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Abstract. Most of engineering materials exhibit natural or load-induced fractures, which strongly 

affect both the instantaneous and delayed mechanical behaviors at macroscopic level. Unlike cracks, 

fractures are mechanically regarded as interfaces able to transfer normal and tangential efforts. The 

aim of this paper is to formulate the conditions for fracture propagation in randomly-micro-fractured 

viscoelastic materials. The homogenized viscoelastic relaxation tensor was formulated by applying the 

correspondence principle upon the already-known homogenized elastic stiffness tensor. Extending the 

Griffith-like thermodynamic framework to the macroscopic viscoelastic context, the propagation 

criterion is first formulated, once again comparing the energy release rate to the critical energy. 

Mathematical evidences shows the energy release rate is written as the derivative of the macroscopic 

elastic energy, written to the viscoelasticity, with respect to the parameter which represents the 

damage in the macroscopic scale. Under certain conditions, the elastic energy derivative can be 

simplified, being reduced only to an instantaneous term, leading to a simplified propagation criterion. 

It was notably found that for constant strain loadings, the fracture propagation is exactly driven by 

elastic components. Analyses performed for constant strain rates on specimen made of Burger solid 

matrix show that the energy release rate increases from zero to a constant asymptotic value. This 

asymptotic energy release rate is used in a time-independent propagation criterion, evidencing an 

interval to initial damage parameter where the propagation is possible. The main contribution of 

asymptotic energy release rate, however, refers to the estimative of final damage parameter after the 

end of propagation. 
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1  Introduction 

As far as the engineers have been refining their projects, introducing news analysis models, some 

material characteristics, previously neglected, become indispensable. When damaged materials are 

loaded, existing discontinuities are expected to grow and propagate, increasing their size and number. 

From the physical viewpoint, two classes of discontinuities are distinguished: cracks and fractures. 

Although both are generally modeled through interfaces, the intrinsic capacity associated with 

fractures, referring to the transmission of normal and tangential stresses along their length, makes their 

modeling much more similar to reality. Referring to propagation studies, linear or non-linear 

mechanisms have been applied since the pioneering work of Griffith, giving less attention, however, to 

the evaluation of propagation of discontinuities able of transferring efforts. 

In this respect, most of the theoretical or computational analysis has focused on the instantaneous 

(elastic and plastic) material response. However, in many situations, the deferred behavior proves to 

be a fundamental component of the material deformation, making it indispensable for the analysis of 

propagation. Unlike elastic or plastic structures, it is expected that the propagation criterion depends 

directly on the time. Criteria for propagation of cracks have been addressed in the viscoelasticity 

referring to single discontinuity [7-14]. However, these approaches are difficult to implement in 

engineering applications involving a large number of micro-fractures. 

More recent approaches [15,16] based on micromechanics theory have extended Griffith's elastic 

thermodynamic reasoning to the viscoelastic context, allowing the formulation of a propagation 

criterion for micro-cracked materials associated with a variable which represents the damage on a 

macroscopic scale. The objective of this work is to extend the existing reasoning to discontinuities 

able of transferring stresses (i.e. fractures), formulating a fracture propagation condition for 

viscoelastic materials. 

This work is divided into three parts. The first one dealing with the homogenization of the 

fractured viscoelastic material properties, the second one referring to the propagation criterion, 

developed by mean of thermodynamic laws in a similar way than Griffith’s woks. In the third part, 

numerical applications are performed, allowing the reasoning for propagation start time. Analysis to 

constant strain rate loadings lead the energy release rate to an asymptotic-in-time value, which is used 

to determine the interval for initial damage parameter where the damage propagate. The main 

contribution of the asymptotic value refers to the energy release rate/critical energy balance that, 

supposing mechanical equilibrium during the fracture evolution, leads to a minimum estimative for the 

final damage parameter after the fracture propagation is finished. In addition, alternative propagation 

conditions focused on strains and stresses are presented, allowing the development of propagation 

analysis based on loadings or requesting efforts. 

