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Abstract

We discuss the mth-order linéar differenfial equation
with matrix'coefficients‘in terms of a particular matrix solution
that enjoys properties similar to the exbonéntial af first érder
equations. A new formula for the exponehtial matrix is established
with dynamical solutions felated " to the generalized Lucas poly

" nomials.



It is enough to verify that such functidns are solutions cf (1)
which satisfy the initial values (3). This was done in [13].Here
we shall prove it by using the relationships (9). For j=0 we
have |

m-1

E b

J

! H " (m)
CL(t) =D(t)A =D (t) - 1

0{™3)(t)a,

A J
and (10) follows by integrating both sides between 0 and t. Let
us assume that (10) is valid for j-1<m-1 . Then

(j+1) _~03) . ~05)
C: (t)_Cj_1(t)+D (A,

J wj.

can be written as

" We then integrate both sides, j-times between O and t , in ‘order

to obtain-(10)f

Remark

When the coefficients Aj conmute among themselveé, then they
also HQ with D(t) and its derivatives.'This means that they can
appear as right factors in (10), which is the case with certain
~ higher-order evolution equations [2]. We should obserQe that their
ﬁatural left posifion could have certain imﬂicand&s whawthiMdﬂg‘in

numeribal spatial discretizations for higher—order distributed

linear systems.



Power of the Companion Matrix

We shall now proceed to derive a formula for the powers

of the companion matrix A defined in (5). It is cdnvenient to

write
kK ra(k)

where -the components are square matrices. The matrix exponential

eAt can bebexpressed operationally as
eftorr dfat ... o™ T at™ e () ct) ..o (1))
Since the kth-derivative of eAt at  t=0 -equals to Ak it

- follows that

(k) _ ~(k+i-1)
Ay =58 (0)

Consequentiy, we obtain from the recurrence lemma. that

A" = z (11)

.k [j-1
s=0

Dk+i—j+s-1 Am—s].

is a mxn matrix with nxn components where n is the order

of the coefficients.

3. The Second-Order Damped éduation

We shall consider now the matrix equation
u(t) =Bu (t) + Au(t) , (12)
which has the general solution

| A u(t) =C(t)u(0) + D(t)u' (0)



The complementary basis matrix solution C(t) is given by
C(t) =D'(t) -D(t)B ,

as follows from (10). we claim that C(t) is not a left solution

of (12) unless the matrices A and B-conmute. In fact, to have

C" =C'B+CA is equivalent to
.D"'-—DfB :(D"-UB)BjV(D'—DB)A
or

D(t)AB =D(t)BA

because D(t) and its derivatives are left solutiéns of'(12).It

is clear'fhat the last equality holds only when A and B conmute.

Let us now examine how analogous is (12) with a second

order scalar equation.-When the coefficients conmute
AB = BA , .

it is easy to see that D(t) is of the same form as for the

case, that is
D(t>='e(8/2)tsinh//§t///§ , A= (B4 4p)/6 (13)

where this expression should be understocd as the product of two
power series_or more appropriately as a matrix functicn of two

conmuting variables [15].

A necessary condition for the function D(t) - defined

2

by (13) to be a solution of (12) is that conmutes with B + 4A



This follows by'differentiating (13) and evéluating D" - BD' - AD.

We claim that (13) can not be the dynamical solution of (12) unless

A and B conmute. In fact, if such D(t) were the dynamical solu-

tion of (12), then G(t) = (8%+4A)D(t) will be also a solution
Then

(8% + 4A)D, . =B(BZ+ 4A)D + A(BZ 4+ 4AID, ; k=0,1,2, ...

k+2 ~ k+1

reduces to
2 2
(AB-—BA)Dk+1 = (AB” - B A)Dk

because of (7). The conclusion follows since fo; k=0 we must

have AB-BA=0 . Therefore, the dynamical solution D(t) a 1li:

near matrix differential equation could be considered as a mathe-

matical object of its own and whose study should be pursued.
The following linear differential operators
Lu=u" -Bu' -Au ; L*wéw"+w'B—wA
satisfy
t t . "
j wlLuds = J (L*w)uds + B(u,w)|
0 0

0
where

B(Q,w) = Wu' - w'u- wBu
for c@iumﬁ vectors u and row vectofs w . Let D*(t) be the dy

namical solution of the matrix equation v" =-Bv' +Av . It . will

satisfy
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w' = —w'B + wA : - (14)

Let C*(t) be the complementary basis solution of D*(t) .Then

B(D(t),D*(t)) =0

implies
D*(£)D" (£) = (D*'() + DX(£)B) D(t)
or simply
D*(t)D'(t) =C*(t)D(t)
We shall refer to (14) gs»the adjoint equation of (12). This

équation is the same that we would get by coﬁsidering the ad-
joint equation of z' :A; where A 1s the companion mafrix
associated with (12). o | |

| Since’ D(t) and D'(t)  does not vanish simultaneously,
nor with C(t) , it follows that D(t) and D*(t) vanish si-

multaneously. .

