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Abstract

Background: Psychiatric symptomatology during late childhood and early adolescence tends to persist later in life.
In the present longitudinal study, we aimed to identify changes in genome-wide DNA methylation patterns that
were associated with the emergence of psychopathology in youths from the Brazilian High-Risk Cohort (HRC) for
psychiatric disorders. Moreover, for the differentially methylated genes, we verified whether differences in DNA
methylation corresponded to differences in mRNA transcript levels by analyzing the gene expression levels in the
blood and by correlating the variation of DNA methylation values with the variation of mRNA levels of the same
individuals. Finally, we examined whether the variations in DNA methylation and mRNA levels were correlated with
psychopathology measurements over time.

Methods: We selected 24 youths from the HRC who presented with an increase in dimensional psychopathology
at a 3-year follow-up as measured by the Child Behavior Checklist (CBCL). The DNA methylation and gene expression
data were compared in peripheral blood samples (n = 48) obtained from the 24 youths before and after developing
psychopathology. We implemented a methodological framework to reduce the effect of chronological age on DNA
methylation using an independent population of 140 youths and the effect of puberty using data from the literature.

Results: We identified 663 differentially methylated positions (DMPs) and 90 differentially methylated regions (DMRs)
associated with the emergence of psychopathology. We observed that 15 DMPs were mapped to genes that were
differentially expressed in the blood; among these, we found a correlation between the DNA methylation and mRNA
levels of RB1CC1 and a correlation between the CBCL and mRNA levels of KMT2E. Of the DMRs, three genes were
differentially expressed: ASCL2, which is involved in neurogenesis; HLA-E, which is mapped to the MHC loci; and
RPS6KB1, the gene expression of which was correlated with an increase in the CBCL between the time points.

Conclusions: We observed that changes in DNA methylation and, consequently, in gene expression in the peripheral
blood occurred concurrently with the emergence of dimensional psychopathology in youths. Therefore, epigenomic
modulations might be involved in the regulation of an individual’s development of psychopathology.
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Background
Mental disorders contribute significantly to the global
burden of disease, ranking among the top 10 causes of
disability in developed countries worldwide [1]. Recent
research approaches have focused on describing the gen-
etic contribution to these disorders. The advent of large-
scale genome-wide association studies (GWAS) has en-
abled the hypothesis-free exploration of genetic risk fac-
tors. These endeavors have been highly successful: a
recent large-scale GWAS meta-analysis identified 102
independent genomic loci exhibiting a genome-wide sig-
nificant association with depression, a psychiatric dis-
order with relatively low heritability [2]. Moreover, a
recent study that quantified the genetic sharing of 25
brain disorders from GWAS identified a significant shar-
ing of common variant risk among mental disorders and
between mental disorders and brain phenotypes, includ-
ing cognitive measures [3].
However, there is considerable uncertainty regarding

whether genes identified in GWAS are causally involved in
the pathogenesis of mental disorders and how their func-
tions are regulated. Since many factors could impact gene
expression, the field of epigenomic variation, including
DNA methylation, has evolved into a sophisticated per-
spective on the basic mechanisms of gene regulation,
which occur at the interface between a static genome and a
dynamic environment [4]. DNA methylation is the best-
characterized epigenetic modification, influencing gene ex-
pression via the disruption of transcription factor binding
in promoter regions and the recruitment of methyl-
binding proteins that initiate chromatin compaction and
gene silencing [5]. Methylation primarily occurs at cytosine
residues within CpG dinucleotides, and it represents a true
epigenetic mechanism since it is faithfully maintained in
the absence of the inducing signal, i.e., it is heritable.
There is a vast literature on DNA methylation studies

in mental disorders [6, 7]. However, the dynamic nature
of epigenetic modification means that a range of poten-
tially important confounding factors needs to be consid-
ered, including tissue or cell type, age, sex, and lifestyle
exposures [8, 9]. Moreover, most studies to date have
two important limitations: cross-sectional designs, limit-
ing the inferences that can be drawn about the etio-
logical processes; and the use of adult samples with
psychiatric disorders, a clinical group with higher expos-
ure to the disease process, medication, and environmen-
tal lifestyle confounders. In addition, the greatest burden
of mental disorders occurs during childhood and adoles-
cence [10], which are critical periods for brain develop-
ment, plasticity, and maturation. Recent research
implicates neurodevelopmental processes in the patho-
physiology of several mental disorders, even in clinical
syndromes that typically show their first symptoms in
late stages of life, such as Alzheimer’s disease [11, 12].

Therefore, a longitudinal study of DNA methylation
changes associated with psychopathology in a cohort of
youths has considerable potential to be informative re-
garding the early mechanisms of mental disorders.
In this longitudinal study with repeated blood sampling,

we aimed to identify changes in the genome-wide DNA
methylation patterns that are associated with the emer-
gence of dimensional psychopathology during the transi-
tion from childhood to adolescence. Moreover, we tested
whether differences in DNA methylation corresponded to
differences in mRNA transcripts by analyzing the gene ex-
pression levels in the blood and by correlating the vari-
ation of DNA methylation values with the variation of
mRNA levels in the same individuals. Finally, we exam-
ined whether variations in DNA methylation and mRNA
levels were correlated with psychopathology measures
across time (see Fig. 1).

Methods
Study procedures and participant selection
We selected a subsample from a large, prospective, com-
munity school-based study, the Brazilian High-Risk
Cohort (HRC) for psychiatric disorders. The cohort char-
acteristics and study design are detailed elsewhere [13]
and in the Additional file 1. Briefly, we assessed subjects
from two Brazilian cities (São Paulo and Porto Alegre) in
two different waves: wave 0 (W0, representing the base-
line) and wave 1 (W1, representing a 3-year follow-up).
For both waves, the evaluations were performed over mul-
tiple visits, including a household parent interview and, on
a separate visit, a collection of blood samples to assess
peripheral biomarkers. In the household parent interview,
the participants were assessed using a structured diagnos-
tic interview, the Development and Well-Being Assess-
ment (DAWBA) [14], to evaluate their psychiatric
diagnosis according to the DSM-IV. On the day of the
blood collection, dimensional psychopathology mea-
sures were assessed using the Child Behavior Checklist
(CBCL) [15].
The CBCL is a widely used inventory that provides

parent-report information on a wide array of behavioral
problems in youths. See the Additional file 1 for more de-
tail about the CBCL and validation literature from the
CBCL. The Research Ethics Committee approved the re-
search protocol. All parents and children/youths provided
written informed consent before inclusion in the cohort.
See the Additional file 1 for more detail about the CBCL.
From the pool of subjects with good-quality blood sam-

ples available for both waves, we selected subjects who
met the following four criteria: (1) they lived in São Paulo
(to exclude site effects) at both time-points; (2) they did
not fulfill DSM-IV criteria for any mental disorder in the
DAWBA and presented with low levels of dimensional
psychopathology at the baseline (CBCL total score < 30.5
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at W0); (3) they presented with high levels of dimensional
psychopathology at the 3-year follow-up (CBCL total
score ≥ 30.5 at W1); and (4) they presented with important
changes in dimensional psychopathology levels between
assessments (ΔCBCL =CBCLW1–CBCLW0 > 15). Cutoff
values for the total CBCL were based on receiver operat-
ing characteristic (ROC) curve analysis using the CBCL
score as a predictor of categorical mental disorders ac-
cording to the DAWBA. The ROC analysis and cutoffs
are described in Additional file 1. These criteria were met
by 33 subjects, but only 24 had gene expression data avail-
able. Therefore, the final sample comprised 24 individuals
from the HRC with low levels of dimensional psychopath-
ology at W0, as measured by the CBCL total score, and
high levels at W1.

