

Padronização do uso da Galleria mellonella em modelo de infecção para o estudo da patogenicidade in vivo de Escherichia coli patogênica aviária

THAÍNA DE BRITES WEBER¹, CARLOS TADEU PIPPI SALLE²

- ¹ Autora, Medicina Veterinária, Universidade Federal do Rio Grande do Sul
- ² Orientador, Medicina Veterinária, Universidade Federal do Rio Grande do Sul

INTRODUÇÃO

A larva da traça grande da cera (Galleria mellonella) está sendo utilizada como uma alternativa a modelos que utilizam animais vertebrados não-humanos para o estudo da virulência de bactérias de interesse para a saúde pública^{2, 4}. A habilidade da larva sobreviver em temperaturas próximas a 37°C e a similaridade, em termos gerais, do seu sistema imune inato ao dos vertebrados, justifica o uso do inseto como hospedeiro⁵. Por consequência, acredita-se que o modelo de infecção possa ser adotado em estudos de avaliação de isolados de Escherichia coli patogênica aviária (APEC). Para alcançar adequada repetibilidade e reprodutibilidade, a metodologia de inoculação das larvas com bactérias requer a padronização de procedimentos a serem realizados e de parâmetros a serem avaliados. Nesse sentido, o objetivo deste trabalho foi definir o peso mínimo das larvas na técnica de inoculação, o período de tempo necessário para contabilização das mortes e a dose letal para 50% das larvas (DL_{50}) a partir da inoculação de diferentes cepas de APEC.

MATERIAIS E MÉTODOS

1. Determinação do peso mínimo

Cinco categorias de peso (10 larvas/categoria)

241-250 mg | 251-260 mg | 261-270 mg 271-280 mg | 281-290 mg.

10 μL/larva solução salina 0,9%

2. Elaboração das suspensões bacterianas

Inoculação

10 μL/larva

Morte das larvas computada a cada 12h/7 dias

Análise estatística* DL₅₀ de cada cepa APEC

determinada por análise de regressão (modelo Probit)

Correlação entre as DL₅₀ (a partir de diferentes períodos

de observação) Coeficiente de correlação de

Curvas de sobrevivência

Pearson

(método Kaplan-Meier)

Comparação múltipla pelo teste Log-rank (Mantel-Cox)

- Criação das larvas em laboratório ³.
- Inóculos e inoculação conforme descrito por Alghoribi et al. (2014)1.
- Todos os ensaios foram realizados em triplicata.
 - * Software para análise estatística: Microsoft Excel 2010, PASW Statistics 18 e GraphPad Prism 6.

3. DL₅₀

RESULTADOS E DISCUSSÃO

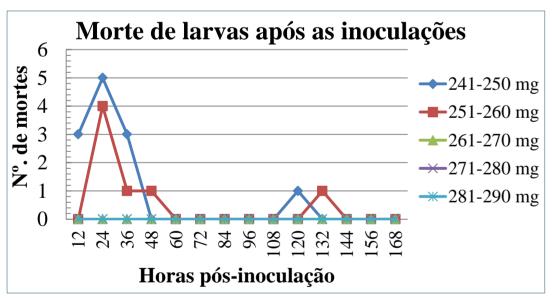


Figura 1. Número de larvas mortas após a inoculação, conforme a categoria de peso.

- O critério para determinação do peso mínimo das larvas é a ausência de mortes durante o período de observação. Sendo assim, o peso das larvas, para uso no modelo de infecção, deve ser ≥261mg. As mortes são decorrentes de lesões pelo procedimento de inoculação.
- A DL₅₀ mínima, média e máxima observadas foram 3,744, 5,580±0,99 e 7,056 Log10 UFC/10µL, respectivamente.

Tabela 1. Correlação entre as DL50 calculadas a partir de diferentes períodos de observação.

