

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

BRUNO BOHRER COZER

Evaluation of FACE Implementation on

Real-Time Avionics Performance

Thesis presented in partial fulfillment

of the requirements for the degree of

Master of Computer Science.

Advisor: Prof. Dr. Edison Pignaton de Freitas

Porto Alegre

2019

CIP – CATALOGUING-IN-PUBLICATION

Cozer, Bruno Bohrer

Evaluation of FACE Implementation on Real-Time Avionics

Performance / Bruno Bohrer Cozer. – Porto Alegre: PPGC da UFRGS,

2019.

52 f.:il.

Orientador: Edison Pignaton de Freitas.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.

Programa de Pós-Graduação em Computação. Porto Alegre, BR – RS,

2019. Advisor: Edison Pignaton de Freitas.

1. Real-time Systems. 2. Embedded Systems 3. Avionics.

4. Performance. 5. Systems Architecture I. Freitas, Edison Pignaton

de. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitora: Profa. Jane Fraga Tutikian

Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves

Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas

Coordenadora do PPGC: Profa. Luciana Salete Buriol

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

You have a choice: you can either create your own future, or you can become the victim of

a future that someone else creates for you. By seizing the transformation opportunities, you

are seizing the opportunity to create your own future.

Vice Admiral (ret.) Arthur K. Cebrowski, US Navy.

AGRADECIMENTOS

Primeiramente, agradeço ao meu orientador, Prof. Dr. Edison Pignaton de Freitas, pelo

incansável incentivo, otimismo e orientação que fizeram este trabalho chegar até aqui.

Agradeço também à colega e amiga Ana Cláudia de Almeida Bordignon, cuja participação foi

fundamental para a conclusão deste trabalho.

Agradeço ainda à minha esposa Dra. Aline da Silva Gonçalves Cozer pelo suporte

acadêmico e emocional, fundamental nas horas mais difíceis. Dedico este trabalho a ela, a

nosso filho Bento, e a meu pai, Evandro Luiz Cozer, com quem aprendi que a educação é o

bem mais valioso que podemos obter.

ABSTRACT

Although systems architectures like IMA allowed avionics systems to became more modular

and concentrated, saving space, power and weight on aircraft, there was still issues with reuse,

modularity and vendor lock to be enhanced on mission systems. Open Systems Architectures

(OSA) have been developed and explored by avionics developers and contractors in order to

benefit from easier reuse, reduced costs and shorter time-to-field thanks to the modularity and

common interfaces brought by such architectures. FACE is growing example of OSA

framework defined to achieve these goals for mission software applications through the use of

standardized abstraction layers. However, the insertion of such layers may impose overheads

on performance that could jeopardize systems key features, especially on hardware platforms

with strict space and power constraints.

This work discusses this tradeoff, comparing it with similar scenarios in different areas.

Through the implementation of an experiment comparing five different performance metrics

implemented on two sets of application versions: with and without FACE adherence, using

two different hardware platforms, it was possible to quantify performance impacts brought by

the OSA adoption. The obtained results showed that there may be impacts depending on

computation type performed by the mission application. However, in the majority of cases the

quantified overhead was less than 5% when comparing the same performance metric in a non-

OSA implementation, therefore not risking the benefits brought by OSA modularity.

Keywords: Real-time Systems. Embedded Systems. Avionics. Performance. Systems

Architecture.

Avaliação da Implementação de FACE no desempenho

de Sistemas Aviônicos de Tempo Real

RESUMO

Apesar de arquiteturas de sistema com IMA terem permitido os sistemas aviônicos se

tornarem mais modulares e concentrados, economizando espaço, peso e consumo de energia

em aeronaves, ainda havia problemas com reuso, modularidade e falta de fornecedores

alternativos que necessitavam serem melhoradas em sistemas de missão. Arquiteturas Abertas

de Sistema (OSA) tem sido desenvolvidas e exploradas por fornecedores de aviônicos e

contratantes de forma a se beneficiar do reuso mais fácil, custos reduzidos e menor tempo de

desenvolvimento graças à modularidade e uso de interfaces em comum trazido por este tipo

de arquiteturas. FACE é um exemplo crescente de ambiente OSA definido para alcançar estes

objetivos para aplicações de software de missão através do uso de camadas de abstração

padrão. Entretanto, a inserção destas camadas pode impôr acréscimos na performance que

poderiam pôr em risco características chave dos sistemas, especialmente em plataformas de

hardware com restrições de espaço e energia.

Este trabalho discute esta dicotomia, comparando com cenários similares em outras áreas.

Através da implementação de um experimento comparando cinco métricas de performance

diferentes implementadas em dois conjuntos de versões de aplicação: com e sem aderência a

FACE, usando duas plataformas de hardware diferentes, foi possível quantificar os impactos

de performance trazidos pela adoção de OSA. Os resultados obtidos mostram que pode haver

impactos dependendo do tipo de computação realizado pela aplicação de missão. Entretanto,

na maioria dos casos o impacto quantificado foi inferior a 5% quando comparado à mesma

métrica de performance em uma implementação sem OSA, desta forma não arriscando os

benefícios trazidos pela modularidade de OSA.

Palavras-chave: Sistemas de tempo real. Sistemas Embarcados. Sistemas Aviônicos.

Desempenho. Arquitetura de Sistemas.

LIST OF FIGURES

Figure 2.1 – One Possible Way of Applying MIL-STD-498 to Program Strategy 17
Figure 2.2 – Relationship between DO-178B Certification Artifacts ... 19
Figure 2.3 – Federated vs. IMA Architectures .. 21
Figure 2.4 – ARINC 653 Software Architecture Example ... 22
Figure 2.5– Common Operational Environment Examples .. 24
Figure 2.6 – FACE Architectural Segments Example .. 26
Figure 3.1 – General workflow of OCLoptimizer ... 31
Figure 3.2 – CAS product architecture for FACE ... 33
Figure 4.1 – AIL structure ... 36
Figure 4.2 – AIL FACE Architecture .. 37
Figure 4.3 – AIL non-FACE (flat) architecture .. 38
Figure 4.6 – x86 Platform Setup (illustrative) ... 44
Figure 4.7 – Raspberry Pi 3 Platform Setup (illustrative) ... 45
Figure 5.1 – Task Clock Time ... 47
Figure 5.2 – Task Executed Cycles ... 50
Figure 5.3 – Executed Instructions .. 52
Figure 5.4 – Cache References .. 54
Figure 5.5 – Cache Misses .. 56

LIST OF TABLES

Table 2.1 – Failure Types and Consequences ... 18
Table 2.2 – Design Assurance Levels per Failure Types. ... 18
Table 2.3 – Available POSIX methods per FACE profile. ... 29
Table 3.1 – Scope comparison between related works and this work. .. 34
Table 5.1 – Complete Statistics for Task Clock Time. ... 49
Table 5.2 – Complete Statistics for Executed Cycles ... 51
Table 5.3 – Complete Statistics for Executed Instructions.. 53
Table 5.4 – Complete Statistics for Cache References. .. 55
Table 5.5 – Complete Statistics for Cache Misses. ... 57

LIST OF LISTINGS

Listing 4.1 – FACE PCS Segment Source Code ... 39
Listing 4.2 – FACE TSS Segment Source Code ... 39
Listing 4.3 – FACE PSSS Segment Source Code ... 40
Listing 4.4 – FACE IOSS Segment Source Code ... 40
Listing 4.5 – FACE OSS Segment Source Code... 41
Listing 4.6 – Non-FACE Equivalent Source Code ... 42

LIST OF ABBREVIATIONS AND ACRONYMS

AIL Avionics Infrastructure Library

API Application Programming Interface

ARINC Aeronautical Radio, Inc.

CA Certification Authority

CAN Controlled Area Network

CAS Collision Avoidance System

COE Common Operational Environment

COTS Commercial Off-the-shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DAL Design Assurance Level

DME Distance Measuring Equipment

DIJ Dijsktra Algorithm

EUROCAE European Organization for Civil Aviation Equipment

FACE Future Airborne Capability Environment

FACE-TS Future Airborne Capability Environment Technical Standard

FFT Fast Fourier Transform

FHA Failure Hazard Assessment

GPS Global Positioning System

GPU Graphical Processing Unit

HDFS Hadoop Distributed File System

HILS Hardware In the Loop Simulation

HSI Horizontal Situation Indicator

I/O Input and Output

IMA Integrated Modular Avionics

INS Inertial Navigation System

IOSS I/O Specific Segment

KF Kalman Filter

OMS Open Mission Systems

OS Operational System

OSA Open Systems Architecture

OSAL Operating System Abstraction Layer

OSS Operating Specific Segment

PCS Portable Component Segment

POSIX Portable Operating System Interface

PSSS Platform-Specific Services Segment

RAM Random Access Memory

RPA Remote Piloted Aircraft

RTCA Radio Technical Commission for Aeronautics

RTOS Real Time Operational System

SAE Society of Automotive Engineers

SDR Software Defined Radio

SLOC Single Lines of Code

SSA System Safety Assessment

UAV Unmanned Air Vehicle

UCS Future Airborne Capability Environment

UoC Unity of Conformance

USAF United States Air Force

USDoD United States Department of Defense

SUMMARY

LIST OF FIGURES .. 7

LIST OF TABLES .. 8

LIST OF LISTINGS ... 9

1 INTRODUCTION ... 13

1.1 Main Objective .. 15

1.2 Secondary Objectives ... 15

1.3 Document Structure ... 15

2 BACKGROUND .. 16

2.1 Avionics Certification Considerations .. 16

2.2 Federated vs. Integrated Avionics Systems .. 20

2.3 Open System Architectures .. 23

2.4 FACE – Future Airborne Capability Environment(TM) ... 24

3 RELATED WORKS .. 30

4 TOOLS AND METHODS .. 35

5 RESULTS AND DISCUSSION .. 47

6 CONCLUSION .. 59

REFERENCES ... 61

13

1 INTRODUCTION

Development of real-time embedded systems for avionics usage has evolved

throughout the years, since hardware federated systems – where each functionality was

implemented by a single device or by a dedicated electronic card packed together in an

avionics cabinet – until Integrated Modular Avionics (IMA) systems. In IMA, functionalities

are implemented by real-time software applications running over a shared hardware platform

using a Real-time Operating System (RTOS) (WATKINS, 2007), providing a higher degree

of standardization.

IMA introduction through DO-297 standard was important to enhance aspects crucial

to aviation such as size and weight, electrical connections, ease of maintainability and

upgrade possibilities, among others. This was possible because IMA allowed replacing

several different instruments – each one dedicated to a specific purpose – in cockpit or

avionics bay, like DME, HSI, Attitude Indicator, Altimeter, etc., and combine them in more

dense architectures that supported different applications criticality. For instance, using a

computer & display combination or even with smart displays capable of acquiring, processing

and displaying navigation data in the same device. These key benefits were soon understood

by the industry and operators, and therefore lead to a quick adoption of IMA systems in civil

aviation market.