DNA methylation—Infinium MethylationEPIC BeadChip
A total of 10 mL of whole blood was collected in EDTA
tubes (Becton Dickinson (BD), Franklin Lakes, NJ). Sub-
sequently, DNA was isolated using a Gentra Puregene
Kit (Qiagen) according to the manufacturer’s instruc-
tions. The DNA was treated with bisulfite, hybridized to
Infinium MethylationEPIC BeadChips (“EPIC array”—
Illumina, San Diego, CA), and scanned using the manu-
facturer’s protocol. To minimize systematic bias, the
samples were randomly distributed onto the BeadChips,
which held eight samples per BeadChip.

Gene expression—HumanHT-12 v4 Expression BeadChips
Blood was collected using PAXgene RNA tubes (PreAn-
alytix, Hombrechtikon, Switzerland) and RNA was iso-
lated using a PAXgene Blood RNA Kit (Qiagen,
Stockach, Germany). A total of 200 ng of RNA was used
with the Illumina® Total Prep™ RNA Amplification Kit
(Life Technologies, Carlsbad, CA) to synthesize cRNA,

which was hybridized to Human HT-12 v4 Expression
BeadChips (Illumina).

Quality control
All the steps and analyses performed are summarized in
Fig. 2.

Genome-wide quantification of DNA methylation
The raw intensity files (idat) generated by the EPIC ar-
rays were imported into the R programming environ-
ment (v3.5.1) using RStudio (v1.1.453). The methylation
level at each CpG site was calculated as a beta value
[β =methylated intensity/(methylated intensity +
unmethylated intensity)], which varied from 0 (no
methylation) to 1 (complete methylation). Before the
quality control (QC), we converted the EPIC array (866,
238 probes) into a 450 K virtual array (452,832 probes)
in order to compare it to an independent population of
youths and to the Almstrup et al. study [16].
The QC of the data was verified using different R

packages and was adapted from Hannon et al. (2016)
[17] and Maksimovic et al. (2016) [18]. We performed
12 QC steps, which are detailed in the Additional file 1.
From these steps, four were to check: (i) the similarities
and differences between the samples using multi-
dimensional scaling (MDS) plots; (ii) the bisulfite con-
version; (iii) the methylated and unmethylated signal in-
tensities; and (iv) the samples/probes that failed based
on detection p values.
Normalization of the DNA methylation data was per-

formed using the preprocessFunnorm() function in the
minfi package (v1.26.2) [19]. We did not find a relevant
batch effect (Additional file 1: Figure S1). None of the
HRC samples were excluded during QC, which totaled
48 biological samples from 24 individuals. From the 452,

Fig. 1 Overview of the study design. We selected 24 youths from the Brazilian High-Risk Cohort (HRC) for psychiatric disorders who presented
with an increase in dimensional psychopathology after 3 years of follow-up as measured by the Child Behavior Checklist (CBCL). After
implementing a methodological framework to reduce the effect of important confounders (chronological age and puberty) on the results,
genome-wide DNA methylation was investigated in the context of both differentially methylated positions (DMPs) and differentially methylated
regions (DMRs). Moreover, for differentially methylated genes, we verified whether differences in DNA methylation corresponded to differences in
mRNA transcripts by analyzing gene expression levels in the blood from the same individuals. Finally, we examined whether there were
correlations between (a) the variation in DNA methylation (ΔDNAm) and the variation in gene expression (ΔmRNA); (b) the variation in the total
score of the CBCL (ΔCBCL) and ΔDNAm; and (c) ΔCBCL and ΔmRNA. The variations were calculated by subtracting wave 1 (W1) values from
wave 0 (W0) values
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832 probes, 63,170 were excluded during QC, with 389,
662 probes remaining for subsequent analysis.

Identification and exclusion of CpG sites related to
chronological age and pubertal transition
Many studies have investigated the relationship between
DNA methylation patterns and chronological age [20–
22]. Aiming to reduce the influence of chronological age
on our longitudinal results, we verified which DNA
methylation markers were associated with age in an in-
dependent population of youths. Thus, we selected
healthy youths from the Philadelphia Neurodevelop-
mental Cohort (PNC), which has been described else-
where [23]. The selection criteria were as follows: (1)
similar ancestry compared to the HRC, based on a
principal component analysis (PCA) generated from
the SNP array data (Additional file 1: Figure S2). For
this analysis, we selected individuals who were within
the ranges of − 0.035 < PC1 < 0.028 and PC2 > − 0.1.
These ranges were chosen based on a visual inspec-
tion of the PC1 × PC2 plot; and (2) an age at the date
of the blood collection within the age range of the
HRC samples (from 7 to 17 years of age). Thus, the
selection comprised 140 children and adolescents
without psychiatric disorders. Raw intensity files gen-
erated by Infinium HumanMethylation450 BeadChips
(450Karrays-Illumina) were imported into R, and QC
was performed as for the HRC samples. The bisulfite
conversion was not successful for two samples, and

another sample showed lower methylated and
unmethylated signal intensities (see Additional file 1).
Therefore, these three samples were excluded, and we
analyzed DNA methylation data from 137 individuals.
Linear regression models were used to identify the
probes associated with age (independent variable)
without including any covariates. We excluded all
CpG sites associated with chronological age from fur-
ther analysis.
Based on Tanner’s classification [24], all 24 children

from our sample had pubertal onset after W0 and before
W1 blood collection. In a recent study, Almstrup et al.
[16] reported that changes in single methylation sites in
whole blood were associated with physiological pubertal
transition and reproductive function. Therefore, we also
excluded from the final analyses all CpGs associated
with pubertal age (false discovery rate; FDR < 0.001), and
all CpGs that were correlated with more than three of
the five analyzed circulating reproductive hormones
(FDR < 0.05) reported by Almstrup et al. (2016). Finally,
as the PNC and Almstrup et al. assessed DNA methyla-
tion using 450 K arrays, we excluded all EPIC probes
that were not included in the 450 K array.

