dpotrf, dtrsm, dsyrk, dgemm,
and dplgsy) that are executing and using that memory block from that memory man-
ager. The strategy presents augmented representation with different events associated
with the memory blocks on the respective manager and time. The circles (Allocation
Request, Transfer Request) are either filled or unfilled, for fetch or prefetch oper-
ations, respectively. The arrows are used to represent a data transfer between two memory

nodes and have a different meaning (encoded with different colors: intra-node prefetch
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and fetch). Finally, two vertical lines indicate the correlation (last dependency and last
job on the same worker) with a specific application task that one in this example wants to

study.

Figure 4.3: The detailed view of all events related to two memory blocks (facets), showing
residence (larger height rectangles) and the use by application tasks (inner rectangles)
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In Figure 4.3 the task ID 90 is highlighted (which is a dsyrk task), and only
data handles used by task 90 are shown. The green vertical line represents the end of
the last dependency that releases task 90, and the yellow represents the end of the last
task executed on the same worker. Also, the Figure shows that block 0x2 was owned by
memory RAM since the execution of its generation task dp1gsy and was moved to GPU
1 to be used by a dt rsm task. During the execution of task 90, block 0x2 was moved to
GPU 2 on a shared state, where its information is duplicated on both GPUs. Before each

of the transfers, the events of transfer and allocation requests were present.

4.5 Snapshots to Track Allocation and Presence History

The application running on top of StarPU determines the data and the tasks that
will be used by the runtime. Instead of only considering the utilization of resources, it
would be useful to correlate the algorithm and the runtime decisions. This strategy creates
a view that takes into account the coordinates of the blocks in the original data, illustrating
which task is using each block, and their state on the managers (owned, private or shared).
Figure 4.4 depicts a snapshot of all memory blocks locations and the running tasks in a
specific time. The visualization has three facets, one for each of memory managers (RAM,

GPU1, GPU2). Each manager has a matrix with the block coordinates in the X and Y-
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axis. On this matrix, each colored square represents one memory block on the coordinates
provided by the application, the color of each block informs the actual MSI state of the
data handle on the moment of the snapshot. The colored inner squares (write mode access)
or circles (read mode access) inside those blocks represent application tasks. With this
visualization, it is easy to confirm how the memory data flow correlates with the position
of the blocks and understand the progression of the application memory also using the

information provided by the application (in this case the block coordinates).

Figure 4.4: A snapshot of memory block residence
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In Figure 4.4, for example, there are only two blocks on RAM and that both GPUs
share the first row. Moreover, there is a dpot rf task executing over block 1x1 in RAM
and a dgemm task on each GPU. GPU1 has write access on the dgemm task on block
1x2, and two read accesses on blocks 0Ox1 and 0x2. By stacking consecutive snapshots,
it is possible to create an animation that shows the residence of memory blocks along
time. This feature is particularly useful to understand the algorithm behavior and the data

operations.

4.6 Heatmap to verify Memory Block Residence along Time

Apart from the previous memory snapshot visualization, an analyst could be inter-
ested in an execution overview of the handles locality among the managers. A footprint
of the overall residency of the data handles could provide fast insights about the behavior.

The final panel consists of a traditional heat map visualization to provide a summary of
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the total presence of the tiles on each manager. Figure 4.5 depicts an example of this strat-
egy. There is one visualization facet for each memory manager; in the example, there is a
RAM, GPU 1, and GPU 2 memory managers. Each square represents a memory block po-
sitioned on its application matrix coordinate on the X and Y axis. Other structures could
be used depending on what extra information the application gives to the memory blocks.
The blue color tonality depicts the total amount of time that the block is on the manager
during the application execution. While the whiteish color represents low presence on the

memory manager, the more blueish color represents high presence.

Figure 4.5: Per-manager heatmaps for memory blocks presence
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In Figure 4.5, for example, it is possible to observe that all blocks of the diagonal
stood more time on RAM compared to other blocks. This situation happens because, for the
Cholesky, dpot rf and dsyrk tasks on the diagonal are typically executed on CPUs, to
let the GPUs process mostly SYRK and GEMM tasks. Differently, the other blocks were
present on both GPUs, as GEMM tasks were preferred executed on GPUs and use all
those blocks. Also, all blocks have at least a little presence on the memory ram, as all

blocks were generated first on there.
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5 EXPERIMENTAL RESULTS ON TASK-BASED APPLICATIONS

This chapter presents the experimental results with three different heterogeneous
task-based applications: a dense Cholesky, a CFD simulation, and a sparse QR factor-
ization solver. On each application, the strategies were used for analyzing the memory
at the runtime level. Section 5.1 presents the general methodology applied to the exper-
iments, with details about the hardware and software configuration. Section 5.2 inves-
tigates the performance of data transfer and out-of-core algorithms with the tile-based
dense Cholesky factorization as implemented in the Chameleon solver suite (AGULLO et
al., 2010). Section 5.3 explores how the strategies can aid the optimization of a partition-
ing method of a CFD application (NESI; SCHNORR; NAVAUX, 2019) and what factors
can change the decisions of the memory manager. Section 5.4 presents experiments with
the software package QR_MUMP S (BUTTARI, 2012), a sparse QR factorization software,
checking if the memory is causing any performance problems on the application. Section

5.5 ends the chapter discussing the strategies proposed and the known limitations.

5.1 Platform Environment

The experiments present in this document were a result of an exploration of prob-
lems in linear algebra and scientific simulation applications. The experiments submit the
applications to a series of tests, to stress the memory management system and collect exe-
cution traces. With the aid of the strategies for analyzing the memory, we have checked if
the memory management causes any problem and impact in the application performance.
When problems were found and confirmed, we entered in contact with the developers of
the software to inform the findings, discuss solutions, and to provide some insights about
memory behavior. Table 5.1 presents the machines used in the experiments, all from the
GPPD-HPC group. The Tupi machine has an Intel Xeon CPU E5-2620 with eight phys-
ical cores, 64 GB of DDR4 RAM, two GeForce GTX 1080Ti 11GB, and a 2TB SSD
(WDC WDS200T2BO0B) as the auxiliary memory for the out-of-core experiments. The
Draco machines contain two Intel E5-2640 with eight physical cores, 64GB of DDR3
RAM, one Tesla K20m and are interconnected with a 10Gb Ethernet switch.

The experiments follow the reproducible approach in controlled environments
where the data have all the system information alongside with the executions’ traces. The

companion of the experiments is available at <https://gitlab.com/Inesi/master-companion>.
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Table 5.1: Description of machines used in the experiments

Machine CPU Memory GPU Storage
Tupi Intel E5-2620 64GB 2x GTX 1080ti 2TB SSD
Dracos[2-3] 2x Intel E5-2640 64GB 1x K20m 2TB HD

Source: The Author.

5.2 Experimental Results with Dense Cholesky

This section presents the experiments conducted with the Cholesky code from the
Chameleon solver. Four experiments are conducted analyzing different memory behavior.
The machine used in the first four experiments is Tupi, and Dracos for the last one.
The StarPU and the Cholesky code from the Chameleon have been compiled with GCC
7.3.0. The Cholesky runs use a block size of 960x960. The experiment uses Debian 4.16
for the first scenario and Ubuntu 18.04 for the other cases.

Section 5.2.1 described the Chameleon application, with the Cholesky tasks and
DAG. Section 5.2.2 presents the identification of a runtime’s wrong perception of the total
used memory in GPU, causing StarPU to issue numerous allocation requests that impact
on performance. Moreover, a correction is proposed and a comparison of the original
version of StarPU and the correct one is presented. Section 5.2.3 discuss why the work-
ers were presenting idle times when using the out-of-core feature and possible internal
insights on how to solve it. Section 5.2.4 focus only on out-of-core experiments and how
the LWS and the DMDAR schedulers get affected by the matrix input generation with lim-
ited RAM memory. Section 5.2.5 presents how DMDAR and DMDAS behave in a CPU-only
setup with very limited RAM and the differences of scheduler causes in memory manage-

ment. Section 5.2.6 presents a proof-of-concept using a multi-node MPI execution.

5.2.1 The Chameleon Package

The Chameleon package (AGULLO et al., 2010) contains a series of dense linear
algebra solvers implemented using the sequential task-based paradigm. From the set of
available solvers, the experiments adopt the task-based solver that implements the dense
linear algebra Cholesky factorization on top of the StarPU runtime, because many HPC
applications used it as a computing phase. The Cholesky factorization algorithm runs over

a triangular matrix divided into blocks, using four different tasks: dpotrf (Cholesky
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Factorization), dt r sm (Triangular Matrix Equation Solver), dsyrk (Symmetric Rank-k
Update) and dgemm (Matrix Multiplication), as shown in Figure 5.0a. The task-based
Cholesky factorization divides the input matrix into tiles (blocks), making each task asso-
ciated with a block. The factorization essentially begins with tasks on lower coordinates
blocks and iteratively computes all matrix blocks for all coordinates. The Figure 5.0b

demonstrates the resulting DAG for a matrix divided into 25 blocks (N =5).

Figure 5.1: The tiled Cholesky code and the DAG for N = 5
(a) The Cholesky Algorithm

for (k = 0; k < N; k++) {

DPOTRF (RW, A[k][k]);

for (1 = k+1; i < N; i++4)
DTRSM(RW, A[i][k], R, Alk][k]);

for (i = k+1; i < N; i++) {
DSYRK(RW, A[i][i], R, A[i][k]);
for (j = k+1; J i; Jj++)

DGEMM (RW, A[i][J], R, A[i][k]

]
<
]

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Source: The Author.

The Chameleon framework generates the full matrix to conduct numerical checks.
Since, in this case, the solver is used independently of real application code without load-
ing a matrix, the Chameleon testing code includes an input generation task called plgsy

to create floating-point values for the matrix tiles.
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5.2.2 Erroneous control of total used memory of GPUs

Preliminary tests indicated that the dense Cholesky factorization of the Chameleon
solver had performance problems when using an input matrix larger than the GPU mem-
ory size. The StarVZ overview methods were applied and identified that GPUs are gener-
ally idle. This problem motivates further investigation of this issue using other views of
the proposed methodology. This section describes the identification of the problem and
the complete resolution. In the subsequent executions, the Cholesky uses 60 x 60 blocks.