Nevertheless, the expected degree of modularization upon implementation of IMA-

based systems running over commercial off-the-shelf (COTS) RTOS was not completely

successful. Although it allows different applications to be independently implemented by

different teams or even different companies, it still requires an entity (usually a system

integrator) to know all application interfaces (that are not standardized) in order to integrate

them to run over a shared hardware with temporal and spatial separation, thus assuring the

proper behavior of each application. Furthermore, these applications are still tied to that

specific hardware, preventing its re-use to be a straightforward activity. Finally, airworthiness

certification is granted to IMA systems as a whole set and not to a specific software

application. Thus, leading to increased costs, time and complexity when reusing or improving

a software application that was part of an IMA certified system in another system or platform

(LEWIS, 2003).

In order to overcome the remaining drawbacks that affected the development life cycle

of both civil and defense embedded avionics systems, a new step was necessary. The first

14

movements were taken by defense contractors and end-users when they started pursue the

adoption of Open Systems Architectures (OSA) towards an approach that could improve

reuse of hardware and software components and services, reduce time-to-deployment,

integration/acquisition costs and integration risks, therefore allowing affordable systems

capability evolution, avoiding vendor lockdown and promoting innovation (TOKAR, 2017).

US contractors are already exploring this kind of architecture: FACE and Open Mission

Systems (OMS) take into consideration the potential business models, in order to promote an

ecosystem that will enhance competition innovation, therefore leading to more robust and

effective solutions at more competitive costs that create systems with interoperable and

reusable components.

However, adding a conformance or standardization layer to a given application, either

during design of a new application or while porting or adapting a legacy application, may

bring collateral impacts that could affect key performance aspects that are crucial for the

application operational usage, like execution time, memory usage or latency. For certain

system types, performance and modularity can be improved by proper software architecture

style selections (GALSTER, 2010). Nevertheless, for most embedded applications it is not

possible to rely on constant hardware upgrades in order to improve their performance. For

instance, avionics and unmanned air vehicle (UAV) applications have strict space and power

consumption limitations, and a negative impact on performance may jeopardize system

feasibility.

This dichotomy between enhancing portability/standardization at the price of

degrading performance is not new in computing systems and affects several application types,

from virtual machines used in cloud computing (SHAFER, 2010) to data types for scientific

computing (DRAGAN, 2005).

In order to further explore this subject focusing in avionics domain, this work

evaluates the performance of key characteristics on embedded systems while using two

versions of a library: implemented with and without compliance to an Open Systems

Architecture (OSA). In this case, it was used Future Airborne Capability Environment

(FACE) (THE OPEN GROUP, 2016) as OSA case study, running over the same Operating

System (OS). This evaluation is performed in two different hardware platforms in order to

investigate the impact introduced by the OSA standard interface implementation running on

different platforms.

15

1.1 Main Objective

The goal of this work is to quantify the impact (if existent) on performance while

using FACE as an Open Systems Architecture for avionics mission applications. From the

available works found in the literature, this is the first work containing experimental results to

analyze such performance impact. Additionally, this data supports trade-off analysis that need

to be considered while adopting this architecture in order to do not jeopardize the system

feasibility.

1.2 Secondary Objectives

 Review literature on Open Systems Architectures adoption on real-time embedded

systems for Avionics Defense Applications;

 Review literature on applicable performance metrics for real-time embedded systems;

 Retrieve performance metrics for a given example real-time application;

 Retrieve performance metrics for the example real-time application adapted to OSA

framework

 Analyze and discuss performance metrics regarding performance optimization

1.3 Document Structure

This work is organized as follows: Section 2 brings a background about Avionics

Systems & Certification, Open Systems Architectures and FACE as case study. Section 3

overviews related works. Section 4 details the methods and tools to perform the proposed

study. Section 5 presents and discusses the experimental results and, finally, Section 6

concludes this work, providing directions for future works.

16

2 BACKGROUND

Avionics industry is very conservative regarding new technologies and processes,

adopting them only when their benefits are clear and technology is mature enough to do not

pose a threat to airworthiness safety. In this way, civil avionics market is more conservative

than military avionics, where there is more room for testing and innovation. Therefore, new

developments are usually introduced first in military platforms and later on, if successful and

beneficial, civil market eventually adopts and may even enhance it. The next chapters bring

an overview in some relevant aspects of avionics systems development and certification,

regarding both military and civil platforms.

2.1 Avionics Certification Considerations

Most safety-critical embedded software development needs to comply with guidelines

and standards in order to produce artifacts with a minimal level of quality, safety and maturity

(LÖFWENMARK, 2014) to assure that embedded software will perform reliably in an

airborne environment.

One of the first software development standards that was largely adopted by industry

was DOD-2167. This standard was proposed by US Department of Defense in 1985 and

aimed to provide a process and evidences to be delivered by companies willing to supply

military avionics systems to US DoD contractors. As it became popular among industry, other

western contractors started to adopt it in the same way or with minor tailoring. An updated

version DOD-2167A was released in 1988.

Later in 1994, MIL-STD-498 (USA, 1994) was released superseding DOD-2167A and

unifying it with DOD-2168 that dealt with software quality assurance issues. MIL-STD-498

was widely used not only by US but also for the majority of western defense contractors, as it

enclosed a very comprehensive process for new and upgrade programs, as exemplified by the

diagram on Figure 2.1. Eventually, MIL-STD-498 was the main basis for avionics software

development guideline adopted by civil industry until the present days: DO-178B – Software

Considerations in Airborne Systems and Equipment Certification (RTCA, 1992), developed

by the safety-critical working group RTCA SC-167 of RTCA and WG-12 of EUROCAE.

This standard is a guideline dealing with the safety of safety-critical software used in certain

17

airborne systems. The European agencies refer to this document as ED-12B, as registered by

EUROCAE.

Figure 2.1 – One Possible Way of Applying MIL-STD-498 to Program Strategy

Source: MIL-STD-498 (1994)

During its system specification phase, every avionics software needs to be categorized

according with a Design Assurance Level (DAL). The DAL is determined based on a safety

assessment process and hazard analysis. A hazard is defined (FEDERAL AVIATION

ADMINISTRATION, 2017) as a condition that could foreseeably cause or contribute to an

accident, an unplanned event or series of events that results in death, injury, or damages to, or

loss of, equipment or property.

A failure hazard assessment (FHA) is performed in order to verify the consequences of

a failure condition in the system. The failures conditions categorization considers basically

their effects on the aircraft, crew, and passengers as depicted in Table 2.1 defined in DO-

178B (RTCA, 1992).

18

Table 2.1 – Failure Types and Consequences

Failure Type Failure Consequences

Catastrophic Failure may cause a crash. Error or loss of critical function required

to safely fly and land aircraft.

Hazardous Failure has a large negative impact on safety or performance, or

reduces the ability of the crew to operate the aircraft due to physical

distress or a higher workload, or causes serious or fatal injuries among

the passengers. (Safety-significant)

Major Failure is significant, but has a lesser impact than a Hazardous

failure (for example, leads to passenger discomfort rather than injuries)

or significantly increases crew workload (safety related)

Minor Failure is noticeable, but has a lesser impact than a Major failure

(for example, causing passenger inconvenience or a routine flight plan

change)

No Effect Failure has no impact on safety, aircraft operation, or crew

workload.

Source: Author (2019).

Based on the definitions of Table 2.1, safety analysis tasks are accomplished in order

to determine the software DAL and are required to be documented in system safety

assessments (SSA). The relationship between function failure effects, DAL's and failure rate

are represented in Table 2.2.

Table 2.2 – Design Assurance Levels per Failure Types.

Failure Condition Design Assurance Level Maximum Failure Rate per

Flight Hour

Catastrophic A 1.0E-9

Hazardous B 1.0E-7

Major C 1.0E-5

Minor D 1.0E-3

No Effect E --

Source: Author (2019).

Furthermore, after specific safety analysis the hazard could be mitigated by system

architecture aiming to decrease the DAL level, since development and certification costs

greatly increase as the software criticality level is higher (POP, 2013).

DO-178B (RTCA, 1992) allows flexibility regarding different styles of software life

cycles. This flexibility raises several abstraction aspects that could increase the complexity,

19

effort and cost depending how they are dealt. Independent of the aspects, all processes must

have defined and documented the exit/entry criteria between development phases.

In order to comply with DO-178B, an avionic software application must follow the

development phases described in the standard. Depending on the defined software DAL, some

phases may be optional. Each phase generates a certification artifact. Figure 2.2 illustrates the

trace between certification artifacts required by DO-178B/ED-12B.

Figure 2.2 – Relationship between DO-178B Certification Artifacts

Source: DO-178B (1992).

All these artifacts are evaluated by an independent certification organization, usually

linked to a government department, which assesses if the development process was conducted

in accordance with the standard and designed safety levels and then is able to approve its

usage in airborne systems.

20

2.2 Federated vs. Integrated Avionics Systems

In the early days of electronic systems for aviation (avionics), each instrument or

device had its own hardware developed as a stand-alone unit. As embedded electronics start

to be more powerful and capable of processing more complex software programs, these

avionic devices started to be able to deal with more attributions, but the whole avionics

systems were still not working in an integrated way. This architecture was named federated

systems, where each unit had its own responsibility and worked in an individual basis. An

example of federated systems is shown in the left side of Figure 2.3.

Since the early 2000's, with the increase of processing capacity on embedded

processors, civil avionics suppliers industry started to develop systems designed as software

modules performing different tasks but embedded in a same hardware. This was an evolution

of previous concept of having a same base hardware with several hardware cards, each one

performing a dedicated task. This concept, defined as Integrated Modular Avionics (IMA),

was standardized by DO-297 (RTCA, 2005) and brought a considerable improvement on

avionics system design for civil platforms as depicted in the right side of Figure 2.3. Key

benefits from IMA adoption are cost-effective upgrade paths, fast and efficient maintenance

and avoiding premature obsolescence, to name a few (RTCA, 2005).

IMA concept allows a greater flexibility from a hardware perspective since it allows

software applications processing data with different criticality levels over the same hardware

platform. Moreover, these software applications (usually named Partitions), can communicate

not only with other hardware devices connected to the IMA hardware through a data bus (e.g.:

ARINC 429, RS-422, CAN) but also allows communication between partitions installed in

the same hardware. This communication is performed through interfaces defined by an IMA

system integrator.

21

Figure 2.3 – Federated vs. IMA Architectures

Source: Wolfig (2008).

IMA systems are usually deployed over Commercial Off-The-Shelf (COTS) hardware,

leaving most of dedicated and customized tasks to be performed by software and

programmable hardware applications. The foundations of IMA design rely on the

determinism of the combination of each application and the hardware over which it is

running. Depending on the criticality of the function being implemented by an IMA

embedded software application, it is mandatory to know the expected behavior of this

implementation in such a way it will not interfere with other applications running over the

same processor and sharing the same hardware resources (LÖFWENMARK, 2014).

