

Universidade: presente!

XXXI SIC

25. OUTUBRO . CAMPUS DO VALE

CONDIÇÃO DE INÍCIO DE MOVIMENTO DE CONCHAS BIVALVES EM ESCOAMENTO UNIFORME Elisa Yokemura¹ Eduardo Puhl²

Instituto de Pesquisas Hidráulicas - Núcleo de estudos de correntes de densidade (NECOD) ¹Autor ²Orientador

A concha como sedimento bioclástico, é carregada pelo escoamento em rios e oceanos e pode formar importantes acumulações. O seu início de movimento depende de condições hidráulicas que variam de acordo com a espécie da concha, seus parâmetros geométricos e posição de deposição. Compreender as condições hidráulicas de início de movimento dessas conchas nos permite prever o seu comportamento quando expostas a um escoamento.

Para identificar a condição de início de movimento de conchas bivalves, da espécie Anomalocardia Brasiliana, quando expostas a um escoamento uniforme foram realizados experimentos físicos no Núcleo de Estudo de Correntes de Densidade (NECOD), localizado no Instituto de Pesquisas Hidráulicas (IPH-UFRGS).

Figura 1: Espécie Anomalocardia Brasiliana possuindo Umbo no local indicado. Fonte: Autores.

METODOLOGIA

INTRODUÇÃO

As conchas (Figura 1) foram posicionadas no canal (Figura 2) com a concavidade virada para cima e com o umbo à montante, isso porque foi considerada a posição mais estável possível quando posicionada com a concavidade para cima. Em seguida, iniciava-se o escoamento e a vazão era incrementada manualmente com a abertura do registro até que a concha entrasse em movimento.

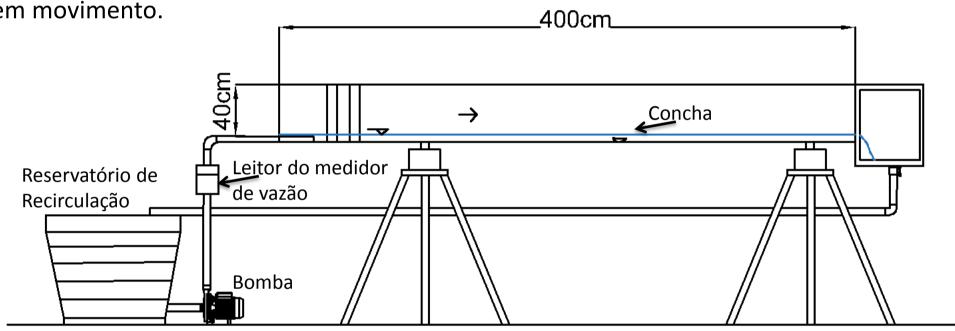


Figura 2: Croqui do canal (400cmX40cmX12cm) utilizado para os experimentos.

Com um medidor de vazão instalado à montante do canal, foram feitos registros da vazão média necessária para que as conchas passassem a se movimentar com o escoamento (condição de início de movimento). Na Tabela 1 estão os registros de vazão (Q), altura da coluna d'água (h) e parâmetros necessários para os cálculos deste trabalho.

nº do ospásimo	Massa (a)	Volume da	Diâmetro nominal	Vazão	Profundidade
nº do espécime	Massa (g)	concha (cm³)	d_{n} (adimensional)	Q (I/min)	h (m)
1	3,06	1,2	0,0132	34	0,027
2	3,15	1,23	0,0133	21,8	0,022
6	1,13	0,43	0,0094	23,5	0,023
11	0,16	0,06	0,0049	15,5	0,019
12	0,13	0,05	0,0046	13,5	0,017
13	0,01	0,003	0,0018	9,38	0,013
14	0,01	0,004	0,002	7,6	0,012

Tabela 1: Parâmetros físicos medidos das conchas

CONCLUSÃO

Ao final das simulações físicas verificou-se que o início de movimento de conchas bivalves da espécie Anomalocardia Brasiliana ocorrem, para um mesmo escoamento, com velocidades diferentes quando posicionadas com a concavidade para baixo e para cima. Além disso, em ambas as posições, o seu movimento se dá com valores de tensão de cisalhamento menores que os valores necessários para movimentar grãos de quartzo com o mesmo diâmetro.