2  Homogenized viscoelastic mechanical behavior 

The viscoelastic damage propagation analysis, formulated in the context of micromechanics 

theory, requests the viscoelastic fractured effective behavior. The effective behavior, also referred as 

homogenized behavior, can be accessed through elastic homogenization schemes combined to the 

Laplace-Carson correspondence principle. Using Eshelby-based schemes, Aguiar and Maghous [1] 

determined the homogenized behavior considering both viscoelastic matrix and fractures. The 

following reasoning explain the context where the effective behavior was formulated as well as 

present the equations that describes the isotropic resultant relaxation tensor. 

Considering that natural fractures are randomly distributed on the medium, the micromechanics 

theory determine the material can be statistically represented by means of a representative elementary 

volume (REV) whenever specific scale separations conditions are satisfied. That conditions can be 

summarized as d l L , where d  stands for the average heterogeneities length, l  is the REV 

length and L  represents the structure characteristic length. In the subsequent analysis   denotes the 
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REV composed by the solid matrix and fractures,   is the volume occupied by all fractures and 

\  stands for the solid matrix phase, corresponding to the REV without the fractures.  

Each fracture is modeled as an interface geometrically described by a surface 
i

 , related to its 

normal orientation vector 
i

n . At a smaller scale however, the fracture would be represented by a 

finite-thickness volume delimited by distinct upper 
i

 
 and lower 

i
 

 boundaries (see Figure 1). The 

main difference between cracks and fractures refers to the fracture’s stress transfer ability, correlating 

stress forces T n   (acting in the discontinuity interface) and displacements jumps          

(along the discontinuity length) over the fracture stiffness k  (for more details see Goodman [2] or 

Bandis et al. [3]). On the elastic scope that relationship is given by: 

 :T k      (1) 

where 


 refers to the upper boundary displacement and 


 is the lower boundary displacement. 

Referring to the local frame  , , 'n t t , k  commonly takes the form: 

  ' '
n t

k k n n k t t t t       (2) 

where 
n

k  and 
t

k  are respectively the normal and tangential stiffness components. These components 

are classically evaluated from laboratory test performed on material specimen with a single fracture. It 

should be observed that the particular case of discontinuities without stress transfer (here denominated 

by cracks) can be straightforwardly included in the above formulation by considering null that 

parameters. On the other hand, the solid matrix behavior is formulated by the relation between strains 

  and stresses   by the fourth-order stiffness tensor 
s
: 

 :
s   (3) 

 

Figure 1: Fracture representation. 

Micromechanical arguments evidence the macroscopic behavior is given by: 

 
hom

:    (4) 

where   and   stand respectively for the macroscopic stresses and strains. 
hom

 is the equivalent 

stiffness tensor to the homogenized material. 

Simplifying the fracture shape to an oblate spheroid (see Figure 2) with aspect ratio c a   

tending to zero (where 2c  is the fracture aperture and a  is the fracture radius), makes possible apply 

the Mori-Tanaka scheme in order to determine the homogenized stiffness 
hom

. Referring only to 

isotropic solid matrix behavior (where the solid matrix stiffness 3 2
s s s

k    is fully 

represented by its bulk 
s

k  and shear 
s  moduli) and supposing isotropic fracture orientation, the 
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elastic stiffness tensor reads (Maghous et al. [4]): 

 
hom hom hom

3 2k    (5) 

where 1 3 1 1   and    are respectively the spherical and deviatoric projector tensors, 1  

is the second-order unity tensor,  is the fourth-order unity tensor and   refers to the tensorial 

product. The homogenized bulk 
hom

k  and shear 
hom  moduli read: 

 
hom

1 k

s
k

k



 M

      and     
hom

1

s









 M
 (6) 

3
a   is the fracture density parameter defined by Budiansky and O’Connel [5] connected to 

the fracture volumetric fraction 4 3f    .  is the number of fractures per unit volume. The 

dimensionless parameters ( , , , )
s s

k n t
k ak akM  and ( , , , )

s s

n t
k ak ak M  are: 

 

4
3

1

/

/

s s

k s
n

k

ak

 

 



M      and     

 
   

2 3 4 1 44

1 4 2 3 4 1 4

6 4 9 316

15 3 4 9 ( )


     

      

  


