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Summary 

This paper provides the estimation of the instantaneous frequency of sinusoidal fre­
quency rnodulated models. The estirnation procedure is based on the Contraction Mapping 
Method (CM) applied to overlaping stretches of data. With some sirnple assumptions on 
the modulating process we show, by sirnulation studíes, that the instantaneous frequency 
is very well captured by using two parametric families of linear filters. 

1. Introduction 

Here we want to use optimally the Contraction Mapping Method (see Kedem 1992, Kedern 
1994, Kedem and Lopes 1992, Lopes and Kedern 1994) ideas for the frequency modulated 
(FM) process defined as 

Zt = Yt + Çt = Acos(wc t + X(t) + cp) + Ç~, fortE Z, (1.1) 

where 
X(t) = B sin(wo t + cp) 

is the sinusoidal rnodulating process, A and B are constants, wc, w0 E (O, 1r] and cp and 
cp are uniforrnly distributed randorn variables independent of each other and of the noise 
process { Çt} tEZ · For simplicity of the exposition we consider the noise process as being a 
Gaussian white noise. 



Our goal is to estimate the instantaneous frequency given by 

w(t) = Wc + B wo cos(wo t + c.p), fortE Z. 

Consider {.C a(·)} aE0 a parametric family .of time invariant linear filters, where a is a 
finite dimensional parameter in the parameter space e. Denote by {Zt(a)}tEZ the filtered 
process 

where {Zt}tEZ is the zero-mean stationary process given by (1.1). 
Then {p(a)}aE0, defined by 

is a "higher order correlation" (HOC) family (see Kedem 1994) based on a parametrized 
first order autocorrelation. Here anel elsewhere, 'R.{ z} denotes the real part of z anel z the 
complex conjugate of z. 

Consider the updating procedure, based on HOC anel applied to the process (1.1), 
given by 

ak+l = p(ak), for k E N. (1.2) 

We will analyze the effects of the above upelating proceelure causeel by special families 
of filters applied to a time series. This procedure will converge to a value that give us 
important information about the process (1.1). 

The outline of this paper is thus as follows. Some definitions related to the frequency 
moelulateel moelel are presenteel in Section 2 anel the parametric families of filters are given 
in Section 3. In Section 4 we introcluce the Contraction Mapping Methoel while in Section 
5 is given the instantaneous frequency estimator. Some comments are given in Section 6. 

2. The Frequency Modulated M odel (FM) 

Consieler the stochastic process 

Zt = Yt + Çt = Acos(wc t + X(t) + <P) + Çt, fortE Z, 

where 
X(t) = B sin(wo t + <p) (2.1) 

is the sinusoielal moelulating process, A anel B are contants, wc,wo E [0, 1r] are, respectively, 
the carrier anel the moelulating frequencies anel c.p anel <Pare uniformly distributed ranelom 
variables inelepenelent of each other anel of the noise process { Çt }tEZ· In the sequei the 
noise process is a Gaussian white noise for simplicity of the exposition but any stationary 
anel ergodic process with a continuous spectral density function f~(> .. ) will do the same. 



The instantaneous frequency of the process is defined as the derivative with respect 
to the time of the instantaneous phase and it is given by 

w(t) =! (wc t + Bsin(wo t + cp) + if>) = Wc,+ Bwo cos(wo t + cp), fort E Z. (2.2) 

One considers the assumptions that the modulating signal varies slowly compareci to the 
carrier, that is, 

Wc >> wo 

and that the frequency support is in ( - 7!", 1r], that is, 

-7r < Wc - B wo < Wc + B wo < 7í. 

In the literature the constant Bis called the modulation index. The instantaneous frequency 
varies about the unmodulated carrier frequency Wc at the rate wo of the modulating signal 
and with a maximum deviation of Bw0 radians. In Lopes (1994) and Lopes and Kedem 
(1991) another method based on the Contraction Mapping (CM) Method (see Section 4) 
is applied to the same process (2.1) to estimate Wc and w0 . 

Increasing the modulated signal amplitude corresponds to increasing the modulation 
index B. So the bandwidth of the FM wave will depend on B. If the modulation index is 
zero, the resulting process 

Zt = Acos(wc t + if>) + Çt, tE Z, (2.3) 

is one sinusoid plus noise model already pursued in the works of Lopes and Kedem (1994), 
Kedem and Lopes (1992), and Lopes (1993, 1991). 

In order to estimate the instantaneous frequ ency one needs to estimate the parameters 
Wc, wo and B. The novelty here is to employ families of linear filters in an updating 
procedure based on the analysis of higher order correlations (see Kedem 1994) where the 
sample autocorrelation function of first order is chosen to be observed and to produce the 
estimators. For an application of this procedure in the case of finite number of frequencies 
see Lopes (1991), Kedem and Lopes (1992) and Lopes and Kedem (1994). 

