

Evento	Salão UFRGS 2019: SIC - XXXI SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2019
Local	Campus do Vale - UFRGS
Título	Solubilidade do Sulfeto de Hidrogênio (H2S) em líquidos
	iônicos baseados no cátion 1-butil-3-metilimidazólio
	[C4mim]+ por Dinâmica Molecular
Autor	DANIEL LUIZ STAMM BALDISSEROTTO
Orientador	HUBERT KARL STASSEN

Solubilidade do Sulfeto de Hidrogênio (H₂S) em líquidos iônicos baseados no cátion 1-butil-3-metilimidazólio [C₄mim]⁺ por Dinâmica Molecular

Nome do autor: Daniel Luiz Stamm Baldisserotto Nome do orientador: Dr. Hubert Karl Stassen

Universidade Federal do Rio Grande do Sul – Departamento de Físico-Química

O gás natural é uma fonte de energia derivada de combustíveis fósseis muito utilizada para geração de eletricidade, fabricação de gás de cozinha e combustível veicular. Esse gás é principalmente composto de metano e outros alcanos, porém, na mistura, também pode ser encontrado óxidos de nitrogênio (NO_x), dióxido de carbono (CO_2) e sulfeto de hidrogênio (H_2S). O sulfeto de hidrogênio é um gás altamente corrosivo e tóxico, além de ser muito danoso à saúde humana.

No estudo em questão foram realizadas simulações de dinâmica molecular a fim de encontrar líquidos iônicos que possuam a capacidade de solubilizar o sulfeto de hidrogênio (H_2S) de forma eficiente. O método convencional da retirada do H_2S em processos petroquímicos é o uso de aminas, essas são compostos voláteis que contribuem com a poluição do ar. Líquidos iônicos são uma alternativa por terem uma baixa pressão de vapor, baixo ponto de fusão e muitas vezes são líquidos em temperatura ambiente.

O pacote de softwares GROMACS foi utilizado para a investigação da interação do gás H_2S com os líquidos iônicos nos quais o cátion escolhido foi 1-butil-3-metilimidazólio $[C_4mim]^+$ e os ânions foram: tetrafluoroborato $[BF_4]^-$, acetato $[Acet]^-$ e imidazolato $[Imid]^-$ e brometo $[Br]^-$.

Foi observada a tendência dos líquidos contendo acetato e tetrafluoroborato de serem mais indicados para a solubilização do gás. Na literatura é reconhecido que líquidos iônicos contendo em seu ânion halogênios tendem a ser melhores no processo de captura de H_2S . As simulações envolvendo o ânion brometo estão sendo realizadas e ainda não apresentaram resultados.