  
M  (7) 

where 

 1 2

33
;

3 4 3 4

s s
n

s s s s

k ak

k k


 

 


 

 
    ;    3 4

3
;

3 4 3 4

s
t

s s s s

k a

k k


 

 
 

 
 (8) 

 

Figure 2: Ellipsoidal fracture representation 

In order to obtain the propagation criterion dependent on viscous components, the homogenized 

elastic behavior have to be extended to the viscoelastic one. In this reasoning, the solid matrix and 

fracture behaviors read: 

 
s       and     

R
T k      (9) 

The symbol 
s

 stands for the matrix’s relaxation tensor and 
R

k  is the viscoelastic counterpart 

of the fracture stiffness k . The operator “ ” stands for the hereditary convolution integral, which 

reads: 

 

0

(t, )
( , ) ( ) ( , ) ( ) ( )d

t
U

U t t U t t tV V V


  



  

  (10) 

where   define the order-compatible tensorial contraction such that the resulting operation maintains 

the tensorial order of the variable V . By means of the micromechanical theory, the viscoelastic 

mechanical relationship between macroscopic strains   and macroscopic stresses   is given at the 

macroscopic scale by: 

 
hom

    (11) 
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hom
 corresponds to the effective relaxation tensor to the homogenized material. Making use of 

the correspondence principle, Aguiar and Maghous [1] have demonstrated that the homogenized 

relaxation tensor 
hom*

( )p  can be represented in the Laplace-Carson space as: 

 
hom* hom* hom*

3 2k        with     
*

*
hom*

1

s

k

k
k




 M
      and     

*

*
hom*

1

s









 M
 (12) 

where 

 

* *4
* 3

* * *
1

/

/

s s

k s
n

k

ak

 

 



M      and     

 
   

* * * * **
2 3 4 1 4* 4

* * * * * * *
1 4 2 3 4 1 4

6 4 9 316

15 3 4 9 ( )


     

      

  


  
M  (13) 

and 

 

** *
* *
1 2* * * *

33
;

3 4 3 4

s s
n

s s s s

k ak

k k


 

 


 

 
    ;    

* *
* *
3 4* * * *

3
;

3 4 3 4

s
t

s s s s

k a

k k


 

 
 

 
 (14) 

The super index *  indicates the functions are written at the Laplace-Carson domain in the p-time 

variable. Known the constituent (solid matrix and fractures) rheological behavior, the moduli 
*s

k , 
*s , 

*
nk and 

*
tk  can be straightly replaced by the corresponds functions written on Laplace-Carson 

domain. Supposing, for example, the solid matrix behaves as the Burger models and the fractures 

behaves as the Maxwell model (see figure 3): 

 

1

*

, , , ,

1 1 1
( )

s

s s s s
e M v M e K v K

k p
k p k k p k


 

   
  

 and 

1

*

, , , ,

1 1 1
( )

s

s s s s
e M v M e K v K

p
p p


   


 

   
  

(15) 

and 

 

1

*

, ,

1 1
( )n e v

n M n M

k p
k p k


 

  
 
 

 and 

1

*

, ,

1 1
( )t e v

t M t M

k p
k p k


 

  
 
 

 (16) 

 

Figure 3: Burger matrix and Maxwell fracture representation 

Making use of a specific procedure, Aguiar and Maghous [1] have demonstrated the 

homogenized relaxation moduli can be written through a particular generalized Maxwell model. This 

procedure requires the moduli 
*

hom
k  and 

*
h o m , in the Laplace-Carson domain, be written as a 

quotient between polynomials: 
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 

*
hom 0 0

10

( )
( )

( )

k k

k
k
n

g g

k n k n
n nk

n n

k g z
g

kk n
nn

nn

a p a p
A p

k p
B p

p rb p



 



  



 



 (17) 

and 

 

 

*
hom 0 0

10

( )
( )

( )
n

g g

n n
n n

n n

g z
g

n
nn

nn

a p a p
A p

p
B p

p rb p

 

 


 







  



  



 



 (18) 

