L&B-? Nuclear Physics B18 (1970) 366-389. North-Holland Publishing Company

RENORMALIZATION AND GAUGE INVARIANCE
IN QUANTUM ELECTRODYNAMICS

Th. A. J. MARIS, D.DILLENBURG * and Gerhard JACOB*
Inslitulo de Fisica and Faculdade de Filosofia
Universidade Fedeval do Rio Gvande do Sul
Porto Alegre, Brasil

Received 8 December 1969

Abstract: The connection between the field theory and the perturbation expansion of
quantum electrodynamics is studied. As a starting point the usual Lagrangian is
taken but with the bare electron mass and the renormalization constant Zg set
equal to zero. This theory is essentially equivalent to the usual one; however, it
does not contain any constant of nature and is dilatational and gauge invariant,
both invariances being spontaneously broken. The various limiting procedures
implied by the differentiation. the multiplication and the renormalization of the
field operators in the Lagrangian are combined in a gauge invariant way to a
single limit. Propagator equations are derived which are the usual renormalized
ones. except for: (i) a natural cancellation of the quadratic divergence of the vac-
uum polarization: (ii) the presence of an effective cutoff at p = €-1; (iii) the re-
placement of the renormalization constants Z1 and Z9 by one gauge dependent
function Z(€2): (iv) the limit € — 0 which has to be taken. The value Z(0) corres-
ponds to the usual constants Z1 and Z5. It is expected that in general Z(0) =0, but
this poses no problem in the present formulation. 1t is argued that the function
Z(€2). which is determined by the equations, may render the vacuum polarization
finite. One may eliminate the renormalization function from the propagator equa-
tions and then perform the limit € — 0: this results in the usual perturbation
series. However. the renormalization function is essential for an understanding
of the high momentum behaviour and of the relation between the field theory and
the perturhation expansion.

1. INTRODUCTION

1.1. General vemarks

At the present time only one good working quantum field theory is known
which might be of a fundamental nature, namely the quantum electrodynam-
ics (QED) of the charged leptons. However, though it is possible to obtain
from this theory several accurate predictions which have been well con-
firmed by experiments [1], the connection between the basic formulation of
QED as a field theory and the results of calculations is far from straight-
forward. It is the purpose of this paper to study this connection more
closely. A better understanding of how the field theory of QED operates is
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of interest on its own right in the study of leptons and could also be helpful
for the construction of field theories describing other elementary particles.

It might be worthwhile to explicite the argument for the possible impor-
tance of the study of QED for elementary particle physics. In spite of the
impressive successes of the more recent descriptions of strongly interact-
ing particles, it is expected that a detailed dynamical approach will even-
tually be needed. For this purpose the assumption that the asymptotic be-
haviour of a system of particles far away from their interaction region
should be understood from the laws governing their behaviour at small re-
lative distances seems to us more natural than the opposite hypothesis of a
pure S-matrix theory. The only dynamical theory which is at present avai-
lable for a description of the behaviour at small relative distances appears
to be quantum field theory. One way of studying such a theory is to start
from some general assumptions as in the method of axiomatic field theory.
It is however not very reassuring that just QED does not fulfill all mathe-
matical axioms usually required in this general quantum field theory. like
positive definiteness of the Hilbert space or locality.

It seems therefore important to understand better how nature operates
in the only realistic theory of interacting fields which is known, namely in
QED. In this theory one has the advantage that there is very little freedom
for assumptions, because their consequences can be verified rather imme-
diately. A related advantage of studying such a realistic theory is that one
may be able or even compelled to make an unusual conclusion because it is
unavoidable *. In model field theories which are based on abstract assump-
tions, one will have the tendency to put the burden of any unexpected result
on the artificial input.

Of course, QED has in the past been the model for practically all quan-
tum field theories which have been studied. We believe however that there
is still more to learn from it and this is the motivation for the present in-
vestigation. From this point of view, it is encouraging to see that the study
of QED has recently again lead to results which are applicable elsewhere.
We have in mind the problem of spontaneously broken symmetries (SBS).
As was first remarked by Heisenberg and by Nambu, it could be possible
that the approximate symmetries observed in nature reflect exact passive
symmetries of the basic theory [2,3]. In this way the observed asymmetry
could be just a property of the solutions and not of the fundamental equa-
tions which they obey. In spite of some initial successes such interpreta-
tions have lost the general support, mainly because one did not observe
the conserved currents and massless bosons expected from general argu-
ments [4] which were confirmed in several models [5]. A study of a suita-
ble Uy ® Ug symmetric formulation of the QED of electrons and muons
showed however that in this realistic SBS theory neither the SBS currents
are conserved nor Goldstone bosons occur [6-8]. It is in particular inter-

* A classic example: The conclusions which lead to modern physics were at the time
so unusual that they could almost only have been made in theories (thermodynam-
ics and electrodynamics) which were understood to such a degree that there was
hardly any freedom left to draw other conclusions.
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There are two other aspects in which our treatment differs from the
conventional one. We take the bare mass of the fermion equal to zero. Ex-
perience has shown [21,22] that this is probably a necessary condition for
the mass renormalization to be finite and the resulting dilatational invari-
ance of the theory is attractive from a general point of view [23]. Further-
more we will take Z3=0 from the start, i.e. we do not include a term cor-
responding to the free Maxwell field in the Lagrangian {24|. In order not to
introduce all modifications simultaneously we shall in the next section con-
sider the implications of these last two assumptions for the usual formal-
ism in QED. In the third section the new limiting procedure is discussed.
In the subsequent section we derive the modified propagator equations and
the relation of our approach to the usual perturbation theory; some addi-
tional remarks are presented in the last section. An application of the
present ideas to a discussion of the fermion propagator is given in ref. [25].
Throughout the paper, unless otherwise stated, we shall use the notation
of ref. [26].

2. THE USUAL THEORY BUT WITH VANISHING BARE ELECTRON MASS
AND Zq=0
3

We first review briefly the usual treatment of QED [9]. The Lagrangian
is given by

L0x) = P00 (i - mWyg () + Lo AW) - P AWy )

Here and in the following, where necessary, proper symmetrization and
subtraction of vacuum expectation values are understood. The superscripts
(u) stand for "unrenormalized". The canonical quantization leads to the
well-known equal time commutation rules.