4. Series Representation of Dynamic Solutions

The question of having an ekplicit’series represen-
tatibn for the dynamiéal solution amounts to sclve the matrix
difference equation (7) or to take the appropriate projection
of eAt when uéing fhe companion matrix A. Since the powers.of
this matrix have been obtained in terms of the power series
coefficients of D(t) , we shall discuss the solution of the

difference equation.

For simplicity, we restrict ourselves to the case
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m=2
The arguments and formulae could be easily extended to higher-

order equations.. We consider

D D, . +A,D (15)

ke2 = P90k 1.+ A0y

where A1,A2 are arbitrary square matrices of the same order.
After writting out the firét few terms Dk that sa

tisfy (15), it is observed that a register of theiinvolved]bwer

indiées for the coefficients, rafher than exponents, will be a

convenient way té keep track of a formation law. We claim

k )
Bl = i§ I S | A52k~i ,
nor T S1+ +82k_.:2k—1 -
(16)
k T
D X 2 A . A
2k+1 =1 . S Soked-i
S 2k

1+' ° .+S2k+1—i:

where the .si's can take only the values 1,2
The above expression hold obviously when k=1. Let
assume that are valid for certain positive integer k . Then

'spliting the somatory for $q= 1 and Sq= 2 , it will turn out

that

D. . . . =A. £ I A ...A sA. L LA ...A

2(k+1) 771 5, ¢ Coretoi 24-1 &y Cok-i
t1+'°'+t2k+1-i:2k t1+...+t2k_i=2k—1

= ADopq A0
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and similarly fo; D2(k+1)+1

Therefore, the dynamical solution of a second-order

_matrix differential equation is given by

' (j) - , i3
D(t)= £ I [AS ceee Ag ]tJ /(j-i)t (17)
j=1 i=1 1 j-i
: S1+...+Sj_i=j-1
where
() = j/72 s J even
(j+1)/2 , j odd

The above formula furnishes a non—ﬁrivial example of
a matrix functioﬁ of,twb‘non-conmuting variables. This kind -of
- functions were considered in the work of Lappo-Danilevskii [6].
Ce:tainly,.this power series'is not amenable for drawing easy -
énalytical or computational conclusions. Therefore, we - shall
develop in what follows a more operational approach based in the
theory of matrix functions due to-Runckel—Pittelkow [14]- and

Schwerdtfeger [15].

Let. f(z) be analytic in |z|<K where K>M with M=max|x,|

and 'Ai the different eigenvalues of a square matrix S of or

N .
der N . Let c(z)= I cn_sz be the characteristic polynomial
j=0 o
of S with c_=1, and denote by d_- the coefficients of the

o] S

Laurent expansion for 1/c(z) around the origen with lz] >M

Then

N-1

£(S) o) s ' _ (18)

1
(I el |

J=0
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where
N @

$.(F)= I e _ %)k
J s=j+1 k=N+j-s

N-1

: (k)
= 2 e, « £ 9 f
s=j 53 k=j k+n-s (0)/7k!

: j -
AL CIVATRE Eoons RNICIZ
S= = +J-‘S

Moreover, the dS can be computed recursively by

N~
Any of these formulae could be used with exp(St)

using .ds= 0 for s<N and d,=1 . See [12] for details.

"where S is the companion matrix associated with (12) and then
take the appropriate projection, that is [I 0] sY {?] :Dj

We thus have

Theorem f

The solution of the matrix difference equation Dk+2::BDk+1*iADk’

DO::O.’ D1: I is given by
N-1 '
D= I $.(k)D. , N=2n (19)
j=0 J J
where
N .
¢ . (k) = 3 c d =
J S=j+1 N-s k+s-]
T
= . - C
Jk oty N-s k+s-]
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Proof .

— . K N-1 .

From (18) it follows that s" = g 'j(k)SJ with those given
Jj=0

functions . and the conclusion is clear.

Therefore, the dynamical solution of a second order

damped equation can be given by any of the following formulas:

o) = T bt 3 o T £ o
' r=m-1 S=r+1 N-s v=N+r-g V+sS-T v!

D(t) = NE’ D [i - ; C ' ‘; d _t_\i (21)

_ r=m-1 TtLT! j= N-s V+S-T v!

,5,-Tﬁe Lucas Polynomials and Dynamical Solutions

The relation between a higher order linear equation
and the éxponential of the corresponding companion matrix is a
well known matter. We wish to discuss the converse, that is,how
the exponential of an arbitrary square matrix feléteé with cer
tain higher order linear equation. We.shall see that there is
a relationship that could be attractive from a numerical point

of view.