The analysis for FM models (see also Lopes and Kedem 1996, Brillinger 1987) is much 
more complicated than the case of finite number of frequencies (see Kedem and Lopes 
1994). In some sense we are facing an infinite and dense set of frequencies in ( -1r, 1r] . 

3. Linear Filters 

In this section we shall define two useful parametric families of filters. These two families 
will play an important role in the CM Method to analyze the model (2.1). 



3.1. The Alpha Filter 

Definition 1: The alpha filter is defined by the time invariant linear transformation 

Yi(a) = Yi + aYt-1(~), for tEZ, 

where a E ( -1, 1).Its impulse response function (see Kedem 1994) is 

{
an 

h(n;a) = O, ' 
for n ~O 

otherwise 

and its corresponding squared gain function is given by 

IH (.X)I2 
-

1 
-1 <a< 1 and - 1r <.À:::; 1r. 

a - 1 - 2a cos( À) + a 2 ' 

(3.1) 

The first order autocorrelation function of the filtered process {Yi(a)}tEZ (see Lopes 1991) 
is given by 

E[Yt(a)Yt+I(a)] f~1r cos(.\)IHa(.\W dFv(.\) 
p(a) = E[Y?(a)] = f~1r IHa(.\)12 dFy(À) = 

f L~=-oo J~(B)IHa(wc + nwo)l2 cos(wc + nwo) 

~
2 

L~=-oo J~(B)IHa(wc + nwo)F 
(3.2) 

where Jn(z) is the Bessel function of the first kind of order n E Z with z any real number. 

3.2. The Complex Filter 

Definition 2: The complex filter is defined by the transformation 

Yi(a; M) = (1 + eiO(a)B)Myt, for tEZ, 

where M is a positive integer, a E ( -1, 1), O( a) E ( -1r, 1r) and B is the backward shift 
operator. One considers Mas being sufficiently large so that we can entertain the approx­
imation O( a)~ cos-1 (a). vVe can rewrite Yt(a; 1'\1) as 

M (M) Yt(a; 1\II) = ~ n eiO(a)nyt-n, for tEZ, -1r <O( a) < 1r and ME N- {0}. (3.3) 

The impulse response function of the above filter is 

{ (
1\lf) i8(a)n 

h(n;a,M) = n e ' 
for O:::; n:::; /VI 

O, otherwise 



and its transfer function is 

H(>..; a, M) = (1 + ei(O(a)->.))M, for - 1r < ).. ~ 1r. 

The corresponding square gain function is given by 

IH(>-.;8(a),M)I2 = 4M cos2M ()..-:(a)), for -1r < >-.,8 ~ 1r and -1 <a< 1. 

The first order autocorrelation function of the filtered process {Yi(a; M)}tez (see Lopes 
1991) is given by 

( M) = R{E(Yt(a, M)Yt+l (a, M)]} = 
p a, 

1 EIYi(a, .. M)l2 

4M-l A2 L:~=-oo J~(B){cos2M(~) + cos2M(~)} cos(Bn) 

4M -1 A2 L~=-oo r;(B){ cos2M (e-./")+ cos2lvf ( 8+,/n)} 
(3.4) 

where Jn(z) is the Bessel function of the first kind of order n E Z with z any real number. 

4. T h e CM Method w h en B = O 

The CM Method can be more easily explained when the signal process {Yt}tez is only 
one sinusoid with frequency, say, Wc as in the expression (2.3), \vhere A > O and Wc E (0, 1r] 
are constantes, <P is a uniformly distributed random variable, that is, <P "' U(( -1r, 1r]) 
and { Çt} tEZ is a zero mean stationary and ergodic stochastic process, independent of the 
phase </J, with spectral distribution function F~( w) continuous at Wc. Considering the 
alpha parametric family of filters, as in the expression (3.1), the first order autocorrelation 
function of the filtered process {Yt(a)}tez is given by 

A 2 cos(w,) 2 a 

( ) 
_ E(Yt(a)Yt+1(a)] _ 2 l-2acos(w,)+a2 + CJ~ ~ 

P a - E[Y2( )] - A2 1 2 1 · 
t a 21-2acos(w,)+a2 +(f~ 1-a-2 

( 4.1) 

Some properties o f the mapping p( ·), defined by the expression ( 4.1) above, that will 
help to prove the existence of a contraction mapping are now presented. 

P r oposition 4.1: The mapping p(·), given by the expression (4.1), is a mapping from 
[-1, 1] onto (-1, 1]. 

P r oof: Considera E (-1, 1). Since cos(wc) E (-1, 1) and (1- 2acos(wc) + a 2) >O, by 
using the expression ( 4.1) we have 

-A2 1 ? 1 A2 cos(wc) ? a 
-- - a- < - + a- < 

2 1-2acos(wc)+a2 ~1-a2 2 1-2acos(wc)+a2 ~1 -a2 



The goal isto estimate the instantaneous frequency by the Contraction Mapping (CM) 
Method (see Kedem 1992) based on sample autocorrelations and demodulate the baseband 
signal {Zt}tEZ· The novelty here isto apply the CM Method to overlaping stretches of 
data (see Kedem and Yakowitz 1990). The analysis is based on a single time series {Zt}~1 
with N observations. This time series is dividéd into severa! overlaping stretches of data, 
denoted by N1 , each stretch with the same number of observations, denoted by N2, anda 
bandwidth, denoted by b, such that the total number of observations satisfies the following 
equation 

N=(Nt-1)b+N2. 

