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ABSTRACT

This thesis addresses Data-Driven control methods for multivariable systems, with
focus on Non-Minimum Phase systems and an approach for state-feedback in the Lin-
ear Quadratic Regulator framework. Since a fundamental assumption in Data-Driven
control is that there is no model of the plant available, controllers obtained with these
methods come with no guarantee to yield a stabilizing closed-loop, thus the controller
certification problem is also tackled in a Data-Driven perspective. The goal is to achieve
enhanced Multivariable Data-Driven control methods to cope with a variety of systems
and that yield stabilizing controllers and performances similar to the ones specified. One
approach is the direct extension of existent Data-Driven methods, which deal with the
Model Reference control problem therefore considering transfer matrix systems repre-
sentation. In this case, special attention is given to Non-Minimum Phase systems and in
this work two Data-Driven methods are extended with a flexible criterion to cope with this
issue and different structures of the reference model. Another option is to consider state-
space systems representation and the corresponding state-feedback design. For this, an
algorithm is proposed to cope with the infinite horizon Linear Quadratic Regulator prob-
lem, based on a previous predictive approach; in this case there is no issue when dealing
with Non-Minimum Phase systems. Finally, a one-shot purely Data-Driven estimation
of the H∞-norm is proposed and applied to the controller certification problem, along
with the estimation byproduct – the system’s Markov parameters –, in order to solve the
long-lasting stability guarantee issue in Data-Driven methods. Usage of these methods
in simulation and experiments on actual systems shows the applicability and improve-
ment of the proposed enhancements. Besides, the proposed non-parametric approach to
the controller certification problem shows to outperform the system identification one.
Therefore this work provides new tools and a certain level of polishing in the theory for
multivariable Data-Driven control methods. Most importantly, all the proposed solutions
require only one (maximum two in the noisy case) experiment on the true system.

Keywords: Data-driven control, non-minimum phase systems, controller certifica-
tion, multivariable control.



RESUMO

Esta tese aborda métodos de controle baseados em dados para sistemas multivariáveis,
com foco em sistemas de fase não-mínima e uma abordagem utilizando realimentação de
estados dentro do escopo do Regulador Linear Quadrático. Como a hipótese principal no
controle baseado em dados é que não se tem um modelo da planta, controladores obti-
dos com esses métodos não possuem garantias de resultar em uma malha fechada estável,
então o problema de certificação do controlador também é tratado em uma abordagem
baseada em dados. O objetivo é alcançar métodos aprimorados de controle multivariável
baseados em dados para lidar com uma variedade de sistemas e que gerem controladores
estabilizantes e com desempenho similar ao especificado. Uma abordagem é a exten-
são direta de métodos baseados em dados existentes, os quais lidam com o problema de
controle por Modelo de Referência considerando, então, a representação por matriz de
transferência. Nesse caso, atenção especial é dada para sistemas de fase não-mínima e
neste trabalho dois métodos baseados em dados são estendidos com um critério flexível
para lidar com esse problema e com diferentes estruturas do modelo de referência. Outra
opção é considerar a representação de sistemas em espaço de estados e o respectivo pro-
jeto de realimentação de estados. Para isso, é proposto um algoritmo a fim de sintonizar
um Regulador Linear Quadrático para horizonte infinito; nesse caso, não há restrições ao
lidar com sistemas de fase não-mínima. Por fim, um método direto baseado em dados
para estimação da norma H∞ é proposto e aplicado ao problema de certificação, junto
com o subproduto da estimativa (os parâmetros de Markov do sistema), a fim de resol-
ver o problema de garantia de estabilidade em métodos baseados em dados. A aplicação
desses métodos em simulação e em experimentos reais mostram a aplicabilidade e as
melhorias propostas. Além disso, mostra-se que a abordagem não-paramétrica proposta
para o problema de certificação supera a abordagem por identificação do sistema. Por-
tanto, este trabalho fornece novas ferramentas e um certo nível de refinamento na teoria
para métodos de controle multivariável baseados em dados. Sobretudo, todas as soluções
propostas requerem apenas um experimento no sistema real (ou dois no caso com ruído).

Palavras-chave: Controle baseado em dados, sistemas de fase não-mínima, certifica-
ção de controladores, controle multivariável.
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1 INTRODUCTION

Hello, hello, Martian. Here who speaks is from Earth.

Elis Regina

Data-Driven (DD) control design methods can be understood as the solution of classi-
cal control problems – which often have model-based solutions – through data collected
from the system but without deriving a mathematical model of the plant. That is, data are
used to tune directly the controller parameters of a fixed structure trying to achieve some
performance criteria. DD control design methods can be seen as the identification of the
controller instead of the plant.

In the past two decades, a number of Data-Driven control design methods have been
proposed (CAMPI; LECCHINI; SAVARESI, 2002; HJALMARSSON et al., 1998; HJAL-
MARSSON; GUNNARSSON; GEVERS, 1994; KARIMI; MIŠKOVIĆ; BONVIN, 2004;
CAMPESTRINI et al., 2017), where a parametrized controller structure is chosen a pri-

ori, and the controller tuning is based directly on input and output data collected on the
plant, without the use of a model of this plant. These DD schemes are mostly derived as
a solution to the classical Model Reference control problem (GOODWIN; SIN, 1984).

Assuming that one can create a universal method to tune the controller parameters
– that at least leads to stable closed loop – without any knowledge of the process to be
controlled is, of course, a utopia. Some prior knowledge about the process is needed,
as in any control problem, mainly to strengthen tuning of stabilizing controllers; notably
the process relative degree and its Non-Minimum Phase (NMP) zeros. Since these meth-
ods appear as the solution of Model Reference control, smart choices on the reference
model play an important role in the success of DD control methods (BAZANELLA et al.,
2008), but this step seems to be overlooked in the literature (GONÇALVES DA SILVA;
BAZANELLA; CAMPESTRINI, 2018).

These DD controller tuning methods may fail when the plant has NMP zeros that are
not included in the desired reference model, leading possibly to an unstable closed loop.
A safe way to avoid it is by including the NMP zeros in the desired reference model.
Doing this a priori, when choosing the reference model, requires the knowledge of this
zero. This issue is not related to the DD nature of the design per se, but is inherent
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to the Model Reference approach which is the basis of these DD methods, and as such
is well documented in the literature of direct adaptive control as well (see, for instance,
(IOANNOU; SUN, 2012)). It is troubling enough in the SISO (single-input single-output)
case, and yet it is much more serious in the MIMO (multiple-input multiple-output) case,
because the transmission zeros of MIMO plants are hard to spot.

Indeed, the characteristic inverse response to a step input in SISO plants alerts the
user to the presence of one NMP zero; the more crossings to the initial steady state, the
more NMP zeros. In MIMO systems this does not necessarily happen, because zeros have
associated input and output directions; it may even happen that one can observe an inverse
response in one loop but the corresponding NMP zero is not an NMP multivariable zero
(SKOGESTAD; POSTLETHWAITE, 2005). Previous work related to the NMP SISO
case has been addressed in (CAMPESTRINI et al., 2011) but there is still a gap for a DD
method related to NMP MIMO systems.

Another classical control problem that has been tackled in a data-based perspective is
the Linear Quadratic (Gaussian) Regulator (LQR/LQG) (SKELTON; SHI, 1994; AAN-
GENENT et al., 2005; FURUTA; WONGSAISUWAN, 1995). In their work however the
problem is solved in order to compute directly the optimal control action at each time
instant, instead of the control gain. This approach has more a predictive control than a
DD control framework resemblance, as the problem is taken for finite horizon and it is
assumed that the state is not measurable. In this thesis we change the perspective and
drop some constraints as to better fit in the DD control scope: we assume that the state is
measurable, since the control gain is fix, and because the gain is fix, we use the approach
for infinite horizon LQR. An advantage of using state feedback with a performance crite-
rion (the Q and R matrices of LQR) that is not as rigid as the Model Reference approach
is that NMP plants do not pose additional issue in the implementation of the method.

Nonetheless, Data-Driven control per se is not restricted to controller tuning meth-
ods, and applications to fault detection and closed-loop assessment have been reported
(KHAKIPOUR; SAFAVI; SETOODEH, 2017; LIU; GAO, 2017; YOUSSEF et al., 2017;
DU et al., 2017). Some of these applications require the H∞-norm estimation of a trans-
fer matrix. A related problem regarding H∞-norm estimation is the so-called controller
certification (PARK; BITMEAD, 2008). The problem can be described as follows: given
an initial stabilizing controller operating in closed-loop with an un-modeled system and a
second controller that is to be put in place of the initial controller, how can we assure that
this new controller will also, at least, stabilize the plant based on data collected from the
closed-loop? The solution to this problem usually involves the distance between the two
controllers and the H∞-norm estimation of a given generalized stability function. The
H∞-norm estimation itself is an issue to be dealt with and approaches using interpolation
of some frequency response points (PARK, 2008; CHEONG; BITMEAD, 2012) or the
system Markov parameters (OOMEN et al., 2014) have been reported.
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Main approaches to the certification problem derives from (VINNICOMBE, 1993),
where the ν-gap metric has been introduced and showed to satisfy a sufficient condition
to guarantee certification, and has since then been used as the standard tool in controller
certification procedures (PARK; BITMEAD, 2004, 2007; CHEONG; BITMEAD, 2012).
However, when the plant is unknown this constraint is hard to be validated and can also be
too conservative. A different closed-loop configuration is proposed in (DEHGHANI et al.,
2009), in order to collect data and certify the new controller, circumventing the test via the
ν-gap criterion. The proposed data-based approach however requires many experiments,
as the constraint studied depends on the frequency response of a given transfer function.

In this work we bring their mappings to the standard closed-loop configuration, not
only for stability purposes, but also for robust performance assessment. We also show that
a similar procedure applies when data are collected in open-loop (i.e., there is no initial
stabilizing controller), given that the plant is open-loop stable. All these tests are based on
anH∞-norm criterion of given transfer functions, thus we present an algorithm to estimate
the respectiveH∞-norm directly from data obtained from one single experiment, without
identifying a respective parametrized transfer function (matrix). We also show that our
non-parametric approach outperforms the system identification one.

The contributions of this thesis are: extensions to two one-shot data-driven methods to
cope with unknown NMP transmission zeros; a data-driven approach to the infinite hori-
zon LQR control; a one-shot data-driven controller certification procedure with robust
stability assessment. Accordingly, the innovative aspects treated here are: direct identi-
fication of the NMP transmission zeros location and direction ratio without identifying
the whole MIMO system; one-shot H∞-norm estimation; purely data-driven controller
certification procedure.

The thesis is divided as follows: a brief overview of multivariable systems and the
data-driven control approach are presented in Chapter 2. Contributions are divided in the
following chapters. In Chapter 3 the extensions of two DD methods to cope with un-
known NMP transmission zero are presented with some illustrative examples. The main
results of this chapter have been published in (GONÇALVES DA SILVA; CAMPES-
TRINI; BAZANELLA, 2016, 2018). Chapter 4 deals with a different control approach:
the LQR control, so it is meant to be self-contained. This chapter resulted in the arti-
cle (GONÇALVES DA SILVA et al., 2019). Finally, a one-shot data-driven controller
certification and robust performance assessment approach is presented Chapter 5. At the
moment, these results have been accepted in an article sent to ISA Transactions, but not
yet published. Concluding remarks are then given in Chapter 6.
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2 MULTIVARIABLE SYSTEMS AND DATA-DRIVEN CON-
TROL

Everybody 1, 2, step. We about to get it on.

Ciara

This chapter presents the basic definitions and tools which will be used along this
thesis. We start by giving two different system representations and their equivalence, fol-
lowed by the definitions of poles, zeros and their directions for MIMO systems described
as transfer matrix. These definitions apply to SISO systems as they can be seen as 1 × 1

matrix. In the three subsequent sections the control problem approached in this work is
stated, two existing direct DD methods are presented and finally closed-loop stability is
discussed.

2.1 System representations

Consider a linear time-invariant discrete-time multiple-input multiple-output (MIMO)
process

y(t) = G0(q)u(t) + v(t)

= G0(q)u(t) +H0(q)w(t), (1)

where q is the forward-shift operator, such that qx(t) = x(t + 1), u(t) is a p-dimension
input vector, y(t) an l-dimension output vector and w(t) is a zero mean white noise p-
dimension vector with co-variance σ2

wi
. G0(q) is a transfer matrix representing the process

and H0(q) is the noise model.

System representation (1) gives the direct relation between the system’s input and
output. Another description of the system, which considers its internal variables, namely
its state vector, is given by

x(t+ 1) = Ax(t) +Bu(t) + Ew(t)

y(t) = Cx(t) +Du(t) + Fw(t)
(2)
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where x(t) is an m-dimension state vector. System matrices are of size A ∈ Rm×m,
B ∈ Rm×p, E ∈ Rm×p, C ∈ Rl×m, D ∈ Rl×p and F ∈ Rl×p.

The relation between G0(q) and the system (A,B,C,D) is given by:

G0(q) = C(qI − A)−1B +D, (3)

with I the identity matrix, and for the noise model we have

H0(q) = C(qI − A)−1E + F. (4)

For the remaining of this thesis we shall consider, unless pointed out differently, p =

l , n, i.e., both G0(q) and H0(q) are square n × n matrices whose elements are proper
rational transfer functions.

2.2 Poles, zeros, directions and Markov parameters

Definitions of poles and zeros of a linear time-invariant system and their respective
directions are introduced in this section. We also review the concept of the system Markov
parameters and their relation with the system impulse response.

2.2.1 Poles

The following definition gives the poles corresponding to the system’s minimal real-
ization directly from the transfer matrix G0(q).

Definition 2.1. (MACFARLANE; KARCANIAS, 1976) The pole polynomial φ(q) corre-

sponding to a transfer matrixG0(q) is the least common denominator of all non-identically

null minors of all orders of G0(q).

Example 2.1. Consider the 2× 3 system

G0(q) =


1

(q − 0.9)
0

(q − 1.2)

(q − 0.9)(q − 0.8)

− 1

(q − 1.2)

1

(q − 0.8)

1

(q − 0.8)

 ·
The rank of the system is 2, since the third column can be obtained by multiplying the

first column by q−1.2
q−0.8

and adding the second column multiplied by 2. The minors of order

1 from the elements different from zero are:

1

q − 0.9
,

q − 1.2

(q − 0.9)(q − 0.8)
,
−1

q − 1.2
,

1

q − 0.8
,

1

q − 0.8
.

The minors of order 2 are

−(q − 1.2)

(q − 0.9)(q − 0.8)2
,

2

(q − 0.9)(q − 0.8)
,

1

(q − 0.9)(q − 0.8)
.
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Considering all minors, the least common denominator is

φ(q) = (q − 1.2)(q − 0.9)(q − 0.8)2.

Thus, the system has four poles: one at q = 1.2, one at q = 0.9 and two at q = 0.8.

From the example above, it can be noticed that the poles of MIMO systems are essen-
tially the poles of the elements. However it is not possible to determine their multiplicity
by only looking at the matrix elements.

2.2.2 Zeros and transmission zeros

The zeros of a system arise when internal effects compete such that the output is
identically null even when the inputs (and the states) are not themselves identically null.
For a SISO system, the zeros zi are solution of G0(zi) = 0. Overall, we can argue that
zeros are the values of q for which G0(q) looses rank (from rank 1 to rank 0 for SISO
systems). However, this definition includes values of q equal to the poles and values at
infinity. In order to avoid further misunderstanding, the term zero will be used for the
zeros in each matrix element and the terms transmission zero and multivariable zero for
the zeros defined in the following definition.

Definition 2.2. (MACFARLANE; KARCANIAS, 1976) The finite transmission zeros

polynomial ψ(q) of a system G0(q) is the greatest common divisor of all numerators of

all minors of order nr of G0(q), where nr is the normal rank of G0(q), once these minors

have been adjusted as to have the pole polynomial φ(q) as their denominator.

The normal rank of G0(q) is defined as the rank of G0(q) in all values of q except
for a finite number of singularities (which are the transmission zeros). For SISO systems,
zeros and transmission zeros are equivalent. The transmission zeros can be interpreted
as the (discrete) exponentials which, when present in the input signal, are blocked in the
output. Transmission zeros whose module are greater than 1 are called Non-Minimum
Phase (NMP).

Example 2.2. Consider the following 2 × 2 system, which will be extensively worked
around throughout this thesis:

G0(q) =


(q − 0.7)

(q − 0.9)(q − 0.8)

2

(q − 0.8)

1.25

(q − 0.8)

1.5

(q − 0.8)

 , (5)

and whose response to a sequence of steps is portrayed in Figure 1.

The normal rank of G0(q) is 2 and the minor of order 2 is the determinant

det(G0(q)) =
1.5(q − 0.7)− 2.5(q − 0.9)

(q − 0.9)(q − 0.8)2
=

−(q − 1.2)

(q − 0.9)(q − 0.8)2
·
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Figure 1 – Open-loop response of the NMP system (5) to a sequence of steps.
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Source: author.

From Definition 2.1 the pole polynomial is φ(q) = (q − 0.9)(q − 0.8)2 so the trans-

mission zero polynomial is ψ(q) = −(q − 1.2). Thus, G0(q) has an NMP transmission

zero at q = 1.2.

This example illustrates that, in general, multivariable zeros have no direct relation
to the zeros of the transfer matrix elements, unlike the poles. Notice also that the usual
inverse response effect due to NMP zero is not apparent in Figure 1. This is due to zero
directions, which will be discussed next.

If G0(q) is a square matrix then the following is usually true:

ψ(q)

φ(q)
= det (G0(q)). (6)

There are particular cases where pole-zero cancellation in (6) does not necessarily

yield the system poles and transmission zeros, as in triangular systems (SKOGESTAD;
POSTLETHWAITE, 2005).

2.2.3 Poles and zeros directions

In multivariable systems, poles and multivariable zeros have directions associated to
them. These directions give an indication on how much a mode is excited by the inputs
and how much they are expressed at the output.

Theorem 2.1. (HAVRE; SKOGESTAD, 1996) (ZERO DIRECTIONS) If G0(q) has a

transmission zero for q = zi ∈ C, then there exist non-null vectors called zero input
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direction uzi ∈ Cp and zero output direction yzi ∈ Cl, such that uHziuzi = 1, yHzi yzi=1, and

G0(zi)uzi = 0 and (7)

yHziG0(zi) = 0. (8)

From a practical point of view, the zero output direction yzi is usually of greater impor-
tance, since yzi gives an information of what (combination of) output is harder to control.
It also imposes a constraint for closed-loop stability when the transmission zero is NMP,
as will be discussed later. The input direction is the direction of inputs for which the usual
inverse response effect is more apparent in the output response.

Theorem 2.2. (HAVRE; SKOGESTAD, 1996) (POLE DIRECTIONS) If G0(q) has a

pole for q = pi ∈ C, then there exist non-null vectors called pole input direction upi ∈ Cp

and pole output direction ypi ∈ Cl, such that uHpiupi = 1, yHpiypi=1, and

G0(pi)upi =∞ and (9)

yHpiG0(pi) =∞. (10)

The zero directions uzi and yzi can be obtained from the Singular Value Decomposi-
tion (SVD) of G0(zi) = UΣV H . We have that uzi is the last column of V (corresponding
to the singular value zero) and yzi is the last column of U . As for the pole directions,
since the gain is infinite, then one can not compute the directions directly by G0(pi), as
for the zeros. In this case consider G0(pi + ε), with ε→ 0. Thus upi is the first column of
V (corresponding to the singular value “infinite”) and ypi is the first column of U (SKO-
GESTAD; POSTLETHWAITE, 2005). Besides, if the inverse of G0(pi) exists then the
pole direction can be computed as the zero directions of G−1

0 (pi)ypi = 0. Notice that for
SISO systems all these direction vectors equal to 1.

We highlight that the procedure above applies when poles and multivariable zeros are
distinct, otherwise there will be more than one singular value equal to zero (or infinite)
and one can not assure the chosen vectors are correct. For the case of poles and trans-
mission zeros with multiplicity greater than 1 a generalized eigenvalue problem can be
solved using the system state space representation (HAVRE, 1998). For the scope of this
work, pole and zero directions will be of importance only when the respective poles and
transmission zero are outside the unit circle. In this case, most of actual systems behave in
a way that usually there are not two equal unstable modes. Also, only the output direction
will be of interest for closed-loop stability purposes as will be seen in Section 2.5.

Example 2.3. Consider the system in Example 2.2, which has a multivariable zero at

zi = 1.2, one pole at pi = 0.9 and two poles at pi = 0.8. The input and output directions

of the elements with multiplicity 1 are determined using the SVD. For the transmission
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zero we have:

G0(zi) = G0(1.2) =

25
6

5

25
8

15
4

 =

[
−0.8 −0.6

−0.6 0.8

][
25
√

61
24

0

0 0

]−5
√

61
61

−6
√

61
61

−6
√

61
61

5
√

61
61

H

The input and output directions are associated to the singular value zero, thus uzi =[
−6
√

61
61

5
√

61
61

]
and yzi =

[
−0.6

0.8

]
. For the input-output direction of the pole at 0.9, consider:

G0(pi + ε) = G0(0.9 + ε) =

 0.2+ε
ε(0.1+ε)

2
0.1+ε

1.25
0.1+ε

1.5
0.1+ε

=ε→0

[
−1 0

0 1

][
2
ε

0

0 0

][
−1 0

0 1

]H

The input and output directions are associated to the singular value 2/ε, thus upi =[
−1

0

]
and ypi =

[
−1

0

]
.

We omit here the procedure for the poles at 0.8 as it is out of the scope of this thesis.

To complete the example, Figure 2 shows the system response to an input u(t) =

−2

[
−6
√

61
61

5
√

61
61

]
, which is multiple of the transmission zero input direction. Notice that now

Figure 2 – Open-loop response of the NMP system (5) to an input multiple of the NMP
transmission zero input direction.
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we observe an inverse response in output 1, whereas output 2 remains at zero. This is a

typical response when the input is in the same direction of the zero.
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2.2.4 All-pass factorization of transfer function matrices

The following formulation was based on the one given in (SKOGESTAD; POSTLETH-
WAITE, 2005), albeit a discrete-time formulation has been used to fit the scope of this
work. These MIMO filters are all-pass in the sense that all singular values equal 1 for
q = ejωTs , ∀ω ∈ R.

