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Summary

This paper provides the estimation of the instantaneous frequency of sinusoidal fre-
quency modulated models. The estimation procedure is based on the Contraction Mapping
Method (CM) applied to overlaping stretches of data. With some simple assumptions on
the modulating process we show, by simulation studies, that the instantaneous frequency
is very well captured by using two parametric families of linear filters.

1. Introduction

Here we want to use optimally the Contraction Mapping Method (see Kedem 1992, Kedem

1994, Kedem and Lopes 1992, Lopes and Kedem 1994) ideas for the frequency modulated
(FM) process defined as

Zy=Yi+ & = Acos(wet + X(2) + @)+ &, forte Z, (1.1)

where

X(t) = Bsin(wo t + ¢)

is the sinusoidal modulating process, A and B are constants, w., wy € [0,7] and ¢ and
¢ are uniformly distributed random variables independent of each other and of the noise

process {{}tez. For simplicity of the exposition we consider the noise process as being a
Gaussian white noise.



Our goal is to estimate the instantaneous frequency given by

w(t) = we + Bwgcos(wot + ), forteZ.

Consider {L4(+)}aco a parametric family of time invariant linear filters, where a is a
finite dimensional parameter in the parameter space ©. Denote by {Zi(a)}:ez the filtered
process

Zi(a) = Lo(2),

where {Z;}:ez is the zero-mean stationary process given by (1.1).
Then {p(a)}aco, defined by

_ R{E[Z(a)Z¢+1(a)]}
o E|Zt(a)|2 ,

pla)

is a “higher order correlation” (HOC) family (see Kedem 1994) based on a parametrized
first order autocorrelation. Here and elsewhere, R{z} denotes the real part of z and Z the
complex conjugate of z.

Consider the updating procedure, based on HOC and applied to the process (1.1),
given by

ak+1 = plax), for ke N. (1.2)

We will analyze the effects of the above updating procedure caused by special families
of filters applied to a time series. This procedure will converge to a value that give us
important information about the process (1.1).

The outline of this paper is thus as follows. Some definitions related to the frequency
modulated model are presented in Section 2 and the parametric families of filters are given
in Section 3. In Section 4 we introduce the Contraction Mapping Method while in Section
5 is given the instantaneous frequency estimator. Some comments are given in Section 6.

2. The Frequency Modulated Model (FM)

Consider the stochastic process

Zt = Yg+£;_ = ACOS(wct+X(t)+¢)+£t, forte Z,

where
X(t) = Bsin(wot + ¢) (2.1)

is the sinusoidal modulating process, A and B are contants, w.,wy € [0, 7] are, respectively,
the carrier and the modulating frequencies and ¢ and ¢ are uniformly distributed random
variables independent of each other and of the noise process {{;}1cz. In the sequel the
noise process is a Gaussian white noise for simplicity of the exposition but any stationary
and ergodic process with a continuous spectral density function fe(\) will do the same.



The instantaneous frequency of the process is defined as the derivative with respect
to the time of the instantaneous phase and it is given by

w(t) = -g; (wet+ Bsin(wgt+ @) + ¢) = we,+ Bwo cos(wo t + ), fort € Z. (2.2)

One considers the assumptions that the modulating signal varies slowly compared to the
carrier, that is,
We >> Wy

and that the frequency support is in (—=, 7], that is,

—7 <we— Bwy <we+ Bwy < 7.

In the literature the constant B is called the modulation indez. The instantaneous frequency
varies about the unmodulated carrier frequency w, at the rate wy of the modulating signal
and with a maximum deviation of Bw, radians. In Lopes (1994) and Lopes and Kedem
(1991) another method based on the Contraction Mapping (CM) Method (see Section 4)
is applied to the same process (2.1) to estimate w. and wy.

Increasing the modulated signal amplitude corresponds to increasing the modulation
index B. So the bandwidth of the FM wave will depend on B. If the modulation index is
zero, the resulting process

Zy = Acos(wet+ @)+ &, teZ, (2.3)

is one sinusoid plus noise model already pursued in the works of Lopes and Kedem (1994),
Kedem and Lopes (1992), and Lopes (1993, 1991).

In order to estimate the instantaneous frequency one needs to estimate the parameters
we, wp and B. The novelty here is to employ families of linear filters in an updating
procedure based on the analysis of higher order correlations (see Kedem 1994) where the
sample autocorrelation function of first order is chosen to be observed and to produce the
estimators. For an application of this procedure in the case of finite number of frequencies
see Lopes (1991), Kedem and Lopes (1992) and Lopes and Kedem (1994).

