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“If, then, a machine may have all the properties of a man, and act as a man

while driven only by the ingenious plan of its construction and the

interaction of its materials according to the principles of nature,

then does it not follow that man may also be seen as a machine?”

— THE TALOS PRINCIPLE
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ABSTRACT

Centrality Measures are important metrics used in Social Network Analysis. Such mea-

sures allow one to infer which entity in a network is more central (informally, more

important) than another. Analyses based on centrality measures may help detect possible

social influencers, security weak spots, etc. This dissertation investigates methods for

learning how to predict these centrality measures using only the graph’s structure. More

specifically, different ways of ranking the vertices according to their centrality measures

are shown, as well as a brief analysis on how to approximate the centrality measures

themselves. This is achieved by building on previous work that used neural networks

to estimate centrality measures given other centrality measures. In this dissertation, we

use the concept of a Graph Neural Network – a Deep Learning model that builds the

computation graph according to the topology of a desired input graph. Here these models’

performances are evaluated with different centrality measures, briefly comparing them with

other machine learning models in the literature. The analyses for both the approximation

and ranking of the centrality measures are evaluated and we show that the ranking of

centrality measures is easier to compute. The transfer between the tasks of predicting

these different centralities is analysed, and the advantages of each model is highlighted.

The models are tested on graphs from different random distributions than the ones they

were trained with, on graphs larger than the ones they saw during training as well as with

real world instances that are much larger than the largest training graphs. The internal

embeddings of the vertices produced by the model are analysed through lower-dimensional

projections and conjectures are made on the behaviour seen in the experiments. Finally, we

raise and identify possible future work highlighted by the experimental results presented

here.

Keywords: Deep neural networks. recurrent neural networks. graph neural networks.

graphs. centrality measures.



Aprendendo Medidas de Centralidade com Redes Grafo-Neurais

RESUMO

Medidas de Centralidade são um tipo de métrica importante na Análise de Redes Sociais.

Tais métricas permitem inferir qual entidade é mais central (ou informalmente, mais

importante) que outra. Análises baseadas em medidas de centralidade podem ajudar

a detectar influenciadores sociais, pontos fracos em sistemas de segurança, etc. Nesta

dissertação se investiga métodos para aprender a predizer estas medidas de centralidade

utilizando somente a estrutura do grafo de entrada. Mais especificamente, são demonstradas

diferentes formas de se classificar os vértices de acordo com suas medidas de centralidade,

assim como uma breve análise de como aproximar estas medidas de centralidade. Nesta

dissertação utiliza-se o conceito de uma Rede Grafo-Neural – um model de Aprendizagem

Profunda que constrói o grafo de computação de acordo com a topologia do grafo que

recebe de entrada. Aqui as performances destes modelos são avaliadas com várias medidas

de centralidade e são comparadas com outros modelos de aprendizado de máquina na

literatura. As análises para tanto a aproximação quanto a classificação das medidas de

centralidade são feitas e se mostra que a classificação é mais fácil de ser computada.

A transferência entre as tarefas de predizer as diferentes centralidades é analizada e

as vantagens de cada modelo são destacadas. Os modelos são testados em grafos de

distribuições aleatórias diferentes das quais foram treinados, em grafos maiores daqueles

vistos durante o treinamento assim como com instâncias reais que são muito maiores do

que as maiores instâncias vistas durante o treinamento. As representações internas dos

vértices aprendidas pelo modelo são analisadas através de projeções de menor dimensão

e se conjectura sobre o comportamento visto nos experimentos. Por fim, se identifica

possíveis futuros trabalhosm destacados pelos resultados experimentais apresentados aqui.

Palavras-chave: redes neurais profundas, redes neurais recorrentes, redes grafo-neurais,

grafos, medidas de centralidade.
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1 INTRODUCTION

Recently, deep learning has made significant strides in many areas, replacing hand-

engineering solutions with ones inferred from data (LECUN; BENGIO; HINTON, 2015).

However, a common trend with this new success seems to be in the hand-engineering of

models to solve different tasks, with a plethora of proposed and tested architectures for

a variety of problems. In Image Classification/Computer Vision we have witnessed the

evolution from using simple Multi-Layer Perceptrons (MLPs) and Convolutional Neural

Networks (CNNs) (LECUN et al., 1998) for the MNIST, passing through CNNs’ success

on the ImageNet dataset (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), Residual

Networks (ResNets) (HE et al., 2016) and then now with research being done with Capsule

Networks (CapsNets) in (SABOUR; FROSST; HINTON, 2017) and (HINTON; SABOUR;

FROSST, 2018). In sequence-based data there has been the use of simple Recurrent Neural

Networks (RNNs), which then have spawned a variety of Hand-Engineered variations that

try to attack some of the issues encountered when learning sequence-based computation,

such as the Long Short-Term Memories (LSTMs) (HOCHREITER; SCHMIDHUBER,

1997), their “simplified” version – the Gated Recurrent Units (GRUs) (CHO et al., 2014) –

as well as many slight variations of both, the Neural Turing Machines (NTMs) (GRAVES;

WAYNE; DANIHELKA, 2014) which adds an external memory that the network can

manipulate, Neural GPUs (NGPUs) (KAISER; SUTSKEVER, 2015) and Differentiable

Neural Computers (DNCs) (GRAVES et al., 2016). All of these try to avoid some pitfalls

of simple end-to-end differentiable neural computation by hand-engineering features on

the network’s architectural level.

BATTAGLIA et al. (2018), in part, define these modifications as adding levels of

relational inductive biases to the network. In their work they also make a survey of what

they call “Graph Networks”, which can be seen as an umbrella-term for their relational

inductive bias hypothesis where they work towards unifying models which exhibit a

graph-like architecture. More specifically, GILMER et al. use the term “Message-Passing

Neural Networks” (MPNNs) (GILMER et al., 2017) for some instances of Graph Neural

Networks (GNNs) (SCARSELLI et al., 2009) in their earlier survey as the umbrella-term

for a subset of these networks and this is one way one can visualise the structure of GNNs:

as being a network of computers, which work under an algorithm, communicating through

message-passing to provide a joint solution to a computational problem. The architectures

under the Graph Network umbrella are having a spike recently and have been used to
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solve many relational and symbolic problems, and seem to couple with the notion of initial

embeddings and dynamic times of computation, as shown in (GILMER et al., 2017) and

(SELSAM et al., 2018).

All of this work, along with attentional interfaces, neural programmers and other

techniques seem to be moving towards using neural network architectures as modules,

integrating these different modules into tools and working with them as heuristics to aid in

algorithms (OLAH; CARTER, 2016; BENGIO; LODI; PROUVOST, 2018). Furthermore,

recent studies have suggested that advancing combinatorial generalisation is a key step

forward in modern AI (BATTAGLIA et al., 2018). The results presented in this dissertation

can be seen as a natural step towards this goal presenting, to the best of our knowledge,

the first application of GNNs to multiple network centrality measures, a combinatorial

problem with very relevant applications in our highly connected world, including the

detection of power grid vulnerabilities (WANG; SCAGLIONE; THOMAS, 2010; LIU

et al., 2018), influence inside interorganisational and collaboration networks (CHEN et

al., 2017; DONG; MCCARTHY; SCHOENMAKERS, 2017), social network analysis

(MORELLI et al., 2017; KIM; HASTAK, 2018), pattern recognition on biological networks

(TANG et al., 2015; ESTRADA; ROSS, 2018) among others.

In general, vertex-level centralities summarise a vertex’s contribution to the network

cohesion. Several types of centralities have been proposed and many models and interpreta-

tions of these centralities have been suggested, namely: autonomy, control, risk, exposure,

influence, etc. (BORGATTI; EVERETT, 2006). Despite their myriad of applications and

interpretations, in order to calculate some of the more complex centrality measures one

may face both high time and space complexity, thus making it costly to compute them on

large networks. Although some studies pointed out a high degree of correlation between

some of the most common centralities (LEE, 2006; BATOOL; NIAZI, 2014), it is also

stated that these correlations are attached to the underlying network structure and thus may

vary across different network distributions (SCHOCH; VALENTE; BRANDES, 2017).

Therefore, techniques to allow faster centrality computation are topics of active research

(EPPSTEIN; WANG, 2004; SARIYÜCE et al., 2017).

However, this work’s goal is to provide more evidence to the power of GNNs on

working with relational problems and not to provide a faster algorithm to compute these

measures. Thus we focus on four well-known vertex centralities to investigate in this study:

Degree First proposed by (SHAW, 1954), it simply calculates to how many neighbours a

vertex is connected.
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Betweenness It calculates the number of shortest paths which cross by the given vertex. High

betweenness vertices are more important to the graph’s cohesion, i.e., their removal

may disconnect the graph.

Closeness As defined by (BEAUCHAMP, 1965), it is a distance-based centrality which mea-

sures the average geodesic distance between a given vertex and all other reachable

vertices.

Eigenvector This centrality uses the largest eigenvalue of the adjacency matrix to compute its

eigenvector (BONACICH, 1987) and assigns to each vertex a score based upon the

score of the vertices to whom it is connected.

1.1 Research Questions and Hypotheses

After presenting a short overview of the field, we would like to answer the following

questions:

1. Can a neural network infer a vertex’s centrality value only from the network struc-

ture?

2. Can a neural network learn an internal representation that translates into a vertex’s

centrality in a graph?

3. Can the representation from such a network benefit from the correlations between

centrality measures and hold information about multiple centrality measures?

4. Will the algorithm learned by this neural network be scalable and be able to run for

more iterations?

5. Will the algorithm learned by this neural network behave correctly for graphs larger

than the ones it was trained?

From the previous work surveyed in the literature, it was hypothesised that the

Research Question 1 may not to be answered positively. This is due both to some of the

high relative absolute errors present in (GRANDO; LAMB, 2015) and to the fact that the

end-task is more difficult in itself, since the algorithm receives only the network structure

as input. Although it may be possible to rank the vertices from the information provided

since there was a high correlation between the predicted values and the real values. The
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answer to Research Question 2 was thought to be positive as well, and in a similar vein to

(SELSAM et al., 2018) we may even expect that it might form a “centrality measure” of

its own inside such a representation. The answer to Research Question 3 was hypothesised

to be positive as well, and one could expect that the correlation between the centralities

may result in a positive transfer between the multiple tasks. The answer to Research

Question 4 was believed to be possible, again due to the results in (SELSAM et al.,

2018). And finally, the answer to Research Question 5 was considered to be blurry, since

degree distributions presented in the bigger graphs may cause unexpected behaviour on

the representation learned by the algorithm due to numerical problems; also that Machine

Learning algorithms tend to perform slightly worse on their test datasets; all this paired

with the fact that performance drops as the graph size increases in (SELSAM et al., 2018)

makes it hard to believe that it will generalise perfectly to bigger graphs, although it may

be that, if the answer to Research Question 4 is positive, one can expect a similar behaviour

and make the predictor run for more time steps in larger graphs.

1.2 Related Work

1.2.1 Predicting Centrality Measures with Neural Networks

The work of (GRANDO; LAMB, 2015; GRANDO; LAMB, 2016) uses neural

networks to estimate centrality measures, but their work uses a priori knowledge of other

centralities to approximate a different one, while our network uses only the network

structure and produces centrality comparisons (i.e. is a vertex more central than another?).

On (GRANDO; LAMB, 2018) they also produce a ranking of the centrality measures, but

do so using the degree and eigenvector centralities as input, while the model presented here

uses only the network structure and can produce any of the centralities tested. (KUMAR;

MEHROTRA; MOHAN, 2015) uses local features such as number of vertices in a network,

number of edges in a network, degree and the sum of the degrees of all of the vertex’s

neighbours, while we use only the network structure and the neighbourhood information

is due to the message passing between neighbouring vertices. (SCARSELLI et al., 2005)

uses GNNs to compute rankings for the PageRank centrality measure and does not focus

on other centralities nor analyses the transfer between centralities.
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1.2.2 Graph Neural Networks

Graph Neural Networks are having quite an explosion in their use recently, and

one can enumerate some publications that have approaches similar in use to what we have

done in here. For a survey of the area of Graph Neural Networks in general, one can look

at (GILMER et al., 2017), (BATTAGLIA et al., 2018) and (ZHANG; CUI; ZHU, 2018).

(SCARSELLI et al., 2005) learns to rank web pages to a search, but limits himself to

approximating a single PageRank-like centrality measure. (LI et al., 2018), (YOU et al.,

2018b) and (YOU et al., 2018a) work on learning generative models for graph generation,

the first and the latter applying their work to the generation of chemical compounds, this

can be seen as a step forward in modelling parameters for graphs, but their analyses don’t

study the relationships between the latent space and the characteristics of the networks

itself. Finally, (SELSAM et al., 2018) explores the latent space learned by his network and

uncovers significant emergent behaviour through visualising the PCA reduction of their

embeddings as well as clustering these embeddings, some of the techniques we use in this

work are very much like the ones applied in their methodology.

1.3 Contributions

During the Master’s programme’s duration we took part in several research projects,

some of which are part of this dissertation. These contributions, if measured in terms of

scientific papers, are the describe below. We include the abstracts of these papers to make

it easier to understand the context of the contributions.

1.3.1 On Quantifying and Understanding the Role of Ethics in AI Research: A His-

torical Account of Flagship Conferences and Journals

Recent developments in AI, Machine Learning and Robotics have raised con-
cerns about the ethical consequences of both academic and industrial AI re-
search. Leading academics, businessmen and politicians have voiced an in-
creasing number of questions about the consequences of AI not only over peo-
ple, but also on the large-scale consequences on the the future of work and
employment, its social consequences and the sustainability of the planet. In
this work, we analyse the use and the occurrence of ethics-related research in
leading AI, machine learning and robotics venues. In order to do so we per-
form long term, historical corpus-based analyses on a large number of flagship
conferences and journals. Our experiments identify the prominence of ethics-
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related terms in published papers and presents several statistics on related top-
ics. Finally, this research provides quantitative evidence on the pressing ethical
concerns of the AI community.

The student was the 2nd author of the paper on the submission to the 4th Global

Conference on Artificial Intelligence, Luxembourg (Qualis unavailable), presented at

the conference by Marcelo de Oliveira Rosa Prates (PRATES; AVELAR; LAMB, 2018).

Code started in <https://github.com/phcavelar/Ethics-AI-Data>, moved to <https://github.

com/marceloprates/Ethics-AI-Data> and also available at <https://github.com/phcavelar/

Ethics-AI-Data-1>.

The contribution of each of the students are as follows:

Prates’ contribution on this paper was doing the bulk of experimental work as well

as writing most of the paper and revising it.

The author’s contribution on this paper was scraping the data necessary for the

study, discussing the results and writing a small part of the paper, as well as revising it.

1.3.2 Assessing Gender Bias in Machine Translation – A Case Study with Google

Translate

Recently there has been a growing concern in academia, industrial research
labs and the mainstream commercial media about the phenomenon dubbed as
machine bias, where trained statistical models – unbeknownst to their creators
– grow to reflect controversial societal asymmetries, such as gender or racial
bias. A significant number of Artificial Intelligence tools have recently been
suggested to be harmfully biased towards some minority, with reports of racist
criminal behavior predictors, Apple’s Iphone X failing to differentiate between
two distinct Asian people and the now infamous case of Google photos’ mis-
takenly classifying black people as gorillas. Although a systematic study of
such biases can be difficult, we believe that automated translation tools can
be exploited through gender neutral languages to yield a window into the phe-
nomenon of gender bias in AI.

In this paper, we start with a comprehensive list of job positions from the U.S.
Bureau of Labor Statistics (BLS) and used it in order to build sentences in
constructions like “He/She is an Engineer” (where “Engineer” is replaced by
the job position of interest) in 12 different gender neutral languages such as
Hungarian, Chinese, Yoruba, and several others. We translate these sentences
into English using the Google Translate API, and collect statistics about the
frequency of female, male and gender-neutral pronouns in the translated out-
put. We then show that Google Translate exhibits a strong tendency towards
male defaults, in particular for fields typically associated to unbalanced gender
distribution or stereotypes such as STEM (Science, Technology, Engineering
and Mathematics) jobs. We ran these statistics against BLS’ data for the fre-
quency of female participation in each job position, in which we show that
Google Translate fails to reproduce a real-world distribution of female work-
ers. In summary, we provide experimental evidence that even if one does not
expect in principle a 50:50 pronominal gender distribution, Google Translate

https://github.com/phcavelar/Ethics-AI-Data
https://github.com/marceloprates/Ethics-AI-Data
https://github.com/marceloprates/Ethics-AI-Data
https://github.com/phcavelar/Ethics-AI-Data-1
https://github.com/phcavelar/Ethics-AI-Data-1
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yields male defaults much more frequently than what would be expected from
demographic data alone.

We believe that our study can shed further light on the phenomenon of machine
bias and are hopeful that it will ignite a debate about the need to augment cur-
rent statistical translation tools with debiasing techniques – which can already
be found in the scientific literature.

Second author for the submission to Neural Computing and Applications (Qualis

B1, 2013-2016), published at the journal (PRATES; AVELAR; LAMB, 2019). This work

received attention in the international media, appearing on websites such as The Reg-

ister1, Tert 2, datanews3, t3n4 and others. Some time after this media coverage Google

introduced a new feature in its Google Translate tool to provide translations for both gen-

ders <https://www.blog.google/products/translate/reducing-gender-bias-google-translate/>

(Last accessed 21/01/2018), although this solution does not use gender neural problems,

it at least promotes fairness in its available translations. The code was made available

in <https://github.com/marceloprates/Gender-Bias> and <https://github.com/phcavelar/

Gender-Bias>.

The contribution of each of the students are as follows:

Prates’ contribution was the code communicating with Google Translate, experi-

mental work, making the visualisations, as well as writing the majority of the paper and

revising it.

The author’s contribution on this paper involves gathering and wrangling the data

from the United States of America’s Bureau of Labor Statistics on job positions as well

as the Adjective Corpus, writing part of the paper (mainly on the linguistic aspect of the

languages taken into consideration for the study), defining the language templates used,

experimental work and revision.

1.3.3 Multitask Learning on Graph Neural Networks – Learning Multiple Graph

Centrality Measures with a Unified Network

The application of deep learning to symbolic domains remains an active re-
search endeavour. Graph neural networks (GNN), consisting of trained neural
modules which can be arranged in different topologies at run time, are sound

1<https://www.theregister.co.uk/2018/09/10/boffins_bash_google_translate_for_sexist_language/> (Last
accessed 21/01/2018)

2<https://www.tert.am/en/news/2018/09/12/google-translate/2788710> (Last accessed 21/01/2018)
3<https://datanews.knack.be/ict/nieuws/google-translate-is-seksistisch/article-normal-1195859.html>

(Last accessed 21/01/2018)
4<https://t3n.de/news/google-translate-verstaerkt-sexistische-vorurteile-1109449/> (Last accessed

21/01/2018)

https://www.blog.google/products/translate/reducing-gender-bias-google-translate/
https://github.com/marceloprates/Gender-Bias
https://github.com/phcavelar/Gender-Bias
https://github.com/phcavelar/Gender-Bias
https://www.theregister.co.uk/2018/09/10/boffins_bash_google_translate_for_sexist_language/
https://www.tert.am/en/news/2018/09/12/google-translate/2788710
https://datanews.knack.be/ict/nieuws/google-translate-is-seksistisch/article-normal-1195859.html
https://t3n.de/news/google-translate-verstaerkt-sexistische-vorurteile-1109449/
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alternatives to tackle relational problems which lend themselves to graph repre-
sentations. In this paper, we show that GNNs are capable of multitask learning,
which can be naturally enforced by training the model to refine a single set of
multidimensional embeddings ∈ Rd and decode them into multiple outputs
by connecting MLPs at the end of the pipeline. We demonstrate the multitask
learning capability of the model in the relevant relational problem of estimat-
ing network centrality measures, i.e. is vertex v1 more central than vertex v2
given centrality c?. We then show that a GNN can be trained to develop a
lingua franca of vertex embeddings from which all relevant information about
any of the trained centrality measures can be decoded. The proposed model
achieves 89% accuracy on a test dataset of random instances with up to 128
vertices and is shown to generalise to larger problem sizes. The model is also
shown to obtain reasonable accuracy on a dataset of real world instances with
up to 4k vertices, vastly surpassing the sizes of the largest instances with which
the model was trained (n = 128). Finally, we believe that our contributions at-
test to the potential of GNNs in symbolic domains in general and in relational
learning in particular.

First author (previously joint first author) on the submission the International

Conference of Artificial Neural Networks in 2019 (Qualis B1, 2013-2016), presented as

a poster by the student for the special session on graph neural networks (AVELAR et

al., 2019). Code made available at <https://github.com/phcavelar/centrality-multitask>.

Code for the library (version shown in this dissertation) available at <https://github.com/

phcavelar/graph-neural-networks> with separate commits available in an earlier staging

version in <https://github.com/phcavelar/graph-nn>.

This work is part of the theme of this dissertation. The contribution of each of the

students are as follows:

The author’s contribution to this paper was developing the bulk of the code for

the core GNN and MLP modules, the groundwork for the batch separation code for

extracting the results regarding the embeddings for each of the separate problems in

the batch, the implementation of models prior to the comparison framework, part of the

development of the comparison framework and supervising Lemos during his learning

phase in implementing the comparison model and plotting some of the visualisations for

analysing the embeddings. The author also generated the datasets, collected some of the

real instances, and ran a good part of the experimental results, as well as writing a part of

the paper and revising it.

Prates’ contribution was part of the code for the core GNN module, part of the

development of the comparison framework, supervising Lemos during his learning phase

in implementing the comparison model, plotting some of the visualisations for analysing

the embeddings, as well as writing a good part of the paper and revising it.

Lemos’ contribution was writing a part of the paper, revising it, doing the literature

review on the centrality measures and the effects of the graph distributions on them,

https://github.com/phcavelar/centrality-multitask
https://github.com/phcavelar/graph-neural-networks
https://github.com/phcavelar/graph-neural-networks
https://github.com/phcavelar/graph-nn
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reworking the approximation model to the comparison framework, collecting some of the

real instances, and plotting some of the visualizations for analysing the embeddings.