The best way to assure this independence and non-interference between applications

running over the same hardware is assuring the temporal and spatial separation between

applications (WEILONG, 2014). Spatial separation means to assure that each application has

its own memory area and this area will not be used by any other application except the one

intended to use. Temporal isolation means that a given application will seize the hardware

resources to execute only during a given pre-established amount of time and this amount will

not be exceeded in order to not jeopardize the execution of other applications that will run

using the same hardware resources.

Spatial separation is a goal that does not present major challenges to be achieved,

since real-time operating systems (RTOS) compliant with ARINC 653 standard (ARINC,

22

2006) offer a robust tool set to assure the isolation of memory areas between applications

(PRISAZNUK, 2008). However, temporal separation is a much more delicate issue to handle.

This happens because in hard real-time applications, each task has hard deadlines to meet and

the real-time operating system shall manage the scheduler in order to avoid any unexpected

and not deterministic behavior. This is the key factor that allows applications of different

severity levels (Design Assurance Levels as mentioned in previous chapter) to be executed in

the same framework and therefore over the same hardware. An example of IMA software

architecture using ARINC 653 is shown in Figure 2.4.

Figure 2.4 – ARINC 653 Software Architecture Example

Source: Prisaznuk (2008).

Certification costs are a major drive in an avionics development process, which may

reach more than half of the full development costs. Therefore, it is a primary goal for the

whole industry to pursue more effective approaches to obtain certification. One of the most

important is to improve the reuse of previously certified items. IMA systems started to

address this issue and indeed brought a considerable improvement when compared to

hardware-federated systems. However, there is still issues that needs to be improved from

IMA systems, like modularity and de-coupling from hardware. These issues were further

explored in defense systems by Open Systems Architectures, detailed in next chapter.

23

An interesting parallel to notice is the opposite way as DO-178B evolved as a civil

guideline based on military standard MIL-STD-498, Open Systems Architecture concept

started to gain traction among defense contractors and industry based on the positive

experience on DO-297 and Integrated Modular Avionics adoption by civil industry,

authorities and operators.

2.3 Open System Architectures

The United States Department of Defense (USDoD) has been focusing efforts to find

tools and technologies to accelerate the development and evolution of military application

systems. Through internal directives (USA, 2015) (USA, 2017a) (USA, 2017b), it decided to

embrace Open Systems Architecture frameworks.

The concept behind standardized Open Systems Architecture (OSA) is to allow

software applications development with well-defined and known common interfaces,

standardized in such a way that allows an individual validation and certification process, thus

assuring the software application being independent from hardware and operational system.

OSA are based on reusable hardware and software components and services, in order to

deliver enhanced and integrated capabilities at a lower life cycle cost, while avoiding vendor

lock. Therefore, it enables affordable capability evolution and promotes innovation. It also

allows an easier reuse of software applications between different end platforms and hardware.

According to (TOKAR, 2017), an open systems architecture is a system that employs

modular design, uses widely supported and consensus-based standards for its key interfaces

and is subjected to successful validation and verification tests to ensure the openness of its

key interfaces. Focusing on military avionics systems, several OSA standards have been

developed and fostered by USDoD, like Unmanned Systems Control Segment (UCS)

Architecture (that later evolved into a library of SAE publications, headed by AS6512 (SAE

INTERNATIONAL, 2016), Open Missions System Initiative (sponsored by USAF and based

on Service Oriented Architecture and middleware) and the Future Airborne Capability

Environment (FACE) (THE OPEN GROUP, 2017). This work focuses on FACE, which is

further detailed below.

24

2.4 FACE – Future Airborne Capability Environment(TM)

The FACE Enterprise (THE OPEN GROUP, 2016) is comprised of stakeholders

representing the government (Contractors), Industry, and Academia, all working towards a

common goal of proposing, developing, and implementing software application developed,

validated and certified in adherence to FACE Technical Standard (FACE-TS). This standard

(THE OPEN GROUP, 2017) describes a standardized software Common Operational

Environment (COE) that is hardware-agnostic, based on the successful experience of other

mass consumption electronics items like smartphones, where different companies and entities

develop software applications respecting a well-defined interface that runs over different

COTS hardware types (TOKAR, 2017), depicted in left side of Figure 2.5. FACE-TS

describes requirements for architectural segments with their associated modular software

components and defines key interfaces that link the segments together. It also establishes a

framework to enable the affordable acquisition of software systems that promotes rapid

integration of portable capabilities across defense programs portfolio. FACE-TS specifies

how to develop an open, modular, software environment for security, safety, or general

purpose software COEs, shown in the right side of Figure 2.5.

Figure 2.5– Common Operational Environment Examples

Source: Author (2019).

FACE business model also encourages innovation and competition. Any company

willing to supply a FACE-conformant application can initiate a verification process aiming to

25

demonstrate adherence to FACE Technical Standard through usage of a Conformance

Verification Matrix and to submit it to a Conformance Test Suite by a recognized FACE

Verification Authority recognized by the FACE Certification Authority (CA). Once it

completes these steps, an application can finally be registered as FACE Certified UoC (Unit

of Conformance) in FACE Registry and then to be found as a reusable product in a FACE

conformant system.

The architecture modularity and adherence to the standard interfaces as proposed by

FACE allows several different teams or companies to develop designs for a certain

functionality (layers), being able to compete or team together in order to deliver a complete

functionality, such as an Embedded GPS/INS system (WALLACE, 2017). Another

remarkable feature on FACE is to rely on de facto standards widely adopted and established

by industry (THE OPEN GROUP, 2017) instead of proposing a completely new set of

operating systems, data buses and communication protocols. This facilitates the adoption of

FACE Architecture, as exemplified by Figure 2.6 on new developments, since companies and

teams are already familiar with such standards, such as MIL-STD-1553, ARINC 429, CAN,

Ethernet, APEX, ARINC 653, etc.

The FACE approach allows software-based capabilities to be developed as

components that are exposed to other software components through defined interfaces. It

also provides for the reuse of software across different hardware computing

environments, thus allowing the same application to be used in several platforms with

minimal or practically no changes.

26

Figure 2.6 – FACE Architectural Segments Example

Source: The Open Group (2017)

The FACE-TS requirements for architectural segments with their associated

modular software components, and defines key interfaces that link the segments

together. The FACE Reference Architecture is defined by five segments and three key

interfaces.

The FACE-TS segments are resumed below as described in FACE Overview

document (THE OPEN GROUP, 2016).

1. Operating System Segment (OSS): OSS is where foundational system services

used by all of the other segments and vendor-supplied code reside. The OSS

provides and controls access to the computing platform for the other FACE

segments. The OSS manages the execution of software associated with the other

FACE segments and hosts various operating system and low-level health

monitoring interfaces. The OSS can also optionally host external networking

capabilities, programming language run-times, and component framework

interfaces.

2. Input/Output Services Segment (IOSS): IOSS is where normalization of

interface hardware device drivers resides. This normalization is achieved using a

27

set of adapter design patterns that individually communicate to a vendor-

supplied driver and then convert that data to a standardized FACE interface. The

I/O Services within this segment provide a bridge for subsystem data between

the interface hardware to the Platform-Specific Services Segment (PSSS).

3. Platform-Specific Services Segment (PSSS): PSSS is comprised of sub-

segments including Platform-Specific Device Services, Platform-Specific

Common Services, and Platform-Specific Graphics Services. Device Services is

where translation between platform-unique Interface Control Documents and the

FACE Data Model occurs. Common Services is comprised of higher-level

services including Logging Services, Centralized Configuration Services, Device

Protocol Mediation Services (DPMS), Streaming Media, and system-level

HMFM. Graphics Services is where presentation management occurs. Examples

might include software that translates radar proprietary data format or Electronic

Support Measures to data that is understandable to all FACE components above

the PSSS. If the software being developed interacts directly with a physical

device, it most likely belongs in the PSSS. If the device does not implement a

standards-based interface, the software definitely belongs in the PSSS.

4. Transport Services Segment (TSS): TSS is where communication services

reside. Data Distribution occurs between and within software residing in either

the Portable Component Segment (PCS) or the PSSS. Other communication

services include Quality of Service, Data Transformation, Paradigm

Translations, and Message Association. Examples might be Data Distribution

Service (DDS) or CORBA implementations and converting Kelvin to

Fahrenheit.

5. Portable Components Segment (PCS): PCS is where software providing

mission-level capabilities or business logic resides. Capabilities contained within

the PCS should remain agnostic from hardware and sensors (as well as logical

topologies of subsystems; e.g., dual or triplicated buses), free of any data

transport mechanism or operating system specifics. This maximizes a

capability’s portability and interoperability across varying platforms. Examples

of a PCS component might be data fusion and calculate own ship position.

Finally, the three FACE-TS key interfaces as described in FACE Overview document

(THE OPEN GROUP, 2016) are summarized below.

28

1. Operating System Segment Interface – This interface provides a standardized

means for software to utilize the services within the operating system and other

capabilities related to the OSS. This interface is provided by software in the OSS

to software in other segments. This interface includes ARINC 653, POSIX, and

HMFM APIs. This interface is optionally allowed to include Internet networking

capabilities, programming language run-times, and component frameworks.

2. I/O Services Interface – This interface provides a standardized means for

software to communicate with interface hardware device drivers. This interface

is provided by software in the IOSS to software in the PSSS. It utilizes messages

formatted using the I/O Message Model.

3. Transport Services Interface – The TS Interface provides a standardized means

for software to utilize communication services provided by the TSS. This

interface is provided by software in the TSS to software in the PSSS and PCS. It

utilizes messages formatted using the FACE Data Architecture.

In order to address different levels of application criticality, FACE Technical Standard

defines three Operating System Profiles (Security, Safety (based and extended), and General

Purpose) as subsets of POSIX 1003.1b (IEEE, 2017) to run as FACE Operating System

Segment (OSS), where a stricter profile are always a subset of a broader profile. Their

characteristics are detailed below:

 Security Profile: aimed to applications where security is a key feature, it

requires full ARINC 653 compliance and allows a more restrict subset of 136

POSIX methods, constraining the OS APIs to a minimal useful set. This allows

the assessment of high-assurance security functions executing as a single

process.

 Safety Profile: with a less restrictive approach, it still requires full ARINC 653

adherence, although methods to delete or close OS objects are not available.

This profile is divided in two sub-profiles:

o Basic Safety Profile, in which 246 POSIX methods are included and

only single process is allowed;

o Safety Extended Profile, in which 335 POSIX methods are included and

multiprocess & multithread are allowed.

29

 General-Purpose Profile: the least constrained profile, it supports 812 POSIX

methods and allows applications that do not have safety, real-time or

determinism requirements to have a richer POSIX support.

