

Evento	Salão UFRGS 2019: SIC - XXXI SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2019
Local	Campus do Vale - UFRGS
Título	Reatividade de Complexos à Base de Ródio e Rutênio com
	Ligantes Ciclopentadienila Funcionalizados com Alcoxissilanos
	em Relação à Sílica: Estudo em Reações de Hidrogenação
	Catalítica
Autor	FRANCISCO PAULO BUCHAILLOT
Orientador	SILVANA INES WOLKE

Titulo do Trabalho: Reatividade de Complexos à Base de Ródio e Rutênio com Ligantes Ciclopentadienila Funcionalizados com Alcoxissilanos em Relação à Sílica: Estudo em

Reações de Hidrogenação Catalítica **Bolsista:** Francisco Paulo Buchaillot **Orientador:** Silvana Inês Wolke

Instituição: UFRGS

A catálise é um processo amplamente utilizado industrialmente na fabricação de produtos químicos. Podemos classificar esse processo como homogêneo ou heterogêneo. Na catálise heterogênea, o catalisador e os reagentes estão em fases diferentes possibilitando a fácil separação. Na catálise homogênea, utilizam-se como catalisadores compostos de metais de transição, em que reagentes e catalisador encontram-se na mesma fase apresentando uma alta eficiência catalítica. Todavia, esse processo é menos utilizado devido à dificuldade de separação e recuperação do catalisador.

Neste trabalho, busca-se aliar as vantagens da catálise heterogênea com as da homogênea, através da síntese de catalisadores heterogeneizados. Para tanto, o objetivo é sintetizar organometálicos de ródio com ligantes ciclopentadienila funcionalizados com trietoxissilano para imobilização em sílica. Em trabalhos anteriores, como suporte sólido foram utilizadas sílica sol-gel e sílica Aerosil, previamente funcionalizada com o ligante ciclopentadieno. Em ambos, o sistema foi muito ativo e robusto para reações de hidrogenação de olefinas, permitindo quinze reciclagens com alta atividade. Agora, pretende-se obter-se o catalisador heterogeneizado em silica Aerosil em uma etapa, sem isolar o organometálico de ródio. A síntese foi iniciada com o 3-cloropropiltrietoxissilano devido às terminações -Si-OEt que permitem a imobilização em sílica. No entanto, para facilitar as reações posteriores, o cloro do reagente de partida deve ser substituído por iodo. Assim, com agitação constante e em atmosfera inerte, foi adicionado 3-cloropropiltrietoxissilano a NaI dissolvido em acetona. Após refluxar por 48 horas, a solução foi filtrada e levada à secura. Paralelamente foi adicionado gota-a-gota tetrametilciclopentadieno a KH em THF sob agitação. Depois de não haver liberação de hidrogênio, foi adicionada gota-a-gota a solução resultante da reação do 3cloropropiltrietoxissilano com NaI. Após, essa mistura reacional foi mantida sob agitação overnight e na sequência foi filtrada e seca sob vácuo a temperatura ambiente. Através da análise do espectro de RMN de ¹H foi observado uma conversão de aproximadamente 35% de trietoxi(2-(2,3,4,5-tetrametilciclopenta-2,4-dien-1-il)propil)silano. Em uma tentativa de purificar o produto, o mesmo foi parcialmente destilado e de novo analisado por RMN de ¹H. Assim, foi detectada a separação de principalmente 3-cloropropiltrietoxissilano, que não havia reagido. Com esse resultado experimental, foi feita uma destilação de uma solução resultante da síntese de 3-iodopropiltrietoxissilano (60%). Após examinar o espectro de RMN de ¹H foi teorizado que as terminações etoxissilano haviam polimerizado liberando etanol. Todos esses passos estão sendo realizados com o objetivo de otimizar a síntese do ligante tetrametilciclopentadieno funcionalizado. Esse ligante será utilizado para a síntese do catalisador de ródio com ligante imobilizado em sílica Aerosil para aplicação em reações de hidrgenação de olefinas.