In order that the asymptotic fermion field and the transverse photon
propagator have the normalizations usual for the free fields and to exhibit
the phenomenological coupling constant, renormalized quantities are intro-
duced by

(u) v, (w) .

! . -1--
vz, izt = 22y Yy

o 1, 4 (W)
A, =Z5 A, ¢ =2 ZyZge . (2)
The Lagrangian expressed in these quantities is

L0x) = Zo@x) (@8 - mD)Y(x) + Z5 Lo(A) - eA () Hx) = Lolx)+ L), (3

with
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Lo(x) = Yx) (@8 - m)p(x) + Ly(A) ,

L'(x) = (Zg - D) (i - m)p(x) + (Z3 - 1) L(A)

+ Zo@(x) n - my(x) -ed ()7, (4)

where m is the experimental mass. The factors Z occur of course also in
the equal time commutation rules of the renormalized fields.

Using the decomposition of the Lagrangian as given in eqs. (3) and (4)
the interaction representation is set up. In the graphical expansion the ef-
fect of all terms in .£'(x) except ¢4,V can be included in the propagators
and vertices multiplying these with factors Zél, Z§1 and Z{. These factors
are absorbed in the definition of the full propagators and vertices and oc-
cur therefore explicitly only in the free ones. For instance in ref. [26] it is
shown how these remaining factors can be eliminated to give the perturba-
tion expansion in renormalized quantities.

In this section we want first to discuss the mass renormalization, re-
viewing known results, and then come to the problem of Z3.

The mass renormalization turns out to be infinite in any finite order
perturbation calculation. More precisely, the selfmass correction m - (W)
caused by the interaction is given by a logarithmically divergent integral
times #. In practice one absorbs m(4) and its correction in the fermion
propagator, adjusting the pole to the experimental mass value, and does
not worry anymore about the meaning of the unrenormalized mass. The in-
finite multiplicative correction to m u) suggests however that this bare
mass has to be taken zero [27, 24,23, 28] and a self-consistent calculation
[21, 22] supports this viewpoint. It is very interesting to observe that with
m(1) =0 no constant of length dimension occurs anymore in the basic theory.
A finite non-zero fermion mass can only come about by the spontaneous
breaking of the dilatational invariance. This point and its implications for
elementary particle physics in general are discussed in refs. 23,28, 29].
In the following we shall take m(W) =0,

With respect to Zg, all perturbation calculations which have been per-
formed up to now seem to indicate that this quantity vanishes. We shall
take Z3=0 from the start; from eq. (3) this means that we omit the term in
the Lagrangian corresponding to the free Maxwell field. Such a "Zg3=0 ap-
proach™ has been discussed earlier, e.g. in refs. [30, 24].

The Lagrangian now becomes

L(x) = Zoyfx)igydx) - e Z1 YAx)A(x) yAx) . (5)

We keep at present the usual equal time commutation rules for the y-field
and the ones for the A-field at different space points. The equation

v
L2 oA~ =

0, (6)
14

0x

is taken as a subsidiary condition.
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From the assumed commutation rules, the subsidiary condition and the
field equations follow [31] for all ¥ and ¥

EA/J 1 X a
]Lw -, AY(y) | = ia Ay Dlx-2),
axH . Y
FA“ ?AVJ o
y — - - b
axH o ay?

= -ea D(x - v)Yy) . (7

The constant ¢ determines the gauge and will be discussed later in this
section. Here we remark that eqs. (7) are derived ones and that a plays in
this derivation the réle of an integration constant and does not occur in the
gauge invariant basic theory.

We adopt the Gupta-Bleuler formalism [9] and to see the connection
between the descriptions with different values of ¢ we consider the follow-
ing formal operator gauge transformations:

w'x) - e—ie(b-l)()'(x)w(x)e—ie(b—1)0+(x) ’
Ap(x) = AL+ (b-1) xV o) , (8)
with
o) = 1 71AY) - lim [Dlx-x) eA"(x) e‘ﬁ’xé‘d4x~ _
2xV B0 ax'V

The transformed operators are again renormalized [17] as one sees di-
rectly by taking the matrix elements between the vacuum and the relevant
one particle states. Because | 1]0(x) =0, the decomposition in positive and
negative frequency components 0% and O~ is Lorentz invariant. The oper-
ation _I"! needs a more careful discussion [17,31]; we intend to come back
to this point at a later time. At present one may alternatively consider
O(x) as being defined by eqs. (9).

From the given commutation rules and the formal definition of O(x) one
finds
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[O(x), AY(y)] = ia i——l?"xl D{x-y) ,
ayV

[O+(x)7 O_(y)] =0 ’
[0%(x), W] = #ieal ;1 DE(x- p)y(y)

[0*(%), Y] = +iear); 1 D¥(x - y)y(y) . (9)

Taking Z7 = Z9 and ignoring an infinite renormalization factor caused by
the multiplication of the local field operators at one point, to which we
shall return in sect. 3, it may be seen that the Lagrangian (5) is invariant
under the transformations (8). One may note that this is not the case for
the usual Lagrangian because the free Maxwell Lagrangian cannot be
chosen to be of the manifestly gauge-invariant form FHVF,, ; as is well
known, such a choice gives through the field equations a contradiction with
the commutation rules of the charge density with the y-field.

The photon propagator may be derived from the conventional Dyson-
Schwinger equation

Z3D = Dy - Dye2lD (10)
with the vacuum polarization

MHY(R) = - (V2 - RRRV)I(RZ) . (11)
For Z3=0 follows from egs. (10) and (11) that one has to take

T v EHEY\ -2
L e L
and that

2_ U pv uy kHERY
b P - (47 -7=-) - o (12)

which represents an equation for the photon propagator.
Eq. (12) also results from the field equation

AL MW = 5 AW (13)

where the Lagrange multiplying operator A(x) appears as a consequence of
the subsidiary condition (6). Because from eq. (13) J* has no transverse
part, it cannot be the electromagnetic current; we shall come back to this
point.