Genome-wide quantification of gene expression
The raw data were pre-analyzed using GenomeStudio
software and then imported into R. QC was performed
using the lumi package (v2.32.0). We performed a back-
ground correction using the maximum likelihood

Fig. 2 Flowchart of all the steps and analyses performed. HRC high-risk cohort. PNC Philadelphia Neurodevelopmental Cohort. DMPs differentially
methylated positions. DMRs differentially methylated regions. DEGs differentially expressed genes. The other abbreviations are described in the text
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estimation (MLE) [25] and, to ensure that the different
BeadChips were comparable to one another, we used a
robust spline normalization (RSN). The QC resulted in
6322 probes with high-quality data available for the dif-
ferentially expressed gene analyses. After QC, two partic-
ipants were excluded because the reported sex was
different from predicted sex using probes on sexual
chromosomes. Thus, 22 participants had available DNA
methylation and gene expression data from both waves.

Statistical analysis
DNA methylation
While β values were used for the visualization and inter-
pretation of the results because the value range of
methylation is easily interpretable, the M values [M
value = log2(methylated intensity/unmethylated inten-
sity)] were used for the differential methylation analysis
[26]. To find DMPs, i.e., analysis for each CpG site, we
used regression models with subjects included as
dummy variables (comparison within-subjects). The out-
come variables were the M values from each CpG, the
independent variable was the time point (W0 or W1),
and we adjusted for batch effects (BeadChip number and
BeadChip position) to ensure that our analysis was not
influenced by any kind of batch effect unidentified. To
verify the influence of medication (use or not) on the re-
sults, we repeated the regression models using the batch
effects and medication as covariates. To account for
multiple testing, an FDR procedure using the Benja-
mini–Hochberg (BH) method [27] was applied, with
values below 0.05 considered significant.
Although performing CpG-wise analysis is useful and

informative, it is also important to know whether several
proximal CpG sites are simultaneously differentially
methylated, i.e., to identify the DMRs. We investigated
the DMRs using the DMRcate package [28]. DMRcate
identifies and ranks the most differentially methylated
regions across the genome based on the tunable kernel
smoothing method. A bandwidth of 1000 nucleotides
(lambda = 1000) and a scaling factor of 2 (C = 2) were
used as recommended by the DMRcate authors. The re-
sults were corrected for multiple comparisons using the
BH method. Probe location and the gene annotation
were taken from Illumina reference files. Annotation
was performed according to hg19.
We checked whether the blood cell composition esti-

mates were different between the waves using generalized
estimating equations (GEE). Gaussian distribution and in-
dependence were used as the expected autocorrelation
structure, and we found no significant differences between
the waves. Moreover, we checked whether all participants
had similar genetic ancestry by verifying whether the first
two PCs generated from the SNP array data were corre-
lated with the first 10 PCs from the methylation data, and

did not find any significant correlation. As our sample size
was small and the number of variables in the model could
prevent us from identifying interesting findings purely
owing to an overfitting problem, the cell-composition esti-
mates and genetic ancestry were not added as covariates
to the regression models. See the Additional file 1 for the
full description.

Gene expression
Differential expression analyses were performed only for
the genes that were mapped to or near to the DMPs/
DMRs. We defined that a DMP/DMR was mapped near
to a gene when a CpG site or region was located 0–1500
bases upstream of the transcriptional start site (TSS) of a
gene. We used regression models with subjects included
as dummy variables in which the expression levels were
the outcome and the waves were the independent vari-
able, adjusting for the RNA integrity number (RIN),
cRNA input, and BeadChip number. We considered p
values below 0.05 without correction for multiple com-
parisons to be significant.

DNA methylation, gene expression, and CBCL score
correlation
To verify whether the methylation at the DMPs mapped
to differential expressed genes was correlated with gene
expression, a Pearson correlation between the ΔDMPs
(M values DMPW1–M values DMPW0) and ΔmRNA
levels (mRNAW1–mRNAW0) was used. For the DMRs
mapped to differentially expressed genes, we first took
the mean of the M values for all CpGs within a DMR
(mDMR), and then used a Pearson correlation be-
tween the ΔmDMRs (mDMRW1–mDMRW0) and
ΔmRNA levels.
To verify whether biological measures were correlated

with psychopathology, a Pearson correlation was used
for the ΔCBCL and the (i) ΔDMP, (ii) ΔmDMR, and (iii)
ΔmRNA levels. We considered p values below 0.05 with-
out correction for multiple comparisons as significant
correlations.

Correlation between methylation in blood and brain
To verify the correlation between DNA methylation in
the whole blood and brain for the DMPs and DMRs, we
used the IMAGE-CpG tool. This tool is based on the
DNA methylation data for blood, saliva, and buccal and
live brain tissue using an EPIC array [29]. We only veri-
fied the correlation between the brain and blood for
DMPs/DMRs mapped to genes that were differentially
expressed in the blood. We considered a correlation be-
tween methylation in the brain and blood for Spearman
rho > 0.20.
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Enrichment analysis
Enrichment analysis was performed for the DNA methy-
lation results using the tools available in the WEB-based
GEne SeT AnaLysis Toolkit (WEB-Gestalt) [30], select-
ing Gene Set Enrichment Analysis (GSEA) as the enrich-
ment method. We performed two enrichment analyses:
one using the DMP results and the other using the
DMR results. For both enrichment analyses, we used all
the genes for which the DMPs/DMRs were mapped to
or near to the genes. We uploaded the gene ID and
metric table (see Additional file 1) into WEB-Gestalt,
selecting 1000 permutations and setting the minimum
and maximum number of genes in the category as 5 and
500, respectively, and the mean between duplicate genes
as the collapse method. We performed analyses for
enriched GO (gene ontology) and KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways. FDR <
0.05 using the BH method was considered significant.

Results
The demographic characteristics of the participants are
given in Table 1, Additional file 1: Table S1, and Add-
itional file 1: Figure S3. The CBCL total score was higher
in the females as compared to the males in wave 0.
However, as we performed comparisons within-subjects,
this difference did not influence our results. There was
no difference in the ΔCBCL between the males and fe-
males across time [ΔCBCL mean (SD): males = 29.93
(10.31); females = 28.40 (8.24); p = 0.551]. On the day of
the blood collection in W1, two participants reported
using medications, but they were not able to report what
those medications were.

CpG sites related to chronological age and puberty
transition
Our initial analysis to quantify the genome-wide patterns
of DNA methylation used the EPIC array and included co-
variates for batch effects. The top-ranked DMPs were an-
notated to MEIOB (cg14976596), ANO2 (cg23363039),
NTRK3 (cg20664238), KCNAB3 (cg14918082), and VPS35
(cg10271672) (Additional file 2: Table S2), which have
been previously associated with the biological events of
puberty, such as meiotic recombination and primary fol-
licle transition, or with age-correlated DNA methylation

[22, 31–34]. As described in the “Methods” section, we ex-
cluded the CpG sites associated with age and puberty to
address this issue. In total, 738 probes associated with
chronological age (Additional file 2: Table S3) or the pu-
berty transition were excluded, providing us with 388,924
probes for subsequent analysis (after exclusion of the EPIC
probes that were not present in 450 K arrays). We divided
the following results into DMPs and DMRs.