The CM M ethod is applied to each stretch using the alpha and complex filters defined both 
in Section 3. li}. order to do this one needs the following assumptions. 

Assumptíons : 

( 1). The model ( 2.1) is considered in the discrete time where t E Z. 
(2). The random variables ljJ and <p are uniformly dístribttted on ( -1r, 1r] índependent of 

each other and o f the process { Çt} tEZ. 
(3). The modulating sígnal varies slowly compared to the carrier frequency (wc > > w0 ). 

(4). The modulating signal must be centered on (-1r,O) or (0,1r). 

The assumption (3) is very common in the engineering literature (see, for instance, 
Subba-Rao and Yar 1984). 

After some simulations using both the alpha and complex filters, described in Section 
3, we obtain the best stretch of frequency to detect the instantaneous frequency. Notice 
that each stretch is smaller than the method without overlaping the stretches (see Lopes 
1994). 

In Figure 1 we consider the process (2.1) with A = J2, B = 760, wc = 1.303988, 
wo = 0.000744, N1 = 160, N2 = 2,000 and the process {Çt}tEZ is a Gaussian white noise 
process with a-i = 1.0 (a) , a-i< 1.0 (b) anda-i> 1.0 (c). The filter used here is the alpha 
filter. Notice that the noise is almost annihilated by the action of the alpha filter. 

In Figure 2 we consider the same process (2.1) with same parameters as in Figure 1 
but now applying the complex filter. In Figure 2 we consider N 1 = 500 and N 2 = 500. 

In Figure 3 we consider another simulation of the process (2.1) with parameters A= 
\1'2, B = 890, Wc = 1.253988, wo = 0.000437 with a~ = 1.0 (a), ai < 1.0 (b) and a~ > 1.0 
(c). 



Figure 1 : The instantaneous frequency w(t) as given in expression (2.2) and its estimated 
value by the method based on overlaping stretches of data with the alpha filter. The 
parameters are given by A = .J2, B = 760, Wc = 1.303988, wo = 0.000744, JV1 = 160, 
N2 = 2, 000 and 
(a) ai = 1.0 (SNR=O); (b) ai < 1.0 (SNR>O); ·(c) ai > 1.0 (SNR< O). 
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F igure 2: The instantaneous frequency w(t) as given in expression (2.2) and its estimated 
value by the method based on overlaping stretches of data with the complex filter. The 
parameters are given by A = J2, B = 760, W c = 1.303988, wo = 0.000744, N1 = 500, 
N2 = 500 and 
(a) ui= 1.0 (SNR=O); (b) ui< 1.0 (SNR>O); (c) ui > 1.0 (SNR<O). 
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Figure 3: The instantaneous frequency w(t) as given in expression (2.2) and its esti­
mated value by the CM method using the alpha and the complex filter, respectively. The 
parameters are given by A = J2, B = 890, Wc = 1.253988, w0 = 0.000437 and 
(a) a~= 1.0 (SNR=O); (b) a~ < 1.0 (SNR>O); (~)a~ > 1.0 (SNR<O). 
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From Figures 1, 2 and 3 we observe that when a~ > 1.0 we have more noise than 
signal anel the estimation is noisier. vVhen a~ < 1.0 we have less noise in the model and 
the estimations are better. 

One observes that for the same simulated model as in Figure 3 when the alpha filter 
is applied the results are worse than using the complex filter. We just show the graph of 
some simulated results but the studies have shown that the complex filter has a better 
perfor-mance. And if we introduce less noise in the model the estimation becomes much 
better for both family of filters but the best results are still obtained by using the complex 
filter. 

6. Conclusion 

We consider the Contraction Mapping Method based on sample autocorrelations function 
to estimate the instantaneous frequency of sinusoidal frequency modulated models. The 
procedure was based on overlaping stretches of data subject to the restriction that the 
modulating signal varies slowly compareci to the carrier frequency (that is, Wc >> w0 ) and 
that the modulating signal is centered on the intervals ( -1r, O) or (O, 1r ). In the simulation 
studies we consider both the alpha anel the complex filters. The Contraction Mapping 
Method is originally created for sinusoidal plus noise models but works also well for FM 
models. The reason is that with assumption (3), in each stretch of data, the frequency 
modulated wave is approximatedly one sinusoidal wave. From Figures 1, 2 and 3 one can 
see that the instantaneous frequency w(t) is better detected using the complex filter than 
the alpha filter. 
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