With the previously mentioned configuration, five CPU workers, two GPU work-
ers, and the DMDA scheduler, this experiment generate a trace of a problematic execu-
tion. First, the StarVZ workflow is applied to check general performance issues in the
application. Figure 5.2 presents, from top to bottom, the StarVZ plots: (a) Application
Workers, where each state is a task, the left percentage in each resource are the total idle
time of the execution on that resource, and the right number is the total makespan; (b)
Memory Manager, the strategy described in Section 4.2, where each state is a memory
manager action and the left percentages the total time used on the most present state; (c¢)
StarPU Workers, where each state represent an action of StarPU on the resources; (d)
Ready Tasks, the total number of ready tasks; and (e) Used memory, the total amount of
used memory registered by StarPU. In (a) and (c) the Y-axes represent the workers (CPU
cores and GPU devices), in (b) the memory nodes (in this case, GPU1, GPU2), in (d) the
number of ready tasks, and in (e) the per-GPU memory utilization in MB. In all plots, the
X-axis is the time in milliseconds (ms). Each state has a different color associated with
its task or action. The red vertical dashed line has been manually added to emphasize the
moment where the total GPU used memory reaches a plateau with its maximum value.
The GPUs spend a lot of time idle (GPU1 with 33%, GPU2 with 32%), which is impairing
the overall application performance. Also, the GPU memory managers started to execute
many allocation actions.

The possible correlation between idle times and allocation states led to an investi-
gation of memory manager actions after the memory utilization reached its maximum. An
arbitrary time frame is selected since the behavior is similar after achieving the memory
utilization peak. Figure 5.3 provides a temporal zoom (/=50ms period) on the Memory
Manager panel, depicting multiple A11locating actions (red rectangles) for different
memory block coordinates of the input matrix. There are many allocating attempts of

the same memory blocks occurring many times. This repeated behavior is considered a



63

Figure 5.2: Multiple Performance Analysis plots for the Cholesky execution
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problem because a single allocation request should be enough. This analysis leads to an
investigation of the StarPU source code responsible for the allocation, which indicated
that the runtime keeps trying to allocate blocks indefinitely until it gets a successful allo-
cation. The GPU resources monitor confirmed that the GPUs are using all the memory.
One possible explanation is that the devices do not have enough memory, but this should
not be a problem, as StarPU could free multiple memory blocks, especially those that
would no longer be used by the Cholesky factorization.

Next step was to employ the Block Residency plot to understand the previously

described behavior. The selected blocks are in the initial iterations of the outermost loop
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Figure 5.3: Memory Manager states on a time frame of ~50ms
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of the tiled Cholesky algorithm, with lower coordinates. They are expected to be more
appropriate for being freed rapidly. Figure 5.4 shows that blocks 8x13, 9x13, 10x13,
and 11x13 become present in all memory nodes at ~50s. Shared copies of these blocks
remain in each memory manager until the end of execution (at ~140s). The presence of

these blocks in all memory nodes indicates that StarPU is deciding not to free them.

Figure 5.4: Per-node block residency of [8-11]x13 coordinates
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All these insights gave enough information to inspect decisions directly. GDB is
used to check StarPU’s functions that free unused memory blocks. StarPU all the time be-
lieved that it had free space on the GPUs. Also, a huge difference was detected when com-
paring the internal StarPU’s used memory values to the ones given by the GPU resources
monitor. This difference led to the discovery that the CUDA function cudaMalloc
could allocate more memory than the requested size, and the runtime was not considering
it. The function rounds the demanded memory to a device dependent page size, effec-
tively causing internal memory fragmentation. The GTX1080Ti has a fixed page size

of 2 MB; however, other GPUs can present different values. Since the used blocks are
960x960 (7200 KB each), every block allocation request in the GPU causes a loss of 992
KB (because it returns four pages to answer that request). That leads to loosing 1800
MB for the 60x60 tiles used in the experiments. StarPU was miss-calculating the GPU

memory utilization and kept calling the expensive cudaMalloc function even without
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GPU memory causing long periods processing the memory management system and the
idle times. We then proposed multiple fixes for the StarPU developers, and the chosen one
was to verify the memory of the GPU using the CUDA API before the call of the expen-
sive cudaMalloc function. Experiments were conducted with the original version of
StarPU of commit be5815e and the corrected one measuring the Cholesky performance
before and after the patch.

Figure 5.5 presents the performance comparison between two StarPU versions:
original (red color) and corrected with our patch (blue). For both versions, the experiment
employs the same application and runtime configuration with the DMDA scheduler. The
figure depicts the application performance in GFlops on the Y-axis as a function of the
input size, on the X-axis. The input size distribution has more points around and after the
memory limit (marked by a vertical dashed line, calculated based on rounding behavior,
number of blocks and the CUDA driver used memory) when the matrix size no longer en-
tirely fits on the GPU memory. The dots represent the mean of ten executions, and error
bars are drawn based on a 99% confidence interval. The original version demonstrated a
significant performance drop after the memory threshold, falling from the relatively con-
stant ~700 GFlops rate to poorer values. After the patch, the corrected version keeps the
performance stable at the ~700 GFlops rate. These results demonstrate the effectiveness
of the fix, maintaining the program’s scalability as the input size increases. The fix was

added on the master branch of StarPU on commit ca3afe9.

Figure 5.5: Application performance (GFlops) for the original and the fixed version
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5.2.3 Understanding the idle times on out-of-core use

This test case uses the out-of-core version of the dense Cholesky factorization of
Chameleon, using the developer branch of StarPU. The first experiment has the following
configuration: block size of 960x960, with 20x20 tiles, and the DMDAR scheduler. Using
StarPU environment variables, the RAM was artificially limited to 1.1 GB to stress the
out-of-core support. Figure 5.6 depicts the behavior of five CPU and two CUDA workers.
The initial phase of the execution presents idle times on all workers. The red highlight
task (the right-most selected rectangle in the figure), of identification 1667, is preceded
by a significant idle time. This task can aid in the understanding of this poor behavior
and why it started was delayed. The red line arriving at the chosen task indicates the two
last dependencies to have been satisfied to execute Task 1667. The task dependency that
enables task 1667 occur significant time before it, so this is not a task scheduler problem,
but maybe a memory one. At least =~500ms have passed between the execution of the last

dependency and the selected task.

Figure 5.6: Application workers using out-of-core, DMDAR scheduler, block size of
960x960 and 20x20 tiles
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Task 1667 uses the memory blocks 0x2, 0x9 and 2x9. The detailed history of
these memory blocks is employed to identify if the reason behind the idle times in the
initial phase of the execution is due to late data transfers. Figure 5.7 depicts the behavior
between 5100ms and 5800ms. Task 1667 is a dgemm operation marked as a green inner
rectangle in all facets (one per memory block). This task starts exactly at 5676ms, while
its last dependency finished at 5185ms: a vertical green line highlights this moment. The

last task that executed on the same worker (CPU3, not shown), ended at time 5486ms and
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is marked as a vertical yellow line.

Figure 5.7 shows that when the last dependency ends, there are prefetch transfer
requests created on blocks 0x9 and 2x9, and this request is satisfied on block 0x9 with a
transfer. However, Task 1667 only starts to be executed after the transfer of block 2x9,
meaning that it was that memory block that was holding its execution. Also, block 2x9
had a fetch transfer request at time 5486ms when the last job on the same worker ended.
The time between this last job and the start of Task 1667 is considered idle time on the
worker. Besides, the allocation request of block 2x9 on RAM was made almost 100ms after
the transfer request. Reducing this gap could lead to less idle time in the worker. Finally,
there are two allocation requests on RAM of block 2x9 because an allocation request can
fail possibly due to the lack memory (RAM, GPU). In this case, StarPU proceeds to free
memory blocks by moving a less critical block to the disk. StarPU developers are aware
of these issues, and the next release might include a fix to reduce waiting time in an OOC

experiment.

Figure 5.7: Identifying delays in data transfer to satisfy the memory blocks necessary to
run Task 1667
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5.2.4 Performance impact of matrix generation order using OOC

When comparing the LWS and the DMDAR schedulers, under the same experimen-
tal conditions of the previous subsection, the LWS scheduler was consistently faster than
DMDAR, as it had a makespan of 10s while the DMDAR had 12s. These results were surpris-
ing since DMDAR presented better or same results in other situations. Moreover, DMDAR
is supposed to reduce data transfers by prefer running tasks on the location of their input
data.

The memory-aware animation snapshots (as detailed in Section 4.5) are employed
for each scheduler to understand the good performance of LWS. Figure 5.8 shows the
memory snapshots when the first dpot r £ task gets executed (on the 0x0 block coordinate
— top left) for both LWS (bottom row) and DMDAR (top) schedulers. They are storing the
initial input matrix differently. In the LWS, the input matrix is generated from top to
bottom, so the required blocks are readily available in RAM. In the DMDAR, the matrix
generation is inverted, forcing more data transfers from the disk to RAM at the beginning

of the execution, causing performance problems.

Figure 5.8: Snapshots of block presence when application starts
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Figure 5.9 uses the proposed heatmaps to demonstrate how, in general, the wrong
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matrix generation strategy may be harmful to overall performance. The heatmaps show
that the upper side of the matrix on the LWS is generally much more present on RAM than
the lower side. At the beginning of the execution, the critical low-coordinates blocks are
already on RAM leading to fewer transfers from disk during the whole run. Therefore, the
unnecessary data transfers of DMDAR justify its poor behavior when compared to the LWS

scheduler.

