

Universidade: presente!

EFEITO DO MÉTODO DE FORMULAÇÃO SOBRE O METABOLISMO DE FRANGOS DE CORTE NA FASE INICIAL DE VIDA

Rodrigo Brombati Vogt¹*; Alexandre de Mello Kessler²
¹Autor, Graduando em zootecnia – UFRGS
²Orientador, Professor do departamento de zootecnia – UFRGS
*email: rodrigo.vogt@ufrgs.br

INTRODUÇÃO

A alimentação pós-eclosão de frangos de corte possui papel fundamental no desenvolvimento corporal inicial, e está relacionada linearmente com o peso na idade de abate (Saki, 2005).

Considerando que a taxa de crescimento de um frango de corte é de 22 a 24% do peso vivo no primeiro dia de idade, caindo continuamente para 16-17% aos 7 dias e para 8-9% aos 21 dias de idade (Rostagno et al., 2017), os níveis nutricionais médios usados para as dietas pré-iniciais e iniciais, muito provavelmente, subestimam as exigências dos frangos nos primeiros dias de cada fase e superestimam nos dias finais. Portanto, ajustar a exigência nutricional diariamente, através de programas alimentares, pode ser uma alternativa para esses problemas.

Dessa forma, o objetivo deste estudo foi avaliar o efeito dos tratamentos ajustados diariamente e, verificar dietas com maiores níveis de nutrientes sobre o metabolismo de frangos de corte.

MATERIAL E MÉTODOS

	Frangos	Linhagem	Delineament	o Duração do Ex	perimento	Média de peso c/ 1 dia d vida	
360 Cobb 500			Blocos ao aca	so 21 DIAS		50±0,5g	
			6 REPETIÇÕES	5 TRATAMENTOS	─ →	12ANIMAIS EM CADA UNIDADE	
						EXPERIMENTAL	

Os tratamentos foram compostos por:

Controle negativo (Cn) duas dietas, com 10 % a menos de aminoácidos;

Controle (Co) duas dietas com níveis de acordo com as recomendações atuais;

Controle diário (Cd) seguindo o cálculo diário de exigências nutricionais dia a dia;

Desempenho diário (Dd) com níveis nutricionais mais altos que Cd, para proporcionar crescimento de proteína corporal 30% acima do controle;

M Desempenho máximo (Dm) duas dietas, utilizando os mesmos níveis nutricionais teóricos calculados do tratamento Dd.

RESULTADOS E DISCUSSÃO

Tabela 1. Relação de eficiência de uso dos nutrientes energia metabolizável (EM/GP), proteína bruta (PB/GP) e lisina (LIS/GP) em função do ganho de peso de frangos de corte nos períodos experimentais

	EM/GP (Mcal / g)								
Trat	1 a 4	5 a 7	8 a 11	12 a 14	15 a 18	19 a 21	1 a 21		
Cn	2,558ª	3,355	4,144ª	4,539a	4,612	5,177	4,342a		
Co	$2,473^{ab}$	3,522	3,804 ^{ab}	4,378 ^{ab}	4,661	4,358	$4,089^{ab}$		
Cd	2,390™	3,305	3,421 ^b	3,779 ^b	4,004	4,777	3,835 ^b		
Dd	2,177 ^d	3,523	$3,729^{ab}$	4,844ª	4,778	4,069	4,011 ^{ab}		
Dm	2,255 ^{cd}	3,141	$3,793^{ab}$	$4,583^{a}$	4,865	4,613	4,188ª		
CV	3,83	9,61	7,35	9,01	10,98	19,88	4,68		
P	0,0001	0,5251	0,03	0,01	0,28	0,37	0,01		
	PB/GP (g / kg)								
Cn	186,1°	244,1 ^d	265,9 ^b	291.4°	296,2b	332,5	283,4 ^d		
Co	212,3b	302,3 ^{bc}	289,2ªb	332,5₺₺	353,6 ^{ab}	330,8	316,4°		
Cd	216,6 ^b	299,5°	287,3ªb	318,1°	336,4 ^b	401,2	325,6 ^{bc}		
Dd	221,9 ^b	359,1ª	317,4ª	412,2ª	406,5ª	346,3	351,6ªb		
Dm	254,6ª	$354,5^{ab}$	323,9ª	391,5ªb	415,9 ^a	393,9	371,9ª		
CV	4,1	9,78	7,96	9,98	10,98	20,5	4,9		
P	0,0001	0,0002	0,02	0,0003	0,003	0,34	0,0001		
LIS/GP (g / kg)									
Cn	11,02 ^d	14,45	16,09b	17,63 ^b	17,93 ^b	20,12	17,10°		
Co	11,45 ^{cd}	16,31	16,57 ^b	19,05 ^b	20,26b	18,95	17,95 ^{bc}		
Cd	11,90 [™]	16,06	16,59b	17,91 ^b	18,46b	21,44	17,92bc		
Dd	12,69 ^{ab}	18,57	19,41ª	23,14ª	21,16 ^{ab}	17,08	19,01 ^b		
Dm	13,46ª	18,74	19,42ª	23,47ª	24,93ª	23,61	21,88ª		
CV	4,16	9,55	7,85	9,6	10,82	20,04	5,04		
P	0,0001	0,0081	0,0048	0,0003	0,003	0,16	0,0001		
Coeficiente de variação (%). Letras diferentes na mesma coluna diferem									

Coeficiente de variação (%). Letras diferentes na mesma coluna diferem estatisticamente pelo teste Tukey (P<0.05).

☑ O programa alimentar Cd apresentou melhor eficiência de utilização da energia metabolizável (EM) e da proteína bruta (PB) para o período inteiro.

A metabolizabilidade da EM no período de 1 a 7 dias foi superior para as dietas dos tratamentos Dd e Dm, porém não foi verificada diferença no período de 8 a 21 dias.

Mo período de 1 a 4 dias, a eficiência de utilização de EM foi superior nos tratamentos Dd e Dm, estes, porém apresentaram menor eficiência na utilização de PB e LIS.

CONCLUSÃO

☑ O programa alimentar multifásico diário ajustado à curva de crescimento (Cd) foi mais eficiente para atender às necessidades até 21 dias de idade, principalmente devido ao melhor aproveitamento da energia metabolizável e da lisina, porém manteve um desempenho similar às dietas usualmente utilizadas pela indústria. As aves na primeira semana de vida responderam a uma densidade maior de nutrientes, porém não mantiveram o desempenho na segunda e terceira semana. Pesquisas futuras podem aproveitar este maior ganho de peso, nesta pequena janela de até 7 dias de idade, e traçar estratégias nutricionais para otimizar os custos de produção.