XXXI SIC

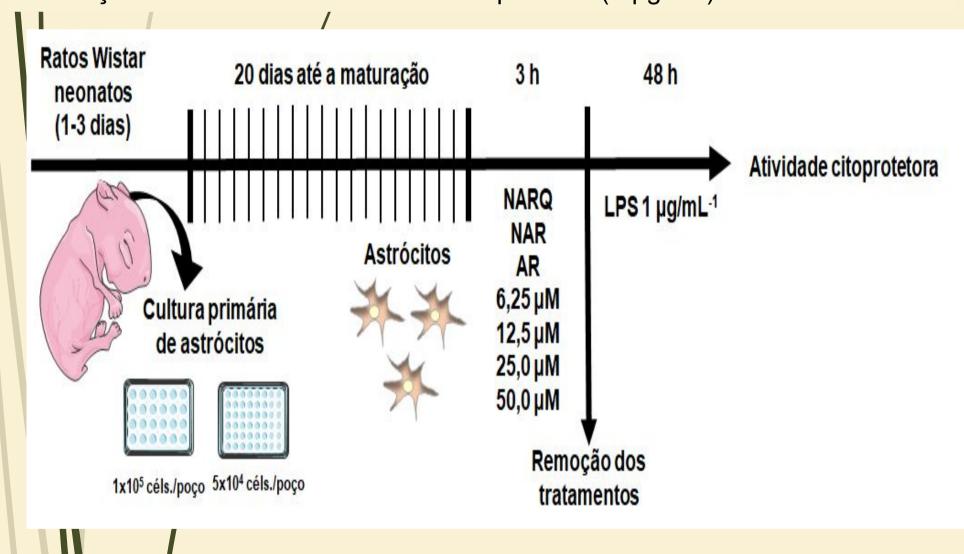
21.25. OUTUBRO . CAMPUS DO VALE

Nanoemulsões lipídicas contendo ácido rosmarínico revestidas por polímero mucoadesivo – avaliação *in vitro da atividade citoprotetora em astrócitos.*