To see how eqs. (12) and (13) are related consider the graphical expan-
sion of
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OIT {0 *(yw(2)} | 0) .

One has in momentum space, using eq. (13)

:o:@@@

=i(p-pW(p-pH2s (O\T{V X)A( O)zl/ z)Ho>s (14)

in the usual notation; in the r.h.s. the Fourier transform of the T-product
should be taken. Eq. (14) can be written

(g - o2 (p 2P -p)IT (0,1

. ' ll [ 2 'l = _1 t t
=i -pH (P ST ()0 T{WAY |OOST B . (14
Multiplying eq. (14") with (p -p"),, and summing over i, one obtains a con-
dition on the Lagrange multiplier A(x). A multiplication with

UM B-p)op-pHH P)“
(-p"H2

gives, together with eq. (12), an identity. Graphically one may see that eq.
(12) and suitable conditions on A(x), are sufficient for the vacuum expecta-
tion of the T- product of J(ux)— oA cxu with any set of field operators to van-
ish, i.e. for J( ¥ - dA/2x,, to vanish. One has to take the coordinates of the
other operators in a T-product with J*(x) always dlfferent from x in order
to be able to interchange the e -limit, which defines J (x) (see sect. 3), with
the T-ordering *. It is however easy to see that a T -product, which van-
ishes for all values of each relative coordinate argument, except if all four
components of one of these arguments are zero, vanishes identically.

The solution of eq. (12) is

[Ie%Y
DMV (k) = - (gh? - ;e ) e2m71(12) k72 - kM RV (15)

The term akHkYk~4 comes about in the followm% way The solution of eq.
(12) contains an arbitrary additive term 242VE" ) because this com-
ponent is annihilated by the glVE2 - kY factor occurmg in M4Y(k). The
form k*E'E™% is compelled by the subsidiary condition (6) and the constant
a is the same as the one occurring in the commutation rules (7).

Of course, the arbitrariness in the solution for D*”(k) does at this point
not yet necessarily mean that all values of ¢ are in fact allowed. This
question depends also on the other Dyson-Schwinger equations and on the
physical interpretation. In fact the special value a =0 (Landau gauge)

* This is the reason why the lowest order interaction does not vanish.
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is excluded, as this would from eqgs. (7) mean that PVAV vanishes because its
vacuum expectation value is zero and it is well known that ?VAV =0 does not
lead to an acceptable local theory (see eq. (16)). If however one positive
value of ¢ is possible (as in the Fermi gauge, where ¢ =1), then all positive
values are allowed. This follows from the gauge invariance of the theory and
the fact that under gauge transformations ¢ is multiplied by a positive num-
ber. To see this one may investigate the effect of the gauge transformation
(8) on the commutation rules (7). Using egs. (7) and (9) one obtains for the
transformed operators again the rules (7) but with a new parameter a'=ab *.
The transformation (8) with b =0 evidently transforms any gauge into the
Landau gauge, in agreement with @ VA,I, =0 following from eq. (8) with =0.
Clearly the gauge transformation with b =0 has no inverse and therefore
does not belong to the invariance group, which is non-compact with a par-
ameter range 0 <b <, This point and the effect of the gauge transformation
on the fermion propagator is discussed in ref. [25].

As the gauge transformation (8) leaves the basic theory invariant, but
changes the propagators, it cannot be represented in Hilbert space by a
unitary transformation which leaves the vacuum invariant. It is therefore
a spontaneously broken symmetry (SBS). Solution (15) is a non-normal so-
lution of eq. (12); the normal, non-physical, solution is given by ¢ =0, the
Landau gauge solution. The possible mathematically non-equivalent irre-
ducible representations, which are typical for a SBS [32], may in this case
be labeled by the parameter a. The gauge transformation (8) leads from
representation a to representation ab. Observable quantities are invariant
(i.e. independent of the representation), as is required in any SBS theory
for the uniqueness of the physical interpretation. We expect that a closer
investigation will show that the scalar photons play the réle of Goldstone
bosons, essentially because the symmetry current is conserved in this
case.

We have already seen that J #(x) of eq. (13) cannot serve anymore as the
electric current. In any given irreducible representation a we define the
current by

) = Ak (1-h) AT (16)
a (‘X‘u axV

This current is conserved and invariant under the transformation (8). Fur-
thermore fjod?’x has from egs. (7) the usual commutation rules with the ¥
and A fields. The definition (16) shows the unphysical character of the
Landau gauge.

The exact formal gauge invariance of the Lagrangian (5) explains the fact
that QED shows so many of the properties of a SBS theory with a conserved

* This relation is not trivial and was wrongly given in original manuscript. As
pointed out to us by J.A.Swieca. one has to use that. from eq. (9).7 1" D(x -») is not
a function of (x - ) and that

-1 -
O, D' )(x-y)-fj 1pl )(y—x) = lim -—0- Al )(x—y) .
y 2~ m
m =0 om
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symmetry current. We mention the gauge dependence of the description,
the invariance of observable quantities, the degeneracy of the vacuum and
the presence of the long range Coulomb interaction or scalar massless
bosons.
If one introduces in the Lagrangian (5) an unrenormalized field A(W by
the definition
AYW(x) = eAV(x) | (17)

no constant of nature occurs anymore in the theory. After having solved
this form of the theory, the coupling constant ¢ would be found to be the
renormalization constant necessary in eq. (17) to renormalize the photon
propagator. The coupling constant is therefore, without the transformation
(17), determined by the condition that the photon propagator is renormal-
ized, that is from eq. (15)

e21(0) = 1 . (18)

To have a realistic approximation of QED it is at least necessary to in-
troduce also the muon field. This can be achieved by doubling the number
of components of the fermion field, introducing an isotopic spin formalism
[33, 34]. By this modification one still has not introduced a constant of nat-
ure in the Lagrangian. It is clear that to be realistic the vacuum polariza-
tion in eq. (18) certainly should also contain the contributions from the
muon field. For a discussion on the possibility of understanding in princi-
ple the ratio of the electron and muon masses in such an approach see refs.
[27,23,28,33].

