Universidade: XXXI SIC 21.25. OUTUBRO CAMPUS DO VALE # One-step microwave assisted "self-impregnation" of ${\rm TiO_2}$ nanostructures with Ag for boosted photocatalytic hydrogen production Guilherme Boenny Strapasson¹, Daniel Eduardo Weibel¹ ¹Institute of Chemistry, Universidade Federal do Rio Grande do Sul #### INTRODUCTION Production of H_2 by clean and renewable resources, such as water in the water splitting reaction (WS), is doubtless an actual need to decrease pollution on Earth. Key factors for the production of H_2 by WS are controlled size, shape and crystallography of the photocatalysts¹. Seeking for that and for a green method, microwave assisted chemistry (MWAC) was used for the photocatalysts syntheses. The present work couples the preparation of TiO_2 nanostructures using the MWAC method with simultaneous impregnation of silver in only one step. The photocatalysts were characterized by XRD, TEM and UV-vis DRS techniques. The photocatalytic hydrogen generation results, under UV-Vis irradiation, showed an increase in the H_2 production rate when Ag NPs impregnated the TiO_2 nanostructures. ### METHODOLOGY **Figure 1:** Flow chart of TiO₂ NPIs/AgCl NPs MWAC synthesis. **Figure 2:** Flow chart of TiO₂ NPs/Ag NPs MWAC synthesis. Photocatalytic experiments under UV and visible light irradiation were carried out in a quartz photochemical reactor using a Hg/Xe high pressure lamp². #### **RESULTS** **Table 1:** UV-Vis DRS spectra of pure and impregnated samples. | Sample | Bandgap (eV) | |---|--------------| | P25 | 3.57 | | TiO ₂ NPIs/AgCl NPs 0.001wt% | 3.34 | | TiO ₂ NPIs/AgCl NPs 0.01wt% | 3.07 | | TiO ₂ NPs | 3.11 | | TiO ₂ NPs/Ag NPs 0.001wt% | 3.10 | | TiO ₂ NPs/Ag NPs 0.01wt% | 3.10* | ^{*} UV-Vis DRS spectra with an intense absorption band at about 2.8 eV **Figure 3:** XRD diffraction patterns of (a) TiO₂ NPIs/AgCl NPs 0.01 wt% and 0.001 wt% and (b) TiO₂ NPs/Ag NPs 0.01 wt% and pure TiO₂ NPs calcinated and non calcinated. **Figure 4:** TEM images of TiO₂ NPIs/AgCl NPs 0.01 wt% in (a) pH=7, (b) pH=1, (c) pure TiO₂ NPs and (d) TiO₂ NPs/AgNPs 0.01 wt%. Figure 5: Photocatalytic evolution of hydrogen from methanol/water (1/8 v/v) solution on (a) TiO_2 NPIs/AgCl NPs 0.01 wt% in pH=1 and pH=7 and (b) TiO_2 NPs/Ag NPs 0.01 wt% and 0.001 wt%. #### **CONCLUSION** - Microwave-assisted synthesis methodology demonstrated to be an effective and green strategy to prepare ${\rm TiO_2}$ based nanostructures, with simultaneous impregnation of Ag, all in only one step. - The impregnation of TiO_2 NPIs with AgCl NPs led to a photocatalyst with different arrangement forms due to the pH, presenting a higher H_2 evolution rate on acid pH. - The samples of TiO_2NPs impregnated with AgNPs showed a H_2 evolution rate about 5 times higher than the pure TiO_2NPs . #### REFERENCES - ¹ K. Takanabe, K. Domen, Chemcatchem 4 (2012) 1485-1497. - ² C. Backes, F. Scheffer, M. Pereira, S. Teixeira, D. Weibel; Braz Chem Soc; 25:2417-24(2014). #### **ACKNOWLEDGMENTS**