1.3.4 Learning to Solve NP-Complete Problems: A Graph Neural Network for the

Decision TSP

Graph Neural Networks (GNN) are a promising technique for bridging dif-
ferential programming and combinatorial domains. GNNs employ trainable
modules which can be assembled in different configurations that reflect the re-
lational structure of each problem instance. In this paper, we show that GNNs
can learn to solve, with very little supervision, the decision variant of the Trav-
eling Salesperson Problem (TSP), a highly relevant NP-Complete problem.
Our model is trained to function as an effective message-passing algorithm in
which edges (embedded with their weights) communicate with vertices for a
number of iterations after which the model is asked to decide whether a route
with cost < C exists. We show that such a network can be trained with sets
of dual examples: given the optimal tour cost C∗, we produce one decision
instance with target cost x% smaller and one with target cost x% larger than
C∗. We were able to obtain 80% accuracy training with −2%,+2% devia-
tions, and the same trained model can generalize for more relaxed deviations
with increasing performance. We also show that the model is capable of gen-
eralizing for larger problem sizes. Finally, we provide a method for predicting
the optimal route cost within 2% deviation from the ground truth. In summary,
our work shows that Graph Neural Networks are powerful enough to solve
NP-Complete problems which combine symbolic and numeric data.

Joint first author, with Marcelo de Oliveira Rosa Prates and Henrique Lemos

dos Santos, on the submission to the 23rd AAAI Conference on Artificial Intelligence

(Qualis A1, 2016), presented by Marcelo de Oliveira Rosa Prates. Pre-print made available

(PRATES et al., 2019a). Code available at <https://github.com/machine-reasoning-ufrgs/

TSP-GNN> and <https://github.com/phcavelar/TSP-GNN>. Code for the library (ver-

sion shown here) available at <https://github.com/phcavelar/graph-neural-networks> with

separate commits available in an earlier staging version in <https://github.com/phcavelar/

graph-nn>.

The contribution of each of the students are as follows:

Prates’ contribution to this paper was part of the code for the core GNN module,

doing the bulk of the experimental work and setup (running experiments, trying different

ways of producing the answer, generating the datasets, etc), writing most of the paper as

well as revising it.

The author’s contribution to this paper was developing the bulk of the code for the

core GNN module as well as the MLP, the groundwork for the batch separation code for

extracting the results regarding the embeddings for each of the separate problems in the

https://github.com/machine-reasoning-ufrgs/TSP-GNN
https://github.com/machine-reasoning-ufrgs/TSP-GNN
https://github.com/phcavelar/TSP-GNN
https://github.com/phcavelar/graph-neural-networks
https://github.com/phcavelar/graph-nn
https://github.com/phcavelar/graph-nn
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batch, the definition and implementation of the “acceptance curve” and its application on

extracting route costs from a trained model. The author also contributed in the discussion

of possible models and tentative solutions to the problems faced during the development

of the experiments, as well as writing a small part of the paper and revising it.

Lemos’ contribution to this paper was implementing the baseline models, discussion

of possible models and tentative solutions to the problems faced during the development

of the experiments, writing a small part of the paper and revising it.

1.3.5 Typed Graph Networks

Recently, the deep learning community has given growing attention to neural
architectures engineered to learn problems in relational domains. Convolu-
tional Neural Networks employ parameter sharing over the image domain, ty-
ing the weights of neural connections on a grid topology and thus enforcing the
learning of a number of convolutional kernels. By instantiating trainable neu-
ral modules and assembling them in varied configurations (apart from grids),
one can enforce parameter sharing over graphs, yielding models which can ef-
fectively be fed with relational data. In this context, vertices in a graph can
be projected into a hyperdimensional real space and iteratively refined over
many message-passing iterations in an end-to-end differentiable architecture.
Architectures of this family have been referred to with several definitions in
the literature, such as Graph Neural Networks, Message-passing Neural Net-
works, Relational Networks and Graph Networks. In this paper, we revisit the
original Graph Neural Network model and show that it generalises many of the
recent models, which in turn benefit from the insight of thinking about vertex
types. To illustrate the generality of the original model, we present a Graph
Neural Network formalisation, which partitions the vertices of a graph into a
number of types. Each type represents an entity in the ontology of the prob-
lem one wants to learn. This allows - for instance - one to assign embeddings
to edges, hyperedges, and any number of global attributes of the graph. As a
companion to this paper we provide a Python/Tensorflow library to facilitate
the development of such architectures, with which we instantiate the formali-
sation to reproduce a number of models proposed in the current literature.

Joint first author, with Marcelo de Oliveira Rosa Prates and Henrique Lemos dos

Santos, on the submission to the IEEE Transactions on Neural Networks and Learning

Systems (Qualis A1, 2013-2016), rejected. Pre-print made available (PRATES et al.,

2019b). Code for the library (version shown in this dissertation) available at <https://github.

com/phcavelar/graph-neural-networks> with separate commits available in an earlier

staging version in <https://github.com/phcavelar/graph-nn>. The library was renamed

for this publication and is also available at <https://github.com/machine-reasoning-ufrgs/

typed-graph-network>.

This work is part of the theme of this dissertation. The contribution of each of the

students are as follows:

https://github.com/phcavelar/graph-neural-networks
https://github.com/phcavelar/graph-neural-networks
https://github.com/phcavelar/graph-nn
https://github.com/machine-reasoning-ufrgs/typed-graph-network
https://github.com/machine-reasoning-ufrgs/typed-graph-network
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Prates’ contributions were part of the code for the core GNN module, writing the

majority of the paper as well as formalising the TGN meta-model.

The Author’s contribution was doing the bulk of the implementation of the GNN

library used for the TGN formalisation (and in the results collected from the 3 published

papers cited) as well as revising the paper.

Lemos’ contribution was writing part of the paper, revising it and providing prelim-

inary results in regards to the Graph Colouring problem, which are yet to be published.

1.4 Dissertation Structure

This dissertation is structured as follows:

• This Chapter explains the research problem in Section 1.1, exposes related work in

Section 1.2, lists the achieved scientific contributions in Section 1.3 and then defines

the structure of the remainder of the document;

• Chapters 2 and 3 give most of the necessary background needed for reading this

dissertation, and give pointers to what expected background is assumed. More

specifically, the most important graph-theoretical background needed is in Chapter 2,

along with the motivating topic of social networks and the definition of centrality

measures analysed, and the background on Artificial Neural Networks and, most

importantly, Graph Neural Networks are introduced in Chapter 3;

• Chapter 4 describes the carried out experiments and the results achieved throughout

the Master’s programme, in regard to this Dissertation’s topic, and the submitted

publications relevant to the dissertation;

• Then, Chapter 5 concludes this dissertation and exposes possible future work on the

topics covered here.

• Additionally, Appendix A explains the GNN library used in the implementation of

the articles.
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2 ON SOCIAL AND COMPLEX NETWORKS

This chapter introduces some of the motivating topics behind this dissertation and

also gives the necessary background on graph theory, setting the terminology used in the

rest of the work. For further reading on the topic of network science and social networks,

see (BARABÁSI et al., 2016)1, (EASLEY; KLEINBERG, 2010)2 and (NEWMAN, 2010).

2.1 What is a Network?

Over the last few decades, developed and developing countries have experienced

a surge of new technologies enabling people to interact, learn and perform commercial

transactions on a unseen scale. People have become highly dependant on the systems

that enable such connectedness and many solutions have become so ubiquitous that the

hardship of living without them seems threatening. As an example someone can, using

only Facebook™, communicate with others through instant messaging, arrange events,

enter communities of like-minded individuals, collaborate on documents, and both set

up products for sale as well as search for products for buying. All of these functions

aggregated on a single platform emphasise how the inherit value of something may depend

on how many users it has.

This explosion of connectivity and, most importantly, the ability to gather and

analyse data about these connected systems have helped form the field of study known

as Network Science (BARABÁSI et al., 2016). This field studies systems which can be

represented as entities and relations, such systems are called networks and their entities

are represented by nodes and the relations between them are denoted as links. A prime

example of such a system is the World Wide Web (the Web, for short) which is, today, a

highly connected collection of Web pages that contain pointers (links) to other Web pages.

The Web, however, is not the sole example of highly connected system that one

encounters daily. Many other types of networks exist and a person interacts with or is

affected by many of these highly connected, highly complex systems, on an everyday basis.

To name a few:

• Social Networks are the networks that describe the relationship between human

beings – a network of people and their friendships, a network of people and their
1Available online at <www.networksciencebook.com> as of 29/12/2018
2Available online at <www.cs.cornell.edu/home/kleinber/networks-book/> as of 29/12/2018

www.networksciencebook.com
www.cs.cornell.edu/home/kleinber/networks-book/
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co-workers, a networks of romantic relationships, collaboration networks, etc.

This kind of network has been in existence since the first human beings and they

determined the spread of knowledge, culture, and resources throughout all of human

history.

• Trade Networks are the networks that define commercial transactions between

different entities, such as the global network of trade between countries. These are

the basis for the material prosperity humanity has been enjoying since the last World

War.

• Systems that transport a certain quantity of something from one point to another,

and examples of this involve the logistics of Distribution Networks of supplies

to armies or factories, Transportation Networks that model the transit of people

during their daily routines or even the Power Grids that distribute the vital electric

energy to its end-users;

• Information Networks are those systems that model the propagation of information

along its nodes, the Web being a prime example of an information network, where a

person can follow the links between the nodes of the web in search of information

about a related article. The networks formed by the cross references between related

items in an encyclopedia are another example of such information networks.

• Chemical Networks and Biological Networks are other types of complex networks

that have a completely different motivation and evolution history behind them, in

contrast to many of the networks exemplified above. They can vary as much as

networks of taste compounds in recipes, to networks of metabolic chemical reactions

inside a cell. One important networks that served as inspiration to a powerful tool

that is also used in this dissertation is the Neural Network inside our brain, that was

the main biological inspiration for the beginning of deep learning.

One can look at Fig. 2.1 for examples of real networks plotted, including a Bi-

ological Network, a Power Grid, a subset of a Social Network and a part of the Web

Graph – an Information Network. Also, see Fig. 2.2 for another plot, now of a part of

the Technological Network that is the internet. For more examples of different types of

networks, one can look at the suggested bibliography for this chapter (BARABÁSI et al.,

2016; EASLEY; KLEINBERG, 2010; NEWMAN, 2010).
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Figure 2.1: Various instances of real networks plotted with invisible nodes and using
the Kamada-Kawai force-directed algorithm (KAMADA; KAWAI, 1989) for laying out
the node positions. Subfigure (a) is an example of a biological network, “bio-SC-GT”.
Subfigure (b) is the collaboration network “CA-GrQc”. The network in Subfigure (c) is
“econ-mahindas”, an economical network. The plot in Subfigure (d) is a social network from
Facebook™, “socfb-haverford76”. More details of the networks can be seen in Table 4.2.
Note that due to the fact that the edge width is very small, edges may only be visible when
there is a large grouping of them. Source: Author, using data from (LESKOVEC; KREVL,
2014) and plotting using Networkx (HAGBERG; SWART; CHULT, 2008)

(a) (b)

(c) (d)

2.2 Characteristics of Complex Networks

One of the most important discoveries of network science is that many naturally

occurring complex networks share properties that can be studied and exploited. For

example, technological networks such as the internet, information networks such as the

World Wide Web, biological networks such as metabolical networks, and social networks

such as a snapshot of facebook connections all share some common properties such as low

diameter, heavy tailed degree distribution and the presence of community structure.

The low diameter of complex networks was popularised by the principle of “six

degrees of separation”, which states any two people in the world would be separated by

at most 6 “steps” of friendship. This idea gave rise to various metrics such as the Erdös

Number3 (NEWMAN, 2001; COLLINS; CHOW, 1998), which is the distance from a

mathematician to Paul Erdös in the mathematics collaboration graph, the Bacon Number4

3<https://en.wikipedia.org/wiki/Erd%C5%91s_number>
4<https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon>

https://en.wikipedia.org/wiki/Erd%C5%91s_number
https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
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Figure 2.2: Partial map of the Internet based on the January 15, 2005 data found on
opte.org. Each line is drawn between two nodes, representing two IP addresses. The length
of the lines are indicative of the delay between those two nodes. This graph represents less
than 30% of the Class C networks reachable by the data collection program in early 2005.
Lines are colour-coded according to their corresponding RFC 1918 allocation (See source
for colour coding). Source: Wikimedia Commons

(COLLINS; CHOW, 1998), that is the distance of an actor or actress to Kevin Bacon in

the co-starring graph of artists on films, and even more so the popular game “5-clicks to

Jesus”5, in which a user starts from a random page on wikipedia and tries to reach the page

for Jesus through the least amount of steps.

This principle can be understood by considering that there are some people who

are central “hubs”, that connect to a large amount of people and can serve as “shortcuts”

between one entity and another. Such an idea was exploited for the purposes of searching

web pages, and is an emergent property of most Complex Networks. This property,

however, can be related to their heavy tailed degree distribution, that is also called the

scale-free property of complex networks, which was first described in (ALBERT; JEONG;

BARABÁSI, 1999). It simply means that the degree distribution of the network follows a

power law relationship, and thus there is a small quantity of nodes that concentrate a large

part of the degree counts of the network – that is, a few nodes that are connected to most

nodes – whereas the large majority of nodes have very small degrees. We will revisit this

in more detail in Subsection 2.4.1.

Finally, the community structure is the idea that nodes inside a community generally

tend to have more connections between nodes in that same community than in other

communities. For example, people that work in the same workplace tend to be more

connected between themselves than with people from other workplaces. Similar ideas that

5<https://en.wikipedia.org/wiki/Wikipedia:Wiki_Game>

http://www.opte.org/maps/
https://en.wikipedia.org/wiki/File:Internet_map_1024_-_transparent,_inverted.png
https://en.wikipedia.org/wiki/Wikipedia:Wiki_Game
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pertain to Social Networks are that of friend circles, hobbyist groups, and neighbours, but

the idea of community structures has been used in Complex Networks as diverse from

Social Networks as Metabolic Networks (RAVASZ; SOMERA ANNA LISA; BARABÁSI,

2002). A small and clear example of community structure is that of Zachary’s Karate Club

(WAYNE, 1977) which can be seen in Figure. 2.3

Figure 2.3: The connections of the 34 members of Zachary’s Karate Club (WAYNE,
1977) where links denote that two members interacted outside the club. The colours
are the best community partition predicted the Girvan-Newman method for community
detection (GIRVAN; NEWMAN, 2002; NEWMAN; GIRVAN, 2004), which captures
closely the split into two groups: The only node being assigned to a different faction
being node 9, which should actually was on the same side as node 1 after the split. This
anomalous behaviour is explained when one knows the history behind the node – the
person corresponding to the node was almost completing a 4-year quest to obtain a black
belt, something it could only achieve with the instructor’s node (1). Source: Author, data
from (WAYNE, 1977) plotted using the Networkx Python package (HAGBERG; SWART;
CHULT, 2008)
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2.3 Basics of Graph Theory

In this Section we will define the basic graph-theoretical concepts used in this

dissertation. We will start with defining a graph, the main mathematical object used to

model networks, and then proceed to give some definitions that will be important in the

future, such as the notion of paths, shortest paths, distances and connected components.

For the sake of uniformity, we will adopt from now on the graph-theoretic nomenclature for

nodes which will be called vertices. For a more thorough explanation of graph theory itself,
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see (BONDY; MURTY, 2008) or an older version (BONDY; MURTY et al., 1976)6. The

suggested literature for network science cited at the start of this chapter (BARABÁSI et

al., 2016; EASLEY; KLEINBERG, 2010; NEWMAN, 2010) also contains some concepts

of graph theory.

A graph G is a pair G(V,E) of vertices V and edges between vertices E. The

source of an edge e ∈ E is denoted src(e) and its target tgt(e), both of which are

vertices ∈ V . Both vertices and edges may have properties associated with them. A

common property for edges to have are numerical weights, denoted we. Graphs which

have weights associated with their edges are called weighted graphs. Normally weights

are real numbers, but for the applications of this dissertation one can assume that weights

are non-negative real numbers we ∈ R≥0 from now on, unless the contrary is specified. If

a graph is unweighted consider that ∀e ∈ E,we = 1. A graph is said to be undirected if

∀e ∈ E∃e′ ∈ E such that src(e) = tgt(e′), src(e′) = tgt(e), and any other property of e

is equal to the one in e′.

Given two vertices vs, vt ∈ V , a path between these two vertices P (vs, vt) is a

sequence of edges (e1, e2, . . . en) such that src(ei+1) = tgt(ei)∀i ∈ [0, n− 1], src(e1) =

vs and tgt(en) = vt. The distance of a path |P (vs, vt)| is the sum of all weights (or

distances) of the edges in the path
∑n

i=0wi, which is the version assumed here onwards

unless specified, or of any other property that an edge may have. A path can also be

seen as a sequence of vertices (v0, v1, . . . vn) such that v0 = vs and vn = vt, where

∀vi ∈ P (vs, vt) \ {vt}∃e, src(e) = vi, tgt(e) = vi+1.

A shortest path between two given vertices vs, vt ∈ V is a path P ′(vs, vt) such

∀P (vs, vt), |P ′(vs, vt)| ≤ |P (vs, vt)|, we denote the set of shortest paths between two

vertices as Pshort(vs, vt) and the set of paths between two vertices as P(vs, vt). The

distance between two vertices is simply the distance of their shortest path.

A vertex vt is said to be reachable from vertex vs if and only if there exists a

path from vs to vt. A graph is said to be connected if any vertex ∈ V is reachable from

any other vertex. If a graph is directed and such that, by making it undirected, it would

become connected, it is called weakly connected, if a directed graph is connected it is called

strongly connected. If a strict subgraph Gc(Vc, Ec) ⊂ G(V,E), Vc ⊂ V, Vc 6= V,Ec =

{e ∈ E|src(e), tgt(e) ∈ Vc} is connected (or either weakly or strongly connected) and is

not a strict subgraph of a connected (or either weakly or strongly connected) strict subgraph

of G, it is called a connected (or either weakly or strongly connected) component of the

6Available online at <citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.721.3161&rep=rep1&type=
pdf> as of 29/12/2018

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.721.3161&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.721.3161&rep=rep1&type=pdf
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graph G.

For our applications, however, we will always use unweighted undirected graphs,

the other definitions given here are mainly for the sake of completeness and to allow for

further extensions of the model to adopt directed or weighted graphs.

2.4 Centrality Measures

For the purpose of analysing the behaviour of complex networks, many metrics

have been devised and tested. A subset of these metrics is what is called a centrality

measure. In this section we will define and explain some of the uses for the centrality

measures that were analysed in this dissertation. One can look at (NEWMAN, 2010) for a

Network Science book with definitions for many network centrality measures, including

the ones discussed in this dissertation. Also note that, while sometimes we do take care to

define centrality measures for graphs with multiple disconnected components, our end-use

application will assume that disjoint subgraphs are different graphs entirely and thus one

can consider that the graphs are composed of a single connected component. Due to

numerical constraints, we will take care to also define a version of each centrality measure

that can easily fit into the [0, 1] interval.

2.4.1 Degree and Degree Distribution

A vertex’s degree is given by the number of edges that connect to or from it.

In the case of a directed graph, there can be the definition of in-degree and out-degree

which simply are, respectively, the number of edges that have the vertex as its target

and the number of edges that have the vertex as its source. The Degree Centrality

Measure (Denoted D(i) as the degree of vertex i) of a vertex is simply the vertex’s

degree. Similarly are defined both the In-Degree Centrality Measure and Out-Degree

Centrality Measure. The idea behind these metrics is that, if a vertex is connected to many

other vertices, it can be considered more central than a vertex that has fewer connections.

If a normalisation is needed for the the degree centrality measure of a vertex, one can

simply divide the vertex’s degree by the maximum possible degree of a network the same

size as the network it is in (Denoted as D(i)). One can look at Fig. 2.4 to see an example

network with the vertex’s size scaled by its degree.
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Figure 2.4: The Karate Club example graph shown in Figure 2.3 with the vertices sized
according to their degree centrality – the vertex with largest degree is 4 times as big as the
one with the smallest degree. Source: Author, data from (WAYNE, 1977) plotted using the
Networkx Python package
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The whole set of degree values for a network is a very important information to

describe the network itself (BARABÁSI et al., 2016), such information can be summarised

as the degree distribution of a network – which defines the probability of a randomly

selected vertex has a certain degree. We can write it as in Equation 2.1, where pk denotes

the probability that a randomly selected vertex has degree k, Nk is the number of vertices

that have degree k and N is the total number of vertices.

pk =
Nk

N
(2.1)

With the degree distribution we can also calculate the average degree of a network

〈k〉, as in Equation 2.2. In real networks, however, we can work the definition as starting

from the network’s minimum degree kmin which is simply the smallest degree value in the

network.

〈k〉 =
k=∞∑
k=0

kpk (2.2)

In fact, we can generalise this equation to define the nth moment of a distribution

〈kn〉, in which n = 1 is the average degree, n = 2 helps defining the variance of a network’s

degree distribution s2 through s2 = 〈k2〉 − 〈k1〉2, and n = 3 defines the skewness of the

distribution. Thus Equation 2.2 can be generalised as Equation 2.3, where we present both
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the discrete and a continuous formulation being that the continuous one will be used later.

〈kn〉 =
k=∞∑
k=kmin

knpk =

∫ ∞
k=kmin

knp(k)dk (2.3)

In Section 2.2 we briefly described the scale-free nature of complex networks, but

did not go in its details. With the definition of degrees and degree distributions however,

we can now describe this in more detail. Since a Scale-Free network is a network whose

degrees follow a power law distribution, we can say that pk = k−γ is followed by the

degree distribution7. If we consider a continuous formalism for this, we would have

Equation 2.4 for the continuous degree distribution.

p(k) = Ck−γ (2.4)

Due to the condition that the function is a probability distribution, we have

that
∫∞
kmin

p(k)dk = 1, and using Equation 2.3’s continuous form, we’d have 〈kn〉 ≈∫∞
k=kmin

knp(k)dk. We can substitute Equation 2.4 on this continuous form, and obtain the

results of Equation 2.5.

〈kn〉 =
∫ kmax

k=kmin

Ckn−γdk = C
kn−γ+1
max − kn−γ+1

min

n+ γ − 1
(2.5)

Now, we need to analyse the values for |V| → ∞, under the following assumptions:

1. kmin remains bounded (generally 1 or 2).

2. kmax →∞ with |V| → ∞.

3. Real networks often have a degree exponent 2 ≤ γ ≤ 3 (BARABÁSI et al., 2016).

We can see that, for very large networks, its moment as defined in Equation 2.5,

due to Items 1 and 2, will depend on kmax diverging or not. We can see that this will, in

fact, depend on n− γ + 1 ≤ 0. Since Item 3 says that γ is between 2 or 3, only the first

moment will satisfy this, and the rest will diverge.

But how, one may ask, this relates to anything? The fact is that this property is not

seen in a random network that follows the Poisson distribution for degrees. In a random

networks with the Poisson distribution, the second momentum and the third momentum

have definite values, and these values are relative to the first momentum (the average

degree), so that the average degree serves as a scale for the network8. In a Scale-Free
7Vertices with degree 0 are not considered, for the sake of simplicity
8We omit the steps to this claim here, but one could use the same logic to derive the exact values.