The analysis for FM models (see also Lopes and Kedem 1996, Brillinger 1987) is much
more complicated than the case of finite number of frequencies (see Kedem and Lopes
1994). In some sense we are facing an infinite and dense set of frequencies in (—m, 7).

3. Linear Filters

In this section we shall define two useful parametric families of filters. These two families
will play an important role in the CM Method to analyze the model (2.1).



3.1. The Alpha Filter
Definition 1: The alpha filter is defined by the time invariant linear transformation
Yila) =Y+ aYi1(a), for te€Z, (3.1)

where a € (—1,1).Its impulse response function (see Kedem 1994) is

Kied) {a“, forn >0
n;a)= .
0, otherwise
and its corresponding squared gain function is given by
1
a(A 2 = — 1 d — AT,
|Ho(A)] T —Zacos(h) £ o2’ l<a<1l an T<ALT

The first order autocorrelation function of the filtered process {Y;(a)}:cz (see Lopes 1991)
is given by

() < E¥@)Yenr(@)] ST cos(M)|Ha(V)* dFy())
AUZTTERNZ@] T T HaOPAFY(N)

A ypvea

_ F 2= J2(B)|Ha(we + nwp)|? cos(we + nwp)
AL 5% o J2(B)|Ha(we + nwo)|? :

n=-—oo N

(3.2)
where J,(z) is the Bessel function of the first kind of order n € Z with z any real number.
3.2. The Complex Filter
Definition 2: The complez filter is defined by the transformation

Yi(a; M) = (1 + @BYMY,, for te Z,
where M is a positive integer, a € (—1,1), 6(a) € (—=,n) and B is the backward shift

operator. One considers M as being sufficiently large so that we can entertain the approx-
imation 6(a) & cos™'(a). We can rewrite Yi(a; M) as

M

Ye(a; M) =) (f) ey, ., for t€Z, —w<6(a)<w and M € N—{0}. (3.3)
n=0

The impulse response function of the above filter is

M i6(c)
e f <n<M
h(n;a,M):{(n)e ) or 0<n<

0, otherwise



and its transfer function is
HM\a,M)=(1+ e O@=-NWM  for —r<A<
The corresponding square gain function is given by

A —6(a)

|H(X;8(a), M)|? = 4M cos*M ( 5

), for —7<A0<7 and —-1<a<l.

The first order autocorrelation function of the filtered process {Yi(a; M)}iecz (see Lopes
1991) is given by
R{E[Yi(a, M)Yy41(a, M)]} _

E|Yy(a, M)? N

_ AT TR T(B) (oM (PR) + cos?M(#2)) cos(6n)

n=-—oc

4M~—1 A2 Zoo Jﬁ(B){cos2M(—“_29 )+ cosz“"(——ﬂﬂ-e"'ze )} :

n=—co

pla, M) =

(3.4)

where J,(z) is the Bessel function of the first kind of order n € Z with z any real number.

4. The CM Method when B=0

The CM Method can be more easily explained when the signal process {Y; }1¢z is only
one sinusoid with frequency, say, w. as in the expression (2.3), where A > 0 and w. € (0, 7]
are constantes, ¢ is a uniformly distributed random variable, that is, ¢ ~ U((—7,7])
and {&;}:ez is a zero mean stationary and ergodic stochastic process, independent of the
phase ¢, with spectral distribution function Fg¢(w) continuous at w.. Considering the
alpha parametric family of filters, as in the expression (3.1), the first order autocorrelation
function of the filtered process {Yi(a)}iez is given by

A_z cos(we) + 2 «
pla) = E[Y‘(Q)Yl+1(a)] _ _2 1-2ccos(we)+a? CeT—az (41)
E[Y?(Ct)] AT2 1-2a cosl(wc]+a9 + 02 1._10,.':

Some properties of the mapping p(:), defined by the expression (4.1) above, that will
help to prove the existence of a contraction mapping are now presented.

Proposition 4.1: The mapping p(-), given by the expression (4.1), is & mapping from
[-1,1] onto [-1,1].

Proof: Consider o € (—1,1). Since cos(w.) € (—1,1) and (1 — 2a cos(w.) + a?) > 0, by
using the expression (4.1) we have

—A2 1 o2 1 " A? cos(we) s «
- - o
2 1-2acos(wc)4+a? f1-a? 2 1-2acos(we)+a? ' ¢1—a?

<

i3 7 T % 2
2 1-2acos(w.) + « l1-a

<



The goal is to estimate the instantaneous frequency by the Contraction Mapping (CM)
Method (see Kedem 1992) based on sample autocorrelations and demodulate the baseband
signal {Z;:}icz. The novelty here is to apply the CM Method to overlaping stretches of
data (see Kedem and Yakowitz 1990). The analysis is based on a single time series {Z;}
with N observations. This time series is divided into several overlaping stretches of data,
denoted by N;, each stretch with the same number of observations, denoted by N, and a
bandwidth, denoted by b, such that the total number of observations satisfies the following
equation

N = (l\rl - l)b -+ N2.