Figure 5.9: Heatmaps showing block presence throughout the run
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5.2.5 Comparison of DMDAR and DMDAS with CPU-only restricted RAM

This test case conduct CPU-only experiments, similar to the Sections 5.2.3 and
5.2.4 cases, but with a very restrictive RAM size of 512MB. The goal is to stress the data-
awareness of the DMDAS and DMDAR schedulers. An unexpected behavior is that DMDAS
18 60% [50s vs 30s] slower than DMDAR. One of the reasons is the different number of
transfers done by the schedulers. To take an execution as example, while DMDAR did
~1981 RAM-to-disk transfers, DMDAS did ~3097, a increase of ~50%.

Figure 5.10 shows nine representative block residence snapshots (the horizon-
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tal facets) for both schedulers (top and bottom rows) out of two animations with many
frames. There are differences in how each block residence evolves for each scheduler.
DMDAR prioritizes executing tasks whose data are already available in memory (i.e.,
ready). Thus, by linear algebra dependencies, this scheduler tends to work on a lin-
ear/columnar way. Therefore, the divisions of the row and column on the visualizations
are apparent. For example, the matrix is processed column-wise (the manually-added ar-
rows highlight the behavior) in snapshots one to five. So on each column/row is preferable
to be put on RAM.

On the other hand, DMDAS sorts tasks by priorities, considering the topological
distance to the last task. This sorting forces a diagonal advance on the matrix, contra-
dicting row/column locality, a behavior that can be especially seen on snapshots three to
eight (arrows highlight the behavior). This diagonal exploration suggests that although
task priorities are useful to guide the scheduler towards the critical path, they should not
necessarily be enforced too rigorously, to let the scheduler re-use ready data blocks for
the better locality. Although no problems are found in this case, the visualization pro-
vided the understanding of how these two schedulers affected the behavior of the memory
during the execution.

Figure 5.10: Nine block residence snapshots (horizontal facets) for the DMDAR (top row)

and the DMDAS (bottom row) schedulers
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5.2.6 Experimenting with MPI executions

The Chameleon solver can use the StarPU-MPI module to explore the execution
on multiple nodes. This section applies the detailed behavior of memory blocks strategy
in this more complex context to compare general differences in the memory management

when another layer (StarPU-MPI) is added. The execution uses a small input matrix with
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10x10 blocks and two dracos[2-3], each machine with one GPU. Figure 5.11 presents the
behavior of the first four memory blocks. The first difference is that now the memory
managers have a prefix number to it (1_RAM, 2_RAM) that indicates the MPI rank. An-
other difference is the addition of the MPT communication eventas a green arrow. In
these machines, the communication between nodes can only occur from one memory ram
to another. This situation is indeed observed on memory blocks 0x1, 0x2 and 0x3 where
one data from 1_GPU is transferred to 2_GPU but has to be moved to 1_RAM first as a
intra-node communication, then a MPI communication to 2_RAM and then a intra node
communication again. Moreover, the MSI protocol is applied independently per-node.
Each memory block will have a different handle on each node, enabling a block coordi-
nate to be owned by more than one node. The StarPU-MPI guarantee the coherence of
the blocks by unrolling the DAG on each node and computing when another node needs

the data and issuing the transfer.

Figure 5.11: Detailed behaviour of memory blocks 0x0, 0x1, 0x2, and 0x3 of a MPI
Cholesky execution
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5.3 Experimental Results with a CFD Simulation

This section presents the experiments conducted on a CFD simulation code (NESI;
SCHNORR; NAVAUX, 2019). The proposed strategies of this thesis were employed on
one data partitioning scheme for the CFD to detect problems and improve the perfor-
mance. Also, to show how the strategies could be used during any developing process.
The specific problem found occurs when the memory system of the runtime is stressed,
and the memory space required by the simulation is larger than supported on GPUs. The
machine used in these experiments is Tupi with Ubuntu 18.04. The StarPU and the CFD
code have been compiled with GCC 7.3.0 using the default configurations.

Section 5.3.1 presents the CFD application, more specifically the data partition
investigated by the strategies. Section 5.3.2 presents the identification of an problem on
the first version of the data partitioning using the strategies. Section 5.3.3 provides a

comparison of some optimizations proposed to correct these problems.

5.3.1 Application description

The application is a task-based and heterogeneous (CPU and GPU) parallel solver
of a CFD problem that simulates the 2D flow of an incompressible Newtonian fluid with
constant viscosity. The model used to compute the simulation is the Finite Difference
Method (FDM), where the simulation space/time is discretized to a regular grid with a
horizontal and vertical number of cells given by Nz and Ny. Each cell assumes one
value for each variable at one time-step. Iterative methods are executed to compute the
fluid’s variables over a finite number of time steps where the computation of a new cell
time state depends only on its neighbors’ variables of the last computed time step. In this
2D simulation, each cell has the same horizontal and vertical size.

A naive implementation would split these 2D cell in blocks and would apply the
computation steps in parallel over theses blocks. An alternative strategy of domain de-
composition is to increase the computation granularity of the tasks by grouping different
model methods in the same application task. This method considers the time as a new
dimension on the partitioning. Aggregating tasks (and numerical methods) would prune
the DAG structure, reducing any runtime overhead caused by a large number of tasks to
be scheduled. The application use a similar version described in (ALHUBAIL; WANG;
WILLIAMS, 2016) (identified as swept rule) to decompose the simulation, converting
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it to the task-based programming paradigm. The resulting design contains four types of
tasks: the Arrow, the horizontal Fill, the vertical Fill, and the center Fill tasks. The re-
sultant task-based DAG for a 3x3 blocks decomposition is presented in Figure 5.12; each
color represent a different task, and the coordinates inside the Arrow tasks represent the
block position used for that task. On the first iteration, all the Arrow tasks are ready and
can be done on any order. After the necessary Arrow tasks, the horizontal (red) and verti-
cal (blue) fills can be executed, and are independent among them, meaning that they can
also be done in parallel. In this partition, the simulation time is used as a new computation
dimension. Instead of each task only performing its computation on a block at just one
time, the tasks advances and compute all cells that it has, in this case the Arrow task. Af-
ter the Arrow tasks, fill tasks to complete the remaining wholes are applied. Figure 5.13a
presents the arrow tasks applied each one a block of a 2x2 block decomposition. Figure
5.13b presents the other fill steps and how the space is completed between four Arrow

tasks.

Figure 5.12: The application DAG of the arrow implementation with a 3x3 blocks and
the four types of tasks (colors)
| Arrow [ | Horizontal Fill [ | Vertical Fill Center Fill
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Source: The Author.
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Figure 5.13: Data partitioning of the tested CFD application
(a) Four Arrow tasks to compute each one a block of a 2x2  (b) Two horizontal fill tasks (blue regions)
block decomposition. Each block contains 6x6 cells in the and two vertical fill tasks (red regions) com-
base plane and three sub-operations pute the gaps among the four pyramids

Source: The Author.

5.3.2 Performance problem identification

Figure 5.14 depicts the original non-optimized version of the Arrow implementa-
tion. The non-optimized version contains a high idleness rate for all computing resources
(the white areas in the Application Workers panel), ranging from 53-68% in CPUs, and
around 54% in GPUs. While innate data dependencies might explain this idleness, other
analyses indicate that memory utilization and data transfers between host and GPU de-
vices are the origins of such idle times.

Figure 5.15 indicates the behavior of one base block (2D initial values of the block)
data handle (of coordinate 0x0) over time using the proposed strategy of Section 4.4.
Each line on the Y-axis represents a different memory node present on this experiment
(GPU2, GPUL, and RAM). The specific time frame highlighted by the red rectangle A
depicts an interesting behavior. After the Arrow task reaches completion to the base
block handle, and computed the arrow on another handle, the base handle was kept by
StarPU on GPU memory even if the next task to use the handle would access with a write
mode, overwriting its content. This StarPU behavior causes extra memory usage on the
GPUs. Also, the time between the Arrow task and the Center Fill task is too long, and the
data generated by the Arrow task is bigger than the data it reads, using more memory to
save temporary data until the execution of the Center Fill task.

Two approaches are investigated to correct these issues. First, StarPU allows
hints about the memory manager: acall to the starpu_data_invalidate_submit

function informs the runtime that the data handle passed as a parameter is obsolete. This
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Figure 5.15: Temporal activities regarding the memory block 0x0 in the Arrow imple-
mentation without optimizations
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small modification in the code enables memory releases earlier, allowing more prefetches

and consequently less idleness. Second, when the application generates many Arrow
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tasks, the allocated data is more prominent than the initial one, because of the multiple
z levels. Only the completion of Center Fill tasks releases all this data for other uses.
For this reason, one solution would be to prioritize the horizontal and vertical fill over the

arrow task, and the center tasks over all others.

5.3.3 Performance analysis comparison overview

Figure 5.16 presents the average execution times of four cases: the original non-
optimized arrow implementation (red color in the illustration), the manual memory inval-
idation operations (blue), the adoption of task-priority for Horizontal, Vertical and Center
Fill tasks (green), and the combination of the two optimizations (violet). Experimental
configuration used is: input size of 30K, 100 blocks (10x10), and the DMDAR sched-
uler. Also, the experiments consider measurement variability with 30 replications for
each configuration on the Tupi machine. The results indicate that task priorities improve
a lot the performance and also can be combined with explicit memory invalidation. Both

optimizations results on gains of 38%.

Figure 5.16: Execution times for the four versions of the Arrow implementation: without
optimizations (red), optimization by explicit memory invalidation (blue), optimization
with task priorities (green), and both optimizations (violet)
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StarVZ visualization panels are used to understand the behavior of each version.
Four of these plots, from representative executions, presents each one of the four versions:
the original non-optimized Arrow version (Figure 5.14), optimization by explicit memory

invalidation (Figure 5.17), optimization with task priorities in the Vertical, Horizontal, and



77

Center Fill tasks (Figure 5.18), and the version with both optimizations (Figure 5.19). A
careful analysis of the observed behavior of these different cases indicates that all versions
prefer to schedule the Arrow tasks (violet color) on GPUs and almost all the other tasks

on CPUs.