34

network, however, due to the divergence of the second and third momentum, the value for

a randomly selected vertex’s degree can be as small as kmin and arbitrarily big, and thus

the average degree of the networks does not serve as a “scale” to it.

2.4.2 Betweenness

The Betweenness Centrality Measure is a path-centric metric, in which a vertex

is declared central if it belongs to many different paths between vertices. In the case of

the Betweenness centrality, a vertex’s centrality is the amount of shortest paths which it

belongs to, being that if a vertex has more than one shortest path to another vertex, the

fraction of shortest paths between those two vertices that pass through the vertex is used

instead of a unit value. That is, for every vertex A and B that are connected by a path,

we calculate all the k shortest paths from vertex A to vertex B. The betweenness of each

vertex that belongs to each of the shortest paths is then increased by 1/k. One can look at

Fig. 2.5 to see an example network with the vertex’s size scaled by its betweenness.

In Equation 2.6, B(i) is the betweenness of vertex i, V is the set of vertices of the

Graph, d(s, t) is the shortest distance from vertex s to vertex t (it is∞ when vertex t is

unreachable to vertex s), and $(s, t) is the number of shortest paths from vertex s to t

while $(s, t|k) is the number of those shortest paths that pass through vertex k.

B(i) =
∑

s,t∈V,d(s,t)6=∞

$(s, t|i)
$s, t

(2.6)

If we want a normalised version of the betweenness centrality measure, we can use

the one defined in Equation 2.7, in which we divide the pure betweenness value by the

maximum number of shortest paths that could pass through a vertex in that Graph. Note

that we expect |V| ≥ 3, that the Graph has a single connected component (otherwise we

could normalise for each component), and that the 2 in the numerator is due to the graph

being undirected (thus we count every edge twice).

B(i) = B(i) · 2

(|V| − 1) · (|V| − 2)
(2.7)

One interpretation of vertices with high betweenness is that they are bridges between

different parts of a network, so they, in a certain way, control the flow between different

parts of the network. This interpretation is used, to a certain extent, in its use in the Girvan-
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Newman method for community detection (GIRVAN; NEWMAN, 2002; NEWMAN;

GIRVAN, 2004), in which edges9 of high betweenness are removed to disconnect parts of

a network and reveal community structures inside it.

Figure 2.5: The Karate Club example graph shown in Figure 2.3 with the vertices sized
according to their betweenness centrality – the vertex with largest betweenness is 4 times
as big as the one with the smallest betweenness. Source: Author, data from (WAYNE,
1977) plotted using the Networkx Python package
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2.4.3 Closeness

The Closeness Centrality Measure is a centrality measure that uses the notion

of inter-vertex distance in its definition. A vertex is called more central if its distance to

other vertices is smaller. Therefore, the Closeness of a vertex is simply the reciprocal of

the average of the distances between it and all vertices reachable from it. One can look at

Fig. 2.6 to see an example network with the vertex’s size scaled by its closeness.

In Equation 2.8, C(i) is the closeness of vertex i, V is the set of vertices of the

Graph, d(s, t) is the distance from vertex s to vertex t (it is∞ when vertex t is unreachable

to vertex s, and is calculated as the distance of the shortest path between them), and r(s, t)

is 1 if t is reachable from s and 0 otherwise. Note that if the edges are not weighted or are

weighted with weights ≥ 1, the distances will also be ≥ 1 and since the closeness value is

the reciprocal of the average of the distances, then its value will already be between 0 and

9Note that while we defined vertex betweenness, edge betweenness is defined following the same logic
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1.

C(i) =

∑
t∈V r(i, t)∑

t∈V,d(i,t)6=∞ d(i, t)
(2.8)

Figure 2.6: The Karate Club example graph shown in Figure 2.3 with the vertices sized
according to their closeness centrality – the vertex with largest closeness is 4 times as big
as the one with the smallest closeness. Source: Author, data from (WAYNE, 1977) plotted
using the Networkx Python package
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2.4.4 Eigenvector

All of the measures described so far (i.e. in Subsections 2.4.1, 2.4.2 and 2.4.3) play

with the notion that an important vertex either is one that has many connections (Degree)

or that is close to others. In the second case, it can either be that is is in the shortest path

between other vertices, as is the case with Betweenness, or it is nearer to other vertices

in average, as is the case with Closeness. Another assumption that can be made is that

an important (or, say, powerful) vertex is connected to vertices that are themselves also

important (WĄS; SKIBSKI, 2018), which is one of the intuitions behind this metric. This

is one of the ideas behind centrality measures such as PageRank or Eigenvector. One can

look at Fig. 2.7 to see an example network with the vertex’s size scaled by its Eigenvector

centrality.

The Eigenvector Centrality Measure of a vertex i is the value in the i-th position

of the eigenvector x generated by solving Equation 2.9, where M is the adjacency matrix

of the graph and λ is the largest eigenvalue of the adjacency matrix. Due to the Perron-

Frobenius theorem there will be an unique solution x, whose entries are all positive
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(CHANG; PEARSON; ZHANG, 2008).

Mx = λx (2.9)

Figure 2.7: The Karate Club example graph shown in Figure 2.3 with the vertices sized
according to their eigenvector centrality – the vertex with largest eigenvector centrality is 4
times as big as the one with the smallest eigenvector centrality. Source: Author, data from
(WAYNE, 1977) plotted using the Networkx Python package
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2.4.5 Summary

Centrality measures can be seen as a way to summarise information about a net-

work’s topology within a vertex. Albert-László Barabási especially enforces in his book

(BARABÁSI et al., 2016) that the degree distribution is a key factor to determine a net-

work’s characteristic. Some authors, however, say that one should take centrality measures

with a grain of salt, since, depending on the context they are applied, they can sometimes

be misleading (EASLEY; KLEINBERG, 2010). However, for massive graphs, such as but

not limited to the World Wide Web, it is hard to be able to analyse the network in detail

and one must resort to these metrics.

Due to the Scale-Free property of most real networks, however, the degree of

each vertex may vary hugely, and thus normalisations such as the ones proposed in the

subsections fall short in being that they disconsider the power law nature of the network’s

connections. However, this can be ignored if only the ranking of the vertices matters,

since it is not changed by the normalisation, and if one wishes only to identify the most

important vertices in a network, they should need no further than the ranking of these
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vertices.

Many other centrality measures have been proposed in the literature, we chose to

work with the vertex-level centralities described in the subsections above simply as a ques-

tion of scope. One can look at the recommended bibliography suggested at the beginning

of this section for examples of other centrality measures, including edge-level centralities,

and for some different definitions and interpretations of these centrality measures.
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3 DEEP LEARNING AND GRAPH NEURAL NETWORKS

This chapter presents the fundamental concepts of the methodology applied in this

work as well as the necessary building blocks to understand the main object of study:

A Graph Neural Network. We also set the terminology for when we are dealing with

deep learning concepts. Note that here we assume a basic knowledge of Calculus, Linear

Algebra and Statistics. For a more thorough explanation of the area in general, except

for the part of Graph Neural Networks, see (GOODFELLOW; BENGIO; COURVILLE,

2016)1 or (NIELSEN, 2015)2.

3.1 A Brief Introduction to Machine Learning

In Machine Learning (ML), the objective is to allow a computer to learn from data

in order to perform a task without being explicitly programmed to do so. One could think

of it as the task of fitting a set of variables, given some input examples, so that they provide

the best performance for a given task on both seen and unseen examples. The models to

build such a set of variables are manifold, and range from simple function regressors to

decision trees. These models often try to minimise a loss function, which is often different

from the error function used to evaluate the model. These functions can be seen as a

form of distance metric from the current model to the desired model that fits the data

correctly. The definition of a Machine Learning algorithm is, therefore, dependent on how

its variables are defined and what is the procedure that optimises these values.

The process of Machine Learning is often categorised into a set of different tasks,

some of which relate to the model’s relationship with the data it receives. For instance,

in Supervised Learning the model receives both the input examples (known as training

examples) and the desired output for these examples (known as labels) and tries to optimise

a function which maps inputs to outputs for some loss function that defines the distance

that the output is from the desired output. One can employ Supervised Learning for both

Classification problems, where the output is given in a categorical format (the possible

values for an output being known as Classes), as well as Regression, where the desired

output is a (possibly continuous) numerical function, and can also be extended to cases

where only a fraction of the data has labels, when it is denominated Semi-supervised

1Available online at <www.deeplearningbook.org> as of 29/12/2018
2Available online at <neuralnetworksanddeeplearning.com> as of 29/12/2018

www.deeplearningbook.org
neuralnetworksanddeeplearning.com
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Learning. Some examples of Supervised learning are: identifying whether an image

contains a cat or of a dog given examples of pictures with cats and dogs, transcribing

speech recordings given as examples pairs of recordings and their respective correct

transcriptions, and modelling an unknown function given a set of input values and the

expected output value of the function being modelled.

ML algorithms can also deal with data when the desired output cannot be provided,

in which the algorithm must then identify patterns present within the data without any

labels attached to it. This task is called Unsupervised Learning and can either separate the

data into different groups, which is known as Clustering, learn to identify anomalies in the

presented data, known as Anomaly Detection, or attempt to build some model that relates

the example data to a set of latent variables that describe it, of which a known model is

Principal Component Analysis (PCA) (JOLLIFFE, 2011) that can be used to summarise a

dataset’s information into a lower-dimensional space than its original one.

There is also the task of Reinforcement Learning, which models the learning

process of a decision-making agent on an environment who receives rewards based on

whether the decisions it takes can be seen as desirable behaviour. This is generally done

when one cannot possibly model the environment as a whole and analyse all possible

states – regarding this, an example is the Chinese boardgame Go, known to have more

than 2× 10170 legal positions in a 19× 19 board (the standard playing board) (TROMP;

FARNEBÄCK, 2006)3 – more possible positions than the estimated number of atoms in

the observable universe.

In this dissertation we experiment mostly with Supervised Learning, although we

use Unsupervised Learning to analyse the representation learned by our algorithm, and

thus we will not discuss any more on Reinforcement or Unsupervised Learning. Other

sub-tasks of Supervised Learning relevant to this dissertation are Transfer Learning and

Multitask Learning. In Transfer Learning one aims to train an algorithm to solve a problem

and use part of the acquired knowledge on this problem to solve yet another problem,

which gives the definition of Positive Transfer between tasks. We say that a task has

positive transfer to another if learning one can be beneficial to learning the other – that is,

there is information contained in one that is redundantly required in the other. We are also

interested in Multitask Learning, where one trains an algorithm to solve jointly different

(and maybe related) tasks, in the hopes that optimising these different objectives may lead

to a better performance than if trained separately (BENGIO, 2012).

3The number of legal positions for the 19×19 board is shown in <https://tromp.github.io/go/gostate.pdf>,
retrieved 10/01/2019.

https://tromp.github.io/go/gostate.pdf
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The optimisation done on Supervised Learning, however, is often not made on the

whole dataset. If all the possible input values are known beforehand, a simple algorithm

can be devised to always produce the correct input. And the value of ML algorithms

is calculated in how well they generalise to unseen data. Thus, one generally splits the

dataset into two different train and test datasets, and applies the variable fitting procedure

only the train dataset, saving the test dataset only to keep track of how well the model

is generalising. We call the loss/error of the algorithm on the training dataset the train

loss/error, and similarly the test loss/error. A machine learning algorithm can often fit a

dataset too tightly, presenting a lower training loss/error than test loss/error, which is called

overfitting, conversely it can also underfit a dataset, producing high loss/error values on

both train and test datasets.

3.2 On Tensors in Deep Learning

In the next session we will explain the advantages of looking at Deep Learning

through the lenses of tensors and linear algebra. In this section we will explain some basic

definitions about tensors which will be used throughout the dissertation and provide the

basic knowledge to understand the rest of the content.

One can view a Tensor as a generalisation of a Matrix, which in itself is a generali-

sation of a Vector, which can be see as a collection of Scalars. A scalar is simply a number,

say 1.0, and encodes ground information about something – for example a constant in

physics. We say that a vector has d dimensions to mean that it holds d scalars in itself

which we can access by indexing it, an example of a vector is the representation of a point

in three dimensional space like V = (3.2, 2.3,−1.1), where 3.2 is the first element, 2.3

the second and −1.1 the third.

Now, a matrix, which is a fundamental concept used in linear algebra, is much

like a vector, only that it has two “indexes” with which addresses the values it stores. A

n ×m matrix holds n ·m values, and we can access those values through two indexes

1 ≤ i ≤ n and 1 ≤ j ≤ m. A vector can be represented as a matrix with d× 1 or 1× d

dimensions. For example, Equation 3.1 shows a matrix, and we can access the number π

through indexes i = 1 and j = 3, where we can see that our definitions lead us to see that i

is the index for the row and j for the column. Equation 3.2 shows the previously defined
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vector represented as a column vector and Equation 3.3 as a row vector.

M =


x1,1 x1,2 π . . . x1,m

x2,1 x2,2 x2,3 . . . x2,m

. . . . . . . . . . . .

xn,1 xn,2 xn,3 . . . xn,m

 (3.1)

V =


3.2

2.3

−1.1

 (3.2)

Vᵀ =
[
3.2 2.3 −1.1

]
(3.3)

One can then easily extend this idea to having multiple ranks4, being that a d-

dimensional vector is something with rank 1, a m× n matrix is of rank 2 and a scalar is

of rank 0. And thus, we are led to Tensors – which are objects T of rank k, that hold a

dimensionality di ≥ 1 for every 1 ≤ i ≤ k. We call this description a tensor’s shape, which

itself is an array of integer values shape(T) = (d1, d2, . . . , dk). One can also see that

these tensors hold in them
∏k

i=1 di values in total, so a rank with dimensionality 1 does not

really add to the number of values that a Tensor holds. One does not really need to concern

oneself with the specifics of tensorial algebra, however, since most of the operations used

in deep learning are not specific to tensorial algebra but can be understood from linear

algebra, such as point-wise operations and matrix multiplications between tensors.

3.3 Neural Networks

Usually, Neural Networks can be considered as graphs that connect inputs and

operation outputs to operation inputs or outputs, but it is more mathematically, algorithmi-

cally, and numerically convenient to consider them as a series of tensor operations, that are

differentiable end-to-end, in which some of these tensors are to be considered variables

and can be optimised.

These variable tensors can be flattened into a set of variables. With this, we can

calculate the gradient on such set given the input and the error based on the desired output

of the function. With the gradients for the variables we can update the model to produce

4Note that the definition of rank here is different from that one may be accustomed to
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a, supposedly, better predicting model (the error function we note here can be, and most

times is, substituted by a loss function that is different to the error function itself but carries

information about the distance of a variable to its desired state).

More formally, given a nx-dimensional point x, its desired ny-dimensional label

y and a model M , composed of linear tensor transformations and (not necessarily linear)

function activations, which use a set of n optimisable variables V = v1, v2, . . . vn. We

denote the output of the model as being y′ = M(x, v1, v2, . . . , vn). To perform gradient

descent in such a model, one could define an error function e(x, y,M, v1, v2, . . . vn) which

would define a distance from y′ to y. This function can then be differentiated to produce the

partial derivatives of it, in respect to each of the model’s variables, producing the gradients

∇(V) = ∇(v1, v2, . . . vn) = { δe(x,y,M,v1,v2,...vn)
δv1

, δe(x,y,M,v1,v2,...vn)
δv2

, . . . δe(x,y,M,v1,v2,...vn)
δvn

}.

These gradients can be applied to V by subtracting from each variable its gradient, produc-

ing a new set of variables V ′ = {v′1, v′2, . . . v′n} = {vi −
δe(x,y,M,v1,v2,...vn)

δvi
, vi ∈ V}, which

when applied to the model M on the same input should produce a smaller error – that is,

e(x, y,M, v1, v2, . . . vn) ≥ e(x, y,M, v′1, v
′
2, . . . v

′
n).

Such an idea can be extended to provide gradients for an arbitrary number b of

points, where the model will be applied for every point-label pair, and then the errors will

be calculated in tandem, producing a set of b errors. These errors are then aggregated into

singular errors for each of the variables, being that the most common and straightforward

aggregation of these errors would be a simple sum. That is, for a set of b points P =

{pi, 1 ≤ i ≤ b} and labels Y = {yi, 1 ≤ i ≤ b}, we calculate the errors of the model

given V for every point-label pair as E = {ei(xi, yi,M, v1, v2, . . . vn), 1 ≤ i ≤ b}, and

then we have a set of b gradient-sets as ∇B(V) = {∇i(V), 1 ≤ i ≤ b}. We can then get

the set of aggregated gradients, given an aggregation r, as∇R(V) = ∇R(v1, v2, . . . vn) =

{r({ δei(x,y,M,v1,v2,...vn)
δvj

, 1 ≤ i ≤ b}), 1 ≤ j ≤ n}. This aggregated gradient is then applied

to the variables to produce the new variable set, as was discussed in the previous paragraph.

This application of the training process to a number of b point-label pairs is known

as batching and it is used due to the fact that it accelerates the training process, taking

advantage of data parallelism. This also serves to us as an example of parameter-sharing.

We could see this batched model as a single model, which is basically the repetition of the

same model b times to accommodate all the input points. The model’s variables, however,

are tied to each other across every instance of the model. In fact, our definition of a model

does not limit how many times a variable can be used in a single application of the model.

It could be that variable vk is used many times in the model, and the errors calculated in
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respect to it would then be calculated for each of these times and aggregated as in a batch

update.

Theoretically, if one wishes to fit a model for a specified dataset, they could produce

a single batch consisting of the entire dataset and run the gradient descent procedure above

until the model produces a good fit (keeping in mind, of course, problems such as overfitting,

underfitting, etc). However, due to memory constraints, most datasets cannot possibly

fit in memory through such a procedure, and smaller batches are used. This technique,

called mini-batching, produces models that are similar in performance to those with large

batches, making it possible to train models on datasets that cannot possibly fit on memory

and achieving similar results in terms of convergence to the desired performance.

Also, the gradient descent procedure as defined above is highly deterministic,

which sometimes may lead to overfitting and to the model being trapped into local minima.

Therefore the procedure is often augmented with extra stochastic and/or deterministic

parts to the underlying algorithm to prevent such errors. These procedures will be referred

to collectively as Stochastic Gradient Descent (SGD), and examples of these are the

Adam (KINGMA; BA, 2014), Adagrad (DUCHI; HAZAN; SINGER, 2011) and Adadelta

(ZEILER, 2012). For a more thorough overview of Gradient Descent in its many variants,

one can look at the overview provided by (RUDER, 2016).

The main idea of using tensors, however, will only be readily visible when there

is a need for multidimensional data such as images or videos. In these cases there are

operations that operate on tensors of rank k and they consider that any excess rank “to

the left” of the tensor itself can be simply flattened into an array for the purposes of

computation. In this way, matrix multiplication in tensors is also simply defined as the

matrix multiplication for the matrices, flattening the left of the left hand side tensor into a

matrix and the right of the right hand side tensor into another matrix, and multiplying them

as such. The mostly used matrix multiplications, however, involve simply tensors of rank

3 of shape (b, n,m) being multiplied to variable tensors (which are mostly of rank 1 with

shape m), thus producing b matrix multiplications of (n,m) matrices with (m, 1) matrices.

3.4 Convolutional Neural Networks and Parameter Sharing

In the dicussion of batching in Subsection 3.3 we saw a glimpse of a phenomenon

that is quite common in neural architectures – parameter sharing. We discussed how the

application of SGD to a batch of b points could be seen as the instance of b copies of a
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model M , with the variables of each instance tied to each other, so that the update of a

variable in one of the instances would be reflected across all others. This is one of the main

principles that are applied in Convolutional Neural Networks (CNNs).

In convolution neural networks, a kernel is learned that is applied to parts of a input

multiple times, by striding (or convolving) the kernel through the input. We can see the

analogy between the kernels used in deep learning and the ones in mathematics if we think

of some of the input Tensor’s ranks as a discrete n-dimensional space through which we

will perform a discrete convolution.

Figure 3.1: A small convolutional kernel A with activaction a that receives two inputs
and produces one output. On the left the simple internal structure of the kernel is shown,
containing only a single fully connected layer, on the right one can see the kernel as a
module A. Yellow squares are neural network layers, blue circles are inputs, red circles
are outputs and green backgrounds are to represent the whole neural network block.
Source: Author, based on (OLAH, 2014)
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Thus, we say that a 1-dimensional convolutional kernel convolves through the

discrete 1-dimensional space defined by one of the tensor’s ranks, a 2-dimensional con-

volutional kernel convolves through the discrete 2-dimensional space defined by two of

the tensor’s ranks, and so on and so forth. Through this convolution, however, we use

the same weights over each of the points that are being applied, applying parameter

sharing throughout the convolutions on the n-dimensional space, as if instantiating the

same network with tied weights throughout each of the network’s application to a slice

of data. An example of a 1-dimensional convolutional kernel that receives 2 data-points

can be seen in Figure 3.1 (note how it is simply a fully connected neural network layer),

and the application of this kernel to a discrete 1-dimensional space consisting of points

xi, 1 ≤ i ≤ 9 can be seen in Figure 3.2. Note that the same kernel, with its parameters

shared, is used throughout the discrete 1-dimensional space.

It is also common that the kernel operates on data which has a number of features,

in a certain way performing a filter on those features, which must be stored in one of

the tensor’s ranks, and producing a feature of itself. So we can see that a k-dimensional
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Figure 3.2: A discrete 1-dimensional space whose points are xi, 1 ≤ i ≤ 9 having a
convolutional kernel A applied to its input multiple times, producing a discrete convolution
of the input values into the output values shown. Note how the convolutional kernel
is simply a module who is repeated many time with shared parameters, and how some
inputs are used multiple times in different input positions of the kernel. Yellow squares
are neural network layers, blue circles are inputs, red circles are outputs and green
backgrounds are to represent the whole neural network block. Source: Author, based on
(OLAH, 2014)
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convolutional kernel with dimensions d1, d2, . . . dk, which receives fin features as input, is

simply a neuron that receives fin ·
∏k

i=1 di inputs – thus we can see that a convolutional

layer that produces fout features is simply a layer of fout neurons that are applied to every

d1, d2, . . . dk slice of an input tensor.

The way that it is organised is that the convolutional layers act on the last k + 1

ranks of a tensor, being the last rank the fin features that the layer will work on and the

other k ranks are the discrete k-dimensional space in which we will convolve the kernel

through. All of the values in the d1, d2, . . . dk, fin slice can be flattened and fed as input to

the neural network layer, thus producing fout new features for every time the convolution is

applied. The outputs of the convolutional layer keep the k-dimensional structure between

themselves, and produce fout feature maps, which in themselves are rank k (with the added

ranks of the tensor which are not used and considered as batches), only with a reduced

number of dimensions in each rank.