The present formulation still contains the weaknesses of the usual for-
mulation of QED. To begin with, one has a quadratic divergence in the
photon propagator which has to be subtracted on the basis of a general
gauge invariance argument. Of course, after one has started from a gauge
invariant Lagrangian, it should not be necessary to invoke gauge invariance
again as an extra condition. As we shall see, the reason for this lack of
consistency is that the Lagrangian (5) is only formally gauge invariant, but
is not actually so, as long as one has not stated how the occuring singular
products of field operators should be defined. Furthermore, and much
more serious, the electron self-energy and the charge renormalization,
i.e. essentially the value of the L.h.s. of eq. (18), turn out to be logarith-
mically divergent with a possible exception for the electron self-energy in
a very special gauge [21,22]. We used the word "possible" because it
seems to us likely that this special gauge is exactly the forbidden Landau
gauge; this problem will be treated elsewhere [25]. It is therefore neces-
sary to improve the definition of the Lagrangian (5), and we shall now turn
to this problem.

3. INTERACTION DEFINITION, DIFFERENTIATION AND RENORMALI-
ZATION

First the problem of the quadratic divergence of the vacuum polarization
will be discussed along the lines of refs. [18,19].
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From general arguments it has been shown [35-38] that the electromag-
netic current has to contain an explicit dependence on the vector potential.
Furthermore it is well known that a product of the type y(x)y*y/(x) should
be defined by a limiting procedure because of the singular properties of the
local field operators. The gauge invariant definition of the current [39,11]

X+ €
M) = lim [P -€), vFux+e)]xexpli-ie [ AY(s)ds } +(e = -e)} ,
e~ 0 X-€

(19)

has the required dependence on the A-field and its use in the field equations
appears to include automatically [40] the subtraction terms necessary to
cancel the quadratic divergence of the vacuum polarization.

This procedure to get rid of the quadratic divergence is however still
not quite straightforward. Namely if the current is taken to be explicitly
dependent on A¥ | then the interaction term in the Lagrangian density can-
not be of the generally assumed form j“(x)A“(x), as this would result in

27, (6)
OL ) +Abr) (20)
5AY(x) 2AY

which contradicts dj u/aA"#O. Therefore the definition (19) requires a
redefinition of the Lagrangian.

A suitable Lagrangian density has been given in refs. [18,19]; for our
case with (W =0, Z3 =0 this definition reduces to

]V(x) = -

h(x,e V)t

L) =2 lim ”

ve—0

-vac. exp.val. , (21)

with

hix,en) = - Yx+en)ivaolx, en)lx - €it) ,
and A(V) being a unit vector in the direction of the vth axis. The two sign
indices of Z indicate here and in the following the part of # which is sym-

metric under the two commuting operations of charge conjugation (upper
index) and hermitian conjugation (lower index), i.e.

Kt = Y+ n€+nl v nfey (22)

The operator ¢ is essentially given by

€
p(x,en) = T, expl-ie [ #-Alx+e i)de'} (23)
-€

where T, means time-ordering when € is a positive number and anti-time-
ordering when € is negative. With this convention, which is suggested by
gauge invariance, one has ¢'(x, €#) = p(x, - €#) and therefore k1(x, €#) =

- h(x, -€n). We shall come back to the definition of ¢ after having made
some more general remarks.
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The Lagrangian (21) is, neglecting the singular properties of the field
operators, identical to the one discussed in the preceding section. From
this naive point of view one would write definition (21), using % T(x,en(¥)) =
- h(x, —en)y simply as

2l +
Lty < 4D (T
6:

€
v

The line integral in the exponential renders the integral formally gauge
invariant also for finite €. As is shown in ref. [19] the non-linearity of the
exponential introduces extra graphs, containing vertices with more than
one photon line, which precisely cancel the quadratic divergence of the
vacuum polarization and make it transversal. In this way the usual ad hoc
subtraction or redefinition of the current become unnecessary.

Clearly the definition (21) is not manifestly Lorentz invariant because
the direction of the coordinate axes plays a preferred réle. But exactly the
same is true in the definition of the differentiation process occurring in the
Lagrangian of any quantum field theory. For example a term of the type
YBY is in our notation defined by

W) - p(x - en))

Yy = lim El;(x))/uw(x%n -

e —~0 v

(25)

The Lorentz invariance of such an expression implies certain continuity
properties of the limit (see for example eq. (33)) and is consequently an
assumption concerning the solution of the theory, the validity of which
should in principle be verified a posteriori. For a classical field such a
verification is trivial, but this is not necessarily true for quantum fields
with their infinitely many matrix elements and, by definition, singular
properties. We shall return to this point in sect. 4.

Now we come to a discussion of the definitions (19) and (23). One may
look at the exponential in a slightly different way, writing

€
Ax+ €n) Ty exp{-ie [ 7+ A(x+e'n)de'} Yx - €n)
-€

€
= Yl(x) exp (e7d) T¢ exp? - ie-f i A(x+en)de'} exp (- €A Yx) . (26)
~€

The identity

e N
exp (6}”15) T, exp] - ie f 7i- A(x + €R)de'} exp (- €722) = exp{ - 2¢(a+ieA) - A}
-€
(27)
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with? =4(3 -2) is easily proven by realizing that both sides obey the same
first order differential equation in €, with identical boundary conditions at
€ =0.

Inserting relation (27) in definition (21), one obtains

h(x,en) = - Yx)iyn expl - 2 (7 + i€ A) - AY Y(y) . (28)

This form shows immediately the gauge invariance of our definition and
also suggests }_l)lat besides the exponential, there will be other non-linear
functions of €(¢ + ieA) which might be used in the Lagrangian. This corres-
ponds to the possibility of gauge invariantly smearing the fermion fields
instead of displacing them. Because of the insensitivity of the propagator
equations against the cutoff in momentum space, to be discussed in sect. 4,
we believe that it does not matter which precise function of €(T +icA) one
uses *. This situation reminds of the similar one in the non-linear phenom-
enological Lagrangians of hadron physics [41], with the differences that in
our case one may calculate in arbitrarily high order and has to perform the
limit e — 0.