Figure 5.17: Behavior of the arrow strategy with memory invalidation
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The non-optimized version (Figure 5.14) demonstrates too much idleness in all
CPU and GPU resources. The lack of memory available on GPUs is a possible cause of
such idleness. Moreover, the memory use plot reports maximum memory usage very ear-
lier in the execution. Consequently, prefetches are infrequent, and StarPU only transfers
data when a task starts its execution. The optimization with memory invalidation (Figure
5.17) demonstrates a small execution time reduction compared against the non-optimized

version, but still with high idle times (idleness of 51-54% on CPUs, about 49% on GPUs).
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Figure 5.18: Behavior of the arrow strategy with priorities
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The memory usage is never at its maximum. However, it still suffers from many Arrow
tasks generated data, since StarPU adopts the submission order as an implicit priority
when there are no task priorities. With task priorities (Figure 5.18), there is a significant
execution time reduction compared with previous versions. The behavior of ready tasks
(see the Ready panel) have a peak following a drop, and the iteration plot shows that some
block coordinates reach the last iteration very fast (some states on the third iteration). This
behavior is usually a sign of good exploration of parallelism. The combination of both
optimizations (Figure 5.19) demonstrates a lack of significant difference in the execution
time but presents some changes in the detailed behavior. First one, the Iteration panel
shows smaller iterations overlap, so no coordinates advance faster than others. Also, the

number of ready tasks do not suffer too much fluctuation. Finally, the used memory takes
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Figure 5.19: Behavior of the arrow strategy with both optimizations
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more time to reach its peak and rarely is at its limits.

The optimizations interfere directly in the residence of the data handles in the
different memory nodes (GPU2, GPU1, and RAM). Figure 5.20 presents the evolution of
the base block data handle with coordinate 0x0 in the optimized versions. Figure 5.15
shows the same for the non-optimized version. The main difference is the time that a
data handle remains on one of the GPU memory nodes. In the non-optimized version, the
handle resides much more time when compared to the optimized versions. Even if the
next task that would use the handle access it with write permissions, StarPU continues to
keep it on the GPUs memory node after the Arrow task. When the memory invalidation
optimization is applied, the data handle is deleted from all memory nodes, causing an free

extra space for prefetching operations, which improves even more the performance. The
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rectangle B of Figure 5.20 shows that the data is now available before the Arrow task,
and it disappears right after the task completion. When the priority version is applied
(see rectangle C), the Center Fill task happens sooner, and because the runtime prefers to
execute it in CPUs rather than GPUs, the data handle becomes invalidated on GPUs. The
rectangle C highlights another scenario with a similar problem of the original version.
After the completion of the Arrow task, the data remains in the memory node. Also, the
transfers that appear in this case are fetches and not prefetches. Finally, the rectangle
D highlights the scenario with both optimizations. This case demonstrates that data is
now present before the Arrow task, and released immediately after. Moreover, while the

transfers on the non-optimized version are fetches, now they are only prefetches.

Figure 5.20: Memory block 0x0 behaviour with three cases, invalidate optimization,
priority optimization, and both optimizations
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In this stage, the analysis suggests that the tasks executing on CPUs are the de-
pendency of Arrow tasks scheduled on GPU, causing the idleness. The application may
have global improvements if the code of the four types of tasks is further optimized. It
is important to notice that GPU kernels are simple ones, without the adoption of shared
memory optimizations, for instance. Moreover, the Arrow strategy does more integer cal-
culations than the other strategies. These additional operations are necessary to cope with
the more complex coordinate system. A comparison is hard to obtain because all these

computations are included in the task code, being hard to isolate.
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5.4 Experimental Results with Sparse QR Factorization

This section presents the experiments conducted with the sparse QR factorization
available in the QR_Mumps application (BUTTARI, 2012). The machine used in this
experiments is Tupi with Ubuntu 18.04. The StarPU and QR_Mumps have been com-
piled with GCC 7.3.0. Moreover, in this executions two workers per GPU were used.
The matrix used for experiments is the TF18 sparse matrix available at SuiteSparse Ma-
trix Collection!. Section 5.4.1 describes the QR_Mumps application, and Section 5.4.2

presents some earlier analysis of the QR_Mumps application.

5.4.1 QR Mumps Application

The QR_Mumps is a software package design to solve sparse linear systems on
multicore computers. Its implementation is based on the QR factorization of an input ma-
trix and can be executed on heterogeneous platforms thanks to its version using StarPU.
The package can be used to solve least-squares problems and to compute the minimum-
norm solution of sparse, underdetermined problems. The QR_Mumps uses the task-based
paradigm to achieve parallelism, where its tasks can be, for example, BLAS or LAPACK
routines. The development of QR_Mumps over StarPU was conducted in (AGULLO et
al., 2013) and evaluates the original implementation of QR_Mumps with the StarPU ver-
sion. Figure 5.4.1 presents an example of the QR_Mumps elimination tree with three

nodes (left) and the resultant DAG representation (right).

5.4.2 Checking if memory is a problem

The experiments of this section have the objective to check the overall perfor-
mance of the QR_Mumps application using a large matrix as input. Figure 5.22 presents
the applications workers, submitted and ready tasks for the execution with the TF18 ma-
trix. The first noted problem is the idle times in the middle of the execution while other
tasks are waiting for a do_subtree task. This problem is caused by how QR_Mumps
process the sparse matrix, trying to reduce computation on fragments of the matrix that

contains zeros. The ordering and the elimination tree algorithms used are responsible for

I'SuiteSparse Matrix Collection Website: <https://sparse.tamu.edu/>
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Figure 5.21: The QR_Mumps elimination tree example with three nodes (left) and its
DAG representation (right)

BEEEE

Source: Agullo et al. (2013).

this idle time. Although this idle time is the cause of a huge loss in performance, it is
not caused by memory problems. However, other parts of the execution have idle times,
and their study could lead to performance improvements. For example, consider the idle
times after the first task on the GPUs, highlighted in Figure 5.22 by a dotted red rectangle.
As it can be observed, the amount of idle times is very high until the GPU becomes fully
utilized.

The idle times of the tasks on the GPUs could be caused by problems related to
transfers from the RAM to the device memory. The analysis of a task that has idle time just
before it would help in the understanding of this problem. Figure 5.23 shows the selection
of task 600, a lapack_tpmgrt task executed on CUDAO_1, and its last dependencies
highlighted in the red path. The last task before it, task 598, was a 1apack_tpqgrt task
executed on CPU3. The time between both tasks indicates that just after the end of task
598, StarPU transfers the necessary data of task 600 from RAM to GPU, and execute the
task. However, the last dependency of task 598, another 1apack_tpqgrt task, executed
long before it. The memory strategies analysis are used to check the memory flow and
understand if task 598 could be executed earlier.

The detailed temporal behavior of memory block can be used to investigate the be-
havior of the data used by both tasks 598 and 600. Figure 5.24 presents the behavior of the
memory blocks used by task 598. Different from the strategies proposed, there is a green

vertical line manually added to show when the StarPU worker pop task 598. According
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Figure 5.22: Multiple Performance Analysis plots for the QR_Mumps execution
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Figure 5.23: Fragment of the application workers during some GPU idle times
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to the visualization, from the three memory blocks used, the first one 5570be011cb0
and the last one 5570be22e700 did not need to be transferred to the scheduled worker,
they were already on RAM. However, the second block, 5570be0135a0, was on GPU
2 and had to be transferred to the RAM. When the worker needs the task, it pops the task
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from the scheduler queue, and the transfers occur immediately, without causing much idle
time. From this perspective, the idle times are mostly caused by problems on how the task

598 was scheduled, and not by any problem on how the StarPU manages the memory.

Figure 5.24: Detailed behavior of the memory blocks used by task 598
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Although the memory management was unrelated to the idle times, another sit-
uation appears in the analysis. Similar to the last visualization, Figure 5.25 shows the
blocks used by task 600. The interesting aspect here is the behavior of the second block,
5570be01b250. The StarPU is transferring the block from one GPU to the other, caus-
ing a ping-pong situation. In this case, it is not causing any performance problem, as
StarPU is executing the transfer immediately, and the transfer time of the block is low.
However, in some other critical situations, this ping-pong behavior could be a disadvan-
tage for the performance, as the transfers are being repeated periodically. Moving the
tasks to the same GPUs would cause fewer transfers. However, maybe this is an unavoid-
able situation because if StarPU schedules these tasks on the same GPUs, others would

need to be moved to a different device, causing the same behavior.

5.5 Discussion and Known Limitations

This section details known limitations of the proposed strategies and the current

implementation. Four main points are described as follows and are based on the applica-
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Figure 5.25: Detailed behavior of the memory blocks used by task 600
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tions and the runtime used.

* The methodology is general but specifically tailored for the StarPU runtime and
its applications. The views depend on traces enriched with events about memory
operations that are only available, as far as we know, in the StarPU runtime. Other
runtimes (such as for OmpSs (DURAN et al., 2011) and OpenMP) must be instru-
mented to make them work with StarVZ. The methodology is easier to extend for
runtimes that divide the memory into blocks and use the MSI memory coherence
protocol.

* Although this work apply the strategies for three specific applications, the views
would work for any application that uses the StarPU runtime. For example, results
of Section 5.2.2 benefit all StarPU applications with a similar memory block-based
layout and problems larger than the GPU memory. The out-of-core case studies
bring positive results that are exclusive to the Cholesky application. However, this
understanding can lead to potential improvements to other applications that use the
out-of-core capabilities of StarPU. Moreover, the visualizations are specific for data
in this 2D format. Specific strategies, like the snapshot and heatmaps, would require

adaptations for the application data structure, for example, if they are cubical, 4D
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visualizations and so on.

This work presents most of the experiments on single node executions because even
if the number of nodes is increased, the identified problems would still be there, just
with more information to be processed. Problems surface in multi-GPU memory
interactions, reinforcing the obstacles in memory management for heterogeneous
platforms. The case using the StarPU-MPI module is a proof-of-concept that the
strategies would work on multi node platforms as well.