Given ork  , parameters na


 and nb


 are the polynomials coefficients, g


 is the 

polynomial degree, nr


 is the n-th B
  polynomial root, z

  is the number of main poles, ng


 is the 

degree of n-indicated pole and p  is the polynomial variable. Expressions (17) and (18) lead to the 

following expressions in the time domain [1]: 

 hom 0

0 1

( )
( ) ( ) ( )

( )

k

k
n

k
n

gk k k
r tn

k k
kn

n

p r

a A r
k t H t e H t

b B p
r

p





 




  (19) 

and  

 hom 0

0 1

( )
( ) ( ) ( )

( )

n

n

g
r tn

n
n

p r

a A r
t H t e H t

b B p
r

p







  

 







 




  (20) 

where ( )H t  is the Heaviside function.  

3  Fracture propagation criterion in viscoelasticity 

Classically, the propagation criterion is developed based on thermodynamic concepts. Griffith [6] 

have firstly applied that concepts in order to formulate a propagation criterion to glassy materials. Ever 

since, many authors have extended that analysis in order to include other material kinds. Criterions 

formulated to time-dependent materials was extensively developed in the single-cracks context [7-14]. 

Recent approaches [15-16], however, used the micromechanical theory to address the micro-cracked 

issue. The following reasoning extends the propagation criterion by using the micro-fractured 

formulation developed previously. 

3.1 Elastic Framework 

Based on first and second thermodynamic laws, the classical linear elastic fracture mechanics 

suggests the energy dissipated 
f  on propagation mechanisms reads: 

 
f 




 


l
l

 (21) 

where   stands for the elastic energy and l  is the crack length. Griffith [6] suggest that, during the 

crack propagation ( 0l ), the energy dissipation reaches a limit value: 
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  0 0
f

c   l l  (22) 

c corresponds to the material critical energy, being nowadays evaluated in laboratory tests. By 

expressions (21) and (22) becomes clear that  l , commonly referred as energy release rate , 

assumes the role of thermodynamic force responsible for the propagation. The propagation criterion 

emerge from this insight, comparing the energy release rate with the critical energy in order to verify 

the crack propagation: 

 0 and 0c c     l l  (23) 

This formulation accounts  as the only variable responsible for the crack propagation. In the 

elastic single-fracture context, the energy release rate reads: 

 

1
1 1

: :
2

:
2

:   


 



 

l l
 (24) 

3.2 Viscoelastic propagation criterion to micro-fractures 

Extending the thermodynamic-based analysis to viscoelastic micro-fractured materials, the energy 

dissipation   can be expressed as: 

 

 
 :

v

v

 
  



 
  


 (25) 

where  v  stands for the viscoelastic strain fields acting in the medium. Since the first right-hand-

side term is related to viscous dissipation, it becomes possible write: 

 
v

f


   




   


     where     

 
 :

v v

v


 




 


 (26) 

However, in a macroscopic analysis, the single-point verification isn’t sufficiently to evaluate the 

damage propagation, becoming necessary analyze all the VER by evaluating the effective energy 

dissipation to fracture propagation f . 

 f f


 




   


 (27) 

The operator  corresponds to the volumetric mean upon the REV. Assuming the VER volume 

  doesn’t depending on  : 

 


  

 
 

  
 (28) 

where   is the macroscopic elastic energy of the viscoelastic material. In a medium where the 

fracture is propagating  0  , the energy dissipation assumes a threshold value 0vf    . It 

should be observed that differently from c , which is a material property determined from laboratory 

test, v  depending on the fracture density parameter. Dormieux et al. [17] have determined the 

following correspondence between c  and v : 

 

1 3
2

3
v c





 
  

 
 (29) 

Once again, the effective energy release rate  assumes the role of the thermodynamic force 

responsible for the propagation: 
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 ,
v 


 


 (30) 

Combining the evidences which leads to the fracture propagation in a micro-fractured material, 

the criterion for propagation in viscoelasticity is written as: 

 0 and 0v v        (31) 

Once again, the energy release rate  accounts as the only variable responsible for the fracture 

propagation. The main difference between expressions (23) and (31) corresponds to the elastic energy 

expression which writes the energy release rate. 