Given a square matrix A of order N , .we consider the

"scalar differential equation

: " . o
u(N)(t) = I a, u(N—J)(t) , (22)

j=1
associated with the charaecteristic polynomial

N N :
P(X) =det|AI-A| =)" - 2 ajx‘ r
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.

of the given matrix A. From the Cayley-Hamilton theorem we know
that any power of A can be written as

K N

A% =l 3 aj(k)AN‘J 5 k=1,2,...

J=1

for certain scalars aj(k)-, Consequently

N .
et o 1 oy (t)aNT
j=1- 77 |
where the coefficients
< tk‘

are to_be identified. Bakarat and Baumann [1] established some
time ago that the values aj(k) could be expressed in terms of

the generalized Lucas polynomials
dkz dk(a1,...,aN) B

obtained by solving the Nth-order scalar linear difference equa

tion
N
dk :wz a dk—j . kZN ’ _ (23)
j=1 -
dN-1 =1 , dO::d1 = = dN_Z::O
Although no compact formula was given for the aj's ; later on,

Lavoie [ 9] showed their relation with the Bell polynomials, while
Bruschi and Ricci [3] exhibited a generating function for the

generalized Lucas polynomials d,
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For us, it is quite clear that these polynomials are
Just the derivative values at zero of the dynamical solution
d(t) of.the scalar equation (22)7 Thus any formula for the aj
. is has to involvé the scalar dynamical solution d(t) . In fact,
if we let dkz:O for negative integers k and set ag =1, we

can write Bakarat and Baumann's formulae in the compact form

1
b.d
o 2

N-j N j
a. (k)= I dy_j_q= I a;d
1

z . .
J i=0 =3 : = k+J-1-1

8j+i kej=i-17

o bi: -a; . Thus

B .(t) s (351 b.d th/k'
N300 = U E ) Pk e K ;

which is nothing else but the complementary basis soclutions

cy.:(t) of equation (23) as it follows from our relation (10).

N=j
We haVe

Theorem 2

For any square matrix A of‘order N having the characteristic po

N .
lynomial P(X) = Z b .aN-J , b =1, we have
. ; J 0 :
J=0
N , _ N -1 C o )
efte 1 o (0)aNI. 3 [ £ b,al37 D ey)aN-J, (2
j=1 J j=1\1i=0

where d(t) is the dynamical solution of the scalar equation

'
: ob.wNI ey oo (25)
j=0 4

and cj(t) is the solution of the above equation with initial
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(k) _ _ . '
values Cj (0)'f§jk for k..0,1,...{N-1_.

Corollarx

- The dynamical solution of the mth-order equation

‘m . .
U(m)(t): z A.u(m—J)(t) y A. nxn
SPRRAN i

J

.is given by

mn  j-1 (5-i-1) -
D(t)= £ "I b.d J (t)o, 5 (26)
4=1 =0 -

where d(t) is the scalar dynamical solution of the equation
aésociated with the characteristic polynomial',
mn

AaMdys g p M-k (27)

P(X) = det[A™ -
| 1 J k-o K

i~ 3

J.

Proof
It is immediate from (24) with A being the block companion matrix

of the coefficients Aj

Remarks

1. From (26) we conclude that the solution of the matrix diffe-

rence equation

) m ; :
D Z A.D , D =I , D_.=D,=...=D

k+m = . 7 J kem-j

- J
. is given by
N j-1

D= £ z.bd% I 1Dig)p nmn (28)
j=1 i=0 J-
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This solution could be considered as an extension of the Cayley-

Hamilton theorem for the case of two or mare matrix variables.

2. We observe from (27) that the numerical stability of the ma-
trices Dk can be easily related with that of the coefficients
d(k+3'l’1)(0) , i.e., to determine when the characteristic poly

nomial (27) has its roots within the unit circle. (61, [81, [4].

6. Numerical Aspects

The formula we havé derived for'the exponential ma-
.triX'could be considered from a numerical point of view.We first
assume that the coefficient of the characteristic polynomial of
the inen matrix A are known. This task couid be done with the

Faddeva-Frame-Leverrier algorithm [10]

A).

kb= -traceAh (4

K=

h(A) =Ah__.(A) +b, I

where hO(A)z I and hN(A)::O . Then, Qe have the nlternétive
of using single or multistep o.d.e's solveé fof computing the
coefficients cj(t) or numerical inversion oftheLgplmxatraﬁfonn

or wuse matrix methodéhas follows. Let A dénote the com-
panion matrix associated with the coefficients b? . The calcu-
lation of the values ch(t) could be done by computing eAt as
it follows from section 2.

. ’ . . : A
Since the companion matrix A is sparse, we could compute = t

through scaling and squaring, that is
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A
eA::(e /m)m
where e.Wm could be computed by either Téylor or Padé approxi

mation. The value for m can be determined by splitting a1gu-

ments with the Lie-Trotter formula

eB*C_ 1inm (e

Mm-»co

B/meC/m)¢

$

as it was suggested by M. Gunzburger and D. Gottlieb [10].
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