It is important to highlight that although FACE OS Profiles support POSIX calls, it does

not implement the complete set of POSIX methods (over 1300 methods), since based on the

industry experience on avionics certification it is considered that some of the POSIX methods

like strtok() were unsafe for multi-threading programming (BLOOM, 2018).

Table 2.3 – Available POSIX methods per FACE profile.

FACE Profile Amount of POSIX

methods

Security Profile 136

Basic Safety 246

Safety Extended 335

General-Purpose 812
Source: Author (2019).

The FACE Enterprise is being successful as an Open Systems Architecture

implementation (THE OPEN GROUP, 2017), although nowadays it is restricted to United

States defense market. Nevertheless, US defense market is the largest global player (SIPRI,

2019) and given the past history of US standards and initiatives influencing other markets and

becoming de facto standards (e.g.: MIL-STD-498 for software development and

documentation). Therefore, it worth to understand and eventually engage in development

efforts considering FACE architecture to leverage from its benefits, lessons learned and

potential future synergy and integration with defense systems developed by US-based defense

companies. Moreover, the arrangement between FACE stakeholders in defense industry

(suppliers), government (contractors) and academia (innovation and tools) have an important

similarity with the Triple Helix concept researched and defined by Brazil (ETZKOWITZ,

2017) and fostered by Brazilian Ministry of Defense and Brazilian Army (EXÉRCITO

BRASILEIRO, 2019), which may open possibilities for Brazilian players enter into US

defense market in the future. For the reasons listed above, this work selected FACE as open

system architecture example to be evaluated.

30

3 RELATED WORKS

The search for portability and open common interfaces is an objective pursued for a

long time in Computing Systems in order to facilitate integration in different platforms and

thus reduce development costs and shorten the life-cycle deployment. A good example of

solution that present satisfactory results in dedicated implementations, but falls short on

performance when a common interface was implemented over it are Accelerator Processors or

Graphical Processing Units (RUL, 2010). Each type of accelerator processor uses a particular

interface to achieve the maximum performance, causing its interfaces to be specific for each

vendor or architecture. This forces software developers to adapt their applications each time

an accelerator is changed. In order to bridge this gap, OpenCL language was defined to bring

a common interface for accelerators and therefore facilitate software development. However,

although this initiative brought enhancements for functional portability, it failed on bringing

performance portability, since the optimization tailored to each architecture on previous

development was not achieved when using the common interface (KOMATSU, 2010).

One of the drawbacks on implementing a common interface in order to support a

variety of hardware platforms is possibly the impact on performance (e.g.: worst case

execution time, memory consumption, latency, etc.), namely the overhead to implement

wrappers and adapting internal interfaces to standard interfaces. A similar phenomenon

affected OpenCL language, aimed to standardize the implementation of software over

different GPU and CPU platforms. As described in (KOMATSU, 2010), the generic

implementation did not reach the same performance levels of dedicated applications tailored

to a specific hardware platform. Further works focused on OpenCL compiler to optimize code

generation for each specific GPUs. Even though, it was still necessary that manual tailoring

and optimizations on the compiler options were performed in a trial-and-error basis for each

hardware in order to achieve performances comparable to HW-specific applications

(KOMATSU, 2010). It means, although technically feasible alternatives exist to overcome

this performance gap (e.g.: auto-tuning), these alternatives may be extremely time-consuming,

therefore jeopardizing the benefits obtained from code portability. Due to this fact, research

efforts have been made focusing to perform this tuning in a more automated way like

OCLOptimizer tool depicted in Figure 3.1 (FABEIRO, 2015), although it still requires an

iterative process and optimization directives that need to be informed through configuration

files in a case-by-case basis.

31

Figure 3.1 – General workflow of OCLoptimizer

Source: Fabeiro (2015).

A similar empirical study was conducted by (VARBANESCU, 2015). This study

considered three different graph algorithms (with eight input datasets each) implemented in

OpenCL, running over three different hardware platforms (CPU & GPU) and compared their

execution for each implementation. Eventually the study showed that portability can provide

performance improvement by allowing execution of the same solution in different

combinations of CPU and GPU processors. Still, a performance verification on a trial-and-

error basis was required to find the best fit among CPUs and GPUs to maximize performance.

However, the performance improvement presented in (VARBANESCU, 2015)

apparently contradicts the results in (KOMATSU, 2010), since it showed a considerable

performance decrease while comparing hardware dedicated applications with generic ones.

The two studies differ in the use of more than one processor for each solution in

(VARBANESCU, 2015), which allows the use of the strengths of each processor in different

computations and has the ability to increase the general performance.

Another example of performance drawback to achieve portability is also faced on

HDFS distributed file system for Hadoop (a popular open-source implementation for analysis

32

of large datasets). As HDFS is written in Java to achieve portability across heterogeneous

hardware and software platforms, (SHAFER, 2010) uncovered several performance issues

due to factors listed below.

1) Architectural bottlenecks: scheduling delays are posed by Hadoop implementation

because disk access pattern is periodic instead of streaming and file reads are

serialized instead of decoupled and pipelined.

2) Portability limitations: some performance-enhancing features of native filesystems

are not explored since Java does not offer these features in a platform-independent

manner, therefore optimizations available in native filesystem may remain unused,

although available.

3) Implicit portability assumptions that eventually proved not to be true: although

functionally Hadoop provides portability, performance is highly dependent on the

native platform implementation, specially OS I/O scheduler and native filesystem.

Regarding FACE implementation, a good overview is provided by a legacy Collision

Avoidance System software application developed by and for US Navy that was adapted for

FACE framework and deployed further on to six different platform is detailed by

(BRABSON, 2015). This evolution, depicted by Figure 3.2, allowed the development team to

decrease development cycles and integration issues. This work mentioned the addition of an

execution overhead when the new architecture was adopted, however such overhead was not

quantified.

33

Figure 3.2 – CAS product architecture for FACE

Source: Brabson (2015)

Additionally, (HAN, 2014) performed an extensive comparison analysis through

quantitative tests that aimed to verify performance difference on several partitioning design

for ARINC 653 systems. The tests used a real avionic application exercising three partitioning

approaches: at kernel level, at user level and through virtual machine using HILS (Hardware

In-the-Loop Simulation). Although it used only one hardware platform, it uses a similar

environment architecture: application, item under measurement (operating system in this

case) and hardware.

Table 3. below shows a comparison summarizing the related works mentioned above

and the scope of this work.

34

Table 3.1 – Scope comparison between related works and this work.

Author Portability Avionics Embedded

Systems

Performance

Evaluation

Rul X X

Komatsu X X X

Varbanescu X X X

Shafer X X

Brabson X X

Fabeiro X X X

Han X X X

(this work) X X X X
Source: Author (2019).

As reviewed in the related works mentioned above, functional portability is a known

issue and well handled through common interfaces and standardization. However,

performance portability is still an open issue that requires dedicated advances techniques to be

applied in order to handle it. Although for OpenCL and GPU processing there is active

research ongoing and producing results, for avionics open systems architectures this problem

is not quantitatively identified already and therefore not handled yet. This is the gap to be

addressed by this work.

35

4 TOOLS AND METHODS

The initial approach considered to quantify the possible overhead introduced by FACE

implementation was to perform it in a similar way as the work described in (BRABSON,

2015). It means to have a stand-alone, end-to-end defense application currently implemented

in a non-modular way to use as a baseline application and then redesign and adapt it to be

conformant to Open Systems Architecture (i.e.: FACE in this case), while keeping all its

original features.

However, it was not possible to select an end-to-end defense application that could be

openly disclosed without jeopardizing confidentiality, intellectual property or security

constraints. Eventually, the solution was to do in an opposite way as performed in

(BRABSON, 2015). It means to use as baseline a library that provides general infrastructure

services to more complex applications through simpler, well-known software functions that is

already implemented adherent to FACE and then re-implement it as a simplified version

without the modularity and abstraction layers required by FACE standard.

The selected library is named Avionics Infrastructures Library (AIL) (Figure 4.1) and

is used in several end-to-end avionics defense applications. It implements a variety of basic

level services of mathematical, data manipulation functions and algorithms widely used in

avionics embedded systems, such as memory (and file) handling, binary operations (byte-wise

and word-wise), communication protocols handling (e.g.: ARINC 429, MUXBUS, etc.) such

as raw to engineering conversion, validity verification and padding/unpadding.

36

Figure 4.1 – AIL structure

Source: The Author (2019)

This library is originally designed and implemented as FACE Technical Standard 3.0

(THE OPEN GROUP, 2017) and is structured as a set of stand-alone functions not directly

linked to a top-level application (or PCS – Portable Component Segment as per FACE

architecture). The library is implemented using FACE General Purpose Profile and is

composed by approximately 100 services and is implemented in ANSI C and has a total of

more than 3500 single lines of code (SLOC). Since it is a proprietary library, its source code

can not be included or displayed in this text.

AIL is organized considering to match three layers per FACE architecture:

1) A portion relative to OS Abstraction Layer categorized as Operating

Specific Segment (OSS) in FACE architecture;

2) A portion dealing with functions provided by AIL categorized as

Platform-Specific Services Segment (PSSS);

3) An I/O Specific Segment (IOSS) portion handling with input and

output mechanisms (namely file handling).

The complete architecture division is depicted in Figure 4.2.

37

Figure 4.2 – AIL FACE Architecture

Source: The Author (2019)

In order to perform the comparison to the FACE adherent AIL, a second version of the

library was implemented specially for this work using the original AIL as a baseline, however

converted to a flat architecture (Figure 4.3), it means, without the abstraction layers required

by FACE Technical Standard 3.0 (THE OPEN GROUP, 2017). This non-FACE

implementation was also performed in ANSI C, where all required POSIX functions were

directly implemented as standard system calls, without modularization, although still

providing the very same functionality. This simplified non-FACE implementation was used as

reference to obtain performance values to compare against FACE implementation

performance and therefore assess the impact open systems architecture implementation over

the two versions of the same library providing the same functionality. It resulted in a library

of approximately 40 services implemented by more than 1000 single lines of code (SLOC).

38

Figure 4.3 – AIL non-FACE (flat) architecture

Source: The Author (2019)

An illustrative example using code snippets on FACE implementation is showed in

Listing 4.1 until Listing 4.5. There, it can be seen how each FACE segment handles data in a

different level of abstraction, keeping the modularity and allowing updates and changes in

lower levels without affecting the business logic. In Listing 4.1, lines 5 to 8 show part of the

business logic, while Listing 4.2 line 6 shows data receiving, regardless of the transmission

channel, which is handled in PSSS level (Listing 4.3). Lines 3 and 7 on Listing 4.4 show the

handling of data retrieving and finally Listing 4.5 show the actual activation of

communication channels that is OS-dependent.

In Listing 4.6, a similar logic without modularity is showed, where the business logic

is mixed with communication (see lines 4 to 6) and detailed design (lines 13 to 17) in the

same layer/file, making future customizations or upgrades harder. These parts can be

compared to the separate modules in Listing 4.1 to Listing 4.5, where the business logic is

separate from the other modules, as described above.

