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Abstract: A hierarchy of possible symmetries in quantum field theory is defined, which reaches 
from a purely mathematical invariance to the conventional physical invariance, including 
the commonly discussed type of spontaneously broken symmetry (SBS). It is shown that 
one type of SBS, which is usually not considered, naturally leads to theories with an al- 
gebra of non-conserved currents and a non-linearly transforming phenomenological 
Lagrangian. An exactly solvable model is given and some general remarks are made. 

1. INTRODUCTION 

After it became evident that there exist certain approximate symmetries which 
are very useful for the understanding of leptons and hadrons, the question naturally 
arose whether at some time one might be able to derive qualitatively or even quanti- 
tatively the observed deviations from the exact invariances. It is clear that to do this, 
one will have to start from a theory in which no specific deviation from the sym- 
metry in question is a priori preferred, i.e., from a symmetric theory. The asym- 
metry would then necessarily have to be generated by the dynamics itself. This is 
the bootstrap idea of the spon taneous l y  b r o k e n  s y m m e t r y  (SBS) theories. 

In the applications [1 -3 ]  of this idea to quantum field theory, there soon 
emerged a principle difficulty. From Noether's theorem it follows that a symmetric 
theory should contain a conserved symmetry current and it can be shown [4 -7]  
under rather general conditions, that the symmetry can only be spontaneously 
broken if the zero component of this conserved current applied on the vacuum 
state creates a massless boson. As a rule however, these Goldstone bosons (or the 
equivalent long range interactions) are not observed and, in fact, also the meas- 
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urable symmetry currents are not conserved. To reproduce these observations it is 
common use [2,8 ] to also break the symmetry of the original theory externally. 
This procedure however abandons the main motivation of  the whole undertaking, ~- 
namely the hope to be able to derive the asymmetries from the theory. 

Fortunately there exist some arguments which suggest that there must be a weak 
point in the chain of  reasoning which leads from a symmetric field theory to con- 
served currents and Goldstone bosons. Consider, for example, dilatational invari- 
ance. It is not difficult to see, and we shall repeat the argument in sect. 3, that the 
arbitrariness in the choice of  the unit of  length implies that a complete theory o f  
physics, if it exists at all, could be formulated as one in which the dilatational in- 
variance is spontaneously broken [9, 10]. Nevertheless in nature the dilatational 
current is not  conserved and also no corresponding Goldstone boson occurs. Now it 
is, of  course, quite possible that nature is not describable by a Lfield theory, but 
the quantum electrodynamics (QED) of massless electrons and muons [ 10 -12  ] 
shows that in fact dilatational invariance can be spontaneously broken in a field 
theory in just the observed way. In this theory there occurs also a U 2 @ U 2 sym- 
metry group containing several other spontaneously brok, en invariances [13, 14] 
with non-conserved symmetry currents. Here one might have the objection that this 
model has been only very approximately treated and that in an exact calculation a 
conserved symmetry current could emerge. For this reason we will give later an ex- 
actly solvable (albeit somewhat trivial) model of  a relativistic local quantum field 
theory in which a spontaneously broken symmetry is generated by a non-conserved 
current. 

In this paper we shall attempt to show (for earlier remarks in the same spirit see 
refs. [5, 15, 16] ) that the difficulty of  conserved currents and Goldstone bosons 
in SBS theories is a "self-inflicted agony" [ 17]. The bootstrap idea of  spontaneous 
symmetry breaking in a quantum field theory does not demand the conservation of  
the symmetry current; on the contrary, the by definition singular properties of  the 
field operators render it nearly impossible for the current conservation to survive 
the breaking of  the vacuum symmetry [18, 19] and make the classical Noether's 
theorem inapplicable. A very special condition, which is the statement of  Gold- 
stone's theorem, is necessary (and not even sufficient) for the current to remain 
conserved if the vacuum symmetry is lost. 

In sect. 2 we define the concept of  passive symmetry. With the help of  this defi- 
nition we are able to generalize the usual notion of  a spontaneously broken sym- 
metry. Then by imposing increasingly stronger conditions, one obtains a hierarchy 
of  symmetries which extends from a purely mathematical invariance to the usual 
"good"  one and which includes the commonly discussed type of  SBS. Examples of  
each of  these cases are known. In sect. 3 we give an exactly solvable model and a 
discussion of  the -type of  SBS which we believe to be relevant for elementary par- 
ticle physics. Finally some more general remarks are made. 

In the following a certain familiarity with the conventional theory of spontan- 
eous symmetry breaking is assumed [3, 5, 20, 21] ; it is not our intention to at- 
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tempt a selfcontained and rigorous or even systematic treatment, but we only wish 
to bring out certain physical points which have not received much attention in the 
literature and which we believe to be essential. 