€
The definition of 7, exp{ - ie f 7-A(x+€'i)de'} has its problems. In the
-€

expansion of the exponential occur products of line integrals, which are not
defined because the linear smearing of A is not sufficient. For example,
one finds for a free field ande >0

€
©IT exp{-ie [ #-A(x+eR)de'}|0)
€

5 € € " R
_ _1 : LI M A . vooon
= exp{ - e j_e de j_e de nIJnVLDF (e ="} .

The exponent is logarithmically divergent, as one sees taking, for in-
stance,
iD;V(x) = (277)—1,g,f“')x_2 .
More generally one has for different ¥;'s and sufficiently small €; >0
€p €7
<0|Tﬁigz)(xi,€z-ﬁ(i))|0> = exp{—%ezzz f de), f dei’
k1 - Ek - €l

ﬁ(f)ﬁ(l)iD'uv(xk v a® e"r‘z(l))} .

myn, PR A S

(29)

The divergences in the exponent come only from the terms % =1; this sug-
gests that a good definition of the exponential may be

* B.Liberman has recently shown that this is indeed the case.
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o' = 0fplo)te. (30)
For the free field case one has now
olo'loy=1,
and
€k €]
o7l TPy = exp{-e2 T [ aq [ ac}
k<l -€p -€]
xﬁ(f)ﬁ(:)iDg V(xk X, e'kfz(k) - e'}ﬁ.(l))} ,

which is finite for different x;'s. In the diagrammatic perturbation expansion,
the division by the vacuum expectatwn value (0] ¢|0) means that photon
lines coming from the same point should not be contracted; closed loops of
the photon propagator do not occur.

Although the definition (30) may seem satisfactory, it gives rise to a
new problem because the denominator spoils the gauge invariance of the
Langrangian (21). As the gauge invariance is one of our leading principles,
this would seem to be a serious trouble. It will however soon become clear
that the study of the renormalization leads to a natural formulation in which
the gauge invariance is restored.

We shall now discuss the renormalization of the fermion field. If one
calculates with the help of the usual graphical technique the fermion self-
energy and the vacuum polarization, one finds in general logarithmically
divergent integrals, as was remarked in sect. 2.

The occurrence of these divergences indicates that the limit in our
Lagrangian (21) may not exist and following ref. [20] we first generalize
the limiting procedure. The limit (21) is of the general form

lim T, 2 enV)) ZQ(x -en(Vy
€
e~ 0 v
or, naively (31)

3Q(x, €)
Yv 5?*) €=0"’

with @ =k1 =+ 2C. Let us therefore first consider the expression

lim
e—0

QUr, ent M) - @rx, - enlV) _ (22 9)) (32)
€ =

2€ o€

A priori it is, of course, not certain whether the theory has a solution
for which the limit (32) exists and we shall show that relaxing this condi-
tion introduces the renormalization in a natural way. First we define
3 §/3¢, (omitting from now on the subscript € =0) in an invariant way by
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demanding that for any sufficiently small four-vector ¢:

Q(x, €) - Q(x, - €) = 2 373 RV(G)% (33)
with 9Q/d¢€,, independent of €2 and
lim RYe)=0.
€0

Suppose now that the condition (33) for a certain operator function @(x, €)
cannot be fulfilled. It might in this case still be possible to define a gen-
erlalized gradient g0Q/d¢,, at € =0 by weakening eq. (33) to

2(e){Q(x, ) - Qlx, - O} = 2¢, {5°% Q (e)f , (34)

d€

where Z(ez) is a function of the Lorentz invariant €2 which may be suitably
chosen, keeping otherwise the same conditions. It is easily seen that, if
there ex1sts any function Z(e ) which gives a finite non-zero result for
£9Q/ 3¢, in eq. (34), then this operator is unique up to a multiplicative con-
stant; we exclude very singular situations. The same is true for the leading
dependence of Z(e ) in the neighbourhood of € =0. This means that the ra-
tios of all matrix elements of go@Q/ d¢ p are defined for the given operator
function @(x, €). In QED, and in other cases we have considered, this turns
out to be sufficient to determine the physics, because the arbitrary multi-
plicative constant can also be looked upon as resulting from a finite field
renormalization under which the predictions of a theory are well known to
be invariant.

In connection with the limiting procedure (34), the following points may
be noted:

(i) The operation g3/3¢ " has not the linear character of the differentia-

tion, i.e., in general

ga(Ql +Q9) £0Q1 giQ9

T T 4 .
2¢, de, | o,

(35)
because the leading €-dependence for € — 0 of the functions Z(e?2) belonging
to @1 and @2 will in general be different. Similarly, under a unitary trans-
formation

1
SURQU ", 1,£3Q U-1. constant , (36)
o€, o€,

except when the Z-function belonging to g3UQU-1/3¢ , has the same leading
€-dependence as the one of g5Q/3¢ ;. In agreement with the well known fact
that the renormalization constant Z9(=Z1) changes by an infinite constant
under an operator gauge transformatmn [10,17], one finds [25] that the
leading € -dependence of Z(e ) varies with the gauge. From the inequality
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(36) follows then that the operator gauge transformation of the Lagrangian
can in general not be represented by a unitary transformation.

(ii) In a free field theory Z(e 2) may evidently be chosen to be a non-
zero constant and the limit (34) reduces to the usual one. In QED it turns
out that Z(Ez) is in a gauge a of the form (mze 2)““ 4”, which is nearly a
constant for not too small an ¢ 2. Therefore, in QED the limit (34) is for
calculative purposes often nearly equivalent to the usual one. For field
theories of strongly interacting particles the difference is expected to be
drastic. .