DMPs associated with the emergence of dimensional
psychopathology
After filtering the CpGs, we next repeated our genome-
wide analysis using batch effects as covariates. We identi-
fied 663 DMPs associated with an increase in the CBCL
total score. The DMPs were evenly distributed across all
autosomes (Fig. 3 and Additional file 2: Table S4). The 20
top-ranked DMPs are given in Table 2. The 663 DMPs
were annotated to or near to 531 genes, and these genes
were used to search for significant enrichment. We found
significant enrichment of the cell-cell adhesion via the
plasma-membrane adhesion molecule GO biological
process (GO: 0098742; FDR = 0.03) and of the post-
synapse GO cellular component (GO: 0098794; FDR =
0.02) (Additional file 2: Table S5). To verify whether the
use of the reported medications influenced our results, we
repeated the analysis using batch effects and medication
as covariates. The 663 DMPs associated with the emer-
gence of dimensional psychopathology remained signifi-
cant, indicating no influence of the reported medications
on the results (Additional file 2: Table S6).

DMPs and gene expression
Of the 531 genes overlapped by DMPs, 103 had gene ex-
pression in the peripheral blood identified by a gene ex-
pression microarray, corresponding to 122 probe sets.
We found that 15 genes (16 probe sets) were differen-
tially expressed (Table 3 and Additional file 2: Table S7).
Regarding the DNA methylation correlation between

the brain and blood for the DMPs mapped to these dif-
ferentially expressed genes, previous analyses have
shown that the methylation levels of 13 DMPs (86.7%
of the total) are correlated to the levels in the brain
(Additional file 2: Table S8) [29].

Table 1 Demographic and clinical characteristics of the participants

Waves Variables Females (n = 10) Males (n = 14) p value

W0 Age (mean years, SD) 10.66 (1.76) 9.99 (1.66) 0.364

CBCL (mean total score; SD) 22.90 (5.57) 15.86 (8.16) 0.020

W1 Age (mean years, SD) 14.40 (1.75) 13.86 (1.57) 0.443

CBCL (mean total score; SD) 51.30 (11.56) 45.79 (10.05) 0.240

The p values were calculated using Student’s t test. W0 wave 0 represented the baseline, W1 wave 1 represented a 3-year follow-up, SD standard deviation, CBCL
Child Behavior Checklist
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DMPs, gene expression, and CBCL score correlation
We verified whether the ΔmRNA levels of the 16 probe
sets were correlated with ΔDMP methylation values
(Additional file 2: Table S9). There was a correlation be-
tween the cg08517799 ΔDMP and RB1CC1 ΔmRNA
level (r = − 0.580; p = 0.005, Additional file 1: Figure S4).

cg08517799 was mapped to the RB1CC1 intron. Regard-
ing the dimensional psychopathology, no ΔDMP values
were correlated with the ΔCBCL scores (Additional file 2:
Table S9). There was a correlation between the ΔCBCL
and KMT2E ΔmRNA levels (r = 0.436; p = 0.042, Add-
itional file 1: Figure S5), and also between the ΔCBCL

Table 2 The 20 most differentially methylated positions (DMPs) associated with the emergence of dimensional psychopathology

CpG ID β fold change Adjusted p value Chromosome Position (bp) Gene annotation

cg11166600 0.1002 0.0037 chr3 143,695,141 C3orf58 (body)

cg15427886 0.0896 0.0039 chr8 55,379,663 –

cg14116799 − 0.0764 0.0092 chr10 43,800,154 –

cg03213396 0.0699 0.0107 chr19 53,760,449 VN1R2 (TSS1500)

cg25024195 0.0925 0.0253 chr17 46,144,968 –

cg03638479 − 0.0667 0.0253 chr3 52,009,768 ABHD14B (TSS1500);
ABHD14A (body)

cg14525247 0.0630 0.0253 chr9 131,154,899 MIR219–2 (body)

cg25275750 0.0562 0.0410 chr13 75,918,697 TBC1D4 (body)

cg10544031 − 0.0261 0.0410 chr2 223,164,635 PAX3 (TSS1500, 5′UTR);
CCDC140 (TSS1500)

cg22871870 0.0525 0.0415 chr15 77,348,431 TSPAN3 (body)

cg20664238 0.0193 0.0415 chr15 88,798,877 NTRK3 (body)

cg05673214 0.0498 0.0415 chr16 743,476 FBXL16 (3′UTR)

cg01215511 0.0681 0.0414 chr16 2,975,552 FLYWCH1 (5′UTR)

cg09288320 0.0770 0.0415 chr2 210,994,670 C2orf67 (Body)

cg00137855 0.0612 0.0415 chr5 74,163,723 FAM169A (TSS1500)

cg19377326 0.0657 0.0416 chr1 31,486,063 PUM1 (Body)

cg03729042 0.0444 0.0416 chr1 183,560,923 NCF2 (TSS1500)

cg00589617 0.0647 0.0416 chr1 230,415,343 GALNT2 (3’UTR)

cg24250902 0.0682 0.0416 chr1 230,415,547 GALNT2 (3’UTR)

cg03754250 − 0.0394 0.0416 chr10 31,320,338 ZNF438 (5’UTR, Body)

Wave 0 was used as the reference. Annotation was performed according to hg19, and the probe location and gene annotation were taken from Illumina
reference files. CpG ID unique identifier from the Illumina CG database. Adjusted p value: false discovery rate (FDR) procedure using the Benjamini–Hochberg
method (FDR < 0.05). TSS1500 200–1500 bases upstream of the transcriptional start site (TSS)

Fig. 3 Manhattan plot showing the association p values (y-axis, −log10 scale) comparing the CpG methylation between W0 and W1 against the
genomic location (x-axis) for the genome-wide analysis of the emergence of dimensional psychopathology in youths. Batch effects were used as
covariates. Differentially methylated positions (DMPs) (above the red line, FDR < 0.05) are distributed across all autosomal chromosomes
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and FAM217B ΔmRNA levels (r = 0.475; p = 0.025, Add-
itional file 1: Figure S6).