2. A HIERARCHY OF SYMMETRIES 

In this section we consider some classes of SBS solutions which can occur. It 
should however be kept in mind that in any well defined physical theory the type 
of solution which is in fact realized is not subject to ones choice, but is determined 
by the dynamics. 

We first define the concept of  a passive symmetry: We shall say that a quantum 
theory of  fields ~i has a passive invariance (symmetry)  if there exists an algebraic 
transformation on the set of all field operators 

ffi ~ @~(@j), (1) 

which transforms any solution ffi of the theory (given as an irreducible representa- 
tion of  the field algebra in a Hilbert space) into a new solution ~ of the theory. 

It may be noted that we have not specified any detail of the theory (Lagrangian, 
field equation, etc.) and that our criterion eliminates possibilities of confusion in- 
herent in certain other definitions where, for example, the question may arise 
whether a theory is only "formally invariant" but not actually so because necessary 
limiting procedures destroy the "invariance" [18]. The decisive question for the 
presence of  a passive invariance is only whether one can show that there exists a 
transformation (1) which generates a new solution. 

We shall give in sect. 3 a simple example in which the existence of  a certain pas- 
sive symmetry is easy to see. In the more realistic cases in which there are infinite 
or finite renormalizations involved, it is in general necessary to take into account 
that the renormalization itself depends on the solution of  the theory and therefore 
transforms along with the field under transformation (1). Of course, nowhere in the 
theory (including the renormalization procedure) may occur any condition which 
selects a priori one special solution in the set of solutions defined by transforma- 
tion (1); this would by definition destroy the passive invariance. We will also give an 
example of  this realistic type of  passive invariance in sect. 3. It is clear that the 
presence of  a certain passive invariance puts a condition on the renormalization 
procedure and this is in itself of  interest. 

A passive invariance is a property of  the mathematical formulation of  a theory. 
However, if a passive invariance transformation is represented by a unitary operator 
in the Hilbert space of  the solution, it is just a usual good physical symmetry, as for 
example Lorentz invariance in general is. 

Definition: We call a passive symmetry spontaneously broken in a solution of  
the theory, when the transformation (1) can not be represented by a unitary oper- 
ator in the Hilbert space of  the solution. 
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In the following we shall only consider passive invariance transformations which 
depend on a continuous parameter and which are local in the basic fields, essential- 
ly meaning that the transformed field operators 4 '  for each space-time point x '  on- 
ly depend on fields ff in one point x(x'). The function x(x') is assumed to be linear 
and to represent a Lorentz transformation and/or a dilatation; the special conformal 
transformation is briefly discussed in sect. 4. 

If only the above mentioned conditions are fulfilled, the so defined SBS has no 
great physical contents. It is realized in certain solutions of  the Schwinger model 
as discussed in ref. [22].  

Consider now an arbitrary space-like plane and let us suppose that it is possible 
to supplement the basic field operators if(x) by a set of  field operators rr(x), con- 
structed from the field operators if, such that each set (qv(x), 7r(x)) with x in the 
plane, is complete in the sense of  Schur's lemma. In a canonical theory the opera- 
tors rr could, for example, be the canonical momenta. Because of  their construc- 
tion, the transformation (1) of  the basic field operators induces now also a trans- 
formation on the fields rr and one has the relation 

(if;  rr) ~ (~ ' (~ ) ;  rr'(~b, n)) , (1 ') 

which is assumed to be still local. 
Suppose further that we have a special type of  SBS, namely one in which a local 

current jU(x) exists, which generates the transformation (1'), in the sense of ref. 
[6],  if applied on a complete set ( ~ ) ,  lr(y)) with all y iri a spacelike plane through 
the point x. In an equal time plane, for example, one has 

Is ,] lim /°(x, Xo) d3x, ¢(y, x o = - i aa a--0 ' (2) 
v~oo v 

a denoting the parameter of  the continuous passive transformation and ¢ being any 
algebraic expression containing only ff's and n's in the plane t = x o and ~' being the 
same expression in if' and rr'. For an arbitrary plane the current component orthog- 
onal to the plane should be taken instead of/ '°. 