Consider a plant model G0(q) with Nz NMP transmission zeros at znmi
(where the

index nm means non-minimum) and associated input and output directions uznmi
and

yznmi
, respectively. Then G0(q) can be factored as follows:

G0(q) = G1
0(q)L1(q) (11)

znm1L1(q) = I +

(
|znm1|
znm1

znm1 − q
z∗nm1

q − 1
− 1

)
ûznm1

ûHznm1
(12)

where ûznm1
is the input zero direction of znm1 and z∗nm1

is the complex conjugate of znm1 .
With this factorization, znm1 is not a transmission zero of G1

0(q), as it is reflected inside
the unit circle becoming 1/znm1 . By repeated application of (12) on Gi

0(q), i = 1 . . . Nz,
G0(q) can be factored into a minimum phase part and an all-pass filter as

G0(q) = Gmi
0 (q)LI(q) (13)

LI(q) =
Nz∏
i=1

(
I +

(
|znmi

|
znmi

znmi
− q

z∗nmi
q − 1

− 1

)
ûznmi

ûHznmi

)
(14)

In (13), Gmi
0 (q) is minimum phase with NMP transmission zeros of G0(q) reflected

inside the unit circle and LI(q) is an all-pass filter. Note that except for the direction asso-
ciated with the multivariable zero factored first, ûznmi

differs from uznmi
, as it is calculated

based on G(i−1)
0 (q) and not G0(q). The NMP transmission zeros can be alternatively fac-

tored at system’s output similarly

G0(q) = LO(q)Gmo
0 (q) (15)

LO(q) =
1∏

i=Nz

(
I +

(
|znmi

|
znmi

znmi
− q

z∗nmi
q − 1

− 1

)
ŷznmi

ŷHznmi

)
(16)

Example 2.4. Consider the system given by

G0(q) =


− 6.5(q − 121/130)

(q − 0.9)(q − 0.8)

2

(q − 0.9)

− 7

(q − 0.8)

2(q − 0.6)

(q − 0.9)(q − 0.7)

 . (17)

This system has NMP transmission zeros at z1 = 1.2 with yz1 = [−0.76822 0.64018]T

and z2 = 1.3 with yz2 = [−0.75926 0.65079]T . Factoring first z1 yield

L1(q) =


0.90164(q − 1.033)

(q − 0.8333)

0.081967(q + 1)

(q − 0.8333)

0.081967(q + 1)

(q − 0.8333)

0.93169(q − 0.9677)

(q − 0.8333)

 (18)
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G
(1)
0 (q) = L−1

1 (q)G0(q) =


− 6.5787(q − 0.9077)

(q − 0.9)(q − 0.8)

2.0393(q − 0.6672)

(q − 0.9)(q − 0.7)

− 6.9344(q − 0.918)

(q − 0.9)(q − 0.8)

1.9672(q − 0.6267)

(q − 0.9)(q − 0.7)

 . (19)

System (19) now has an NMP transmission zero at z2 = 1.3 but with a different output

direction ŷz2 = [−0.71627 0.69783]T . This is the direction that should be used for

computing the respective output filter, which is given by

L2(q) =


0.88161(q − 1.007)

(q − 0.7692)

0.11535(q + 1)

(q − 0.7692)

0.11535(q + 1)

(q − 0.7692)

0.88762(q − 0.9932)

(q − 0.7692)

 . (20)

The minimum-phase factor of (17) is given by

Gmo
0 (q) = (L1(q)L2(q))−1G0(q) =


− 6.5514(q − 0.9156)

(q − 0.9)(q − 0.8)

2.0582(q − 0.6519)

(q − 0.9)(q − 0.7)

− 6.961(q − 0.9106)

(q − 0.9)(q − 0.8)

1.9488(q − 0.642)

(q − 0.9)(q − 0.7)

 ,
(21)

which has only transmission zeros at 1/1.3 and 1/1.2.

The filters (14) and (16) are known as Blaschke products. For more on Blaschke
products and filters computation the reader is referred to (HAVRE; SKOGESTAD, 1996;
HAVRE, 1998).

2.2.5 System Markov parameters

Another concept in system theory is the system impulse response. It can be used to
infer about the system stability and to determine the system output to any given input
(CHEN, 1999). In discrete-time, the impulse matrix response associated with a state-
space model is called the Markov parameter Mi sequence. It can be found by direct
calculation using (2) (with the noise terms E = F = 0), and where the input u(t) =

δ(t) = δ(t)Ip×p is a p × p matrix having the impulse signal δ(t) along the diagonal and
zeros elsewhere:
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M0 = Cx(0) +Dδ(0) = D

x(1) = Ax(0) +Bδ(0) = B

M1 = Cx(1) +Dδ(1) = CB

x(2) = Ax(1) +Bδ(1) = AB

M2 = Cx(2) +Dδ(2) = CAB

x(3) = Ax(2) +Bδ(2) = A2B

M3 = Cx(3) +Dδ(3) = CA2B

...

Mi = CA(i−1)B, i > 0.

Note that x(0) = 0, i.e., zero initial state or zero initial conditions. Since the system
input is a p × 1 vector, one may regard δ(t) as a sequence of p successive input vectors,
each providing an impulse at one of the input components.

The impulse response of the state-space model can be summarized as

Mi =

D, i = 0

CAi−1B, i > 0
(22)

Notice that each “sample” of the impulse response Mi is an l × p matrix. Therefore,
it is not a feasible output signal, unless p = 1. It can be viewed as a sequence of l
outputs, each p × 1. Furthermore, Mi is the inverse z-transform of the matrix transfer-
function of system (1). The Markov parameters are widely used in subspace identification
theory (VAN OVERSCHEE; DE MOOR, 2012), for FIR filter synthesis, and also play
an important role in system stability assessment (CHEN, 1999), as will be discussed in
Section 2.5.

2.3 Model Reference control

Model Reference is a classical control design paradigm, which is particularly well
suited for adaptive and data-driven control design. In the framework of DD control, as
well as in the so-called direct adaptive control, there is no model of the plant and none is
expected to be obtained. Instead, input-output data from the plant are directly mapped into
controller parameters that, at least ideally, yield the specified performance. The perfor-
mance specification is made by stating what is the desired closed-loop transfer matrix. In
this design approach, the designer’s task consists essentially in the choice of this transfer
matrix, which is called the reference model.
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The design task is to tune the parameter vector P ∈ Rz of a linear time-invariant
controller C(q, P ) in order to achieve a desired closed-loop response. We assume that
this controller belongs to a given user-specified controller class C such that all elements
of the loop transfer matrix L(q) = G0(q)C(q, P ) have positive relative degree for all
C(q, P ) ∈ C. The controller class C is generically defined as

C = {C(q, P ) : P ∈ Rz} . (23)

The control action u(t) is given by

u(t) = C(q, P )(r(t)− y(t)), (24)

where r(t) is the reference signal, which is assumed to be quasi-stationary and uncorre-
lated with the noise v(t), that is Ē [r(t)v(s)] = 0 ∀t, s, and

Ē [f(t)] , lim
N→∞

1

N

N∑
t=1

E [f(t)]

with E [·] denoting expectation (LJUNG, 1999). The system (1)-(24) in closed loop be-
comes

y(t, P ) = T (q, P )r(t) + S(q, P )v(t) (25)

S(q, P ) = [I +G0(q)C(q, P )]−1 (26)

T (q, P ) = [I +G0(q)C(q, P )]−1G0(q)C(q, P ) = S(q, P )G0(q)C(q, P ) (27)

I = T (q, P ) + S(q, P ) (28)

where the dependence on the controller parameter vector P is now made explicit in the
output signal y(t, P ). The function S(q, P ) is called sensitivity function and T (q, P )

is called complementary sensitivity function or closed-loop function. The closed-loop
system is depicted in Figure 3.

Figure 3 – Block diagram of the closed-loop system.

C(q, P ) G(q)

d(t) v(t)

+ u(t)+r(t) + e(t) y(t)+
-

Source: author.

Here, we have already introduced the disturbance signal d(t) in the block diagram as
its implication on closed-loop stability will be discussed later. However, for the discussion
presented next, consider d(t) = 0.
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The idea behind Model Reference (MR) control is that closed-loop performance is
specified through a “desired” closed-loop transfer matrix Td(q), which is known as ref-

erence model, and describes the relation between the reference signal and the desired
closed-loop output yd(t):

yd(t) = Td(q)r(t).

The controller parameters can be tuned by solving the Reference Model optimization
problem {

min
P
JMR(P ) (29)

JMR(P ) , Ē ||(T (q, P )− Td(q))r(t)||22. (30)

The optimal controller is defined as C(q, PMR) with

PMR = arg min
P
JMR(P ).

This optimization is usually a nonconvex one, even in the easiest case of a linearly
parametrized SISO controller (CAMPESTRINI et al., 2011; BAZANELLA; CAMPES-
TRINI; ECKHARD, 2011). We will be concerned with the properties of the optimal
PMR, supposing it can be found by a data-driven approach. Besides, the choice of Td(q)
also influences the difficulty in solving the optimization (GONÇALVES DA SILVA;
BAZANELLA; CAMPESTRINI, 2018).

The ideal controller Cd(q) is the one that makes the closed-loop behave exactly as the
chosen reference model. We have that

Td(q) = [I +G0(q)Cd(q)]
−1G0(q)Cd(q), (31)

and rewriting (31) for Cd(q), the ideal controller is given by

Cd(q) = G0(q)−1Ld(q), (32)

Ld(q) , Td(q)[I − Td(q)]−1. (33)

Ideally, one wants to find PMR such that C(q, PMR) = Cd(q), and the theory devel-
oped for Model Reference control starts from this assumption, i.e., Cd(q) ∈ C.

If G0(q) is known and the controller has no structure constraint then one can apply
(32) directly to obtain the ideal controller. However, actual systems usually behave as
to not satisfy these assumptions. First, in most cases G0(q) is unknown and must be
obtained through modeling and/or via some identification method. Errors due to noise
and the chosen structure for G(q) will appear so the obtained controller via (32) will
not necessarily make the closed-loop behave exactly as the reference model previously
chosen. Finally, the structure of the controllers used is rarely flexible enough to guarantee
that (32) can be used. The controller structure is usually fixed and only its gains can be
adjusted.
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In this case, the optimal controller can be found minimizing criterion (29), which can
be achieved considering designs of optimal control (GOODWIN; GRAEBE; SALGADO,
1984), adaptive control (LANDAU et al., 2011) or data-driven control (BAZANELLA;
CAMPESTRINI; ECKHARD, 2011). Here, we will concern ourselves with the latter.

2.4 Data-Driven control

Amongst the Data-Driven control methods developed in the last decades there are the
iterative ones, in which a batch of experiments is required such that the optimal controller
is obtained after a sequence of controllers is put in closed-loop with the actual plant.
And there are the direct methods, based on only one experiment. Both approaches use
a controller structure defined a priori and the controller tuning is based directly on input
and output data collected from the plant, without a direct use of a complete model of the
system. Some of the methods have both SISO and MIMO versions.

Among the iterative methods, stands out the Iterative Feedback Tuning (IFT), pro-
posed for the SISO case in (HJALMARSSON; GUNNARSSON; GEVERS, 1994; HJAL-
MARSSON et al., 1998) and for the MIMO case in (DE BRUYNE, 1997; HJALMARS-
SON; BIRKELAND, 1998). Also, initially iterative, the Correlation-based Tuning (CbT)
was proposed for the SISO case in (KARIMI; MIŠKOVIĆ; BONVIN, 2004) and an ex-
tension to the MIMO case can be found in (MIŠKOVIĆ et al., 2007). A non-iterative
version of the CbT-SISO is presented in (KARIMI; VAN HEUSDEN; BONVIN, 2007).
This version is extended to multivariable systems in (YUBAI; USAMI; HIRAI, 2009).
One of the major problems encountered in these works for the multivariable case is the
need to perform as many experiments as the number of parameters to be identified or,
given a re-parametrization, the number of extra experiments is equal to p× l for the noisy
case.

Recently a new direct method has been proposed for the SISO case, the Optimal Con-

troller Identification (OCI) (CAMPESTRINI et al., 2017). In OCI, the input-output sys-
tem model is substituted from the beginning by an equivalent description involving only
the parameters that are function of the MR optimal controller parameters. Thus, the con-
troller identification is inserted in a classical identification problem by prediction error
framework. A MIMO-OCI version was applied to a simulated refrigerator system in
(HUFF; GONÇALVES DA SILVA; CAMPESTRINI, 2018) and has been further devel-
oped in (HUFF et al., 2019).

The Virtual Reference Feedback Tuning (VRFT) (CAMPI; LECCHINI; SAVARESI,
2002) is one of the most known and applied method. The main advantage of this method is
that the optimal MR controller can be estimated as the solution of a least-squares problem
for noise-free data (or using Instrumental Variables otherwise) and linear in the parameters
controller. Unstable and NMP plants also bring about issues when applying the VRFT. In
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(CAMPESTRINI et al., 2011) a flexible VRFT criterion is proposed to cope with SISO
NMP plants where the NMP zero is estimated into the reference model together with the
optimal controller.

A formal MIMO extension of the VRFT is presented in (FORMENTIN; SAVARESI,
2011) although some constraints are imposed such as an equal desired performance for
each loop via a diagonal reference model. This might not be a problem when the process
variables are of the same type, but the method will not yield good results otherwise. An
extension without this constraint is given in (CAMPESTRINI et al., 2016) and applied in
(BOEIRA et al., 2018).

The properties of a data-driven design are strongly dependent on how well the con-
troller class can represent the ideal controller, so let us formalize this concept. When
the controller structure C is such that it can represent exactly the ideal controller Cd(q)
for some set of parameters – say, Pd –, we say that the ideal controller belongs to the

controller class.

Assumption 2.1. Cd(q) ∈ C: There is a parameter vector Pd such that C(q, Pd) = Cd(q).

In general, this is not the case because the chosen controller structure is restrictive with
respect to the reference model choice. That is, the ability of the controller class to repre-
sent exactly the ideal controller depends on the choice of the reference model. The choice
of the reference model plays an important role in the success of DD methods and a detailed
work on this subject can be found in (GONÇALVES DA SILVA; BAZANELLA; CAM-
PESTRINI, 2018; GONÇALVES DA SILVA; CAMPESTRINI; BAZANELLA, 2016).
Some of these choices will be reviewed in this thesis when necessary. In the next subsec-
tions the most common controller parametrizations are reviewed and the VRFT and OCI
methods are presented.

2.4.1 Controller structure

Data-Driven control methods can be used to estimate a variety of controllers. Some
methods however, such as VRFT, are tailored for when the controller is linear in the
parameters, which is the case of Proportional-Integral-Derivative (PID) controllers with
fixed derivative pole. Moreover, the integral action of these controllers yields null steady-
state error, which is a concern when the controller is designed for constant reference
tracking.

Within the controller class C (23), the structure of the controller to be designed is
defined as

C(q, P ) =


C11(q, ρ11) C12(q, ρ12) · · · C1n(q, ρ1n)

...
... . . . ...

Cn1(q, ρn1) Cn2(q, ρn2) · · · Cnn(q, ρnn)

 (34)

and P = [ρT11 ρT12 . . . ρTn1 . . . ρTnn]T .
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In the case of PID controllers with fixed derivative pole each element of the controller
matrix C(q, P ) in (34) has the following parametrized structure

Cij(q, ρij) = [kpij kiij kdij]


1

Tsq
q−1

q−1
Ts(q−pdij )

 , ρTij βij(q). (35)

where kp, ki, kd are the proportional, integral and derivative gains, respectively, pdij
is the derivative pole, and Ts is the sampling time. When the derivative pole is set a

priori, then we say that (35) is linear in the parameters; in general, pdij = 0,∀i, j. It is
also possible to incorporate pdij in P , adding a new parameter to be identified. With the
choice of βij(q) in (35), P is the vector having exactly the continuous time gains of the
PID controller that the operator wants to find (GONÇALVES DA SILVA; CAMPESTRI-
NI; BAZANELLA, 2014).

2.4.2 Virtual Reference Feedback Tuning – VRFT

The VRFT method is a one-shot (i.e., not iterative) data-driven design method, that
is, with one batch of input-output data, the method searches for a controller that makes
the closed-loop system as close as possible to the reference model. The user defines
the reference model Td(q) and the controller structure, then the controller parameters are
found through a least squares minimization. The MIMO-VRFT approach was formally
presented in (FORMENTIN; SAVARESI; DEL RE, 2012), and applications have been re-
ported, such as to diesel engines and waste-water treatment systems (ROJAS et al., 2012).
A MIMO approach derived directly from SISO-VRFT has been presented in (CAMPES-
TRINI et al., 2016), where it has been applied to level control of a two tank process.

Consider the noise-free case, that is, w(t) = 0 in (1), and that the system has the
same number n of inputs and outputs. In (CAMPESTRINI et al., 2016), the controller
parameters are obtained by the solution of the following optimization problem:

min
P
JV R(P )

JV R(P ) =
N∑
t=1

‖F (q)[u(t)− C(q, P )(T−1
d (q)− I)y(t)]‖2

2. (36)

where F (q) is a filter that can be used as an additional degree of freedom and the remain-
ing variables have been previously defined.

The properties of this MIMO method are similar to those of the SISO-VRFT (CAMPI;
LECCHINI; SAVARESI, 2002). When the signals are noise free and the ideal controller
Cd(q) belongs to the chosen controller class, that is, Assumption 2.1 is satisfied, the ideal
controller parameter vector is the minimum of JV R(P ), no matter which filter F (q) is
chosen. When Assumption 2.1 is not satisfied, the filter is chosen to approximate the
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minima of JV R(P ) and JMR(P ), which is the performance criterion that one really wants
to optimize. An implementable filter that performs this task is given by (CAMPESTRINI
et al., 2016)

F (q) = Td(q)(I − Td(q)). (37)

Besides, if C(q, P ) is linearly parametrized then JV R(P ) is quadratic in the parame-
ters and a closed form solution to the optimization problem is given by

P̂ =

(
N∑
t=1

φ(t)φT (t)

)−1 N∑
t=1

φ(t)uF (t), (38)

where
uF (t) = F (q)u(t), φ(t) = [A1 A2 · · · An],

Ax =


Fx1(q)Ex(t)

Fx2(q)Ex(t)
...

Fxn(q)Ex(t)

 , Ex(t) =


βx1(q)ē1(t)

βx2(q)ē2(t)
...

βxn(q)ēn(t)

 (39)

for x = 1, 2, . . . , n, where ē(t) = (T−1
d (q)− I)y(t) is the virtual error, ēi(t) is the i− th

component of ē(t) and Fij(q) is the (i, j) element of the filter F (q).
In the more practical situation in which the signals are noisy, the solution (38) is bi-

ased and an instrumental variable technique should be used to eliminate the bias. An
extra signal y′(t), which is correlated to y(t) but not correlated to the noise present
in output, should be obtained and the instrumental variable ζ(t) is defined as ζ(t) =

[A′1 A′2 · · · A′n]T , where A′x, x = 1, 2, . . . , n is similar to Ax (from φ(t)), but formed
with the signal y′(t) in lieu of y(t). The solution of VRFT with the instrumental variable
approach is

P̂IV =

(
N∑
t=1

ζ(t)φ(t)T

)−1 N∑
t=1

ζ(t)uF (t). (40)

2.4.3 Optimal Controller Identification – OCI

Using the concept of the ideal controller (32), it is possible to turn the Model Ref-
erence control design problem into an identification problem of the controller, without
using a model for the process. This data-driven design method was presented in (CAM-
PESTRINI et al., 2017) for SISO systems and is extended for MIMO processes in (HUFF
et al., 2019). The core idea is to rewrite the input-output system (1) in terms of the ideal
controller Cd(q), which is done by inverting the relation (32), i.e.,

G0(q) = Td(q) (I − Td(q))−1C−1
d (q). (41)

Then a model for the plant can be written in terms of the controller parameters as

G(q, P ) , Td(q) (I − Td(q))−1C−1(q, P ) (42)
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and the task will be to identify an estimate C(q, P̂ ) of the ideal controller Cd(q) within the
parametrized controller class defined by C. In other words, this corresponds to an iden-
tification of a plant model G(q, P ) with a fixed part, which is a function of the reference
model Td(q), and a parametrized part, which is a function of the controller inverse. Thus,
(1) can be rewritten as

y(t,Θ) = G(q, P )u(t) +H(q,Θ)w(t) (43)

where Θ =
[
P T ΨT

]T and Ψ ∈ Rc is an additional parameter vector that appears in the
noise model.

FromN measured input-output data, the parameter vector estimate Θ̂N =
[
P̂ T
N Ψ̂T

N

]T
is defined as (CAMPESTRINI et al., 2017):

Θ̂N = arg min
Θ

V (Θ) (44)

where

V (Θ) =
1

N

N∑
t=1

‖ε(t,Θ)‖2
2 , (45)

ε(t,Θ) is the prediction error

ε(t,Θ) , y(t)− ŷ(t|t− 1,Θ) (46)

and

ŷ(t|t− 1,Θ) = H−1(q,Θ)Td(q) (I − Td(q))−1C−1(q, P )u(t)

+
[
I −H−1(q,Θ)

]
y(t) (47)

is the one-step ahead predictor for model (43), where G(q, P ) has been replaced by (42).
The predictor is now a function of the noise model H(q,Θ) and the inverse of the con-
troller C−1(q, P ).

Instead of minimizing JMR(P ), which depends on the unknown plant G0(q), the de-
sign is made by minimizing the cost function V (Θ), which is purely data-dependent and
no model of the plant G0(q) is used. Since the estimation of the optimal Model Reference
controller has been transformed into a Prediction Error (PE) identification problem, all
properties of PE identification theory apply. Specifically, the estimate in (44) converges,
under mild conditions, to the optimal vector Θ∗ =

[
P ∗T Ψ∗T

]T defined as follows:

Θ̂N → Θ∗ = arg min
Θ

V̄ (Θ) (48)

where
V̄ (Θ) = Ē ‖ε(t,Θ)‖2

2 . (49)

It is worth mentioning that, since the object of interest is the optimal controller only,
and not the plant model, the identification of H0(q) is of no interest for the controller
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design. It is well known from PE identification theory that if Assumption 2.1 is satis-
fied, informative enough data set is collected in open-loop and G(q, P ) and H(q,Θ) are
parametrized independently (that is, ∂H(q,Θ)

∂P
= 0), then, for N →∞ (LJUNG, 1999):

C(q, P̂N)→ Cd(q). (50)

If Assumption 2.1 is satisfied but data are collected in closed-loop, then (50) holds pro-
vided that ∃Θ0 such that H(q,Θ0) = H0(q).

It is often the case that one imposes some fixed part in the controller, the most common
instance of this fact probably being the imposition of a pole at q = 1 to guarantee zero
steady-state error for constant references and disturbances. This fixed part does not need
to be identified. So, we call CF (q) this fixed part and rewrite the controller transfer
function as

C(q, P ) = CF (q)CI(q, P ). (51)

Using (51) and (42), (43) can be written as

y(t,Θ) = Td(q) (I − Td(q))−1C−1
F (q)︸ ︷︷ ︸

F (q)

C−1
I (q, P )︸ ︷︷ ︸
C̃(q,P )

u(t) +H(q,Θ)w(t) (52)

where F (q) is a fixed transfer matrix formed by the fixed part of G(q, P ). Notice that in
the SISO case, or if Td(q) is a scalar function times the identity matrix and CF (q) is also
a scalar function, then F (q) commutes with C̃(q, P ) and (52) can be written as

y(t,Θ) = C−1
I (q, P )︸ ︷︷ ︸
C̃(q,P )

×Td(q) (I − Td(q))−1C−1
F (q)u(t)︸ ︷︷ ︸

ũ(t)

+H(q,Θ)w(t)

= C̃(q, P )ũ(t) +H(q,Θ)w(t).

(53)

Identification of Θ in (53) can be easily obtained through available toolboxes. How-
ever, in most MIMO cases the matrices in (52) do not commute and a dedicated opti-
mization solution should be used in order to minimize (45). In (HUFF et al., 2019), it
is proposed to apply an optimization procedure combining steepest descent and quasi-

Newton algorithms with an initial controller provided by the VRFT method. In the next
section this solution is detailed for the case where H(q,Θ) = I , so the predictor (47) is
reduced to

ŷ(t, P ) = G(q, P )u(t). (54)

It is worth mentioning tough that a noise model H(q,Θ) could also be estimated, with the
burden of solving more complex equations on the optimization solution presented next.

2.4.3.1 Optimization problem solution

At first, the steepest descent method is used to minimize the cost function (45) because
of its large region of attraction to a local minimum. In this case, the recursion formula is
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given by (BAZANELLA; CAMPESTRINI; ECKHARD, 2011)

Pi+1 = Pi − γi∇V (Pi) (55)

where, for each iteration i, γi is a positive scalar and ∇V (Pi) is the gradient of the
cost function V evaluated at the parameter vector Pi. Quantity γi is increased by 1%

if V (Pi) < V (Pi−1). Otherwise, it is decreased by 1% and one has Pi = Pi−1.
The Levenberg-Marquardt method is used next, whose convergence is faster, but its

region of attraction tends to be smaller than that of the steepest descent method’s. The
recursion in this case is given by

Pi+1 = Pi −
(
∇2V (Pi) + λiI

)−1∇V (Pi) (56)

where∇2V (Pi) is an approximation of the Hessian of the cost function. When λi is zero,
the search direction corresponds to that of Gauss-Newton method. As λi →∞, the search
direction tends towards the steepest descent one, and the magnitude of the step tends to
zero.