39

Source: The Author (2019)

Source: The Author (2019)

/*======================= PCS ===============================*/

01 void PCS_GetAircraftID(UINT32 uiInstance)

02 {

03 /*...*/

04 uiICAOId = TSS_GetAircraftIDMsg(uiInstance, ICAO_ID);

05 if(uiICAOId == AC_B73M)

06 {

07 /*...*/

08 }

09 /*...*/

10}

/*======================= TSS ===============================*/

01 UINT32 TSS_GetAircraftIDMsg(UINT32 uiInstance, UINT32 uiID)

02 {

03 /*...*/

04 if((uiInstance>g_uiMinInstance)&&(uiInstance<g_uiMaxInstance))

05 {

06 PSSS_ReadADS_B_In(&uiICAOId, ICAO_ID);

07 }

08 /*...*/

09 }

Listing 4.1 – FACE PCS Segment Source Code

Listing 4.2 – FACE TSS Segment Source Code

40

Source: The Author (2019)

Source: The Author (2019)

/*======================= PSSS ===============================*/

01 UINT32 PSSS_ReadADS_B_In_UDP(UINT32 uiInstance, UINT32 uiID)

02 {

03 /*...*/

04 if (ADS_B_In == STATUS_ACTIVE)

05 {

06 return(IOSS_ReadADS_B_In_UDP(ICAO_ID));

07 }

08 else if (ADS_LocalServer == LOCAL)

09 {

10 return(OSS_ReadFile(g_iLocalADSFileID));

11 }

12 else

13 {

14 return(ERROR_ID);

15 }

16 /*...*/

17 }

/*======================= IOSS ===============================*/

01 UINT32 IOSS_ReadADS_B_In_UDP(UINT32 uiInstance, UINT32 uiID)

02 {

03 if (ADS_B_In == STATUS_ACTIVE)

04 {

05 return(OSS_ReadUDPSocket(ICAO_ID));

06 }

07 else if (ADS_LocalServer == LOCAL)

08 {

09 return(OSS_ReadFile(g_iLocalADSFileID));

10 }

11 else

12 {

13 return(ERROR_ID);

14 }

15 /*...*/

16 }

Listing 4.3 – FACE PSSS Segment Source Code

Listing 4.4 – FACE IOSS Segment Source Code

41

Source: The Author (2019)

/*======================= OSS ===============================*/

01 UINT32 OSS_ReadUDPSocket(UINT32 * buffer)

02 {

03 /*...*/

04 ssize_t count = recvfrom(fd,buffer,

 sizeof(buffer),0,

 (struct sockaddr*)&src_addr,

 &src_addr_len);

05 if (count==-1)

06 {

07 OSS_HandleError("%s",strerror(errno));

08 }

09 else

10 {

11 handle_datagram(buffer,count);

12 }

13 /*...*/

14}

Listing 4.5 – FACE OSS Segment Source Code

42

Source: The Author (2019)

Since AIL per se is not capable to play the role as an avionic application, in order to

exercise its both versions (FACE and Non-FACE), four applications were chosen as

benchmark top-level application as Portable Component Segment (PCS) per FACE

architecture. These benchmark applications were modified only to replace system calls by

AIL services whenever possible. Their end functionalities were completely preserved. The

selected benchmarks are listed below:

 Fast Fourier Transform (FFT) (GUTHAUS, 2001): This application

constantly calculates FFT on a 32768 data items array containing 8 waves of random

amplitude and frequency. Fast Fourier Transform is used in digital signal processing

01 void * GetAircraftID(UINT32 uiSize)

02 {

03 /*...*/

04 if(uiADS_B_ServerType == COMM_UDP)

05 {

06 ssize_t count = recvfrom(fd,

 buffer,

 sizeof(buffer),0,

 struct sockaddr*)&uiADS_B_src_addr,

 &uiADS_B_src_addr_len);

07 if (count == -1)

08 {

09 die("%s",strerror(errno));

10 }

11 else

12 {

13 if((buffer[ICAO_ID] & 0x7F) == AC_B73M)

14 {

15 /*...*/

16 }

17 }

18 }

19 else if(uiADS_B_ServerType == COMM_LOCAL)

20 {

21 /*...*/

22 }

23}

Listing 4.6 – Non-FACE Equivalent Source Code

43

to find frequencies contained in a given input signal, being heavily used in digital

communications, Software Defined Radio (SDR), radar target detection (YU, 2012),

and other aerospace applications. This benchmark application uses mainly the memory

manipulation and mathematical functions of AIL such as trigonometric functions.

 Kalman Filter (KF): KF (WELCH, 1995) is used in several aerospace

applications such as navigation, position estimation, radar target tracking and data

prediction. In this work, this application was configured to reduce a noise inserted in a

fixed value represented by a Z axis acceleration measurement with a random error

added (limited to 9% of the ideal value) during 30 iterations. This application uses

more intensively the memory manipulation AIL services.

 Dijkstra Algorithm (DIJ) (GUTHAUS, 2001): This benchmark

constructs a large graph in an adjacency matrix representation and then calculates the

shortest path between every pair of nodes using repeated algorithm executions. In this

example it was used a fixed large graph in an adjacency matrix representation

(100x100). Dijkstra algorithm is a well-known solution to the shortest path between

nodes in a graph problem and completes in O(n2) time. In the avionics domain it has

several applications such as in navigation systems. This application uses more

intensively the memory manipulation and file handling AIL services.

 CRC32 (GUTHAUS, 2001): This benchmark performs a 32-bit Cyclic

Redundancy Check (CRC) on an input data stream. CRC checks are often used to

detect errors in data transmission and file storage/reading consistency checks. In this

work, the CRC calculation was performed on an example PCM sound file of 25.3MB.

This application uses more intensively the memory manipulation and file handling

AIL services.

These general-purpose algorithms and functions were selected as benchmark

implementations since they do not have confidentiality constraints as other defense

applications but still perform computation similar to the ones used in defense embedded

applications. As it could be verified to the moment when this experiment was conducted, this

is the first public work bringing quantitative analysis of the impact on FACE adoption on

embedded systems.

The experiment was conducted using both AIL versions implemented over Linux OS

and using two different hardware platforms in order to verify the FACE implementation

impact dependency regarding the platform used under OSS segment.

44

Both platform types selected are popular in embedded system applications in their

segments (graphical/general purpose processing for x86 and compact/low power processing

for Raspberry Pi).

The first platform was an Intel i5-2430M quadcore processor running @ 2.4GHz with

64kB L1 cache, 512kB L2 cache and 3MB L3 Cache, 6GB RAM running Linux 4.15.0-50-

generic. This x86 platform was selected as baseline given its wide usage range from consumer

electronics to military mission system, such as tactical digital maps and ground-control station

systems (MCHALE, 2019).

Figure 4.4 – x86 Platform Setup (illustrative)

Source: VR (2019)

The second platform used was a Raspberry Pi 3 Model B card with Quad Core 1.2GHz

Broadcom BCM2837 64bit CPU and 1GB RAM running Linux Raspbian version 4.9.80-v7+.

It was chosen as an example of small and simple, yet complete, hardware that is currently

popular for usage in embedded applications such as Remote Piloted Aircraft (RPAs)

(SANTOS, 2017) and aerial image processing.

45

Figure 4.5 – Raspberry Pi 3 Platform Setup (illustrative)

Source: RASPBERRY PI (2019)

For each AIL implementation, the application performance was measured using Linux

native tool PERF (DIMAKOPOULOU, 2016). This tool allows efficient and non-intrusive

performance monitoring and profiling on Linux, allowing access to processor performance

counters and other hardware events that are monitored and stored by perf-event Linux

subsystem. Five parameters available on Perf statistics were selected to assess the overall

system performance while running the example applications:

 Task Clock

 Cycles

 Instructions

 L1 Cache References

 L1 Cache Misses

Task Clock, which eventually is directly linked to execution time, was selected as it is

a key parameter for hard real-time systems since it is a prerequisite to perform scheduling

analysis and thus assure system feasibility to meet required deadlines (WILHELM, 2008).

Number of execution cycles and number of executed instructions were selected to reflect the

actual execution load demanded from processors. Finally, Cache References and Cache

46

Misses amount provide a snapshot on memory access and memory prediction mechanisms.

The ideal parameter to be measured would be memory usage, but it was not available to be

retrieved on PERF tool and the dedicated tools for this kind of analysis are quite complex and

conservative.

In each experiment, the application under evaluation was run 1000 times using the

same set of inputs and results were averaged in order to provide adequate statistical

comparison. Additional statistical data regarding maximum, minimum and standard deviation

measurements are detailed in Chapter 5.

For all executions, the platforms had all network interfaces disabled in order to avoid

any external interference from interrupts or polling mechanisms. Additionally, no other user

applications were being executed in parallel.

The obtained results are discussed in next chapter.

47

5 RESULTS AND DISCUSSION

Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5 show the performance

parameter results for each benchmark application running on both hardware platforms and

considering implementation using FACE and non-FACE AIL versions.

Given the different nature of the chosen hardware platforms (x86 and Raspberry Pi), it

is not the goal of this work to compare performance between them, since this comparison

would not bring any contribution for the discussion proposed here. Considering this fact, the

parameters displayed in graphs were normalized using non-FACE AIL execution as reference.

It means each graph corresponds to a different parameter analyzed and each column shows

the application parameter performance while running over a certain hardware platform.

Therefore, results higher than 100% means a parameter result was higher in AIL FACE

implementation than AIL Non-FACE implementation on the same hardware platform. The

error bars on each columns correspond to the standard deviation of FACE implementation.

The complete statistics for each parameter is presented in a table after the graph.

Figure 5.1 – Task Clock Time

Source: The Author (2019)

48

Task clock execution time parameter shown in Figure 5.1 presents different results

among the four example benchmarks. FFT application had small overheads for FACE AIL

implementation in both platforms: 2.78% while running over x86 and 0.96% while running

over Raspberry Pi. CRC32 application had an improvement on task clock time on FACE AIL

implementation over the x86 platform (4.87%) and a more significant one on the Raspberry Pi

platform (11.83%), what may be a consequence of the usage of polynomial table allocated in

global user memory. Dijkstra application had opposite results in the two hardware platforms,

with a FACE AIL overhead of 2.57% for the x86 platform and an improvement of 6.84% for

the Raspberry Pi platform. However, the more significant results were collected on Kalman

Filter application, where overheads of 16.09% for the x86 platform and 7.50% for the

Raspberry Pi platform were observed on FACE AIL implementation. This result could be

consequence of the heavier iteration loops required by Kalman Filter algorithm that needs to

execute several iterations on each execution in order to achieve the noise effect reduction on

final solution and these iterations executed through FACE AIL layers may lead to this

overhead.