It is important to note that relation (2) is only demanded for each fixed x o (in 
general for each space-like plane) common to the charge and to the complete set 
of  basic field operators. If, for example, an operator Otk/Ox o does not belong to 
this set then in general 

lim [f/°(X, xo)d3x, Oqj(v'x°)] a a f f ' 0 ' , X o )  = ° 
ax ° ] 4= - i 0a 0x o 

v ~  v 

because for ~k in another plane a different charge is needed to generate transforma- 
tion (1 '). Therefore, in this case the passive transformation (1') is an algebraic 
isomorphism for the quasi-local subalgebras spanned by the basic sets of  field oper- 
ators (qJ, rr) in corresponding space-like planes, but it will in general not be an 
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automorphism for the whole algebra of quasi-local fields. For essentially this reason 
we shall call this case the one in which the symmetry is locally broken [15]. 

What follows for a physical system described by a solution of  the present type? 
a) The commutation rules (2) for a complete set of  operators essentially de- 

fine the charge 

f l°(X, Xo) d3x , lim 
V ' - ' *  oo 

when occurring in a commutator. Therefore, if there are several "internal" (i.e. 
x '  -= x) SBS transformations present with generating currents as in eq. (2), their 
charges will obey the same Lie algebra as the corresponding passive transformations. 
We conclude that in each space-like plane the validity of  a charge algebra isomorphic 
to the Lie algebra of the passive internal invariances is to be expected for the local 
SBS's. 

b) As we saw, the passive SBS transformation changes one irreducible represen- 
tation of the field algebra into a mathematically inequivalent one. To describe the 
physics one has to choose one of  these solutions. There can be nothing in the origi- 
nal theory which leads to a preference between these descriptions, because this 
would contradict the assumed passive invariance; the physics must be equally well 
described by each of  the representations. Consequently the original theory can only 
be a useful one if any quantity which can be uniquely measured*, is represented by 
the same operator in each of  the inequivalent representations of  the theoryt .  In 
other words, it must be possible to define the mentioned observables in such a way 
that they are invariant under the SBS transformation; only "unobservable" quanti- 
ties reallt change by the passive transformation.. This is in fact a quite general prop- 
erty of theories with a passive invariance. 

Now suppose, for example, that in a SBS theory of  the present local type one 
would have constructed a phenomenological field operator which interpolates well 
between the out and in fields, corresponding to a bound state of  some particles be- 
longing to basic fields. Because the SBS transformation is not unitarily implemen- 
table, the asymptotical fields and therefore also the corresponding phenomenologi- 
cal field operators constructed in different inequivalent representations will in gen- 
eral not be linearly related. Nevertheless their transformations must obey the com- 
position rules of  the group, because this is the case for the passive transformations 
of  the complete inequivalent descriptions into each other. If, in a classical approxi- 
mation, it is assumed that the transformed phenomenological fields are simply func- 
tions of  the original fields at one space-time point, then a passive SBS transforma- 
tion group is realized non-linearly by the transformations of the phenomenological 

* These are the type of quantities which one, for example, may find in tables; they represent 
a smaller class than one usually defines in quantum mechanics as observables because, as is 
shown in the text, only scalars with respect to every (spontaneously broken or good) passive 
invariance transformation belong to it. 

t We are considering the different inequivalent representations to be realized in one fixed Hil- 
bert space. 
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fields. Furthermore, as remarked earlier, all the observables have to be invariant 
under these non-linear transformations. If the observables are constructed from a 
phenomenological Lagrangian it is therefore natural to demand that such a Lagran- 
gian itself should be invariant under the, in general non-linear, realization of the 
SBS transformations by the occurring fields. 

Comparing these points with the actual situation [23-28] in elementary particle 
physics, it appears that the present class of SBS's has properties which agreee with 
the ones of the observed approximate symmetries and therefore we shall come back 
to it in more detail in sect. 3. 

We now consider the case which is nearly exclusively discussed in the literature, 
namely the one in which the SBS current is even conserved. This assumption is so 
strong that it is difficult to prevent the symmetry from becoming an unbroken one, 
as is expressed by Goldstone's theorem. It can be easily shown [6,20] that eq. (2) is 
now still valid if one takes the time argument of the field operators different from 
the one of the charge 

lim °(x, xo) d 3x, ~0', Yo) = - i (3) 
v---, ~ ~ ' 

v 

where again ~ and ¢' are the same algebraic expressions in ~b respectively ~b'. In 
other words the passive symmetry represents an automorphism for the whole of 
the quasi-local field algebra. The symmetry can only be broken because there are 
global operators which do not transform "correctly", as a result of the limiting 
procedure in eq. (3). We shall therefore call this case the one of asymptotical sym- 
metry breaking. It is the case of the Goldstone bosons or long range interactions. 
This property, in addition to the presence of a conserved current, disqualifies, in 
our opinion, the asymptotical type of SBS for a description of the approximate 
symmetries in elementary particle physics. 