To apply this sequence of numerical method, one needs to compute both the gradient
and the Hessian of the cost function V (Θ). In the case where the noise model is not iden-
tified in parallel with the controller, (45) becomes a function of the controller parameter
P only, as

V (P ) =
1

N

N∑
t=1

‖ε(t, P )‖2
2 (57)

=
1

N

N∑
t=1

(y(t)− ŷ(t, P ))T (y(t)− ŷ(t, P )) (58)

whose partial derivative with respect to the kth element of P is

∂V (P )

∂Pk
=

2

N

N∑
t=1

(ŷ(t, P )− y(t))T
∂ŷ(t, P )

∂Pk
(59)

where

ŷ(t, P ) = F (q)C̃(q, P )u(t) (60)

∂ŷ(t, P )

∂Pk
= F (q)

∂C̃(q, P )

∂Pk
u(t). (61)

The partial derivative of C̃(q, P ) = C−1
I (q, P ) is given by

∂
[
C−1
I (q, P )

]
∂Pk

=
1

det (CI(q, P ))

∂
[
cofT (CI(q, P ))

]
∂Pk

− 1

det2 (CI(q, P ))
cofT (CI(q, P ))

∂ [det (CI(q, P ))]

∂Pk

(62)
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where det(·) is the determinant and cof(·) is the cofactor matrix. The gradient of the cost
function is calculated by using (59)-(62) for k = 1 , 2 , . . . , z.

In order to apply the Levenberg-Marquardt method, the Hessian of the cost function
needs to be calculated, which is obtained through the partial derivatives of (59) with re-
spect to the l-th component of P for k , l = 1 , 2 , . . . , p, as shown below:

∂2V (P )

∂Pk∂Pl
=

2

N

N∑
t=1

(
∂ŷ(t, P )

∂Pl

)T
∂ŷ(t, P )

∂Pk
+ (ŷ(t, P )− y(t))T

∂2ŷ(t, P )

∂Pk∂Pl
. (63)

Ignoring the second term in the right-hand side of (63), which involves second order
derivatives, we have

∂2V (P )

∂Pk∂Pl
∼=

2

N

N∑
t=1

(
∂ŷ(t, P )

∂Pl

)T
∂ŷ(t, P )

∂Pk
. (64)

2.4.3.2 PID estimation

The methodology presented in this work can be used to estimate any class of con-
trollers, whether linear in the parameters or not. For instance, consider a 2 × 2 PID
controller C(q, P ) = CF (q)CI(q, P ) where

CF (q) =
1

q(q − 1)
(65)

CI(q, P ) =

[
a11q

2 + b11q + c11 a12q
2 + b12q + c12

a21q
2 + b21q + c21 a22q

2 + b22q + c22

]
(66)

and P = [a11 b11 c11 a12 . . . a21 . . . a22 . . . c22]T . In this case, the adjugate matrix is

cofT (CI(q, P )) =

[
a22q

2 + b22q + c22 −(a12q
2 + b12q + c12)

−(a21q
2 + b21q + c21) a11q

2 + b11q + c11

]
(67)

and its determinant is

det (CI(q, P )) =
(
a11q

2 + b11q + c11

) (
a22q

2 + b22q + c22

)
−
(
a12q

2 + b12q + c12

) (
a21q

2 + b21q + c21

)
.

(68)

The partial derivatives of (67) and (68) with respect to the parameter a11, for instance, are
given by

∂
[
cofT (CI(q, P ))

]
∂a11

=

[
0 0

0 q2

]
, (69)

∂ [det (CI(q, P ))]

∂a11

= a22q
4 + b22q

3 + c22q
2. (70)

Similar equations are obtained for each element of P in order to compute (62), (61)
and then (59) so the estimate can be obtained by the steepest descent method. The same
quantities are used to compute (63) in the quasi-Newton minimization.
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Now, since the first step of the optimization solution is obtained through (55), an initial
controller parameter vector that stabilizes (42) is needed. The closer the initial controller
C(q, P0) is to C(q, P ∗), the greater are the chances that the algorithm actually results in
C(q, P ∗), and not in a local minimum. Furthermore, it has been shown that this formula-
tion can also be applied to identify a PID controller where the derivative pole is not fixed,
even for the MIMO case, but with the burden to computing more complex derivatives.
Finally, it is important to note that this formulation casts the controller estimation into
a prediction error identification framework, which makes the method less susceptible to
noisy signals.

This formulation has been applied to the control of a (simulated) refrigeration system
in (HUFF; GONÇALVES DA SILVA; CAMPESTRINI, 2018) as part of a challenge pro-
posed in the 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Con-
trol. It has been reported in that conference to be the formulation that led to the lowest
cost among 20 other papers on the same subject.

2.5 Closed-loop stability

In this section we will discuss the overall stability of the feedback system presented
in Figure 3. The system’s input and output can be written as

u(t) = C(q, P )S(q)(r(t)− y(t)− v(t)) + (I + C(q, P )G0(q))d(t) (71)

y(t) = T (q)r(t) + S(q)G0(q)d(t) + S(q)v(t). (72)

We then have the following theorem.

Theorem 2.3. (SKOGESTAD; POSTLETHWAITE, 2005)(modified) Internal Stability:
The feedback system in Figure 3 is internally stable iff the transfer matrix

H(G0, C) =

[
T (q) S(q)G0(q)

C(q, P )S(q) (I + C(q, P )G0(q))

]
(73)

is stable.

Each transfer matrix in (73) is stable if all poles lie strictly inside the unit circle in
the q-plane. Let (A,B,C,D) be a minimal state-space realization of H(G0, C). Internal
stability means the matrix A has all eigenvalues strictly inside the unit circle in the q-
plane.

The Markov parameters (22) associated with a realization also play their role when
inferring about stability. In the SISO case, these parameters correspond to the system’s
impulse response and if they vanish forNm →∞, then the impulse response is absolutely
summable, thus the system is BIBO-stable (Bounded Input Bounded Output). In the
MIMO case, if every sequence in each entry of the impulse response matrix is absolutely
summable, then the system is BIBO-stable (CHEN, 1999).
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Now, if the ideal controller Cd(q) were put in the control loop, the objective function
JMR(P ) would evaluate to zero, providing the ideal input-output performance. However,
it is clear from (32) that the plant’s zeros turn into poles of the ideal controller, which
will result in internal instability for plants that possess NMP zeros, unless the NMP zeros
appearing in the denominator (32) are canceled by a proper choice of the reference model,
as specified in the following theorem.

Theorem 2.4 ((HAVRE; SKOGESTAD, 1996)). If G0(q) has an NMP transmission zero

at znm with output direction yznm , then for internal stability of the feedback system with

the ideal controller, the following constraint must apply:

yHznm
Td(znm) = 0. (74)

It is clear – but still worth a remark – that constraint (74) is a function of the trans-

mission zeros of G0(q) and has no direct relation with the zeros of the elements of G0(q).
Theorem 2.4 states that in order to obtain internal stability, the reference model Td(q)
must have the same NMP transmission zeros of G0(q) in the same output directions. So
if the system has non-minimum phase transmission zeros the user needs to know at least
their location (just like in the SISO case (CAMPESTRINI et al., 2011; BAZANELLA;
CAMPESTRINI; ECKHARD, 2011)) in order to choose a reference model satisfying
(74). As for the transmission zeros directions, there are two possibilities. One is to chose
the reference model such that its NMP transmission zero has the same direction as in the
plant’s transfer function; this of course requires knowledge of the zero direction in addi-
tion to knowledge of its value. Another choice is to put the NMP transmission zero in n
linearly independent directions in the reference model, which is obtained by putting it as
a zero of each one of the elements in a diagonal Td(q), for instance. This second choice
does not require knowledge of the NMP transmission zero’s direction, but spreads its
(usually nasty) effect on the performance throughout all the outputs (GONÇALVES DA
SILVA; CAMPESTRINI; BAZANELLA, 2016). The reader is referred to references
(GONÇALVES DA SILVA; CAMPESTRINI; BAZANELLA, 2016, 2018; GONÇAL-
VES DA SILVA; BAZANELLA; CAMPESTRINI, 2018) for a thorough synthesis of the
reference model, as this thesis is concerned with data-driven methods themselves, even
though we briefly review these choices in Chapter 3.

2.6 Chapter conclusions

In this Chapter we revised some fundamental concepts of multivariable systems and
data-driven control. Transfer matrix representation, NMP transmission zero issues, Model
Reference and data-driven control are concepts used in Chapter 3 to deal with NMP sys-
tems using feedback control in a DD perspective. State-space representation and Markov
parameters are used in Chapter 4 to derive a solution to the LQR problem using data
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only. In Chapter 5 we use both system representations, definition of poles and Markov
parameters, and closed-loop stability to set a DD approach to the controller certification
problem. Finally, it is also important that the reader has some basis on system identi-
fication, for which we refer to (LJUNG, 1999) and (VAN OVERSCHEE; DE MOOR,
2012).
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3 DATA-DRIVEN CONTROL FOR NON-MINIMUM PHASE
SYSTEMS

Denying the appearances, disguising the evidence.

Chitãozinho & Xororó

As in any model reference design, Data-Driven methods often result in an internally
unstable closed-loop when the process is NMP and the reference model does not include
the NMP transmission zeros. Also, instability is more usual with NMP zeros that come
from actual NMP behavior in continuous-time (which have positive real part) than with
those which arise as a discretization phenomenon (which have negative real part).

One possible approach to this problem is to perform a process identification before
proceeding to the controller design, and if the process is NMP, then include the identified
NMP transmission zero, and possibly its direction, in the reference model. A rough iden-
tification might be enough, since only the NMP zeros are required, and unstable singular-
ities tend to be identified more accurately (MÅRTENSSON; HJALMARSSON, 2009).

However, Data-Driven designs are most advantageous precisely because they do not
require the identification of a model. Since no process model is known, one can not as-
sume prior knowledge of the NMP transmission zeros’ locations, let alone their direc-
tions. As a consequence, direct application of such data-driven methods to NMP plants,
whether SISO or MIMO, tends to fail because the reference model will lack the inclusion
of the unknown NMP zeros. An alternative solution to this issue was presented for the
SISO case in (CAMPESTRINI et al., 2011) using the VRFT, in which the use of a flex-

ible reference model provides the NMP transmission zeros together with the controller
parameters.

The situation in the MIMO case is similar to the SISO case, but presents additional
challenges; let us briefly discuss some of them. In a SISO plant, the existence of an NMP
zero is usually easy to detect from the plant’s step response, since the NMP characteristic
causes an inverse response in the first moments after the step.1 This is not the case for

1This is true for plants with natural NMP behavior, but not necessarily when an NMP zero appears in
G0(q) as a result of sampling phenomena.
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NMP-MIMO plants, unless the input is applied close to the NMP transmission zero’s
direction – a rare occurrence. Moreover, a step input in the MIMO case may produce an
inverse response in a system that has no NMP transmission zeros.

Another difficulty peculiar to the MIMO case is the one expressed in Theorem 2.4
and discussed in the paragraph following it: the reference model must consider not only
the location of the NMP transmission zero in the complex plane, but also its direction.
Conceiving an appropriate reference model Td(q) is also more involved in the MIMO
case. Since the ideal controller is a function of G0(q) and Td(q) (see (32)), a suitable
choice on Td(q) should, at least ideally, allow the ideal controller to belong to the con-
troller class. More realistically, the model reference may be chosen so that the ideal con-
troller has a structure, which is not too far from the class C (GONÇALVES DA SILVA;
BAZANELLA; CAMPESTRINI, 2018). For instance, if the controller has a centralized
structure, then the reference model can be a decentralized one, i.e., setting all nondiag-
onal elements equal to zero and then to selecting SISO reference models for each out-
put, or even a block-triangular one; in case the controller is decentralized, then a proper
choice of the reference model structure would be centralized one. A thorough discus-
sion on the choice of the reference model can be found in (GONÇALVES DA SILVA;
BAZANELLA; CAMPESTRINI, 2018). Finally, a MIMO controller is bound to have a
much larger number of parameters than a SISO controller, which raises numerical issues.

Contributions of this chapter are presented as follows: the approach when the NMP
transmission zero and its output direction are known a priori is detailed in Subsection
3.1.1 for the VRFT; this has been published in (GONÇALVES DA SILVA; CAMPES-
TRINI; BAZANELLA, 2016). The extension using a flexible criterion, so the NMP trans-
mission zero is also identified, to the MIMO case of VRFT is presented in Section 3.2;
this has been published in (GONÇALVES DA SILVA; CAMPESTRINI; BAZANELLA,
2018). This solution however has a drawback: the reference model must be diagonal. To
alleviate this constraint we propose a similar approach using the OCI in Section 3.3.

3.1 A priori knowledge of NMP transmission zeros and their output
directions

In this section we discuss briefly the modifications needed on the studied DD methods
when the process’ NMP transmission zeros are already included in the reference model.
There will be no discussion on how the information needed was obtained, as the focus is
on the methods themselves.

3.1.1 Extended VRFT cost function

Assume the user has knowledge of the system’s NMP transmission zeros and their
output direction and he/she is decided to use the VRFT method to tune the controller pa-
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rameters. From (36), it is clear that if the NMP transmission zeros information is added
to the reference model, as suggested by Theorem 2.4, then the method will fail because
it depends on the inverse of the reference model T−1

d (q), which will be an unstable filter.
Notice that aside from the Model Reference problem regarding NMP zeros, in this case
there is also an issue from the DD method point of view. Thus, the problem tackled in
this Subsection is: given all a priori knowledge regarding the system’s NMP transmission
zeros, how can the user use the MIMO-VRFT method and still identify the optimal con-
troller. The main parts of the results presented here were published in (GONÇALVES DA
SILVA; CAMPESTRINI; BAZANELLA, 2016).

Inversion of Td(q) in (36) yields an unstable filter when Td(q) has an NMP transmis-
sion zero. The key-idea is then to add an all-pass filter, as presented in Subsection 2.2.4,
which reflects this zero inside the unit circle, so the inversion yields a stable filter without
altering the minimum of (36). For the non-minimum phase case, we will discuss the so-
lutions based on some choices for the reference model. Our choices will consider that we
are aiming to tune a centralized PID controller (35) with fixed derivative pole at zero.

3.1.1.1 Case 1: diagonal reference model

Let us consider first the case where a diagonal reference model has been chosen, that
is

Td(q) =


Td11(q) 0 . . . 0

0 Td22(q) . . . 0
...

... . . . ...
0 0 . . . Tdnn(q)

 , (75)

where each element has the form

Tdii(q) =

(1−p1ii)(1−p2ii)
(1−znm)

(q − znm)

(q − p1ii)(q − p2ii)
· (76)

Since it can be seen as a choice of n SISO models, we can use the same approach as in
(GONÇALVES DA SILVA; CAMPESTRINI; BAZANELLA, 2014) for the choice of the
elements.

• If no overshoot is allowed, choose p1ii = e−4/ns and set p2ii = znm(1−p1ii)
(znm−p1ii) .

• If some overshoot is allowed, then choose complex values for p1,2, with Re{p} =
|p|2+znm

2znm
and |p| = e−4/ns .

Here, ns is the desired number of samples in the settling time. The choice proposed for
the second pole of the reference model elements yield, when computing the filter Ld(q)
(33) – which is a function of the reference model only –, the poles of a PID controller
(35) with derivative pole at zero when computing the ideal controller (see (32)).
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Notice that the NMP transmission zero is present in each element of (75). Thus, for
a diagonal structure of the reference model one does not need to be concerned with the
zero output direction, since constraint (74) will be satisfied because Td(znm) = 0. On the
other hand, the nasty effects of the NMP transmission zero are spread out to all outputs.

To apply the VRFT method, we need to add a filter La(q) to (36) that both reflects the
zero inside the unit circle and does not change the minimum of (36). In order to cope with
the second necessity, we define

JV R(P ) =
N∑
t=1

||F (q)La(q)[u(t)− C(q, P )(T−1
d (q)− I)y(t)]||22. (77)

Also, in order to commute the filter La(q) with C(q, P ) so we can multiply it with
T−1
d (q) in (77), then La(q) must be a scalar function multiplying the identity matrix and

it must cope with the first necessity (zero reflection into the unit circle).

Since every element Tdii(q) of Td(q) has the plant’s NMP transmission zeros, we must
reflect every zero inside the unit circle, which can be properly achieved with a scalar
function times the identity matrix. The scalar function is a well-known Blaschke function
given by

f(q) =
|znm|
znm

znm − q
z∗nmq − 1

,

where z∗nm is the complex conjugate of znm, and a generalized filter that considers every
NMP transmission zero in the system is given by

La(q) = I
Nz∏
i=1

|znmi
|

znmi

znmi
− q

z∗nmi
q − 1

, (78)

where Nz is the number of different NMP transmission zeros. Notice that this filter is a
special case of filters (14)–(16) with uuH = yyH = I .

Let

T d(q) , Td(q)La(q)
−1. (79)

Then

JV R(P ) =
N∑
t=1

||F (q)[La(q)u(t)− C(q, P )(T
−1

d (q)− La(q))y(t)]||22, (80)

and due to the addition of La(q), the implementable filter F (q) is given by

F (q) = [Td(q)(I − Td(q))]L−1
a (q). (81)

3.1.1.2 Case 2: non-diagonal reference model

Consider now the case where the reference model is not diagonal but satisfies (74). In
this case, each NMP transmission zero of the reference model will have an output direction
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(74) equal to the process, but its input direction will be different of the process zero input
direction.

One special case is when the reference model has a block-triangular structure. This
structure allows a design where we can move the effect of the NMP transmission zero
to a specific output. Let k be this output and consider the case with only one NMP
transmission zero. Thus, the reference model can be defined as

Td(q) =



Td11(q) 0 0 0 . . . 0

0 Td22
(q) 0 0 . . . 0

...
...

. . .
... . . .

...
Tdk1

(q) Tdk2
(q) . . . Tdkk

(q) . . . Tdkn
(q)

0 0 0 0
. . . 0

0 0 0 0 . . . Tdnn
(q)


. (82)

The elements Tdjj(q), j 6= k, can be chosen according to the desired performance us-
ing models of first or second-order. The element Tdkk(q) must have the NMP transmission
zeros and its poles are chosen according to performance criteria. The other elements of
row k should be chosen so that the ideal controller matches the PID class, or at least is
closer to it. Using (82), filter (33) is given by

Ld(q) =



Td11 (q)

1−Td11 (q)
0 0 0 . . . 0

0
Td22 (q)

1−Td22 (q)
0 0 . . . 0

...
... . . . ... . . . 0

Tdk1(q)
den(Ldjk

(q))

Tdk2 (q)

den(Ldjk
(q))

. . .
Tdkk (q)

1−Tdkk (q)
. . .

Tdkn (q)

den(Ldjk
(q))

0 0 0 0
. . . 0

0 0 0 0 . . .
Tdnn (q)

1−Tdnn (q)


where den(Ldjk(q)) = (1− Tdjj(q))(1− Tdkk(q))), j = 1, . . . , n and j 6= k.

Since Cd(q) = G−1
0 (q)Ld(q), the elements of Ld(q) should at least contain the poles

of the PID controller. To simplify the discussion, assume Tdkk(q) as a second-order model
with the NMP zero and Tdjj(q) as a first-order model, both without delays. Then

Ldjj(q) =
1− p1jj

q − 1
, (83)

Ldkj(q) =
Tdkj(q)

(q−1)
(q−p1jj)

(q−1)
(
q− znm(1−p1kk−p2kk)+p1kkp2kk

1−znm

)
(q−p1kk)(q−p2kk)

· (84)

Notice that a proper choice of Tdkj(q) and Tdkk(q) will make (84) present the poles
of a PID controller. More specifically, Tdkj(q) should have the poles of both Tdjj(q) and
Tdkk(q), a zero at one and also the expression znm(1−p1kk−p2kk)+p1kkp2kk

1−znm
should evaluate to

the derivative pole; if it is zero, the result is as the one proposed in the diagonal reference
model.



45

Consider the following choice for Tdkj(q):

Tdkj(q) = Kj
(q − 1)(q − zkj)

(q − p1jj)(q − p1kk)(q − p2kk)
(85)

= Kj(q − zkj)T dkj(q),

where variables Kj and zkj are (dependent) degrees of freedom that can be used to satisfy
yHznm

Td(znm) = 0. This can be achieved as follows: choose a value forKj (we recommend
a value near the ratio between directions |yj/yk| ); compute zkj using

zkj = znm +
yjTdjj(znm)

ykKjT dkj(znm)
· (86)

There is a compromise between choices of Kj and zkj and the maximum value ex-
pected at the output of Tdkj(q). Moreover, it is easier to move the effect of the NMP zero
to the output where directionality is larger. If k is this output, then one can expect a lower
interaction. Also, it is expected that with the recommended choice for Kj , expression
(86) would result in a zero zkj inside the unit circle, so the output is less deteriorated.
Furthermore, since T dkj(q) has the poles of both Tdjj(q) and Tdkk(q), if every loop j is
“faster” or have the same speed as loop k, then one can also expect lower interaction. If
we consider time-delay, then a similar approach can be applied, and again the user must
be aware that the ideal controller will not be in the PID controller class.

As for the VRFT criterion, we would like to add a filter to the left of (80), in order
to keep the minimum unchanged and to maintain the orders of operators and signals.
Since the criterion involves the inverse of a minimum phase factor of Td(q) (i.e. T

−1

d (q)),
the input factorization LI(q) (see Subsection 2.2.4) of the reference model is a suitable
choice.

Nevertheless, this filter is not diagonal so it can not be commuted in (80). Thus, we
use the filter La(q) along with the input-factor filter LI(q). The criterion to be minimized
is defined by

JV R =
N∑
t=1

||F (q)LI(q)[La(q)u(t)− C(q, P )(T
−1

d (q)− La(q))y(t)]||22, (87)

where La(q) is given by (78) and LI(q) is given by (14).
Due to the addition of both La(q) and LI(q), the implementable filter F (q) is given

by
F (q) = [Td(q)(I − Td(q))][LI(q)La(q)]−1. (88)

The cost function (87) is a more complete version of (36): if the NMP transmission
zeros have been added to the reference model without the direction information, then
LI(q) = I and we obtain (80); if the reference model does not include any NMP trans-
mission zero, then La(q) = LI(q) = I and we obtain (36).
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3.2 Joint identification of NMP transmission zeros: VRFT with flex-
ible criterion

The solution presented previously, although feasible, requires a priori knowledge of
the NMP transmission zero, which in most practical situations would be obtained in a
system identification approach. This contrasts with the philosophy of DD control methods
that no plant model is supposed to be obtained. Thus, a more interesting solution would be
one in which only the NMP transmission zero is identified and included in the reference
model.

In (CAMPESTRINI et al., 2011) a method has been developed, inspired by previous
work in IFT (LECCHINI; GEVERS, 2002), to deal with this issue in SISO plants. The
method consists of a parametrized reference model numerator which is to be identified
along with the controller parameters in an iterative procedure using the same batch of data
for both steps. A practical application of this method was presented in (SCHEID FILHO
et al., 2016).

Here we apply a similar approach to the design of MIMO controllers. The plant’s
transmission zeros are estimated along with optimal controller parameters, by means of
a parametrized decoupled reference model; this is the first step of a two-step procedure.
Once the NMP transmission zero(s) is (are) identified and included in the reference model,
a second step can be performed where the reference model is then fixed and the VRFT
method is applied only to estimate new controller parameters that will provide enhanced
performance.