The application of such a network to large n-dimensional spaces can be costly,

however, and some techniques are used to avoid the large number of operations that need

to be done. One way to reduce the number of convolutional operations done is to convolve

with a stride, which simply means that some points in the n-dimensional space are going

to be skipped, and not all slices are going to be used. Another is to perform pooling in

the output, from which the most common is max-pooling, where one takes, a slice of the

feature map and combines these points into a single point, with only the largest value being

taken into consideration.

Now, with a Convolutional Neural Network layer defined, we can see that one can
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apply this to many different areas where one would benefit from invariance throughout

some dimension. Some examples are audio files, where one can use 1-d convolutions

to produce features to be processed (ABDEL-HAMID et al., 2012; ABDEL-HAMID;

DENG; YU, 2013; ABDEL-HAMID et al., 2014), images, which are by far the most

prominent use of convolutional neural networks and has produced state-of-the-art models

in many computer vision competitions (KRIZHEVSKY; SUTSKEVER; HINTON, 2012;

SIMONYAN; ZISSERMAN, 2014; LI et al., 2015). The main take-out here, however, is

that applying parameter sharing over a certain data-structure can provide networks which

use less parameters and present better performance than assuming that “everything is

connected to everything”. This is the main idea behind this chapter’s final object of study:

Graph Neural Networks.

3.5 Recurrent Neural Networks

Before we can build upon Graph Neural Networks from the idea of parameter-

sharing over a data-structure, we must first discuss Recurrent Neural Networks – both

because they, as will be clear throughout this section, use the same principle of parameter-

sharing as well as because they can be used as a building block in Graph Neural Networks.

Recurrent Neural Networks are a subset of the common neural architectures in

which the network can be used multiple times and, each time it is used, it will receive

either its output, or its “internal state”, or both the internal state and its output, produced on

the last use. This is a form of parameter sharing, much like CNNs, in which the parameters

are shared throughout the input sequence, and can be seen as a module that learns a fold

or map operation. In this section we will adopt that ht means the output of the module at

timestep t, xt is its input at the same timestep and a() is the activation function used, when

non-specified in some way.

One of the simplest RNN architectures simply takes its last output as part of its

input. Other architectures that are commonly used are the Long Short-Term Memory

(LSTM) (HOCHREITER; SCHMIDHUBER, 1997) and Gated Recurrent Unit (GRU)

(CHO et al., 2014), along with their variants. They both provide a small “memory unit”

for the RNN to store information in, alongside operations for controlling deleting from

and writing to these memories. There are many different variants and different proposed

architectures, but we focus on these due to their ubiquity in Deep Learning Practice and

Research.
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3.5.1 Simple Recurrent Neural Network

One of the simplest forms of RNN is one that receives as input both its previous

output and its input, with its first input being that of the normal input and, commonly, a

zero-tensor as its “previous output”. Look at Fig. 3.3 for a graphical visualisation of this

module and at Equation 3.4 below for it in mathematical notation5:

Ht = a(concat(Ht−1,Xt)×W +B) (3.4)

However, with this simplicity, although proved to be Turing-complete (SIEGEL-

MANN; SONTAG, 1991), this neural module has difficulties learning due to the explod-

ing/vanishing gradient problem6, and thus it is difficult to make one learn properties with

long time dependencies (BENGIO; SIMARD; FRASCONI, 1994). As such, we will use it

here only as an example on how Recurrent Neural Networks are trained.

Figure 3.3: The diagram of a simple recursive neural network with a layer whose activation
is a that receives an input tensor Xt at time-step t, creating its output Ht who is then fed
back on the network on the next time-step. If two lines joins there is a concatenation of
both tensors, where the lines separate two copies of the same tensor are produces one
for dividing arrow. Yellow squares are neural network layers, blue circles are inputs,
red circles are outputs and green backgrounds are to represent the whole neural network

block. Source: Author, based on (OLAH, 2015)

a

Xt

Ht

The recurrent part of the network can be seen as a deep network in which the

same weights are used for the stacked layers. This is known as unfolding the network

over time, and in this way backpropagation can be applied as normal, this being called

backpropagation through time. As an example, look at Fig. 3.4 where one can see how the

5note that concat is the concatenation between two tensors on an axis, here done on the last axis, which
is the one that holds the output of the neurons in the RNN

6Due to the application of the chain rule repeatedly on the same function, if the derivatives tend towards
smaller/bigger values, the gradients then will be vanishingly small/explodingly big, preventing the network
from learning any meaningful information
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layers, stacked along the input sequence, provide a deep neural network through which we

can backpropagate the error function and update the weights jointly as if in a batch update.

Figure 3.4: The diagram elucidating the unrolling of a simple recursive neural network for
backpropagation through time. This RNN has a layer whose activation is a that receives an
input tensor Xt at time-step t, creating its output Ht who is then fed back on the network
on the next time-step. If two lines joins there is a concatenation of both tensors, where the
lines separate two copies of the same tensor are produces one for dividing arrow. Yellow
squares are neural network layers, blue circles are inputs, red circles are outputs and
green backgrounds are to represent the whole neural network block. Source: Author,

based on (OLAH, 2015)
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3.5.2 Long Short-Term Memory

The LSTM cell (HOCHREITER; SCHMIDHUBER, 1997) has, alongside its output

Ht and input Xt, a internal state Ct, which, theoretically, can only be operated by the the

recurrent cell itself. A simple LSTM cell is controlled by the following equations7:

X′
t
= concat(Ht−1,Xt)

Ft = σ(X′
t ×Wf +Bf )

It = σ(X′
t ×Wi +Bi)

Gt = a(X′
t ×Ww +Bw)

Ct = (Ct−1 · Ft) + (It ·Gt)

Ot = σ(X′
t ×Wo +Bo)

Ht = a(Ct) ·Ot

(3.5)

One can see from the onset that the LSTM cell has 4 different sets of weights and

biases, which it uses to different purposes throughout its operation. These correspond

7σ is the sigmoid function
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to 4 operations that the LSTM does in order to update its internal state and produce its

output and the sigmoid operations serve to control the values to be considered (σ(v) = 1)

or ignored (σ(v) = 0) completely, or anything in-between. These gates can be seen as the

following:

• The F gate is the “forget” gate, where the LSTM picks what it will delete from its

internal state, given the current input and its previous output.

• The I gate is the “input” gate, where the LSTM picks what part of the input it will

write to its memory.

• The G gate is the “transform” gate, where the LSTM transforms the input before

writing it to its memory.

• The O gate is the “output” gate, where the LSTM decides which part of its hidden

state it will output.

Figure 3.5: The diagram of a LSTM neural network with a layer whose activation is a that
receives an input tensor Xt at time-step t, creating its output Ht and its internal state Ct

who is then fed back on the network on the next time-step. If two lines joins there is a
concatenation of both tensors, where the lines separate two copies of the same tensor are
produces one for dividing arrow. Yellow squares are neural network layers, blue circles
are inputs, red circles are outputs, green backgrounds are to represent the whole neural
network block and purple circles are point-wise operations. Source: Author, based on
(OLAH, 2015)
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A graphical visualisation of a LSTM cell can be see in Fig. 3.5, for an easier

understanding of its internal connections. It can be seen that, if it so desires, the LSTM

cell can completely wipe its internal memory, completely ignore the input, or anything
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in-between, and thus it may be able to learn long time dependencies by keeping this

channel freer from external noise, allowing the gradients to flow through them more easily.

3.5.3 Gated Recurrent Unit

A GRU cell (CHO et al., 2014) takes a approach that is similar to the LSTM, albeit

more minimalistic. It makes the assumption that if something is going to be written into

the internal memory something can be erased from it as well, and thus combines the forget

and input gates into an update gate. It also merges the cell state and its output, instead of

having a separate internal state. The formulas for the GRU cell are as following:

Ut = σ(concat(Xt,Ht−1)×Wu +Bu)

Rt = σ(concat(Xt,Ht−1)×Wr +Br)

Nt = a(concat(Rt ·Xt,Ht−1)×Wn +Bn)

ht = (1−Ut) ·Ht−1 +Ut ·Nt

(3.6)

Here the cell has three sets of different weights and biases, which has been seen

as its main advantage against a LSTM, given that some studies showed that, overall, they

don’t have a significant difference in performance (CHUNG et al., 2014). The three gates

can be seen as the following:

• The U gate is the “update” gate, where the GRU decides how much of its internal

memory it will maintain and how much will be taken from the new input.

• The R gate is the “reset” gate, where the GRU decides to reset some part of its

internal memory before using it as part of its new input.

• The N gate is the “new” gate, where the GRU performs the activation and generates

the new input to its masked memory and input that will be written alongside the

existing content, controlled by the update gate.

A graphical visualisation of a GRU cell can be see in Fig. 3.6, for a easier under-

standing of its internal connections.
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Figure 3.6: The diagram of a GRU neural network with a layer whose activation is a that
receives an input tensor Xt at time-step t, creating its output Ht, which also is its internal
state, who is then fed back on the network on the next time-step. If two lines joins there is
a concatenation of both tensors, where the lines separate two copies of the same tensor are
produces one for dividing arrow. Yellow squares are neural network layers, blue circles
are inputs, red circles are outputs, green backgrounds are to represent the whole neural
network block and purple circles are point-wise operations. The tilde (∼) operator is
an unary set complement on the probabilities outputted by Ut, and therefore is (1−Ut).
Source: Author, based on (OLAH, 2015)
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3.6 Graph Neural Networks

Expanding on the reuse of weights alongside a discrete n-dimensional space, such

as with Convolutional Neural Networks, or along a sequence, such as with Recursive

Neural Networks, (GORI; MONFARDINI; SCARSELLI, 2005; SCARSELLI et al., 2009)

proposed a model in which one can reuse weights using graph-structures to make an

Artificial Neural Network learn to solve problems in graphs. This is a very powerful

idea, since it opens a plethora of problems that were previously difficult to map to a

Neural Network to work on, without breaking its end-to-end differentiability. The idea of

Graph Neural Networks was then worked into many different formats, taking into some

different intuitions on how it should be worked. In (GILMER et al., 2017) they are seen

as Message-Passing Neural Networks, in (DUVENAUD et al., 2015; KEARNES et al.,

2016) they are seen as Graph Convolutions and in (BATTAGLIA et al., 2018) it was even

suggested that one could expand this idea not only to neural networks, but to any machine

learning algorithm, giving it the name Graph Networks. Here we will look at the main idea

behind this kind of neural network, alongside different intuitions to it.

The first obvious viewpoint available to explain a GNN is that of the original papers
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(GORI; MONFARDINI; SCARSELLI, 2005; SCARSELLI et al., 2009). In these papers a

graph structure would be reproduced by having is a state for every vertex, that contains

that vertex’s information, and local transition functions where the vertex’s state is updated

depending on itself, the state of its neighbourhood and the differing types of relations

between the vertex and its neighbours. Note also that in the (SCARSELLI et al., 2009)

formalisation it is explicitly defined that different types (kinds, as named in the paper) of

vertices there are different transition functions.

(BATTAGLIA et al., 2018) present a more direct formalisation in which the Graph

Neural Network, called Graph Network in their paper, restrained the model to have vertices,

edges and graph states, and made no further points to different types of each entity. This

model, which translates the language of graphs directly into itself, considers that one

could try to reason about properties of the vertices, being vertex-centric (or node-centric,

depending on the nomenclature being used), about the relations between the vertices, being

edge-centric, or about the whole system in general. It provides reductions of some models

alongside it but presents no further results.

The main idea underlying BATTAGLIA et al.’s paper, however, is that it raises

the importance of parameter-sharing and notes the property of what they call Relational

Inductive Bias. With this, it exposes the advances made by parameter sharing between

time-steps or indices of a sequence on RNNs and between areas of an image on CNNs,

and then poses the same idea to graphs. In this view, Graph Neural Networks are simply

a generalization of parameter sharing to graphs, which capture the intrinsic relational

inductive bias of the input’s topology and uses it, alongside end-to-end differentiable

systems with stochastic gradient descent to provide a tool that learns to classify information

in graphs.

However, as noted before, in (BATTAGLIA et al., 2018) there is a small restriction

on different entity types, which make the case that the model would not translate naturally

for, say, hypergraphs, since its edges allow only communication between pairs of vertices.

In this sense, (SCARSELLI et al., 2009) is even more general when one considers that

every one of the three entity types cited (vertex, edge and graph) could be simply reduced

to a different type (or kind, as referred in SCARSELLI et al.’s article) of vertex.

This extension works well for Hypergraphs and also for many other types of

relational structures. In the reduction of a hypergraph to a graph, every hyperedge is

simply transformed into a "hyperedge" vertex, and the sources and targets are themselves

appropriately connected to said vertex as either pointing to it or being pointed by it. Other
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problems such as Boolean Satisfiability and Graph Coloring, for example, are naturally

represented with this definition.

A boolean satisfiability (SAT) problem8 has two types of vertices – namely literals

(or variables) and clauses. Clauses are related to many different literals, or they define a

relation between a set of literals, and can thus be seen as a hyperedge between literals,

whereas the problem itself is a relation between clauses.

A graph coloring problem may be seen as having two types of vertices: vertex-

vertices and color-vertices. The color vertices are very like (BATTAGLIA et al., 2018)

graph states, only that there are more than one color. In fact, one may assume that there are

k colors for a k-coloring problem. With this, the vertex-vertices must decide whether they

are colorable by analysing their neighbours and choosing with which global “color” state

they would be colored. Note that this allows one to limit the available number of colors for

specific nodes as well, setting more constraints than a simple graph coloring problem.

3.6.1 Typed Graph Networks

Thus explained, one can now define a simpler9 definition of a GNN, which will

be called Typed Graph Networks (TGN), that exposes the simplicity and the power of

thinking about Graph Neural Networks through vertex-types, bringing back the original

GNN definition with types of nodes discussed in (SCARSELLI et al., 2009), with a more

modern terminology aligned with (GILMER et al., 2017; SELSAM et al., 2018). In fact,

we will see the Graph Network model (BATTAGLIA et al., 2018) as being a GNN with

three types of vertices, each of them representing a different type of entity: one type of

vertex represents vertices proper; one type of vertex represents edges; and the last type of

vertex represents the graph-level operations. However, we won’t make generalisations to fit

our model in domains other than Deep Learning and Neural Networks (i.e. we won’t define

it to work with other machine learning algorithms like in (BATTAGLIA et al., 2018)) and

will leave out this more general version as one can easily extend it from this formalisation.

In a Typed Graph Neural Network, we have different types of entities, all of which

will be considered vertices in a graph, with each type of entity reflecting similarly in a

different type of vertex. Every vertex is then initialised with an initial embedding that

represents any initial information we may have about a vertex – for example, the position,

8We assume that the problem is in Conjunctive Normal Form for simplicity and without loss of generality
9Than the one presented in (BATTAGLIA et al., 2018)
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velocity, acceleration, mass, etc, of a particle in a physical system. Each vertex then,

computes its update function on such an embedding, which updates the state of such vertex

to contain this information, and outputs whatever information it may deem relevant to be

processed and sent to its neighbouring vertices. Every vertex, then, will have its outputted

embedding translated into a message for every type of vertex it connects to10. Then, every

vertex will collect all the messages it may have received and aggregate them by vertex type

using an aggregating function, these messages are then appended to form the input of to the

vertex proper, which will be repeatedly applying this update function, sending messages

along its neighbours and collecting and aggregating messages into its input in the next time

step. This procedure can be executed throughout many time-steps, with parameter sharing

along the time-steps using an RNN or can also be done only once, where its output can be

fed to other blocks in the Deep Learning Model.

Note, however, that the previous explanation expected that the model firstly pro-

duced its update. We can assume, without any loss of generality, that the input embedding

we received is in fact the first generated output to the update function, and proceed to apply

the message-passing procedure first, having the update function be on the last part of the

TGN block. One can look at Figure 3.7 for a pictorial representation of a vertex’s view in

a multi-timestep version of a Typed Graph Network model.

Definition 1 (Typed Graph Network). In the context of deep learning, a TGN with N

vertex types that communicate between themselves through K edge types is:

1. A set of vertex types Tv = {τi = Rdi | 1 ≤ i ≤ N}, which all have embedding

dimension dτa∀τa ∈ Tv. We define additional types 6∈ Tv for intermediate steps here.

2. A set of K edge types Te = {k | 1 ≤ i ≤ K} whose edges define adjacencies

between vertices of two vertex types. The set of vertex types that each edge type

communicate is P = {πk = (s, t) | 1 ≤ k ≤ K}. A value πk = (s, t) set defines

that the adjacencies of the edges of type k are between vertices of type τs to ones of

type τt. Note here that there may be more than one edge type for the same pair of

vertex types.

3. A set of K message functionsM = {µk : τi → τµk | 1 ≤ k ≤ K, τi ∈ Tv} which

will take a set of vertices of type τi and a set of adjacencies Ek between those vertices

and produce a set of messages µk each of type τµk .

10There can be multiple message functions for the same pair of vertex types, for sake of simplicity we
omit this from this explanation and keep it to the final model only
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Figure 3.7: Pictorial representation of a Typed Graph Network from the perspective of a
vertex v. A set of embeddings is received from vertices in its incoming neighbourhood, a
message is computed from each embedding with the message function and messages are
aggregated and fed to the update function, which produces an updated embedding for v.
Simultaneously, v sends messages to vertices in its outgoing neighbourhood, which will
undergo the same update process. Source: Author
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4. A set of K message aggregating functions A = {αk : {τµk} → ταk | 1 ≤ k ≤ K}

which will take a set of messages µk produced by µk and aggregate them into

message aggregates αk of type ταk .

5. A set of N input functions R = {ρi : {ταk | 1 ≤ k ≤ K, πk = (s, i)} → τρi | 1 ≤

i ≤ N} which takes message aggregates αk produced by αk and aggregate them

into update inputs ρi with elements of type τρi

6. And a set of update functions U = {γi : τi × τρi → τi | ∀τi ∈ Tv}

Where the message and update functions are the sole trainable components of the model.

The idea here in Definition 1 again is that all vertices of a certain type will send

information about themselves to their neighbouring vertices through message functions

which will be aggregated into message aggregates, which will be again aggregated to be

finally used by the update functions as information to update the vertex’s embedding. An

inversion of this path can also be used to facilitate seeing the need for the intermediate

functions: A vertex has to update its embedding through the information it receives from

its neighbourhood, this information may come from many different types of vertices,
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which themselves may have many vertices that are adjacent to the vertex in question.

Therefore, the vertex aggregates all the messages from every type of vertex separately and

then aggregates these messages again to form the final information it may have. In our

definition, we say that only the message and update functions are learnable parameters, but

one may also wish to learn the aggregation functions. We simply not consider this here for

the sake of simplicity.

As an example of different message aggregating functions and input functions,

imagine that there are three types of relational data that one wants to propagate, through

separate channels, in the network. The first type of information is sum-invariant, the

second one is product-invariant, and the third one only makes sense as an average of the

values. In this case, one could define three different edge types, each of them representing

a different communication channel, each with its specific learned messaging function and

with the desired message aggregation function on each of them. The messaging functions

of each should, then, be expected to learn to pass along the information that pertains to

each channel through the correct channel, since this would minimise the loss more rapidly.

Then, the input function only serves to prepare these aggregates into an input for the

network, generally being a simple concatenation of the different message aggregates, but

there could be a case where it would make the most sense to join the aggregates through

another operation, such as a sum, or difference.

These learnable functions can be any neural module one wants. But one fruitful

way of thinking about them is that the message functions are MLP blocks, which are simply

conversion functions, taking an input embedding and filtering any relevant information

that could be sent throughout this adjacency, or maybe a type casting function that converts

the internal embedding representation to one interpretable to vertices of other types. The

update function then is an RNN module which updates its embedding and keeps internal

information about itself throughout the message-passing process, as if it was a small

neural computer that has an internal memory and can only communicate with the outside

environment through message passing. These neural computers are then arranged in the

network structure of a graph, with many types of modules which all behave through the

same learned algorithm.

With this ensemble of vertices which communicate with each other through learned

message and update functions the network propagates information about the graph structure

and the property of the vertices in a way that satisfies the requirements after the TGN

block. That is, if one wishes to learn about a specific structure in a network, the TGN block
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will tune itself to provide that information, only propagating the information it may find

relevant. Thus, a TGN can be simplified into Equations 3.7, 3.8, 3.9, 3.10, 3.11.

Ki = {k | ∀i, πk = (s, i)} (3.7)

Equation 3.7 defines the subset of edge types that target a certain vertex type i.

With this, Equation 3.8 defines the subset of messages from a type k that target a certain

vertex b.

µ
(t)
k,b = {µk(Vs

(t−1)
(a) ) | ∀va ∈ Vs, (va, vb) ∈ Ek} (3.8)

Then Equation 3.9 aggregates these messages to be processed for input in the

update function of that vertex type.

α
(t)
k,b = αk(µ

(t)
k ) | 1 ≤ k ≤ K (3.9)

Equation 3.10 uses the aggregates produced as in Equation 3.9 that target vertex b

and aggregates them for the final use in the update function.

ρ
(t)
i,b = ρi(α

(t)
k,b) ∀1 ≤ i ≤ N, vb ∈ Vi (3.10)

Finally, Equation 3.11 shows how every vertex embedding in the tensor of vertex

embeddings is updated for vertex type i, by update the embeddings for every vertex vb.

Vi
(t)
(b) = γ(Vi

(t−1)
(b) , ρ

(t)
i ) (3.11)

One can look at Algorithm 1 for an example of how one may implement this model.

See that the TGN works by receiving only the initial embeddings for the vertices and the

graph structure, with the vertices partitioned into the N types and the edges into K edge

types defining as many modes of communication between two vertex types as desired.