(iii) As remarked, we find that in QED Z(€2) ~ (m2e2)2¥ /47, the usual
limit (31) is then clearly infinite. Loosely speaking the denominator € in
eq. (31) is just too small; to obtain a finite answer one should have divided
by ¢(l-aw 27) jpstead. From definition (34) follows that now Q(x, €) is not
defined for light-1ike €. In this case there exist in principle two different
generalized limits, namely for €2~ 410 and €2 - -0. At present we shall
assume that Z(ez) :Z(-Ez) = 0, which is born out by an explicit calculation
[25].

With the introduction of the generalized differentiation, the Lagrangian
(21) becomes

(1/))+

g?‘h:(x, €) hix,en N

L(x) = e, " hmOZ)Z(ez) —
€ v

(37)

As always the vacuum expectation value is supposed to be subtracted. In
the naive € -limit one obtains

L(x) = 5 ZO0W(x) (i7 - eA)y(x) + charge conj. | (38)

which is the Lagrangian (5) with Z5 = Zy = Z(0). By the combination of the
three limiting procedures implied in the differentiation, the operator mul-
tiplication and the renormalization, the constants Zy and Zg have become
one and the same quantity.

The expression (37) is still not gauge invariant, because of the occur-
rence of the denominator /0 {TG exp{ -ie fAdE'} {0) which introduces an
infinite constant by a gauge transformation. We will now give a slightly dif-
ferent definition which does not have this defect and is still identical to the
Lagrangian (5) in the naive € -limit.

Consider the expression

Lypla:€) = o (x+ )olx, )yglr-€)] (39)

in which € is now a four-vector and the sign symbols are those defined
after eq. (21). The vacuum expectation value

Ol lyp(x, ) |0) = 1h50€) ,
is independent of x because of the Lorentz invariance of the vacuum. We

consider laﬁ(e) as a 4x4 matrix in the spinor indices and define l("ylﬁ(e) by

-1
Zaﬁ(e)lﬁy(e) = Gay
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One may now define the Lagrangian by

(v)

Lx) = lim e'4r(ez) Z)z(;lﬁ(eﬁ(y))z y-1%, (40)
vV

(x,en
e —0 @

B

where the 1 at the r.h.s. is the, now explicitly subtracted, vacuum expec-
tation value and 1"(62) has to be chosen such that the limit exists. The fac-
tor 7, (en\")) eliminates again in a diagrammatic expansion all closed pho-
ton loops, including their higher order corrections. In the naive limit ¢ -~ 0
the dominant behaviour of l(‘y1 (€) is, from the definition (39), given by
S'Cly(2e), that is, by an expression of the type f(ez) (eBa,”E‘l)‘l. In this limit
one finds therefore

£ = A0 Lim 5 () {Iga(x i) -(0] Iz, ei) |01}
e—0v " Ba

Vs Vo (x, )p(x - enVh?

= Z(0) lim 20 - — 9¢ ~~——-vac. exp. val.
€e—0v
= 1 Z(0)YA(x) (iF- eA)y(x) + charge conj. -vac. exp. val. ,  (41)

as earlier. The function 7(€2) in definition (40) is gauge-independent and we
suspect that one can take it equal to a constant. For the derivation of the
Dyson-Schwinger equations this point is of no direct importance as #(€2) is
absorbed in the renormalization function Z(ez). The Lagrangian (40) has
still a somewhat symbolic meaning because of the cancellation of the infi-
nite factors contained in 7 and /-1 as a result of the closed photon loops
discussed after eq. (30). At present we do not see much harm caused by
this feature. Comparing the definitions (40) and (37) one sees that Z(e2)

has the meaning

7712 - I Qom0 [0 1) (42)
(0e(x,€)[0)

4. DERIVATION OF THE DYSON-SCHWINGER EQUATIONS

In the following the propagator equations are derived in a way which is
close to the usual derivation. This has the advantage that it becomes clear
why our formulation should contain at least all the results of the usual per-
turbation theory.

With this purpose in mind, we consider the Lagrangian (37) or (40) as
the limit for € — 0 of a renormalized theory with finite €. We assume that
the usual vanishing equal time commutation rules are true for space dis-
tances much larger than €. The dynamics itself determines the type of
singularities which occur for € — 0 in the commutators at equal space-
time points. For finite € the Dyson-Schwinger equations contain, of course,
€ as a parameter and the equations are not Lorentz invariant. In the limit
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€ -— 0 one obtains formally the usual renormalized form of the equations. It
turns out, however, that this limit of the equations does not exist because
Z(0) =0 and expressions of the type 0-« arise. This is a source of incon-
sistencies in the usual formalism.

On the other hand it is conceivable that the solutions S., D, and TE of
the equations for finite € hgee finite limits S, D and T for € — 0. The same
will then be true for the S-matrix elements. Just because S, D and F’g‘
are renormalized, it is really not surprising that they approach finite lim-
its (which are of course still correctly normalized). Elsewhere [25] it is
shown for the case of the fermion propagator that this is indeed a very nat-
ural situation. It allows a reproduction of the usual perturbation results
and leads to a better understanding of the gauge covariance of the propaga-
tor and renormalization "constants", which now may vanish (and in fact do
s0) without any internal inconsistency.

For our present purpose we ignore all problems connected with the ex-
istence of the interaction representation. In the usual way we choose a
suitable Lorentz invariant zero order Lagrangian, which we take as the
basis of an interaction representation and expand the perturbing Lagrangian
(which contains the finite constant €) in a power series of € (or A). In the
cutoff region p#* = € ~1 an uncertainty occurs in this procedure, caused by
the fact that we have to take time-ordered products of a non-local pertur-
bation Lagrangian. As we shall see, the Lorentz invariance of the theory
demands anyhow that the detailed behaviour of the occurring integrands at
the cutoff region be unessential in the limit € — 0 and therefore the men-
tioned uncertainty is of no importance. We shall use convenient expres-
sions for the propagators in the cutoff region. The result of the perturba-
tion expansion can be represented by Feynman diagrams; the Ward-Taka-
hashi identity may as usual be derived up to arbitrary order in the coupling
constant and by summing infinitely many graphs the Dyson-Schwinger equa-
tions can be written down. From our Lagrangian one finds the conventional
diagrammatic expansion [26], but with the following modifications:

(i) Each full propagator and full vertex has an index €.
(ii) Each explicitly occurring Z1 or Zg is replaced by Z(ez).