3.3 Energy release rate 

Starting from the rheological models describing the microscopic behaviors for the solid matrix 

and fractures, it becomes possible deduct the macroscopic elastic energy   by the microscopic one. 

Assuming, by simplicity, both solid matrix and fractures may be represented by the Burger model, the 

microscopic expression to the elastic energy reads: 

 
1 1

: : : : with
2

in \

in2

e e e e

s

M KM M K K f










  



 

 



 



 (32) 

where   represents the Maxwell M  or Kelvin K  parts from the respective Burger models. 
s
  is 

the solid matrix stiffness tensor of beta’s Burger part and 
f
  corresponds to the fourth-order fracture 

tensor of beta’s Burger part related to the viscoelastic fracture stiffness 
v

k  [1]. 
e
  stands for the 

strain acting on the respective model spring. 

Considering some basic Burger’s relations (
e e
M  , 

e
K K   and 0M  ), it becomes 

possible write   as: 

 
0

0 0

0

1 1
: : : : wi

in \
th

in2 2

e e
K K

s

K f
 





  

 
 


 (33) 

By definition, on micromechanical arguments, the macroscopic elastic energy is the volumetric 

integral over the local free energy, being written as: 

 0

1 1
: : : :

2 2
K

e e
K K         (34) 

Based on micromechanical reasoning, it is possible demonstrate that: 

 I R K     (35) 

where the instantaneous energy I , the residual energy R  and the Deferred (or Kelvin’s) part 

energy D  can be represented by 

    hom
0

1
:

2
:

v v
I     (36) 

    0

1
: :

2

R v R v
R         (37) 

 
1

: :
2

D K K K    (38) 

R  is the residual strain field which remains in the material at the end of an instantaneous discharge 
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0   and the microscopic 
v  and macroscopic 

v
  viscous strains are defined by: 
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,
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


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

  (39) 

Since the analysis focus demands on    , and not directly on  , it is possible demonstrate 

that: 

 

 

: :
0

v

K K K



 







 (40) 

Besides that, with the aid of micromechanics tools, the residual energy can be reformulated as: 

 :
1 1

:
2 2

vR v 


    (41) 

In particular cases where 
v  is geometrically compatible, it is possible demonstrate that 0.

R
   

Neglecting 
v    [18] and supposing 

v  geometrically compatible, the energy release rate reads: 

    
1
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
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 
 (42) 

Since the homogenized relaxation tensor is macroscopically isotropic, the energy release rate 

expression can be rewritten in the indicial notation as: 
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 (43) 

or, calling 
e v

    : 
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

 (44) 

Given the relationship between   and  , both expressions (43) and (44) may be used, 

independently from the kind of applied load (  or  ). 

4  Numerical Applications 

Known the propagation criterion (31) as well as the energy release rate expression (43) or (44), it 

becomes helpful shows some numerical results obtained from this reasoning. The mechanical behavior 

attached to constituents (matrix and fractures) follows that one described in Figure 3. The parameter’s 

value adopted to Burger matrix (in  GPa  and    GPa ano ) and to Maxwell fractures (in 

   GPa m  and      GPa ano m ) are: 
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(45) 

Defining the applied load by isotropic macroscopic strains ( ) 1t    and given the expression 

(11), the resultant macroscopic stresses are given by ( 1)t  , with 
hom

( ) 3t k   . This loading 

case leads to following energy release rate expression: 
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2

hom hom2
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1 1

2 2

e k k
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  
  


 


 (46) 

Applying constant strain loads 0( ) ( )E t H t   under expression (46), the evolution of energy 

release rate is given by: 

 

Figure 4: Energy release rate to constant strain loads 

1 ; 
3

0
10E


 ;  0.01

0 0, 0.01t     

Regarding the constant strains, it is observed that the highest values for energy release rate occur 

at the initial instants, evidencing that elastic phenomena components control the fracture propagation. 

Even so, high value of damage parameter leads to lower energy release rates, leading to greater 

difficulty in the fracture propagation. This behavior is explained, for strain loads, due to the higher 

deformability introduced by the fractures to the homogenized medium. 