The views require knowledge about both the runtime and the application to make
conclusions. However, the methodology is intuitive and easy to use for researchers
with some HPC experience. The strategies in the hands of advanced analysts or
HPC researchers could provide a broad understanding of the final application per-

formance and how to improve it, as show in many examples.
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6 CONCLUSION

The task-based programming paradigm is a great candidate for programming het-
erogeneous parallel applications because a runtime assists in some responsibilities. How-
ever, as other HPC approaches, the performance analysis of these applications is chal-
lenging. Many aspects can impact on the performance. One studied in this work is the
memory management of the application at the runtime level. The runtime is responsible
for taking many decisions regarding the memory system, including guaranteeing the co-
herence of the memory, transferring it to the needed devices and removing unused mem-
ory. However, the runtime is not alone responsible for the management. For the runtime
conduct better decisions, the application programmer has to structure the DAG of tasks,
and the application correctly. Tools that help on the performance analysis of the memory
of task-based applications are then desirable.

This work presents a visual performance analysis methodology based on known
visualization techniques (space/time, heatmaps, etc.) that are modified in a novel way
to support the identification of data transfer and management inefficiencies both in the
StarPU task-based runtime and application code. The proposed strategies, to investigate
the performance of the memory of task-based application at runtime level, are applied on
three different applications, the Chameleon suite to solve dense algebra problems, a CFD
application, and the QR_Mumps solver for sparse QR factorization.

The strategies are applied on the computation of a tile-based dense Cholesky fac-
torization of the Chameleon application using heterogeneous platforms with GPUs, out-
of-core algorithms that move extra memory to DISK, and distributed StarPU-MPI execu-
tions on multiple nodes. Five scenarios are investigated and are described as follows. (i)
The wrong perception by StarPU of GPU memory utilization, issuing too many memory
allocations requests that ultimately hurt performance. The problem was corrected and lead
to 66% of performance gains. (ii) Identifying significant idle times in applications with
the out-of-core feature and providing rich details on the memory operations that caused it.
(ii1) The identification of unexpected performance issues caused by the input generation
on StarPU schedulers under limited memory and out-of-core feature use. (iv) The ex-
planation of the performance differences between two StarPU schedulers on a CPU-only
execution with severe memory constraints and out-of-core. (v) A proof-of-concept on the
use of the strategies employing a multi-node execution with StarPU-MPI.

The strategies are also applied on a CFD simulation code, during the analysis of
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one of the data partition schemes. The experiments present application execution prob-
lems with high memory use on GPUs, resulting in idle times. The proposed strategies
found a prejudicial behavior of having unnecessary memory blocks on limited memory
GPUs. The discovery of this problem leads to the creation of two optimizations inform-
ing task priorities and when data is not anymore needed. Essentially, the optimizations
expose how the runtime can take better decisions on memory management when the ap-
plication developer gives extra hints in the DAG. Additional information, in this case, are
task priorities and informing when some data blocks are not needed anymore. These opti-
mizations lead to an increase of 38% on application performance. Moreover, the strategies
in the case of the QR_Mumps application perceived a ping-pong behavior of the memory
caused by the task scheduling decisions and not related to memory problems.

The case studies indicate that the proposed strategies are fundamental to identify
the reasons behind performance problems related to memory operations. These panels
lead to understanding how to fix memory operations of the StarPU runtime and how to
individual optimize the applications.

Future work includes the analysis of data transfers on other distributed StarPU-
MPI executions. Moreover, another possibility is the study of the strategies on other
applications, especially ones that did not have the data organized in a 2D format. Also,
export the methodology and the tool to other task-based runtimes, including the OpenMP

tasks.

6.1 Publications

The main publication of this work, containing the explanation of strategies and the

first four Chameleon Cholesky cases is the following.

* NESI, L. et al. Visual performance analysis of memory behavior in a task-based
runtime on hybrid platforms. In: IEEE. 2019 19th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID). Larnaka, Cyprus,
2019. (Qualis A1)

Other publications made during the masters are:

* NESI, L. L.; SCHNORR, L. M.; NAVAUX, P. O. A. Design, Implementation and
Performance Analysis of a CFD Task-Based Application for Heterogeneous CPU /
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GPU Resources. In: SENGER, H. et al. (Ed.). High Performance Computing for
Computational Science — VECPAR 2018. Cham: Springer International Publish-
ing, 2019. p. 31-44. ISBN 978-3-030-15996-2. (Qualis B2)(Best Paper)

NESI, L. L.; SERPA, M. S.; SCHNORR, L. M. Impacto dos parametros do starpu
no desempenho do qr_mumps. ERAD/RS, Escola Regional de Alto Desempen-
ho/Regiao Sul, 2019.

NESI, L. et al. Task-Based Parallel Strategies for CFD Application in Heteroge-
neous CPU/GPU Resources. Concurrency and Computation: Practice and Ex-

perience, Wiley, 2019. (Submitted)
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APENDICE A — RESUMO EXPANDIDO EM PORTUGUES

This appendix presents a extended summary of the work in the portuguese lan-
guage. The structure of this appendix is the same of the english document.
Neste apéndice € apresentado um resumo expandido do trabalho na lingua portu-

guesa. A estrutura deste apéndice € a mesma do documento na lingua inglesa.

A.1 Introducio

Um desafio encontrado na drea de Computacdo de Alto Desempenho (HPC) € a
complexidade na programacgao de aplicacdes paralelas. O paradigma de programacao ba-
seado em tarefas apresenta inimeros beneficios, e muitos pesquisadores acreditam que
esta € atualmente a melhor abordagem para programar méaquinas modernas (Dongarra
et al., 2017). A abordagem baseada em tarefas transfere para um runtime algumas ati-
vidades que normalmente sdo executadas por programadores incluindo o gerenciamento
de memoria. Aplicacdes baseadas em tarefas usam um grafo aciclico dirigido de tarefas
como a estrutura principal para o escalonamento em recursos, considerando dependéncias
de tarefas e transferéncias de dados. Entre muitas alternativas, como Cilk (BLUMOFE
et al., 1996), Xkaapi (GAUTIER et al., 2013) e OmpSs (DURAN et al., 2011); StarPU
(AUGONNET et al., 2011) é um exemplo de runtime e € utilizado neste trabalho.

A andlise de desempenho de aplicacdes paralelas baseadas em tarefas é complexa
devido a sua natureza estocdstica em relacdo a duragdo das tarefas e seu escalonamento
dindmico. O StarPU também pode coletar rastros de execug¢do que descrevem o com-
portamento da aplicac@o para fornecer dados para anélise de desempenho. A abordagem
baseada em visualizacdo pode facilitar a andlise de desempenho com elementos gréficos.

Fatores como a redugdo de transferéncias de dados entre recursos heterogéneos,
melhor uso de cache e estratégias mais inteligentes de alocacdo de blocos desempenham
um papel essencial para o desempenho. Escolher corretamente quais blocos de dados
ficar em determinada memoria de um recurso € um desafio. A complexidade de avaliar
a memoria no nivel de runtime motiva a construcdo de técnicas de andlise de desempe-
nho baseadas em visualizacdo adaptadas explicitamente para transferéncias de dados e
otimizagdes gerais de memoria em aplicacOes baseadas em tarefas.

A criacao de métodos especificos, considerando as particularidades do paradigma,

pode beneficiar os programadores de aplicacdes e runtimes do paradigma baseado em ta-
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refas. Recentemente, algumas ferramentas foram propostas neste topico (HUYNH et al.,

2015; MUDDUKRISHNA et al., 2016; PINTO et al., 2018) , entretanto, essas ferramen-

tas ndo apresentam técnicas relacionadas ao comportamento da memdria (transferéncias,

presenca, alocacio) do runtime e aplicacdo. Funcionalidades como, verificar o acesso

a memoria, fluxo e gerenciamento no nivel de runtime facilitariam a programacao; ao

mesmo tempo, permitir a descoberta de problemas que afetam o desempenho.

A.1.1 Contribuicao

Este trabalho se concentra na andlise do desempenho do gerenciamento de me-

moria do StarPU usando a visualizagdo do rastreamento das execucdes. Esta estratégia

permite uma correlacao geral entre todos os fatores que podem afetar o desempenho geral:

o algoritmo da aplicacao, as decisdes do runtime e a utilizacdo da memoria. As principais

contribui¢des sdo as seguintes.

* A extensdo da ferramenta StarVZ adicionando novos elementos visuais especiali-

zados na andlise de memoria. Ajudando a detectar problemas de desempenho no
StarPU e no cddigo das aplicagoes.

A adicao no StarPU de informacdes extras de rastreio sobre as operacdes do geren-
ciamento de memoria, como novas solicitacdes de memoria, atributos adicionais
em acoes e blocos de memoria e os estados da coeréncia dos dados.

Experimentos em trés aplicagdes diferentes com o uso das estratégias propostas. A
primeira aplicacdo € o solucionador de algebra linear densa Chameleon (AGULLO
et al., 2010) onde as estratégias sdo usadas em quatro cendrios. No primeiro caso, a
metodologia identificou um problema dentro do software StarPU. Uma correcao é
proposta, e uma comparacao do desempenho antes e depois do patch de correcado é
conduzida, resultando em ~66% de melhora no desempenho. A segunda aplicacao
¢ uma simulacdo CFD (NESI; SCHNORR; NAVAUX, 2019), onde as estratégias
sdo aplicadas especificamente em um método para decompor o subdominio. A
metodologia encontrou algumas otimizagdes possiveis gragas ao comportamento
observado, levando a uma melhora no desempenho de 38%. A terceira aplicacdo é
0 QR_Mumps, um solucionador de fatoragao QR esparsa (BUTTARI, 2012). As es-
tratégias encontraram um comportamento relacionado as transferéncias de memoria

que pode ser desvantajoso.
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A combinacgio destas contribui¢des fornecem estratégias de andlise de desempe-
nho em varios niveis das operacdes do gerenciamento de memoria em uma plataforma
multi-GPU e multi-core heterogénea. As estratégias oferecem uma visualizacdo de alto
nivel com as informacdes do DAG da aplicagdo com as decisdes de memoria de tempo do
runtime, que podem orientar os programadores de aplicacdes e runtimes para identificar
problemas de desempenho. Em vez de usar apenas métricas de baixo nivel e compara-
las com vadrias execugdes, este trabalho se concentra na compreensdo do comportamento
de execucdes representativas. Este trabalho projeta visualizacdes especificamente para a
andlise de desempenho de memoria, enriquecendo a percep¢ao de aplicagdes baseados

em tarefas executados em plataformas heterogéneas.