3.2.1 The flexible performance criterion

The core idea of the proposed method is to let the reference model be a parametrized
transfer matrix:

Td(q) = Td(q, η) (89)

where η ∈ Rc is a vector of free parameters of the numerator of each element in Td(q, η).
In so doing, we are not specifying the whole transfer function; instead, degrees of free-
dom are left in its specification which can accommodate the inclusion of the necessary
transmission zeros in the reference model. Using this parametrized transfer matrix in the
performance criterion (36), we have the following flexible criterion:

JV R(η, P ) =
N∑
t=1

||F (q, η)[u(t)− C(q, P )(T−1
d (q, η)− I)y(t)]||22. (90)

The optimization of the flexible criterion JV R(η, P ) is now made with respect to the
controller parameters as well as the η parameters, which will provide the appropriate
zeros in the reference model. The critical Assumption 2.1 must be adapted for this case,
as follows.
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Assumption 3.1. There exists a pair (η∗, P ∗) such that JV R(η∗, P ∗) = 0 or, equivalently,

∃η∗, P ∗ : C(q, P ∗) = G−1
0 (q)Td(q, η

∗)[I − Td(q, η∗)]−1. (91)

The parametrization to be chosen for the reference model will be the one most appro-
priate to the design method to be applied. In order to be able to apply a VRFT scheme
similar to the one in (CAMPESTRINI et al., 2011), we will need the following assump-
tion on this parametrization.

Assumption 3.2. The flexible reference model is chosen as

Td(q, η) = ηTϑ(q)I, (92)

where η ∈ Rc is a vector of free parameters and ϑ(q) is a c-vector of proper rational

functions.

Notice that (92) implies that the same closed-loop behavior is specified for every
input-output pair, which may be a restrictive performance choice. However, this draw-
back can be solved in a two-step procedure, which will be described later. On the other
hand, this parametrization will allow us to keep the attractive VRFT solution via least-
squares.

Under Assumptions 3.1 and 3.2, it follows that

(η∗, P ∗) = arg min
η,P

(η,P )6={0, 0}

J̃V R(η, P ) (93)

J̃V R(η, P ) =
N∑
t=1

||F̄ (q)Td(q, η)u(t)− F̄ (q)C(q, P )(I − Td(q, η))y(t)||22 (94)

F̄ (q) = (I − Td(q, η̂)). (95)

The criterion J̃V R(η, P ) in (94) is obtained by approximating the filter (37) as F (q) =

Td(q, η)F̄ (q), which has a term that is a function of the unknown η, and a term that is a
function of an estimated η̂. Under Assumption 3.2, Td(q, η) commutes with all matrices
and can be estimated in the procedure that will be described in the following. On the
other hand, by using a term that uses an estimated η̂, the filter used to approximate the
minima of JV R(η, P ) and JMR(P ) is a known quantity. Optimization of J̃V R(η, P ) will
be easier because it depends on Td(q, η) and not on its inverse, thus all the parameters to be
identified appear in its numerator. Given the linear parametrization of both the controller
and the reference model, then J̃V R(0, 0) = 0. Thus, the multiplication by Td(q, η) has
created an additional – and undesired – global minimum at the origin, which is the reason
why the right hand side of (94) is subjected to a constraint that excludes (η, P ) = {0, 0}.
In most control applications, a natural constraint exists which automatically does that: the
reference model must have steady-state gain Td(1, η) = I .
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3.2.2 Sequential least-squares

Since the argument in (94) is bilinear in η and P , the minimization of J̃ V R(η, P ) can
be treated as a sequence of least squares problems (LJUNG, 1999):

η̂(i) = arg min
η

J̃V R(η, P̂ (i−1)) (96)

P̂ (i) = arg min
P

J̃V R(η̂(i), P ), (97)

where we assume knowledge of one quantity (η or P ) to obtain the other and the use of
a known filter F̄ (q). Assume that C(q, P̂ ) is a known transfer matrix and insert (92) in
(94). This gives

J̃V R(η, P̂ ) =
N∑
t=1

||ηTϑ(q)[F̄ (q)u(t) + F̄ (q)C(q, P̂ )y(t)]− F̄ (q)C(q, P̂ )y(t)||22

=
N∑
t=1

||ηTϑ(q)F̄ (q)[u(t) + C(q, P̂ )y(t)]− F̄ (q)C(q, P̂ )y(t)||22. (98)

where F̄ (q) can be obtained using the estimate of η obtained in the previous iteration, that
is η̂(i−1). Least-squares solution of (98) with respect to η is given by

η̂ =

[
N∑
t=1

(ϑ(q)b(t))T (ϑ(q)b(t))

]−1 [ N∑
t=1

(ϑ(q)b(t))T ũ(t)

]
(99)

where b(t) = F̄ (q)[u(t) + C(q, P̂ )y(t)] and ũ(t) = F̄ (q)C(q, P̂ )y(t).
Now, assume that T (q, η̂) is a known transfer matrix. Then (94) can be rewritten as

J̃V R(η̂, P ) =
N∑
t=1

||T (q, η̂)F̄ (q)u(t)− F (q)C(q, P )y(t) + F̄ (q)C(q, P )T (q, η̂)y(t)||22

=
N∑
t=1

||T (q, η̂)F̄ (q)u(t)− F̄ (q)C(q, P )(I − T (q, η̂))y(t)||22. (100)

Least-squares solution to (100) is the same as (38) but with

uF (t) = T (q, η̂)F̄ (q)u(t) and ē(t) = (I − T (q, η̂))y(t)

The formulation presented above is to be used when signals are noise free. In this
case, when Assumption 3.2 is satisfied, then the algorithm is able to identify the NMP
transmission zeros and the ideal controller. However, when data is corrupted with noise,
the solution of the algorithm is biased. Just like the standard VRFT, the flexible criterion
makes use of instrumental variables when data is affected by noise to provide unbiased
estimates (BAZANELLA; CAMPESTRINI; ECKHARD, 2011; CAMPESTRINI et al.,
2016). Moreover, we highlight that the sequential least squares procedure is only guaran-
teed to converge to a local minimum (LJUNG, 1999).
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3.2.3 Important remarks

Since the procedure is iterative, initial values for C(q, P (0)) and/or Td(q, η(0)) must be
given. The procedure is well fit for when data are collected in closed-loop as the initial
controller parameters are given, which is the case of a controller redesign, so in the first
iteration we already try to identify the transmission zero. If data are collected in an open-
loop experiment, then the user could start by identifying the controller based on an initial
reference model. One possible choice for the initial Td(q, η) is to use a reference model
that does not take account of the NMP transmission zeros, with a fixed numerator, and
that provides a slow closed-loop response. However, there is no guarantee that this choice
leads to a stable closed-loop with the identified controller.

If data are collected in closed-loop then the first step of the sequential least squares is
to identify the reference model. Remember that filter F̄ (q) is a function of an estimate of
η, which is unknown. In this case, we suggest to start the algorithm by using F̄ (q) = I to
obtain η(1) and then update the filter at each step using the obtained estimates of η.

Finally it is important to highlight that, just as in the SISO case, even though the min-
imization algorithm is iterative, the data from the system are collected just once, thereby
keeping the “one-shot” property of the VRFT method.

3.2.4 Two-step procedure

It has been shown in (93), (94) and (95) that the global minimum of the flexible
criterion J̃V R(η, P ) corresponds to a diagonal reference model that contains the NMP
transmission zeros of the plant, if any. The two-step procedure can then be described as
follows.

Step 1: Minimize J̃V R(η, P ); call (η̂, P̂ ) the minimizing parameters and check the step
response of Td(q, η̂). If it is satisfactory, apply C(q, P̂ ) to the system. If not, go to
Step 2.

Step 2: If the obtained Td(q, η̂) has NMP transmission zeros, then keep these zeros and
change the reference model poles according to a desired response; if not, change
poles and zeros accordingly. Apply the standard MIMO-VRFT (see Subsection
3.1.1).

Notice that while Step 1 is used to identify the NMP transmission zeros, Step 2 is
used to eliminate the drawback of having the same desired response for every loop. How-
ever, we cannot eliminate the NMP effect from every output since we do not know their
direction.
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3.3 Joint identification of NMP transmission zero and output direc-
tion ratio: OCI with flexible criterion

The VRFT method with a flexible criterion presented in the previous section has a
drawback: in order to identify the NMP transmission zero together with the optimal con-
troller, the flexible reference model must be such as to have the NMP transmission zero
in all outputs. Moreover, it has been shown in Subsection 3.1.1 that with a proper choice
of the reference model structure, one can move the NMP transmission zero effect to one
output. Thus, in this section we bring these ideas together in order to develop a flexible
criterion for the OCI so as to avoid addition of NMP transmission zeros in the closed-loop.

3.3.1 The flexible performance criterion

Recall that for the VRFT, the core idea of the flexible criterion was to let the reference
model be a parametrized transfer matrix. A similar approach is used here, but instead
of parametrizing the reference model, we will use a parametrization directly on the filter
Ld(q) (33), i.e.,

Ld(q) = Ld(q, η) (101)

where η ∈ Rc is a vector of free parameters of the numerators in Ld(q, η). More specifi-
cally, in light of the argument opening this section, let the reference model have a block-
triangular structure (82). Also, for instance, consider a 2 × 2 system where we want to
move the zero effect to output k = 2, so the parametrized loop function is of the form

Ld(q, η) =

 Td11 (q)

1−Td11 (q)
0

Td21(q)
(1−Td11 (q))(1−Td22 (q)))

Td22 (q)

1−Td22 (q)

 =

[
Ld11(q) 0

Ld21(q, η) Ld22(q, η)

]
, (102)

where we made clear that only the elements of the reference model with respect to
the output k to which we want to move the NMP transmission zero effect need to be
parametrized. We shall see next that with the choices proposed in Subsection 3.1.1.2
this will lead to a MISO (multiple-input single-output) least-squares identification with
constraints. Assume the ideal form of the elements of the reference model

Td11(q) =
1− p1

q − p1

Td22(q) =

(1−p122 )(1−p222 )

1−znm
(q − znm)

(q − p122)(q − p122)
Td21(q) =

K(q − 1)(q − z21)

(q − p1)(q − p122)(q − p122)

We then have

Ld(q) =


1− p1

q − 1
0

K(q − z21)

(q − 1)(q − znm(1−p122−p222 )+p122p222
1−znm

)

(1−p122 )(1−p222 )

1−znm
(q − znm)

(q − 1)(q − znm(1−p122−p222 )+p122p222
1−znm

)


(103)
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and a parametrized model of (103) can be described by

Ld(q, η) =

 1− p1 0

η1q − η2

q − η5

η3q − η4

q − η5

 1

q − 1
· (104)

Notice that only row 2 needs to be identified, and since the elements have a common de-
nominator, that can be achieved with a MISO least-squares identification with constraints
as follows.

LetC(q, P̂ ) be a fixed controller, then (42) can be rewritten in terms of the parametrized
Ld(q, η) as

G(q, η) = Ld(q, η)C−1(q, P̂ ). (105)

Define

ũ(t) =

(
1

q − 1
C−1(q, P̂ )

)
u(t) (106)

η = [η1 η2 η3 η4 η5]T (107)

ϕ(t) = [ũ1(t) ũ1(t− 1) ũ2(t) ũ2(t− 1) − y2(t− 1)]T (108)

so the simplified predictor (54) of the second row can be rewritten as

ŷ2(t, η) = ηTϕ(t). (109)

Predictor (109) is put in a classical least-squares form and can be solved as such. It is
important however to be aware of some constraints:

• Recall that the gain K and the zero z21 are related via (86). This degree of freedom
can lead to bad conditioning when solving the least-squares problem. We recom-
mend to choose K (i.e., fixing η1) and let the zero be identified.

• The element Td22(q) must satisfy Td22(1) = 1 for constant reference tracking. Under
the assumption that we want to identify a PID and that the ideal controller belongs to
the PID controller class, then η5 should evaluate to zero and, to satisfy Td22(1) = 1,
then η3 + η4 = (1− p122)(1− p222).

• Notice that in terms of reconstructing the reference model from η, η5 is not used at
all and the other terms are directly the reference model parameters.

These ideas can be put together in the following minimization problem

min
η

1

2
||ηTϕ(t)− y(t)||2

subject to

[
1 0 0 0 0

0 0 1 1 0

]
η =

[
K

(1− p122)(1− p222)

] (110)
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We remark that we presented the formulation considering output k = 2 and the PID con-
troller with derivative pole at zero (35), but it can be easily rewritten for other outputs
and/or controller structures. In terms of which output to choose to move the zero, a prac-
tical situation would be the output less important of the process, such as level control that
acts like buffering either for production or to reduce variability of the cascaded processes.

3.3.2 Sequential optimization

In Subsection 2.4.3 we presented the formulation for the MIMO-OCI to find the opti-
mal controller parameters when the reference model is fixed and in Subsection 3.3.1 we
changed the formulation in order to identify some reference model parameters to accom-
modate the system NMP transmission zeros when the controller is fixed.

Based on the idea of a sequential least-squares given for the VRFT, we apply a similar
procedure now using the OCI. Having in mind that the proposed formulation requires an
initial controller, the most natural step to take next is to proceed with the identification of
the free parameters in the reference model. The sequential optimization can be described
as

1. Given an initial controller C(q, P0), select the output k to which the NMP transmis-
sion zero effect is to be moved and choose an a priori value for Kjk. Let i = 1.

2. Solve (110) and find η(i). Fix the reference model Td(q, η̂(i)).

3. Apply the standard MIMO-OCI method to find P (i). Fix the controller C(q, P̂ (i)).

4. Increase i = i+ 1. Repeat steps 2–3 until some convergence criterion is achieved.

As in the VRFT method, the same batch of data is used throughout the sequential
optimization thus keeping the “one-shot” characteristic of the method.

3.4 Illustrative examples

In this section we present simulation studies using the flexible VRFT scheme with the
two-step procedure. We apply the proposed procedure to an NMP process with one NMP
transmission zero, first for the case without noise, then for a case where noise is present at
the output. We also consider the cases where Assumption 3.1 is satisfied and where it is
not. The idea is to explore the applicability of the proposed methodology from the ideal
case (when all assumptions are satisfied) to the most practical case. In Sub-Section 3.4.4
we provide an illustrative example using the OCI methodology.
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3.4.1 Process with one NMP transmission zero

Consider again the process of Example 2.2, repeated here for convenience:

G1(q) =


(q − 0.7)

(q − 0.9)(q − 0.8)

2

(q − 0.8)

1.25

(q − 0.8)

1.5

(q − 0.8)

 , (111)

which has an NMP transmission zero at q = 1.2 with yznm = [−0.6 0.8]T . The plant’s
open-loop response to a sequence of steps was portrayed in Figure 1, where no inverse
response is observed though the process is NMP.

Since the output has no inverse response and prior to any knowledge about the sys-
tem’s model, one might be tricked to choose a reference model without considering the
NMP transmission zero, like the following desired reference model:

Td(q) =


0.2

(q − 0.8)
0

0
0.2

(q − 0.8)

 ·
Applying the standard VRFT criterion with this reference model and using the open-loop
data collected to tune a PID controller yields

C(q, P̂ ) =


0.234(q + 0.2037)(q − 0.9073)

q(q − 1)

− 0.1911(q + 0.2666)(q − 0.8616)

q(q − 1)

− 0.195(q + 0.2037)(q − 0.9073)

q(q − 1)

0.2926(q + 0.1493)(q − 0.8377)

q(q − 1)

 ,
(112)

which causes the closed-loop to be unstable, as the corresponding closed-loop transfer
matrix will have a pole at q = 1.0105. As pointed out in (CAMPESTRINI et al., 2011),
the system instability is not caused by an unstable pole-zero cancellation between a con-
troller pole and the NMP zero of G1(q), since the controller poles are fixed. Notice that
in practice the model is unavailable, so an unstabilizing controller would have been put in
closed loop; this is why the subject of Chapter 5 is of ultimate importance.

We thus use the proposed two-step procedure. First, the loop is closed with an initial
stabilizing proportional controller given by

C(q, P (0)) =

[
0.5 0

0 0.5

]
· (113)

and data is collected in closed-loop with the reference signal being a sequence of steps –
the same sequence applied to the process input in the open-loop experiment presented in
Figure 1. For the remaining of this Section, we consider the tuning of a centralized PID
controller class (35) with fixed derivative pole at zero.
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3.4.1.1 Assumption 3.1 is not satisfied

Consider the following flexible reference model

Td(q, η) =
η1q + η2

(q − 0.8)2
I = [η1 η2]︸ ︷︷ ︸

ηT


q

(q − 0.8)2

1

(q − 0.8)2


︸ ︷︷ ︸

ϑ(q)

I, (114)

for which Assumption 3.1 is not satisfied for a centralized PID controller class (35), which
is the most common situation when the process is unknown.

Minimizing (90) using the iterative procedure (96)–(97) yields the following results
at iteration 30:

Td(q, η̂
(30)) =


− 0.1884(q − 1.212)

(q − 0.8)2
0

0
− 0.1884(q − 1.212)

(q − 0.8)2

 ,

C(q, P̂ (30)) =


0.4057(q − 0.7139)(q − 0.9168)

q(q − 1)

− 0.5166(q − 0.6879)(q − 0.922)

q(q − 1)

− 0.3166(q − 0.6876)(q − 0.9205)

q(q − 1)

0.2805(q − 0.6451)(q − 0.797)

q(q − 1)

 ·
(115)

The closed-loop response of plant (111) with controller (115) is shown in Figure 4.
Some coupling between loops appears in the actual response, specially from input 2 to
output 1, which represents a mismatch between the obtained response and the desired
one, which specified a decoupled behavior. This was to be expected, since the controller’s
structure is not complex enough to provide exactly the desired response for this plant. For
this case the performance measure (30) is evaluated as JMR(P̂ (30)) = 0.27.

One might be satisfied with this result and stop the design at this point. Nonetheless,
as indicated in (GONÇALVES DA SILVA; CAMPESTRINI; BAZANELLA, 2016), once
the NMP transmission zero has been identified, if one is aiming for the matched case, then
a proper choice of the second pole based on the NMP transmission zero can be done (see
also Sub-Subsection 3.1.1.1, p. 42). A suitable reference model choice in this case would
be

Td(q) =


− 0.388(q − 1.212)

(q − 0.588)(q − 0.8)
0

0
− 0.388(q − 1.212)

(q − 0.588)(q − 0.8)

 , (116)
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Figure 4 – Closed-loop response of system (111) with controller (115).
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to which the minimization of (80) yields the controller

C(q, P̂ ) =


0.6081(q − 0.8094)(q − 0.8997)

q(q − 1)

− 0.8038(q − 0.8048)(q − 0.9006)

q(q − 1)

− 0.5068(q − 0.8094)(q − 0.8997)

q(q − 1)

0.4112(q − 0.7227)(q − 0.7897)

q(q − 1)

 ·
(117)

The closed-loop response of plant (111) with controller (117) is shown in Figure 5, and
the comparison of the closed-loop control action with controllers (115) and (117) is shown
in Figure 6. With this simple change of the second pole, coupling has been much reduced,
with only a small change in the control action, and we obtained JMR(P̂ ) = 0.043, which
is much smaller than obtained previously. Notice that we only changed the reference
model whereas the data were the same – no additional experiment was required for the
redesign.

The main point of discussion here is that even when the flexible reference model does
not allow to achieve the matching condition (91), the NMP transmission zero can still
be identified with good precision. The quality of the estimate depends on the choice of
the reference model poles and, since NMP transmission zeros impose some limitations on
closed-loop bandwidth (SKOGESTAD; POSTLETHWAITE, 2005), the dominant pole of
the reference model should be chosen to provide a response that is only moderately faster
than in open-loop.
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Figure 5 – Closed-loop response of system (111) with controller (117).
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Figure 6 – Control action of the closed-loop response with controllers (115) (red line) and
(117) (dashed blue line).

0 20 40 60 80 100 120 140 160 180
-0.4

-0.2

0

0.2

0.4

u
1
(t

)

Closed-loop control action

0 20 40 60 80 100 120 140 160 180
Time (s)

-0.4

-0.2

0

0.2

0.4

u
2
(t

)

C(q,P (30)) C(q,P)

Source: author.



57

3.4.1.2 Assumption 3.1 is satisfied

Consider the following flexible reference model

Td(q, η) =
η1q + η2

(q − 0.8)(q − 0.6)
I = [η1 η2]︸ ︷︷ ︸

ηT


q

(q − 0.8)(q − 0.6)

1

(q − 0.8)(q − 0.6)


︸ ︷︷ ︸

ϑ(q)

I, (118)

which satisfies Assumption 3.1 for a PID controller class. That is, reference model (118)
allows minimization of (90) to achieve the matching condition (91) for some (η∗, P ∗) pair.

We minimize again (90) using the iterative procedure (96)–(97). Table 1 shows the
evolution of the estimated reference model parameters for some iterations, as well as the
intermediate cost J̃V R(η̂, P̂ (i−1)) and the final cost J̃V R(η̂(i), P̂ ). The controller parame-
ters have been omitted. Notice that in the first iteration, when the reference model does
not have the NMP transmission zero, the cost was J̃V R(η̂(1), P̂ ) = 6.50, significantly
higher compared to the result of the last iteration, when the NMP transmission zero was
correctly identified and the cost was reduced to J̃V R(η̂(30), P̂ ) = 1.0× 10−4.

Table 1 – Evolution of estimated num(Td(q)) and VRFT cost function
i num(Td(q)) J̃V R(η̂, P̂ (i−1)) J̃V R(η̂(i), P̂ )

1 0.13004(q − 0.3848) 67.764 6.497

2 0.06105(q + 0.3103) 8.786 6.450

3 −0.01139(q − 8.0194) 8.731 6.181

4 −0.08420(q − 1.9501) 8.332 5.641

10 −0.35951(q − 1.2225) 1.945 1.019

30 −0.4(q − 1.2000) 2.1× 10−4 1.0× 10−4

The obtained Td(q, η̂(30)) and C(q, P̂ (30)) at iteration 30 are:

Td(q, η̂
(30)) =


− 0.4(q − 1.2)

(q − 0.6)(q − 0.8)
0

0
− 0.4(q − 1.2)

(q − 0.6)(q − 0.8)

 ,

C(q, P̂ (30)) =


0.6(q − 0.8)(q − 0.9)

q(q − 1)

− 0.8(q − 0.8)(q − 0.9)

q(q − 1)

− 0.5(q − 0.8)(q − 0.9)

q(q − 1)

0.4(q − 0.7)(q − 0.8)

q(q − 1)

 ·
A good estimate of the NMP transmission zero is already obtained at iteration i = 10.

This observation is coherent with the findings of (MÅRTENSSON; HJALMARSSON,
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2009) for the SISO case where it is shown that NMP zeros are easier to be estimated than
minimum phase ones. Suppose now we would like to make loop 2 slower than loop 1,
with a pole at q = 0.9. Since now we know the NMP transmission zero location, we can
properly choose the reference model as

Td(q) =


− 0.4(q − 1.2)

(q − 0.6)(q − 0.8)
0

0
− 0.3(q − 1.2)

(q − 0.4)(q − 0.9)

 , (119)

and proceed with Step 2 of the proposed methodology. Minimizing (80) yields the con-
troller

C(q, P̂ ) =


0.6(q − 0.8)(q − 0.9)

q(q − 1)

− 0.6(q − 0.8)(q − 0.9)

q(q − 1)

− 0.5(q − 0.8)(q − 0.9)

q(q − 1)

0.3(q − 0.7)(q − 0.8)

q(q − 1)

 · (120)

Figure 7 shows the evolution of the reference model choices and the closed-loop re-
sponse of system (111) with controller (120), which has exactly the desired behavior (119)
specified in Step 2.

Figure 7 – Closed-loop response of system (111) with controller (120).
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3.4.2 Process with one minimum phase transmission zero

Consider a process described by

G2(q) =


25/24(q − 0.7)

(q − 0.9)(q − 0.8)

0.625

(q − 0.8)

0.4

(q − 0.8)

1.2(q − 0.78)

(q − 0.9)(q − 0.8)

 (121)

which has a minimum phase transmission zero at q = 0.6 with yz = [−0.75517 0.65553]T .
A batch of data is obtained from a closed-loop experiment, where the reference signal is
a PRBS and the controller is the same as (113).