It is perhaps of interest to see the fundamental physical difference between local 
and asymptotical break!ng by comparing the physical effects of the locally applied 
active SBS operations in examples of the two cases. In the well-known model for 
the asymptotical breaking, the Heisenberg ferromagnet [29], the rotation invari- 
ance is spontaneously broken. If one rotates all dipoles in a finite volume of the 
magnet through a certain angle and leaves them subsequently free, the "excited 
state" will decay by spin oscillations, starting from the edge of the volume. By 
taking the rotated region sufficiently large, one is able to keep the centre of this 
region static during an arbitrarily long time. This possibility to actively perform at 
least locally the passive invariance transformation is a manifestation of the tact that 
the physical (unitary) operator reproduces the passive invariance transformation in 
an arbitrarily large four-dimensional volume. 

Compare this with a typical case of local breaking, as the one of the U2@ U 2 
group in the model of the QED of massless electrons and muons [ 13, 14]. Here, it 
is not possible during a finite time to obtain a state which is locally stable in which 
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the electron is partially transformed into a muon, essentially because the field equa- 
tions of these particles contain time derivatives which do not change under the uni- 
tary transformation as they do under the passive invariance transformation; this 
reflects the fact that the physical (unitary) transformation is only equivalent to the 
passive invariance transformation at one time (see eq. (2)). The same is true for 
spontaneously broken dilatation invariance; one cannot locally dilate the physical 
world during a finite time! The examples show how close the asymptotically broken 
symmetries are to the good ones, in which the actively transformed state can be in- 
definitely maintained, and how unphysical the usual active interpretation of a 
locally broken symmetry is. This may partially explain the much larger attention 
the asymptotically broken symmetries have received in the literature, in spite of the 
fact that they are evidently not relevant for the description of nearly all approxi- 
mate symmetries in elementary particle physics. 

3. LOCAL SYMMETRY BREAKING 

We have seen that the class of SBS theories in which the symmetry is locally 
broken has several properties which agree with the present state of our knowledge 
in elementary particle physics: 

(a) The SBS currents are not conserved (which also renders Goldstone's theorem 
unapplicable). 

(b) A charge algebra isomorphic to the Lie algebra of the passive internal trans- 
formations emerges. 

(c) The passive invariance transformation for phenomenological field operators 
is in general non-linear. A phenomenological Lagrangian should be invariant under 
these transformations. 

(d) It becomes understandable why the physical states are "stiff" against at- 
tempts to apply the passive invariance operation actively, which is one of the prom- 
inent features of the observed approximate symmetries in elementary particle phys- 
ics. 

The question then arises whether the assumptions which distinguish the local 
breakings from the other ones are compatible with each other. This would for ex- 
ample not be the case if Noether's theorem would apply. 

We will now construct explicitly a model which fulfills our conditions. Consider 
a four-component fermion field ~ ( x )  obeying the equation 

lim f ~ ( x ' ) d 4 x  '= O, (4a) 
V--,O 

V 

and the canonical equal time commutation rules 

( ~ ( x ) ,  ~ y ) }  : ~ 3(x - y )  

(~Ax),  ~ 0 ' ) )  = ( C ( x ) ,  ~'~0')) : O. 
(4b) 
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Here Fa~(¢; x - x ' )  is a distribution which is defined as the functional of  the field 
given by the inverse of  its propagator, which is assumed to have a positive-definite 

Kfill6n-Lehmann density: 

- i f F a o ( ~ ; x - x " ) ( 0 l  T(~I~(x" ) ~-~(x')) [0)d4x ' ' =  6aq,64(x - x ' ) .  (5)  

The limit V ~ 0 means that the volume over which the integration is performed 
tends to zero, always including the point x. By this limiting procedure the field 
equation is manifestly local. 

It is easy to see that the theory defined by the eqs. (4a), (4b) and (5), is passive- 
ly invariant under the transformation 

¢ ' ( x )  = e i°'r5 ~ ( x )  . (6) 

One finds 

F (  Lk '; x - x " )  = e -  i°V 5 FOk ; x - x " )  e - i0"r5 

and therefore i f F ( ~ )  ~k = 0 also F ( ~ ' )  ~ '  = 0. As $ '  obeys also the commutat ion 
rules (4b) it is a new solution of the theory and transformation (6) is by definition 
a passive symmetry.  

It is also clear that the chiral transformation (6) is generated in the sense of  eq. 
(2) by the local current 

j~(x) = ~,(x).r..r5 g,(x), (7) 

which will turn out to be in general not conserved. Therefore our model fulfills all 
the conditions of  a local SBS theory. 