On the other hand, applying constant strain rate in the form 0( ) ( )E t t H t   leads to the 

following energy release rate evolution: 
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Figure 5: Energy release rate to constant strain loads 

1 ; 
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Differently from the elastic reasoning, which leads to a parabolic increasing-in-time function, the 

viscoelastic reasoning drive the energy release rate to a maximum-asymptotic increasing function. The 

asymptotic value is referred as   and can be used in an alternative propagation criterion. Comparing 

  with v  leads to a time-independent criterion to evaluate the fracture propagation: 

v   → there isn’t fracture propagation 

v   → there is fracture propagation 
(47) 

Since   is evaluated from the initial damage parameter, depending on starter conditions the 

damage never will propagate. However, in the cases where the propagation will occurs, the instant of 

propagation start pt  can be evaluated from ( )p vt  . The expression of asymptotic energy release 

rate can be evaluated by taking the limit of expression (46) when t   : 
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Given the constant strain rate and the relationship between macroscopic strains and stresses, 

expression (48) can be reformulated as: 
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where  
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(50) 

In order to better comprehend the condition (47), two graphics are plotted. The first one 

presenting both   and v , and the second one presenting the relative difference between its values 

in function of the critical energy: 
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Figure 6: Comparison between asymptotic energy release rate and critical energy 
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That Figure suggest there is an interval of   where the fracture is possible ( 0.004 0.207   to 

the used dates). If the material is too intact or too damaged, the asymptotic energy release rate doesn’t 

achieve the critical energy and the fracture won’t propagate. If the value of the initial damage 

parameter is located within the given range, at some point t    the energy release rate will reach the 

value of the critical energy and, since c  is not physically possible, the fracture propagation will 

occur until equilibrium (or the total rupture) is reestablished. 

The upper interval damage parameter is referred as 
min

  and, supposing the damage evolution is 

sufficiently slow allowing a certain mechanical equilibrium at each stage during propagation, this 

value balance the asymptotic energy release rate and critical energy on the system, leading to the 

propagation end. That value is understand as the “minimum final damage parameter” since if the 

mechanical equilibrium during the damage evolution doesn’t occurs the expected damage parameter is 

necessarily higher than 
min

 . 

An alternative propagation condition also can be formulated in strains or stresses conditions. In a 

critical domain, expression (46) can be reformulated in order to express the critical strain or critical 

stress necessary to the fracture propagation: 
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Expression (51) can be used to time-dependent expression comparing 
e e

c    or c   . This 

expression analyze time-by-time if the propagation starts at the current moment. Resorting to constant 

strain rate loads, the critical strain rate 0
CR

  or critical asymptotic values of 
CR
  can be used as 

propagation criterion. Comparing expression (48) to v  in a critical domain ( v  )  
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 (52) 

while 
CR

     or 0 0
CR

    there aren’t fracture propagation. Otherwise, if 
CR

     or 
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0 0
CR

   , the applied load leads to the fracture propagation starting in an undefined transient time. 

Figure 7 present the critical strain rate in function of the damage parameter and critical energy. 

Observes that, to 
3 1

0 10 yr
 

   and 
5

2 10c


   the same damage parameter interval induce the 

fracture propagation.  

 

Figure 7: Critical strain rate in function of damage parameter and critical energy  

1 ; 

Based on reasoning developed to energy release rate (Figure 5) and to the comparison between 

critical energy and asymptotic energy release rate (Figure 6), becomes possible extract the propagation 

initiation time as well as an estimative (the minimum value) of final damage parameter. Figure 8 in the 

sequence shows the evolution of energy release rate before the propagation start (blue line) and after 

the propagation end (red line). It is important observe that, the energy release rate between the 

propagation start and end depends on the propagation model adopted to the analysis. Propagation 

models aren’t the scope of this work. The continuous line indicate the expected behavior of the 

material in each propagation step and the dash line indicate the fictitious behavior supposing there 

aren’t fracture propagation. 

 

Figure 8: Energy release rate to constant strain loads 
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The Figure 8 distinguish 3 distinct intervals. In the first one interval  0
p

t t   the critical 

energy is higher than the energy release rate and  0  increases from zero to  0v  , on that 

condition there isn’t fracture propagation. On the limit time 
p

t  the propagation criterion is achieved 

and consequently the propagation starts. The time 
p

t  where the propagation criterion is achieved is 

called initiation time. 