3.6.2 A Simpler TGN Formalisation

The formalisation in Subsection 3.6.1 is an attempt to build upon the formalisation

proposed in (PRATES et al., 2019b), which adds more freedom to the model, and while the

such formalisation may be quite daunting, we see it in its original version as Definition 2,
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Algorithm 1 Typed Graph Network Model
1: // The input for a TGN is a graph whose vertices are partitioned into N vertex types, and the

edges into K edge types, as well as an initial embedding for every vertex

2: procedure TGN(G = (V =
N⋃
i=1
Vi, E =

K⋃
k=1

Ek), I =
N⋃
i=1

Vi
(0))

3: // Run for tmax message-passing iterations
4: for t = 1 . . . tmax do
5: // For every vertex type
6: for i = 1 . . . N do
7: // Find every edge type that targets that vertex type
8: Let Ki ← {k | ∀k, πk = (s, i)}
9: // For every vertex of that type

10: for all vb ∈ Vi do
11: for all k ∈ Ki do
12: // Find every message that is targeting that vertex
13: µ

(t)
k,b ← {µk(Vs

(t−1)
(a) ) | ∀va ∈ Vs, (va, vb) ∈ Ek}

14: // Aggregate all messages from all edge types that target that vertex
15: α

(t)
k,vt
← αk(µ

(t)
k,b)

16: end for
17: // Combine the aggregated messages into the input format
18: ρ

(t)
i,b = ρi({α(t)

k,b | ∀k ∈ Ki})
19: // Update the vertex embedding
20: Vi

(t)
(b) ← γi(Vi

(t), ρ
(t)
i,b )

21: end for
22: end for
23: end for
24: return {Vi

(tmax) | i = 1 . . . N}
25: end procedure

which assumes that the aggregated messages are concatenated. Also look at Algorithm 2

for the algorithm of this definition, where the aggregating operator for messages is fixed

as a simple point-wise sum. This aggregation method was chosen both due to the fast

computation of matrix multiplications in GPUs as well as due to the fact that the network

may tune the representation on its vertices’ embeddings to work with the point-wise sum

as an aggregation method, even if it is at a loss of performance. The input functions are

all simple concatenations of the aggregated messages, and this is done simply to keep the

communication channels of each type separate from each other.

Definition 2 (Typed Graph Network). In the context of deep learning, the simplified

version of a TGN with with N types that communicate between themselves through K

messaging functions can be described as:

1. A set of types T = {τi = Rdi | 1 ≤ i ≤ N}, which all have embedding dimension

dτ∀τ ∈ T .
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Algorithm 2 Original Typed Graph Network Model
1: // The input for a TGN is a graph whose vertices are partitioned into N vertex types, and the

edges into K edge types

2: procedure TGN(G = (V =
N⋃
i=1
Vi, E =

K⋃
k=1

Ek), I =
N⋃
i=1

Vi
(0))

3: for k = 1 . . .K do
4: // Compute an adjacency matrix between types #i and #j with 1s where an edge exists
5: Mk[a, b] = 1{(va, vb) ∈ Ek | va ∈ τa, vb ∈ τb, µk : τa → τb}
6: end for
7: // Run for tmax message-passing iterations
8: for t = 1 . . . tmax do
9: for i = 1 . . . N do

10: for µk ∈M | µk : τi → τj do
11: µk ←Mk × µk(V

(t−1)
j )

12: end for
13: Vi

(t) ← γi(Vi
(t−1), {µk | µk ∈M, µk : τi → τj})

14: end for
15: end for
16: return {Vi

(tmax) | i = 1 . . . N}
17: end procedure

2. A set of K message functionsM = {µk : τ1 → τ2 | 1 ≤ k ≤ K, τ1, τ2 ∈ T }. Note

that one may define more than one message function for a pair of vertices.

3. And a set of update functions U = {γτi : Rdτi+
∑
dτi∀µ:τj→τi∈M → Rdτ | ∀τi ∈ T }

Where the message functions τi → τj and the update functions γτ are the sole trainable

components of the model.

This formalisation allows us to take away with the relative cumbersome definitions

required for both the message aggregation functions as well as the input functions, but

comes at the cost of flexibility. Another simplification to note here is that the messages all

take from τ1 to τ2, which is also done for simplicity, with the rationale that these message

functions are in fact “type-casting” the embeddings of a type to another, and thus the

embedding dimensionality a message function’s output is the same than the target vertex’s

embedding dimensionality.

As one can see, the model builds adjacency matrices for all messages11 and then

proceeds to run for a number of message-passing iterations (Line 8), for every vertex of

every vertex type (Line 9) it aggregates the messages sent to it through all the messages

(Line 10) that target it by making the matrix multiplication between the adjacency matrix

of that messaging function and the vertices of the type that are sending the message. With

11The adjacencies defined may be redundant in the final programming model, but for generality we assume
that they might be different
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this description of the simpler TGN formalisation we can see that it can be simplified into

Equations 3.12 and 3.13.

µ
(t)
k = Mk × µk(Vj

(t−1)
(a) ) | ∀µk ∈M|µk : τi → τj (3.12)

Equation 3.12 shows how the matrix multiplication of every state tensor with the

adjacency matrix produces the aggregated messages for every vertex being targeted and

Equation 3.13 shows that the update function is then simply calculated through the update

on the last embeddings and all the aggregated messages that target that type of node.

Vi
(t) = γi(Vi

(t−1), {µk | µk ∈M, µk : τi → τj}) (3.13)

These two equations show how much is simplified under this more constrained

formalisation, which relies on assuming that the embedding representation learned by the

TGN will be able to deal with the sum aggregation of the embeddings even if that is not

the optimal aggregation. This has as a payoff the fact that the matrix multiplication can be

done very efficiently in its code implementation, and provides a more concise and elegant

solution to the full definition.

3.6.3 Discussion

With this formalisation of GNNs one can set many of the literature’s models into

a simple framework for working with relational data. The first example is that we can

have the Graph Network (BATTAGLIA et al., 2018) framework simplified as a TGN with

three types of vertices: A Vertex type, an Edge type and a Graph type. We specify the

connections between these as follows: Vertices will communicate with the Edges that

they have12. Each edge will communicate with the two vertices they are connected with13.

Finally, there will be a single vertex of the graph type, which communicates with all

edges-vertices and vertex-vertices.

By means of this reduction it is shown as well that the TGN formalisation extends

and generalises all other models cited and shown to be generalised in BATTAGLIA et al.’s

model. These include, but are not limited to, Independent Recurrent Blocks (SANCHEZ-

GONZALEZ et al., 2018), Message Passing Neural Networks (GILMER et al., 2017),

12If one needs to specify in-edges and out-edges this can be simply done by making two messages for
each type as well.

13This communication can also take place with an in-edge and out-edge definition
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Non-Local Neural Networks (WANG et al., 2018), Relational Networks (RAPOSO et al.,

2017; SANTORO et al., 2017) and Deep Sets (ZAHEER et al., 2017).

All of the ideas here shown can also be framed into multiple viewpoints, such as the

Message-Passing viewpoint, in which every vertex type is considered as a type of stateful

computer in a communication networks, which then transfers and receives messages

in parallel along its adjacencies (GILMER et al., 2017); and the Graph-Convolutional

viewpoint, in which we are operating a convolutional kernel through a graph structure, then

feeding the produced features on to the next layer (DUVENAUD et al., 2015; KEARNES

et al., 2016) (in fact one can see Graph Convolutional Networks as generalisations of

convolutions on images, being that every pixel in an image is adjacent to the ones directly

adjacent to it).

Nonetheless, power of applying Deep Learning models on graphs is astounding

– and the main takeaway from these models is the idea that neural networks can be

reused by mirroring a certain data-structure and produce approximations to values on these

structures. Graph Neural Networks have produced significant advances in many areas, such

as molecular fingerprinting (DUVENAUD et al., 2015; KEARNES et al., 2016), generating

new molecules (YOU et al., 2018a; LI et al., 2018), language modelling (SANTORO et

al., 2017), learning approximations to NP-Complete problems (SELSAM et al., 2018;

PRATES et al., 2019a) and many others. Thus it is reasonable to assume that work on deep

learning models that work on the underlying structure of a graph can be used in a myriad

of applications and will be of great use in the near future.
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4 LEARNING CENTRALITY MEASURES WITH GRAPH NEURAL NETWORKS

In this chapter we present the the main results of the research carried out during

the Master’s programme, relevant to this dissertation’s theme. This will be done in three

sections: Section 4.1 explains the datasets used for the experiments, Section 4.2 explains

the experiments done to approximate centrality values using GNNs and Section 4.3 explains

the experiments done to rank vertices according to a centrality (in both these sections

we also discuss the experiments done to evaluate the transfer between centralities by

learning a joint embedding for every centrality type), and Section 4.4 analyses visually the

representations learned by some of the models.

4.1 Datasets

In this section we describe the details of the datasets used in the experiments

described in the following sections. For the experiments regarding this dissertation we

prepared six datasets to be used across all experiments, these are “train”, “test”, “large”,

“sizes”, “different”, “real”. Of these train, test, large and sizes are all synthetic datasets

sampled from random graph models and were all generated with the Python NetworkX

package (HAGBERG; SWART; CHULT, 2008). The real dataset consists of real instances.

Table 4.1: Training instances generation parameters. Source: Author.
Graph Distribution Parameters

Erdős-Rényi p = 0.25
Random power law tree γ = 3

Watts-Strogatz k = 4, p = 0.25
Holme-Kim m = 4, p = 0.1

The “train” dataset was created by producing 4096 graphs between 32 and 128

vertices for each of the four following random graph distributions (total 16384): 1)

Erdős-Rényi (BATAGELJ; BRANDES, 2005), 2) Random power law tree1, 3) Connected

Watts-Strogatz small-world model (WATTS; STROGATZ, 1998), 4) Holme-Kim model

(HOLME; KIM, 2002). Further details about the random distributions used are reported in

Table 4.1. Examples sampled from each distribution are shown in Figure 4.1.

The “large” was created in a similar fashion as the “train” dataset, only that the sizes

of the graphs were larger – from 128 to 256 vertices – and less graphs were created – only

1This refers to a tree with a power law degree distribution specified by the parameter γ
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Figure 4.1: Examples of training instances with n = 64 vertices for each graph distribution:
Erdős-Rényi in Subfigure (a) coloured red, Random power law tree in Subfigure (b)
coloured green, Watts-Strogatz in Subfigure (c) coloured yellow and Holme-Kim in
Subfigure (d) coloured blue. Source: Author, using Networkx (HAGBERG; SWART;
CHULT, 2008)

(a) (b)

(c) (d)

64× 4 graphs – with instances sampled from the same distributions shown in Table 4.1.

The “test” dataset was also created much like the “train” dataset, only being comprised of

newly sampled instances.

The “sizes” is a set of datasets which are also comprised of instances samples from

the distributions in Table 4.1, but with the specific sizes on a range from 32 to 256 with

strides of 16 to allow us to analyse the generalisation to larger instance sizes and how the

performance of the models vary with the graph’s size, beginning in the range with which

the model was trained up until the size of the largest instances of the “large” dataset.

The “different” dataset is comprised of instances from two previously unseen

random distributions, and consists of 256 graphs sampled from the Barabási-Albert model

(ALBERT; BARABÁSI, 2002) and 256 shell graphs2 (SETHURAMAN; DHAVAMANI,

2The shell graphs used here were generated with the number of points on each shell proportional to the
“radius” of that shell. I.E., ni ≈ π × i with ni being the number of vertices in the i-th shell.
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2000), all of which have between 32 and 128 vertices.

The “real” dataset consists of real instances obtained from either the Network

Repository (ROSSI; AHMED, 2015) or from the Stanford Large Network Dataset Collec-

tion (LESKOVEC; KREVL, 2014), which were power-eris1176, a power grid network,

econ-mahindas, an economic network, socfb-haverford76 and ego-Facebook, Facebook

networks, bio-SC-GT, a biological network, and ca-GrQc, a scientific collaboration net-

work. The statistics of each of these graphs is further presented in Table 4.2 where one can

easily see that these networks significantly surpass the size range of the “train” dataset,

which will be used for training, overestimating from ×9 to ×31 the size of the largest

(n = 128) networks which will be seen during training, while also pertaining to entirely

different graph distributions than those described in Table 4.1. To see the difference in

network structure between these networks, compare Figure 2.1 which contains pictures of

the bio-SC-GT, ca-GrQc, econ-mahindas and socfb-haverford76 networks and the example

networks from the training datasets in Figure 4.1.

Table 4.2: Statistics for the real instances and their source, where NR stands for (ROSSI;
AHMED, 2015) and SN for (LESKOVEC; KREVL, 2014) Source: Author with data from
(ROSSI; AHMED, 2015; LESKOVEC; KREVL, 2014).

Name Source Vertices Edges
Degree

Maximum Average Minimum

power-eris1176 NR 1174 9861 100 16.8 2
econ-mahindas NR 1258 7619 206 12.1 2

socfb-haverford76 NR 1446 59590 374 82.4 1
ego-Facebook SN 4036 88243 1044 43.7 1

bio-SC-GT NR 1708 33982 549 39.8 1
ca-GrQc SN 4158 13428 81 6.46 1

Each and every one of the graphs in the datasets mentioned had the centrality

measure values for each vertex calculated, having both a normalised and a not-normalised

version of the Betweenness, Closeness and Degree centralities as well as the Eigenvector

centrality. All centralities were calculated using the algorithms available on the Net-

workx package (HAGBERG; SWART; CHULT, 2008), with the centralities that needed

de-normalisation either de-normalised through a parameter to the function call or de-

normalised outside the function call. The graphs were then stored as json files and read at

a later date, being sampled randomly from the graphs avaialable on every dataset when

loaded for training or testing.
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4.2 Learning to Approximate Centrality Measures

One of the first approaches for learning centrality measures is to approximate their

values, normalised or not, directly. In this section we aim to show how we devised the

GNN model and show the results obtained through training, as well as discuss any issues

that arose during the experimental phase.

4.2.1 Centrality measure normalisation and numeric issues

As discussed in Chapter 2 we have, for some centrality measures, both normalised

and non-normalised versions. Now it is necessary to ponder whether one wishes to

approximate the metric normalised or not and provide a rationale for the choices made.

One of the first and foremost issues is a numeric one. Neural networks work best

on a defined range of values and do not generalise well to values on unexpected ranges

(BENGIO, 2012; IOFFE; SZEGEDY, 2015; BA; KIROS; HINTON, 2016; BENGIO;

LODI; PROUVOST, 2018). This poses a strong contender for using the normalised

versions of the centralities. However the most common way to normalise these centralities

is to divide them by a number polynomially dependant on the number of vertices in the

graph. This is a most salient problem when normalising Degrees for real networks, due to

their power-law nature, which makes it so that the centrality values for small degrees tend

to be really small if binned polynomially as suggested.

Another problem, related to the numeric one, that may arise is that centralities with

different scales for their values may end up making the network have to work with many

different ranges of values, which may degrade performance. We show that this seems to

be somewhat true although the way our models will be built can possibly overcome such

problem due to the separation between the modules that calculate the predictions for each

of the metrics proper.

With these arguments, one may prefer to work with normalised values, however

there is also the problem that, due to how the GNN models operate, each vertex will

have to somehow gather information on the size of the network itself to cope with these

normalisations. We propose, however, to normalise the output values of the network in

a similar way to the centralities themselves depending on every problem’s number of

vertices, so that the model will not need to worry about the normalisation by itself, but will

be able to benefit from the increased numerical stability of the normalised values.
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We will see, however, that none of the results are as appealing as they could be,

which lead us to trying to rank the vertices with respect to the measures instead of learning

the numerical value of the centrality measures themselves, something we experiment upon

on 4.3.

4.2.2 The model

All of the models used had the same GNN module in them, which is represents a

directed graph3, with two different MLP message functions, one for an edge’s source and

another for its target both with 4 layers with 64 neurons each, and ReLU activations for all

but the last layer. The message passing is done with both using the matrix and the source

messaging function as well as the transposed matrix and the target messaging function.

One can look at the Code Snippet 1 for the code of the GNN block used, as per the GNN

library definition (See Appendix A).

Code Snippet 1 The GNN block used for all the centrality experiments, where d is the
dimensionality chosen for the embeddings. Source: Author

1 gnn = GNN{
2 {
3 "N": d
4 },
5 {
6 "M": ("N","N")
7 },
8 {
9 "Nsource": ("N","N"),

10 "Ntarget": ("N","N")
11 },
12 {
13 "N": [
14 {
15 "mat": "M",
16 "var": "N",
17 "msg": "Nsource"
18 },
19 {
20 "mat": "M",
21 "transpose?": True,
22 "var": "N",
23 "msg": "Nsource"
24 }
25 ]
26 },
27 name = "centrality"
28 }

For all of the models used the initial embedding for every vertex was the same and

3Note that we only work with undirected graphs. The use of “directed” edges here was simply to allow
more “bandwidth” for the message passing, as well as allowing for one to use the same model with directed
graphs in future work.
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it was a learnable d dimensional array, where d is the dimensionality we choose for the

vertices’ embeddings. This d dimensional array is broadcasted for every vertex in the input

graphs/batch.

For such method we considered three different setups,

With that in mind, we have three models which we consider: In one we learn

the normalised centrality measures directly, which we name AN (for “Approximate the

Normalised centrality”), in the second one we learn the unnormalised version of the

centrality measures, which we call AU (for “Approximate the Unnormalised centrality”),

and a third approach was to learn from the normalised centrality values, but perform a

normalisation of the model’s approximated value before using it as its final output, and

dub it AM (for “Approximate the normalised centrality, with normalisation on the Model”).

These models are the three discussed possible models in the last section and all of them

have a similar pipeline following the GNN. In fact, models AU and AN both have the exact

same pipeline, which is simply a MLP for every centrality the model has to predict, with 2

layers with d neurons and ReLU non-linearities and 1 layer with a single output neuron

with no non-linearity applied to it. The AM pipeline is almost the same as the other two,

with the only modification being that, for every problem in the batch, the output of the

output MLP is normalised depending on the centrality being calculated – being divided

by n if the centrality in question is degree and by (n−1)·(n−2)
2

if it was the betweenness

centrality, with n being the number of vertices in that graph.

The loss function that was optimised by these models was the mean squared

error of all of the model’s output with the label, being that model AU received the

centrality measure without any normalisation as label and models AN and AM received

the normalised centrality as their label. The performance metric we are interested in is

the relative error between the predicted value and the label, being normalised by the

label’s value, except in the case of the eigenvector centrality, which we are interested in

the absolute error, due to numerical problems with the aforementioned relative error.

All the models were trained in 32 epochs, each consisting of 32 batches of 32

training instances each, through Stochastic Gradient Descent to minimise the mean squared

error loss and a L2 normalisation loss on the parameters. More specifically, the Adam

(KINGMA; BA, 2014) implementation was used.
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4.2.3 Fitting the dimensionality of the model

All of our model’s parameters are dependant on the dimensionality d of the vertices’

embeddings. For choosing this value d, embedding dimension sizes of d = 2k were tested

with 1 ≤ k ≤ 6, being that d = 128 was avoided due to being considered too big (the

Neurosat model uses d = 128 to solve a NP-Complete problem (SELSAM et al., 2018))

and powers of two were used to ease performance optimisations on the GPU operations.

The values we settled for the dimensionality were d = 26 = 64 for all models, which was

surprising due to the fact that the performance had an increase up until such point. We

tested these values for both a model predicting only the degree centrality measure as well

as one predicting all 4 at the same time, with the loss being computed as the average of the

losses for each centrality.

Figure 4.2: Plot of the Relative Error for the degree centrality on the “train” (in red) and
“large” datasets (in blue) for an increasing embedding dimensionality d for the AM model,
showing how the error continued to decrease as the dimensionality of the embedding in-
creased, allowing for the embeddings to hold more information at the cost of computational
power required. Source: Author
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One can see a plot of the relative error of the degree centrality for a non-multitasking

AM model in relation with the embedding size in Figure 4.2, where we can see that the

error decreases as the embedding size for the vertices increase, possibly due to the ease

of accumulating more information given by the larger embedding sizes. The number of
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parameters in every model is the same, due to the similarities in the pipeline, and the

increase in the number of parameters seemed to be polynomial with the increase of the

dimensionality, seemingly following a quadratic equation. A graph with the increase in the

number of parameters due to the increase in the embedding size can be seen in Figure 4.8

in Subsection 4.3.3 being the same as that section’s AM and AM models4. Note that the

multitask model has roughly twice the amount of parameters, even though it produces the

results of equivalent to 4 non-multitasking models. The training times were not altered

significantly due to the manual computing of the metrics outside of the GPU, but there was

a slight increase of the runtime.

We can see that some models behave quite differently. Comparison between models

show that although the Eigenvector centrality fluctuates, every model’s pipeline actually

is the same for this centrality, and thus we do not take it into account. The Closeness

centrality has only the difference that the normalised ones use a slightly improved definition

(WASSERMAN; FAUST, 1994) that takes in account the connected component that the

vertex belongs to, and is also not as relevant to the analysis. These two values fluctuate,

then, mostly due to the interference caused by the numerical differences in the labels and

value while multitasking and to differences due to the stochastic processes involved. Thus,

one is to take note mostly of the difference between the performance when training on

the “train” dataset and the performance on the larger “large” dataset, to account for the

generalisation to larger graphs, which we want to achieve.

Seeing this, we can look at Table 4.3 and see that the model AM has the most

desirable performance of all of them while multitasking, being between the AU model’s

better generalisation to larger instances as well as being the best model in the performance

in three of the 4 metrics for the last training epoch as well as having the best overall

performance on the “large” dataset. With this in mind we then decided to train it on the 4

proposed centrality measures individually, as well as the multitask model on all 4 of them.

4.2.4 Results

Having defined the dimensionality of each vertex’s embedding, the model was

trained anew for each of the centrality measures individually and for all of them in tandem

4The results are presented there instead of here so that we can compare the size of the two models used
on that section. The AM and AN models are presented as “RC” in the plot since they have the same number
of parameters.
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Table 4.3: The Relative Errors of the multitask learning performance for the Betweenness,
Closeness and Degree centrality measures and the Absolute Error for the Eigenvector
centrality, for the proposed models trained with d = 64 on a sample of the “train” dataset,
on the full “large” dataset as well as these proportion between these two values. For every
line we bold the best value. Source: Author

AU AN AM

“train”

Betweenness 92.7% 119% 89.6%
Closeness 77.8% 16.3% 15.3%

Degree 55.5% 38.9% 43.6%
Eigenvector 0.0438 0.0251 0.0230

“large”

Betweenness 91.7% 419% 94.2%
Closeness 274% 85.9% 75.0%

Degree 58.9% 210% 50.6%
Eigenvector 0.0569 0.0518 0.0734

“large”
“train”

Betweenness 0.989 3.52 1.05
Closeness 3.52 5.26 4.90

Degree 1.06 5.40 1.16
Eigenvector 1.3 2.06 3.19

for the multitask learning analysis. One can see the loss curves for every centrality in

Figure 4.3, where the loss for every centrality is separated, with the multitask model’s loss

being separated for the loss relative to every centrality. Then the model’s final performance

was evaluated on the entirety of the “test” and “large” datasets, the results of which one

can see at Table 4.4. Note that the error for the Eigenvector centrality is the absolute one,

instead of the relative error, this is due to the fact that the relative errors for the eigenvector

centrality were enormously high, and even though numerical problems were guessed at

first, the tested corrections didn’t produce great results. One can see that the multitask

model is outperformed by the non-multitask one quite frequently, and sometimes erring

for more than twice the relative amount of the non-multitask model.