3.4.2.1 Assumption 3.1 is satisfied

Let the flexible reference model be

Td(q, η) =
η1q + η2

(q − 0.85)(q + 0.36)
I, (122)

which satisfies Assumption 3.1. Minimization of (90) with 30 iterations resulted in:

Td(q, η̂
(30)) =


0.52827(q − 0.6138)

(q − 0.85)(q + 0.36)
0

0
0.52827(q − 0.6138)

(q − 0.85)(q + 0.36)

 ,

C(q, P̂ (30)) =


0.63249(q − 0.902)(q − 0.7804)

q(q − 1)

− 0.32986(q2 − 1.805q + 0.8145)

q(q − 1)

− 0.2113(q2 − 1.807q + 0.817)

q(q − 1)

0.54892(q − 0.9023)(q − 0.6994)

q(q − 1)

 ·
(123)

Notice that the identified transmission zero is not precisely q = 0.6, though it is not an
NMP transmission zero; it took actually 150 iterations to converge to q = 0.6. Closed-
loop response with controller (123) is shown in Figure 8.

Although it is a well known result in control theory that zeros of a system can not be
relocated with feedback control, so they should appear in the reference model anyway,
minimum phase zeros do not impose fundamental stability constraints. Also, the shape of
the response due to a pole at q = −0.36 might be disregarded by the user. Thus, he/she
could go for a simpler reference model – say, first order diagonal elements – and still
achieve a closed-loop with good resemblance to the reference model. We will retake this
discussion in the next subsection.

3.4.2.2 Assumption 3.1 is not satisfied

Let the flexible reference model be

Td(q, η) =
η1q + η2

(q − 0.85)(q − 0.4)
I, (124)
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Figure 8 – Closed-loop response of system (121) with controller (123).
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which does not satisfies Assumption 3.1 for the centralized PID controller class. Mini-
mization of (94) with 30 iterations resulted in:

Td(q, η̂
(30)) =


0.65615(q − 0.8628)

(q − 0.85)(q − 0.4)
0

0
0.65615(q − 0.8628)

(q − 0.85)(q − 0.4)

 ,

C(q, P̂ (30)) =


0.78828(q − 0.9543)(q − 0.131)

q(q − 1)

− 0.4107(q − 1.033)(q − 0.2054)

q(q − 1)

− 0.26299(q − 1.037)(q − 0.2008)

q(q − 1)

0.68378(q − 0.9056)(q − 0.07865)

q(q − 1)

 ·
The difference between the identified transmission zero here and the one identified

previously is remarkable, even though it is still minimum phase. Even after 150 iterations
the transmission zero identification converged to q = 0.865, which is far from 0.6. If one
would aim for a matched-case with the identified zero and keeping the dominant pole at
q = 0.85, the second pole should be chosen as q = 9.75 which would lead to an unstable
choice for the reference model. The point here is that the identification of minimum phase
transmission zeros can be misleading if neither the controller structure nor the reference
model’s are flexible enough to identify them, as was already pointed out for the SISO case
in (MÅRTENSSON; HJALMARSSON, 2009).
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Since the identified transmission zero is minimum phase (as it was in the matched
case), we will proceed to Step 2 with a model of reduced order:

Td(q) =


0.15

(q − 0.85)
0

0
0.15

(q − 0.85)

 (125)

to which minimization of (36) yields the controller

C(q, P̂ ) =


0.19949(q − 0.9324)(q − 0.3619)

q(q − 1)

− 0.14721(q − 0.9753)(q − 0.5473)

q(q − 1)

− 0.069296(q − 0.984)(q − 0.4976)

q(q − 1)

0.21888(q − 0.9171)(q − 0.1977)

q(q − 1)

 ·
(126)

Figure 9 shows the closed-loop response of system (121) with controller (126). The
desired response was achieved almost exactly in both outputs, but we notice that the
performance was just a little worse in output 1 where yz is larger.

Figure 9 – Closed-loop response of system (121) with controller (126).
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3.4.3 The noisy unmatched-case

Consider again system (111) in closed-loop with controller (113). We applied a PRBS
with amplitude 1 and length of 1260 samples in the reference and the output is corrupted
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by white noise with σ2 = 0.025 (SNR ≈ 25 dB), which represents v(t) in (25). Consider
also the parametrized reference model (114), representing the unmatched-case – which
happens in most practical situations – in order to show how our methodology works in
such case.

We performed 1001 Monte Carlo experiments (in order to estimate 1000 controllers
using instrumental variables), with 70 iterations each and the estimated zero is portrayed
in Figure 10. From the experiments, 29 applications of the proposed methodology resulted
in estimations of the NMP transmission zero with error larger than 5%; 225 resulted in
estimations of the NMP transmission zero with error between 2–5%; and 746 resulted in
estimations of the NMP transmission zero within a 2% margin around the actual value.
From this batch we get a mean value of µẑnm = 1.21, which is almost equal to the one
obtained in the noiseless case. The standard deviation of the estimate was σẑnm = 0.0224.

Figure 10 – Identified transmission zeros in 1000 Monte Carlo experiments; the 2% and
5% error margins are shown by the red and black horizontal lines, respectively.
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We took at random one experiment from this batch, which output is portrayed in
Figure 11, and obtained the following reference model and controller:

Td(q, η̂
(70)) =


− 0.224(q − 1.179)

(q − 0.8)(q − 0.8)
0

0
− 0.224(q − 1.179)

(q − 0.8)(q − 0.8)

 ,
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C(q, P̂ (70)) =


0.3231(q − 0.6044)(q − 0.9248)

q(q − 1)

− 0.4553(q − 0.6128)(q − 0.9282)

q(q − 1)

− 0.2619(q − 0.5962)(q − 0.9258)

q(q − 1)

0.2184(q − 0.4494)(q − 0.8301)

q(q − 1)

 ·
(127)

Figure 11 – Output signal y(t) of the closed-loop system with initial controller (113) of
one noisy experiment.
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The closed-loop response with the controller (127) is shown in Figure 12. Notice
that apart from the noise the overall response resembles the one obtained in Figure 4,
even though the identified zero is not exactly the same. In this case, the cost function
evaluated JMR(P̂ ) = 1.05, a value greater than that of obtained in Subsection 3.4.1.1
with controller (115) due to additive noise.

3.4.4 OCI with flexible criterion

Consider again system (111), now operating with the initial controller

C0(q) =


0.1(q − 0.9)

q − 1

− 0.1(q − 0.9)

q − 1
− 0.1(q − 0.9)

q − 1

0.2(q − 0.9)

q − 1

 · (128)
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Figure 12 – Closed-loop response of system (111) with controller (127).
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Let the parametrized reference model be given by

Td(q, η) =


η1q − η2

(q − 0.6)(q − 0.8)

η3q − η4

(q − 0.6)(q − 0.75)(q − 0.8)

0
0.25

q − 0.75

 · (129)

with respective parametrized loop function

Ld(q, η) =

η1q − η2

q − η5

η3q − η4

q − η5

0 0.25

 1

q − 1
· (130)

This reference model satisfies Assumption 3.1 for a centralized PID controller class, and
also moves the NMP transmission zero effect to output 1. We set η3 = 4/3.

In order to collect data from the system, we set a closed-loop experiment where the
reference r(t) is a PRBS with amplitude ±5 and measure signals u(t) and y(t). We
also consider the case where the output is corrupted by white Gaussian noise such that
SNR ≈ 8.5 dB at the closed-loop output y(t) for both loops. Notice that the SNR value
is much lower than the one used in VRFT, as this approach is cast in a prediction error
framework, so it is supposed to cope better with a larger amount of noise. The result of
the experiment is shown in Figure 13.
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Figure 13 – Closed-loop experiment of system (111) with initial controller (128).

0 200 400 600 800 1000 1200

-2

0

2
A

m
pl

itu
de

 

Closed-loop response with initial controller

0 200 400 600 800 1000 1200

Time (s)

0

1

2

A
m

pl
itu

de
 

Reference Output Control Signal

Source: author.

We then apply the proposed methodology for both cases. For the noise-free case we
obtained

C1(q, P̂ ) =


0.593(q − 0.798)(q − 0.9)

q(q − 1)

− 1.45(q − 0.797)(q − 0.9)

q(q − 1)

− 0.497(q − 0.799)(q − 0.9)

q(q − 1)

1.39(q − 0.786)(q − 0.805)

q(q − 1)

 (131)

Td1(q, η̂) =


− 0.40(q − 1.2)

(q − 0.6)(q − 0.8)

1.33(q − 0.896)(q − 1)

(q − 0.6)(q − 0.75)(q − 0.8)

0
0.25

(q − 0.75)

 , (132)

and for the noisy case

C2(q, P̂ ) =


0.718(q2 − 1.73q + 0.752)

q(q − 1)

− 1.24(q − 0.829)(q − 0.903)

q(q − 1)

− 0.569(q − 0.834)(q − 0.885)

q(q − 1)

1.26(q − 0.762)(q − 0.831)

q(q − 1)

 (133)

Td2(q, η̂) =


− 0.38(q − 1.21)

(q − 0.6)(q − 0.8)

1.33(q − 0.854)(q − 1)

(q − 0.6)(q − 0.75)(q − 0.8)

0
0.25

(q − 0.75)

 · (134)
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Notice that even with a low SNR, we obtained a good estimation of the NMP trans-
mission zero in Td2(q, η̂). Even though the controllers’ gains differ from each other, their
respective closed-loop response does not as much. Figure 14 portrays the closed-loop
response obtained with controllers (131) and (133) to a sequence of steps. Notice that the
inverse response to a step appears only in loop 1 (as designed) whereas loop 2 is unaffected
by the NMP behavior. For controller C1(q) the Model Reference cost function evaluated
to JMR(P̂ ) = 0.09857, and for controller C2(q) it was obtained JMR(P̂ ) = 2.3769.

Figure 14 – Closed-loop response of system (111) with controllers (131) and (133).
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Consider now the parametrized reference model

Td(q, η) =


η1q − η2

(q − 0.8)2

η3q − η4

(q − 0.75)(q − 0.8)2

0
0.25

q − 0.75

 , (135)

which does not satisfy Assumption 3.1 for a PID controller class and where η3 = 4/3

has been fixed. We applied the same OCI procedure with the noisy data set collected
previously and obtained

C3(q, P̂ ) =


0.277(q − 0.701)(q − 0.91)

q(q − 1)

− 0.91(q − 0.668)(q − 0.918)

q(q − 1)

− 0.261(q − 0.743)(q − 0.902)

q(q − 1)

1.03(q − 0.625)(q − 0.858)

q(q − 1)

 (136)
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Td3(q, η̂) =


− 0.2825(q − 1.142)

(q − 0.8)2

1.333(q − 0.8829)(q − 1)

(q − 0.75)(q − 0.8)2

0
0.25

(q − 0.75)

 . (137)

Even though the estimated NMP transmission zero in Td3(q, η̂) is not as accurate as
in the previous designs, controller (136) still yields a stable closed-loop response that
resembles the identified reference model as portrayed in Figure 15. For controller C3(q)

the Model Reference cost function evaluated to JMR(P̂ ) = 2.1211.

Figure 15 – Closed-loop response of system (111) with controller (136).
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3.5 Chapter conclusions

Based on a previous procedure elaborated for SISO systems, we have extended the
MIMO-VRFT method to cope with NMP multivariable plants. By means of a flexible
reference model, the optimization is able to both identify NMP transmission zeros and
include them in the reference model to find the optimal controller parameters. The for-
mulation however requires that the same transient performance is specified for all loops
– that is, the reference model must be diagonal with the same transfer function at all its
diagonal elements. This limitation is overcome with a two-step procedure: in the first step
the NMP transmission zero location is estimated and, if the closed-loop response obtained
in Step 1 is not satisfactory, then Step 2 is performed, which consists of a MIMO-VRFT
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design for NMP plants with previously known transmission zeros (GONÇALVES DA
SILVA; CAMPESTRINI; BAZANELLA, 2016). However, the NMP effect is still present
in all outputs.

To alleviate this constraint we explored the idea of a flexible criterion with the MIMO-
OCI method. In this case, instead of parametrizing the reference model directly, the idea
was used in a desired loop function, which is a function of the reference model. The
solution uses a block diagonal structure for the reference model, which allows to move
the NMP effect to a desired output. Simulation examples showed the effectiveness of the
proposed methodologies.
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4 DATA-DRIVEN LQR CONTROL

It is two over there, two over here.

João Bosco

This chapter deals with a data-driven approach to the discrete-time infinite horizon
Linear Quadratic Regulator (LQR) problem. Previous approaches to this problem con-
sider an iterative finite horizon case where the state variables are not measurable and the
computation yields a closed-loop control signal, and not the (sub-)optimal gain. Also,
on-line implementation issues have been reported due to increasing size of matrices, but
mainly because their computed control signal is always delayed. In this chapter we change
the perspective in order to find the optimal infinite horizon LQR gain only after a large
batch of data has been collected. The results of this chapter have been published in (GON-
ÇALVES DA SILVA et al., 2019).

The LQR design is a classical control problem whose analysis and solution can be
found in most textbooks on control theory. It requires the solution of a Riccati equation
which is a function of the plant’s state-space model, or the plant’s Markov parameters
when the solution is given in closed-form (also called batch-form) (LEWIS, 1981; FU-
RUTA; WONGSAISUWAN, 1993). Whether applying the classical approach of explic-
itly solving the Riccati equation, or using a plant’s state-space description to calculate
the Markov parameters and then feed them into the closed-form solution, this is a model-

based design approach.
Data-Driven optimal control design methods that start from the LQR/LQG formu-

lation have also been developed, based on these closed-form solutions of the Riccati
equation (SKELTON; SHI, 1994; FURUTA; WONGSAISUWAN, 1995; AANGENENT
et al., 2005). However, they directly estimate the optimal control input at each time in-
stant. Thus, they can not be said to solve the LQR problem in its classical formulation,
and can mainly be cast within a predictive control framework.

Motivated by applications in which a state-feedback is to be designed but a good
enough model is not available and is of no interest per se, we present in this chapter a
DD approach to the solution of the LQR design. Otherwise stated, we provide a DD so-
lution for the computation of the optimal state-feedback gain. In a DD control design,
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the controller structure is defined a priori and the controller’s parameters are tuned with
the use of a large batch of data, usually after such data are acquired. As we have shown
in previous chapters, in most of the DD control literature, the controller structure con-
sists of output feedback with a predefined transfer function with parameters to be tuned
considering a Model Reference approach.

The infinite-horizon LQR problem fits this formulation perfectly: one has a fixed con-
troller structure (the state-feedback gain) with a few parameters to tune, and the controller
must minimize a given quadratic performance criterion. The plant’s model is just an in-
termediate step in the design and often has no interest in itself, the controller being the
final and only objective. Thus, we provide a method to compute the LQR state-feedback
gain from data without the intermediate step of identifying a model of the system.

This chapter is organized as follows: the LQR design problem is presented in Sec-
tion 4.1, along with its closed-form solution. It is shown that the computation of the
LQR state-feedback gain by the closed-form solution requires knowledge of two large
matrices: an extended observability matrix and a Toeplitz matrix of the plant’s Markov
parameters. Then, in the ensuing sections 4.2 and 4.3, algorithms to estimate these two
matrices directly from data collected from the plant are provided. In Section 4.4 we briefly
review the Internal Model principle and the formulation of reference tracking as a state-
feedback problem. Two simulation examples are given in Section 4.5 to illustrate the
method’s properties. One of our motivating applications – the control of uninterruptible
power sources – is explored in Section 4.6, where we present a practical application of
the design methodology. It will be seen in the experimental results that our design com-
pares favorably with previously presented model-based solutions to this same practical
problem.

4.1 Problem statement

Consider the state-space representation (2) of a strictly-proper linear time-invariant
discrete-time system, reproduced here

x(t+ 1) = Ax(t) +Bu(t) + Eν(t)

y(t) = Cx(t) + Fw(t).
(138)

For the time being, let E = F = 0, and we shall also assume that A is stable.
The infinite horizon LQR control problem can be summarized as follows: find the

optimal state-feedback gain K of the control law

u(t) = −Kx(t) (139)

such that the quadratic cost function

J =
∞∑
t=0

(y(t)TQy(t) + u(t)TRu(t)) (140)
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is minimized subject to system (138), where Q and R are positive definite symmetric
weighting matrices. The optimal gain is given by

K = (R +BTXB)−1(BTXA) (141)

where X is the unique positive definite solution to the discrete time algebraic Riccati
equation (DARE)

X = ATXA− (ATXB)(R +BTXB)−1(BTXA) + CTQC. (142)

A closed-form solution to the DARE (142) has been reported in (LEWIS, 1981; FURUTA;
WONGSAISUWAN, 1993). For a sufficient large Nm, this solution can be written as

X = OT (Q−1
Nm+1 + SR−1

Nm+1S
T )−1O, (143)

where

O =



C

CA

CA2

...
CANm


, (144)

S =



0 · · · · · · · · · 0

CB 0
. . . ...

CAB CB
. . . . . . ...

...
... . . . . . . ...

CANm−1B CANm−2B · · · CB 0


,

Rj , diag(R,R, . . . , R), Qj , diag(Q,Q, . . . , Q),

with Rj and Qj containing j = Nm + 1 diagonal blocks each.

The matrix O is an extended observability matrix for system (138) and S is a Toeplitz
matrix of its Markov parameters (22):

Mi = CA(i−1)B, i = 1, 2, . . . , Nm. (145)

As shown in (LEWIS, 1981), using (143) in (141) and rearranging some terms, the
LQR state-feedback gain K can be computed as a function of the Markov parameters as

K = [R + MT (Q−1
Nm

+ SR−1
Nm

ST )−1M]−1MT (Q−1
Nm

+ SR−1
N ST )−1O+, (146)
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where

M =


M1

M2

...
MNm

 ∈ <lNm×p, (147)

S =



0 · · · · · · · · · 0

M1 0
. . . ...

M2 M1
. . . . . . ...

...
... . . . . . . ...

MNm−1 MNm−2 · · · M1 0


∈ <lNm×pNm , (148)

O+ =
[
(CA)T (CA2)T · · · (CANm)T

]T
∈ <lNm×n. (149)

Notice that the gain K in (141) is a function of A,B, and X , which is also a function
of system matrices A,B and C. Now we have an expression that depends basically on
S and O+. If these quantities can be obtained from data, then a data-driven method can
be formulated. So, in order to succeed in this data-driven approach, we need to identify
the system’s Markov parameters – the matrix S – and an extended observability matrix
O+. Since a state-feedback control is to be implemented, we can assume that the state is
measurable, so are the inputs and outputs. Thus, let us pose the problem formally:

Given the data set

ZN = [u(0), u(1), . . . , u(N), y(0), y(1), . . . , y(N), x(0), x(1), . . . , x(N)], (150)

find the optimal state-feedback gain K as in (146). To do so, a sequence of Nm Markov

parameters and the Nm extended observability matrix must be estimated from data.

In the sequel we present a procedure to obtain both the Markov parameters and the
extended observability matrix without using a model for the system.

4.2 Markov parameters estimation

The estimation of the system Markov parameters via the so-called ARMarkov/Toeplitz
models is reviewed next. Notice that estimating the system’s Markov parameters is equiv-
alent to identifying an Nm-th order Finite Impulse Response (FIR) representation for the
system. We now follow the description in (VAN OVERSCHEE; DE MOOR, 2012).

The main idea behind the algorithm is to observe Nm + 1 future data so the state
variable can be eliminated and an ARMarkov/Toeplitz model can be identified. We sum-
marize the procedure next.



73

Let the state be repeatedly substituted Nm + 1 times in (138); then

x(t+Nm + 1) = ANm+1x(t) + Tum(t)
y(t)

y(t+ 1)
...

y(t+Nm)

 = Ox(t) + S


u(t)

u(t+ 1)
...

u(t+Nm)


︸ ︷︷ ︸

um(t)

(151)

where T = [ANmB . . . AB B], O is given in (144) and S in (148).
According to (LIM; PHAN; LONGMAN, 1998), as long as (Nm + 1)l ≥ m, it is

guaranteed for an observable system that there exists a matrix F such thatANm+1 +FO =

0, which ensures that there exists an expression where the state is eliminated from (151).
This allows to write a predictor for the system’s output as follows.

Let the Hankel matrix of a given signal – say e(t) – be defined as

H(e(t)) ,


e(t) e(t+ 1) · · · e(t+ L− 1)

e(t+ 1) e(t+ 2) · · · e(t+ L)
...

... . . . ...
e(t+Nm − 1) e(t+N) · · · e(t+Nm + L− 2)

 . (152)

Define the set of data matrices

Up = H(u(0)) Uf = H(u(Nm))

Yp = H(y(0)) Yf = H(y(Nm)).
(153)

Then a predictor of the system output can be written as (VAN OVERSCHEE; DE MOOR,
2012)

Yf = [O(C + FS) −OF S]︸ ︷︷ ︸
W

UpYp
Uf


︸ ︷︷ ︸

Φ

. (154)

Thus, an estimate Ŵ of W can be obtained by solving the least-squares problem ;

Ŵ = YfΦ
† (155)

with [·]† denoting the Moore-Penrose pseudo-inverse, and extract an estimate Ŝm from the
rightmost pNm columns of the estimated Ŵ. In a parallel with the classical parametric
identification problem, Nm plays the role of the number of parameters to be identified
and L accounts for the amount of data used in identification; so larger L yields better
estimates. If the system has a feedthrough term, i.e., D 6= 0 (and therefore M0 = D),
than the main diagonal of Ŝm will contain this term. Moreover, M can be extracted from
the first column of Ŝ. This estimation has been shown to be consistent for the Markov
parameters only (KAMRUNNAHAR; HUANG; FISHER, 2000).
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Remark 4.1. When data is corrupted with noise, then the upper triangular part of Ŝm is

not necessarily composed of zeros, but one can forcibly set those values after the estima-

tion is done.

4.3 Extended observability matrix estimation

Since a state-feedback control is to be implemented, we can assume that the state
is measurable. Hence, in this section we present two original algorithms to identify an
extended observability matrix in the same state coordinates we are measuring and later
we discuss their properties. We define the vector of measured state by

X , [x(0) x(1) x(2) · · · x(L− 1)]. (156)

4.3.1 Algorithm 1

The output equation (151) can also be written with Hankel matrices without eliminat-
ing the state vector. It can be put in an extended output matrix equation as (VAN OVER-
SCHEE; DE MOOR, 2012)

Yp = OX + SUp. (157)

Since an estimate Ŝ can be obtained using the algorithm provided in Section 4.2, and
Up and Yp can be formed with collected data, we can then solve the system of equations
in (157) for O:

Ô = (Yp − ŜUp)X
†. (158)

To obtain O+, one simply removes the first l rows of O.

4.3.2 Algorithm 2

First, define Upo as the geometric operator that projects the row space of a matrix onto
the orthogonal complement of the row space of the matrix Up in (153)

Upo , IL − UT
p (UpU

T
p )−1Up (159)

where IL is an identity matrix of size L. Then by post-multiplying the extended output
matrix (157) by Upo, we have

YpUpo = OXUpo + SUpUpo

YpUpo = OXUpo (160)

Notice that by using the projection Upo we eliminate the need to know, or estimate, S.

An estimator of the extended observability matrix can thus be computed as

Ô = (YpUpo)(XUpo)
†. (161)
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4.3.3 Estimates properties

The estimates just provided allow the computation of the state-feedback gain accord-
ing to (146) and, as shown in (LEWIS, 1981), in the noise-free case the gain thus com-
puted converges asymptotically, as the number of Markov parameters Nm → ∞, to the
optimal LQR state-feedback. A simulation example in Section 4.5 illustrates this prop-
erty.