A.2 Programacao Baseada em Tarefas para Plataformas Heterogéneas e o0 Runtime

StarPU

A adocdo de diversos aceleradores em HPC estd aumentando. As estatisticas da
lista dos supercomputadores do TOP500 ! mostram um aumento de 7,2% entre 2017 e
2018. Nessas situacdes em que o desempenho da aplicacdo em relagdo a nés heterogé-
neos € diferente, € necessario implantar métodos de programagao robustos para usar esses
recursos de maneira eficiente. A constru¢do de aplicacdes para estas plataformas hetero-
géneas é complexa porque muitas APIs ou paradigmas de programacdo estdo disponiveis
para lidar com componentes especificos de um supercomputador. Na situacdo atual, com
diferentes APIs, linguagens de programacado e paradigmas, os programadores ficam so-
brecarregados pelo nimero de responsabilidades que eles t€m, incluindo a comunicagao
de dados entre a memoria de diferentes recursos, garantir o comportamento correto da
aplicagdo e, ainda assim, alcancar o desempenho méaximo que o sistema permite. Um
modelo de programacgdo que pode reduzir a complexidade, controlando os recursos, esca-
lonando tarefas e gerenciando os dados € a programacdo baseado em tarefas.

A programacdo baseada em tarefas, ou programacdo de fluxo de dados, é um con-
ceito que usa uma estratégia mais declarativa para transferir algumas responsabilidades
para um runtime, facilitando a codificacdo da aplicacdo e reduzindo o controle do progra-
mador sobre a execu¢do (BRIAT et al., 1997; Dongarra et al., 2017). A estrutura desses
programas consiste em uma colecdo de tarefas que t€ém um propdsito especifico sobre

uma colecdo de dados. Portanto, a interac@o entre tarefas ocorre principalmente pelo uso

Thttps://www.top500.org/
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dos mesmos fragmentos de dados em diferentes tarefas, causando dependéncias implici-
tas entre elas para garantir a coeréncia computacional. Normalmente, um Grafo Aciclico
Dirigido (DAG) representa uma aplicacao baseado em tarefas, em que os nés sdo tarefas e
as ligagdes sdo dependéncias. Tais dependéncias sdo herdadas pela reutilizagdo de dados
ou inseridas explicitamente pelo programador. A execug¢do € guiada por um runtime, por
exemplo, PARSEC (BOSILCA et al., 2012), XKaapi (GAUTIER et al., 2013) e StarPU
(AUGONNET et al., 2011), usado neste trabalho.

O StarPU € um runtime baseado em tarefas para fins gerais que fornece uma in-
terface para aplicacdes submeterem tarefas para recursos. O StarPU usa o modelo STF
(Sequential Task Flow) (AGULLO et al., 2016), em que a aplicagdo submete sequenci-
almente as tarefas durante a execugdo e o runtime as escalona dinamicamente. Os dados
usados por uma tarefa precisam ser declarados em um bloco de memoria e a reutilizagao
dos blocos permite que dependéncias sejam criadas entre as tarefas e estruturem o DAG.
Portanto, no StarPU, as dependéncias entre as tarefas sdo explicitas. Além disso, as tare-
fas do StarPU podem ter varias implementagdes, uma para cada tipo de dispositivo (como
CPUs x86, GPUs CUDA e dispositivos OpenCL). O runtime pode utilizar diferentes heu-
risticas para escalonar tarefas para recursos. Dependendo da disponibilidade de recursos
e da heuristica, o runtime escolhe dinamicamente uma das versoes da tarefa e a executa.

O runtime também € responsdvel pela transferéncia de dados entre recursos, para
controlar a presenca e a coeréncia das blocos de memoria. O StarPU cria um gerenciador
de memoria para cada tipo diferente de memoria e adota o protocolo MSI, com os estados
Modificado/Dono,Compartilhadoe Invalido, para gerenciar o estado de cada
identificador de memoria nas diferentes memorias. Em um dado momento, cada bloco de
memoria pode assumir um dos trés estados nos gerenciadores de meméria (AUGONNET
et al.,, 2011). Quando ndo hd memoria disponivel para alocar esse bloco de memoria,
o StarPU apresenta diferentes comportamentos, dependendo do tipo de solicitagdo (Idle
Prefetch | Prefetch | Fetch, incluindo o uso de memoria fora do nicleo (out-of-core). O
StarPU € capaz de usar varios nés computacionais usando seu médulo MPI (AUGONNET
et al.,, 2012). E oferece feedback sobre o desempenho da aplicacdo em duas formas,
estatisticas instantaneas e rastros de execucdo contendo eventos do runtime. No final da
execucdo da aplicacdo, quando o rastreamento esté ativo, o StarPU gera um arquivo FXT
por processo. Além disso, o arquivo FXT pode ser convertido para outros formatos de
rastros mais usados em HPC, como o Paje (SCHNORR; STEIN; KERGOMMEAUX,

2013) e ser usado para investigar o comportamento da aplicagdo.
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A.3 Ferramentas para Analisar Aplicacoes de HPC

A andlise de aplicagdes em HPC € uma etapa essencial para melhorar o desem-
penho. Muitos aspectos podem interferir no desempenho das aplicacdes, como escalona-
mento de recursos, configuragdo da plataforma, e para este trabalho, o gerenciamento de
memoria. Os rastros de execugdo podem ser usados para verificar se hd algum problema
nessas situagdes e ferramentas para ajudar desenvolvedores de aplicacOes e runtimes sao
desejaveis. Consequentemente, técnicas de visualiza¢do sdo empregadas na anélise des-
sas aplicacdes e muitas ferramentas foram criadas para preencher essas necessidades.
Existem duas categorias de ferramentas, as tradicionais e para as aplicacdes baseadas em
tarefas.

As ferramentas tradicionais de andlise de desempenho enfocam os paradigmas de
programacdao OpenMP, MPI, MPI/OpenMP e MPI/CUDA. As ferramentas geralmente se
concentram em eventos tradicionais como comunicagdo e utilizacio de recursos, infor-
macodes gerais de qualquer paradigma. Seu objetivo é muitas vezes apresentar o uso dos
recursos ao longo do tempo para a detec¢do de problemas, como por exemplo, recursos
ociosos. As técnicas de visualizacdo geralmente empregadas sdo métodos de espago/-
tempo, onde estados ou eventos sdo correlacionados a um tempo especifico representado
em um eixo.

Os analistas de desempenho podem usar a estrutura do DAG de aplicacdes base-
adas em tarefas, pois fornecem informacdes extras sobre a aplicagdo e, na maioria dos
casos, podem afetar o desempenho. Diferente de aplica¢des paralelas tradicionais, em
que a no¢ao de etapas de computacio nao pode ser muito definida e as dependéncias sio
correlacionadas com as comunicagdes, as aplicacdes baseadas em tarefas fornecem uma
estrutura definida. Os beneficios de usar informagdes do DAG para analisar o desem-
penho levaram a criagdo de outra categoria de ferramentas para andlise de desempenho,
especialmente projetadas para aplicacdes baseados em tarefas.

Todas as ferramentas discutidas se concentram no comportamento geral da apli-
cacdo, em que a computagdo ou as tarefas que estdo sendo processadas sido o foco e sdo
organizadas nos recursos computacionais. As informacdes sobre memoria geralmente
sdo expressas por métricas, como a quantidade total de comunicacdo, e os eventos rela-
cionados a dados sdo exibidos dentro de outros (ndo relacionados a memoria) com base
em qual recurso eles ocorrem e ndo em qual bloco de memoéria. Mesmo que algumas

dessas ferramentas fornecam suporte orientado pelo DAG, elas geralmente ndo possuem
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uma metodologia especifica para analisar o impacto de diferentes operacdes de blocos no
desempenho da aplicac@o ou para correlacionar o comportamento da memoria com ou-
tras informagdes. Por exemplo, a memoria da aplicacdo de problemas de dlgebra linear
€ geralmente associada a uma coordenada de um bloco de memdria, que uma ferramenta
de andlise de desempenho pode correlacionar com aspectos de processamento e possiveis
otimizacdes. Por exemplo, queremos verificar onde um determinado bloco de memoria
estd em um ponto especifico na execucdo, porque talvez ele esteja usando espago em um
recurso critico e nenhuma outra etapa de computagdo o utilizard novamente. Nenhuma
das ferramentas apresentadas pode fornecer essas informagdes. Além disso, todos os blo-
cos de memdria estdo associados as informacgdes da aplicagdo. Se o runtime copiar um
bloco de memoria para a GPU, a maioria das ferramentas geralmente mostrard a comu-
nicacdo entre os recursos, mas ndo da detalhes especificos sobre o bloco de memoria
relacionado (a coordenada do bloco na matriz, por exemplo). Um analista pode usar essas
informacodes para correlacionar o desempenho, o comportamento da memoria e o projeto
da aplicacdao. O problema é que as ferramentas apresentadas sdo incapazes de fornecer
tais acOes ou investigar profundamente a memoria no nivel de runtime.