To see how the model fared to novel distributions, its performance was also tested

on the “different” dataset, which can also be seen in Table 4.4, and while the errors were

not as high as for the “large” dataset, they were higher than on the “test” dataset. This

was, in a sense, expected, and it shows that the model somehow generalised its results to

different distributions. Then, the model was tested on the real-world instances of the “real”

dataset, which can be seen in Table 4.5 where one can see a significantly worsening of

the results for all centrality measures, with the degree centrality measure being the least

affected one. Interestingly, the multitask model was not outclassed in this test, retaining

a better overall relative error on the dataset, while the relative error stayed close to the
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Figure 4.3: Evolution of training error per batch for all four centrality metrics throughout
the training process for the AM model. The error is plotted in red and blue for training
without and with multitasking, respectively. The loss plot was similar, but in another scale,
so we chose to omit it here. The error metric is the relative error for the betweenness,
closeness and degree centrality and absolute error for the eigenvector centrality. Source:
Author
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non-multitask model.

To see how the model’s performance was affected by the size of the input graph, it

was tested with the “sizes” dataset, and the results for a multitasking model are summarised

in Figure 4.4. In short, the multitask model’s accuracy presents a seemingly linear, but

expected, decay in performance with increasing problem sizes. This shows that there is

some difficulty generalising to larger instance sizes, and reinforces the results presented

in Tables 4.4 and 4.5. One can also see that the model performs better on the problems

near the average size with which the model was trained, which is expected behaviour as

well. The absolute error for the eigenvector centrality measure is shown on the right of

Figure 4.4 with a similar, but more pronounced, behaviour as the overall relative error for

the other centralities.

In Figure 4.5 one can also see the plots for the individual models for each centrality

and note some of the results are similar to those in Figure 4.4, while showing that for some

centralities the decay in the model’s performance behaves differently than the aggregate

shown in Figure 4.4.

The results obtained here are not satisfactory. Other machine learning models such

as REPTrees and simpler neural models such as in (GRANDO; LAMB, 2015) already

obtained better relative errors. However, the task here is significantly harder than the

task presented in GRANDO; LAMB’s paper, since here the model only has the network

structure to work with. In their other works (GRANDO; LAMB, 2016; GRANDO;
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Table 4.4: Loss (Mean Squared Error) and performance metrics (Relative error for Be-
tweenness, Closeness and Degree, and Absolute error for Eigenvector) for the AM model
during test on the “test”, “large” and “different” datasets (without/with multitasking). The
best values for a metric under a centrality are in bold. Source: Author

Error Type Centrality “test” “large” “different”

Relative (%)

Betweenness 95.96/89.54 91.03/94.17 99.94/83.88
Closeness 13.49/13.38 79.00/74.76 19.13/21.35

Degree 16.75/43.39 27.88/50.06 25.84/45.32
Average 42.07/48.77 65.97/72.99 48.30/50.18

Absolute Eigenvector 0.01946/0.02286 0.08311/0.07214 0.04854/0.05282

MSE

Betweenness 0.01462/0.01464 0.01462/0.01464 0.001376/0.001445
Closeness 0.004785/0.003710 0.004785/0.003710 0.008956/0.01079

Degree 0.03465/0.03705 0.03465/0.03705 0.01026/0.01758
Eigenvector 0.01694/0.008880 0.01694/0.008880 0.003974/0.004940

Average 0.01775/0.01607 0.01775/0.01607 0.006142/0.008689

Table 4.5: Accuracy performance for the AM model during test on the “real” dataset
(without/with multitasking). The graph names are abbreviated to PE for power-eris1176,
EM for econ-mahindas, SH for socfb-haverford76, SC for bio-SC-GT, GQ for Ca-GrQc
and EGO for ego-facebook. The number of decimal digits was reduced so that the results
fit on page. Source: Author

Centrality
Relative Error (%)

PE EM SH SC GQ EGO Average

Betweenness 123/102 95/96 147/118 562/344 148/125 428/275 250/177
Closeness 325/330 57/54 24/35 41/48 116/107 100/107 110/114

Degree 37/36 22/40 79/87 53/71 17/47 57/72 44/59
Average 162/156 58/63 83/80 219/155 93/93 195/151 135/117

Absolute Error
PE EM SH SC GQ EGO Average

Eigenvector 0.083/ 0.061/ 0.21/ 0.097/ 0.074/ 0.12/ 0.11/
0.0098 0.10 0.17 0.11 0.11 0.13 0.12

GRANVILLE; LAMB, 2018; GRANDO; LAMB, 2018) these results are more focused on

ranking the centrality measure and on the correlation values than the relative error per-se,

which provides some rationality behind the hardness of predicting these values.

In these works, however, the models were able to learn to predict both the between-

ness and closeness centrality measures, from which the AM model was able to predict

here only the closeness centrality measure, and with little success at generalising to larger

instances. The incapability of predicting the betweenness centrality measure may be

because the network does not have enough time to process the information required to

provide an accurate measure. However, when looking at the Mean Squared Error loss for

the values (in Table 4.4), one can see that the AM model performed better in minimising it,

so maybe further pre-processing of the data could be used to achieve better results.
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Figure 4.4: The overall relative error for the multitask model (Subfigure (a)) and the
absolute error for the eigenvector centrality (Subfigure (b)). The overall relative error
increases with increasing problem sizes, with a small valley centered near the average
training instance size. There is a similar behaviour with the absolute error, with a more
pronounce valley. The dotted lines delimit the range of problem sizes used to train the
network (n = 32 . . . 128). Source: Author
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Another unfortunate but surprising result was the high relative errors of the eigen-

vector centrality measure, which made it impossible to measure relative errors, even after

some attempts at correcting the issue aimed at mitigating numerical problems with floating

point arithmetic. The suprising part of this result is due to the fact that the procedure exe-

cuted by Graph Neural Networks can be seen as similar to the procedure of the eigenvector

centrality measure itself. Thus the model achieved a mediocre performance only on the

degree centrality measure, which has no need for an approximate solution due to its low

cost of computation. Nonetheless, on the next sections there will be a focus on ranking

centrality measures instead of approximating them directly.

4.3 Ranking Centrality Measures

In this section we show the results we obtained while trying to rank centrality

measures instead of predicting their values per se, as well as discuss any issues that arose

during the experimental phase.

4.3.1 Ranking by Comparison

The main idea behind ranking is to compare the desired score of different entities

and then sort them from the most desirable to the least desirable. Here this idea will be
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Figure 4.5: The overall accuracy of the non-multitask models for problems with an
increasing number of vertices with relative errors for the betweenness, closeness and degree
centralities, and absolute error for the eigenvector centrality. The plot in Subfigure (a) is for
the model that predicts the betweenness centrality, the one in Subfigure (b) for closeness,
Subfigure (c) for degree and Subfigure (d) for eigenvector. The error seems to increase in
a seemingly linear fashion for the closeness centrality and logarithmically for the degree
centrality, with eigenvector behaving similarly to the closeness centrality. Surprisingly,
the error for the betweenness centrality did not seem to increase significatively increasing
problem sizes. The dotted lines delimit the range of problem sizes used to train the network
(n = 32 . . . 128). Source: Author
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taken into the concept of a comparison matrix. In our case dealing with centrality measures,

for each pair of vertices (vi, vj) ∈ V , under the definition of a specific centrality measure,

the comparison matrix M is indexed Mi,j so that Mi,j = 1 if vertex i is more central than

vertex j.

With such a matrix, we can define the Precision, Recall (also known True Positive

Rate), True Negative Rate and Accuracy metrics on the model’s predictions. Firstly, we say

that the Accuracy of the model is simply the number of comparisons it happens to predict

correctly, which can be seen as a more strict version of the Kendall-τ correlation coefficient

(KENDALL, 1938), commonly used as a measure of the correspondence between two

rankings, since the accuracy metric here penalises ties in the ranking as much as discordant
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rankings. The same rationale can be followed for the other metrics: defining them as if

the problem was a binary classification one. The results will be shown for all these four

metrics, but the focus will be on accuracy for the selection of the working model.

This comparison matrix is calculated on the predicted centrality values that the

trained network outputs, but one can also build a neural network classifier that answers the

same question: given two representations of a vertex’s centrality, which representation is

the first representation higher than the second? With this we can build a fuzzy comparison

matrix, which is composed of the probabilities that one vertex is more central than another,

instead of containing only the true value. If the classifier is well trained, we can convert

the probabilities to prediction by thresholding at 50% and use this to calculate the rankings

instead. An example of such a fuzzy comparison matrix, which also elucidates the non-

fuzzy case, can be see in Figure 4.6

Figure 4.6: Example of a fuzzy comparison matrix M'c at the left with an upper triangular
matrix T at the right, for a graph with three vertices V = {v1, v2, v3} sorted in ascending
centrality order as given by the centrality measure c. Source: Adapted from (AVELAR et
al., 2019)

P (v1 >c v1) P (v2 >c v1) P (v3 >c v1)

P (v1 >c v2) P (v2 >c v2) P (v3 >c v2)

P (v1 >c v3) P (v2 >c v3) P (v3 >c v3)




0 1 1

0 0 1

0 0 0




4.3.2 The models

Two of the models we use here are very similar to those in Subsection 4.2.2,

with both the start of the pipeline and the GNN block being exactly the same. We

experimented with three models in total, with one trained to perform rankings natively on

the final embeddings produced by the GNN block, denoted as RN (for “Ranking centralities

Natively”), and the other three models reusing their names from Subsection 4.2.2: AN,

and AM5. These last two models are, in fact, almost the same as their versions from model

from Subsection 4.2.2, with the main difference being that we also produce a comparison

matrix with the Centrality measures it generates, which will then be used to compare this

model with the one who learns to make comparisons natively on the vertices’ embeddings.

Thus, the end of the pipeline for the RN model is different in that, its MLP takes

5We use both AN and AM since in preliminary tests, the ranking AM model performed poorly in some
aspects, as will be seen below. We did run tests for AU model.
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two embeddings as input, having then 3 layers with sizes [2d, 2d, 1], ReLU nonlinearities

for the first two layers and no nonlinearity for the last one. The value outputted by this

MLP is interpreted as the logit of the probability6 that the first vertex has a centrality larger

than the second one. This operation is done by reshaping the final embedding tensor N of

each problem with n vertices. We reshape N from shape (n, d) to (1, n, d) which we’ll call

N1. Then we transpose N1 swapping its first and second rank so that the shape is (n, 1, d),

which we call N2. We then broadcast both of these tensors on the rank they have 1 as

dimension so that they are both of shape (n, n, d) and then concatenate them both on the d

rank, so that we have a tensor of shape (n, n, 2d) which is the tensor of all possible pairs of

embeddings, so that in the i-th position on the first rank and the j-th position on the second

rank is the embedding of the i-th vertex in the first d dimensions and the embedding of

the j-th vertex in the remaining dimensions. With such a tensor in our hands, we simply

run the MLP over this tensor, producing a tensor with shape (n, n, 1), which we shrink

to (n, n) to produce the final output: The fuzzy comparison matrix with the logits of the

aforementioned probabilities.

These logits are used to be trained with the label comparison matrix by calculating

the sigmoid-cross entropy between the logits of every point in the matrix and the desired

value. The probability for every vertex is used for calculating performance metrics,

where we apply sigmoid to all the logits and then round the probability and take that

as the predicted value. A description of the algorithm for the RN model is presented in

Algorithm 3.

4.3.3 Fitting the dimensionality of the model

As was done in Subsection 4.2.3, we fitted the dimensionality of the vertices’

embeddings d to choose the best value. Again the value which was settled for was d = 64

for both models, being that AN, and AM inherited this value due to their performance on

the last section and RN had this value chosen due to the performance observed in the tests

by rising the d value.

One can see a plot of the accuracy, relative to the dimensionality of the vertices’

embeddings in the RN model, in Figure 4.7. The increase in the number of parameters in

both models is in Figure 4.8. One can see that the RN model does not present a significant

6The logit function is the inverse of the sigmoidal function, and it maps a probability ∈ [0, 1] to
(−∞,+∞)
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Algorithm 3 Graph Neural Network Centrality Ranking Predictor
1: procedure GNN-CENTRALITY(G = (V, E), C)
2: // Compute adj. matrix
3: M[i, j]← 1 if (vi, vj) ∈ E else 0
4: // Initialise all vertex embeddings with the learned initial embedding Vinit
5: V 1[i, :]← Vinit | ∀vi ∈ V
6: // Run tmax message-passing iterations
7: for t = 1 . . . tmax do
8: // Refine vertex embeddings with messages from incoming edges
9: Vt+1,Vt+1

h ← Vu(V
t,M× srcmsg(V

t),MT × tgtmsg(V
t))

10: end for
11: for c ∈ C do
12: // Compute a fuzzy comparison matrix M'c ∈ R|V|×|V|
13: M'c

[i, j]← cmpc(V
tmax [i, :],Vtmax [j, :]) | ∀ vi, vj ∈ V

14: // Compute a strict comparison matrix M>c ∈ {>,⊥}|V|×|V|
15: M>c ←M'c >

1
2

16: end for
17: end procedure

increase in the number of parameters in relation with the approximation-based models,

which kept the number of parameters from the last section. One can also note that the

number of parameters in the multitask model, again, is approximately twice the number of

parameters of the non-multitasking model, therefore using only the multitasking model

would reduce the total memory use by roughly 2 times than if one used the four separate

models, one for each centrality. If more centralities are used, this memory saving can be

even higher. Again, the training times were not altered significantly, but one could see a

slight increase of the runtimes as d increased.

We can see that the RN model is comparatively heavier than the AM and AN

models, but, as will be shown in the experimental results, its performance for ranking

centrality measure is superior in some points.

4.3.4 Results

Having defined the dimensionality of each vertex’s embedding, all of the models

were trained anew for each of the centrality measures individually7 as well as for all of

them in tandem, for the multitask learning analysis. One can see the loss curves for every

centrality in Figure 4.9 for the RN model and in Figure 4.10 for the AN model, and in

Figure 4.11 for the AM model, where the loss for every centrality is separated, with the

7Please keep in mind that the non-multitasking AN and AM models are identical.
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Figure 4.7: Plot of the Accuracy for the degree centrality on the “train” (in red) and “large”
datasets (in blue) datasets for an increasing embedding dimensionality d for the RN model,
showing how the accuracy continued to increase as the dimensionality of the embedding
increased, allowing for the embeddings to hold more information at a larger computational
cost. Source: Author
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multitask model’s loss being separated for the loss relative to every centrality. Then the

models’ final performances were evaluated on the entirety of the “test” dataset, the results

of which one can see at Table 4.6 and reflect the models’ performances in unseen instances

the same size and distribution as the ones in the training dataset.

Looking at Table 4.6 one can see that the native comparison method learned by the

RN model outperforms the most of the rankings produced by the approximation-based

models, sometimes by a wide margin. However, looking at Table 4.7 one can see that the

RN model isn’t as dominant, suggesting that the approximation-based models extend their

performance better for larger instances. The only failing is that the AM model seem to fail

completely for the betweeness centrality, and its non-multitasking version fails is all but

the eigenvector centrality, which is normalised by default and whose pipeline is equivalent

to the AN model. One interesting synergy, however, is that the multitasking AM model

seem to dominate in the closeness centrality, maybe showing a potential multitasking

combination to be used in practice, with both the closeness and eigenvector centralities

being the ones with a decent performance, whereas the AN model fails at the closeness

centralities without the normalisation being made in the model.
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Figure 4.8: Number of parameters of an approximating model (RC here stands for ei-
ther the AM or AN model) and a native comparison model (RN). The non-multitasking
approximating model is shown in red and the multitasking one in purple, while the RN
non-multitasking model is in green and the multitasking one is shown in blue. Note that
the size of the multitasking models is less than twice the amount of the non-multitasking
ones, and that the increase in the total number of parameters seem to follow a quadratic
curve. The values for the approximating-multitask and RN non-multitask are very close
and overlap. The larger size of the RN model is only due to the final MLP having to work
with 2d as its input and hidden layer dimensions. Source: Author
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In table 4.8, one can see the results that should reflect performance for the models

with distributions with different topologies, being that the “different” dataset has two

distributions not seen in training: one similar to a training one and one completely alien to

the model. In this configuration one can see that a multitasking approach seems to alleviate

the issues of graphs with different topologies, even though the multitasking is done in

the centrality measures. However, the non-multitasking models are still slightly superior

than the multitasking ones, with the multitasking AN model showing signgs of a slight

overfit with regards to the eigenvector centrality, and the AM model showing surprisingly

better response with regards to the degree centrality, since the average number of nodes in

between this distribution and the training one does not change.

These results show that both ranking natively as well as ranking through an approx-

imated centrality measure are feasible techniques, with each showing a particular strength

in some settings. Ranking natively seems to favour distributions with a similar number of

nodes as seen in training, a better overall performance, as well as a more robust response to

multitasking (possibly since the centralities need not share their numeric properties within

the embedding directly). Whereas ranking through approximated centralities seem to be

more amenable to changes in the number of nodes in the graph, with the exception of the
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Figure 4.9: Evolution of training loss and training accuracy per batch for all four centrality
metrics throughout the training process for the RN model. The loss is plotted in red and
blue and the accuracy in green and purple for training without and with multitasking,
respectively. Source: Author
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degree centrality in the AM model.

Although the multitasking model is outperformed by the basic model in many cases,

the overall accuracy is not changed as much (see Tables 4.6, 4.7, and 4.8), especially for

the RN model, with these models having roughly half the number of parameters when

compared with having a separate model for each centrality. In this context, recall that the

multitask learning model is required to develop a “lingua franca” of vertex embeddings

from which information about any of the studied centralities can be easily extracted, so in

a sense it is solving a harder problem.

To see how the model’s performance is affected by the size of the input graph, it

was tested with the “sizes” dataset, and the results are summarised in Figures 4.12, 4.14,

and 4.16. In short, the multitask RN and AM models’ accuracy presents an expected

decay with increasing problem sizes, however, this decay is not a free fall towards 50% for

instances with almost twice the size of the ones used to train the model, in fact the overall

accuracy remains above 80% accuracy when n = 240 in the RN model, which reinforces

that some level of generalisation may be achievable for larger instances.

The individual plots for every non-multitask model are shown in Figures 4.13, 4.15,

and 4.17, where one can see that the RN models present a minor skewing in some specific

problem sizes and that the points where the decay started/ended were somewhat different,

but overall the curves behaved in a similar fashion, while the AM model shows a greater

stability in degree and eigenvector centrality, also showing the worst overall performance

in centralities other than eigenvector and a peculiar decay within the training interval for
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Figure 4.10: Evolution of training loss and training accuracy per batch for all four centrality
metrics throughout the training process for the AN model. The loss is plotted in red and
blue and the accuracy in green and purple for training without and with multitasking,
respectively. Remember that the losses here are different from the RN model. Source:
Author
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the degree centrality, but a more stable curve after that. The AN model, however, shows to

be the most stable model overall, only worsening its performance for larger instances in

the closeness centrality.

A final benchmark for the models was for them to be tested on the real-world

instances of the “real” dataset, with the results being reported in Table 4.9. The RN model

was able to obtain up to 86% accuracy (on degree) and 82% average accuracy on the best

case (bio-SC-GT), and 58% accuracy (closeness) and 65% average accuracy on the worst

case (ego-Facebook), while being the only model that did not go below baseline. The

model with best accuracy overall, however, was the non-multistasking AN model, with 77%

accuracy, closely followed by the non-multitasking and multitasking RN models, with 75%

and 74% accuracy, showing a slight superiority for ranking with the normalised centrality

measures, which had a heavier loss of performance while multitasking. Therefore, to make

a greater use of the reduced number of parameters while multitasking, one should probably

learn to rank natively on the embeddings.

Due to the fact that the largest networks significantly surpass the size range that the

network has been trained on and may be from completely different graph distributions, it

is impressive that the RN models can predict betweenness centrality with 75% and 75%

accuracy (or 81% and 77% without multitasking) on graphs as large as ca-GrQc and ego-

facebook, both with more than four thousand vertices and more than fourteen, on ca-Gr-Qc,

or eighty eight thousand edges. It is also notable that one of the worst performances occur
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Figure 4.11: Evolution of training loss and training accuracy per batch for all four centrality
metrics throughout the training process for the AM model. The loss is plotted in red and
blue and the accuracy in green and purple for training without and with multitasking,
respectively. Remember that the losses here are different from the RN model. Source:
Author
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on the smallest real network (power-eris1176) – an overall accuracy just below 70% for

both models. This perhaps can be explained in (HINES; BLUMSACK, 2008; HINES et al.,

2010) who highlighted the significant topological differences between power grid networks

and Erdős-Rényi and Watts-Strogatz small-world models (two of the models used to train

the network). The performance of the AN models is also impressive, achieving 91% and

81% (83% and 95% while multitasking) on such large networks, really shining on the

degree centrality, while also achieving decent results on the other centralities. However,

the eigenvector centrality misperformed on these graphs, even with some of them being

power-law in nature.

We tested if the results of the model generalised if we ran the GNN block for more

message-passing iterations, however we found out that the performance fluctuated as one

strayed from the number of message-passing iterations the model was trained with. This

was unfortunate since it does not allow us to remedy the accuracy decay with larger sizes

as does (SELSAM et al., 2018). Possible, but untested ways to circumvent this would be

to train the model while randomising the number of timesteps it runs for, doing gradient

descent on all intermediate results at the same time, this second technique showing promise

for this in (PALM; PAQUET; WINTHER, 2017), whereas the first one can be seen as an

approximation of the second, while being less resource-demanding.
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Table 4.6: Performance metrics (Precision, Recall, True Negative rate, Accuracy) for the
AN, AM and RN models during test on the “test” dataset referring to the predictions of
the comparison matrix. Please note that the differences between the AN and AM models
without multitasking on the Eigenvector centrality are only due to the stochastic nature of
the training, being that the pipeline is the same in both models for this centrality. The best
values for a metric under a centrality are in bold. Source: Author

AN AM RN
Centrality P R TN Acc P R TN Acc P R TN Acc

Without multitasking
Betweenness 82.4 88.6 84.6 86.0 39.9 45.6 43.5 44.1 90.3 88.5 91.0 89.8

Closeness 83.1 85.4 84.3 84.8 83.1 85.4 84.4 84.9 88.4 84.5 89.8 87.3
Degree 75.3 98.4 81.6 87.5 63.3 85.8 70.4 75.6 99.3 94.9 99.4 97.6

Eigenvector 87.0 87.0 87.6 87.3 86.5 86.5 87.0 86.8 86.2 90.2 82.3 86.3
Average 82.0 89.8 84.5 86.4 68.2 75.8 71.3 72.8 91.0 89.5 90.6 90.3

With multitasking
Betweenness 73.6 79.6 76.1 77.3 41.9 46.7 46.3 46.2 87.2 87.2 88.9 87.9

Closeness 71.4 73.0 73.6 73.3 80.2 82.5 81.7 82.1 86.9 82.0 88.7 85.5
Degree 73.7 96.0 80.4 85.9 72.4 94.3 79.3 84.7 98.3 92.4 99.0 96.4

Eigenvector 83.5 83.5 84.2 83.9 85.5 85.5 86.2 85.9 89.8 88.3 90.4 89.4
Average 75.5 83.0 78.6 80.1 70.0 77.3 73.4 74.7 90.5 87.5 91.8 89.8

4.4 Analysing the Internal Representations Learned by the Network

Machine Learning algorithms have achieved impressive feats in the past decade,

but the interpretability of the computation that takes place within Deep Learning models

is still limited (BREIMAN et al., 2001; LIPTON, 2016; LIPTON, 2018). SELSAM et al.