Para dar continuidade ao estudo, serão feitas simulações físicas no canal utilizando um emissor de radiação eletromagnética (laser) no mesmo canal e Velocimetria por Imagem de Partículas (PIV).

REFERÊNCIAS

- SILVA, F.R.S. "Mobilização e transporte de conchas bivalves sob a ação de correntes". TCC Geociência. 2016.
- Shields, A. "Application of Similarity Principles and Turbulence Research to Bed-Load Movement". 1936.

RESULTADOS

Os valores de vazão e profundidade foram utilizados na equação da continuidade: Q = V.Apara calcular a velocidade média (V) do escoamento. Pelo equilíbrio de forças obtém-se a equação: $\tau = \gamma AI/P$ onde γ é o peso específico da água (9764 N/m³), A é a área da seção transversal (m^2), P é o perímetro molhado (m) e I a inclinação do canal (0,001). A partir desta, calculou-se a tensão crítica de início de movimento.

O Gráfico 1 relaciona a velocidade média calculada (m/s) com a massa (g) da concha. A relação não linear resultante, revela que outros fatores hidrodinâmicos também influenciam no início do seu movimento. Velocidade média X massa

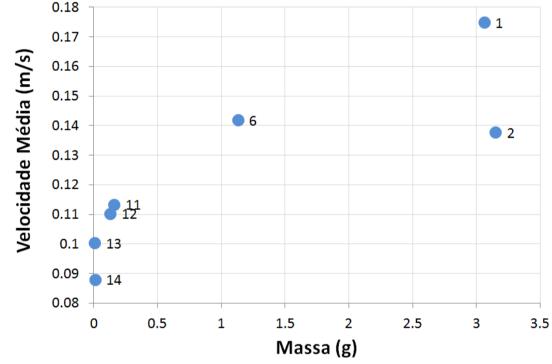
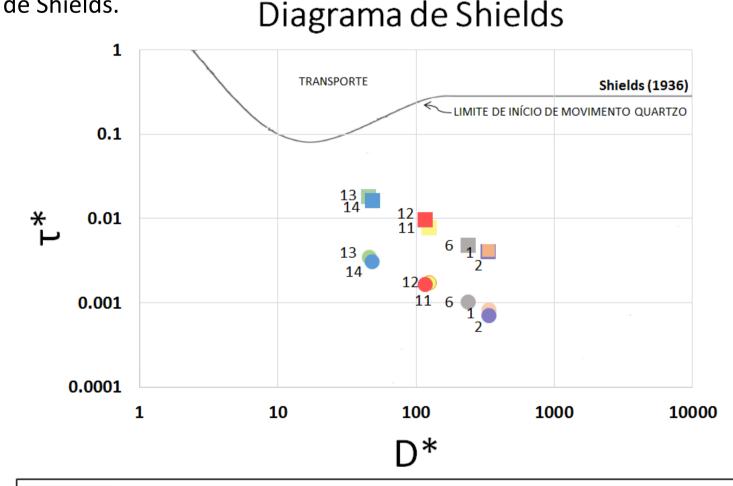



Gráfico 1: Velocidade média por massa das conchas da tabela 1

A fim de agrupar resultados de diferentes autores, foram utilizados os seguintes parâmetros adimensionais: Tensão de cisalhamento adimensional $\tau^* = \tau/((\gamma_s - \gamma) * d_n)$ e o Diâmetro adimensional $D^* = ((\rho_s/\rho - 1)g)d_n/v^2$. Onde γ_s é o peso específico da concha (2656 N/m³), d_n o diâmetro nominal, g a gravidade (9,806 m/s²) e ν a viscosidade cinemática da água (1,004E-6 m²/s).

No Gráfico 2 foram colocados valores encontrados de τ^* e D^* deste trabalho e do trabalho de Silva (2016), que também analisou o movimento das conchas. Ambos os casos ficam abaixo da linha que determina o início de movimento de grãos de quartzo segundo o diagrama de Shields.

LEGENDA

Números e cores: Identificam as espécies das conchas de acordo com a tabela 1 Concha com a concavidade para baixo

Concha com a concavidade para cima

Gráfico 2: Diagrama de Shields (1936) para início de movimento com os parâmetros da concha ensaiada em laboratório na condição de concavidade para cima e para baixo.