(iii) Each Zy is accompanied by the cutoff factor

H(p,p',€) = sin(p-pHte cos[e(p+p )] . (43)
(b-p)Hte

(iv) The non-linearity in A caused by the exponential (23) occurring in
the Lagrangian (37) gives rise to vertices with more than one outgoing
photon line. Each extra line is accompanied by a factor €, stemming from
the line integral. Therefore in the limit € — 0 only sufficiently divergent
integrals can contribute. It turns out that the only contributions which sur-
vive the limiting procedure € — 0 are given by the vacuum polarization dia-
grams of the type
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4 . oy 2
@ - -e2 lim Z(e?) fd b 35“1/26 <,S,mk,,€_)

o €—0 (2m4 Ve
xsin(vae)Tr{yVSF(p)}s . (49

This diagram [19] (which of course also occurs in the expansion (14) if the
Lagrangian (37) is used) just cancels the usual quadratic divergence of the
vacuum polarization.

One obtains the following Dyson-Schwinger equations:

&%

Z(si)——»—Q——ﬁ— -plept

Znb”
P 2y p
vdp—Z(&)y + ]
2 B “V_kﬁl]?%/
O P v -¢ 2
Py

(45)

with b“(p,p', €) and the fermion loop diagram given in eqs. (43) and (44).
The other symbols are in the notation of ref. [26], with the understanding
that all full propagators, vertices and the kernel have an index e.

In each equation we have left out contributions which obviously vanish
for € — 0 with at least one power of € higher than the contributions we have
kept.

The equation for the photon propagator is, up to the factor Z(e2) and the
cutoff, essentially the same as eq. (14" and the remarks following that
equation apply.

A remark on the Lorentz non-invariance of the equations caused by the
cutoff function b*(p,p’,€) is in order. As was discussed in the preceding
section, the Lorentz invariance may be viewed as following from certain
continuity conditions put on the solution, which should be verified a poster-
iori. Let us assume that there are solutions S¢, D¢ and T} which for € — 0
reach certain limits S, D and ', We shall now show that if this is the
case, then the details of the cutoff function b (p,p’, €) do not play a role,
in the sense that the choice of a different function 84(p,p’, €) will somewhat
change the solutions for S¢, D¢, ¥ and Z(€2), but not their limits for
€ ~ 0. Of course the change in the cutoff function has to be made in such a
way that the Ward-Takahashi identity is maintained. To see this, one may
first observe that the factors Z(¢2) in eqs. (45) occur so simply that they
may be eliminated. One just solves each of the equations for Z(€2) or
Z-1(¢2) and, for example, differentiates once towards the free momenta
occurring or makes a subtraction. The resulting equations do not contain



386 Th.A.J.MARIS et al.

Z(e2) anymore. However an integral which diverges for € — 0 can only
make sense if it is multiplied with Z(€2). Therefore if there exists at all a
solution, as we are assuming, it should be possible to combine the result-
ing integrals in such a way that they converge without a cutoff and thus the
limit € — 0 can be performed separately in S., D, I’g and bl (€), giving S,
D, TH and 1 respectively. Because of the boundary conditions given by the
fact that S, D and I'" are renormalized, the resulting Lorentz invariant
equations will still have unique solutions (of course, up to the multiplicity
introduced by the spontaneously broken symmetries as dilatational and
gauge invariance). This reasoning shows that the details and in particular
the non-Lorentz invariance of oM (p,p ", €) have no influence on the limits of
the propagators, when these limits exist at all, although, of course, Sg,
D¢, TH and Z(c2) will slightly change with the cutoff function b. In certain
respects the situation is somewhat similar to the well known one in scat-
tering theory where one determines the density of states by normalizing in
a finite box. For this procedure to make any sense at all, the precise
boundary conditions must be unimportant, though their existence is essen-
tial. The above mentioned procedure in which Z(e 2) is eliminated may be
seen more explicitly in a discussion of the fermion propagator.

5. CONCLUDING REMARKS

It appears that the present formulation of the limiting processes in the
basic theory, for the moment disregarding our choice of a vanishing bare
fermion mass and Zg =0, should at least be able to reproduce the experi-
mental predictions of the usual theory. This may be seen in two ways. If
one does not take the limit € — 0 but chooses € very small but finite, it
seems physically plausible that this gauge invariant non-local unrenormal-
ized version of our approach is quite equivalent to the usual QED, as long
as one limits oneself to transitions between states with momenta which are
much smaller than € -1, This is because the naive limit € — 0 results in the
unrenormalized expression J/(u)(x) (ig -cA (x)zp(u)(x) of the usual Lagran-
gian. The finite renormalization of the non-local theory does of course not
change this equivalence and the final limit € — 0 takes away the restriction
put on the considered momenta. Also the propagator equations we derive
are for finite ¢ identical to the usual ones, except for a cutoff and for the
replacement of the renormalization constants by functions. All manipula-
tions which are made in the usual theory to eliminate the renormalization
constant Z9(=Z1) may also be performed to eliminate Z(ez); the resulting
equations are therefore in the limit € — 0 identical to the usual renormal-
ized ones.

It is instructive to see why exactly the conventional treatment (see e.g.
ref. [26]) is inconsistent. From our point of view one can reproduce this
method by taking the limit € — 0 in the unrenormalized non-local field theo-
ry and only afterwards renormalize the operators. Compared with our
treatment one has, for example
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(w) 2
SE =Z(e )S6 .

If however Z(0)=0 and lim S¢ =finite, which is found to be the case, one
€e—~0
has
lim sV
€e—~0

=0.

The unrenormalized propagator and therefore also the unrenormalized
field operators vanish in the limit € — 0. No finite factor will anymore re-
normalize a quantity once it has vanished; one should have renormalized
before going to the limit and that is just what we do.