(2018) have shown that one can extract useful information from the embeddings learned

by a model, even in hard problems as boolean satisfiability. They used this information

to extract solutions even though their model was trained exclusively to produce a binary

answer of SAT/UNSAT.

We can have insights about what possible algorithm it might have learned in the

same fashion as (SELSAM et al., 2018) by projecting theRd vertex embeddings onto a

one-dimensional space by the means of Principal Component Analysis (PCA) (JOLLIFFE,

2011) and plotting such projections throughout the message-passing iterations. Here, we

analyse this behaviour for Section 4.3’s RN model. In the results obtained from the trained

model it was observable that in some instances the projection presented a strong fit with

the logarithm of the centrality measure, and it seemed that the embeddings were being

used to sort the vertices by their centrality measures as can be seen in Figure 4.18. On

some cases, however, even though the PCA seemed to provide a good visual fit, the model

had performed poorly, such as in Figure 4.19. Some of theses cases can be traced due to
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Table 4.7: Performance metrics (Precision, Recall, True Negative rate, Accuracy) for the
AN, AM and RN models during test on the “large” dataset referring to the predictions of
the comparison matrix. Please note that the differences between the AN and AM models
without multitasking on the Eigenvector centrality are only due to the stochastic nature of
the training, being that the pipeline is the same in both models for this centrality. The best
values for a metric under a centrality are in bold. Source: Author

AN AM RN
Centrality P R TN Acc P R TN Acc P R TN Acc

Without multitasking
Betweenness 79.2 85.6 81.3 82.8 37.5 43.2 40.4 41.3 78.7 87.4 69.4 78.4

Closeness 64.8 64.9 66.0 65.5 64.9 65.0 66.0 65.5 63.3 61.2 89.0 75.6
Degree 74.0 98.5 80.8 86.7 50.7 74.6 58.2 63.4 77.2 73.4 99.8 87.4

Eigenvector 88.9 88.8 89.1 89.0 89.1 89.0 89.3 89.2 71.0 67.7 89.8 78.8
Average 76.7 84.5 79.3 81.0 60.5 68.0 63.5 64.9 72.5 72.4 87.0 80.0

With multitasking
Betweenness 77.6 83.8 79.9 81.3 39.1 43.9 42.6 43.0 85.1 75.9 88.1 81.8

Closeness 58.6 58.6 60.0 59.3 81.6 82.4 82.1 82.3 70.0 58.4 88.9 74.1
Degree 73.4 97.4 80.3 86.0 49.7 71.9 58.0 62.5 76.8 70.9 98.8 85.9

Eigenvector 85.7 85.6 85.9 85.7 83.7 83.6 84.0 83.8 77.6 87.2 65.9 76.5
Average 73.8 81.3 76.5 78.1 63.5 70.5 66.7 67.9 77.4 73.1 85.4 79.6

the fact that there was very little variation for centrality measure in question, which was

very common on Erdös-Renyi graphs.

There are also examples of the PCA of the vertex embeddings providing bad visual

fits and the model achieving a good performance, such as in Figure 4.20, as well as

bad perfomances on such PCAs with poor visual fit, as in Figure 4.21. This variety of

examples show how much the PCA of the embeddings varied and how one cannot take

solid conclusions out of them that are valid to all graph distributions. In fact, the PCA of

the embeddings were highly similar for graphs of the same distribution. On the previous

images there were examples of 4 of the 6 random distributions that the synthetic graphs

were drawn from. Figures 4.22 and 4.23 provide examples of the evolution of the PCA

embeddings for the other two distributions.

This apparent relation between the PCA of the embedding and the log scale of

the centrality being predicted, which happened in a significant number of the cases, can

be seen as promising, since it relates to the nature of the centrality values themselves in

some of these distributions, and might reflect that the model learned to sometimes pinpoint

this information inside the model for specific cases or distributions. However, since the

graph distributions used are mostly synthetic, this analysis is inconclusive and further work

should be done to elucidate whether there is significant information to be extracted relating

the approximation learned by the model.
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Table 4.8: Performance metrics (Precision, Recall, True Negative rate, Accuracy) for the
AN, AM and RN models during test on the “different” dataset referring to the predictions
of the comparison matrix. Please note that the differences between the AN and AM models
without multitasking on the Eigenvector centrality are only due to the stochastic nature of
the training, being that the pipeline is the same in both models for this centrality. The best
values for a metric under a centrality are in bold. Source: Author

AN AM RN
Centrality P R TN Acc P R TN Acc P R TN Acc

Without multitasking
Betweenness 80.2 80.3 80.8 80.5 43.1 43.2 44.8 44.0 81.2 77.5 81.8 79.7

Closeness 80.8 82.4 81.6 82.0 80.8 82.4 81.6 82.0 81.7 75.3 84.2 79.9
Degree 82.7 94.6 85.2 89.0 75.3 86.8 78.3 81.7 86.4 72.5 89.0 82.1

Eigenvector 70.4 70.4 71.2 70.8 69.9 69.9 70.7 70.3 84.9 87.9 83.8 85.8
Average 78.5 81.9 79.7 80.6 67.3 70.6 68.9 69.5 83.6 78.3 84.7 81.9

With multitasking
Betweenness 73.4 73.6 74.3 73.9 46.6 46.8 48.2 47.5 77.9 77.0 78.5 77.8

Closeness 81.3 82.9 82.2 82.5 81.9 83.5 82.7 83.1 79.6 77.5 81.4 79.5
Degree 85.0 97.0 87.4 91.3 84.1 96.1 86.5 90.3 87.4 74.9 91.0 84.0

Eigenvector 67.5 67.5 68.4 68.0 70.4 70.4 71.1 70.7 79.6 80.5 79.9 80.2
Average 76.8 80.3 78.1 78.9 70.8 74.2 72.1 72.9 81.1 77.5 82.7 80.4

As said in Subsection 4.3.4, the model did improve its performance for larger

numbers of message-passing iterations, the PCA of these values sometimes did not hold

their structure, even though sometimes the performance of the model remaind somewhat

stable. Figure 4.25 shows an example of unstable behaviour of the performance after the

32 iterations that the model was trained with and Figure 4.24 shows a case where the

performance was more stable throghout the iterations.
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Figure 4.12: Overall accuracy of the multitask RN model for problems with an increasing
number of vertices. The overall accuracy decays with increasing problem sizes, but it does
not approach the baseline of 50% (random guess) for the largest instances tested. The
dotted lines delimit the range of problem sizes used during training. Source: Author
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Figure 4.13: Overall accuracy of the non-multitask RN models for problems with an
increasing number of vertices. Subfigures (a), (b), (c), and (d) are for the betweeness,
closeness, degree, and eigenvector models. The overall accuracy decays with increasing
problem sizes, but it does not approach the baseline of 50% (random guess) for the largest
instances tested. The dotted lines delimit the range of problem sizes used during training.
Source: Author
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Figure 4.14: Overall accuracy of the multitask AM model, akin to Figure 4.12 for the
RN model. The overall accuracy decays with increasing problem sizes, but its decay and
performance are both smaller than for the RN model. Source: Author
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Figure 4.15: The overall accuracy of the non-multitask AM models, organised as in
Figure 4.13. It fails to reach the baseline for the betweeness centrality, has a sharp decay at
larger instances for the closeness centrality, decays in the range of training for the degree
centrality and seems to be stable for the eigenvector centrality. Source: Author
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Figure 4.16: The overall accuracy of the multitask AN model, akin to Figure 4.12 for
the RN model. The overall accuracy seems to stabilize for larger problem sizes. Source:
Author
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Figure 4.17: The overall accuracy of the non-multitask AN models, organised as in
Figure 4.13. The overall accuracy seems to stabilize with increasing problem sizes for all
centralities, except closeness. Source: Author
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Table 4.9: Accuracy performance of the models during test on the “real” dataset (with-
out/with multitasking) referring to the predictions of the comparison matrix. The graph
names are abbreviated as in Table 4.5 and the number of decimal digits was also reduced
so that the results fit on page. The best values under a centrality and a graph are in bold.
Source: Author

Centrality
Accuracy (%)

PE EM SH SC GQ EGO Average

Betweenness
RN 64/66 77/81 84/85 84/83 81/75 77/75 78/66
AM 60/58 35/40 16/18 38/37 59/58 28/28 39/40
AN 65/57 78/70 90/76 84/52 73/60 77/43 78/60

Closeness
RN 71/65 81/83 60/74 77/80 62/68 64/58 69/61
AM 76/71 89/89 66/80 80/81 74/71 65/55 75/75
AN 76/73 89/88 65/19 80/61 74/74 65/48 75/61

Degree
RN 78/82 86/83 67/73 80/80 82/84 74/72 78/68
AM 85/86 90/94 15/45 60/80 93/92 47/68 65/77
AN 88/81 93/93 93/96 91/94 91/83 81/95 89/90

Eigenvector
RN 67/63 73/73 87/69 86/79 62/64 66/57 74/58
AM 60/51 71/65 79/80 60/69 62/58 65/46 66/62
AN 59/56 71/66 77/80 59/68 61/61 63/46 65/63

Average
RN 70/69 79/80 74/75 82/81 72/73 70/65 75/74
AM 70/67 71/72 44/56 60/67 72/70 51/49 61/63
AN 72/67 83/79 81/68 79/69 75/69 71/58 77/68

Figure 4.18: Evolution of the 1D projection of vertex embeddings of a non-multitask model
plotted against the corresponding eigenvector centralities (plotted on a log scale) through
the message-passing iterations for a graph sampled from the Watts-Strogatz small world
distribution of the “large” dataset. In this one can see how the PCA of the embeddings
seem to sort the vertices along their eigenvector centrality while the model improves its
performance. The cause for the most central vertex shifting from being on the left to the
right is most likely irrelevant. Source: Author
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Figure 4.19: Evolution of the 1D projection of vertex embeddings of a non-multitask model
plotted against the corresponding betweenness centralities (plotted on a log scale) through
the message-passing iterations for a graph sampled from the Erdös-Renyi distribution of
the “large” dataset. In this one can see how the PCA of the embeddings seem to sort the
vertices along their betweenness centrality, but the performance of the model is at the 50%
baseline. Source: Author
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Figure 4.20: Evolution of the 1D projection of vertex embeddings of a multitask model
plotted against the corresponding degree centralities (plotted on a log scale) through the
message-passing iterations for a graph sampled from the powerlaw tree distribution of
the “test” dataset. In this the PCA of the embeddings do not provide a good visual fit for
sorting the vertices along their degree centrality, but the model manages to achieve a good
performance nonetheless. Source: Author
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Figure 4.21: Evolution of the 1D projection of vertex embeddings of a multitask model
plotted against the corresponding closeness centralities (plotted on a log scale) through the
message-passing iterations for a graph sampled from the shell distribution of the “different”
dataset. In this the PCA of the embeddings do not provide a good visual fit for sorting the
vertices along their degree centrality, and the model does not manage to achieve a very
good performance. Source: Author
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Figure 4.22: Evolution of the 1D projection of vertex embeddings of a non-multitask model
plotted against the corresponding betweenness centralities (plotted on a log scale) through
the message-passing iterations for a graph sampled from the Barabasi-Albert distribution
of the “different” dataset. Source: Author
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Figure 4.23: Evolution of the 1D projection of vertex embeddings of a non-multitask
model plotted against the corresponding degree centralities (plotted on a log scale) through
the message-passing iterations for a graph sampled from the powerlaw cluster distribution
of the “large” dataset. Source: Author
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Figure 4.24: Evolution of the 1D projection of vertex embeddings of a multitask model
plotted against the corresponding eigenvector centralities (plotted on a log scale) through
the message-passing iterations for a graph sampled from the powerlaw tree distribution
of the “test” dataset. Here, we extend the model to work with more message-passing
iterations than it was trained with, and its performance remains relatively stable throughout.
Source: Author
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Figure 4.25: Evolution of the 1D projection of vertex embeddings of a multitask model
plotted against the corresponding closeness centralities (plotted on a log scale) through the
message-passing iterations for a graph sampled from the Erdös-Renyi distribution of the
“test” dataset. Here, we extend the model to work with more message-passing iterations
than it was trained with, and its performance varies throughout this extended range. Source:
Author
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5 CONCLUSIONS AND FUTURE WORK

In this dissertation we demonstrated how one can train a neural network to predict

graph centrality measures, while feeding it with only the raw network structure. To achieve

this, we implemented a library for Graph Neural Networks so that it enforced permutation

invariance among graph elements through its message-passing algorithm composed of

neural modules with shared weights. These modules were assembled in configurations

reflecting the network structure of each problem.

Experiments were made both with approximating centrality measures directly and

with ranking centrality measures to answer Research Question 1. It was seen that the task

of approximating centrality measures was hard, but also that the proposed model can be

trained to predict centrality comparisons (i.e. is vertex v1 more central than vertex v2 given

the centrality measure c?) with high accuracy.

In order to answer Research Question 3 the model was instantiated separately for

each centrality measure as well as for predicting all of them simultaneously, a technique was

shown where there is a minimal effect to the overall accuracy while providing significant

savings in the number of parameters. In most cases, it seems that the models could not

benefit from similarities in the sub-problems, although one may say that this could be due

to the fact that the model had the same space to work as the specialised models, with a

specific configuration of the model showing an unexpected increase in performance on the

multitask variant. For the multitasking version the model had to encode all information

about all the centrality measures jointly in its vertices’ embeddings so that they would be

extracted separately for each centrality by an MLP on the end of the execution pipeline.

In order to shed light on Research Question 2 the PCA projections of the vertices’

embeddings was analysed for the models trained to perform the ranking along the centrality

measures. It seems that some information pertaining the centrality measures themselves

is present in the PCAs, but they vary wildly along instances and do not seem to provide

a robust method for extracting further information from the model. However, the PCA

visualisations seem to suggest that the neural network model can learn a representation

that translates into a vertex’s centrality in a graph, but further work is needed to extract

this information in a robust way.

The model was also tested for its generalisation for running more message-passing

iterations, in order to answer Research Question 4. The model’s performance, however,

seemed to suffer from this more than it gained – presenting instabilities in its accuracy and
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overall not gaining much from the increased computation.

Finally, the model was tested with both graphs from different distributions than the

ones with which it was trained as well as with larger graphs. In the larger graphs most

models had a decay in performance, but showed some level of generalisation to the larger

instances, even for real world graphs which overestimate from 9 to 31 times the size of

the largest graphs the model saw during training. With this it seems safe to say that the

answer to Research Question 5 is that some level of generalisation is achievable, with the

best generalisation across domains being with multitasking and the best generalisation

along the number of nodes being with approximation-based ranking, but one should expect

a decay on the performance of the model while working out-of-sample. Unfortunately,

however, since the model did not increase its performance through more computation time

(Research Question 4), this seems hard to tackle, while techniques exist in the literature

that allow this (PALM; PAQUET; WINTHER, 2017), we wished it so that our model could

achieve this performance while working in the same vein as (SELSAM et al., 2018).

The future directions to this work are manifold. One could experiment with different

centrality measures (possibly even edge-level centralities), different architectures for the

message-passing neural network model, working with weighted and/or directed graphs, as

well as try different forms of normalisation while training the model. Since the analysis

of the embeddings learned by the model could not be conclusive, it would also be an

interesting future direction to evaluate how to train this model to learn a more interpretable

representation. Another clear path for future work is working on how to efficiently scale

up the model to networks with a higher number of vertices, with a possible venue of

investigation mentioned in the end of Section 4.3.4.
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APPENDIX A — GRAPH NEURAL NETWORK LIBRARY

Part of the contribution achieved on the Master’s Programme was the design and

development of a library that instantiates a GNN/MPNN with several message functions

and node types (SCARSELLI et al., 2009; GILMER et al., 2017), heavily based upon

SELSAM et al.’s implementation of the Neurosat model (SELSAM et al., 2018), including

most of the module/activation functions, design decisions, as well as the interface which

was made to mimick the form they presented the equations in the paper. The main

differences to SELSAM et al.’s implementation, however, is that our model is fully parallel,

not performing sequential operations between different types throughout a time-step.

An earlier version of library was used for an unpublished “quiver” formalisation1

of the TSP paper (PRATES et al., 2019a), and to be used for fast prototyping of new

GNN models. It was used in all of the published papers produced by the laboratory as

the foundational technological support for the experiments, greatly facilitating the speed

with which one can prototype new models that use Graph Structures inside the Tensorflow

Framework (ABADI et al., 2015). In this Appendix we will explain in detail how the

library code works (in Section A.1, alongside example code of how to build Graph Neural

Networks to be used in solving different problems (Subsections A.2, A.3, A.4), as well

as the code for the library itself on the last two Sections (Sec. A.5 and A.6). The code

is present in this appendix so that the text alludes to static piece of code, instead of a

possibly dynamic and changing piece of code in an online repository, in any case there

is a version made available by the author in his github account, which will possibly

remain static, in the url <https://github.com/phcavelar/graph-neural-networks> and also in

<https://github.com/phcavelar/graph-nn> where one can see the evolution of the library

throughout the commits. The library, after being used for the TGN paper, was renamed

and is available at <https://github.com/machine-reasoning-ufrgs/typed-graph-network>,

the author does not give any guarantees that this version will remain static, as it might be

reworked for future versions of the paper.

A.1 The library

The library consists of two files, “gnn.py” and “mlp.py”, which contain one python

class each. The “mlp.py” file contains an Mlp class which is simply a helper for building

1The quiver formalisation was basically a GNN with memories for both nodes and edges

https://github.com/phcavelar/graph-neural-networks
https://github.com/phcavelar/graph-nn
https://github.com/machine-reasoning-ufrgs/typed-graph-network
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MLP blocks and will not be discussed here, but one can see the code in Section A.6. The

code for the “gnn.py” file can be seen in Appendix A, Section A.5 and will be referenced

throughout this section as we explain the library itself. In this section there will be (text

in bold font) showing which part of the GNN class is being explained in depth at the

moment.

(__init__) The GNN class, contained in the “gnn.py” file, was the base for Algo-

rithm 2 and 1, the second being closer to the how the library works, and implements a

GNN model that uses Layer-Norm LSTMs (BA; KIROS; HINTON, 2016) for its update

functions and Multilayer Perceptrons for its message functions. As said in Subsection 3.6.2,

the output dimensionality for each of the message MLPs is the same as the target vertex’s

embedding dimensionality, and one can only control the depth for the MLP, being that the

dimensionality of each of its layers is equal to the source vertex’s embedding dimension-

ality, only the last layer having the target vertex’s dimensionality, but this can easily be

changed in the library if one so desires.

The MLPs, by default, use Xavier Initialisation (GLOROT; BENGIO, 2010) for

its weight matrices and initialises its bias matrix to zeros. The LSTMs use Tensorflow’s

default initialisation for its parameters. The activation for both the MLPs and the LSTMs

are Rectified Linear Units2 (ReLUs) by default, but can be set when instancing a GNN

block, also, the MLPs have no nonlinearities on their last layer as a default, which can also

be separately changed.

To create an instance of a GNN block, however, one is required to pass as arguments

to its constructor four dictionaries: “var”, “mat”, “msg” and “loop”. The “var” dictionary

is one that maps from variable names to embedding sizes, that is, an entry var["V1"] = 10

means that the nodes of the type labeled as "V1" will have an embedding size of 10. “mat”

is a dictionary from matrix names to variable pairs, which means that an entry mat["M"] =

("V1","V2") means that the matrix "M" can be as an adjacency matrices from vertices of

type "V1" to those of type "V2". The “msg” dictionary maps function names to variable

pairs, being that an entry msg["cast"] = ("V1","V2") means that one can apply "cast" to

send messages from vertices of type "V1" to vertices of type "V2".

Finally, the “loop” dictionary is the one that defines which vertex types will receive

messages from which vertex types, as well as defining other operations one may wish. This

dictionary maps from the vertex types that will be updated to a list of “update” dictionaries

containing instructions on how to process the input. The results from that list will all be

2A Rectified Linear Unit, or ReLU for short, consists in a line y = x∀x ≥ 0 and y = 0∀x < 0. There
are some other variants but this is the one used here.
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concatenated in the end before being used as input for each update LSTM itself. The

dictionaries used inside the loop list contain five fields: “mat” which is the adjacency

matrix that will be used for this part of the update along with a “transpose?” field that can

be used to transpose the matrix before using it3, a “fun” field which can hold an arbitrary

python function built using Tensorflow operations, a “msg” field which defines which

message MLP will be used, as well as a “var” field that defines from which vertex type the

messages are being sent from.

Note that it expected that the “var” field matches the first vertex type of the message

in the “msg” field, and the second vertex type matches the one the update is being applied

to. Both the matrices being used as well as the messages must map from the same vertex

type and map to the same variable type. If the “mat” field is empty (None) it defaults to

an identity matrix, if the “transpose?” field is empty it defaults to False (which does not

transpose the matrix), if “fun” is empty (None) no function is applied, if “msg” is empty

(None) no message function is applied to that communcation, and if “var” is empty a tensor

with values 1 for every vertex is used in its place.

These are all the arguments one may use when building a GNN block with this

class (the “__init__” function, lines 5-82). With these arguments the GNN class saves them

inside instance attributes and checks for inconsistencies in the definitions passed (with

the “check_model” function, lines 84-115, called on line 74) and, if no fatal error was

found, builds an instance of itself by instancing its parameters (using the “_init_parameters”

function, lines 117-138, called on line 79): The LSTM updates and the MLP messaging

functions.

(__call__) When the GNN is called upon to be run (the “__call__” function, in

lines 140-195) it expects, one dictionary called “adjacency_matrices” which holds the

instances of the matrices whose labels were defined in the “__init__” method , another one

called “initial_embeddings” that holds a tensor containing the initial embeddings for every

vertex for every type of vertex whose labels were defined in the constructor, an integer

“time_steps” which says how many message-passing iterations the GNN block must be run

for, and an optional dictionary called “LSTM_initial_states”, where one may also define

the initial “C” states for the LSTMs.