Furthermore, the usual free field is a particular SBS solution of the theory. One 
finds by Fourier transforming twice eq. (5) for this case 

F ( ~  o; x - x ' )  = (ig x - m )  6 4(x - x ' )  (8) 

and that consequently the field equation (4a) is fulfilled, because it is now just the 
Dirac equation defining the free field. 

By applying the passive invariance transformation (6), one obtains a continuous 
set of  inequivalent solutions. In each representation (characterized by the unobserv- 
able parameter 0) the field equation (4a) is equivalent to a generalized Dirac equa- 
tion 

(i~ - rn cos 20 + im75  sin 20) ~b(0 ;x)  = O. (9) 

Eq. (9) plays in our model the role which a phenomenological equation would play 
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in a realistic SBS theory. Such equations with a fixed value of  the unobservable 
"phase" are only valid in one of  the possible inequivalent representations and are, 
of  course, in general non-invariant [3].  As remarked earlier all actually observable 
quantities are independent of  the phase. 

The "normal"  solution (i.e. the one for which the passive invariance is not  
broken) is given by the neutrino field. To make the present somewhat trivial theory 
physically unique one should explicitly state whether the normal or the SBS solu- 
tion is realized. For the physical uniqueness of our model  see also the appendix. 

We now list some properties of the model which partially have a more general 
relevance. 

The passive transformation of  an operator not constructed from the ff's in one 
space-like plane, as for example 3~/OXo, is not generated by the j~ current. One 
may verify that this fact is directly related to the current non-conservation. 

It can be readily shown that the dilatational invariance is also a local SBS for the 
solutions just  discussed. By applying the passive dilatation transformation on a so- 
lution one generates a new manifold of  mathematically inequivalent representations 
characterized by the mass value. Physically these representations are equivalent be- 
cause the absolute mass scale is not  measurable [9].  

By giving the field the additional degrees of freedom of  quark fields, the discus- 
sion of the 3,5-invariance can be generalized to the one of  the U(3) ® U ( 3 )  chiral 
group*; one finds of course the validity of  the U(3) ® U(3) charge algebra although 
the currents may in part not be conserved. 

Where does the proof  of  Noether 's  theorem fail in the present case? Going 
through this proof  one sees that an essential point is that the passive invariance 
transformation has the same effect on the Lagrangian as does the local variation of  
the field. The Lagrangian density for our case would be 

Z?(x)= lim ½ f { ~ ( x  +½e)F(e)~(x-½e)+C.C.-V.E.V.}d4e.  (10) 
V(e)~O 

If the field is locally varied F does not change**. However under a passive transfor- 
mation, because this transformation extends over the whole of  space-time, F does 
change. This difference between the effects of the local field variation and the pas- 
sive transformation results in the breakdown of the proof  of  Noether 's  theorem. 

* In fact even to a U(12) group; as the dilatations, U(12) can be an exact passive invariance 
transformation in a theory with finite masses! 

** This is necessary for the Lagrangian (10) to produce our field equation and follows from the 
c-number character of the variations. If one has doubts about this point, one may also think 
the propagator in eq. (5) to be defined (similarly as in ref. [3] ) as being the quantity 

T¢~(z + e)?~.r(z), 

the bar meaning an average over all values of z in an infinite space-time volume. 
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The just discussed model proves the consistency of  the definition of  a local SBS 
but it may seem to be somewhat artificial. We believe that this is not  the case and 
we shall now briefly indicate how the model may reflect the connection between a 
passive invariance, its spontaneous breaking and the renormalizations necessary in a 
realistic theory. In fact this was the way we arrived at the model. 

Replacing in the Lagrangian (10) ~(x + ~e) ~(x - 21e) by its gauge invariant ver- 
sion 

~(x + ~e)¢(x, e)~(x-½e) 

with ¢ defined as in ref. [30] by 

q~(x,e) = ' e x p  - i e  ~ . A ( x  + e'$)de'  : ,  
- - - @  

the resulting field equations are at least very near to the ones of  renormalized QED 
as may be seen by comparison with the formulation of  ref. [30].  Up to a 3,5-trans- • 
formation, the inverse propagation is of the type 

0 64(e) Fe(e ) = {Ze(e2 ) if" 8e - me(e2)} 

with 

lim {Ze(e2); me(e2); 84(e)} = { 1; m; fi4(e)}. 
e--* o 

The differentiation now also introduces the interaction whereas the function Z(e 2) 
takes care of the infinite renormalizations needed because the product of  interac- 
tion field operators is more singular than the one of the free operators; by its defi- 
nition (5) it is clear that F tends to compensate this singularity. As in refs. [30] and 
[31 ], Z(0) has the meaning of  the usual renormalization constants Z 1 and Z 2 and 
may now vanish without creating any inconsistency. The term rn(e 2) was not in- 
cluded in the treatment of  ref. [30] and is a self consistent mass subtraction term. 
We remark at the side that an approximate calculation shows that m(0) = 0 and that 
m(e 2) plays just the role of  d(e) in eq. (6) of  ref. [19].  