DMRs associated with the emergence of dimensional
psychopathology
We searched for genomic regions (in a window of 1000
bases) where the DNA methylation was associated with
the emergence of dimensional psychopathology in youths
in a coordinated manner. We identified 90 DMRs that
were annotated to or near to 86 genes and that spanned
between 3 and 32 CpG sites. The 20 top-ranked DMRs
are given in Table 4, and all the coordinates and informa-
tion about the DMRs are given in Additional file 2: Table
S10. The most significant DMR was a region on chromo-
some 10 that contained the promoter and the first exon of
the PPP2R2D gene, spanning 9 CpG sites. Furthermore, it
contained DNase hypersensitive areas and was hyper-
methylated in W1 as compared to W0 (Additional file 1:
Figure S7). Overall, 11 DMRs were situated in the major
histocompatibility complex (MHC) on chromosome 6,
and five were mapped upstream of imprinted genes
(GNAS, GNASAS, ASB4, HYMAI, PLAGL1, FAM50B,
KCNQ1OT1). Interestingly, we found three DMRs in the
GNAS gene (GNAS complex locus), a region that has a
highly complex imprinted expression pattern. Moreover,
four DMRs were located at genes (VPS52, TCIRG1, and

TRIM39) that were found to be differentially methylated
in the largest schizophrenia (SCZ) whole-blood
epigenome-wide association study (EWAS) to date [17].
We found that 41 DMRs (45% of the total) were up-

stream of the TSS of genes. Of these, 11 overlapped with
CpG islands (CpGIs), 10 were located at CpG shores (~ 2
kb from CpGIs) and 3 were located at CpG shelves (~ 4 kb
from CpGIs). Moreover, it was observed that 10 DMRs
(11.1% of the total) were located in intergenic regions, and
52 DMRs (57.8% of the total) were located in gene bodies
(coding regions). Of the DMRs in gene bodies, two DMRs
overlapped with genes that are highly expressed in the
brain (MOG and PDE10A). We found significant enrich-
ment in the regulation of the sequence-specific DNA-
binding transcription factor activity GO biological process
(GO: 0051090; FDR = 0.01) (Additional file 2: Table S5).

DMRs and their gene expression
Of the 86 genes that were overlapped by or were near to
the DMRs, 15 had an expression in the peripheral blood
that was identified by a gene expression array
(Additional file 2: Table S11). We found that ASCL2,
RPS6KB1, and HLA-E were differentially expressed in
the blood at W0 and W1 (Fig. 4). The DMRs were lo-
cated 200–1500 bases upstream of the transcriptional
start sites of these genes. Two of the DMRs (upstream

Table 3 Results of DNA methylation and gene expression for the genes in which CpG sites were associated with the emergence of
dimensional psychopathology

Gene DNA methylation GENE EXPRESSION

CpG annotation Gene annotation FDR β fold change Probe ID p value Log fold change

RASGRP1 chr15:38,781,997 3′UTR 0.049 0.041 2,760,239 0.002 − 0.285

BCL11A chr2:60,766,554 Body 0.043 0.069 6,580,450 0.005 −0.280

3,170,440 0.014 −0.232

ST13P4 chr13:50,745,306 TSS1500 0.045 0.046 4,050,195 0.007 −0.236

C7orf50 chr7:1,053,726 Body 0.043 0.112 5,810,671 0.008 0.206

WWP1 chr8:87,427,271 Body 0.045 0.041 1,980,201 0.009 −0.204

UBE3C chr7:156,951,457 Body 0.046 0.090 1,690,709 0.010 −0.156

RB1CC1 chr8:53,566,460 Body 0.045 0.086 3,890,092 0.012 −0.224

PUM1 chr1:31,486,063 Body < 0.001 0.066 3,870,543 0.022 −0.162

SMC3 chr10:112,331,306 Body 0.047 0.059 2,970,292 0.024 −0.187

RPS24 chr10:79,793,501 TSS200 0.046 − 0.014 830,066 0.025 −0.593

RPS6KB1 chr17:57,970,021 TSS1500 0.045 − 0.027 1,940,576 0.026 −0.194

KMT2E chr7:104,696,669 Body 0.045 0.050 3,120,050 0.033 0.249

FAM217B chr20:58,520,201 3′UTR 0.044 0.024 770,221 0.039 0.228

NIN chr14:51,295,867 5′UTR 0.043 0.078 5,310,717 0.043 −0.150

HNRNPM chr19:8,513,923 Body 0.043 0.073 2,360,669 0.045 −0.150

Differentially methylated positions (DMPs) associated with the emergence of dimensional psychopathology in youths that had gene expression in peripheral
venous blood identified by a HumanHT-12 v4.0 Expression BeadChip (Illumina). Probe location and gene annotation were taken from Illumina reference files.
Annotation was performed according to hg19. Wave 0 (baseline) was used as the reference for both the DNA methylation and gene expression analyses. Probe ID
unique identifier from the gene expression Illumina database. TSS200 0–200 bases upstream of the transcriptional start site (TSS). TSS1500 200–1500 bases
upstream of the TSS. Official full names of the genes mentioned in the text: BCL11A B cell CLL/lymphoma 11A, KMT2E lysine methyltransferase 2E, RB1CC1 RB1
inducible coiled-coil 1, FAM217B family with sequence similarity 217 member B
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of ASCL2 and RPS6KB1 genes) overlapped with CpGIs,
while the other one was located at a CpG shore. Further-
more, the DMR upstream of RPS6KB1 was located (1) at
a DNase hypersensitive region for different cell lines; (2)
in a region that included several potential transcription
factor binding sites; and (3) in a region enriched for the
H3K27Ac histone mark (often found near active regula-
tory elements) for different cell types.
Regarding the correlation between DNA methylation

in the brain and blood for these DMRs, seven and two
CpG sites located at the DMRs upstream of ASCL2 and
HLA-E genes, respectively, were correlated to the methy-
lation levels in the brain according to the IMAGE-CpG
tool [29]. Moreover, a correlation between methylation
in the brain and blood for all CpGs located at DMRs up-
stream of the RPS6KB1 gene was shown by this tool
(Additional file 2: Table S12).

DMRs, gene expression, and CBCL score correlation
There were no correlations between the ΔmDMR and
ΔmRNA levels (ASCL2: r = − 0.015; p = 0.949; HLA-E:
r = − 0.120; p = 0.596; RPS6KB1: r = 0.194; p = 0.388).
Moreover, we did not find any correlation between ΔCBCL
scores and ΔmDMRs (ASCL2: r = − 0.083; p = 0.715; HLA-

E: r = − 0.224; p = 0.316; RPS6KB1: r = 0.160; p = 0.478).
However, there was a correlation between the ΔCBCL and
RPS6KB1 ΔmRNA levels (r = 0.442; p = 0.040). The higher
the increase in CBCL scores between W0 and W1, the
higher the difference in RPS6KB1 mRNA levels between
the waves (Additional file 1: Figure S8). We did not observe
a correlation between the ΔCBCL scores and ΔmRNA
levels of the ASCL2 and HLA-E genes (ASCL2: r = − 0.224;
p = 0.3171; HLA-E: r = 0.145; p = 0.5198).