The CM Method is applied to each stretch using the elphe and complez filters defined both
in Section 3. In order to do this one needs the following assumptions.

Assumptions :

(1). The model (2.1) is considered in the discrete time where t € Z.

(2). The random variables ¢ and ¢ are uniformly distributed on (—=, 7] independent of
each other and of the process {&i}iez.

(3). The modulating signal varies slowly compared to the carrier frequency (we >> wy ).

(4). The modulating signal must be centered on (—=,0) or (0, 7).

The assumption (§) is very common in the engineering literature (see, for instance,
Subba-Rao and Yar 1984).

After some simulations using both the alpha and complex filters, described in Section
3, we obtain the best stretch of frequency to detect the instantaneous frequency. Notice
that each stretch is smaller than the method without overlaping the stretches (see Lopes
1994).

In Figure 1 we consider the process (2.1) with A = /2, B = 760, w. = 1.303988,
wo = 0.000744, N; = 160, Ny = 2,000 and the process {;}:ez is a Gaussian white noise
process with of = 1.0 (a), ag < 1.0 (b) and 07 > 1.0 (c). The filter used here is the alpha
filter. Notice that the noise 1s almost annihilated by the action of the alpha filter.

In Figure 2 we consider the same process (2.1) with same parameters as in Figure 1
but now applying the complex filter. In Figure 2 we consider Ny = 500 and N, = 500.

In Figure 3 we consider another simulation of the process (2.1) with parameters A =
V2, B = 890, w, = 1.253988, wy = 0.000437 with oz = 1.0 (a), 0 < 1.0 (b) and 07 > 1.0
(c).



Figure 1: The instantaneous frequency w(t) as given in expression (2.2) and its estimated
value by the method based on overlaping stretches of data with the alpha filter. The
parameters are given by A = /2, B = 760, w. = 1.303988, wy = 0.000744, N; = 160,
N, = 2,000 and

(a) o = 1.0 (SNR=0); (b) 0 < 1.0 (SNR>0); (c) crg > 1.0 (SNR<O0).

w(t)= 1.303988 + (760) (0.000744) Cos ( 0.000744 t )
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Figure 2: The instantaneous frequency w(t) as given in expression (2.2) and its estimated
value by the method based on overlaping stretches of data with the complex filter. The
parameters are given by A = /2, B = 760, w. = 1.303988, wy = 0.000744, N; = 500,
N, = 500 and

(a) 0 = 1.0 (SNR=0); (b) 07 < 1.0 (SNR>0); (c) 07 > 1.0 (SNR<O).

w(t)= 1.303988 + (760) (0.000744) Cos ( 0.000744 t )
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Figure 3: The instantaneous frequency w(t) as given in expression (2.2) and its esti-
mated value by the CM method using the alpha and the complex filter, respectively. The
parameters are given by A = /2, B = 890, w. = 1.253988, wy = 0.000437 and

(a) a? = 1.0 (SNR=0); (b) 0'3 < 1.0 (SNR>0); (c) ag > 1.0 (SNR<0).

w(t)= 1.253988 + (890) (0.000437) Cos ( 0.000437 t )
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From Figures 1, 2 and 3 we observe that when JE' > 1.0 we have more noise than
signal and the estimation is noisier. When crg < 1.0 we have less noise in the model and
the estimations are better.

One observes that for the same simulated model as in Figure 3 when the alpha filter
is applied the results are worse than using the complex filter. We just show the graph of
some simulated results but the studies have shown that the complex filter has a better
perfor-mance. And if we introduce less noise in the model the estimation becomes much
better for both family of filters but the best results are still obtained by using the complex
filter.

6. Conclusion

We consider the Contraction Mapping Method based on sample autocorrelations function
to estimate the instantaneous frequency of sinusoidal frequency modulated models. The
procedure was based on overlaping stretches of data subject to the restriction that the
modulating signal varies slowly compared to the carrier frequency (that is, w, >> wg) and
that the modulating signal is centered on the intervals (—7,0) or (0, 7). In the simulation
studies we consider both the alpha and the complex filters. The Contraction Mapping
Method is originally created for sinusoidal plus noise models but works also well for FM
models. The reason is that with assumption (3), in each stretch of data, the frequency
modulated wave is approximatedly one sinusoidal wave. From Figures 1, 2 and 3 one can

see that the instantaneous frequency w(t) is better detected using the complex filter than
the alpha filter.
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