Here (or in the formulation of  refs. [30, 31 ] ) one may now think the non-local 
theory for finite V (resp. e) to be solved first and assume that the solution of  the 
local theory is obtained by going in the non-local solutions with V ~ 0 (resp. e ~ 0). 
For finite V (resp. e) there is a passive ~,5-invariance; the proof is the same as for 
our earlier free field model, except that now the non-vanishing commutation rules 
are not demanded to be canonical, but are selfconsistently determined by the prop- 
agators. It follows that also the limits of  the solutions for V ~ 0 (resp. e ~ 0) are 



454 Th.A.Maris et al., Degrees o f  symmetry 

connected by the 75-transformation, which shows the passive 75-invariance of  the 
local theory. For a generalization to the unitary transformations in the case of  the 
QED of  more lepton fields, these passive invariances demand that the cutoff  volume 
V (resp. e) be the same for all lepton fields. We hope to come back to this type of 
theory in more detail in a future publication. 

In general the renormalizations in quantum field theories have the same 
bootstrap-like property as F(ff  ;x - x ' )  does through eqs. (4a) and (5), namely that 
they define the theory, but are themselves again implicitly determined by the solu- 
tion of  the theory. This is the case whether the renormalizations are multiplicative 
or subtractive, infinite or finite. If there are inequivalent solutions, in most cases 
the renormalizations will depend on the solution chosen. In a correct formulation 
the renormalization should therefore transform automatically along with the fields, 
if these are passively transformed. This causes the fact that the passive invariance 
transformation of  the local field equations (or Lagrangian) is not  achieved by only 
applying a unitary transformation to them;just  this situation is reproduced in our 
model, resulting in a SBS with a non-conserved symmetry current. 

One may note that if the dependence of  the renormalization on the fields is ex- 
plicitly included in the Lagrangian or the field equations any finite renormalization 

~b' =Z} ~ (11) 

is a passive invariance transformation as, for example, can be seen in eqs. (4a) or 
(10). By combining transformations (11) and (1), a certain freedom in the choice of  
relation (1) is created*. For relation (2) to be possible the equal time commutation 
rules of  the transformed fields (or more generally, the leading small distance singu- 
larity of  its propagators) should be equal to the ones of  the original fields, and this 
fixes the relative normalizations of the sets ~k and 4 '  and therefore also the passive 
transformation (1), which turns out to be often but not always identical to the 
transformation of  the unrenormalized fields. 

An interesting exception leads to the so called anomalous dimensions [32]. As 
was remarked nearly ten years ago (refs. [9, 10] ) the dilatation may be considered 
as the prototype of  a SBS. From experience one knows that quite generally in the 
description of  a physical system: 

(1) A change of the unit of length leads to a new description of the same physics. 
(2) Such a change cannot be achieved by a unitary operation, because one can in 

general not actually dilate the states of  a realistic system. 
For a theory of  which the solutions reproduce these basic features, the dilatation 

is by our definition-a SBS. 
Can the dilatation be a local SBS? Suppose the dilatation transformation and the 

renormalization (11) are both passive invariances which are spontaneously broken. 

* In our model this choice does not exist because of the normalized commutation rules (4b), 
but in a theory of interacting fields such a fixed normalization will in general not occur. 
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Which one of  all the possible combinations of  these transformations can be gener- 
ated by a local current? This would be the one for which the asymptotic behaviour 
(for small x or large p) of  the propagator is invariant. For a fermion propagator 
which goes at high momenta as the free one multiplied, as in ref. [31 ] ,  by a power 
of  the type (m-  2p2)# one easily finds that to keep this behaviour invariant a dilata- 
tion 

¢'(x) = ~,~ ¢(xx) 

has to be accompanied by a renormalization 

"(x) -- xa ~ ' (x ) .  

The total transformation is 

~"(x) = x~÷~ CfXx), 

with t3 being the anomalous dimension. 
One may even show more, namely that, if a combination of  the normal dila- 

tation and a finite renormalization is a local SBS, then the leading singularity of  a 
product of  basic field operators has a power behaviour. Furthermore it is clear that 
any quantity which is renormalization invariant (e.g. a conserved current) has its 
normal dimension. 