Discussion
Epigenetic studies performed on samples collected be-
fore and after the increase of psychopathology have the
potential to reveal predictors of mental disorders. We
performed a longitudinal epigenome-wide association
study on the emergence of dimensional psychopathology
during the transition from childhood to adolescence,
quantifying the methylation in DNA samples isolated
from whole blood. After implementing a methodological
framework to reduce the effect of chronological age and
the puberty transition on the DNA methylation, we
identified 663 DMPs and 90 DMRs associated with the
emergence of psychopathology. We observed that 15
DMPs were mapped to genes that were differentially

Table 4 The 20 most differentially methylated regions (DMRs) associated with the emergence of dimensional psychopathology

hg19 genomic coordinates N probes Mean
β FC

Combined
p value

Gene annotation

chr10:133,747,120-133,748,048 9 0.025 6.44 × 10−04 PPP2R2D (TSS1500; 5′UTR; First Exon; body)

chr6:22,297,336-22,298,146 4 0.042 1.49 × 10−03 PRL (TSS1500; 5′UTR; First Exon)

chr7:158,669,801-158,669,978 5 0.019 1.90 × 10−03 WDR60 (body)

chr5:40,908,228-40,908,780 4 0.040 2.25 × 10−03 C7 (TSS1500)

chr5:132,200,008-132,200,666 6 0.016 2.27 × 10−03 GDF9 (TSS200; First Exon)

chr1:169,702,841-169,703,751 4 0.029 3.41 × 10− 03 SELE (TSS1500; 5′UTR)

chr7:95,114,680-95,115,354 8 0.024 4.84 × 10− 03 ASB4 (TSS1500; First Exon)

chr7:54,794,693-54,794,760 3 0.038 4.94 × 10−03 –

chr6:28,540,442-28,541,039 5 0.021 6.01 × 10−03 SCAND3 (body)

chr6:3,129,395-3,129,410 3 0.025 6.11 × 10−03 BPHL (Body); SNORD6 (TSS200); SNORA32 (TSS1500); SNORA25 (TSS1500)

chr6:125,623,465-125,623,573 3 0.035 6.28 × 10−03 HDDC2 (TSS1500; TSS200)

chr13:36,421,844-36,421,949 3 0.060 6.33 × 10−03 MIR548F5 (body)/DCLK1 (body)

chr20:39,666,232-39,666,765 3 0.042 6.55 × 10−03 TOP1 (body)/PRO0628 (TSS1500; body)

chr10:682,147-682,486 4 0.037 8.01 × 10−03 DIP2C (body)

chr19:46,999,055-46,999,118 3 0.039 8.13 × 10−03 PNMAL2 (5′UTR; First Exon)

chr3:75,263,619-75,263,641 3 0.039 9.35 × 10−03 –

chr19:55,889,013-55,889,387 4 0.032 0.011 TMEM190 (body)

chr15:28,272,345-28,272,656 3 0.019 0.012 OCA2 (body)

chr11:63,136,414-63,137,125 3 0.040 0.012 SLC22A9 (TSS1500; TSS200)

chr4:76,995,173-76,995,796 4 0.018 0,013 ART3 (TSS1500; TSS200; 5′UTR)

Wave 0 was used as the reference. Gene annotations were taken from Illumina reference files. N probes number of probes included in the differentially methylated
region. Mean β FCmean β fold change for the region. Combined p value Stouffer transformation of the FDRs for individual CpG sites that constituted the DMR. TSS200
0–200 bases upstream of the transcriptional start site (TSS). TSS1500 200–1500 bases upstream of the TSS
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expressed in the blood and that differences in the
RB1CC1 mRNA levels were correlated with differences
in DNA methylation between the waves. Furthermore,
the variation of KMT2E mRNA was correlated with the
increase of dimensional psychopathology levels over
time. We found that almost half of the total DMRs were
located upstream of transcriptional start sites. As pro-
moter regions are generally located in close proximity to
the 5′ end of genes [35], these DMRs could be involved
in the regulation of gene transcription. Indeed, three
genes (ASCL2, RPS6KB1, and HLA-E) were differentially
expressed in whole blood of the same individuals, and

the mRNA levels of RPS6KB1 were correlated with the
ΔCBCL; this indicated that when the difference in gene
expression was greater across time, a greater increase in
dimensional psychopathology was observed. Moreover, 4
DMRs were located at genes that were found to be dif-
ferentially methylated in the blood of chronic patients
with SCZ [17], 11 DMRs were situated in MHC loci (the
locus most strongly associated with SCZ [17]), and 5
DMRs were located upstream of imprinted genes (many
imprinted genes affect behavior). To our knowledge, this
is the first human longitudinal study evaluating the asso-
ciation of within-subject changes in DNA methylation

Fig. 4 Overview of the differentially methylated regions (DMR) and of their genomic context and box plots of the gene expression levels for the
(a) RPS6KB1, (b) ASCL2, and (c) HLA-E genes. The β values of the CpGs that constitute the DMRs are represented by dots. All regions were
located 200–1500 bp upstream of the transcriptional start sites. The CpG island track was obtained from the UCSC database. Gene annotation was
taken from Illumina reference files according to hg19. Wave 0 was used as the reference. a DMR (4 CpG probes; Stouffer transformation p value =
0.021; adjusted p value for the most significant probe = 4.32 × 10−6; mean β fold change = − 0.018) and the gene expression levels (logFC = −
0.194) of RPS6KB1. b DMR (17 CpG probes; Stouffer transformation p value = 0.598; adjusted p value for the most significant probe = 3.78 × 10−6;
mean β fold change = 0.014) and the gene expression levels (logFC = 0.185) of ASCL2. c DMR (5 CpG probes; Stouffer transformation p value =
0.015; adjusted p value for the most significant probe = 1.01 × 10−5; mean β fold change = 0.032) and the gene expression levels (logFC = 0.185)
of HLA-E
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with changes in dimensional measurements of psy-
chopathology. We tested the relationship between al-
tered DNA methylation, gene expression, and
psychopathology measurements, and our findings sug-
gest the involvement of novel genes in adolescent
psychopathology.