Ana Carolina Guillen ¹
Orientador: Dr. Helder Ferreira Teixeira ¹

¹ Faculdade de Farmácia, UFRGS. Órgão de Fomento: PIBIC/CNPq

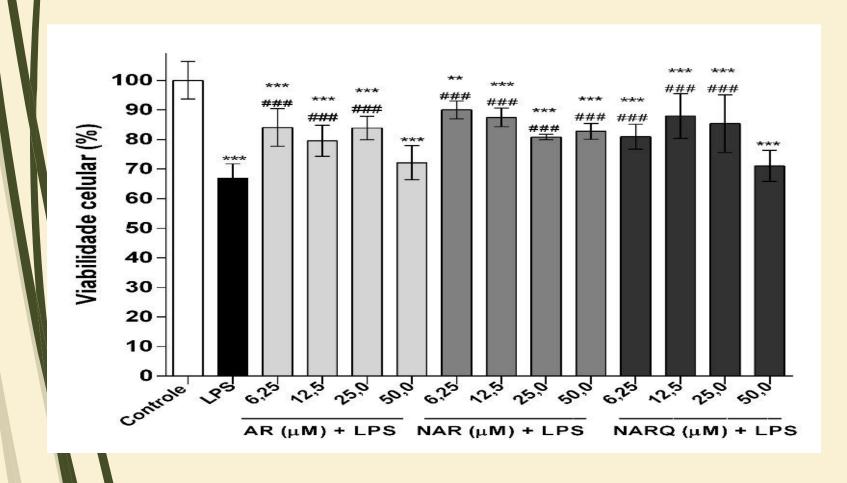
INTRODUÇÃO

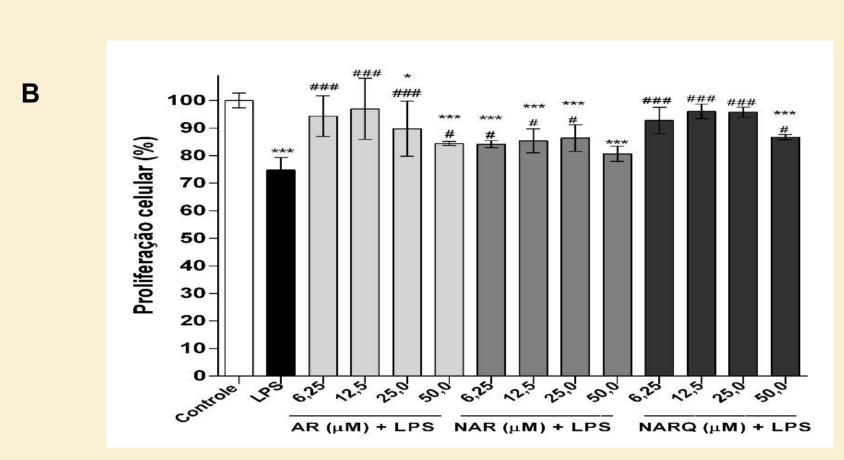

O processo imune/inflamatório e o estresse oxidativo têm sido associados aos danos neuronais e a progressão de doenças neurodegenerativas (DN). Neste sentido, o emprego de produtos naturais com potencial neuroprotetor, como o ácido rosmarínico (AR), tem sido considerado uma proposta terapêutica promissora para as DN, tendo em vista que, ainda hoje, as mesmas possuem limitadas estratégias terapêuticas capazes de evitar sua progressão.

OBJETIVOS

O presente trabalho objetivou avaliar a atividade citoprotetora de nanoemulsões contendo ácido rosmarínico revestidas por quitosana (NARQ) em modelo de neuroinflamação induzida por lipopolissacarídeo (LPS) em astrócitos..

MATERIAIS E MÉTODOS


Para avaliação *in vitro* da atividade citoprotetora das formulações foram empregados astrócitos corticais obtidos a partir de ratos Wistar neonatos (1-3 dias), projeto este aprovado pela comissão de ética no uso de animais da UFCSPA sob parecer 540/17. Testes de viabilidade por MTT e proliferação celular por sulfarodamina-B foram realizados para acessar o perfil de segurança das nanoemulsões (6,25-50 μM) em astrócitos, e, posteriormente, para a avaliação da citoproteção das nanoemulsões em ambiente de inflamação e estresse oxidativo induzido por LPS (1 μg/mL).


Figura 1. Esquema do protocolo de proteção (pré-tratamento) empregado no estudo.

AR: ácido rosmarínico; NAR: nanoemulsão contendo ácido rosmarínico; NB: nanoemulsão branca; NARQ: nanoemulsão contendo ácido rosmarínico revestida por quitosana; NBQ: nanoemulsão branca revestida por quitosana.

RESULTADOS E DISCUSSÃO

RESULTADOS E DISCUSSÃO

Figura 2. Efeito da NARQ, NAR e o AR na viabilidade celular em cultura primária de astrócitos expostas ao LPS. (A). Efeito da NARQ, NAR e o AR na proliferação celular em cultura primária de astrócitos expostas ao LPS. (B).

As culturas primárias de astrócitos foram tratadas com AR, NARQ e NAR de AR durante 3 horas nas concentrações indicadas, seguidas de exposição a LPS por mais 48 h (protocolo de proteção). Células expostas a DMSO (0,01%), NB ou NBQ foram aplicadas como controles. Valores representam média ± DP para triplicata. Os dados foram analisados por ANOVA seguido pelo teste *post hoc* de Tukey. * p <0,05, ** p <0,01 e *** p <0,001, diferente do grupo controlle# p <0,05, ## p <0,01 e *## p <0,001, diferente do grupo LPS. LPS: lipopolissacarídeo; AR: ácido rosmarínico; NAR: nanoemulsão contendo ácido rosmarínico; NB: nanoemulsão branca; NARQ: nanoemulsão contendo ácido rosmarínico revestida por quitosana; NBQ: nanoemulsão branca revestida por quitosana; DP: desvio padrão.

CONCLUSÃO

É possível concluir que as nanoemulsões revestidas por quitosana que contém acido rosmarínico apresentam potencial citoprotetor *in vitro* e surgem como nova proposta viável de terapia neuroprotetora para as DN.

Referências bibliográficas

- [1] C. Fernandes et al., Curr. Med. Chem., 21, 4311 (2014).
- [2] M.A. Soobrattee *et al.*, Mutat Res., **579**, 200 (2005).
- [3] G.D. Kim, Appl Microbiol Biotechnol., **99**, 2083 (2015).
- [4] Y. Zhang *et al.*, Food Funct., **6**, 927 (2015).