We remark that even though the propagators of  ~ and ~ '  have the same behav- 
iour and normalization for infinite momenta, in the SBS case they will at low mo- 
menta have different normalizations and singularities. The asymptotic symmetry of  
the propagators is typical for a local SBS; at sufficiently small distances (high mo- 
menta) the broken passive invariance is recovered. These points may be verified for 
the dilatations and 75-transformations in our model. 

The mechanism which causes the self-consistent local symmetry breaking is evi- 
dently one in which a global property of  the solution (as the renormalization is) has 
a local effect. One might try to reproduce such a situation in a classical model. For 
example, introducing in the Hamiltonian of  the Heisenberg ferromagnet [29] the 
interaction term <Ol~(x)10> "~(x), one will have maintained the passive rotational in- 
variance but self-consistently broken the spin current conservation, because the ex- 
pectation value of  the spin is fixed by the dipole direction at infinite. However this 
type Of interaction seems in a classical model physically only to occur as a result of  
a long range interaction; in the example of the ferromagnet this could be the 
homogeneous overall magnetic field stemming from the far away dipoles. As the 
model given earlier directly shows, in a quantum field theory no long range interac- 
tion is necessary for a global property to affect the local field equations. 
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4. REMARKS 

Finally we would like to make the following loosely connected remarks: 
(1) The reason why SBS's are at all observed is the fact that in certain limiting 

situations the passive symmetries can emerge as good physical ones. For example 
in the model of massless QED, the spontaneously broken dilatational invariance be- 
comes at high momenta relatively good. The fermion propagator in the Fermi gauge 
[30, 31] deviates from the dilatationally invariant one only by an extra factor 
(m-2p2)a/4n. Similarly the physical electron-muon symmetry gets restored at suffi- 
ciently high momenta. In spite of the absence of a dynamical theory, it appears that 
both with respect to asymptotic dilatational [32] and chiral [33] invariance the 
general situation in hadron physics is somewhat comparable to the just mentioned 
one of the leptons. In contradistinction to the point of view taken in ref. [32] it 
seems to us that, for the understanding of the generally observed approximate dila- 
tational invariance in elementary particle physics, its SBS character is essential; in a 
halfway realistic theory exact passive dilatational invariance cannot be represented 
by a unitary operator which leaves the vacuum invariant. 

(2) We would like to sketch the relation of our approach to the one which intro- 
duces a skeleton theory [32]. To begin with, it is easy to see that certain approxi- 
mate invariances as dilatation invariance and SU(6), cannot be exact physical invari- 
ances (i.e. represented by unitary transformations) in theories which resemble true 
physics (which, for example, have a discrete non-trivial mass spectrum). To give 
these invariances an exact meaning, an unphysical element must come in. One could 
think of postulating the existence of a skeleton theory (which necessarily is quite 
unphysical) for which the mentioned invariances are exact "physical" ones, i.e. are 
represented by unitary transformations. The real physical theory is then supposed 
to be generated from the skeleton theory by the introduction of suitably chosen 
symmetry breaking perturbations. 

In our approach we give up considering the approximate invariances as active 
physical ones in any sense; they are exact mathematical passive invariances, related 
to the existence of a manifold of inequivalent solutions of the theory. As passive in- 
variances, they are not in contradiction with the physical properties of the theory 
nor is there any problem with their coexistence as was already shown in our model. 
We have seen that when the passive transformations are generated by local currents, 
this guarantees the physical relevance of the passive invariances at very small dis- 
tances or high momenta. Because of the assumed passive invariance, no symmetry 
breaking parameter needs to be present in the basic theory. Therefore the type and 
amount of the deviations of the physical symmetries from the exact ones should in 
this case in principle not be introduced ad hoc (as in skeleton theories) but be de- 
termined selfconsistently, as one already can do in QED for the breaking of the 75- 
symmetry and dilatation invariance and partially for the breakings of the SU(2) @ 
SU(2) symmetries in the QED of electrons and muons [ 13, 14]. From our point of 
view, even in the unlikely case that a kind of skeleton theory could be constructed, 
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the realistic situation would be related to the skeleton solution in the same way as a 
superconductive state is related to the normal one [2], i.e. non-analytically and 
therefore not perturbatively. 

(3) The present day state of the art in quantitatively treating quantum field theo- 
ries does not allow one to make directly use of  the SBS idea in most cases of  hadron 
physics; up to now one cann~)t do much better than to add a symmetry breaking 
term to the Lagrangian and calculate in lowest order. What we have shown in the 
present paper is that quantum field theory is not a prioriunsuitable to provide a 
quantitative understanding of  the symmetry breakings. On the contrary, the re- 
normalization is a built-in mechanism which can produce selfconsistent symmetry 
breakings of  the observed type, i.e. with non-conserved currents and without Gold- 
stone bosons. 