Inóculos

(UFC/10 μL)

		DI 1-45 ADEO					
Variável	Correlação	DL ₅₀ das 15 cepas APEC					
		DL ₅₀ (1)	DL ₅₀ (2)	DL ₅₀ (3)	DL ₅₀ (4)		
DL ₅₀ (7)	Coef. de correlação	0,954	0,976	0,989	0,968		

Foi observado valor de p <0,05 em todas as correlações.

O número entre parênteses se refere ao período de observação, em dias.

Tabela 2. DL50 das 15 cepas de APEC inoculadas.

Сера	DL ₅₀	Сера	DL ₅₀	Сера	DL ₅₀	
148	6,834	34	7,252	181	6,046	
120	4,410	170	5,337	19R	7,223	
85	6,150	289	5,030	198	4,310	
48	5,888	69	6,452	23	5,179	
104	6,787	126	5,791	17	3,840	

 O período de observação da mortalidade de larvas após os ensaios de inoculação deve ser de três dias, pois foi o que apresentou a melhor correlação de DL₅₀ (0,989) com o período total de 7 dias.

Tabela 3. Mortalidade observada após a inoculação.

Larvas mortas	Pós-inoculação (horas)							
após a inoculação	12	24	36	48	60	72	168	
% relativo	55,1	21,3	4,7	4,7	2,6	2,9	100	
% acumulativo	55,1	77,3	81,7	86,4	89,0	91,7	100	

Mortalidade após a inoculação das suspensões bacterianas nas concentrações de 10⁷, 10⁶, 10^{5} e 10^{4} UFC/10 μ L.

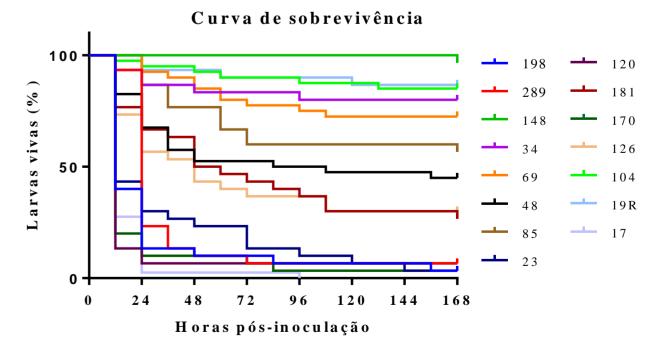


Figura 2. Curva de sobrevivências das larvas inoculadas com as 15 cepas de APEC. Inóculo de 106 UFC/10 μL.

CONCLUSÕES

Os resultados obtidos permitem concluir não ser possível o uso de larvas de G. mellonella no modelo de infecção com peso corporal inferior a 260 mg e evidenciam a possibilidade de redução do período de observação de mortes para 72 horas, diminuindo-se o tempo necessário para conclusão dos futuros ensaios de inoculação.

REFERÊNCIAS

- 1. ALGHORIBI, M. F. et al. Galleria mellonella infection model demonstrates high lethality of ST69 and ST127 uropathogenic E. coli. PLoS One, v. 9, p. 1-10, 2014.
- 2. CIESIELCZUK, H. et al. Comparative virulence of urinary and bloodstream isolates of extra-intestinal pathogenic Escherichia coli in a Galleria mellonella model. Virulence, v. 6, p. 145-151, 2015.
- 3. JORJÃO, A. L. Metodologia da criação de *Galleria mellonella* para uso como modelo de infecção e efeitos de *Lactobacillus* rhamnosus inativado pelo calor in vivo e in vitro, desafiados por Staphylococcus aureus e Escherichia coli. 2016. 95 f. Tese de Doutorado (Doutorado em Biopatologia Bucal). Universidade Estadual Paulista (UNESP), São José dos Campos, SP, 2016.
- 4. JUNQUEIRA, J. C. Galleria mellonella as a model host for human pathogens: recent studies and new perspectives. Virulence, v. 3, p. 474-476, 2012.
- 5. TSAI, C.J.; LOH J. M.; PROFT, T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. **Virulence**, v. 7, n. 3, p. 214-229, 2016.