On the other hand, when the state measurement is corrupted by noise, one can ex-
pect some bias in the estimates of the extended observability matrix, since both solutions
presented are of a least-squares nature. We now briefly discuss the bias and covariance
of these estimates. Consider the system state-space representation (138) with the noise
terms. We can write the extended output equation as

Yp = OX + SUp + SEVp + FWp (162)

where Vp = H(ν(0)) and Wp = H(w(0)) are Hankel matrices of the noise sequences
ν(t) and w(t) respectively, and SE has the same structure as S with E in lieu of B. We
can also write

X = Xo + EV (163)

where V is a row vector of the noise sequences ν(t). We also assume the sequence u(t)

uncorrelated with ν(t), as open-loop experiments are being carried out to collect data.

4.3.3.1 Algorithm 1

Let E [·] denote the expected value function. The bias of the first algorithm is given by

B(Ô) = E [Ô]−O = E [(Yp − ŜUp)X
† −O]. (164)

Inserting (162) into (164)

B(Ô) = E [(OX + SUp + SEVp + FWp − ŜUp)X
† −O]

= E [O(XX† − I) + (S− Ŝ)UpX
† + SEVpX

† + FWpX
†] (165)

First term of (165) is null when X is full row rank – a constraint not so hard to satisfy
(so that XX† = I), and the expectation of the second term is null either if Ŝ = S or
because u(t) is uncorrelated with ν(t). We then have

B(Ô) = SEE [VpX
†] + FE [WpX

†]. (166)

If we further assume that ν(t) is uncorrelated with w(t), then

B(Ô) = SEE [VpX
†]. (167)
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The covariance of the first algorithm is given by

V(Ô) = E [(Ô− E [Ô])(Ô− E [Ô])T ] (168)

= E [((S− Ŝ)UpX
† + SEVpX

† + FWpX
† − SEE [VpX

†]− FE [WpX
†])

× ((S− Ŝ)UpX
† + SEVpX

† + FWpX
† − SEE [VpX

†]− FE [WpX
†])T ]

which after some algebraic manipulation results in

V(Ô) = E
{

[(S− Ŝ)UpX
† + SEVpX

† + FWpX
†]ΛT

1 +

[(S− Ŝ)UpX
† + Λ1][(S− Ŝ)UpX

†]T
} (169)

Λ1 = SE(VpX
† − E [VpX

†]) + F (WpX
† − E [WpX

†]) (170)

4.3.3.2 Algorithm 2

Following the same steps as in Algorithm 1, the following expressions are obtained
for the bias of the estimates given by Algorithm 2.

B(Ô) = E [(YpUpo)(UpoX)† −O] = E [(OX + SUp + SEVp + FWp)Upo(XUpo)
† −O]

= E [O((XUpo)(XUpo)
† − I) + SEVpUpo(XUpo)

† + FWpUpo(XUpo)
†]

= SEE [VpUpo(XUpo)
†] + FE [WpUpo(XUpo)

†]. (171)

If we further assume that ν(t) is uncorrelated with w(t), then

B(Ô) = SEE [(VpUpo)(XUpo)
†]. (172)

For the covariance, one obtains

V(Ô) = E
{

[SE(VpUpo)(XUpo)
† + F (WpUpo)(XUpo)

†]ΛT
2

}
(173)

Λ2 = SE[(VpUpo)(XUpo)
† − E [(VpUpo)(XUpo)

†]]+

F [(WpUpo)(XUpo)
† − E [(WpUpo)(XUpo)

†]
(174)

Notice that, as expected, the bias of both estimates is inversely proportional to the
signal to noise ratio and the estimates will be unbiased only if there is no noise in the
measurement. We provide an illustrative example in Section 4.5.3 to compare the bias,
covariance and – most importantly – the mean square error resulting from the two algo-
rithms.

4.4 Internal model principle and augmented state space

The internal model principle is a well-known concept in control theory. The core
idea from a control design perspective is to insert a stabilizing compensator in feedback
on the main loop such that its modes include the ones that are the goal for reference
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tracking or disturbance rejection (FRANCIS; WONHAM, 1976), mainly constant and
sinusoidal references. With some abuse of nomenclature, we shall refer to an internal
model controller (IMC) as a controller that incorporates the internal model principle (not
to be confused with internal model control as defined in (MORARI, 1983)). Thus, in
this section we show how to use open-loop data to obtain an augmented state and output
vectors in order to adjust the gains also for reference tracking considering a feedback loop
with an internal model controller.

Let
C = (Ac, Bc) (175)

denote the discrete-time state and input matrices of the internal model controller equation,
whose nc states are measurable and Bc has pc inputs. Assume that every output of the
system has to follow a reference represented by the internal model controller. Then the
augmented open-loop space-state representation of system (138) with controller (175) is
given by

xa(t+ 1) =

[
A 0m,nc×l

−C ⊗ (Bc1) I ⊗ Ac

]
︸ ︷︷ ︸

Aa

xa(t) +

[
B

0nc×l,p

]
︸ ︷︷ ︸

Ba

u(t)

ya(t) =

[
C 0l,nc×l

0nc×l,m Inc×l

]
︸ ︷︷ ︸

Ca

xa(t)

(176)

where⊗ is the Kronecker product, 1 is a column vector of size pc with 1 as elements, and
I is an identity matrix of size l. From partition (2, 1) ofAa we see that the open-loop IMC
state vector needed to compute the gain K can be obtained by simply filtering the plant
outputs by −C.

For example, the state equation of the integrator 1
q−1

can be represented by

xc(t+ 1) = 1︸︷︷︸
Ac

xc(t) + 1︸︷︷︸
Bc

(r(t)− y(t)) (177)

and a resonant controller at frequency ωn with a pre-warping Tustin representation can be
realized as

xc(t+ 1) =

[
0 1

−1 2 cos(ωnTs)

]
︸ ︷︷ ︸

Ac

xc(t) +

[
0

1

]
︸︷︷︸
Bc

(r(t)− y(t)) (178)

where Ts is the sampling time.
Let xIMC(t) represent the state of the open-loop IMC1 , and the augmented output

and state vector be given by ya(t) = [y(t) xIMC(t)]T and xa(t) = [x(t) xIMC(t)]T ,
respectively. Thus, these are the vectors that should be used, along with u(t), to estimate
the Markov parameters and the extended observability matrix.

1which can be obtained with MATLAB command lsim; for instance, xIMC=-lsim(IMC,y).



78

4.5 Simulation examples

4.5.1 Regulation control

In this first example we illustrate the convergence of the proposed method. Consider
a system as in (138) whose matrices are given by

A =

[
1 0.15

−0.2 0.6

]
B =

[
0.04 0.01

0.02 −0.01

]

C =

[
1 2

0 1

]
E = F = 0·

(179)

Also, let the performance requirements be given by

R = 0.2I2 Q = 20Il, (180)

where Il is the identity matrix of size l (number of outputs), that is, we are valuing more
the evolution of the state than the control effort. The model-based optimal LQR controller
is given by

K =

[
4.6491 7.5226

1.4461 −1.9886

]
· (181)

In order to apply the proposed methodology we set an open-loop experiment where
the input signal is a PRBS with amplitude 1 and length 1022 samples, and both y(t) and
x(t) data were collected. Table 2 shows the convergence of the state-feedback gain as we
choose to identify more Markov parameters.

Table 2 – Convergence of the state-feedback gain (146) with increasing identified Markov
parameters

Nm K̂

3

[
2.9766 7.9269

0.060133 −1.5126

]

5

[
3.4144 7.887

0.48589 −1.7033

]

10

[
4.2314 7.644

1.127 −1.8959

]

30

[
4.6463 7.5234

1.444 −1.988

]

50

[
4.6491 7.5226

1.4461 −1.9886

]

At Nm = 50, a value close to the system’s open-loop settling time (approximately 45

samples), K̂ equals the model-based solution (181) up to the fifth significant digit. Figure
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16 shows the closed-loop response with the gain obtained with Nm = 50 to an initial state
x0 = [0.8 1.5]T .

Figure 16 – Closed-loop response of system (179) for regulation control with state-
feedback gain K̂50.
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4.5.2 Integral control

Consider again system (179) and assume now we want both outputs to follow constant
references, that is, we are aiming for a design with integral control in both outputs. For
the sake of completeness, the augmented open-loop state-space representation (176) with
compensator (177) is given by

Aa =


1 0.15 0 0

−0.2 0.6 0 0

−1 −2 1 0

0 −1 0 1

 Ba =


0.04 0.01

0.02 −0.01

0 0

0 0



Ca =


1 2 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ·
(182)

In order to apply the proposed method, the output obtained in the open-loop experiment
performed before was filtered by −C as in (177). Notice that now we have l = 4, and the



80

LQR performance is again set as in (180). Again, we estimated 50 Markov parameters
and the extended observability matrix, and we obtained:

K̂50 =

[
13.088 19.214 −4.8911 1.2088

12.314 −21.84 1.2736 8.2577

]
(183)

which again matches the model-based LQR gain up to the fifth significant digit. Figure
17 shows the closed-loop response to a sequence of steps.

Figure 17 – Closed-loop response of system (179) for integral control with state-feedback
gain (183).
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4.5.3 The noisy case: observability matrix statistical properties

We provide now a simple example to illustrate bias and covariance of the observability
matrix estimators. Consider a system with state-space matrices

A = 0.14, B = 1.72, C = 1, E = 1, F = 0, (184)

and let the LQR performance matrices be R = 0 and Q = 1, so we are aiming for a
dead-beat control, and convergence can be found with Nm = 3 (due to row removal,
that means the extended observability matrix will be of size 2). The actual extended
observability matrix is then O+ = [0.14 0.0196]T .

We set a Monte Carlo experiment with 5000 runs and with a PRBS input of length
1022 samples and ν(t) as white noise with variance σ2 = 0.1. Figure 18 portrays the
results obtained with both estimators (158) and (161).
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Figure 18 – Estimates of the observability matrix in a Monte Carlo experiment. The
ellipses represent the covariance regions around the mean value with 95% confidence.
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As mentioned before, the estimate bias with Algorithm 1 is smaller, whereas with Al-
gorithm 2 a smaller covariance is achieved. In fact, we obtained E(Ô1) = [0.1327 0.01865]T

and E(Ô2) = [0.1223 0.01704]T , and the eigenvalues λ of the covariance matrices
λ[E(V̂1)] = [1.365 1.938]T × 10−4 and λ[E(V̂2)] = [1.093 1.3]T × 10−4. Notice that
the largest eigenvalue with Algorithm 2 is approximately the smallest eigenvalue with
Algorithm 1.

We also computed the eigenvalues of the MSE matrix of both algorithms and obtained
λ(MSE1) = [1.723 × 10−4 1.812 × 10−2]T and λ(MSE2) = [1.182 × 10−4 1.537 ×
10−2]T . Note that Algorithm 2 provides a smaller MSE, even though its bias is larger.

4.5.4 NMP system

Consider the following state-space representation of the NMP system (111)

A =


0.8

√
10

10
0 0

0 0.9 0 0

0 0 0.8 0

0 0 0 0.8

 B =


0 0

1 0

1 0

0 2


C =

[√
10

10
1 0 1

0 0 1.25 0.75

]
·

(185)
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We consider integral control of both outputs and a performance criterion given by

Q =


50 0 0 0

0 50 0 0

0 0 1 0

0 0 0 1

 R =

[
0.001 0

0 0.001

]
· (186)

In order to obtain data from the system, we set an open-loop experiment with PRBS
input of amplitude ±1 and length 2555 samples. We also considered a state vector noise
ν(t) as in (138) such that SNR = 12 dB at the output y(t) (noise vector w(t) was set to
zero). The output was filtered by (177) to obtain the IMC state vector for our proposed
algorithm. We estimated 90 Markov parameters and the extended observability matrix,
and we obtained:

K̂90 =

[
0.1929 0.2275 0.1252 0.04293 −0.02594 0.07550

−0.01771 0.09016 0.09622 0.3471 −0.01777 −0.08516

]
· (187)

Notice that no adjustments were needed in any step of the estimation process in order
to account for the NMP characteristic of the system. Figure 19 shows the closed-loop
response to a sequence of steps and with E = F = 0, i.e, no noise.

Figure 19 – Closed-loop response of system (111) for integral control with state-feedback
gain (187).
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4.6 Control of an UPS

We now consider a practical application of the proposed methodology to an unin-
terruptible power supply (UPS). This plant has been studied before in a model-based
approach in (PEREIRA et al., 2014; LORENZINI et al., 2015).

Consider the simplified electrical diagram of the output stage of a single-phase UPS
system, as illustrated in Figure 20. The PWM (Pulse Width Modulation) comparator input
drives the switching between S1 and S2. The system output is the voltage on the capacitor,
where Lf and Cf are the output filter inductance and capacitance respectively, whereas
RLf

accounts for the inductor resistance.

Figure 20 – Schematic representation of the UPS with load.
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The load effect on the system output is modeled by a parallel connection of an uncer-
tain admittance Y0(t) and an unknown periodic disturbance given by the current source
id(t). Switching between S1 and S2 with a PWM is modeled by a gain KPWM multiplied
by the control input. Also, defining the system state vector as the inductor current and the
capacitor voltage, x(t) = [i(t) v(t)]T , the continuous-time state-space representation for
the UPS system is given by:

ẋ =

−RLf

Lf

−1
Lf

1
Cf

−Y0
Cf


︸ ︷︷ ︸

A

x+

KPWM

Lf

0


︸ ︷︷ ︸

B

u+

 0

−1
Cf


︸ ︷︷ ︸
Bd

id

y = [ 0 1 ]︸ ︷︷ ︸
C

x

(188)

where u is the PWM control input; id is the current source representing the exogenous
disturbances generated by non-linear loads; and y is the output voltage to be controlled.
Admittance Y0 can be set as an open circuit (no load), as a nominal resistance R0 = 6 Ω

and as a non-linear load given by a full-bridge circuit with a capacitor, which represents
the input stage of typical UPS’s loads.

In closed-loop, the reference signal is typically a sinusoid of frequency 60 Hz and
amplitude 127

√
2. Since the reference signal is a sinusoid, then the right choice of the
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IMC is a resonant controller (178), such that

xc(t+ 1) =

[
0 1

−1 2 cos(120πTs)

]
xc(t) +

[
0

1

]
(r(t)− y(t)) (189)

The control design problem can be summarized as: design a data-driven state-feedback

controller for sinusoid reference tracking for the UPS operating with non-linear load.
In order to obtain meaningful data from the system, we set an open-loop experiment

as follows. The sampling time was set to Ts = 1/15000 s; the input of the PWM was set
as a PRBS with amplitude ±104 V and with length 75000 samples (i.e., a 5 seconds long
signal); current and voltage were measured as portrayed (zoomed time scale) in Figure 21
for the UPS operating with its non-linear load. The output voltage was filtered by (189)
to obtain the IMC state for our proposed algorithm.

Figure 21 – Open-loop response with nominal non-linear load.
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The parameters chosen for the LQR were Q = 200I3 and R = 5000, that is, we
strongly penalized the control signal as to try to achieve closed-loop stability even when
there is no load in the UPS and to reduce sensibility due to noise, specially for the current
measurement. Prior to any knowledge about the system settling time, we also selected
Nm = 150. The obtained LQR gain is

K = [4.85548 5.54514 0.638479 − 0.644019]. (190)

Figure 22 shows the closed-loop response for the UPS operating at nominal capacity
with non-linear load. Stability and reference tracking were achieved with correspond-
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ing Total Harmonic Distortion (THD) of 11.7% – a similar result to the one obtained
in (PEREIRA et al., 2014) for the same amount of resonant modes, in which the state-
feedback gain was designed using a full plant model and a Linear Matrix Inequality ap-
proach.

Figure 22 – Closed-loop response with nominal non-linear load.
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We also applied the obtained controller to different scenarios: (a) the open circuit (no
load) case and (b) the nominal linear load R0. Figure 23 shows the closed-loop responses
for cases (a) and (b) respectively. Closed-loop stability was achieved and with very small
THD – 1.4% and 1.8% respectively –, even though the controller was not designed with
data obtained in these scenarios.

Notice that with this approach we obtained a linear state-feedback gain with only one
experiment on the plant, even though the actual plant has a strong nonlinear behavior and
a single linear model would not describe the system with reasonable accuracy. If data
were used to identify a plant model, then more than one experiment would be necessary
in order to evaluate a plant model and an uncertainty matrix. Of course, robustness in
this case is not only because of the data-driven methodology, but mainly because of the
choices for the matrices Q and R.

4.7 Chapter conclusions

In this chapter we provided a data-driven method to compute the infinite horizon LQR
state-feedback gain, without identifying a model of the plant. The idea was based on
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Figure 23 – Closed-loop response with no output load and with nominal linear load.
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previous works where the system Markov parameters were estimated, but instead of also
estimating a generalized system state vector, we estimate an extended observability ma-
trix. In our method, the feedback gain is computed from a batch of data and converges
to the infinite horizon LQR gain as the amount of data and, by consequence, the num-
ber of estimated Markov parameters grow. The most onerous step of our procedure is
performing one experiment in the plant, as the solution is achieved by solving two least-
squares problems. Simulation examples illustrated the convergence of the method and an
experimental application to an UPS showed its practical applicability.
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5 DATA-DRIVEN CONTROLLER CERTIFICATION AND
ROBUST PERFORMANCE ASSESSMENT

Shrimp that sleeps, the wave takes away.

Zeca Pagodinho

The standard setup in DD control design is to perform an open-loop experiment to
collect data and then tune the controller parameters that, given an appropriate choice of
the reference model (GONÇALVES DA SILVA; BAZANELLA; CAMPESTRINI, 2018),
will lead to a stable closed loop with given transient characteristics. For the closed-loop
case, i.e., when there is an initial stabilizing controller operating on the system, the change
in the parameters from the current controller to the one estimated via DD methods can be
abrupt, and the user might be suspicious in closing the loop with this new controller. Be-
sides, these DD methodologies usually have no guarantee to yield a stabilizing controller.

An embedded stability constraint in DD methods have been proposed in (VAN HEUS-
DEN; KARIMI; BONVIN, 2011), using an approach similar to (LANZON et al., 2006),
but a number of approximations take place in order to yield a convex optimization prob-
lem, sometimes causing the obtained closed-loop response to bear no resemblance to the
reference model. The stability criterion is based on H∞-norm estimation of a given sen-
sitivity function using spectral estimates.

Data-driven controller certification deals with the problem of establishing through a
batch of data if a controller will stabilize a given plant without having the process model.
The idea to validate a controller before inserting it in the closed loop is borrowed from
the adaptive control version of the problem, the cautious control design. Most previous
approaches to the problem derives from Vinnicombe’s seminal work (VINNICOMBE,
1993). Vinnicombe introduced the ν-gap metric between two transfer functions (and
the conditions in which they are measurable) and showed that when this distance is less
than a generalized stability margin (which is also function of the plant model), then the
new controller is assured to stabilize the plant. This criterion has shown to convey not
only about stability but also about performance of the new controller, and has since then
been used as the standard tool in controller certification procedures (PARK; BITMEAD,
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2004, 2007; CHEONG; BITMEAD, 2012). However, this constraint can also be too
conservative and when the plant is unknown it is hard to be validated.

A different closed-loop configuration is proposed in (DEHGHANI et al., 2009) in
order to collect data and validate closed-loop stability with a new controller, circumvent-
ing the test via the ν-gap criterion. The proposed data-driven approach however requires
many experiments, as the constraint studied depends on the frequency response of a given
transfer function. Using the same configuration, the authors proposed other mappings
in order to evaluate performance in the same basis of the generalized stability margin
(CHA et al., 2014). Nevertheless, all examples provided are exclusively model-based,
so all possible frequency dependent outcomes are evaluated, but no technicality about a
pure data-driven approach is provided, e.g., which algorithm to use, issues when data is
corrupted by noise, possible false-positives outcomes.

In this chapter, we start from the findings in (DEHGHANI et al., 2009; CHA et al.,
2014). First, we bring their mappings to the standard closed-loop configuration, not only
for stability purposes, but also for robust performance assessment. We then show that a
similar procedure can be applied when data are collected in open loop (i.e., there is no
initial stabilizing controller), provided that the plant is open-loop stable. All these tests
are based on an H∞-norm criterion of given transfer functions, whether in the Single-
Input Single-Output (SISO) or Multi-Input Multi-Output (MIMO) case. We show that all
these mappings can be obtained from one single experiment and present an algorithm to
estimate the respective H∞-norm directly, without identifying a respective parametrized
transfer function (matrix). As far as the author is aware, this is the first one-shot data-
driven approach that can be directly applied to the multivariable case without requiring
modification nor extra experiment.

NOTATION: In this chapter we present a formulation which actually works for both the
continuous and discrete-time domain, although we focus on the latter to derive the data-
driven approach, so we drop the argument (q) of the transfer functions, except in the
examples.

5.1 Background

Consider a plant G0 in feedback interconnection with a controller Ci, as in Figure 3
and repeated here for convenience. We denote this interconnection by [G0, Ci].

Let C0 be an initial stabilizing controller and let C1 represent a new controller that
is to be put in place of C0 in the feedback interconnection. The question that the Con-
troller Certification procedure tries to answer is, given a priori information on [G0, C0]

and without inserting C1 on the closed loop, whether [G0, C1] is internally stable or not.

The most common approach to answer this question is via Vinnicombe’s ν-gap metric
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Figure 24 – Block diagram of the closed-loop system.

Ci G0

d(t) v(t)

+ u(t)+r(t) + e(t) y(t)+
-

Source: author.

(VINNICOMBE, 1993). Before presenting the result on stability, we need some defini-
tions that are introduced next. We follow the presentation in (DEHGHANI et al., 2009),
adapting it to discrete-time.

Definition 5.1. H∞ denotes the space of functions bounded and analytic in the comple-

ment of the closed unit disc. We denote by R the set of real-rational proper transfer

functions and hence the real-rational subspace ofH∞ byRH∞.

Definition 5.2. The pair {Ei, Fi} ∈ RH∞ is a right-coprime factorization (rcf) of Xi ∈
R if Fi is invertible inR, Xi = EiF

−1
i , and Ei and Fi are right-coprime overRH∞. The

pair {Ei, Fi} is a normalized rcf of Xi if {Ei, Fi} is a rcf of Xi and F ∗i Fi + E∗iEi = I ,

where [·]∗ is the complex conjugate.

Definition 5.3. The pair {Ui, Vi} ∈ RH∞ is a left-coprime factorization (lcf) of Xi ∈ R
if Vi is invertible inR, Xi = V −1

i Ui, and Ui and Vi are left-coprime overRH∞. The pair

{Ui, Vi} is a normalized lcf of Xi if {Ui, Vi} is a lcf of Xi and ViV ∗i + UiU
∗
i = I .

The right and left coprime factorizations always exist and are unique to within right
(left) multiplication by a constant (unitary, for the normalized case) matrix (VINNI-
COMBE, 2000).

Definition 5.4. The interconnection [G0, Ci] in Figure 24 is well-posed if (I + CiG0) is

invertible in R. The mapping [y(t) u(t)]T = H(G0, Ci)[r(t) d(t)]T is given by (VINNI-

COMBE, 1993, modified)

H(G0, Ci) =

[
G0

I

]
(I + CiG0)−1 [Ci I] . (191)

Definition 5.5. (Generalized Stability Margin) The interconnection [G0, Ci] is internally

stable if it is well-posed and H(G0, Ci) ∈ RH∞. In this case we say that Ci stabilizes

G0. The Generalized Stability Margin bG0,Ci
is thus defined as

bG0,Ci
=

‖H(G0, Ci)‖−1
∞ , if [G0, Ci] is internally stable;

0, otherwise.
(192)
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Definition 5.6. (Winding Number Condition (WNC)) Two controllers, Ci and Cj , satisfy

the WNC if
det(I + C∗jCi)(e

jω) 6= 0,−π ≤ ω ≤ π and

wno(det(I + C∗jCi)) + η(Ci)− η̄(Cj) = 0
(193)

where wno(·) indicates the winding number of the Nyquist contour (that encircles the area

outside the unit disc and is indented at 1), η(Ci) is the number of poles of det(Ci) outside

the open unit circle and η̄(Cj) is the number of poles of det(Cj) outside the closed unit

circle.