The complete set of execution results is detailed on Table 5.1. The percentages in the

table show the given parameter using the average value as reference, as detailed below:

 Average % (merged cell) = Average_FACE / Average_NonFACE;

 StdDev % (FACE) = StdDev_FACE / Average_FACE;

 Maximum % (FACE) = Max_FACE / Average_FACE;

 Minimum % (FACE) = Min_FACE / Average_FACE;

 StdDev % (Non-FACE) = StdDev_ Non-FACE / Average_ Non-FACE;

 Maximum % (Non-FACE) = Max_ Non-FACE / Average_ Non-FACE;

 Minimum % (Non-FACE) = Min_ Non-FACE / Average_ Non-FACE;

49

Table 5.1 – Complete Statistics for Task Clock Time.

Application Architecture Average Std Dev Max Min

CRC32 x86 FACE 36151785.42 34154 36248659 36073182

Non-FACE 36116769.82 33538 36206017 36036491

FACE
100.10%

0.09% 100.27% 99.78%

Non-FACE 0.09% 100.25% 99.78%

CRC32 RPi FACE 49008383.51 75969 49483896 48881731

Non-FACE 48527457.54 95947 48781355 48379790

FACE
100.99%

0.16% 100.97% 99.74%

Non-FACE 0.20% 100.52% 99.70%

DIJ x86 FACE 56510701.44 29901 56672080 56418119

Non-FACE 55930642.11 29638 56063570 55837746

FACE
101.04%

0.05% 100.29% 99.84%

Non-FACE 0.05% 100.24% 99.83%

DIJ RPi FACE 59873118.05 125130 60194350 59685627

Non-FACE 59461043.65 127764 59799770 59254028

FACE
100.69%

0.21% 100.54% 99.69%

Non-FACE 0.21% 100.57% 99.65%

FFT x86 FACE 112068407.9 67057 112246593 111899694

Non-FACE 108651894.9 66952 108821759 108486856

FACE
103.14%

0.06% 100.16% 99.85%

Non-FACE 0.06% 100.16% 99.85%

FFT RPi FACE 108476076.9 153556 108841535 108233808

Non-FACE 105859023.7 154553 106543742 105614172

FACE
102.47%

0.14% 100.34% 99.78%

Non-FACE 0.15% 100.65% 99.77%

KF x86 FACE 294287.683 9887 386353 289612

Non-FACE 222227.244 8242 312973 217682

FACE
132.43%

3.36% 131.28% 98.41%

Non-FACE 3.71% 140.83% 97.95%

KF RPi FACE 222034.044 6319 264668 214314

Non-FACE 201129.346 7460 264847 193178

FACE
110.39%

2.85% 119.20% 96.52%

Non-FACE 3.71% 131.68% 96.05%
Source: Author (2019).

50

Results for processor execution cycles depicted in Figure 5.2 also demonstrated a

wider difference while running Kalman Filter application compared to other application

results. Unlike task clock parameter, execution cycles difference was more noticeable in the

x86 platform (16.45% overhead on FACE AIL implementation) compared to the Raspberry Pi

platform execution (8.90% overhead). This result may also be linked to the same hypothesis

raised for task clock execution time, although for Raspberry Pi the impact was softer since the

compiler in this platform may generate less instructions due to its simpler micro-architecture

when compared to x86 platform. FFT application using FACE AIL consumed 4.87% more

cycles than Non-FACE AIL version on x86 platform, while running on Raspberry Pi this

difference was reduced to 1.49%. The same phenomenon was measured on Dijkstra

application, despite the smaller results (FACE AIL usage overhead of 2.54% and 0.61% on

the x86 and the Raspberry Pi, respectively). It is worth to notice that the opposite behavior

was measured on CRC32 application, where FACE AIL usage actually brought a small

performance improvement, taking less cycles to execute than in Non-FACE AIL version

(4.87% improvement for x86 platform and 2.14% improvement on the Raspberry Pi). The

complete set of execution results is detailed on Table 5.2.

Figure 5.2 – Task Executed Cycles

Source: The Author (2019)

51

Table 5.2 – Complete Statistics for Executed Cycles

Application Architecture Average Std Dev Max Min

CRC32 x86 FACE 25022147.31 995164 32551382 24451963

Non-FACE 26304223.2 1125943 35937788 24732554

FACE 95.13%

3.98% 130.09% 97.72%

Non-FACE 4.28% 136.62% 94.03%

CRC32 RPi FACE 75660032.35 220937 77989509 74971451

Non-FACE 77311003.15 279913 77843330 76684454

FACE 97.86%

0.29% 103.08% 99.09%

Non-FACE 0.36% 100.69% 99.19%

DIJ x86 FACE 29386147.81 2175552 41175421 28610179

Non-FACE 28659207.79 1669357 40591757 28068548

FACE 102.54%

7.40% 140.12% 97.36%

Non-FACE 5.82% 141.64% 97.94%

DIJ RPi FACE 95554571.26 394010 96664075 94889041

Non-FACE 94971661.1 394593 95867739 94253437

FACE 100.61%

0.41% 101.16% 99.30%

Non-FACE 0.42% 100.94% 99.24%

FFT x86 FACE 85250774.67 4014179 104049906 83380605

Non-FACE 81292208.83 3888874 99366615 79669159

FACE 104.87%

4.71% 122.05% 97.81%

Non-FACE 4.78% 122.23% 98.00%

FFT RPi FACE 182801647.8 661566 184511221 181501183

Non-FACE 180120291.6 794143 185469731 178417029

FACE 101.49%

0.36% 100.94% 99.29%

Non-FACE 0.44% 102.97% 99.05%

KF x86 FACE 406725.94 32339 692591 389528

Non-FACE 349279.687 26399 591098 335223

FACE 116.45%

7.95% 170.28% 95.77%

Non-FACE 7.56% 169.23% 95.98%

KF RPi FACE 673788.806 52526 882361 566850

Non-FACE 618731.612 56651 916857 516198

FACE 108.90%

7.80% 130.96% 84.13%

Non-FACE 9.16% 148.18% 83.43%
Source: Author (2019).

52

Figure 5.3 – Executed Instructions

Source: The Author (2019)

The number of executed instructions parameter presented in Figure 5.3 depicts a

similar overhead for FFT application on FACE AIL implementation for both x86 platform

(3.14% increase) and Raspberry Pi platform (2.47% increase). The same effect was observed

for Dijkstra application implemented with FACE AIL but with reduced impact (1.04%

overhead running over the x86 and 0.69% overhead running over the Raspberry Pi). A small,

but yet noticeable, difference was observed on CRC32 application, where there was also an

overhead on FACE AIL implementation (0.10% and 0.99% overhead for the x86 and the

Raspberry Pi platforms, respectively). The more significant gap was again on Kalman Filter

application, which presented an overhead of 32.42% on FACE AIL implementation running

over the x86 platform. Its Raspberry Pi execution also had an overhead, although smaller

(10.39%), which is coherent with execution cycles result. The complete set of execution

results is detailed on Table 5.3.

53

Table 5.3 – Complete Statistics for Executed Instructions.

Application Architecture Average Std Dev Max Min

CRC32 x86 FACE 36151785.42 34154 36248659 36073182

Non-FACE 36116769.82 33538 36206017 36036491

FACE
100.10%

0.09% 100.27% 99.78%

Non-FACE 0.09% 100.25% 99.78%

CRC32 RPi FACE 49008383.51 75969 49483896 48881731

Non-FACE 48527457.54 95947 48781355 48379790

FACE
100.99%

0.16% 100.97% 99.74%

Non-FACE 0.20% 100.52% 99.70%

DIJ x86 FACE 56510701.44 29901 56672080 56418119

Non-FACE 55930642.11 29638 56063570 55837746

FACE
101.04%

0.05% 100.29% 99.84%

Non-FACE 0.05% 100.24% 99.83%

DIJ RPi FACE 59873118.05 125130 60194350 59685627

Non-FACE 59461043.65 127764 59799770 59254028

FACE
100.69%

0.21% 100.54% 99.69%

Non-FACE 0.21% 100.57% 99.65%

FFT x86 FACE 112068407.9 67057 112246593 111899694

Non-FACE 108651894.9 66952 108821759 108486856

FACE
103.14%

0.06% 100.16% 99.85%

Non-FACE 0.06% 100.16% 99.85%

FFT RPi FACE 108476076.9 153556 108841535 108233808

Non-FACE 105859023.7 154553 106543742 105614172

FACE
102.47%

0.14% 100.34% 99.78%

Non-FACE 0.15% 100.65% 99.77%

KF x86 FACE 294287.683 9887 386353 289612

Non-FACE 222227.244 8242 312973 217682

FACE
132.43%

3.36% 131.28% 98.41%

Non-FACE 3.71% 140.83% 97.95%

KF RPi FACE 222034.044 6319 264668 214314

Non-FACE 201129.346 7460 264847 193178

FACE
110.39%

2.85% 119.20% 96.52%

Non-FACE 3.71% 131.68% 96.05%
Source: Author (2019).

54

Figure 5.4 – Cache References

Source: The Author (2019)

Cache Reference measurements (Figure 5.4) on FFT application had a small reduction

on FACE AIL implementation running on x86 (1.04%) and a small increase on Raspberry Pi

(2.09%). For Dijkstra application the measured overhead was also small. However, it had

differences between the x86 execution, where the overhead was 1.37% for the x86 platform,

and the Raspberry Pi execution that presented 0.53% overhead for FACE AIL

implementation. Kalman Filter application had more relevant overheads of 1.47% for the x86

platform and 9.15% for the Raspberry Pi platform, where such difference for the impact on

Raspberry Pi could be linked to the more reduce availability of main memory on this

platform. Finally, CRC32 application presented small differences, but in the opposite

direction: a FACE AIL implementation overhead of 0.90% on the Raspberry Pi execution and

a marginal improvement of 0.77% on FACE AIL running over the x86 platform. The

complete set of execution results is detailed on Table 5.4.

55

Table 5.4 – Complete Statistics for Cache References.