As estratégias deste trabalho sdo projetadas para fornecer uma andlise mais ori-
entada a memoria, baseada nas informagdes de onde estdo os blocos de memoéria e com
quais tarefas eles estdo relacionadas, formando dependéncias. A abordagem fornece uma
andlise de desempenho em vdrios niveis das operacdes do gerenciamento de dados em
uma plataforma multi-GPU e multi-core heterogénea. Este trabalho combina uma visao
de alto nivel do DAG da aplicacdo com as decisdes baixo nivel de memoria do runtime,
que orienta o analista na identificagdo e corre¢do de problemas de desempenho. Em vez
de usar apenas métricas arquiteturais de baixo nivel de memoéria e compara-las com vérias
execucoes, esse trabalho se concentra na compreensao do comportamento de execucdes
representativas. Este trabalho também projeta elementos de visualizacdo especificamente
para a andlise de desempenho de memoria de um runtime, enriquecendo a percepcao de

aplicativos baseados em tarefas executados em plataformas heterogéneas.

A.4 Contribuicao: Estratégias para Analisar a Memoria de Aplicacoes Baseadas em

Tarefas no nivel de Runtime

Este capitulo apresenta a principal contribui¢do deste trabalho, a metodologia e

as estratégias para investigar o comportamento do gerenciador de memodria e os even-



103

tos/locais dos blocos de memdria individuais nos recursos heterogéneos de CPU/GPU.
O médulo de gerenciamento de dados do StarPU € responsavel por todas as acdes que
envolvem a memoria da aplicagdo.

A captura de rastros de execuc@o € um recurso ja presente no runtime StarPU, e
este trabalho somente o estende para adicionar novas informacdes. Essencialmente, para
incluir todas as informacdes necessdrias, este trabalho conduz trés grandes modificagdes.
A primeira modificacdo € incluir a identificacdo de memoria em todos os eventos relacio-
nados com informagdes extras para permitir correlacdes entre as atividades do runtime e
para entender as decisdes por trds dele. Segundo, uma modifica¢ao para rastrear a func¢ao
de atualizacdo da coeréncia da memoria para acompanhar o paradeiro de um bloco de me-
moria durante a execu¢do. Terceiro, uma modificagdo para rastrear todas as solicitagdes
de memoria (pré-busca, busca, alocacdo, sincronizagdo) realizadas pelo runtime. Todas
essas modificacdes, com exce¢do de uma MPI, foram adicionadas ao repositdrio principal

do StarPU?.

A.4.1 Visualizacio Tempo/Espaco dos Gerenciadores de Meméria

Empregar gréficos de Gantt para analisar o comportamento de aplicacdes paralelas
é comum. E usado para mostrar o comportamento de entidades observadas (trabalhadores,
threads, nds) ao longo do tempo. Este trabalho adapta e enriquece esse tipo de visuali-
zacdo para inspecionar o comportamento do gerenciador de memdria, como mostrado no
exemplo da Figura A.1. No eixo Y, a figura lista os diferentes gerenciadores de memoria
associados a diferentes memorias de dispositivos: RAM, diferentes aceleradores (memoria
de dispositivos GPU e OpenCL). Este exemplo tem apenas trés gerenciadores de memo-
ria: RAM, GPU1 e GPU2. Os gerenciadores de memoria podem executar acoes diferentes,
como alocar e mover dados. Cada bloco de memodria pode ter uma informacao extra
fornecida pela aplicacdo. Neste caso, as coordenadas de bloco da fatoracao de Cholesky.

A Figura A.1 apresenta as agdes de cada gerenciador ao longo do tempo com
retangulos coloridos marcados com as coordenadas dos blocos (por exemplo, GPU2: 1x3,
0x2 e assim por diante). Os retangulos nesta figura representam diferentes alocagdes
sendo executados pelos gerenciadores, exceto pelo gerenciador da memoria RAM. que ndo

teve nenhum comportamento registrado no intervalo de 10ms representado. A direita de

Disponivel em https://scm.gforge.inria.fr/anonscm/git/starpu/starpu.git, commits 784095d, e097aa8,
f068631, e 756e365.
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Figura A.1: Comportamento dos trés gerenciadores de memoria mostrando os estados de
alocacao para diferentes blocos de memoria
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Fonte: O Autor.

cada gerenciador, o painel descreve a porcentagem de tempo do estado mais recorrente
usando a mesma cor. Por exemplo, o gerenciador GPU2 gastou 75,15% do tempo desse
intervalo de tempo especifico no estado de alocagdo. Este grafico fornece uma visao geral
das acOes dos gerenciadores de memoria, informando também em qual bloco eles estdo

aplicando tais acoes.

A.4.2 Residéncia dos Blocos de Memoria nos Recursos

Um determinado bloco de uma aplicacdo HPC (fatoracdo de Cholesky por exem-
plo) pode residir em varios nés de memoria durante a execucao. Por exemplo, pode haver
muitas copias de um determinado bloco se os trabalhadores que executam em dispositi-
vos diferentes realizarem somente operagdes de leitura. Esta situacio é devida a adogdo
do protocolo MSI pelo StarPU, onde vérios nds de memoria tém copias do mesmo bloco
de memoria. A Figura A.2 representa a localizacdo de determinados blocos de memoria
durante a execugdo. Cada uma das cinco faces da figura representa um bloco de memoria
com as coordenadas 0x0, Ox1, 0x2, 0x3 e Ox4 da matriz de entrada. Para cada bloco, o
eixo X € o tempo de execucdo, discretizado em intervalos de tempo de 20ms. Este inter-
valo é suficientemente grande para a visualizacio e pequeno o suficiente para mostrar a
evolucdo do comportamento da aplicacdo. No entanto, outros valores podem ser selecio-
nados para diferentes situacdes com base na duracio total da execucao da aplicacdo. Em
cada intervalo de tempo, o eixo Y mostra a porcentagem de tempo que esse bloco estd em
cada n6 de memoria (cor). Por exemplo, se um bloco pertencer primeiro a RAM por 18

ms e depois a 2 ms pela GPU2, a barra serd 90% azul e 10% amarela. Como cada bloco
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pode ser compartilhado e, portanto, presente em varios ndés de memoria, a porcentagem
maxima de residéncia no eixo Y pode exceder 100%. O maximo depende de quantos nds
de memoria existem na plataforma. Além disso, se a memoria residir apenas em uma

parte do intervalo de tempo, a porcentagem seria menor que 100%.

Figura A.2: O local dos blocos de memoria ao longo do tempo
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Fonte: O Autor.

Com essa nova visualizagdo, € possivel verificar uma evolucdo resumida do movi-
mento de dados e da utilizagdo da memoria do recurso. Por exemplo, a Figura A.2 detalha
que o bloco de memoéria com coordenadas 0x0 permaneceu na RAM durante tota a execu-
cdo. O StarPU transferiu o bloco para ambas as GPUs no tempo ~80ms e manteve-a em
todos os recursos até o final da execug¢do. Os outros blocos, no entanto, permaneceram
na RAM somente até ~80ms da execuc¢ao e foram transferidos para ambas as GPUs. Um
analista é capaz de identificar rapidamente anomalias correlacionando a residéncia das
coordenadas do bloco com as fases da aplicagdo. Muito frequentemente na dlgebra linear,
uma coordenada de bloco inferior € usada somente no inicio da execu¢do, o que seria

demonstrado como 0% de ocupacgdo daquele bloco depois que ele ndo € mais necessério.

A.4.3 Comportamento Temporal Detalhado dos Blocos de Memoéria

A estratégia anterior mostra onde um determinado bloco esta localizado (em qual
n6 de memoria) durante a execucdo, no entanto, ele ndo fornece detalhes de quando as
transferéncias ocorreram e quais eventos do StarPU estdo influenciando os gerenciadores
de memoria. Para solucionar esses problemas, um histérico completo de eventos para
cada identificador de memoria seria desejdvel para o entendimento de situacdes especi-
ficas. Isso estd presente na Figura A.3, mostrando o local do bloco de memoéria com o
estado MSI e, além disso, descreve todas as atividades de tarefas do tempo de execugdo e

aplicacao que afetam o comportamento do bloco. Essas atividades incluem transferéncias
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do runtime entre recursos, eventos internos do gerenciador de memdria do runtime, como
solicitagdes de transferéncia e alocacdo, e informagdes relacionadas a tarefa, como ultima
dependéncia e o tempo da tltima tarefa no mesmo trabalhador.

A estratégia emprega o tradicional grifico de Gantt como base para a visualiza-
cdo, onde o eixo X é o tempo em milissegundos e o eixo Y representa os diferentes
gerenciadores de memoria. Existem dois tipos de estados, representados por retangulos
coloridos. Os mostrados mais ao fundo com uma altura maior representam a residéncia
do bloco de memoria nos gerenciadores: a cor vermelha expressa quando um né de me-
moria € proprietario do bloco, enquanto a cor azul indica que o bloco é compartilhado
entre diferentes gerenciadores. Os retangulos internos representam as tarefas Cholesky
(dpotrf, dtrsm, dsyrk, dgemm e dplgsy) que estdo executando e utilizando esse
bloco de memdria desse gerenciador de memdria. A estratégia apresenta uma represen-
tacdo aumentada com diferentes eventos associados aos blocos de memdria no respectivo
gerenciador e tempo. Os circulos (Requisicdo de alocacdo, Requisicdo de
transferéncia) estdo preenchidos ou ndo preenchidos, para operacdes de fetch ou
prefetch, respectivamente. As setas sdo usadas para representar uma transferéncia de da-
dos entre dois n6s de memdria e possuem um significado diferente (codificado com cores
diferentes: fetch ou prefetch intra-n6). Finalmente, duas linhas verticais indicam a cor-
relacdo (dltima dependéncia e a ultima tarefa no mesmo trabalhador) com uma tarefa

selecionada pelo analista.

Figura A.3: Eventos detalhados relacionados a dois blocos de memdria (faces), mostrando
a residéncia (estados maiores) e seu uso pelas tarefas (estados menores)
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Fonte: O Autor.

