

# Universidade: presente!







21.25. OUTUBRO . CAMPUS DO VALE

# PREENCHENDO ESPAÇOS EUCLIDIANOS N-DIMENSIONAIS COM ESFERAS ADJACENTES DE MESMO RAIO

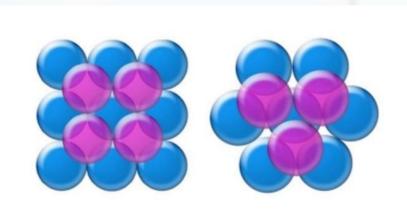
Por: Nael González, sob a orientação de Miriam Telichevesky.

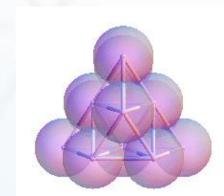
Contato: naelsgonzalez@gmail.com e miriam.telichevesky@ufrgs.br

## Introdução:

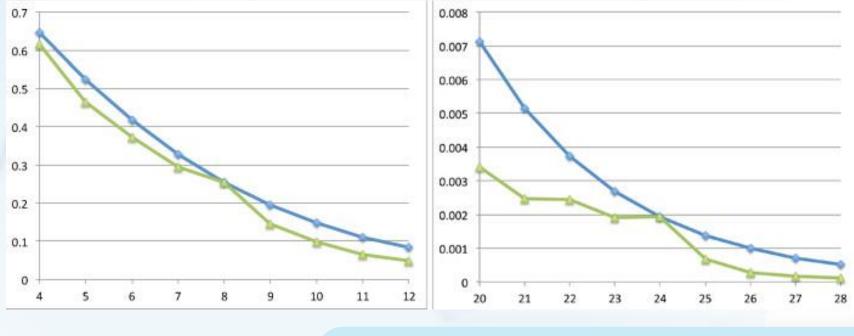
Qual o máximo de esferas de mesmo raio que uma esfera central pode tocar? Esta questão, conhecida como problema de Newton-Gregory, ficou sem resposta concreta até 1953, e representa a busca por descobrir esse número, denominado Kissing Number da terceira dimensão.

Além disso, quanto do espaço tridimensional poderia ser preenchido pelas esferas, e quais posições essas esferas deveriam estar para fazê-lo da melhor forma? Em 1611, Kepler propôs que elas podem ocupar no máximo  $\pi / 3\sqrt{2} \approx 74\%$ , desde que organizadas em uma das seguintes configurações:





Tal porcentagem é chamada de densidade do arranjo, e a densidade máxima entre os arranjos na dimensão n é a densidade do empacotamento de esferas idênticas naquela dimensão. Embora fosse trivial encontrar a densidade no plano, apenas em 2014 foi provado que Kepler estava correto em sua conjectura de dimensão três. Mas esses estudos se aplicam a qualquer dimensão n, e a maioria é desconhecida para nós, como mostram os gráficos:



### **Desenvolvimento:**

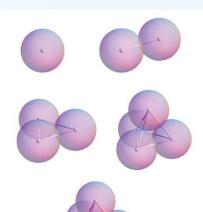
Começando com geometria algébrica em  $\mathbb{R}^n$ , esta pesquisa buscou técnicas para encontrar cotas superiores para as densidades de empacotamento, e após obter um limite que funcionasse para qualquer dimensão, se buscou entender a demonstração de por que o arranjo hexagonal é o melhor arranjo para a segunda dimensão.

Depois, se calculou quanto do espaço tridimensional seria preenchido por esferas idênticas, utilizando-se uma que utilizava simplexos regulares (neste caso, estratégia tetraedros) para encontrar uma cota superior para a densidade do empacotamento de esferas em dimensão três.

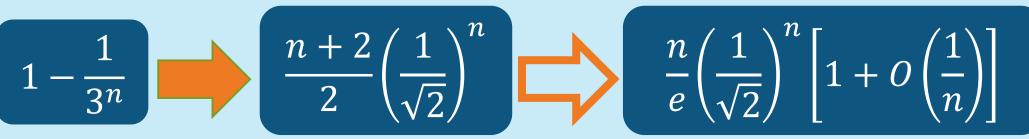
A técnica utilizada para a obtenção dessa cota superior foi formalizada por C. A. Rogers em 1958, e se consiste em posicionar esferas nos vértices de simplexos n-dimensionais, para depois calcular a densidade dentro do simplexo. Por fim, esta pesquisa passou a estudar como se formalizou a Cota de Rogers e sua predecessora, visando-se melhorar essa cota no futuro.

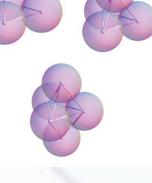
### **Resultados Encontrados:**

| Conceitos de preenchimento do $\mathbb{R}^n$                         | (1) |
|----------------------------------------------------------------------|-----|
| Por que o lattice hexagonal tem a melhor densidade em $\mathbb{R}^2$ | (2) |
| Qual a cota de Rogers para $\mathbb{R}^2$ e $\mathbb{R}^3$           | (3) |
| Como demonstrar a cota de Blichfeldt                                 | (4) |
| Como demonstrar a cota de Rogers                                     |     |
| Como demonstrar a cota de Cohn-Elkies                                |     |
|                                                                      |     |



**Cotas superiores** encontradas:





Referências e métodos utilizados:

- (1) "Sphere Packings", Chuanming Zong (1999). Utiliza geometria algébrica.
- (2) "A Simple Proof of Thue's Theorem on Circle Packing", Hai-Chau Chang & Lih-Chung Wang (2010). Utiliza geometria aritmética e triangulação de Delaunay.
- (3) O caso para  $\mathbb{R}^2$  é trivial, e para  $\mathbb{R}^3$  utilizei integral tripla em coordenadas esféricas.
- (4) "The Minimum Value of Quadratic Forms, and the Closest Packing of Spheres", Blichfeldt (1929). Utiliza geometria analítica, e é necessário à Cota de Rogers.



Esta pesquisa foi financiada pelo PICME - Programa de Iniciação Científica e Mestrado, de agosto de 2018 a julho de 2019, em parceria com o CNPq.