Application Architecture Average Std Dev Max Min

CRC32 x86 FACE 16684 929 19073 13311

Non-FACE 16814 943 21554 13386

FACE 99.23%

5.57% 114.32% 79.78%

Non-FACE 5.61% 128.19% 79.61%

CRC32 RPi FACE 23233345 64726 23583285 23094965

Non-FACE 23025478 87574 23314822 22864537

FACE 100.90%

0.28% 101.51% 99.40%

Non-FACE 0.38% 101.26% 99.30%

DIJ x86 FACE 13699 1135 19745 11472

Non-FACE 13514 1034 19696 11665

FACE 101.37%

8.28% 144.13% 83.74%

Non-FACE 7.65% 145.74% 86.32%

DIJ RPi FACE 38462619 58036 38636603 38374152

Non-FACE 38260411 59945 38441185 38161869

FACE 100.53%

0.15% 100.45% 99.77%

Non-FACE 0.16% 100.47% 99.74%

FFT x86 FACE 66932 5550 98379 51256

Non-FACE 67637 5314 82599 49068

FACE 98.96%

8.29% 146.98% 76.58%

Non-FACE 7.86% 122.12% 72.55%

FFT RPi FACE 51102880 70392 51290164 50993856

Non-FACE 50055907 70577 50382549 49944644

FACE 102.09%

0.14% 100.37% 99.79%

Non-FACE 0.14% 100.65% 99.78%

KF x86 FACE 5861 197 7683 5455

Non-FACE 5776 210 7349 5417

FACE 101.47%

3.36% 131.10% 93.08%

Non-FACE 3.64% 127.24% 93.79%

KF RPi FACE 94486 2713 113809 90736

Non-FACE 86569 3357 116288 82718

FACE 109.15%

2.87% 120.45% 96.03%

Non-FACE 3.88% 134.33% 95.55%
Source: Author (2019).

56

Figure 5.5 – Cache Misses

Source: The Author (2019)

Finally, Cache Misses results (Figure 5.5) showed distinct results compared to Cache

References. For FFT application, FACE AIL implementation had a slight improvement

compared to Non-FACE AIL of 1.21% on the x86 platform and 1.01% on the Raspberry Pi

platform. A similar result was observed also in CRC32 application, however with a more

considerable improvement in favor of FACE AIL experimented on the Raspberry Pi platform

(7.21%) rather than the slight improvement on x86 platform (0.26%). Despite Kalman Filter

application had a negligible overhead on FACE AIL implementation over the x86 platform

(1.99%), while executed over the Raspberry Pi such overhead was more significant (4.76%).

Dijkstra application presented a small performance improvement with FACE AIL of 0.38%

on the x86 platform and a small overhead of 0.89% on the Raspberry Pi. In a general way,

besides the improvement observed on CRC32 running over Raspberry Pi, no considerable

impact was measured on cache misses. The complete set of execution results is detailed on

Table 5.5.

57

Table 5.5 – Complete Statistics for Cache Misses.

Application Architecture Average Std Dev Max Min

CRC32 x86 FACE 16684 929 19073 13311

Non-FACE 16814 943 21554 13386

FACE 99.23%

5.57% 114.32% 79.78%

Non-FACE 5.61% 128.19% 79.61%

CRC32 RPi FACE 23233345 64726 23583285 23094965

Non-FACE 23025478 87574 23314822 22864537

FACE 100.90%

0.28% 101.51% 99.40%

Non-FACE 0.38% 101.26% 99.30%

DIJ x86 FACE 13699 1135 19745 11472

Non-FACE 13514 1034 19696 11665

FACE 101.37%

8.28% 144.13% 83.74%

Non-FACE 7.65% 145.74% 86.32%

DIJ RPi FACE 38462619 58036 38636603 38374152

Non-FACE 38260411 59945 38441185 38161869

FACE 100.53%

0.15% 100.45% 99.77%

Non-FACE 0.16% 100.47% 99.74%

FFT x86 FACE 66932 5550 98379 51256

Non-FACE 67637 5314 82599 49068

FACE 98.96%

8.29% 146.98% 76.58%

Non-FACE 7.86% 122.12% 72.55%

FFT RPi FACE 51102880 70392 51290164 50993856

Non-FACE 50055907 70577 50382549 49944644

FACE 102.09%

0.14% 100.37% 99.79%

Non-FACE 0.14% 100.65% 99.78%

KF x86 FACE 5861 197 7683 5455

Non-FACE 5776 210 7349 5417

FACE 101.47%

3.36% 131.10% 93.08%

Non-FACE 3.64% 127.24% 93.79%

KF RPi FACE 94486 2713 113809 90736

Non-FACE 86569 3357 116288 82718

FACE 109.15%

2.87% 120.45% 96.03%

Non-FACE 3.88% 134.33% 95.55%
Source: Author (2019).

From the data obtained from experiments conducted using four different benchmark

applications and also over two different hardware platforms, it was possible to observe that

the implementation of abstraction layers required by Open Systems Architectures (FACE, in

this case study) did not bring major overheads in the five performance parameters analyzed.

Moreover, in some scenarios the implementation of FACE even brought performance

improvements when compared to non-modular library implementation. Eventually it could be

observed that task clock and execution cycles parameters were strongly linked. The same

issue happened also between cache references and cache misses. For a new experiment it

58

would be interesting to verify more dissociated parameters. Additionally, a considerable

standard deviation was observed in all KF measurements, especially on cache references and

cache misses, for both in x86 and RPi. This phenomenon may be related to the smaller

readouts provided by this application when compared to other applications, and therefore

small acquisition fluctuations would have a higher impact on standard deviation.

However, since it was not possible to model a consistent behavior among all

benchmark application examples, when comparing implementations using a traditional

architecture to an open system architecture, it is recommended to prototype the

implementation beforehand and evaluate key performance indicators relevant to the

application under development, especially when platforms with limited hardware resources

are used. This outcome is similar to what was observed in the related works regarding manual

optimizations that were still required after adoption of portable code for application running

over GPUs in order to maintain performance while porting an application between different

platforms (i.e.: performance portability).

The prototyping concept is also applicable if a new application is being developed and

there is freedom to decide which Open Systems Architecture will be adopted. If the decision

by a certain OSA type is already placed as a customer or internal requirement, it is still

recommended to prototype and evaluate key features for the application, in order to prioritize

design and implementation decisions to minimize overheads or even further explore benefits

due to Open Systems Architecture adoption such as the performance improvements observed

in the experiments.

59

6 CONCLUSION

The increased reuse and modularity as a consequence of an architecture based on well-

defined abstraction layers, leading to a reduction on development costs and time-to-field are

benefits from Future Airborne Capability Environment (FACE) as an Open Systems

Architecture example of usage in avionics embedded systems. However, one of the main

question marks, based on the experience on other domains, was the overhead that FACE

architecture might insert due to its standardization layers.

This work focused on addressing this concern, verifying the existence and quantifying

such impact based on the analysis of five different key performance parameters while using a

library implementing FACE architecture as a case study and running four benchmark

applications on top of it. The same experiment was conducted using a library version with a

non-modular implementation (i.e.: without adherence to FACE Architecture) in order to have

a comparison baseline. Additionally, this quantification process was conducted over two

different hardware platforms widely used in embedded systems (x86 and Raspberry Pi).

The obtained results demonstrated that in most cases there is no significant impact

caused by the implementation of abstraction layers required by FACE Technical Standard

concerning the five performance parameters analyzed when compared to a non-modular

implementation that provides the same functionalities. In most cases the impact of such

overheads varied from virtually zero up to 5% overhead, depending on the nature of

application and the hardware platform used. In certain scenarios, even a performance

improvement was observed on implementation using FACE architecture compared to

traditional, non-modular implementation.

Nevertheless, a general modeling for such performance differences could not be

achieved based on data obtained during the experiments and therefore prototyping and

performing quantitative assessments are still recommended as the best option to evaluate open

systems architecture implementation impact on key performance parameters, especially on

hardware platforms with limited resources. Considering the constraints of each application

and platform it will be possible to take the best design decisions in order to leverage from

modularity and ease of reuse offered by FACE Architecture, while respecting performance

constraints that will assure that a given application will accomplish its mission.

60

Based on these results, this work conclusion is that the penalties measured on system

performance were not high enough to jeopardize performance and the benefits brought on

modularity and reuse brought by FACE made it worth its adoption

Future works intend to further explore these findings on more complex software

application types, namely using end-to-end avionics applications and verifying other

performance parameters regarding their variability and diversity to explore more

characteristics in order to evaluate and propose improvements to minimize or avoid overheads

and therefore benefit from Open Systems Architecture abstraction and modularity without

jeopardizing system key parameters performance.

Another field for further works exploration is to focus the performance analysis while

using safety-critical profile, which inserts more constraints to software developers and system

integrators given the reduced options of POSIX calls available and few options for real-time

operating systems choice. This would be beneficial since a considerable part of defense

applications are under this FACE profile, given the nature and criticality of their missions.

Finally, it can be explored the possibility or running the same kind of test using a processor

simulator like gem5, where it is possible to have access and monitor the complete set of

micro-architectural counters, retrieving more accurate and insightful measurements.

61

REFERENCES

ARINC. ARINC Specification 653: Part 1, Avionics Application Software Standard

Interface, Required Services. 2006.

BISHOP, G. et al. An introduction to the Kalman Filter. Proc of SIGGRAPH, Course, v. 8,

n. 27599-23175, p. 41, 2001.

BRABSON, S.; ANDERSON, T. Evolution of the US Navy’s Collision Avoidance

Systems (CAS) to Future Airborne Capability Environment (FACE). In: IEEE A&E

SYSTEMS MAGAZINE, June 2015.

BLOOM, G.; SHERRILL, J.; GILLILAND, G. Aligning Deos and RTEMS with the FACE

safety base operating system profile. ACM Sigbed Review, [s.l.], v. 15, n. 1, p.15-21, 20 mar.

2018. Association for Computing Machinery (ACM).

http://dx.doi.org/10.1145/3199610.3199612.

DIMAKOPOULOU, M. et al. Reliable and efficient performance monitoring in linux. In:

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis. IEEE Press, 2016. p. 34.

DRAGAN, L.; WATT, S. M. Performance analysis of generics in scientific computing. In:

SEVENTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC

ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC'05), 7., 2005, Timisoara,

Romania. Proceedings of Seventh International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC'05). Timisoara, Romania: IEEE, 2005. p. 1

- 8.

EXÉRCITO BRASILEIRO. Sistema Defesa, Indústria e Academia (SisDIA) de Inovação.

Retrieved 11 July 19. Available from Internet: <http://www.dct.eb.mil.br/index.php/sistema-

defesa-industria-e-academia>.

ETZKOWITZ, H.; CHUNYAN Z. The triple helix: University–industry–government

innovation and entrepreneurship. Routledge, 2017.

FABEIRO, J. F. et al. Automatic Generation of Optimized OpenCL Codes Using

OCLoptimizer, The Computer Journal, Volume 58, Issue 11, November 2015, Pages 3057–

3073, https://doi.org/10.1093/comjnl/bxv038

FEDERAL AVIATION ADMINISTRATION. FAA Order 8040.4B Safety Risk

Management Policy Document Information. Issued on May 02, 2017. Retrieved 11 July,

2019. Available from Internet:

<https://www.faa.gov/regulations_policies/orders_notices/index.cfm/go/document.current/doc

umentNumber/8040.4>.