The present definition of the limiting processes may have some other
advantages besides being (hopefully) consistent. The usual limiting proce-
dures in quantum field theories are largely modeled after free field theo-
ries and after QED. For the first mentioned case the usual differentiation
and multiplication of field operators are identical to the present definition
which for this case gives Z(0) = constant #0. In QED the renormalization
function is nearly also a non-vanishing constant and therefore here the
"free" limits are, at least for low momenta, still very good approxima-
tions. Because [20]

Z(e2) ~ (m2 2y /47 (46)

Z(ez) is of the order one as long as one can take €255 2 exp (-47 o),
which means for energies up to the order of 7 exp (27 «). This is far
above any experimental possibility in the foreseeable future. If however a
similar situation would be true for strong interactions one finds from eq.
(46) replacing « by a strong coupling constant that the usual limiting pro-
cedures for interacting hadron fields could well be poor at any energy.

Another basic advantage of using the multiplicative function Z(€2) in-
stead of infinite subtractions in a perturbation expansion, appears in the
study of the asymptotic behaviour of the propagators. This may be seen in
a discussion of the fermion propagator. As remarked earlier [20] also the
question of the finiteness of the vacuum polarization seems again to be
open. Because Z(0) =0, the function Z(e2) might be able to cancel the di-
vergence which otherwise occurs in the vacuum polarization if the cutoff is
moved to infinite by taking the limit € — 0. The expression (46) shows that
such a situation might in perturbation theory be reproduced by successive
subtractions of logarithmic divergences.

A remarkable feature of the present formulation is that it contains no
constant of nature. Whether this implies that the constants occurring in
QED, namely the coupling constant and the electron-muon mass ratio, can
be calculated in this description depends primarily on the question of
whether the isolated theory is, as it stands, really mathematically consis-
tent, or can be made to be so without introducing phenomenological con-
stants. Even if these constants could be calculated, the values found can
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only be satisfactory if the approximation of isolated QED is physically a
good one. This seems at present an open question which would have an af-
firmative answer if the vector dominance model in hadron physics could be
taken literally. From the lepton point of view the total effect of the strongly
interacting particles would be to create in the photon propagator approxi-
mate poles, corresponding to the neutral vector mesons, with residues of
the order o as compared to the residue at the photon pole. This would be a
small perturbation for the lepton structure, although it would in principle
determine the relation of the mass scales of hadrons and leptons [23, 29].
As long as one does not know more, it seems sound to start with the most
simple assumption which appears reasonable, namely to neglect the hadron
contributions to the vacuum polarization.
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Abstract: The fermion propagator equation derived in the preceding paper has been
solved using the following approximations: (i) the free photon propagator in an
arbitrary gauge is used: (ii) for the vertex a functional of the fermion propagator
which approximately obeys the Ward-Takahashi identity is taken: (iii) in the re-
sulting equation a small term is neglected. Closed expressions for the fermion
propagator and the renormalization function are obtained in an arbitrary gauge.
The gauge dependence found for the fermion propagator is in agreement with the
one which follows directly from the gauge transformation of the time ordered
product defining the propagator. One recovers the well-known result that Z; =
Z9 (=Z(0)) can only be a finite non-zero number in one special gauge. From a
discussion of the operator gauge transformation it seems likely that this finite
gauge is non-physical and that in all physical gauges the electron propagator is
more singular than the free one and that Z(0)=0. In contradistinction to the usual
situation this result causes in the present formulation no difficulty and may be
essential for the finiteness of the vacuum polarization.

1. INTRODUCTION

In a recent reformulation [1, 2] of the Lagrangian of quantum electro-
dynamics (QED) the three small distance limiting procedures, implied by
the differentiation of the fermion field, by the definition of the interaction
and by the renormalization procedure, have been combined in a gauge in-
variant way. In addition the bare fermion mass and the renormalization
constant of the Maxwell field were taken equal to zero. In the following we
shall discuss the equation of the fermion propagator resulting from this
formulation of the theory.

In sect. 2 we first consider an earlier approximation of the fermion
propagator equation in our approach and we show that the exact solution of
this equation is finite but has unsatisfactory properties. In sect. 3 an im-
proved ansatz for the vertex is made, resulting in a satisfactory equation
which is solved with the free photon propagator in an arbitrary gauge. As
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expected [3], the solutlon for the fermion propagator and also the renor-
malization function Z(e ) are dependent on the gauge chosen; in general
Z(0)=0. A discussion of the results is given in the last section. The gauge
dependence of the calculated propagator is shown to be in agreement with
the dependence directly found from the operator gauge transformation of the
time-ordered product defining the fermion propagator.

2. DISCUSSION OF AN EARLIER TREATMENT

Our starting point will be the following form of the Dyson-Schwinger
equation for the fermion propagator, derived in refs. [1, 2]
_1 . 4
S H?-——fb (b,p" S OOTLD " 0ID, 0" -pYdp . (D)
17
The renormalization function Z(€2) is determined by the equation itself and

. - Al u ,
bnu‘(p’p"e) - EM COS[€(17+p )lll .
p-pHe
Assuming the cutoff independence of the limit of S¢ (p) for vanishing €, ap-
proximating the vertex by

TH(p, p") = L[F(-p2) + F(-p DM

and taking the free photon propagator in the Fermi gauge, it was shown
that

—1

- (s)s '
fels) = Z(€?) {1“‘%]‘5(3) % f ds
+m
€
e 2 £ sy -2
+f € Azds's o g 2f ds +f «1 2dS'H, (2)
s s'+m 0s' +m s s'+m

with s = —p2 and S'l(p) =f(—p2) [#- m(—pz)]. This parametrization of S is
somewhat more convenient than the one of ref. [1}. It was remarked that
the first terms at the r.h.s. dominate over the two last ones, which were
neglected. The resulting equation gave a solution with reasonable proper-
ties from a physical point of view.

We shall now show that if one does not neglect the two last terms of eq.
(2) one finds a slightly modified solution which is still finite but not any-
more quite satlsfactory For this purpose we apply the general method for
eliminating Z(e 2) which was discussed in ref. [2]- Eq. (2) is multiplied by
fe 1(s) and differentiated towards s, resulting in