Differentially methylated positions
The differentially methylated positions (DMPs) mapped
to genes that were enriched for cell-cell adhesion bio-
logical processes and postsynaptic cellular components,
suggesting that the differentially methylated genes
were involved in cell attachment and that their pro-
teins were located in subcellular structures that are
important to brain development. We did not observe
an overlap between genes indicated by the 20 top-
ranked DMPs and DMRs. The neighboring CpGs of
these DMPs are probably not included in the 450 K
arrays and were excluded from our analysis. The ex-
clusion of these probes might have influenced the
chromosomal regions of the 20 top-ranked DMPs in
the DMR analysis.
We observed that 15 genes that overlapped with the

DMPs had alterations in their expression levels.
Among them were BCL11A, KMT2E, and RB1CC1.
Two gene expression probes for BCL11A were down-
regulated in W1 as compared to W0. The corre-
sponding protein product is a transcription factor
associated with the mammalian BAF SWI/SNF chro-
matin remodeling complex in human T cells [36]. A
study demonstrated that BCL11A haploinsufficiency is
implicated in intellectual developmental disorders
[37]. Moreover, we found a significant positive correl-
ation between the KMT2E ΔmRNA level and ΔCBCL,
indicating that there was higher variation in KMT2E
expression (upregulation in W1 compared to W0)
with a higher increase in dimensional psychopath-
ology. KMT2E (also known as MLL5) is a chromatin
regulator expressed throughout the cell cycle and
plays a role in hematopoiesis and spermatogenesis
[38]. However, an exome sequencing study reported
that KMT2E is strongly associated with autism
spectrum disorder [39]. Finally, we found a significant
negative correlation between the cg08517799 ΔDMP
and RB1CC1 ΔmRNA levels, indicating that as CpG
methylation increases, the gene expression of RB1CC1
decreases. RB1CC1 encodes a tumor-suppressing pro-
tein that interacts with signaling pathways to regulate
cell growth, proliferation, migration, apoptosis, and
autophagy. However, methylation changes in a single
CpG are less likely to promote downstream biological
consequences. It is more likely that coordinated DNA
methylation changes in genomic regions (i.e., DMRs)
would have a downstream biological effect.

Differentially methylated regions
The differentially methylated regions (DMRs) mapped to
or near to genes that were enriched for the biological
process of the regulation of sequence-specific DNA
binding transcription factor activity, suggesting that the
differentially methylated genes could be involved in gene
expression regulation. In our analysis, the most signifi-
cant DMR contained a region upstream of the TSS and
the first exon of PPP2R2D (protein phosphatase 2 regu-
latory subunit Bdelta). This DMR also contained DNase
hypersensitive areas. This region was hypermethylated in
W1 as compared to W0, but we did not observe the dif-
ferential expression of PPP2R2D in whole blood between
the waves. This gene encodes a regulatory subunit of
protein phosphatase 2A that plays a key role in the cell
cycle by controlling mitosis entry and exit [40].
PPP2R2D is selectively expressed in the mouse hippo-
campus and is upregulated in the hippocampus of rats
during early rapid-eye-movement (REM) sleep after they
are exposed to novel objects [41, 42]. A cross-sectional
study that aimed to identify the DNA methylation signa-
tures at genes modulating dopamine signaling that are
associated with obesity features found that PPP2R2D is
hypermethylated in the blood of adults with abdominal
obesity [43]. Although we performed comparisons
within-subjects, and our sample was composed of youths
and not adults, we could not determine whether body
mass index influenced our results, as this information
was unavailable.
We identified three DMRs that mapped to 200–1500

bases upstream of the TSS of genes for which the ex-
pression levels in blood were altered between the waves.
First, DMR hypermethylation and ASCL2 gene expres-
sion upregulation were observed in W1 compared to
W0. ASCL2 (achaete-scute family bHLH transcription
factor 2) is a member of the basic helix-loop-helix family
of transcription factors, which are downstream targets of
Wnt signaling [44], and it is involved in the determin-
ation of neuronal precursors in the peripheral and cen-
tral nervous systems. Highly expressed in the skin,
ASCL2 is associated with Beckwith-Wiedemann syn-
drome, which is the most common pediatric overgrowth
syndrome [45]. Second, DMR hypermethylation and
HLA-E gene expression upregulation were observed in
W1 as compared to W0. Highly expressed in whole
blood, HLA-E (major histocompatibility complex, class I,
E) is a protein-coding gene that belongs to the non-
classical group of MHC-Ib molecules and is mapped to
the MHC locus on the short arm of the chromosome 6
[46]. Lastly, DMR hypomethylation and RPS6KB1 gene
expression downregulation were observed in W1 as
compared to W0. RPS6KB1 (ribosomal protein S6 kinase
B1) encodes a ribosomal kinase that responds to mTOR
(mammalian target of rapamycin) signaling activation to
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promote protein synthesis, cell growth, and cell prolifer-
ation. The highest median expression is in the ovary and
has been associated with human cancer [47–49]. Al-
though we did not find a significant correlation between
the methylation and expression of these genes, we ob-
served that hypermethylation did not repress their gene
expression, suggesting additional mechanisms of gene
expression regulation.
Although none of these genes has been directly associ-

ated with psychiatric phenotypes, we identified a differ-
entially methylated region of a gene involved in
neurogenesis (ASCL2). In particular, the DNA methyla-
tion levels of almost half of the CpG sites located within
this DMR were correlated with the levels in the brain,
based on previous analysis [29]. Indeed, studies have
shown altered expression of a key gene in Wnt signaling
in the hippocampus of patients suffering from neuro-
psychiatric disorders [50]. Moreover, we identified a dif-
ferentially methylated and differentially expressed gene
located at the MHC region (HLA-E), which is the most
robustly associated locus in the largest SCZ GWAS and
the top-ranked DMR identified in the largest SCZ
EWAS to date [17, 51]. Notably, 12% of our results for
differentially methylated regions were mapped to the
MHC locus, suggesting the involvement of this region in
psychiatric symptomatology in adolescence. Further-
more, although there are known to be significant differ-
ences in the overall and specific methylation levels
between different tissue types [52], few methylation
changes were observed in CpG shores between immune
system cells [53]. As the DMR that mapped to HLA-E is
located at a CpG shore, this suggests that methylation of
HLA-E might not represent a cell type-specific methyla-
tion and might be involved in adolescent psychopath-
ology. In addition, we found that a ribosomal kinase that
responds to mTOR was differentially methylated and
expressed between time points (RPS6KB1). As observed
in the IMAGE-CpG tool, the DNA methylation levels of
all CpGs located at this DMR were correlated with the
methylation levels in the brain [29]. Given the rich lit-
erature on the role of mTOR in age-related diseases and
the evidence of its association with advanced biological
aging and mental disorders [54–57], it is striking that
the methylation and expression levels of a downstream
target of mTOR were altered in a sample that increased
in psychopathology over time. Interestingly, we observed
that higher expression levels of RPS6KB in W1 as com-
pared to W0 were correlated with increased dimensional
psychopathology across time. Although we observed hypo-
methylation of RPS6KB1, its expression was downregulated
overall between W1 and W0. Thus, more studies are
needed to elucidate this relationship.
Another interesting result was the identification of

DMRs located at genes that were found to be

differentially methylated in the SCZ EWAS [17]. SCZ is
a psychiatric disorder with higher heritability, and al-
though it is not yet known if some subjects in our sam-
ple will develop SCZ in the future, our results confirm
that these genes might be involved in the development
of mental disorders, including SCZ. Moreover, we found
that some DMRs were located at imprinted genes. Many
imprinted genes are expressed in the brain and affect be-
havior [58]. In adults, imprinted genes are associated with
behaviors such as maternal care, sex, feeding, and cogni-
tion [59]. In addition, we found three DMRs that mapped
to GNAS. This locus has a highly complex imprinted ex-
pression pattern. It gives rise to maternally, paternally, and
biallelically expressed transcripts. In a recent study that in-
vestigated the epigenetic profiles of select youth, monozy-
gotic twin pairs who were discordant for anxiety, the
differential methylation of loci that were annotated to
GNAS was associated with anxiety [60]. In addition, we
found two DMRs that mapped to MOG (myelin oligo-
dendrocyte glycoprotein) and PDE10A (phosphodiesterase
10A), genes that are highly expressed in the brain [47].
However, these DMRs were mapped to the gene body,
and the DNA methylation patterns between blood and
brain are very distinct, particularly in the gene body [61].