Definition 5.7. (Vinnicombe’s ν-gap metric (VINNICOMBE, 1993)) Given two transfer

function matrices, Ci = EiF
−1
i and Cj = V −1

j Uj , the distance between these two transfer

matrices is given by

δν(Ci, Cj) =


∥∥∥∥∥∥
[
−Vj Uj

]Ei
Fi

∥∥∥∥∥∥
∞

, if (193) is satisfied;

1, otherwise.

(194)

The metric (194) has then been shown to play an important role for robust stability as
presented in the following theorem.

Theorem 5.1. (VINNICOMBE, 1993) Consider a plant G0 and two controllers Ci and

Cj , with Ci stabilizing G0. Then [G0, Cj] is internally stable if

δν(Ci, Cj) < bG0,Ci
. (195)

Vinnicombe’s constraint (195) has, since then, been used as the standard tool to answer
the question of controller certification and many verification procedures (PARK; BIT-
MEAD, 2004, 2007; CHEONG; BITMEAD, 2012) derived from this constraint. How-
ever, this constraint depends on a model G0 of the process; and even if bG0,Ci

can be
obtained directly from data (using, for example, the algorithm we will provide in Sec-
tion 5.3), this constraint could still be too conservative. Moreover, relation (195) has also
been used to verify if a controller stabilizes a nominal plant and a perturbation around
this model, i.e., applying the ν-gap for G0 and a G1; this is also related to the small gain
theorem.

Based on coprime factorizations and Nyquist conditions, other stability equivalencies
have been proposed in (VINNICOMBE, 2000), but they seemed to be overlooked as pos-
sible stability tests. Based on definitions 5.2 and 5.3, the following theorem holds.

Theorem 5.2. (VINNICOMBE, 2000) Define the graph symbols of G0 = E0F
−1
0 and

Ci = V −1
i Ui by

P ,

[
E0

F0

]
, Ki ,

[
Ui Vi

]
. (196)

Then the following statements are equivalent:
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(a) [G0, Ci] is internally stable;

(b) (KiP )−1 = [Vi(I + CiG0)F0]−1 ∈ RH∞;

(c) det(KiP )(ejω) 6= 0,−π ≤ ω ≤ π and wno(det(KiP )) = 0.

Notice that condition (b) in Theorem 5.2 is equivalent to H(G0, Ci) ∈ RH∞, and
condition (c) is the evaluation of the Nyquist condition. Also, condition (b) shows an
interesting twist: BIBO-stability of (KiP )−1 implies internal stability of [G0, Ci]. Stabil-
ity tests based on Theorem 5.2 have been proposed in (DEHGHANI et al., 2007, 2009),
where another setup is proposed based on an “observer-form implementation” of the con-
troller, such that the final test circumvents the need to certify the controller by verifying
condition (195), but that still requires the estimation of theH∞-norm of a target function.
We then present a one-shot algorithm to estimate the norm that can be directly applied to
the MIMO case without the need of any additional experiment.

5.2 Experimental setting

Except for some sign changes in the block diagram of Figure 25, as we try to bring the
explanation closer to the standard feedback control configuration in Figure 3, the results
presented in subsections 5.2.1 and 5.2.2 are given in (DEHGHANI et al., 2009; CHA
et al., 2014). We then show in Subsection 5.2.3 how one can apply similar mappings to
infer about stability when data are collected in open loop.

5.2.1 Closed-loop stability test setup

Consider the block diagram of Figure 25, where C0 has been split into its lcf with
a forward V −1

0 and a feedback U0 factor in the loop, and z(t) is a signal generated by
filtering the control signal and the output by the lcf of C1. For now, we shall not consider
the exogenous signals d(t) and v(t) as they will not be relevant to the remaining of the
discussion. Also, define the mapping T : r(t) 7→ z(t):

T = [U1 V1]

[
G0(I + C0G0)−1

(I + C0G0)−1

]
V −1

0 (197)

= V1(I + C1G0)(I + C0G0)−1V −1
0 (198)

= (K1P )(K0P )−1. (199)

The following theorem defines the stability tests.

Theorem 5.3. (DEHGHANI et al., 2009) Let [G0, C0] be internally stable. Let C0 =

V −1
0 U0 andC1 = V −1

1 U1 be lcf overRH∞. Then the following statements are equivalent:

(a) [G0, C1] is internally stable;
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Figure 25 – Experimental setting proposed in (DEHGHANI et al., 2009).

r(t) +
V −1

0 G0

ū(t)
ȳ(t)

U0

-

V1

U1

z(t)

Source: (DEHGHANI et al., 2009).

(b) T −1 ∈ RH∞;

(c) wno(det T ) = 0 and det T (ejω) 6= 0, −π ≤ ω ≤ π;

(d) arg det T (ejπ) = arg det T (ej0) and det T (ejω) 6= 0, −π ≤ ω ≤ π.

See (DEHGHANI et al., 2009) for a detailed proof, but most equivalences are direct
results from Theorem 5.2, given (199). In particular, for condition (b), which is the one
we will explore in our certification procedure, it suffices to see that, if (K0P )−1 ∈ RH∞
(Theorem 5.2-(b)) and (K0P )(K1P )−1 ∈ RH∞ (Theorem 5.3-(b) and Eq. (199)), then
by consequence (K1P )−1 ∈ RH∞, which satisfies Theorem 5.2-(b). Also, notice that T
is stable and bi-proper by construction.

Under the assumption that the plant G0 is unknown, then one can not explicitly com-
pute the transfer function T . Instead, one can set an experiment and use data from the
reference r(t) and the filtered signal z(t) in order to analyze one of the conditions in
Theorem 5.3.

An experimental setup for testing condition (d) in Theorem 5.3 has been proposed
in (DEHGHANI et al., 2007) and further detailed in (DEHGHANI et al., 2009). The
stability verification consists of two tests: first, based on a sequence of steps in each input
and collecting the steady-state outputs of z(t), they try to falsify controller C1; if the
controller is not falsified then a frequency response must be estimated. They show that
instead of estimating the full frequency response of T , one can estimate the frequency
response of T − I up to a certain maximum frequency.

A test to verify condition (b) in Theorem 5.3 was also proposed in (DEHGHANI
et al., 2007). The idea consists in finding whether or not det(T ) has a non-minimum
phase zero; or, equivalently, if the step response of det(T ) presents an initially inverse.
For that, another set of experiments must be conducted with step inputs, and some of them
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include connecting one output of z(t) in r(t). It is important to notice that this procedure
applies mostly when working in the continuous-time domain, since in discrete-time the
zeros outside the unit disc in the left-plane do not necessarily yield an initially inverse
response.

In each of the proposed stability tests, many experiments must be conducted in order
to certify controller C1, and carrying them out can be exceedingly onerous in practical
applications. In this chapter we propose a procedure to validate condition (b) in Theorem
5.3 with only one batch of data collected from the system operating in closed loop as in
Figure 3, without the exogenous signal d(t). First, we show how to obtain z(t) from r(t)

and y(t) – which is different from signal ȳ(t), as can be seeing comparing figures 3 and
25.

Consider the block diagram in Figure 25. One can readily verify from the bottom part
of the setting the implicit signal y(t) present in the feedback part, as revealed in Figure
26.

Figure 26 – Block equivalent of bottom part of Figure 25.
r(t) +

V −1
0 G0

ū(t) ȳ(t)

U0

y(t)

-

Source: author.

Thus, as depicted in Figure 26, one can obtain ȳ(t) by filtering y(t) by the inverse of
U0, i.e.,

ȳ(t) = U−1
0 y(t). (200)

If the computations are done off-line, which is typically the case, then causality of
U0 is not required for the computation of ȳ(t) in (200). What is required is that U0 is
minimum-phase, so that its inverse is BIBO-stable. Thus, we make use of the following
assumption.

Assumption 5.1. The closed-loop case: there is an initial stabilizing controller C0. C0

has no zeros outside the open unit circle.

Also, note that

ū(t) = V −1
0 r(t)− C0ȳ(t) = V −1

0 (r(t)− y(t)). (201)

Finally, one can obtain the signal z(t) as

z(t) = V1ū(t) + U1ȳ(t)

= V1[V −1
0 (r(t)− y(t))] + U1U

−1
0 y(t)

= V1V
−1

0 r(t) + (U1U
−1
0 − V1V

−1
0 )y(t) (202)
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Since reference r(t) is a signal one sets and y(t) can be measured in closed loop, then
one can obtain z(t) and form the data set {r(t), z(t)}, in order to extract information of
T (respectively T −1) in (198) to verify condition (b) in Theorem 5.3. Notice that this
condition is whether the H∞-norm of T −1 is bounded or not, i.e., if T −1 is stable, and
not about its exact H∞-norm. Finding through data if a system is stable, but not exactly
where its poles are located, calls more for a nonparametric approach than for a parametric
one, and we shall explore this idea in the sequel.

Remark 5.1. In contrast with (DEHGHANI et al., 2009), where definitions 5.1 and 5.6

and theorems 5.2 and 5.3 were given in continuous-time, we presented here a discrete-time

formulation, since we seek for a data-driven approach. We highlight however that our

approach can be applied to both continuous and discrete-time controller implementations.

For the continuous-time case, though, one is implicitly evaluating a discretized version of

the objective function T . We explore this case in Example 5.4.3.

5.2.2 Data-driven robust performance assessment

We shall see next that we can also establish two mappings from the experimental
setting in Figure 25 in order to obtain information about whether the new controller C1

provides better generalized stability margin bG0,Ci
than controller C0. Notice that bG0,Ci

only tells us about robust stability, but nothing about transient responses.
Define the following maps

r(t) 7→ ȳ(t) : Yi , E0(KiP )−1 = G0(I + CiG0)−1V −1
i , (203)

r(t) 7→ ū(t) : Wi , F0(KiP )−1 = (I + CiG0)−1V −1
i . (204)

It is easy to show that (CHA et al., 2014):

H(G0, Ci) =

[
YiUi YiVi

WiUi WiVi

]
· (205)

If the pair {Ui, Vi} is a normalized lcf, then it follows that

‖H(G0, Ci)‖∞ =

∥∥∥∥∥
[
Yi

Wi

]∥∥∥∥∥
∞

. (206)

For controller C0 this defines the mapping

[
Y0

W0

]
: r(t) 7→

[
ȳ(t)

ū(t)

]
.

On the other hand, one can verify that, if T −1 ∈ RH∞, then Y1 = Y0T −1 and
W1 = W0T −1, and Y1,W1 ∈ RH∞. From the setting in Figure 25, we also have that

Y1 : z(t) 7→ ȳ(t) and W1 : z(t) 7→ ū(t), or shortly,

[
Y1

W1

]
: z(t) 7→

[
ȳ(t)

ū(t)

]
.

Recall that ȳ(t) and ū(t) can be obtained by filtering data from the experimental set-
ting in Figure 24 using relations (200) and (201), thus one can also use a data-driven
approach to establish if the new controller provides better stability margin or not.
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5.2.3 Open-loop stability test setup

The formulation just presented, which comes from (DEHGHANI et al., 2009; CHA
et al., 2014), considers the standard controller certification problem, where a closed-loop
experiment is carried out with an initial stabilizing controller. Based on the experimental
setting in Figure 25, we now propose an equivalent setting for testing closed-loop stability
of controller C1 = V −1

1 U1 when data is obtained in an open-loop experiment on the plant
G0 = E0F

−1
0 . Such a test shall verify condition (b) in Theorem 5.2 directly. Consider the

following block diagram:

Figure 27 – Proposed open-loop experimental setting.

F0

r(t)
G0

u(t)
y(t)

V1

U1

z(t)

Source: author.

The filtered signal z(t) is given by

z(t) = V1u(t) + U1y(t)

= V1F0r(t) + U1G0F0r(t)

= (V1 + U1G0)F0r(t)

= V1(I + C1G0)F0r(t) = (K1P )r(t). (207)

Thus, in order to establish if condition (b) in Theorem 5.2 holds, one can study the map-
ping r(t) 7→ z(t). Notice however that this mapping requires knowledge of F0, and
therefore knowledge of the plant G0. In order to circumvent this issue, we shall make use
of the following assumption, since an open-loop experiment is to be conducted.

Assumption 5.2. The open-loop case: there is no initial stabilizing controller C0. The

plant G0 is open-loop stable.

If G0 is stable, then F−1
0 ∈ RH∞. Thus, evaluating stability through F−1

0 (I +

C1G0)−1V −1
1 ∈ RH∞ is equivalent to evaluate if (I +C1G0)−1V −1

1 ∈ RH∞. Therefore,
one can simply set F0 = I in Figure 27 and carry out the experiment by manipulating
directly the signal u(t) (which is the standard open-loop configuration) and then study the
mapping u(t) 7→ z(t). Notice that this is equivalent to set V0 = I and U0 = 0, such that
C0 = 0 in Figure 25, given satisfaction of Assumption 5.2. Also notice that this function
equals W1 as defined in (204).
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As for performance assessment, one can readily verify that Y1 andW1 are equivalent to

the mappings z(t) 7→ y(t) and z(t) 7→ u(t), respectively. Thus

[
Y1

W1

]
: z(t) 7→

[
y(t)

u(t)

]
.

Notice that both certification and performance assessment procedures are based on an
H∞-norm result, which is defined for a stable system. Thus, the main tool to be used is an
H∞-norm estimation from data. We discuss next one possible approach to the estimation
problem.

5.3 H∞-norm estimation

One of the most common data-based approach to obtain the H∞-norm of a system is
via Frequency Response Function (FRF) Estimates (PARK, 2008; CHEONG; BITMEAD,
2012), where a large number of experiments is carried out in order to estimate some points
of the frequency response, and the function is adjusted with some interpolation points.
Bounds on the error using these approaches are also provided.

A different approach is presented in (OOMEN et al., 2014), where the estimate is
based on a Toeplitz matrix of the system Markov parameters. This approach is based on
a state-space representation of the system and is the one which will be used, but with a
different computation approach as the one treated in their article. In that paper, an iterative
procedure to estimate the largest eigenvalue λmax via power method is proposed, without
needing to identify the Markov parameters. On the other hand, the iterative procedure
leads to an estimate of the infinity norm “for a sufficiently large number of iterations and
sufficiently long experiments”. In the SISO case, each iteration requires one experiment
on the true system, but the amount of needed experiments grows for the MIMO case. In
their example – a 2 × 2 case –, 40 iterations (and 80 experiments) of their method were
performed on a real-world system. The method nonetheless is able to also identify in
which direction (MIMO systems) the worst-case scenario (theH∞-norm) occurs.

Carrying out such amount of experiments on a true system may not be attractive from
a practical point of view, so it seems reasonable to develop a direct way to determine the
H∞-norm from one batch of data. Obtaining the Toeplitz matrix of the system Markov
parameters is a well-documented procedure in the literature of subspace identification
(e.g. (DE MOOR et al., 1988)). Henceforth, we briefly present the main theoretical
results.

Consider the system T , which is bi-proper and stable by construction, with a minimal
realization described as

x(t+ 1) = Ax(t) +Br(t)

z(t) = Cx(t) +Dr(t).
(208)

with B ∈ Rm×p, C ∈ Rl×m, D ∈ Rl×p and A ∈ Rm×m is assumed stable. We shall use
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the notation

Tss ,

[
A B

C D

]
, (209)

for referring to a state-space realization of T .
The block representation of the input-output is described by

z(0)

z(1)

z(2)
...

z(Nm)


︸ ︷︷ ︸

zm

=



M0 · · · · · · 0

M1 M0
. . . ...

M2 M1
. . . ...

...
... . . . ...

MNm MNm−1 · · · M0


︸ ︷︷ ︸

Sm



r(0)

r(1)

r(2)
...

r(Nm)


︸ ︷︷ ︸

rm

, (210)

where Mi = CA(i−1)B, i = 1, 2, . . . , Nm − 1 and M0 = D are the system’s Markov
parameters (22).

For the induced norm of S, we have

σ̄(Sm) = ‖Sm‖i2 =
√
λmax(STmSm) (211)

where σ̄ is the largest singular value and λmax is the largest eigenvalue. Then it follows
that

‖T ‖∞ = ‖Sm‖i2 = ‖Sm‖∞ as Nm →∞. (212)

For simplicity of notation we shall define S , limNm→∞ Sm.
TheH∞-norm of a system is the largest singular value σ̄ over its frequency spectrum.

From the results above, the H∞-norm of the system can be computed as the largest sin-
gular value of the infinity matrix S. Evidently, one can not obtain an infinity matrix, so
only an approximation to a certain degree Nm can be achieved for A stable and, from the
structure of Sm, it is clear that the computation of theH∞-norm via singular value bounds
the norm from below.

Recall that condition (b) in Theorem 5.3, which is the one we are trying to verify,
is with respect to the H∞-norm of T −1, and not T . From (210), it is clear that for the
infinite horizon, if z = Sr then r = S−1z. What is not clear at once, and thus must be
proved, is that rm = S−1

m zm, and that S−1
m has the same structure of Sm and also contains

exactly the Markov parameters of T −1. Before proving it in our next theorem, let us write
a realization for T −1.

First, invert the input-output relation in (208)

r(t) = −D−1Cx(t) +D−1z(t) (213)

and insert it back into the state equation to get

x(t+ 1) = Ax(t)−BD−1Cx(t) +BD−1z(t)

= (A−BD−1C)x(t) +BD−1z(t). (214)
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From (213) and (214), we can define a state-space realization of T −1 as

T −1
ss ,

 A−BD−1C BD−1

−D−1C D−1

 . (215)

Theorem 5.4. Consider the system T bi-proper with minimal realization Tss, as in (209),
and corresponding finite Toeplitz matrix Sm of its firsts Nm Markov parameters as in

(210). Then the matrix S−1
m is a Toeplitz matrix of the firsts Nm Markov parameters of the

system T −1 with realization T −1
ss , as in (215).

Proof. We shall derive the proof considering only the first 4 Markov parameters, but it
is readily extendable to larger matrices. First, recall one of the many matrix inversion
lemma:[
X Y

W Z

]−1

=

[
X−1 +X−1Y (Z −WX−1Y )−1WX−1 −X−1Y (Z −WX−1Y )−1

−(Z −WX−1Y )−1WX−1 (Z −WX−1Y )−1

]
,

(216)
and let Sm be given by

Sm =


D 0 0 0

CB D 0 0

CAB CB D 0

CA2B CAB CB D

 . (217)

Evaluating (216) with X = Z and Y = 0 yields[
X Y

W Z

]−1

=

[
Z−1 0

−Z−1WZ−1 Z−1

]
. (218)

Finally, applying (218) to (217), where Z−1 =

[
D−1 0

−D−1CBD−1 D−1

]
yields

S−1
m =


M̄0 0 0 0

M̄1 M̄0 0 0

M̄2 M̄1 M̄0 0

M̄3 M̄2 M̄1 M̄0

 , (219)

where M̄0 = D−1, M̄1 = −D−1CBD−1, M̄2 = −D−1CABD−1 +D−1CBD−1CBD−1

and M̄3 = − D−1CA2BD−1 + D−1CABD−1CBD−1 + D−1CBD−1CABD−1 −
D−1CBD−1CBD−1CBD−1. The proof is completed by simply expanding the Markov
parameters of representation (215) and by noting the recurrence formula

M̄k = −
k∑
i=1

M̄k−iMiM̄0, k = 1, 2, . . . and M̄0 = D−1.

�
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We have provided an algorithm to estimate a Toeplitz matrix of the Markov parameters
in Section 4.2. In one hand, there we assumed the state matrix A to be stable, as open-
loop experiments were considered. This assumption is also a sufficient condition for
the convergence of the estimation algorithm itself. On the other hand, here we want to
establish stability of a given realization. Since T is stable and bi-proper by construction,
one can apply the provided algorithm to the mapping r(t) 7→ z(t) and use S−1

m to obtain
the Markov parameters of T −1.

Also, recall that one needs only to establish if the H∞-norm of T −1 is bounded, so
the best approach here is, for increasing values of Nm, observe the curve i× σ̄i(S−1

m ), i =

1, 2, . . . , Nm and check for convergence. Moreover, notice that the Markov parameters
themselves provide information about stability characteristics of a system, and they are a
byproduct of the estimation procedure. In the SISO case, these parameters correspond to
the system’s impulse response and if they vanish forNm →∞, then the impulse response
is absolutely summable, thus the system is BIBO-stable. In the MIMO case, if every entry
in the impulse response matrix is absolutely summable, then the system is BIBO-stable
(CHEN, 1999).

With all that in mind, let us summarize the certification and performance assessment
procedures.
Certification procedure

1. Perform a sufficient large and rich experiment, whether in open loop or in closed
loop with controller C0, as in Figure 3. Collect data {u(t), y(t)} (open-loop) or
{r(t), y(t)} (closed-loop).

2. Compute the normalized left coprime factors [U0 V0] and [U1 V1] of controllers C0

and C1, respectively.

3. Compute the signal z(t) = V1u(t) + U1y(t) (open-loop) or z(t) = V1V
−1

0 r(t) +

(U1U
−1
0 − V1V

−1
0 )y(t) (closed-loop).

4. For increasing values of Nm, determine Ŝm with (155) and compute σ̄(Ŝ−1
m ).

5. Observe concurrently whether σ̄(Ŝ−1
m ) converges and if each sequence in M̄i de-

creases and is bounded. In this case, C1 is certified; otherwise, C1 is falsified.

Note that only one experiment is needed with our approach as signal z(t) is obtained
filtering data with [V0 U0] and [V1 U1] (in fact, one can test as many controllers C1 as
necessary). Also, we shall formalize the characteristics of the input signal of the first step
of the procedure after Example 5.4.1, as this is the most crucial choice to be made with
our methodology.

In case controller C1 is certified, then using the same batch of data, follow the perfor-
mance assessment procedure.
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Performance assessment procedure

1. If data were obtained in open loop, then for increasing values of Nm, determine
σ̄(Ŝm) using algorithm (155) with r(t) = z(t) and z(t) = [y(t) u(t)]T . This will
provide an estimate of bG0,C1 .

2. If data were obtained in closed loop, then

(a) for increasing values of Nm, determine σ̄(Ŝm) using algorithm (155) with
r(t) = r(t) and z(t) = [ȳ(t) ū(t)]T . This will provide an estimate of bG0,C0 .

(b) for increasing values of Nm, determine σ̄(Ŝm) using algorithm (155) with
r(t) = z(t) and z(t) = [ȳ(t) ū(t)]T . This will provide an estimate of bG0,C1 .

(c) If bG0,C1 > bG0,C0 , then controller C1 provides better stability robustness.

5.4 Illustrative examples

In this section we provide three simulation case studies and an experimental valida-
tion. The first case study involves a simple SISO plant and will be extensively worked
around in order to illustrate all properties of the proposed approach; a comparison with
a parametric system identification approach is also provided. The second example con-
siders a non-minimum phase MIMO system, to show that our approach also works with
more complex systems and that it also outperforms the parametric approach. The case of
continuous-time controller implementation is considered in the third example. We then
present a practical application in a three-tank pilot plant.

5.4.1 A SISO plant

Consider a SISO plant whose model is given by

G0(q) =
0.5

q − 0.9
(220)

which operates in closed loop with controller

C0(q) =
0.2(q − 0.8)

q − 1
, (221)

as in Figure 24, where we consider d(t) = 0. Since this is a simulation example, the model
is available in our study, so we compute the correct value of the generalized stability
margin for comparison purposes, for which bG0,C0 = 0.323 is obtained.