GALSTER, M.; EBERLEIN, A.; MOUSSAVI, M. Systematic selection of software

architecture styles. IET Software, [s.l.], v. 4, n. 5, p.349-360, 2010. Institution of

Engineering and Technology (IET). http://dx.doi.org/10.1049/iet-sen.2009.0004.

http://dx.doi.org/10.1145/3199610.3199612
https://doi.org/10.1093/comjnl/bxv038
https://www.faa.gov/regulations_policies/orders_notices/index.cfm/go/document.current/documentNumber/8040.4
https://www.faa.gov/regulations_policies/orders_notices/index.cfm/go/document.current/documentNumber/8040.4
http://dx.doi.org/10.1049/iet-sen.2009.0004

62

GUTHAUS, M. R. et al. MiBench: A free, commercially representative embedded benchmark

suite. Proceedings of the Fourth Annual IEEE International Workshop On Workload

Characterization. Wwc-4 (cat. No.01ex538), [s.l.], 2001. IEEE. p.1-12.

http://dx.doi.org/10.1109/wwc.2001.990739

HAN, S.; HYUN‐WOOK J. Resource partitioning for Integrated Modular Avionics:

comparative study of implementation alternatives. Software: Practice and Experience 44,

no. 12 (2014): p. 1441-1466.

IEEE STANDARDS ASSOCIATION. IEEE 1003.1-2017: IEEE Standard for Information

Technology--Portable Operating System Interface (POSIX(R)) Base Specifications. 7 ed.

USA: IEEE, 2017.

KOMATSU, K. et al. Evaluating Performance and Portability of OpenCL Programs. In: THE

FIFTH INTERNATIONAL WORKSHOP ON AUTOMATIC PERFORMANCE TUNING,

2010, Berkeley, CA, USA. Proceedings of 5th International Workshop on Automatic

Performance Tuning. Berkeley, CA, USA: Iwapt2010, 2010. p. 1 - 15.

LEWIS, J.; RIERSON, L. Certification concerns with integrated modular avionics (IMA)

projects. In: THE 22nd DIGITAL AVIONICS SYSTEMS CONFERENCE, 2003. DASC '03,

22, 2003, Indianapolis, IN, USA. Proceedings of 22nd Digital Avionics Systems

Conference, 2003. Indianapolis, IN, USA: IEEE, 2003. p. 1 - 9.

LÖFWENMARK, A.; NADJM-TEHRANI, S. Challenges in future avionic systems on multi-

core platforms. In 2014 IEEE International Symposium on Software Reliability

Engineering Workshops, Naples, Italy, IEEE, 2014. p. 115-119.

MCHALE, J. PC/104 and small form factors popular in defense electronics systems.

Retrieved 11 July 2019. Available from Internet: <http://mil-embedded.com/articles/pc104-

small-popular-defense-electronics-systems/>.

POP, P., et al. Methods and tools for reducing certification costs of mixed-criticality

applications on multi-core platforms: the RECOMP approach. In: Proceedings of the

Workshop of Industry-Driven Approaches for Cost-effective Certification of Safety-

Critical, Mixed-Criticality Systems, vol. 156. 2013.

PRISAZNUK, P. J. ARINC 653 role in integrated modular avionics (IMA). In: 2008

IEEE/AIAA 27TH DIGITAL AVIONICS SYSTEMS CONFERENCE, 2008, St. Paul, MN,

USA. Proceedings of 27th Digital Avionics Systems Conference, 2008, St. Paul, MN, USA:

IEEE, 2008, p. 1-E.

RASPBERRY PI. Raspberry Pi 3 Model B. Retrieved 11 July, 2019. Available from

Internet: <https://www.raspberrypi.org/products/raspberry-pi-3-model-b/>

RTCA. DO-178B/ED-12B: Software Considerations in Airborne Systems and Equipment

Certification. RTCA Inc., 1992.

RTCA. DO-297: Integrated Modular Avionics (IMA) Development Guidance and

Certification Considerations. RTCA Inc., 2005.

http://dx.doi.org/10.1109/wwc.2001.990739
http://mil-embedded.com/articles/pc104-small-popular-defense-electronics-systems/
http://mil-embedded.com/articles/pc104-small-popular-defense-electronics-systems/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

63

RUAN, W.; ZHENGJUN Z. Kernel-level design to support partitioning and hierarchical real-

time scheduling of ARINC 653 for VxWorks. In: 2014 IEEE 12th International

Conference on Dependable, Autonomic and Secure Computing, Dalian, China. IEEE,

2014. pp. 388-393.

RUL, S. et al. An experimental study on performance portability of OpenCL kernels. In:

Application Accelerators In High Performance Computing, 2010 Symposium, Papers,

2010, Knoxville, TN, USA. Papers. Knoxville, TN, USA: UGent, 2010. p. 1 - 3. Disponível

em: <http://hdl.handle.net/1854/LU-1016024>. Acesso em: 11 jul. 2019

SAE INTERNATIONAL. AS6512: Unmanned Systems (UxS) Control Segment (UCS)

Architecture: Architecture Description. Warrendale, PA, USA: SAE International, 2016.

SANTOS, N. et al. Development of a software platform to control squads of unmanned

vehicles in real-time. In: 2017 International Conference on Unmanned Aircraft Systems

(ICUAS). IEEE, 2017. p. 1-5.

SIPRI. SIPRI Military Expenditure Database. Retrieved 11 July 2019. Available from

Internet: <https://www.sipri.org/sites/default/files/SIPRI-Milex-data-1949-2018_0.xlsx>.

SHAFER, J.; RIXNER, S.; COX, A. L. The Hadoop distributed filesystem: Balancing

portability and performance. In: 2010 IEEE INTERNATIONAL SYMPOSIUM ON

PERFORMANCE ANALYSIS OF SYSTEMS & SOFTWARE (ISPASS), 2010, 2010, White

Plains, NY, USA. Proceedings of 2010 IEEE International Symposium on Performance

Analysis of Systems & Software (ISPASS). White Plains, NY, USA: IEEE, 2010. p. 122 -

133.

THE OPEN GROUP (Ed.). Future Airborne Capability Environment Consortium. Future

Airborne Capability Environment (FACE) Overview. USA: The Open Group, 2016.

Retrieved 11 July, 2019. Available from Internet:

<https://publications.opengroup.org/guides/face/g165>.

THE OPEN GROUP (Ed.). Future Airborne Capability Environment Consortium. FACE

Technical Standard 3.0. ed. USA: The Open Group, 2017. Retrieved 11 July, 2019.

Available from Internet: <https://publications.opengroup.org/c17c>.

TOKAR, J. L. An Examination of Open System Architectures for Avionics Systems – An

Update. In: THE U.S. AIR FORCE FACE TECHNICAL INTERCHANGE MEETING,

2017., 2017, Dayton, OH, USA. The U.S. Air Force FACE™ Technical Interchange

Meeting Summary. Dayton, OH, USA: The Open Group, 2017. p. 1 - 21. Available from

Internet:

https://www.opengroup.us/face/documents/18456/Pyrrhus_Examination_of_Open_Systems_a

rchitecture_Paper.pdf

UNITED STATES OF AMERICA. Office Of The Under Secretary Of Defense For

Acquisition & Sustainment. Department Of Defense. Implementation Directive for Better

Buying Power 3.0 – Achieving Dominant Capabilities through Technical Excellence and

Innovation. 2015. Retrieved 11 July, 2019. Available from Internet:

<https://www.acq.osd.mil/fo/docs/betterBuyingPower3.0(9Apr15).pdf>.

https://www.sipri.org/sites/default/files/SIPRI-Milex-data-1949-2018_0.xlsx
https://www.opengroup.us/face/documents/18456/Pyrrhus_Examination_of_Open_Systems_architecture_Paper.pdf
https://www.opengroup.us/face/documents/18456/Pyrrhus_Examination_of_Open_Systems_architecture_Paper.pdf

64

UNITED STATES OF AMERICA. Defense Acquisition University. Department Of Defense.

Defense Acquisition Guidebook. 2017. Retrieved 11 July, 2019. Available from Internet::

<https://www.dau.mil/tools/dag>.

UNITED STATES OF AMERICA. Department of Defense. DoDI 5000.02 Operation of the

Defense Acquisition System. 2017. D Retrieved 11 July, 2019. Available from Internet:

<http://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002_dodi_2015.pdf>.

UNITED STATES OF AMERICA. Department of Defense. MIL-STD-498, Military

Standard: Software Development and Documentation. 1994. Retrieved 11 July, 2019.

Available from Internet: <http://everyspec.com/MIL-STD/MIL-STD-0300-0499/MIL-STD-

498_25500/>.

VARBANESCU, A. L. et al. Can Portability Improve Performance? Proceedings of the 6th

ACM/Spec International Conference on Performance Engineering - ICPE '15, [s.l.],

p.277-287, 2015. ACM Press. http://dx.doi.org/10.1145/2668930.2688042.

VR ASSETS. VPC-SA31FX Motherboard 4GB Intel i5-2430M 2.4 MBX-237

A1846546A. Retrieved 11 July 2019. Available from Internet: <https://www.vrassets.us/sony-

vaio-vpc-sa31fx-motherboard-4gb-intel-i5-2430m-2-4-mbx-237-a1846546a-as-is.html>.

WALLACE, J. et al. Resilient-Embedded Global Positioning System/Inertial Navigation

System (R-EGI) virtual System Integration Laboratory (vSIL) Prototyping Initiative Phase 1

and Phase 2. In: MARCH 2017 FACE AIR FORCE TIM PAPER, 2017, 2017, Dayton, OH,

USA. Proceedings of March 2017 FACE Air Force TIM. Dayton, OH, USA: The Open

Group, 2017. p. 1 - 14.

WATKINS, C. B.; WALTER, R. Transitioning from federated avionics architectures to

Integrated Modular Avionics. In: 2007 IEEE/AIAA 26TH DIGITAL AVIONICS SYSTEMS

CONFERENCE, 2007, Dallas, TX, USA. Proceedings of 2007 IEEE/AIAA 26th Digital

Avionics Systems Conference. Dallas, TX, USA: IEEE, 2007. p. 1 - 10.

WILHELM, R. et al. The worst-case execution-time problem—overview of methods and

survey of tools. ACM Transactions on Embedded Computing Systems (TECS), v. 7, n. 3,

p. 36, 2008.

WOLFIG, R.; MIRKO J. Distributed IMA and DO-297: Architectural, communication and

certification attributes. In: 2008 IEEE/AIAA 27th Digital Avionics Systems Conference, St.

Paul, MN, USA. IEEE, 2008. pp. 1-E.

YU, J. et al. Radon-Fourier transform for radar target detection (III): Optimality and fast

implementations. IEEE Transactions on Aerospace and Electronic Systems, v. 48, n. 2, p.

991-1004, 2012.

http://dx.doi.org/10.1145/2668930.2688042
https://www.vrassets.us/sony-vaio-vpc-sa31fx-motherboard-4gb-intel-i5-2430m-2-4-mbx-237-a1846546a-as-is.html
https://www.vrassets.us/sony-vaio-vpc-sa31fx-motherboard-4gb-intel-i5-2430m-2-4-mbx-237-a1846546a-as-is.html