Na Figura A.3, a tarefa 90 é destacada (que € uma tarefa dsyrk), e apenas blocos

de memoria usados pela tarefa 90 sdo mostrados. A linha vertical verde representa o final
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da dltima dependéncia que libera a tarefa 90 e o amarelo representa o final da dltima
tarefa executada no mesmo trabalhador. Além disso, a figura mostra que o bloco 0x2 era
de propriedade da memodria RAM desde a execucao de sua tarefa de geracdo dplgsy
e foi movido para GPU 1 para ser usado por uma tarefa dt rsm. Durante a execucio da
tarefa 90, ela foi movida para GPU 2 em um estado compartilhado, onde suas informagdes
sdo duplicadas em ambas as GPUs. Antes de cada uma das transferéncias, os eventos de

requisi¢@o de transferéncia e alocacdo foram executados.

A.4.4 Momentos Especificos e Instantaneos para Avaliar o Bloco de Memoria

Uma aplicagdo sobre o StarPU determina os dados e as tarefas que serdo usadas
pelo runtime. Em vez de considerar apenas a utilizacdo de recursos, seria util correlaci-
onar o algoritmo e as decisOes de runtime. Essa estratégia cria uma visdo que leva em
consideragdo as coordenadas dos blocos nos dados originais, ilustrando qual tarefa estad
usando cada bloco e seu estado nos gerenciadores (dono, privados ou compartilhados). A
Figura A.4 mostra um momento instantaneo de todos os locais dos blocos de memoria e
as tarefas em execucdo em um momento especifico. A visualiza¢do tem trés faces, uma
para cada gerenciador de memoria (RAM, GPU1, GPU2). Cada gerenciador possui uma
matriz com as coordenadas do bloco nos eixos X e Y. Nesta matriz, cada quadrado colo-
rido representa um bloco de memdria nas coordenadas fornecidas pela aplicacdo, a cor de
cada bloco informa o estado MSI real do identificador de memoria no momento utilizado.
Os quadrados internos coloridos (acesso ao modo de gravacdo) ou circulos (acesso ao
modo de leitura) dentro desses blocos representam tarefas da aplicacao. Com esta visuali-
zacdo, € facil confirmar como o fluxo de dados da memoria se correlaciona com a posi¢ao
dos blocos e entender a progressao da memoria usando as informacdes fornecidas pela
aplicacdo (neste caso as coordenadas do bloco).

Na Figura A.4, por exemplo, existem apenas dois blocos em RAM e que ambos as
GPUs compartilham a primeira linha. Além disso, hd uma tarefa dpotrf executando
sobre o bloco 1x1 em RAM e uma tarefa dgemm em cada GPU. GPU1 tem acesso de
gravacdo na tarefa dgemm no bloco 1x2 e dois acessos de leitura nos blocos 0x1 e 0x2. Ao
utilizar momentos instantdneos consecutivos, € possivel criar uma animacao que mostre a
residéncia dos blocos de memoria ao longo do tempo. Esse recurso € particularmente titil

para entender o comportamento do algoritmo e a as operacdes sobre os dados.



108

Figura A.4: Momento especifico da residéncia dos blocos de memoria
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A.4.5 Mapa de Calor para Verificar a Residéncia dos Blocos de Memoria

Um analista pode estar interessado em uma visao geral da execugao da localidade
dos blocos entre os gerenciadores. Um footprint da residéncia geral dos blocos de memo-
ria poderia fornecer insights rapidos sobre o comportamento. O painel final consiste em
uma visualizagdo tradicional de mapa de calor para fornecer um resumo da presenca total
das blocos. A Figura A.5 descreve um exemplo dessa estratégia. Ha uma face de visua-
lizagdo para cada gerenciador de memoria. No exemplo, hd um gerenciador de memoria
RAM, GPU 1 e GPU 2. Cada quadrado representa um bloco de memoria posicionado
em sua coordenada matricial da aplicacdo nos eixos X e Y. Outras estruturas podem ser
usadas dependendo da informacdo extra que a aplicag@o fornece aos blocos de memoria.
A tonalidade da cor azul representa a quantidade total de tempo que o bloco estd no geren-
ciador durante a execuc¢do da aplicacdo. Enquanto a cor branca representa baixa presenca
no gerenciador de memdria, a cor mais azulada representa alta presenca.

Na Figura A.5, por exemplo, € possivel observar que todos os blocos da diagonal
ficaram mais tempo na memodria RAM em comparacao com outros blocos. Essa situagcdo
acontece porque, para as tarefas Cholesky, dpot r f e dsyrk na diagonal, sdo executadas
normalmente em CPUs, para permitir que as GPUs processem principalmente tarefas
SYRK e GEMM. Diferentemente, os outros blocos estavam presentes em ambas as GPUs,
pois as tarefas GEMM eram preferenciais executadas nas GPUs e usavam todos esses

blocos. Além disso, todos os blocos t€ém pelo menos uma pequena presenga na memoria
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Figura A.5: Mapas de calor por gerenciador da residéncia total dos blocos
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RAM, pois todos os blocos foram gerados primeiro nela.

A.5 Resultados Experimentais em Aplicacoes Baseadas em Tarefas

Este capitulo apresenta os resultados experimentais com trés diferentes aplicagcdes
heterogéneas baseadas em tarefas. Um solucionador de Cholesky denso, usando a suite
Chameleon (AGULLO et al., 2010). Uma simulacao de CFD (NESI; SCHNORR; NA-
VAUX, 2019), focando em um método de particionamento especifico dos dados. Um so-
lucionador da fatoragdo QR usando matrizes esparsas, do pacote de software QR_MUMP S
(BUTTARI, 2012). Os experimentos foram realizados usando a abordagem reproduti-
vel, e as mdquinas utilizadas fazem parte do GPPD (Grupo de Processamento Paralelo e
Distribuido) UFRGS.

As estratégias sdo aplicadas no célculo de uma fatoracdo de Cholesky densa ba-
seada em blocos da aplicacdo Chameleon usando plataformas heterogéneas com GPUs,
algoritmos out-of-core que movem memoria extra para o disco, e execugdes distribuidas
com StarPU-MPI em multiplos nés. Cinco cendrios s3o investigados e sdo descritos a
seguir. (1) A percepg¢do errada pelo StarPU da utilizacdo da memoria da GPU, emitindo
muitas solicitacOes de alocagdo de memdria que prejudicam o desempenho. O problema
foi corrigido e levou a 66% de ganho de desempenho. (ii) Identificacdo de tempos oci-
0sos significativos em execugdes com o recurso out-of-core e fornecendo detalhes sobre
as operacdes de memoria que causaram isso. (iii) A identificacdo de problemas de de-

sempenho inesperados causados pela ordem de geracao dos dados de entrada usando dois
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escalonadores (DMDAR e LWS) do StarPU sob memdria limitada e uso de out-of-core. (iv)
A explicagdo das diferencas de desempenho entre dois escalonadores (DMDAR e DMDAS)
do StarPU em uma execug¢ao somente na CPU com restri¢des de memdrias e out-of-core.
(v) Uma prova de conceito sobre o uso das estratégias empregando uma execu¢do com
varios nés usando StarPU-MPIL.

As estratégias também foram aplicadas em um cddigo de simulagdo CFD, durante
a andlise de um dos esquemas de particdo dos dados. Os experimentos apresentam pro-
blemas com alto uso de memoria nas GPUs, resultando em tempos 0ciosos nos recursos.
As estratégias propostas encontraram um comportamento prejudicial de ter blocos de me-
moria desnecessarios nas GPUs. A descoberta desse problema levou a criacdo de duas
otimizacdes, a primeira de informar as prioridades das tarefa e informar quando os dados
ndo sdo mais necessdrios. Essas otimiza¢des levam a um aumento de 38% no desempenho
da aplicacdo. Além disso, no caso da aplicagdo QR_Mumps, as estratégias perceberam
um comportamento de ping-pong da memoria causado pelas decisdes de escalonamento

de tarefas e ndo relacionadas a problemas de memoria.

A.6 Conclusao

O paradigma de programagao baseado em tarefas € um 6timo candidato para pro-
gramar aplicacdes paralelas heterogéneas porque um runtime ajuda em algumas responsa-
bilidades. No entanto, como outras abordagens de HPC, a andlise de desempenho dessas
aplicacoes € desafiadora. Muitos aspectos podem afetar o desempenho. Um aspecto es-
tudado neste trabalho € o gerenciamento de memodria da aplicacdo no nivel de runtime.
O runtime € responsavel por tomar muitas decisdes em relagdo ao sistema de memoria.
Ferramentas que ajudam na andlise de desempenho da memoria de aplicagdes baseados
em tarefas sdo entdo desejaveis.

Este trabalho apresenta uma metodologia de anédlise de desempenho baseada em
técnicas de visualizacdo conhecidas que sdo modificadas de forma inovadora. Estas me-
todologias tem como objetivo ajudar na identificagdo de ineficiéncias de transferéncia e
gerenciamento de dados tanto no runtime StarPU quanto no cddigo da aplicacdo. As
estratégias propostas, para investigar o desempenho da memoria de aplicagdes baseadas
em tarefas, sdo aplicadas em trés problemas diferentes, a suite Chameleon para resolver
problemas de dlgebra densa, uma aplicacdo CFD, e o QR_Mumps um solucionador para

fatoracdo QR esparsa.
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Os estudos de caso indicam que as estratégias propostas sdo fundamentais para
identificar as razdes por trds dos problemas de desempenho relacionados as operacoes de
memoria. As estratégias levaram a entender como consertar as operagdes de memoria do
runtime StarPU e como otimizar as aplicagdes individualmente. Corre¢cdes e otimizacdes
resultantes do uso das estratégias propostas levaram a 66% de ganho de desempenho no
caso da fatoragdao Cholesky e 38% no caso da aplicacdo CFD.

Trabalhos futuros incluem a andlise de transferéncias de dados em outras execu-
coes distribuidas do StarPU-MPI. Além disso, outra possibilidade € o estudo das estraté-
gias em outras aplicacdes, especialmente aquelas que nao possuem os dados organizados
em um formato 2D. Além disso, adaptar a metodologia e a ferramenta para outros runti-

mes baseados em tarefas, incluindo o OpenMP tasks.
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