The second one interval  p f
t t t   is marked by the fracture propagation, where at first the 

damage parameter increases from 
0

  to 
min

 . In this interval, the fracturing process occur, opening 

space to the fracture models be included. Once   reaches 
min

 , the asymptotic energy release rate 

 lim  match with the critical energy  limv   and, consequently the propagation criterion 

becomes inactive, stopping the fracture propagation. The exact localization of the time 
f

t  where the 

propagation stop depend on the propagation model and speed. 

In the last interval we have    lim limv   in a constant asymptotic baseline. That interval 

is marked by the one-way instability, where increases on strain rate lead to more fracture propagation 

and decreases on strain rate will keep the same damage level, lowering the energy release rate. In 

problems where the fracture propagation is catastrophic this interval doesn’t occurs because the 

material brakes before that. It should be observed that, if the mechanical balance during the 

propagation isn’t achieved, the load increases doesn’t leads necessarily to more fracture propagation. 

5  Conclusions 

Simplifying the fracture interface model to oblate spheroids with aspect ratio tending to zero 

(slim shape) and keeping the fracture ability of transfer normal and tangential efforts (through the 

associated behavior which relates the stress vector to the displacement jump), it becomes possible uses 

the Mori-Tanaka schemes in order to formulate the homogenized elastic stiffness tensor. The elastic 

formulation associated to the correspondence principle allows us to obtain the viscoelastic 

homogenized relaxation tensor. 

Extending the classical thermodynamic framework to the viscoelastic reasoning a propagation 

criterion was formulated. Similarly to Griffith’s work, the criterion compares the energy release rate 

with a critical value to evaluate the propagation existence. The energy release rate is evaluated from 

the derivative of free energy with respect to the fracture density parameters, which represents 

macroscopically the fracture amount. In this way, the macroscopic free energy was determined starting 

from the microscopic one and them, applied to the energy release rate. 

Numerical applications show that the energy release rate depending directly from the load. In the 

case where strain loads are instantly applied, the fracture propagation was controlled by elastic 

phenomena. Even so, high value of damage parameter leads to lower energy release rates, leading to 

greater difficulty in the fracture propagation. In the case where constant strain rates was applied, the 

energy release rate increases from zero to an asymptotic maximum value, making clear the 

viscoelastic behavior participation. Since it is possible stablishes the asymptotic energy release rate to 

the initial damage parameter, its value can be compared to the critical energy in order to formulate a 

time-independent propagation criterion. In addition to providing information about the propagation 

possibility, this relation allows to determine a ready-to-propagate interval where the propagation will 

occur and a minimum lower limit for the damage parameter at the end of propagation. Alternative 

propagation criterion formulated in terms of strains or stresses also was formulated. These relations 

lead to the same ready-to propagate interval by comparing the applied load to the respective critical 

value. 

Some key issues still need to be foreseen in the future: 

• First of all, should be kept in mind that validation of the theoretical modeling against 

experimental data either from laboratory or field measurements remains to be assessed. Due to the lack 

in available data regarding the specific time‐dependent behavior of fractures, a suitable strategy would 

rely upon an inverse analysis to identify beforehand the viscoelastic properties of the constituents 

(matrix and fractures) from direct comparisons between experimental tests performed on the fractured 

material and the micromechanical predictions. 
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• The analysis has been restricted to micro-fractures, which by definition are fractures much 

smaller than the REV size. However, some materials such as rock masses can exhibit long scale 

discontinuities (long fractures), crosscutting the REV. Since this fractures can’t be viewed from the 

micromechanical viewpoint, the long fracture propagation should be evaluated separately. 

• The propagation speed can affect directly the propagation mechanisms. On the one hand, fast 

fracture propagation presents a behavior similar to glassy materials, propagating all damage instantly 

when the critical energy is reached. On the other hand, in slow fracture propagation the final 

configuration can take time to be reached, may not occurring if the material is unloaded. That model 

differences can lead to transient efforts, which change the limit damage parameter. 
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