Strengths of the study
First, our study design was longitudinal, and it combined
the collection of clinical and DNA methylation data at a
baseline and at a 3-year follow-up; this could help to elu-
cidate the temporality of the relationship between the
development of psychopathology and methylation
changes. Second, we used an epigenome-wide approach
to investigate DNA methylation. This approach, without
a hypothesis a priori, is crucial for identifying new rele-
vant CpG sites and regions associated with the emer-
gence of dimensional psychopathology in youths. Third,
dimensional psychopathology exists on a continuum in
the general population, and population-based studies
have demonstrated that symptoms, when considered di-
mensionally, vary with neurobiological features [62, 63],
providing further support for the examination of dimen-
sional psychopathology. Indeed, recent initiatives to elu-
cidate the biological causes of mental disorders, such as
the Research Domain Criteria (RDoC), focus on the di-
mensional distribution of several behavioral traits and
their neural correlates [64]. Fourth, we studied youths, a
group that has had shorter exposure to environmental
events that could influence DNA methylation, such as
smoking, relative to adults. All 24 of the investigated
youths reported that they had never smoked cigarettes
or chewed tobacco. Moreover, psychiatric symptomatol-
ogy during childhood and adolescence predicts persist-
ent mental illness later in life [65]. Fifth, we found DNA
methylation changes in blood, a tissue that is accessible
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via minimally invasive procedures. Sixth, our results
seem not to be influenced by medication, as all the
DMPs remained significant after the medication was in-
cluded as a covariable in the analysis.

Limitations of the study
Despite its longitudinal design and dimensional assess-
ment of psychopathology, the results of this study should
be interpreted in light of some limitations. First, methy-
lation patterns are tissue-specific; thus, the methylation
differences observed in blood might serve as a marker
for phenotypic risk but might not reflect the brain
methylome. Nevertheless, our results of most interest
showed a correlation between DNA methylation in the
brain and blood, as shown in a previous analysis [29],
highlighting the possible biological relevance of our find-
ings on the emergence of psychopathology. Second,
DNA methylation patterns are also influenced by other
factors, such as body mass index and blood cell compos-
ition [66]. Because of our sample size, we did not correct
our methylation model for estimations of cell compos-
ition. Thus, blood cell composition remains a probable
confounding factor for the methylation analysis. How-
ever, the correspondence of both altered DNA methyla-
tion and gene expression is powerful evidence that
should be considered even with this limitation. Third,
we did not correct gene expression and correlation ana-
lyses for multiple comparisons since we chose to be less
strict statistically in order to preserve the biological data.
Fourth, we did not have a longitudinal control group
from the same population to verify whether the DNA
methylation differences observed in this study were re-
lated to the dynamic nature of DNA methylation, as
methylation is the result of complex interactions be-
tween genes and the environment that take place over
the lifetime of an individual [67]. To overcome these
limitations, we employed a DNA methylation marker se-
lection to exclude probes associated with chronological
age and the puberty transition in the whole blood of the
youths. However, we might have lost DMPs and DMRs
associated with the emergence of psychopathology since
we had to exclude EPIC probes that were not present in
450 K arrays. Fifth, it is unknown whether the DNA
methylation differences observed in this study of blood
samples will remain stable over time or will change at
the onset of a full-blown psychiatric disorder, since
methylation is dynamic throughout development. How-
ever, the low stability and high comorbidity patterns of
categorical psychopathology in this age range, as
assessed by our current classification (e.g., DSM), sup-
port our dimensional approach to psychopathology.
Sixth, as our analysis focused on the CBCL total score,
our results were related to global non-specific psycho-
pathology and not to specific symptoms which could be

evaluated by CBCL subscales. Finally, as we performed
multiple comparisons in the epigenome-wide approach,
we had to correct for multiple testing. Although this
correction is necessary, it increases the occurrence of
false-negative results.

Conclusions
In summary, the emergence of dimensional psychopath-
ology appeared concurrently with changes in the pat-
terns of DNA methylation in whole blood cells. Changes
in the methylation of single CpGs (DMPs) and regions
(DMRs) were observed simultaneously with changes in
gene expression levels that were associated with the
emergence of psychopathology in youth. Among them,
we highlighted those that were annotated to ASCL2,
which is involved in neurogenesis; to HLA-E, which
maps to the MHC loci; and to RPS6KB1, the gene ex-
pression of which was correlated to an increase in di-
mensional psychopathology. Our data indicate that
peripheral blood is a valuable surrogate tissue for the as-
sessment of pathophysiology of behavioral symptoms in
youths and could be used to reveal putative peripheral
biomarkers. Future epigenetic studies of an independent
longitudinal cohort will be required to replicate these
findings and to complement this research in order to
identify early epigenetic biomarkers for the development
of psychopathology.
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emergence of dimensional psychopathology using batch effects and
medication as covariates. Table S7. Gene expression results of genes for
which the DMPs were mapped to or near to the genes. Table S8. DNA
methylation correlation between brain and blood for DMPs mapped or
near to
differentially expressed genes. Correlation results are from IMAGE-CpG
(Braun, P et al., 2019). Table S9. Information about correlations
between: a) the variation of the DNA methylation of the differentially
methylated positions (ΔDNAm) and the variation of the expression of genes
that were differentially expressed in whole blood (ΔmRNA); b) the variation
of the total score of CBCL (ΔCBCL) and ΔDNAm; and c) ΔCBCL and ΔmRNA.
The variations were calculated subtracting wave 1 (W1) values from wave
0 (W0) values. Table S10. Differentially methylated regions from
DMRCate analysis. Table S11. Gene expression results of genes for
which the DMRs were mapped to or near to the genes. Table S12.
DNA methytion correlation between brain and blood for CpG site
from DMRs mapped or near to differentially expressed genes. Correl-
ation results are from IMAGE-CpG (Braun, P et al., 2019).
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