(4) In hadron physics the approach which considers the pseudoscalar mesons as 
a kind of  approximate Goldstone bosons with finite mass [2] has been surprisingly 
successful. Similar bosons do not occur in the SBS approach to QED and the ques- 
tion seems therefore to demand special dynamical considerations. The lowest mass 
value of  the states which are created by applying a generator of  the passive invari- 
ance transformation on the vacuum, may be considered as a measure for the earlier 
discussed stiffness of  the system against the local SBS transformation. In this sense 
the low pion mass shows that one may not be too far from the limit in which the 
passive chiral symmetry operation is locally implementable. 

(5) General conformal invariance, in particular the inversion, gives difficulties as 
a finite passive invariance transformation because i.t contains a singular space-time 
point. Therefore only infinitesimal conformal broken symmetry transformations 
[34, 8] are considered in practice. For the same reason general conformal invari- 
ance cannot be a SBS in the sense of  the present paper. As in any realistic system 
also the conformal current is not conserved, we do not know of  any definition by 
which general conformal invariance could be a spontaneously broken symmetry. 

That there is at least a basic difference between the dilatation and the more gen- 
eral conformal transformations in this respect can be observed nearly immediately. 
As we saw, the presence of  a SBS demands the possibility of  different descriptions 
in which observable quantities have the same values, and which are related to each 
other by the passive invafiance transformation. As remarked earlier, with respect to 
dilatational invariance these descriptions are obviously always present; they cor- 
respond just to different choices of  the unit of  length. This is probably the most 
direct argument for the general relevance of  spontaneously broken dilatational in- 
variance to elementary particle physics [9, 10]. In contradistinction to this case, it 
seems that there does not exist any general change of  description which corres- 
ponds to an inversion or a special conformal transformation. 

(6) The discussed types of  symmetries range from the only mathematical one to 
the bonafide physical symmetry, i.e., the one which can be completely actively in- 
terpreted. Whether one speaks of  spontaneous breaking of  a physical symmetry or 
of  self-generation of  such a symmetry, depends on the direction in which one goes 
through the classification. 
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(7) One might ask what can be the meaning of  a mathematical symmetry if it is 
not physically realized? The question seems to be intimately related with the more 
general one: on which basis should one hope for, or even expect, a basic theory to 
be mathematically simple, as physical phenomena are evidently complicated? An 
interesting discussion of  this fundamental problem is given in ref. [35]. Anyhow, if 
the present interpretation of  the observed approximate symmetries is true, then the 
corresponding passive invariances would play a similar role as Lorentz invariance 
and other good invariances in limiting the possibilities for the construction of  a 
basic theory and could allow for a derivation of the physical symmetry breakings. 

We thank J.A.Swieca for helpful discussions. One of  us (T.M.) is grateful to the 
members of the Theoretical Group at DESY for their kind hospitality and in parti- 
cular to R.Haag and K.Symanzik for stimulating discussions during a two-month 
stay. He is indebted to R.Haag and H.Joos for making this visit possible through the 
Brazilian-German Scientific and Technological Agreement. 

APPENDIX 

Uniqueness of  the free field solution of our model 
From our field equation (4a) follows 

f F(x - x') S(x') dax ' = 0 ,  
V--*O 
(x,x' in lO 

(A.1) 

where 

s(x') = <01 ¢ (x ' )  ~(0)10>. 

Furthermore by definition (5), assuming 7oF t~ ( -x )3 ' 0  = F~(x)  

f F(x - x')Sv(x') d4x ' = ~4(x) ,  
(A.2) 

f F(x - x') Sl(X ') d4x ' = 0 , 

(the integrals are over the whole of x-space). 
For eqs. (A.1) and (A.2) to be fulfilled, the distribution F must have the proper- 

ty that its operation is not affected by the V-cutoff. This is just the self consistency 
condition which is described in the text as applied to this case. This very strong 
demand is fulfilled if F(y) is a distribution localized at y = 0. In this case, which 
seems to be the only possibility, one has 

/~(p) = p(p2).p. + Q(p2) ,),5/~ + R(p2) + U(p2) 3'5, (A.3) 
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where P, Q, R and U are polynomials of finite degree. One has then 

,~(p) =/5- l(p). (A.4) 

Except when P, Q, R and U are constants, this propagator would be less singular 
than the free one, in contradiction to the positive definiteness of the K~ll6n- 

Lehmann density and the assumed commutation rules, which even demand P = 1, 

Q = 0. This gives our solutions. 
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