With these inputs in hand, the GNN checks if the shapes of the tensors are all

consistent by creating a dependency on the assertions that these are in fact equal (the

“check_run” function, in lines 197-283, called in line 143 of the “__call__” function), then

3This allows us to re-use a matrix when we want to send messages back and forth between two types
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from line 146 to line 151 it builds the dictionary containing the de-facto initial states for

every vertex type, which it uses in line 187 as an argument to the call to the message-

passing while loop. The looping function of the while loop is defined as a closure inside

the call to the model, in lines 154-185, and it expects both the current iteration number as

well as the states, and it accesses the dictionaries, variables and functions defined for the

model through the environment it is scoped into.

This while loop creates a new dictionary containing the new states such that for

every vertex type (line 156), it initialises the inputs as an empty list of values (line 157) and

for every update dictionary in that vertex type’s loop dictionary (line 158) it can process

that input in two distinct ways. If the “var” field of the update dictionary is defined (line

159), it picks the embeddings that will be used as input (lines 160-173), passes it through

a messaging function, if required (lines 164-165) and, if required, multiplies it by the

adjacency matrix that defines the edges alongside between the source and target vertex

types (lines 167-172) and finally append it to the update function’s list of inputs. Otherwise

(lines 175-177) it will simply use the adjacency matrix as input, assuming that it instead

contains numeric data (such as features of every node) that will be used by the vertices

at every iteration of the message-passing process (line 176) and appends it to the update

function’s list of inputs.

With the list of inputs to the update function, we aggregate them by concatenating

along the embedding axis (line 179) and then call the update function proper on this input

and on the outputted vertex embeddings and hidden states of each of the vertices’ LSTMs,

producing the new states, for that vertex type, for the next message-passing iteration (lines

180-181). Having done this for every vertex type, the while loop returns the new LSTM

states and an incremented message-passing iteration number to be used on the next iteration

of the loop (line 184).

(check_model) The function used in the class constructor that checks for inconsis-

tencies (line 84-115) checks if any vertex type does not have an update dictionary defined

in the loop dictionary and raises a warning if it such vertex type will never be updated

in the current definition (lines 86-90). Then it runs through the “loop” dictionary keys

and checks if any vertex type that has an update defined there wasn’t defined in the “var”

dictionary (lines 92-96), throwing an exception if that is the case. It does the same for the

“mat” (lines 98-105) and “msg” (lines 107-115) dictionaries, checking if any of the target

or source vertex types weren’t previously defined, throwing an exception if that is the case.

Since this function accesses all dictionaries through the classes’ attributes.
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(_init_parameters) The function for initialising the parameters used by the net-

work (lines 117-138) simply builds dictionaries containing LSTMs (for the update func-

tions, in lines 119-124) and MLPs (for the messaging functions, in lines 126-137), indexed

by the labels of the vertex types which will be updated and the labels for the messaging

functions passed through as arguments to the class constructor.

(check_run) Finally, the function that creates the assertions that will be checked

before running the message-passing loop itself (lines 197-283). It appends all the assertions

in a list that is initially empty (line 198). One of the assertions done is checking that the

embedding dimensionality for the tensors of vertex type match the ones defined in the

constructor, if the LSTM initial hidden states were passed for that vertex type it checks if

dimensionality of the hidden states matches the embedding dimensionality of that vertex

type as well, and throughout this it saves how many vertices are defined by the initial

embeddings (lines 201-241). Then, it checks if the number of vertices that are defined

in the adjacency matrices are consistent with the number expected from the previous

information on the initial embeddings and adjacency matrices (lines 243-281). With these

checked, the model can be sure that the number of embeddings is consistent and there will

be no shape mismatches along message-passing iterations.

(Batching in the GNN library) The GNN library assumes that every tensor con-

taining the vertex embeddings is of shape (b, d), where d is the dimensionality of the

embbedings for that specific node type and b is the batch dimension. The first dimension

in Tensorflow is commonly considered to be the batch dimension, which is a (generally

unspecified) dimension that holds all the values of a batch to be inputted into the model,

and as of such it is used as an array of values. In the GNN library, we hold all graphs in a

batch in the same batch dimension by joining these graphs into a larger batch-graph whose

disjoint connected components are the input graphs themselves.

This technique allows one to input as many graph as can fit on memory through this

disjoint union between them, and the adjacency matrices will have no connections between

every graph. With this, the message-passing operation will not propagate information from

one batched graph to another one, since no messages will be passed between those two.

A.2 Graph Networks

To exemplify the framing of BATTAGLIA et al. (2018)’s model, we show in

Code Snippet 2 how one can use the library to make to instantiate a full GN block.
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Again, we only allow sum as the reduction operator between the messages, and the update

functions are all learned in the format of LSTMs. The "VE" matrix maps each vertex to

which edge it is connected, the "VG" and "EG" matrix can be generated procedurally by

simply setting all indexes to 1 for every vertex/edge that is is that graph.

Code Snippet 2 A Full Graph Network block from (BATTAGLIA et al., 2018). Source:
Author

1 gnn = GNN{
2 { "V": d_v, "E": d_e,"G": d_g },
3 { "VE": ("V","E"), "VG": ("V","G"), "EG": ("E","G") },
4 { "VmsgE": ("V","E"),
5 "EmsgV": ("E","V"),
6 "VmsgG": ("V","G"),
7 "EmsgG": ("E","G"),
8 "GmsgV": ("G","V"),
9 "GmsgE": ("G","E"), },

10 { "E": [ { "mat": "VE",
11 "var": "V",
12 "msg": "VmsgE" },
13 { "mat": "EG",
14 "transpose?": True,
15 "var": "G",
16 "msg": "GmsgE" } ],
17 "V": [ { "mat": "VE",
18 "transpose?": True,
19 "var": "E",
20 "msg": "EmsgV" },
21 { "mat": "VG",
22 "transpose?": True,
23 "var": "G",
24 "msg": "GmsgV" } ],
25 "G": [ { "mat": "VG",
26 "var": "V",
27 "msg": "VmsgG" },
28 { "mat": "EG",
29 "var": "E",
30 "msg": "EmsgG" } ] },
31 name = "GraphNetwork"
32 }

With this instance in mind one can easily see how to produce similar instances

to the other types of neural networks that work on relational data which have seen to be

reduced into the Graph Network framework. Therefore with this library one can easily

prototype models that work with relational data without having to worry so much with the

inner workings of the model itself.

A.3 Conjunctive Normal Form Boolean Satisfiability

SELSAM et al. (2018) used Graph Neural Networks/Message Passing Neural

Networks to learn an algorithm for the boolean satisfiability problem and called their

model Neurosat. In order to do so, they posed that a conjunctive normal form SAT problem

is simply a hypergraph, in which the clauses are the hyperedges and the vertices are
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literals, which are joined by each other. This formalisation encodes nicely the relational

information of the SAT problem, and allowed his algorithm not only to learn to predict

the satisfiability of a formula with a relatively high accuracy but for the network to be

able to learn a representation, and an algorithm, whose latent information can be extracted

to produce literal assignments as well. The GNN core of his Neurosat model can be

synthetised in the GNN library as in Code Snippet 3.

Code Snippet 3 An instance of a GNN block for solving boolean satisfiability, following
closely (SELSAM et al., 2018). Source: Author

1 gnn = GNN(
2 {
3 "L": d_l,
4 "C": d_c
5 },
6 {
7 "LL": ("L","L"),
8 "LC": ("L","C")
9 },

10 {
11 "L_msg_C": ("L","C"),
12 "C_msg_L": ("C","L")
13 },
14 {
15 "L": [
16 {
17 "mat": "LC",
18 "msg": "L_msg_V",
19 "transpose?": True,
20 "var": "L"
21 },
22 {
23 "mat": "LL",
24 "var": "L"
25 }
26 ],
27 "C": [
28 {
29 "mat": "LC",
30 "msg": "L_msg_C",
31 "var": "L"
32 }
33 ]
34 },
35 name = "SAT"
36 )

The Neurosat model learns an initial embedding for the literal-vertices and one

for the clause-vertices and uses the same initial embedding for all vertices of each type.

Then, after the message-passing iterations it runs every literal’s embedding through a “vote”

MLP, which produces a single value with which each literal votes on whether the formula

is satisfiable or not. These votes are then averaged on each formula as the overall vote for

the on the satisfiability of the problem itself.
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A.4 Decision Travelling Salesperson Problem

In (PRATES et al., 2019a), the authors used this library to build an approximate

solver for the decision version of the Travelling Salesperson Problem. One can see how

the GNN core of their work was instanced using the GNN library in Code Snipper 4.

Code Snippet 4 An instance of a GNN for solving the decision TSP, as explained in
(PRATES et al., 2019a). Source: (PRATES et al., 2019a)

1 gnn = GNN(
2 {
3 'V': d_v,
4 'E': d_e
5 },
6 {
7 'EV': ('E','V')
8 },
9 {

10 'V_msg_E': ('V','E'),
11 'E_msg_V': ('E','V')
12 },
13 {
14 'V': [
15 {
16 'mat': 'EV',
17 'msg': 'E_msg_V',
18 'transpose?': True,
19 'var': 'E'
20 }
21 ],
22 'E': [
23 {
24 'mat': 'EV',
25 'msg': 'V_msg_E',
26 'var': 'V'
27 }
28 ]
29 },
30 name = "TSP"
31 )

In PRATES et al.’s model, the initial vertex-vertices’ embeddings are learnable

parameters, but the edge-vertices’ embeddings are initialised through an MLP that receives

the target-cost for the route as well as the edge’s weight as input. The end of the model’s

pipeline is much like the one in (SELSAM et al., 2018), except that the edge-vertices vote

on whether there exists a route or not, instead of the vertex-vertices being the voters (one

can see the clauses as hyperedges between the literals, thus the analogy drawn here).

A.5 gnn.py

1 import tensorflow as tf

2 from mlp import Mlp
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3

4 class GNN(object):

5 def __init__(

6 self,

7 var,

8 mat,

9 msg,

10 loop,

11 MLP_depth = 3,

12 MLP_weight_initializer = tf.contrib.layers.xavier_initializer,

13 MLP_bias_initializer = tf.zeros_initializer,

14 RNN_cell = tf.contrib.rnn.LayerNormBasicLSTMCell,

15 Cell_activation = tf.nn.relu,

16 Msg_activation = tf.nn.relu,

17 Msg_last_activation = None,

18 float_dtype = tf.float32,

19 name = 'GNN'

20 ):

21

22 """

23 Receives four dictionaries: var, mat, msg and loop.

24

25 * var is a dictionary from variable names to embedding sizes.

26 That is: an entry var["V1"] = 10 means that the variable "V1" will have an

embedding size of 10.

27

28 * mat is a dictionary from matrix names to variable pairs.

29 That is: an entry mat["M"] = ("V1","V2") means that the matrix "M" can be used

to mask messages from "V1" to "V2".

30

31 * msg is a dictionary from function names to variable pairs.

32 That is: an entry msg["cast"] = ("V1","V2") means that one can apply "cast" to

convert messages from "V1" to "V2".

33

34 * loop is a dictionary from variable names to lists of dictionaries:

35 {

36 "mat": the matrix name which will be used,

37 "transpose?": if true then the matrix M will be transposed,

38 "fun": transfer function (python function built using tensorflow operations,

39 "msg": message name,

40 "var": variable name

41 }

42 If "mat" is None, it will be the identity matrix,

43 If "transpose?" is None, it will default to false,

44 if "fun" is None, no function will be applied,

45 If "msg" is false, no message conversion function will be applied,

46 If "var" is false, then [1] will be supplied as a surrogate.

47

48 That is: an entry loop["V2"] = [ {"mat":None,"fun":f,"var":"V2"}, {"mat":"M","

transpose?":true,"msg":"cast","var":"V1"} ] enforces the following update rule

for every timestep:

49 V2 = tf.append( [ f(V2), matmul( M.transpose(), cast(V1) ) ] )
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50

51 You can also specify:

52

53 * MLP_depth, which indicates how many layers before the output layer each message

MLP will have, defaults to 3.

54 * MLP_weight_initializer, which indicates which initializer is to be used on the

MLP layers' kernels, defaults to tf.contrib.layers.xavier_initializer.

55 * MLP_bias_initializer, which indicates which initializer is to be used on the

MLP layers' biases, defaults to tf.zeros_initializer.

56 * Cell_activation, which indicates which activation function should be used on

the LSTM cell, defaults to tf.nn.relu.

57 * Msg_activation, which indicates which activation function should be used on the

hidden layers of the MLPs, defaults to tf.nn.relu.

58 * Msg_last_activation, which indicates which acitvation function should be used

on the output, defaults to None (linear activation).

59 * float_dtype, which indicates which float type should be used (not tested with

others than tf.float32), defaults to tf.float32.

60 * name, which is the scope name that the GNN will use to declare its parameters

and execution graph, defaults to 'GNN'.

61 """

62 self.var, self.mat, self.msg, self.loop, self.name = var, mat, msg, loop, name

63

64 self.MLP_depth = MLP_depth

65 self.MLP_weight_initializer = MLP_weight_initializer

66 self.MLP_bias_initializer = MLP_bias_initializer

67 self.RNN_cell = RNN_cell

68 self.Cell_activation = Cell_activation

69 self.Msg_activation = Msg_activation

70 self.Msg_last_activation = Msg_last_activation

71 self.float_dtype = float_dtype

72

73 # Check model for inconsistencies

74 self.check_model()

75

76 # Initialize the parameters

77 with tf.variable_scope(self.name):

78 with tf.variable_scope('parameters'):

79 self._init_parameters()

80 #end parameter scope

81 #end GNN scope

82 #end __init__

83

84 def check_model(self):

85 # Procedure to check model for inconsistencies

86 for v in self.var:

87 if v not in self.loop:

88 raise Warning('Variable {v} is not updated anywhere! Consider removing it

from the model'.format(v=v))

89 #end if

90 #end for

91

92 for v in self.loop:
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93 if v not in self.var:

94 raise Exception('Updating variable {v}, which has not been declared!'.format(

v=v))

95 #end if

96 #end for

97

98 for mat, (v1,v2) in self.mat.items():

99 if v1 not in self.var:

100 raise Exception('Matrix {mat} definition depends on undeclared variable {v}'.

format(mat=mat, v=v1))

101 #end if

102 if v2 not in self.var and type(v2) is not int:

103 raise Exception('Matrix {mat} definition depends on undeclared variable {v}'.

format(mat=mat, v=v2))

104 #end if

105 #end for

106

107 for msg, (v1,v2) in self.msg.items():

108 if v1 not in self.var:

109 raise Exception('Message {msg} maps from undeclared variable {v}'.format(msg=

msg, v=v1))

110 #end if

111 if v2 not in self.var:

112 raise Exception('Message {msg} maps to undeclared variable {v}'.format(msg=

msg, v=v2))

113 #end if

114 #end for

115 #end check_model

116

117 def _init_parameters(self):

118 # Init LSTM cells

119 self._RNN_cells = {

120 v: self.RNN_cell(

121 d,

122 activation = self.Cell_activation

123 ) for (v,d) in self.var.items()

124 }

125 # Init message-computing MLPs

126 self._msg_MLPs = {

127 msg: Mlp(

128 layer_sizes = [ self.var[vin] for _ in range( self.MLP_depth ) ],

129 output_size = self.var[vout],

130 activations = [ self.Msg_activation for _ in range( self.MLP_depth )

],

131 output_activation = self.Msg_last_activation,

132 kernel_initializer = self.MLP_weight_initializer(),

133 bias_initializer = self.MLP_weight_initializer(),

134 name = msg,

135 name_internal_layers = True

136 ) for msg, (vin,vout) in self.msg.items()

137 }

138 #end _init_parameters
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139

140 def __call__( self, adjacency_matrices, initial_embeddings, time_steps,

LSTM_initial_states = {} ):

141 with tf.variable_scope(self.name):

142 with tf.variable_scope( "assertions" ):

143 assertions = self.check_run( adjacency_matrices, initial_embeddings,

time_steps, LSTM_initial_states )

144 #end assertion variable scope

145 with tf.control_dependencies( assertions ):

146 states = {}

147 for v, init in initial_embeddings.items():

148 h0 = init

149 c0 = tf.zeros_like(h0, dtype=self.float_dtype) if v not in

LSTM_initial_states else LSTM_initial_states[v]

150 states[v] = tf.contrib.rnn.LSTMStateTuple(h=h0, c=c0)

151 #end

152

153 # Build while loop body function

154 def while_body( t, states ):

155 new_states = {}

156 for v in self.var:

157 inputs = []

158 for update in self.loop[v]:

159 if 'var' in update:

160 y = states[update['var']].h

161 if 'fun' in update:

162 y = update['fun'](y)

163 #end if

164 if 'msg' in update:

165 y = self._msg_MLPs[update['msg']](y)

166 #end if

167 if 'mat' in update:

168 y = tf.matmul(

169 adjacency_matrices[update['mat']],

170 y,

171 adjoint_a = update['transpose?'] if 'transpose?' in update else

False

172 )

173 #end if

174 inputs.append( y )

175 else:

176 inputs.append( adjacency_matrices[update['mat']] )

177 #end if var in update

178 #end for update in loop

179 inputs = tf.concat( inputs, axis = 1 )

180 with tf.variable_scope( '{v}_cell'.format( v = v ) ):

181 _, new_states[v] = self._RNN_cells[v]( inputs = inputs, state = states[

v] )

182 #end cell scope

183 #end for v in var

184 return (t+1), new_states

185 #end while_body
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186

187 _, last_states = tf.while_loop(

188 lambda t, states: tf.less( t, time_steps ),

189 while_body,

190 [0,states]

191 )

192 #end assertions

193 #end Graph scope

194 return last_states

195 #end __call__

196

197 def check_run( self, adjacency_matrices, initial_embeddings, time_steps,

LSTM_initial_states ):

198 assertions = []

199 # Procedure to check model for inconsistencies

200 num_vars = {}

201 for v, d in self.var.items():

202 init_shape = tf.shape( initial_embeddings[v] )

203 num_vars[v] = init_shape[0]

204 assertions.append(

205 tf.assert_equal(

206 init_shape[1],

207 d,

208 data = [ init_shape[1] ],

209 message = "Initial embedding of variable {v} doesn't have the same

dimensionality {d} as declared".format(

210 v = v,

211 d = d

212 )

213 )

214 )

215 if v in LSTM_initial_states:

216 lstm_init_shape = tf.shape( LSTM_initial_states[v] )

217 assertions.append(

218 tf.assert_equal(

219 lstm_init_shape[1],

220 d,

221 data = [ lstm_init_shape[1] ],

222 message = "Initial hidden state of variable {v}'s LSTM doesn't have the

same dimensionality {d} as declared".format(

223 v = v,

224 d = d

225 )

226 )

227 )

228

229 assertions.append(

230 tf.assert_equal(

231 lstm_init_shape,

232 init_shape,

233 data = [ init_shape, lstm_init_shape ],

234 message = "Initial embeddings of variable {v} don't have the same shape



118

as the its LSTM's initial hidden state".format(

235 v = v,

236 d = d

237 )

238 )

239 )

240 #end if

241 #end for v

242

243 for mat, (v1,v2) in self.mat.items():

244 mat_shape = tf.shape( adjacency_matrices[mat] )

245 assertions.append(

246 tf.assert_equal(

247 mat_shape[0],

248 num_vars[v1],

249 data = [ mat_shape[0], num_vars[v1] ],

250 message = "Matrix {m} doesn't have the same number of nodes as the initial

embeddings of its variable {v}".format(

251 v = v1,

252 m = mat

253 )

254 )

255 )

256 if type(v2) is int:

257 assertions.append(

258 tf.assert_equal(

259 mat_shape[1],

260 v2,

261 data = [ mat_shape[1], v2 ],

262 message = "Matrix {m} doesn't have the same dimensionality {d} on the

second variable as declared".format(

263 m = mat,

264 d = v2

265 )

266 )

267 )

268 else:

269 assertions.append(

270 tf.assert_equal(

271 mat_shape[1],

272 num_vars[v2],

273 data = [ mat_shape[1], num_vars[v2] ],

274 message = "Matrix {m} doesn't have the same number of nodes as the

initial embeddings of its variable {v}".format(

275 v = v2,

276 m = mat

277 )

278 )

279 )

280 #end if-else

281 #end for mat, (v1,v2)

282 return assertions
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283 #end check_run

284 #end GNN

A.6 mlp.py

1 import tensorflow as tf

2

3 class Mlp(object):

4 def __init__(

5 self,

6 layer_sizes,

7 output_size = None,

8 activations = None,

9 output_activation = None,

10 use_bias = True,

11 kernel_initializer = None,

12 bias_initializer = tf.zeros_initializer(),

13 kernel_regularizer = None,

14 bias_regularizer = None,

15 activity_regularizer = None,

16 kernel_constraint = None,

17 bias_constraint = None,

18 trainable = True,

19 name = None,

20 name_internal_layers = True

21 ):

22 """Stacks len(layer_sizes) dense layers on top of each other, with an additional

layer with output_size neurons, if specified."""

23 self.layers = []

24 internal_name = None

25 # If object isn't a list, assume it is a single value that will be repeated for

all values

26 if not isinstance( activations, list ):

27 activations = [ activations for _ in layer_sizes ]

28 #end if

29 # If there is one specifically for the output, add it to the list of layers to be

built

30 if output_size is not None:

31 layer_sizes = layer_sizes + [output_size]

32 activations = activations + [output_activation]

33 #end if

34 for i, params in enumerate( zip( layer_sizes, activations ) ):

35 size, activation = params

36 if name_internal_layers:

37 internal_name = name + "_MLP_layer_{}".format( i + 1 )

38 #end if

39 new_layer = tf.layers.Dense(

40 size,

41 activation = activation,

42 use_bias = use_bias,

43 kernel_initializer = kernel_initializer,
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44 bias_initializer = bias_initializer,

45 kernel_regularizer = kernel_regularizer,

46 bias_regularizer = bias_regularizer,

47 activity_regularizer = activity_regularizer,

48 kernel_constraint = kernel_constraint,

49 bias_constraint = bias_constraint,

50 trainable = trainable,

51 name = internal_name

52 )

53 self.layers.append( new_layer )

54 #end for

55 #end __init__

56

57 def __call__( self, inputs, *args, **kwargs ):

58 outputs = [ inputs ]

59 for layer in self.layers:

60 outputs.append( layer( outputs[-1] ) )

61 #end for

62 return outputs[-1]

63 #end __call__

64 #end Mlp
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