Consider also the following two candidate controllers to be put in place of C0(q):

C1(q) =
0.3(q − 0.9)

q − 1
, (222)

C2(q) =
4.1(q − 0.9)

q − 1
, (223)
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for which it can be easily determined that δν(C0, C1) = 0.148 < bG0,C0 and δν(C0, C2) =

0.907 > bG0,C0 , so controllerC1(q) is certified via Vinnicombe’s constraint (195), whereas
C2(q) is falsified. However, in a more practical situation the model is not available, neither
is the initial generalized stability margin, so constraint (195) can not be readily verified.

In order to establish with our data-driven approach whether or not these controllers
stabilize the plant in closed loop, we collect data from the following closed-loop exper-
iment: we set the reference r(t) as a PRBS with amplitude ±4, length 1120 and clock
period 20 samples. For each value of Nm we used the maximum L possible (i.e., all data
available) as long as the number of columns of Φ in (154) is at least four times the number
of rows. Thus, in order to use all data available, we can determine a total of Nm = 80

Markov parameters.
Simulations were performed both in the noise-free case and in the case were v(t) in

Figure 24 is a white Gaussian noise such that the SNR at the output is 20 dB. The evolution
of the estimator for increasing values of Nm is shown in Figure 28 for both controllers
and for the cases with and without noise, whereas Figure 29 shows the Markov parameters
obtained in the final iteration (that is, for Nm = 80) for the same cases.

Figure 28 – H∞-norm estimates with increasing Nm for the plant (220) with initial con-
troller (221) and candidate controllers (222) and (223).

10 20 30 40 50 60 70 80
0

0.35

0.7

1.05

1.4

σ̄

H∞-norm estimation of T −1 for the pair (C0, C1)

0

0.35

0.7

1.05

1.4

σ̄(S̄−1
m ) without noise σ̄(S̄−1

m ) with noise H∞-norm

10 20 30 40 50 60 70 80
Nm

0

1000

2000

3000

4000

σ̄

H∞-norm estimation of T −1 for the pair (C0, C2)

0

2

4

6

8
×107

Source: author.

It is clear that for the pair (C0(q), C1(q)) theH∞-norm of T −1 is limited, whereas for
the pair (C0(q), C2(q)) it diverges, so controller C1(q) is certified and controller C2(q) is
falsified. The same conclusions can be extracted from the estimated Markov parameters
in Figure 29, for both noisy and noise-free cases. It is easy to verify, using the plant’s
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Figure 29 – Final (Nm = 80) estimates of the Markov parameters for the candidate con-
trollers (222) and (223).
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model, that these conclusions are both correct, that is, controller C2(q) indeed yields an
unstable closed loop and controller C1(q) a stable closed loop.

Consider now an additional candidate controller:

C3(q) =
3.8(q − 0.9)

q − 1
. (224)

This controller actually yields a stable closed loop, but it is falsified under Vinnicombe’s
constraint because δν(C0, C3) = 0.901. In fact, for the controller structure C(q, k) =
k(q−0.9)
q−1

, Vinnicombe’s criterion is verified only for k ∈ [0.21, 0.58].
We will illustrate, by means of this particular controller candidate, how the quality of

the experimental data influences the conservativeness of our certification procedure. We
vary the quality of the data by varying the clock period for the PRBS signal and the data
length available. The results are given in the following order:

1. we apply the certification procedure for C3(q) with the same closed-loop data ob-
tained previously;

2. we increase ten times the reference signal length and perform another experiment;

3. we reduce the clock period to 1 but keep the longer reference signal with length
11200 samples.

All tests were performed considering noisy data.
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Figure 30 shows the estimated H∞-norm for each change in the reference signal
whereas Figure 31 shows the corresponding estimated Markov parameters in each case.

Figure 30 – H∞-norm estimates with increasing Nm for the plant (220) with initial con-
troller (221) and candidate controller (224) for three different reference signals.
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Figure 31 – Final (Nm = 80) estimates of the Markov parameters for the candidate con-
troller (224) for each case.
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We see that from the first and second experiments controller C3(q) is falsified, as
neither the estimated H∞-norm nor the Markov parameters converge. However, with
data from the third experiment, controller C3(q) is certified, as the estimated H∞-norm
presents convergence (even though to a value above its actual norm) and the Markov
parameters initially decrease and stay bounded. For this controller, which is very distant
(in the ν-gap sense) from the original controller, a quite rich data set is necessary to solve
correctly the certification problem. This is a generic property of the certification problem,
that is, the more distant the new controller is from the original one, the more data are
necessary to certify or falsify it correctly.

Since a data set is available, one may ask oneself why is a dedicated procedure even
necessary; that is, why not use this data to simply identify a parametrized model of G0(q)

and then compute the poles of the corresponding closed-loop transfer function? In the
sequel we explore this possibility, and show that this model-based approach is, when fed
with the data, outperformed by ours.

5.4.1.1 Comparison with system identification

In what follows we will investigate a model-based approach to try to certify controllers
C1(q) and C2(q) via parametric identification of the system transfer function G0(q), i.e.,
we shall estimate the parameter vector θ = [θ0 θ1]T of

G(q, θ) =
θ0q
−1

1 + θ1q−1
· (225)

and then determine the poles of the closed-loop transfer function Ci(z)G(q,θ)
1+Ci(z)G(q,θ)

.
Identification of (225) will be carried out using Output-Error (OE) algorithms (LJUNG,

1999) from MATLAB System Identification Toolbox, that is, prior to any knowledge of
the actual noise model, we fix the identification structure as an OE. We compare the
Markov parameters approach (computing 80 parameters) with the system identification
approach in the following cases. We set a general noise model (i.e, v(t) = H0(q)w(t),
where w(t) is white Gaussian noise), such that the pair (G0(q), H0(q)) represents a Box-
Jenkins (BJ) system with H0(q) = q−0.2

q−0.8
, and apply three different inputs signals: PRBS

with clock period 1, white Gaussian noise and a sequence of steps. For each case the SNR
at the output y(t) is between 12 ∼ 16 dB.

A set of 100 Monte Carlo experiments for each controller in each case was conducted.
Due to the amount of certification tests to be performed (a total of 600), we also estab-
lished a numerical convergence criterion of the Markov parameters au lieu of a visual
evaluation as follows. We compute a windowed variance of the Markov parameters and
then take the average value of the final windows. If this value is less than a specified
value, then the controller is certified. In other words, the controller is certified if

1

3n

Nm∑
j=Nm−3n

(
1

n− 1

n−1+j∑
i=j

(Mi −Mav)
2

)
≤ ε, (226)
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where Mav is the average of the respective window and for which we have used n = 15

and ε = 7.5× 10−3.
Table 3 shows the results of 100 Monte Carlo experiments for each controller in each

case. The numbers represent the amount of times the result were correct, i.e., when con-
troller C1(q) was certified and when controller C2(q) was falsified.

Table 3 – Results with Markov parameters and system identification for a BJ system
structure.

Method/ Markov Param. System Id.
Input C1(q) C2(q) C1(q) C2(q)

PRBS 100 100 100 60

WN 100 100 100 58

STEPS 100 100 100 0

On one hand, results with both Markov parameters and system identification ap-
proaches certified controller C1(q) all the times. On the other hand, while the proposed
methodology was able to always falsify controller C2(q), the identification procedure
yielded many false positives – that is, it would recommend to put the destabilizing con-
troller C2(q) in the loop in most cases!

5.4.1.2 Performance assessment: bG0,Ci
estimation

Once controller C1(q) has been certified, we can now proceed to the performance
assessment via bG0,C1 before inserting it in the loop, and compare it with the operating
controller (221). We shall use data from one of the PRBS experiments in order to compute
the largest singular value of the matrix Sm for the mappings r(t) 7→ [ȳ(t) ū(t)]T and
z(t) 7→ [ȳ(t) ū(t)]T . Figure 32 portrays the estimation for both cases.

Figure 32 – H∞-norm estimates of bG0,C0 and bG0,C1 with increasing Nm for the plant
(220) with initial controller (221) and candidate controller (222).
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From the estimated bG0,Ci
, we see that controller C1(q) provides better robust stability

than initial controller C0(q) and should be put in closed loop.

5.4.2 Non-minimum phase multivariable system

In this section we treat a more complex system and compare the proposed certification
procedure against the identification approach. We also use this example to illustrate the
open-loop case.

Consider again the (by now famous) NMP system (111) of Subsection 3.4.1, which
was put in closed loop with an initial stabilizing controller (113). We consider the certifi-
cation of two controllers tuned in that Subsection, namely controller (115) and controller
(112) – herein called C1(q) and C2(q), respectively –, and repeated here for convenience:

C1(q) =


0.4057(q − 0.7139)(q − 0.9168)

q(q − 1)

− 0.5166(q − 0.6879)(q − 0.922)

q(q − 1)

− 0.3166(q − 0.6876)(q − 0.9205)

q(q − 1)

0.2805(q − 0.6451)(q − 0.797)

q(q − 1)

 ,

C2(q) =


0.234(q + 0.2037)(q − 0.9073)

q(q − 1)

− 0.1911(q + 0.2666)(q − 0.8616)

q(q − 1)

− 0.195(q + 0.2037)(q − 0.9073)

q(q − 1)

0.2926(q + 0.1493)(q − 0.8377)

q(q − 1)

 ·
For these controllers we have δν(C0, C1) = 0.8974 and δν(C0, C2) = 0.8972. Notice

that both controllers are far from the initial controller C0(q), and very far from being
certified through Vinnicombe’s condition (195), as bG0,C0 = 0.1037. Also notice that
C1(q) has also an NMP transmission zero at q = 1.2672. Controller C1(q) stabilizes the
plant, whereas controller C2(q) does not.

In order to compare the proposed methodology with the system identification ap-
proach and certify –or falsify –these controllers, we set a batch of Monte-Carlo exper-
iments in different scenarios, just as we showed in the SISO case. We also incorporated
system structures OE and ARMAX. For the noise models, we have used

H0(q) = I for OE;

H0(q) =


(q − 0.5)(q − 0.7)

(q − 0.8)(q − 0.9)

0.1(q − 0.2)

(q − 0.8)(q − 0.9)

0.1(q − 0.4)

(q − 0.8)(q − 0.9)

(q − 0.4)(q − 0.6)

(q − 0.8)(q − 0.9)

 for ARMAX;

H0(q) =
q − 0.2

q − 0.6
I for BJ.

Reference signals were set with length 5600 samples and for each case the SNR at
the output y(t) was approximately 20 dB. For the identification (using OE algorithm) we
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selected a structure for G(q, θ) such that G(q, θ∗) = G0(q) and for the Markov approach
we estimated 90 parameters and used criterion (226) for each of the four sequences of the
Markov parameters.

Tables 4 and 5 show the results of 100 Monte Carlo experiments for each controller
in each case. The numbers in these table represent the amount of times the result were
correct, i.e., when controller C1(q) was certified and when controller C2(q) was falsified.

Table 4 – Results with Markov parameter approach and SNR≈ 20 dB.
Noise/ OE ARMAX BJ
Input C1 C2 C1 C2 C1 C2

PRBS 100 100 100 100 100 100

WN 100 100 100 100 100 100

STEPS 100 100 100 100 100 100

Table 5 – Results with identification of G0(q) and computation of closed-loop transfer
function with SNR≈ 20 dB.

Noise/ OE ARMAX BJ
Input C1 C2 C1 C2 C1 C2

PRBS 97 83 89 94 96 94

WN 92 83 95 90 91 83

STEPS 100 100 97 100 93 96

Our methodology gets the correct answer in all cases, avoiding both false positives
(which is the gravest of mistakes) and false negatives, regardless of the noise’s model
structure, whereas the model-based approach fails in a large number of cases, even pro-
viding many false positives. Still, it is to be expected that data sets with poor enough
quality will cause any method to fail, so we have explored what noise level would lead
our method to failure. As lower values of SNR were tried, we have found that the first
wrong results appear for a SNR of 14 dB and only with the least rich of signals (a step),
as can be seen in Tables 6 and 7, where the results obtained with SNR around 14 dB are
presented.

Table 6 – Results with Markov parameter approach and SNR≈ 14 dB.
Noise/ OE ARMAX BJ
Input C1 C2 C1 C2 C1 C2

PRBS 100 100 100 100 100 100

WN 100 100 100 100 100 100

STEPS 83 99 93 97 96 99
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Table 7 – Results with identification of G0(q) and computation of closed-loop transfer
function with SNR≈ 14 dB.

Noise/ OE ARMAX BJ
Input C1 C2 C1 C2 C1 C2

PRBS 95 80 86 90 93 88

WN 86 77 91 89 73 89

STEPS 100 90 88 100 95 96

5.4.2.1 The open-loop case

We consider now the case of certification of controllers C1(q) and C2(q) when data is
acquired in open loop. In this case, we set the input u(t) as a PRBS with amplitude±1 and
clock period 1. The output is corrupted by white Gaussian noise such that SNR = 15 dB.

Figures 33 and 34 show, respectively, the estimation of the H∞-norm of W1 for each
controller and the estimated sequence of Markov parameters. It is clear that the results
are concordant with the closed-loop case, i.e., controller C1(q) will stabilize the plant
whereas controller C2(q) will not.

Figure 33 – H∞-norm estimates with increasing Nm for the plant (111) and candidate
controllers (115) and (112).
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Figure 34 – Estimated Markov parameters at the last iteration for the candidate controllers
(115) and (112).
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5.4.3 A continuous-time example

Consider a SISO plant whose continuous time model is given by

G0(s) =
4

s2 + 5s+ 6
(227)

which operates in closed loop with controller

C0(s) =
0.3(s+ 4)

s
, (228)

and the generalized stability margin is bG0,C0 = 0.4786.
Consider also the following two candidate controllers to be put in place of C0(s):

C1(s) =
(s+ 5)

s
, C2(s) =

10(s+ 6)

s
, (229)

where δν(C0, C1) = 0.5947 and δν(C0, C2) = 0.9245, so none of these controllers can be
certified via Vinnicombe’s constraint (195).

We set a closed-loop experiment just like in Example 5.4.1, only adjusting the PRBS
clock period to 1 sample, as one of the controllers to be tested is far from the initial
controller (see the discussion right before Subsection 5.4.1.1). Output data is sampled
with Ts = 0.1 s and the control input considers a Zero-Order-Holder (ZOH).

We then applied steps 2–4 of our procedure and obtained the estimates of ‖T −1‖∞ for
both controllers, as portrayed in Figure 35, and the corresponding Markov parameters,
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Figure 35 – H∞-norm estimates with increasing Nm for the plant (227) with initial con-
troller (228) and candidate controllers in (229).
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Figure 36 – Final (Nm = 100) estimates of the Markov parameters for the candidate
controllers in (229).
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as portrayed in Figure 36. Notice that the referred T is not the continuous-time transfer
function but a discretized version of it.

From these figures we can then certify controller C1(s), which was not possible with
(195), and falsify controller C2(s), both of which provide the correct answer.

5.4.4 Three-tank pilot plant

Consider the following pilot plant, where the goal is to control the levels, measured
in centimeters, of two tanks by the opening, measured in percentage, of two pneumatic
valves in a three-tank plant. The schematic diagram in Figure 37 describes the process,
which is built with of-the-shelf industrial equipment (pumps, valves, sensors and tanks).
Tanks 1 and 2 have a capacity of 70 liters each, while tank 3 is a 250 liters container. The
system’s variables are sampled with a sampling period Ts = 5 s. The same plant has been
studied in (CAMPESTRINI et al., 2016) and (LORENZINI et al., 2019).

Figure 37 – Three-tank level control plant schematic.

Source: author.

The plant operates with an initial stabilizing decentralized PI controller given by

C0(q) =


2.06(q − 0.9636)

(q − 1)
0

0
6.14(q − 0.9712)

(q − 1)

 · (230)

For this plant, we have two candidate controllers, given by

C1(q) =


5.025(q − 0.977)

(q − 1)

3.954(q − 1.001)

(q − 1)

− 7.546(q − 0.9796)

(q − 1)

0.3024(q − 0.6586)

(q − 1)

 , (231)
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C2(q) =


3(q − 0.9612)

(q − 1)

− 4(q − 0.9803)

(q − 1)

− 6(q − 0.9612)

(q − 1)

− 0.1(q + 1.413)

(q − 1)

 · (232)

For these controllers we compute δν(C0, C1) = 0.4898 and δν(C0, C2) = 0.5610, thus
both being moderately far from C0(q). We set a closed-loop experiment in order to collect
data from the process, where the reference is a PRBS with clock period 7 samples and
amplitude ±4 cm for both loops. The experiment is portrayed in Figure 38.

Figure 38 – Closed-loop response of the pilot plant with controller (230) with a PRBS
reference input.
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We then proceed with steps 3–5 of our proposed procedure. Figure 39 shows the
evolution of the estimates of ‖T −1‖∞ for both pairs (C0(q), C1(q)) and (C0(q), C2(q)),
whereas Figure 40 shows the sequences of each Markov parameter at the last iteration.

It is clear from both figures that controller C2(q) will yield an unstable closed loop.
For controllerC1(q) we see in Figure 39 that the norm estimator presents an initial conver-
gence and by the end it starts to increase, which is rather inconclusive, but then in Figure
40 we see that the estimated Markov parameters sequences decrease and converge, so we
can confirm that C1(q) will stabilize the pilot plant. Since controller (231) was certified,
we also estimate the respective bG0,Ci

. The result is portrayed in Figure 41.
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Figure 39 – H∞-norm estimates with increasing Nm for the pilot plant with initial con-
troller (230) and candidate controllers (231) and (232).
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Figure 40 – Final (Nm = 120) estimates of the Markov parameters for the candidate
controllers (231) and (232).
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Figure 41 – H∞-norm estimates of bG0,C0 and bG0,C1 with increasing Nm for the pilot
plant with initial controller (230) and candidate controller (231).

10 20 30 40 50 60 70 80 90 100 110 120
Nm

0

0.05

0.1

0.15

0.2

H
∞

Estimation of bG0 ,Ci
for the three tank plant

b̂G0,C0

b̂G0,C1

Source: author.

The estimated values of bG0,C0 and bG0,C1 tell us that controller C1(q) is a little less
robust than controller C0(q), but tell us nothing about the transient response. Figure 42
shows the closed-loop behavior with controller C0(q) to a sequence of steps and Figure
43 the respective control effort.

Figure 42 – Closed-loop response of the pilot plant with controller (230) for a sequence
of steps.
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Figure 43 – Control signal of the closed-loop response of the pilot plant with controller
(230) for a sequence of steps.
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Figures 44 and 45 show the closed-loop behavior and the control effort, respectively,
with controller C1(q) to a sequence of steps. We see that it indeed stabilizes the plant and
also provides a faster transient response than that of C0(q), with almost no overshoot and
only a small coupling between loops.

Controller C2(q) indeed yields an unstable closed loop as portrayed in Figure 46, in
which the experiment starts in open loop and at 150 s the loop is closed and the reference
for tank 1 is set to 15 cm.

5.5 Chapter conclusions

In this chapter we proposed a one-shot data-driven procedure to determine whether
or not a new controller will yield a stable closed loop before inserting it in the actual
loop – the so-called controller certification problem. The procedure consists essentially
in finding whether a given transfer matrix T −1 is bounded or not.

Two variables play an important role in our proposed procedure: the choice of the
input signal – r(t) for a closed-loop test, and u(t) for an open-loop test – and the number
of Markov parameters to be estimated. In our examples we showed that Pseudo-Random
Binary Signals (PRBS) and white-noise signals yield better results, regardless of the noise
model. Also, in Example 5.4.1 we showed that the quality of the data is critical when the
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Figure 44 – Closed-loop response of the pilot plant with controller (231) for a sequence
of steps.
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Figure 45 – Control signal of the closed-loop response of the pilot plant with controller
(231) for a sequence of steps.
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Figure 46 – Closed-loop response of the pilot plant with controller (232), which starts
operating at 150 s, when the reference for loop 1 is changed to 15 cm.
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Figure 47 – Control signal of the closed-loop response of the pilot plant with controller
(232) for a sequence of steps.
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tested controller C1 is far away (in a ν-gap sense) from the initial controller C0. On the
other hand, even a step input provides good results when the SNR at the output is not
too low and for mild distances between the initial and tested controllers. We have also
showed that our methodology outperforms the system identification approach, and false
positives are often avoided.

Moreover, using other mappings between signals, but with the same estimation algo-
rithm, we have also been able to infer about the performance of a given controller in a
robust stability analysis. Nevertheless, this index may not be enough to infer about all
properties of the closed-loop response. This was illustrated in our experimental example,
where we not only obtained the right certification results, but we observed a better tran-
sient response of the new controller to the detriment of robust stability margin. It remains
an open question to find another test, or mapping, so one can also evaluate some index
related to transient response of this new controller prior to inserting it in the loop.

Even though there are many results in the literature, none can be used as a one-shot
data-driven approach for the multivariable case. In this chapter we tried to build a unifying
approach, that can be used for both SISO and MIMO systems, for data collected in open
loop or closed loop, and even considering discrete and continuous-time system (for data
sampled with a given period).
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6 CONCLUSIONS

That’s it, there’s no way. It’s over! Good luck.

Vanessa da Mata

In this work we addressed the multivariable Data-Driven control problem with focus
on Non-Minimum Phase systems, where extensions to two one-shot data-driven meth-
ods were derived; a state-feedback approach, inserted in infinite horizon LQR control
framework; and an approach to a one-shot data-driven controller certification and robust
performance assessment, both with data from closed or open loop.

In the classical DD approach for the Model Reference control problem, the extensions
of two methods with a flexible criterion allowed the identification and inclusion of the
NMP transmission zero in the reference model along with the controller parameters with
an iterative procedure of identification while keeping the methods “one-shot” character-
istic. Each method’s extension deals with a different structure of the reference model –
VRFT with a diagonal one, OCI with a block triangular one –, both having advantages
and drawbacks. For the VRFT, the drawback is to have the NMP effect spread through
all outputs, but in this case only the zero location needs to be identified. For the OCI, one
can move the NMP effect to a specified output, provided the zero location and the ratio
between directions are identified; however, the choice of the reference model to cope with
more than one NMP transmission zero is more involved.

On the other hand, the proposed DD infinite horizon LQR approach, which results in
a static state-feedback gain, needs no modification to deal with NMP systems and can be
directly applied as long as the system’s states are measured. Critical issues in this case
are the choice of the input for data acquisition – recall that the method identifies Markov
parameters, which are related to the system impulse response – and, due to the framework
from which the solution is derived, the choice of the weighting matrices Q and R.

Furthermore, we have proposed a pure one-shot Data-Driven approach to the con-
troller certification problem, hoping to bring closure to a long-time issue in Data-Driven
control methods: the stability guarantee. The procedure is based on a closed-loop con-
figuration where the controller’s coprime factorization is split into a feedback and a feed-
forward path, but we brought the relevant signals mappings into the standard closed-loop
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configuration and also showed that similar mappings can be used when data are collected
in open loop. This test has been show to be much less conservative than Vinnicombe’s
criterion and to outperform the system identification approach. Moreover, this approach
comes with the bonus of being able to infer about the robust stability performance of a
given controller as related to a given plant using the same batch of data.

Finally, it is important to remark the simpleness – algorithmically speaking – of the
solutions proposed in this work, even for the more complex problem approached: the
controller certification issue. At the expense of an elaborated theory behind it, we can say
all problems studied have been solved via a least-squares algorithm, and by combining
old and new results in control theory and system identification. Finding simple solutions
has been the Ariadne’s thread of the research, as we hope our methods to become easily
understandable and applicable in practical situations. Simulation and experimental results
showed the effectiveness of all the proposed methodologies, so the intended contributions
have all been achieved.

As for future work, it remains to test the proposed methodologies against higher order
systems and with large delays on the loop. Also, the synthesis of the state-feedback
gain using other control designs such as mixedH2/H∞ performance, pole placement and
robust control via LMIs is another interesting subject to be studied. Finally, regarding
controller certification, a formulation to test state-feedback gains seems also necessary.
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