

Evento	Salão UFRGS 2019: SIC - XXXI SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2019
Local	Campus do Vale - UFRGS
Título	Radiação de Ondas de Água por um Cilindro Submerso Longo
Autor	ANA PAULA GIUSSANI MOCELLIN
Orientador	LEANDRO FARINA

Radiação de Ondas de Água por um Cilindro Submerso Longo

Autora: Ana Paula Giussani Mocellin Orientador: Leandro Farina Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística

Resumo

Usando as equações diferenciais de Navier Stokes que descrevem o movimento de fluidos, pode-se descrever matematicamente a propagação de ondas em água, assumindo que o fluido é invíscido e o fluxo é incompressível e irrotacional. Neste trabalho, é assumido a presença de um cilindro submerso, longo e vertical. A velocidade do fluido é representada no tempo t pelo gradiente do potencial de velocidade $\Phi(x,t)$ satisfazendo a equação de Laplace no domínio do fluido

$$\nabla^2 \Phi(\mathbf{x}, t) = 0$$

onde $\mathbf{x} = (r, \theta, z)$ são coordenadas cilíndricas. Para uma onda monocromática que se propaga na direção x, o potencial de velocidade incidente pode ser escrito como

$$\Phi_i(\mathbf{x}, t) = \text{Re}\left[\frac{-igH}{2\omega} \frac{\cosh k_0(z+d)e^{i(k_0x-\omega t)}}{\cosh k_0d}\right]$$

onde H é a altura da onda, g é a aceleração da gravidade, k_0 o número de onda, d é a distância entre o fundo da água e o topo do cilindro e ω é a frequência da onda. Como o movimento do cilindro é mantido na mesma frequência que a onda incidente, pode-se assumir que o potencial de velocidade tem o mesmo fator tempo $e^{-i\omega t}$:

$$\Phi(\mathbf{x},t) = \mathrm{Re} \left[-i\omega\xi\phi(r,\theta,z;\omega)e^{-i\omega t} \right]$$

onde ξ é a amplitude de oscilação do cilindro. O cilindro deve satisfazer a condição de superfície livre e uma condição de não penetração de fluido no fundo do domínio da água. Dividimos o domínio em duas regiões definidas por Ω_1 $(r \geq a)$ e Ω_2 $(r \leq a, -d \leq z \leq -d_1)$, onde o potencial de velocidade é decomposto em ϕ_1 e ϕ_2 , respectivamente. Impomos então, as seguintes condições de compatibilidade

$$\phi_1 = \phi_2 \ (r = a, -d \le z \le -d_1)$$

$$\frac{\partial \phi_1}{\partial r} = \begin{cases} v_1(\theta), & (r = a, -d_1 \le z \le 0) \\ \frac{\partial \phi_2}{\partial r}, & (r = a, -d \le z \le -d_1) \end{cases}$$

onde v_1 é prescrita. O objetivo do trabalho é encontrar o potencial de velocidade do problema através de autofunções e usar expansões assintóticas que simplifiquem o problema analítico a ser resolvido para o caso em que o raio do cilindro seja pequeno em relação ao comprimento.